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A NONCONFORMING APPROXIMATE SOLUTION TO A

SPECIALLY ORTHOTROPIC AXISYMMETRIC

THIN SHELL SUBJECTED TO A HARMONIC

DISPLACEMENT BOUNDARY CONDITION

1. INTRODUCTION

The design of lightweight, inexpensive, and strong shells is critical to many

mechanical systems. The analysis of various types of shells under different loading

configurations has been reported by numerous researchers (Naghdi and Berry, 1954;

Flugge, 1960; Junger and Feit, 1986; Vinson and Sierakowski, 1987; Qaisi, 1989). In

these papers, the governing partial differential equations to evaluate a particular shell are

usually developed and then a response is formulated. The response is an equation of

motion, which is required to compare test data to analytical models or to solve an inverse

problem (i.e., the test is run and the system parameters are identified by the test data.)

In this report, the partial differential equations of an axisymmetric composite thin

shell subjected to a harmonic boundary condition are developed. First, the model of a shell

subjected to axial tension with a mechanical shaker at the forward end and terminated by a

rope to ground at the after end is formulated. The partial differential equations are

transformed into ordinary differential equations. An approximate solution to the ordinary

differential equations of motion is then derived. The model is verified with comparisons to

results from finite element analysis of the same thin shell problem. The model is also

compared to a previous model of the system.

The new model corresponds to the testing configuration in the Axial Vibration Test

Facility (AVTF) at the Naval Undersea Warfare Center (NUWC), as shown in figure 1.

This facility has been designed to provide a simple procedure for testing shells under

varying tensions and temperatures.
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Impedance ImpedancelHead wx')Head

Shaker L Shell -- [Spring., .

Figure 1. Laboratory Configuration

2. SYSTEM MODEL

The system model is an axisymmetric thin shell with a displacement-driven

boundary condition at one end and a mechanically grounded spring at the other end. The

governing partial differential equations are modified axisymmetric Love-Timoshenko

formulas. The longitudinal (axial) partial differential equation that relates the shells

longitudinal acceleration to its axial stress is

d 2u(x't) dcax(xt) (1)P =t . (x "
t dX

where u(x,t) is the axial displacement (m), x is the axial spatial location (m), t is time (s), p

is the density of the shell (kg/m3 ), and ax(x,t) is the axial stress in the shell (N/m 2 ). The

radial (circumferential) partial differential equation that relates the radial acceleration of the

shell to its tension, bending stiffness, and circumferential stress is

ph d2 w(xt) T d2w(xt) B d4 w(x't) -h (2
S2-a x x4  a ( (x t)

where w(x,t) is the radial displacement (m), h is the shell thickness (m), Tis the tension in

the shell (N), a is the average radius of the shell (m), B is the bending stiffness of the shell

(Nm), and ao(x,t) is the circumferential (hoop) stress (N/m 2 ). The bending stiffness of

the shell is given by the expression

B = Exh3  (3)
12

2
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where Ex is the axial elastic modulus (N/m 2 ). The longitudinal elastic modulus of a thin

shell is related to Young's modulus using the equation

Ex, (4)

where E is Young's modulus (N/m 2 ), VxO is Poisson's ratio relating an axial force to a

circumferential displacement, and vox is Poisson's ratio relating a circumferential force to

an axial displacement. The relationship between these two Poissons' ratios will be

discussed later in the report.

