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A NONCONFORMING APPROXIMATE SOLUTION TO A
SPECIALLY ORTHOTROPIC AXISYMMETRIC
THIN SHELL SUBJECTED TO A HARMONIC
DISPLACEMENT BOUNDARY CONDITION

1. INTRODUCTION

The design of lightweight, inexpensive, and strong shells is critical to many
mechanical systems. The analysis of various types of shells under different loading
configurations has been reported by numerous researchers (Naghdi and Berry, 1954;
Flugge, 1960; Junger and Feit, 1986; Vinson and Sierakowski, 1987; Qaisi, 1989). In
these papers, the governing partial differential equations to evaluate a particular shell are
usually developed and then a response is formulated. The response is an equation of
motion, which is required to compare test data to analytical models or to solve an inverse
problem (i.e., the test is run and the system parameters are identified by the test data.)

In this report, the partial differential equations of an axisymmetric composite thin
shell subjected to a harmonic boundary condition are developed. First, the model of a shell
subjected to axial tension with a mechanical shaker at the forward end and terminated by a
rope to ground at the after end is formulated. The partial differential equations are
transformed into ordinary differential equations. An approximate solution to the ordinary
differential equations of motion is then derived. The model is verified with comparisons to
results from finite element analysis of the same thin shell problem. The model is also
compared to a previous model of the system.

The new model corresponds to the testing configuration in the Axial Vibration Test
Facility (AVTF) at the Naval Undersea Warfare Center (NUWC), as shown in figure 1.
This facility has been designed to provide a simple procedure for testing shells under

varying tensions and temperatures.
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Impedance w(x,1) Impedance
Head Head
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x, u(x,1)

// L

Figure 1. Laboratory Configuration

2. SYSTEM MODEL
The system model is an axisymmetric thin shell with a displacement-driven
boundary condition at one end and a mechanically grounded spring at the other end. The
governing partial differential equations are modified axisymmetric Love-Timoshenko
formulas. The longitudinal (axial) partial differential equation that relates the shells

longitudinal acceleration to its axial stress is

Bzu(x.t) _ do(x.1)
o’ dx

, ¢y

where u(x,) is the axial dispiacement (m), x is the axial spatial location (m), # is time (s), p
is the density of the shell (kg/m3). and oy(x,?) is the axial stress in the shell (N/m2). The
radial (circumferential) partial differential equation that relates the radial acceleration of the

shell to its tension, bending stiffness, and circumferential stress is

Mwix.t) h
B ax4 '—;G¢(xqt) 3 (2)

hazw(x.t)z T 32w(x,t)_
p on® 2ma gt

where w(x,?) is the radial displacement (m), A is the shell thickness (m), T'is the tension in
the shell (N), a is the average radius of the shell (m), B is the bending stiffness of the shell

(Nm), and 0'¢(x,t) is the circumferential (hoop) stress (N/m2). The bending stiffness of

the shell is given by the expression

E.h’

12 3
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where Ey is the axial elastic modulus (N/m2). The longitudinal elastic modulus of a thin
shell is related to Young's modulus using the equation

E

= 4
(l—vwvw) ( )

X

where E is Young's modulus (N/m2), Uxg is Poisson's ratio relating an axial force to a
circumferential displacement, and vgy is Poisson's ratio relating a circumferential force to
an axial displacement. The relatibnship between these two Poissons' ratios will be

discussed later in the report.

The dynamic stresses, Ox(x,t) and 6¢(x.?), are determined by combining two-
dimensional stress-strain relations and the strain-displacement relations in cylindrical
coordinates. The equation relating the longitudinal stress to the axial and circumferential
strain for an axisymmetrical solid is (Jones, 1975)

Ox(x.0) = Exey (x.0) + Uy EgEy(x.1) | (%)
where &x(x,?) is the longitudinal strain (dimensionless), Ey is the circumferential modulus
(N/m2), and £¢(x,7) is the circumferential strain (dimensionless). The longitudinal strain is

related to the longitudinal displacement by

- du(x,t)

Ex(x,1) 6)

and the axisymmetric circumferential strain is related to the circumferential displacement in

a thin shell by

gg(x,n) =220 ™
a

Equations (6) and (7) can be inserted into equation (5), which produces an axial stress of

du(x,t) . Vyp Egw(x.1)
Bx a )

The equation relating the hoop stress to the circumferential and longitudinal strain for an

ox(x,t)=E; ®)

axisymmetrical solid is (Jones, 1975)
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Oy (x.1) = Eg€g(x,1) + Vo, E €5 (x,1) . )
Equations (6) and (7) can be inserted into equation (9) to yield a circumferential stress of

Eyw(x,1) . du(x,1)

O'¢(X.t)= U¢IEI—_3;— . (10)

Equation (8) is now differentiated with respect to x and inserted into equation (1),

which gives

Au(x,1) -E Qu(x.1) . UxoEp ow(x,1) .

