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EVALUATION

This effort successfully developed an algorithm
for generating scan-based switching tests. The
algorithm identifies timing paths from incomplete
lists of nodes and automatically marks them for timing
test generation. Tests are attempted for both rising
and falling edge transitions at the source bistables
of the path. If a test cannot be generated, the logic
conflict which prohibits test generation is
identified.

The only design considerations for this algorithm
were the scan-design and the ability to execute two
functional clocks with desired interval between logic
scans. However, it became apparent from the test case
that circuits which use many state-machines and
counters, require multiple path control bistables to
be simultaneously switched in order to achieve path
sensitization. As a result, further work is needed to

address this issue.
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i. Introduction

This repont describes an algorithm which provides automated timing test generation for
selected timing paths in VLSI/VHSIC-scale ASIC designs. Timing tests have many
uses besides providing delay measurements of logic paths in ASICs (See Table 1).
However, these measurements are usually difficult to make because the signals
required to control the measurement of the path delay are not directly addressable
from the chip Input/Output pins. Often, multiple levels of bistables exist between the
logic path to be measured and the |/O pins.

The manual development of functional tests that can be applied to the 1/0 pins of an
ASIC, and can be guaranteed to test a desired path, is difficult and time consuming.
This is true even if the tests can be applied via scan. Automatically generated tests
can reduce test generation costs and schedule risk while producing tests for a larger
number of paths. This program researches the utility of a delay test generation
algorithm which takes advantage of scan design, and does not require additional logic
design considerations.

Scan is used to load the test vectors generated by this algorithm. The test is
performed by executing two clocks which define a specific time interval. The results
are then scanned out for examination to determine if the test passed (the delay path
was shorter than the clock interval), or failed (the delay path was longer than the clock
interval). With repeated executions of a given test vector with differing clock intervals,
the precise timing of the delay path can be determined.

The switching test algorithm was implemented in Ada for demonstration on the Test-
bus Interface Unit (TIU) design, an ASIC design used in the Radiation Hard 32 bit
Processor (RH32) Program. [F30602-88-C0060]

An example circuit was generated for the purpose of describing the algorithm. This
sample circuit (Figure 6 - 'Timing Path Example’) is not intended to perform any




particular function but is intended only for descriptive reference. The bistables and
gates in the example would normally drive into other logic cones. However, to simplify
the schematic, these other logic cones are not shown, nor are scan paths shown.

Test generation aigorithm results for 5 delay paths from the TIU test case are
presented in.Figure 5 and Figures 7 through 10.

Delay Test

Application

In a VLSI/VHSIC chip, measure delay paths
which contain particular combinations of gate
delay, media delay, and gate loading

Verify SPICE or other Timing Analysis
program calibration.

Measure the N longest delay paths in a
fabricated chip.

Verity that required desigrn margins are
being met.

Measure selected paths in a design under
various combinations of temperature, voltage
or radiation

Verify that environmental performance
requirements are being met

L Use delay path tests in IC fabrication test
screen

Part of a Total Quality Management pian.

At the Line Replaceable Module or System
level, measure the timing of selected paths in
a design.

Verify performance margins over time or
after repair.

Table 1 Applications for delay path tests are not restricted to the detection of individual gate

or delay path timing faults.

Glossary Of Terms

ASIC - Application Specific Integrated Circuit.

‘B’ logic state - A state sensitive rising logic transition.

Bistable - An edge sensitive two state storage element. (Elements F1 through F15 in

Figure 6). Also referred to as a flip-flop.

‘D’ logic state - A state-sensitive falling logic transition.




First Level Bistable - Any bistabie which drives into the logic cone enclosing a defined
timing path. (Bistables F7 through F14 in Figure 6).

Implicate a gate - Simulate the loads of a gate, which has had its output state
established, until a quiescent (static) logic state is reached.

Justify a gate - Establish the input states on a gate that will produce a required output
state on that gate.

Second Level Bistables - Any bistable which drives the logic cone formed by
extending the logic cone enclosing the defined timing path to the next level of
bistables. (Bistables F1 through F6 and F14 and F12 in Figure 6). Note: A first level
bistable, source bistable, or target bistable may also be a second level bistable.

Sensitize - Establish input states on a logic gate such that a logic transition on a
selected input (the sensitized input) will cause an output transition on the gate.

Source Bistable - The bistable at the beginning of the the delay path to be tested,
which will be switched by a test to send a logic transition down the path. This is a
special case of the first level bistable. (Bistable F10, for the timing path depicted by the
bold line in Figure 6).

Target Bistable - The bistable at the load end of the delay path being tested, into which
the logic transition is clocked on the second of two clocks. The target bistable receives
the pre-transition logic state if the path time is longer than the clock period, and
receives the post transition logic state if the path time is shorter than the clock period.
(Bistable F15 in Figure 6). Note: the target bistable is also a first level bistable when it
drives into the timing path logic cone.

VLSI/VHSIC - Very large scale integrated/Very high speed integrated circuit.

‘X' logic state - A logic state that has not been justified to a known state.




I, ALGORITHM OVERVIEW
Delay Test Algorithm Characteristics

The delay test generation algorithm is designed to produce timing tests for logic paths
in ASIC designs. Tests are produced for specified logic paths between clocked
registers. Specific timing information of the logic being tested is not required by the
algorithm to generate the tests. This imposes limitations on the design architectures
that are testable (discussed in Section IV). The algorithm has the following
characteristics.