The dynamic stresses, crx(x,t) and ao(x,t), are determined by combining two-

dimensional stress-strain relations and the strain-displacement relations in cylindrical

coordinates. The equation relating the longitudinal stress to the axial and circumferential

strain for an axisymmetrical solid is (Jones, 1975)

ax(x,t) = E~xe.(x,t)+ VlxEoe(x,t) , (5)

where ex(X,t) is the longitudinal strain (dimensionless), E0 is the circumferential modulus

(N/m 2 ), and eo(xt) is the circumferential strain (dimensionless). The longitudinal strain is

related to the longitudinal displacement by

u~xt) = cx (6)
dx

and the axisymmetric circumferential strain is related to the circumferential displacement in

a thin shell by

w(x,t)
EO (x, t) a (7)a

Equations (6) and (7) can be inserted into equation (5), which produces an axial stress of

(x,t)=E u(x,t) + (8)

dx a

The equation relating the hoop stress to the circumferential and longitudinal strain for an

axisymmetrical solid is (Jones, 1975)

3
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c(,)(x,t=EOEO(x,0+ ux1 E~e(x,t) (9)

Equations (6) and (7) can be inserted into equation (9) to yield a circumferential stress of

C EFw(x.t) du(x, t) (10)
a dx

Equation (8) is now differentiated with respect to x and inserted into equation (1),

which gives

d2u(xt) = d2 u(xt) + vxcEO dw(xt)
+t2 a dx

Equation (10) is next inserted directly into equation (2) yielding

ph d 2 w(xt) dB4 w(xt) T d 2 w(xt) hE (X hVpxEx du(x,t)
a-•-B---)-- + --- w (12)

dt - x 2 7a x ax

Equations (11) and (12) are the two-dimensional axisymmetric equations of motion for the

specially orthotropic shell.

The harmonic boundary condition in the axial direction at x = 0 is modeled as

u(0, t) = UOei ,(13)

where Uo is the amplitude of the displacement at the boundary (m), i is the square root of

-1, and co is frequency (rad/s). The boundary condition in the axial direction at x = L is

modeled as a spring connected at one end to the shell and to mechanical ground (zero

displacement) at the other end. This equation is derived as follows by equating the force at

the end of the shell to the force in the spring:

du(L,t)_
AE u -t = -_u(L,t) (14)Ax dx

where A is the cross-sectional area of the shell (m2 ) and ý is the spring constant (N/m).

The boundary conditions in the radial direction are zero displacement and zero shear force

(Junger and Feit, 1986). These conditions are written as

w(O,t) = 0 , (15)

w(L,t)=0 , (16)

4
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dw(0,t_ ) -o (17)
dx

and
dw(L,t) =0 (18)

dx

Although the boundary conditions given by equations (15) - (18) are not used in the final

analysis, they are included here for a complete treatment of the theory. The effect of not

using these boundary conditions is discussed later in the report.

It should be noted that the previous equations used to model this system are (Chase,

1975)

d2 u(x't) E d2u(xjt) + vaEx dw(x,t) (19)

p t2 x dx2 a dx

and
d2w(x,t) _ 4W(X,t) dT 2w(x,t) ha 2Ew hvaEx du(x,t)

ph d 4w t) T ______a___ (20)
dt2 dx4 2•ta dxa-"" a adx

with

a2 =E , (21)

where a and a 2 are both dimensionless quantities. Equations (11) and (12), derived

earlier in this section, will be compared to equations (19) and (20) as well as to results from

finite element analysis of several thin shell problems.

3. A NONCONFORMING APPROXIMATE SOLUTION

An approximate closed form solution can be developed for the partial differential

equations and the boundary conditions in the longitudinal direction. This calculation

assumes that the time and space modes of the system will decouple. A steady state solution

is also of interest, because it allows the displacements to be written as

u(x,t) = U(x)eiox (22)

5
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and

w(x,t) = W(x)eit . (23)

A second assumption, which presumes that the dynamic coupling from the radial equation

into the longitudinal equation is negligible, results in an approximate solution to the

problem. It will be shown that, based on the selected loading condition on the structure,

this premise is reasonable. If the radial displacement derivative term is dropped and

equation (22) is used, equation (11) can be rewritten as

d2U(x) + k2U(x) (24)

with

k -0.)(25)

where k is the extensional wavenumber (rad/m). The general solution to equation (24) is

U(x) = Gcoskx+Hsinkx . (26)

The boundar) conditions from equations (13) and (14) are now applied to equation (26) to

solve for the constants G and H resulting in

U(x) = coskx + AExk sinkL- coskL sin kx , (27)
U0  , AExkcoskL + sin kL )

which is the closed form approximate solution to the axial equation of motion.