— 11
P ot ¥ oxt a ox ()
Equation (10) is next inserted directly into equation (2) yielding
*w(x.r) Pwixt) T Pwlx) hE, hvg Ex du(x,1)
h———>—=-B T - (x,t)— .12
P ot ox * 2mra ax2 02 W) a ox 12

Equations (11) and (12) are the two-dimensional axisymmetric equations of motion for the
specially orthotropic shell.

The harmonic boundary condition in the axial direction at x = 0 is modeled as

u(0,1) = Upe'® | (13)
where Upis the amplitude of the displacement at the boundary (m), i is the square root of
-1, and w is frequency (rad/s). The boundary condition in the axial direction at x = L is
modeled as a spring connected at one end to the shell and to mechanical ground (zero
displacement) at the other end. This equation is derived as follows by equating the force at

the end of the shell to the force in the spring:
AE, 24D _ ey (14)
ox

where A is the cross-sectional area of the shell (mz) and £ is the spring constant (N/m).
The boundary conditions in the radial direction are zero displacement and zero shear force
(Junger and Feit, 1986). These conditions are written as

w(0,t)=0, (15)

w(L,t)=0, (16)
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ow(0,1) -0 . a7
ox
and
QW(L.I)=0 . (18)
ox

Although the boundary conditions given by equations (15) - (18) are not used in the final
analysis, they are included here for a complete treatment of the theory. The effect of not
using these boundary conditions is discussed later in the report.

It should be noted that the previous equations used to model this system are (Chase,

1975)
azu(x 1) azu(x 1) . vaE; dw(x,1)
= : 19
ot Ex ox? M dx (1
and

Pw(x.1) Pwxt) T w(xt) holE hvaE, du(x,t)

h =-B —— X wix,t)— X , (20
p o ox? +27ta ox? a® wlx.1) a dx (20)
with

E
a?=-2 Q1)
EX

where a and a2 are both dimensionless quantities. Equations (11) and (12), derived
earlier in this section, will be compared to equations (19) and (20) as well as to results from

finite element analysis of several thin shell problems.

3. A NONCONFORMING APPROXIMATE SOLUTION
An approximate closed form solution can be developed for the partial differential
equations and the boundary conditions in the longitudinal direction. This calculation
assumes that the time and space modes of the system will decouple. A steady state solution

is also of interest, because it allows the displacements to be written as

u(x.t) = U(x)e'® (22)
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and
w(x.t) = W(x)e'? . (23)

A second assumption, which presumes that the dynamic coupling from the radial equation
into the longitudinal equation is negligible, results in an approximate solution to the
problem. It will be shown that, based on the selected loading condition on the structure,
this premise is reasonable. If the radial displacement derivative term is dropped and

equation (22) is used, equation (11) can be rewritten as

2
47U ;’(’) +k2U(x) =0 (24)
with

k= . (25)

where £ is the extensional wavenumber (rad/m). The general solution to equation (24) is
U(x)=Gcoskx+ Hsinkx . (26)
The boundary conditions from equations (13) and (14) are now applied to equation (26) to

solve for the constants G and H resulting in

U _ cosie +(AExksm kL - écoskL)sin - @7

Up AE kcoskL + EsinkL
which is the closed form approximate solution to the axial equation of motion.
The radial equation of motion (12) is now rewritten using equations (22), (23), and

the first derivative of equation (27) as

d*Wx) T d*Wx) (REy 5 ).
B - + - w?ph W)=
dx? 2rna dx2 at P )
Ughv,, E k
207X (sinkx — Heoskx) | (28)
a

where
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_ AE ksinkL - EcoskL

= . 29
AE kcoskL + EsinkL (29)

Equation (28) is now a nonhomogeneous ordinary differential equation whose forcing
function was derived from the axial equation of motion. The particular solution to equation
(28) is of the form

W(x)= Mcoskx+ Nsinkx . (30
Equation (30) can be differentiated two and four times with respect to x and then inserted
into equation (28), yielding the radial displacement of

W(x) _ (2mah vy Exk) (sinkx — H coskx)
Up  (2na®Bk* + Tak® +27hEy - 2ma*0’ph)

(3D

The boundary conditions on the radial equations are not used to define the equations of
motion in the radial direction, therefore the circumferential solution does not conform to the
boundary conditions at x = 0 and x = L. Others (Vinson and Sierakowski, 1987) note that
the homogeneous solution to shell equations of motion goes to zero away from either end
of the shell. Equations (27) and (31) now define the displacements of the shell in the axial

and radial directions.

4. FINITE ELEMENT ANALYSIS
The closed form solutions (equations (27) and (31)) are compared to results
obtained using finite element analysis. Finite element analysis is a discretized modeling
technique that breaks down the structure into a number of subdomains (elements) (Cook,
1974; Zienkiewicz, 1983). Constitutive equations are applied to each of these elements to
develop element equations of motion. These individual equations of motion are then
assembled to form a global equation of motion. The global equation of mation is of the

form

dg;(e) . .dg;(1)
! Kg (1) = . 3
M % +C 0 +Kg; (1) =f(x.1) 32)
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where M is the system mass matrix, C is the system damping matrix, K is the system
stiffness matrix, gi(#) is the generalized displacement vector in the ith direction, and f is the
external forcing function vector. The finite element results displayed here were obtained
using ANSYS, which is a general purpose finite element program. Finite element analysis
has the advantage of handling material and property discontinuities that are not easily
resolved with other numerical techniques. It is also used for comparisons with other
experiments and theories to verify results. ANSYS has shell models that are internal;
therefore, the equations of motion derived here (equations (11) and (12)) were not input
into the finite element program as a basis for analysis (Kohnke, 1987). Although neglected
in the development of equations (27) and (31), the effect of dynamic coupling from the
radial equation into the longitudinal equation is included in the finite element analysis. It is
important to note that the finite element analysis is an approximate numerical technique; it is
extremely different from the analytical solution presented here. A major disadvantage of
finite element analysis is its inability to yield closed form solutions; thus, any time a
parameter is changed, the entire problem must be resubmitted for analysis. It is also

numerically intensive and cannot be implemented easily on small computers.

S. AN ISOTROPIC EXAMPLE

The closed form solutions derived earlier are now analyzed using an isotropic
example. Isotropic shells have the elastic modulus and Poisson'’s ratio in the axial direction
equal to the circumferential direction. The shell properties are listed in table 1. These
closed form solutions are compared to results derived using finite element analysis.
Equations (19) and (20) are identical to equations (11) and (12) for the isotropic example
and thus are not considered separately for this case. Figure 2 shows the model results
compared to the finite element analysis for the longitudinal (U) displacement, and figure 3
depicts the model results compared to finite element analysis for the radial (W)

displacement. The closed form solutions for both the radial and longitudinal displacements
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are in very good agreement with the finite element analysis. Also, as predicted by

equations (27) and (31), the radial resonances are driven by the longitudinal resonances.

Table 1. Shell Properties for Isotropic Example

f—‘—“——_"_%‘——_‘_——ﬁ

: . . t
| Geometric Properties |
— p—————n e ————————————————————————————————————————e— |

25m (82 ft)

Response location, x

7m (23 f1)

Shell radius, a

(0.0254 m (1 in)

Shell thickness, h

0.00254 m (0.1 in)

Shell cross-sectional area, A

0.0004054 m2 (0.6284 in2)

Material Properties

Longitudinal modulus, Ex

1 x 109 N/m2

Circumferential modulus, E¢

1 x 109 N/m2

Poisson's ratio, Ux¢

(0.49 (dimensionless)

Poisson's ratio, Vgx

(.49 (dimensionless)

Density, p 1000 kg/m3

E. Properties
Spring constant £atx = L 1x 105 N/m
Shell tension, T 4450 N (1000 1b)
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Figure 2. Longitudinal Response of Isotropic Example at x = 7 Meters
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Figure 3. Radial Response of Isotropic Example at x =7 Meters

11



TR 10,165

6. A SPECIALLY ORTHOTROPIC EXAMPLE -
FINITE LENGTH SHELL

The closed form solutions are now compared to a specially orthotropic example.
Specially orthotropic describes the property where the elastic modulus and Poisson's ratio
are different in the radial direction than in the axial direction. This property also requires
that the major axis of the material properties be aligned with the circumferential and
longitudinal directions of the shell. Specially orthotropic shell properties are listed in table
2. The material properties of a specially orthotropic composite satisfy the equation (Jones,
1975)