The radial equation of motion (12) is now rewritten using equations (22), (23), and

the first derivative of equation (27) as

dd4 W(x) T d2 W(x) +.(hEO _W
B ý; -- ~ a' dx 4 2 ra a22 ,"-t~ h W r) =

UohvoxExk (sin kx - H cos kx) , (28)
a

where

6
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H= AExksinkL -c coskL (29)
AExkcoskL + 4sinkL

Equation (28) is now a nonhomogeneous ordinary differential equation whose forcing

function was derived from the axial equation of motion. The particular solution to equation

(28) is of the form

W(x) = Mcoskx + Nsin kx . (30)

Equation (30) can be differentiated two and four times with respect to x and then inserted

into equation (28), yielding the radial displacement of

W(x) _ (27rahvuxExk) (sin kx - Hcoskx) (31)
U0  (27ra2 Bk 4 + Tak2 + 2irhE -2tra2 ro2 ph)

The boundary conditions on the radial equations are not used to define the equations of

motion in the radial direction, therefore the circumferential solution does not conform to the

boundary conditions at x = 0 and x = L. Others (Vinson and Sierakowski, 1987) note that

the homogeneous solution to shell equations of motion goes to zero away from either end

of the shell. Equations (27) and (31) now define the displacements of the shell in the axial

and radial directions.

4. FINITE ELEMENT ANALYSIS

The closed form solutions (equations (27) and (31)) are compared to results

obtained using finite element analysis. Finite element analysis is a discretized modeling

technique that breaks down the structure into a number of subdomains (elements) (Cook,

1974; Zienkiewicz, 1983). Constitutive equations are applied to each of these elements to

develop element equations of motion. These individual equations of motion are then

assembled to form a global equation of motion. The global equation of motion is of the

form

M d2+g(t) d-- + Kg(t) = f_(x,t) ,(32)
dt2  dt

7
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where M is the system mass matrix, C is the system damping matrix, K is the system

stiffness matrix, gi(t) is the generalized displacement vector in the ith direction, and f is the

external forcing function vector. The finite element results displayed here were obtained

using ANSYS, which is a general purpose finite element program. Finite element analysis

has the advantage of handling material and property discontinuities that are not easily

resolved with other numerical techniques. It is also used for comparisons with other

experiments and theories to verify results. ANSYS has shell models that are internal;

therefore, the equations of motion derived here (equations (11) and (12)) were not input

into the finite element program as a basis for analysis (Kohnke, 1987). Although neglected

in the development of equations (27) and (31), the effect of dynamic coupling from the

radial equation into the longitudinal equation is included in the finite element analysis. It is

important to note that the finite element analysis is an approximate numerical technique; it is

extremely different from the analytical solution presented here. A major disadvantage of

finite element analysis is its inability to yield closed form solutions; thus, any time a

parameter is changed, the entire problem must be resubmitted for analysis. It is also

numerically intensive and cannot be implemented easily on small computers.

5. AN ISOTROPIC EXAMPLE

The closed form solutions derived earlier are now analyzed using an isotropic

example. Isotropic shells have the elastic modulus and Poisson's ratio in the axial direction

equal to the circumferential direction. The shell properties are listed in table 1. These

closed form solutions are compared to results derived using finite element analysis.

Equations (19) and (20) are identical to equations (11) and (12) for the isotropic example

and thus are not considered separately for this case. Figure 2 shows the model results

compared to the finite element analysis for the longitudinal (U) displacement, and figure 3

depicts the model results compared to finite element analysis for the radial (W)

displacement. The closed form solutions for both the radial and longitudinal displacements
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are in very good agreement with the finite element analysis. Also, as predicted by

equations (27) and (31), the radial resonances are driven by the longitudinal resonances.

Table 1. Shell Properties for Isotropic Example

Geometric Properties

Length, L 25 m (82 ft)

Response location, x 7 m (23 ft)

Shell radius, a 0.0254 m (1 in)

Shell thickness, h 0.(X0254 m (0.1 in)

Shell cross-sectional area, A 0.0004054 m2 (0.6284 in2 )

Material Properties

Longitudinal modulus, Ex I x 109 N/m2

Circumferential modulus, EO 1 x 109 N/m2

Poisson's ratio, vxo 0.49 (dimensionless)

Poisson's ratio, vox 0.49 (dimensionless)

Density, p 1000 kg/mi3

Testing Properties

Spring constant 4 at x = L 1 x 105 N/m

Shell tension, T 4450 N (I W) lb)

9
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Figure 2. Longitudinal Response of Isotropic Example at x = 7 Meters
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Figure 3. Radial Response of Isotropic Example at x = 7 Meters
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6. A SPECIALLY ORTHOTROPIC EXAMPLE -

FINITE LENGTH SHELL

The closed form solutions are now compared to a specially orthotropic example.

Specially orthotropic describes the property where the elastic modulus and Poisson's ratio

are different in the radial direction than in the axial direction. This property also requires

that the major axis of the material properties be aligned with the circumferential and

longitudinal directions of the shell. Specially orthotropic shell properties are listed in table

2. The material properties of a specially orthotropic composite satisfy the equation (Jones,

1975)

Vx. = VO- (33)
E~x EO

From equation (33), it is evident that the material possesses only three independent

parameters. For comparison to equations (27) and (31), the approximate solution

technique developed in section 3 can be applied to equations (19) and (20). The solution in

the axial direction, which is the same as that developed earlier, is given by equation (27).

The equation of motion in the radial direction is

W(x) = (2;rahvaExk) (sinkx- Hcoskx) (34)

UO (2yra2 Bk 4 + Tak 2 + 2yrhEO - 2yra 2co2ph) '

where equation (34) is the solution to equation (20). Equation (34), although similar to

equation (31), results in a much different radial response of the structure for a specially

orthotropic example. Figure 4 shows the model results (equation (27)) compared to finite

element analysis for the longitudinal (U) displacement, and figure 5 illustrates the model

results (equation (31)) compared to finite element analysis and the model given in equation

(34) for the circumferential (M) displacement with v = vxo used in equation (34). Figure 6

presents the model results (equation (31)) compared to finite element analysis and the

model given in equation (34) for the circumferential (w) displacement with v = vox in

equation (34). The comparison for equation (34) uses both values of Poisson's ratio

12
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because the original reference (Chase, 1975) is unclear. It is shown that equation (34)

either overestimates or underestimates the structural response depending on the value of

Poisson's ratio used. The phase angle of equation (34) is not shown in figures 5 and 6; it

is the same as the phase angle of equation (31), therefore it is omitted.

Table 2. Shell Properties for Specially Orthotropic Example

Geometric Properties

Length, L 25 m (82 ft)

Response location, x 16 m (52.5 ft)

Shell radius, a 0.0254 m (1 in)

Shell thickness, h 0.00254 m (0.1 in)

Shell cross-sectional area, A 0.0004054 m2 (0.6284 in2 )

Material Properties

Longitudinal modulus, Ex 1 x 109 N/m2

Circumferential modulus, EO, 1 x 1()7 N/m2

Poisson's ratio, vxtb 0.4900 (dimensionless)

Poisson's ratio, vox 0.0A49 (dimensionless)

Density, p 1000 kg/mi3

Testing Properties

Spring constant ý at x = L I x 105 N/m

Shell tension, T 2225 N (500 lb)

13
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Figure 4. Longitudinal Response of Specially Orthotropic Example at x = 16 Meters
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Figure 5. Radial Response of Specially Orthotropic Example at
x = 16 Meters Using v = 0.0049 for Equation (34)
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7. A SPECIALLY ORTHOTROPIC EXAMPLE -