%ZQ = %‘: . (33)
From equation (33), it is evident that the material possesses only three independent
parameters. For comparison to equations (27) and (31), the approximate solution
technique developed in section 3 can be applied to equations (19) and (20). The solution in
the axial direction, which is the same as that developed earlier, is given by equation (27).
The equation of motion in the radial direction is

W(x) _ (2rahvaE k) (sinkx — H coskx)

= , (34)
Up  (2na’Bk* + Tak® +27hEy - 2na’ w°ph)

where equation (34) is the solution to equation (20). Equation (34), although similar to
equation (31), results in a much different radial response of the structure for a specially
orthotropic example. Figure 4 shows the model results (equation (27)) compared to finite
element analysis for the longitudinal (U) displacement, and figure 5 illustrates the model
results (equation (31)) compared to finite element analysis and the model given in equation

(34) for the circumferential (W) displacement with v = Ux¢ used in equation (34). Figure 6

presents the model results (equation (31)) compared to finite element analysis and the

model given in equation (34) for the circumferential (w) displacement with v = Ugx in

equation (34). The comparison for equation (34) uses both values of Poisson's ratio

12
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because the original reference (Chase, 1975) is unclear. It is shown that equation (34)
either overestimates or underestimates the structural response depending on the value of
Poisson's ratio used. The phase angle of equation (34) is not shown in figures 5 and 6; it

is the same as the phase angle of equation (31), therefore it is omitted.

Table 2. Shell Properties for Specially Orthotropic Example

L Geometric Properties |

Length, L 25 m (82 ft)

Response location, x 16 m (52.5 ft)

Shell radius, a 0.0254 m (1 in)

Shell thickness, h 0.00254 m (0.1 in)

Shell cross-sectional area, A 0.0004054 m2 (0.6284 in2)

Material Properties

Longitudinal modulus, Ex 1 x 109 N/m2
Circumferential modulus, Eg 1 x 107 N/m2
Poisson’s ratio, Uxg 0.4900 (dimensionless)
Poisson’s ratio, Ugx 0.0049 (dimensionless)
Density, p 1000 kg/m3

Properties
Spring constant £at x = L 1x 105 N/m
Shell tension, T 2225 N (500 1b)

13
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Figure 4. Longitudinal Response of Specially Orthotropic Example at x = 16 Meters
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Figure 5. Radial Response of Specially Orthotropic Example at
x = 16 Meters Using v = 0.0049 for Equation (34)
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Figure 6. Radial Response of Specially Orthotropic Example at

x = 16 Meters Using v = 0.4900 for Equation (34)
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7. A SPECIALLY ORTHOTROPIC EXAMPLE -
SEMI-INFINITE LENGTH SHELL

A semi-infinite specially orthotropic shell is now analyzed. This type of analysis is
important when the shell is extremely long or when all the energy moving down the shell is
absorbed either internally or at the boundary. A convenient way to alter equations (1)
through (18) into a semi-infinite system is to change the boundary condition at x = L
(equation (14)) to

Ju(L) _ __ Ju(L.)
ox a

where ¢ now corresponds to a viscous damper (Ns/m) at the end of the shell as depicted in

AE, (35)

figure 7. It can be shown that a value of (Hull, 1993)

¢ = APE; 36)

produces a longitudinal response that contains only propagating wave energy. Although
the shell has finite length, all the energy moving down the shell will be absorbed by the
viscous damper, and the shell response appears as if it is infinitely long. Inserting equation
(36) into equation (35) and solving the equations of motion ((11) and (12)) with the

boundary condition of equation (13) yields the longitudinal response of

V)  gitx 37
Uo

and the radial response of

W(x) _ (2mahv gy Eyik)e ™™

= : (38)
Up  (2ma®Bk® + Tak® +27hEy - 2na’w?ph)

Equations (19) and (20) (Chase, 1975) can also be solved using the same viscous
boundary at x = L. The axial equation of motion is identical to equation (37). The radial

equation of motion is

W(x) _ (2nahvaE,ik)e ™
Up  (27a*Bk® + Tak? +27hEy — 270’ w’ph)

(39)
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Impedance w(x,1) Impedance
Head Head
Shell Damper /A

c

Figure 7. Configuration of Semi-Infinite System

The closed form solutions are now compared for the semi-infinite specially
orthotropic shell. The shell properties are listed in table 3. Figure 8 shows the model
results (equation (37)) compared to finite element analysis results for the longitudinal (U)
displacement. Although a finite length is used in the finite element analysis, the value is
also arbitrary. Figure 9 presents the model results (equation (38)) compared to finite
element analysis results and the model given in equation (39) for the circumferential (W)
displacement with v = Ux¢- Figure 10 are the model resuits (equation (38)) compared to
finite element analysis results and the model given in equation (39) for the circumferential
(W) displacement with v = vgx. The closed form solutions given by equations (37) and
(38) agree very well with results from finite element analysis. As in the previous example,
equation (39) either overestimates the response or underestimates the response, depending

on the value of Poisson's ratio used.
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Table 3. Shell Properties for Specially Orthotropic Semi-Infinite Length Example

—

=
! Geometric Properties

Length, L Semi-infinite

Response location, x 12m

Shell radius, a » 0.0254 m (1 in)

Shell thickness, h 0.00254 m (0.1 in)

Shell cross-sectional area, A 0.0004054 m2 (0.6284 in2)

Material Properties

Longitudinal modulus, Ex 1 x 109 N/m2
Circumferential modulus, Eg 1 x 107 N/m2
Poisson's ratio, vxg¢ 0.4900 (dimensionless)
Poisson's ratio, vgx (0.0049 (dimensionless)
Density, p 1000 kg/m3
I! Testing Properties ||
Damper constantcatx = L 405.4 Ns/m
Shell tension, T 2225 N (500 1b)
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Figure 8. Longitudinal Response of Semi-Infinite Specially Orthotropic
Example at x = 12 Meters
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Figure 9. Radial Response of Semi-Infinite Specially Orthotropic Example at
x = 12 Meters Using v = (0.0049 for Equation (39)
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Figure 10. Radial Response of Semi-Infinite Specially Orthotropic Example at
x = 12 Meters Using v = 0.4900 for Equation (39)
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8. A SPECIALLY ORTHOTROPIC EXAMPLE -
INCLUSION OF STRUCTURAL DAMPING

The model can include structural damping by changing the elastic modulus from a
real-valued term to a complex-valued term. The damping is modeled as an (imaginary) loss
modulus with the (real) storage modulus. The shell properties for this damped example are
listed in table 4. Except for the addition of damping, these propertics are the same as those
used for the example in section 6. Figure 11 shows the damped model results compared to
the undamped model results for the longitudinal (U) displacement, and figure 12 illustrates
the damped model results compared to the undamped model results for the circumferential
(W) displacement. ANSYS does not have the capability to model specially orthotropic
materials with varying damping coefficients in different directions; therefore, no
comparison to finite element analysis is included here. If equation (20) were compared to
this example, the difference would be similar to that shown in figures 5 and 6. The results
from figures 11 and 12 show that the addition of damping reduces the levels of shell
resonance and increases the levels of shell antiresonance. The transfer function is
otherwise very similar to the undamped example. The effect of damping would be greater
if the shell were longer, because the point harmonic forcing function would be absorbed by

a larger medium.
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Table 4. Shell Properties for Specially Orthotropic Damped Example

Geometric Properties ‘
Length, L 25m
Response location, x 16 m

Shell radius, a

0.0254 m (1 in)

Shell thickness, h

0.00254 m (0.1 in)

Shell cross-sectional area, A

_ o

0.0004054 m2 (0.6284 in2)

— —

Material

Longitudinal modulus, Ey

Properties

1 x 109(1+0.05i) N/m2

Circumferential modulus, Ey

1 x 107(1+0.20i) N/m?2

Poisson's ratio, Ux¢

0.490) (dimensionless)

Poisson’s ratio, Ugx 0.0049 (dimensionless)
Density, p 1000 kg/m3
[[ Testing Properties
Spring constant Eatx = L 1x 105 N/m
Shell tension, T 2225 N (500 1b)
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Figure 11. Longitudinal Response of a Damped and Undamped Specially
Orthotropic Example at x = 16 Meters
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Figure 12. Radial Response of a Damped and Undamped Specially
Orthotropic Example at x = 16 Meters
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9. DISCUSSION
All the shells modcled in this study compare favorably to finite element theory. The
approximate closed form solution is very accurate for a harmonic displacement boundary
condition. It is possible that this technique will not be as accurate for other types of forcing
or other geometric sizes. The equations previously used to model this system (equations
(19) and (20), Chase, 1975) do not produce valid results for specially orthotropic analysis.
They can, however, be easily reformulated to conform to the analysis given here. The

radial coupling term in equation (19) needs to be altered to

vaE; dw(x,t) - vmazb} ow(x,t)