SEMI-INFINITE LENGTH SHELL

A semi-infinite specially orthotropic shell is now analyzed. This type of analysis is

important when the shell is extremely long or when all the energy moving down the shell is

absorbed either internally or at the boundary. A convenient way to alter equations (1)

through (18) into a semi-infinite system is to change the boundary condition at x = L

(equation (14)) to

du(L,t) du(Lt)
AEx =c , (35)dx dt

where c now corresponds to a viscous damper (Ns/m) at the end of the shell as depicted in

figure 7. It can be shown that a value of (Hull, 1993)

c = A -px (36)

produces a longitudinal response that contains only propagating wave energy. Although

the shell has finite length, all the energy moving down the shell will be absorbed by the

viscous damper, and the shell response appears as if it is infinitely long. Inserting equation

(36) into equation (35) and solving the equations of motion ((11) and (12)) with the

boundary condition of equation (13) yields the longitudinal response of

U x... = e -X (37)
Uo

and the radial response of

W(x) (2 4rahvuxExik)e-ikX (38)
U0  (2;ra2 Bk4 + Tak2 + 27rhEO - 27ra2 o2ph)

Equations (19) and (20) (Chase, 1975) can also be solved using the same viscous

boundary at x = L. The axial equation of motion is identical to equation (37). The radial

equation of motion is

W (x) Ira 2 (2 7rahvaE _,ik)e-ikX (39)
UO (2 ra2 Bk 4 + Tak 2 + 27rhEO - 2ra2  ph) (

17
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Figure 7. Configuration of Semi-Infinite System

The closed form solutions are now compared for the semi-infinite specially

orthotropic shell. The shell properties are listed in table 3. Figure 8 shows the model

results (equation (37)) compared to finite element analysis results for the longitudinal (U)

displacement. Although a finite length is used in the finite element analysis, the value is

also arbitrary. Figure 9 presents the model results (equation (38)) compared to finite

element analysis results and the model given in equation (39) for the circumferential (W)

displacement with u = vxo. Figure 10 are the model results (equation (38)) compared to

finite element analysis results and the model given in equation (39) for the circumferential

(W) displacement with v = vox. The closed form solutions given by equations (37) and

(38) agree very well with results from finite element analysis. As in the previous example,

equation (39) either overestimates the response or underestimates the response, depending

on thr value of Poisson's ratio used.
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Table 3. Shell Properties for Specially Orthotropic Semi-Infinite Length Example

Geometric Properties

Length, L Semi-infinite

Response location, x 12 m

Shell radius, a 0.0254 m (1 in)

Shell thickness, h 0.00254 m (0.1 in)

Shell cross-sectional area, A 0.0004054 m2 (0.6284 in2 )

Material Properties

Longitudinal modulus, Ex 1 x 109 N/m2

Circumferential modulus, EO 1 x 1(i7 N/m2

Poisson's ratio, vxO 0.49W() (dimensionless)

Poisson's ratio, Vox 0.0M49 (dimensionless)

Density, p 1000 kg/mi3

Testing Properties

Damper constant c at x = L 405.4 Ns/m

Shell tension, T 2225 N (5W0 lb)
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Figure 8. Longitudinal Response of Semi-Infinite Specially Orthotropic
Example at x = 12 Meters
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Figure 9. Radial Response of Semi-Infinite Specially Orthotropic Example at
x = 12 Meters Using u = 0.0049 for Equation (39)
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Figure 10. Radial Response of Semi-Infinite Specially Orthotropic Example at
x = 12 Meters Using v = 0.4900 for Equation (39)
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8. A SPECIALLY ORTHOTROPIC EXAMPLE -