39
a ox a ox 39
and the longitudinal coupling term in equation (20) to
hvy E
hvaE, du(x.t) - oxEx du(x,r) - 40)

a ox a ox
Such a modification will produce results that are in agreement with the finite element
analysis. Note that the larger the difference between the axial and circumferential modulus,
the greater is the discrepancy between equations (12) and (200). When the axial modulus
equals the circumferential modulus, equation (12) is equal to equation (20).

The nonconforming solution was compared to the finite element solution near the
ends of the shell at x = 0.5 m and x = 24.5 m for the examples listed in sections S, 6, and
7. These are the two locations in the finite element model that are closest to the end of the
shell where a solution can be obtained. The agreement between the finite element model
and the closed form approximate solution was similar to that shown earlier. This
comparison shows that the radial boundary conditions do not influence the displacements
of the shell even 0.5 meters near its end. If the nonconforming solutions were compared to
the finite element results at x = 0 and x = L, the solutions would be similar in the
longitudinal direction and dissimilar in the radial directions. This dissimilarity would only

be a concern if the solution very close to the end of the shell was of interest.
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10. CONCLUSIONS
A nonconforming approximate solution to a thin shell subjected to a harmonic
displacement boundary condition was developed in this report. This closed form solution
agrees well with finite element solutions for the several models evaluated. It is shown that
previous governing equations for the case of specially orthotropic shell models are
erroncous. These equations can be reformulated to match the analysis here by an alteration
in the coupling terms between the radial and longitudinal equations of motion. Future work

in this area should include laboratory testing to obtain experimental results.

28



TR 10,165
11. REFERENCES

Cook, R. D., Concepts and Applications of Finite Element Analysis, John Wiley & Sons,
New York, 1974.

Chase, D. M., "Self-Noise Induced by Longitudinal Vibration in a Towed Array - The
Analytical Approach,” USN Journal of Underwater Acoustics, vol. 26, no. 1, pp.
53-77, 1975.

Hull, A. J., "A Closed Form Solution of a Longitudinal Bar With a Viscous Boundary
Condition," Journal of Sound and Vibration, to appcar vol. 165, no. 1, August

1993.

Jones, R. M., Mechanics of Composite Materials, Hemisphere Publishing Corporation,
New York, 1975

Junger, M. C., and Feit, D., Sound, Structures, and Their Interaction, The MIT Press,
Cambridge, Massachusetts, 1986.

Kohnke, P. C., ANSYS Engineering Analysis System Theoretical Mcnual, Swanson
Analysis Systems, Inc., Houston, Pennsylvania, 1987.

Flugge, W., Stresses in Shells, Springer-Verlag, Berlin, 1960.

Naghdi, P. M., and Berry, J. G., "On the Equations of Motion of Cylindrical Shells,”
Journal of Applied Mechanics, pp. 160-166, June, 1954.

Qaisi, M. L., "Axisymmetrical Acoustic Vibrations of Simply-Supported Cylindrical
Shells," Applied Acoustics, vol. 26, pp. 33-43, 1989.

Vinson, J. R., and Sierakowski, R. L., The Behavior of Structures Composed of
Composite Materials, Martinus Nijhoff Publishers, Dordrecht, 1987.

Zienkiewicz, O. C., The Finite Element Method, MacGraw-Hill Book Company, New
York, 1983.

29




INITIAL DISTRIBUTION LIST

Addressee Number of Copies

Applied Measurement Systems, Inc. (J. Diggs)

Bolt Beranek Newman Laboratories (P. Jameson)

Cambridge Acoustical Association (J. M. Garrelick, J. E. Cole)
Campbell-Kronauer Association (C.R. Campbell)

Chase, Inc. (D. M. Chase)

DTIC 12
Martin Marietta Corporation (C. Kennedy)

Michigan State University (C.R. MacCluer)

ONT [T. Goldsherry (OCNR-231)]

PEO [G. Kent (PMO-409), D. Lechner (PMO-4(9/41)]
Technology Service Corporation (L. W. Brooks)

bt bt DD s e

_— NN -