INCLUSION OF STRUCTURAL DAMPING

The model can include structural damping by changing the elastic modulus from a

real-valued term to a complex-valued term. The damping is modeled as an (imaginary) loss

modulus with the (real) storage modulus. The shell properties for this damped example are

listed in table 4. Except for the addition of damping, these properties are the same as those

used for the example in section 6. Figure 11 shows the damped model results compared to

the undamped model results for the longitudinal (U) displacement, and figure 12 illustrates

the damped model results compared to the undamped model results for the circumferential

(W) displacement. ANSYS does not have the capability to model specially orthotropic

materials with varying damping coefficients in different directions; therefore, no

comparison to finite element analysis is included here. If equation (20) were compared to

this example, the difference would be similar to that shown in figures 5 and 6. The results

from figures 11 and 12 show that the addition of damping reduces the levels of shell

resonance and increases the levels of shell antiresonance. The transfer function is

otherwise very similar to the undamped example. The effect of damping would be greater

if the shell were longer, because the point harmonic forcing function would be absorbed by

a larger medium.
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Table 4. Shell Properties for Specially Orthotropic Damped Example

Geometric Properties

Length, L 25 m

Response location, x 16 m

Shell radius, a 0.0254 m (1 in)

Shell thickness, h 0.00254 m (0.1 in)

Shell cross-sectional area, A 0.0004054 m2 (0.6284 in2 )

Material Properties

Longitudinal modulus, Ex 1 x 109 (1+0.05i) N/m2

Circumferential modulus, E4  1 x 107 (1+0.20i) N/m2

Poisson's ratio, vxO 0.49W0 (dimensionless)

Poisson's ratio, Vox 0.0049 (dimensionless)

Density, p 10WO kg/mr3

Testing Properties

Spring constant • at x = L 1 x 105 N/rn

Shell tension, T 2225 N (500 lb)
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Figure 11. Longitudinal Response of a Damped and Undamped Specially
Orthotropic Example at x = 16 Meters
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Figure 12. Radial Response of a Damped and Undamped Specially
Orthotropic Example at x = 16 Meters
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9. DISCUSSION

All the shells modeled in this study compare favorably to finite element theory. The

approximate closed form solution is very accurate for a harmonic displacement boundary

condition. It is possible that this technique will not be as accurate for other types of forcing

or other geometric sizes. The equations previously used to model this system (equations

(19) and (20), Chase, 1975) do not produce valid results for specially orthotropic analysis.

They can, however, be easily reformulated to conform to the analysis given here. The

radial coupling term in equation (19) needs to be altered to

vaEx dw(x,t) va2 E2x d,(x,t)= , (39)
a dx a dx

and the longitudinal coupling term in equation (20) to

hvaEx du(x,t) hvoxEx du(x,t) (40)

a dx a dx

Such a modification will produce results that are in agreement with the finite element

analysis. Note that the larger the difference between the axial and circumferential modulus,

the greater is the discrepancy between equations (12) and (20). When the axial modulus

equals the circumferential modulus, equation (12) is equal to equation (20).

The nonconforming solution was compared to the finite element solution near the

ends of the shell at x = 0.5 m and x = 24.5 m for the examples listed in sections 5, 6, and

7. These are the two locations in the finite element model that are closest to the end of the

shell where a solution can be obtained. The agreement between the finite element model

and the closed form approximate solution was similar to that shown earlier. This

comparison shows that the radial boundary conditions do not influence the displacements

of the shell even 0.5 meters near its end. If the nonconforming solutions were compared to

the finite element results at x = 0 and x = L, the solutions would be similar in the

longitudinal direction and dissimilar in the radial directions. This dissimilarity would only

be a concern if the solution very close to the end of the shell was of interest
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10. CONCLUSIONS

A nonconforming approximate solution to a thin shell subjected to a harmonic

displacement boundary condition was developed in this report. This closed form solution

agrees well with finite element solutions for the several models evaluated. It is shown that

previous governing equations for the case of specially orthotropic shell models are

erroneous. These equations can be reformulated to match the analysis here by an alteration

in the coupling terms between the radial and longitudinal equations of motion. Future work

in this area should include laboratory testing to obtain experimental results.
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