- Applicable to designs which utilize scan based Design-For-Test using edge
sensitive synchronous clocking.

- The only design considerations required are scan and the capability to cause
exactly two functional clocks to be executable between logic scans.

« The algorithm assures that only the timing path of interest is measured and that no
alternate path is enabled.

- When an alternate path is unavoidably enabled, no test is produced.

« The algorithm is also applicable to designs which can be scanned at functional
clock speed, with clock control switching between the last scan clock and a
functional clock.

The algorithm is intended for the generation of timing tests for defined individual logic
paths, and not for the generation of a comprehensive set of timing tests for a design.

Timing tests produced by the switching test algorithm are applicable to an ASIC at the
chip, board, and Line Replaceable Module (LRM) level by a tester. The tests can be
applied at the cabinet and system level by an IEEE 1149.1 Test Access Port and
Boundary Scan interface or equivalent. Regardless of the test application logistics, the
tests are applied by scanning in a single test pattern, applying two clocks at a desired
interval, and scanning out the test results for examination. If the interval between the
two functional clocks is equal to or greater than the tested path delay, then the
expected test result state is clocked into the scan path for scan out and examination. |f
the interval between the two functional clocks is less than the delay of the timing path,
then the state opposite from the expected state is clocked into the target bistable for




scan out and examination. Only one test, of the two possible signal transitions, is
intended to be executed at a time. However, if tests are generated for completely
disconnected logic areas in an ASIC, then two or more of these tests could be
executed at the same time.

Switching Test Logic Model

A gate-level logic model of the logic to be tested is generated from a netlist by a logic
model generation program. The model is composed of primitive gates and macro
modules which expand into primitive gates (see Figure 1 - 'Simulation Primitive Cells
and Macros'). The primitive gates include a buffer, an inverter, AND, NAND, OR, and
NOR gates with two to six inputs. There is also a set of AND and NAND primitives, with
two to four inputs, which contain input inversions to model true and compiement
signals, without requiring inverters.  Additionally, there is a tri-state selector gate and
a set of tri-state enable gates. The macros consist of a two input multiplexer, a latch
and a flip-flop which have asychronous sets and resets, an exciusive OR, and an
exclusive NOR. Also, there are macros for modeling ASIC bidirectional and tristate
input/output pins.

The Switching Test Algorithm accepts the logic model description of interconnected
primitive elements. The model description consists of three machine readabie data
files (see Figure 2 for the record layout of these files) which define the gate code for
each gate in the model and the interconnection between the gates. The first file is the
gate identification file which contains a header record for each primitive logic element.
The header record contains an integer gate code (Figure 3 - 'Internal Gate Codes'),
the number of true inputs on the gate, five unused boolean fields, (which were
assigned early on, are not needed, but were not removed), the number of drives into
the gate, number of gates which are loads of this gate, an index into an array of the
drive index file, and an index into an array of the load index file. The second file is the
drive index file which identifies the gates which provide the signal source for each
input signal of each primitive logic element. The third file is a load index file which
d-fines the gates being driven by each primitive iogic element.




The model description also includes an Instance Index File and an Instance and Net
Pathname file (Figure 4 -'Instance and Net Pathname Example'). The Instance and
Pathname file defines the net names and instance names of each primitive logic
element. The Instance Index file relates each gate in the simulation model to its
instance and path name. These data files are generated by a Logic Mode! Partition
Generator which is run prior to running the Switching Test Generator.

After the logic model is generated, a scan check program is run to verify the proper
interconnection of the scan control logic and to automatically determine the scan chain
bit order.
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type t_head_record is

record
gate_code
true_inputs
logic_trace
is_light
model_fits
reconv_back
no_d_push:
nmbr_of_drivs
nmbr_of_loads
driv_indx
load_indx

end record;

type t_driv_record is
record
indx
end record;

integer;

type t_load_record is

record
indx integer;
end record;
Figure 2

Header, Drive, and Load Records

integer;
integer

boolean;
boolean:
boolean;
boolean;
boolean;
integer;
integer;
integer;
integer;

and_g constant = 1;
nand_g constant = 2
in_g constant = 3
out_g constant = 4,
ff constant = 5
wbus_g constant = 8;
enab_g constant = 9;
Figure 3
Internal Gate Codes
7
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Switching Test Timing Path Identification

The Switching Test Algorithm accepts an ASCII file list of path definitions composed of
logic names of elements included in the path(s) to be tested. This File may be
generated manually or by software that allows a user to define timing paths of interest,
such as a static timing analysis program (Figure 5 - 'Static Timing Analysis Example’).
The names of the elements in the defined path are used for timing path definition. The
content and format of the remaining information is not of interest to the switching test
algorithm. Each defined timing path to be tested has a single bistable primary inpui
(source) to the path, and a single bistable (target) primary output from the path. Each
path definition starts with the net name that defines the primary input bistable of the
path. Each succeeding net name defines succeeding elements in the path and the
last net name defines the primary output bistable of the path. Each line of the ASCII
path definition file contains a path number, to specify a particular path, followed by the
net name of an element in the path.

Figure 7, the 'Timing Path ldentification list’, provides a partial list of timing path
definitions for a design. The first entry in the list 1, N26 defines the path source
bistable (N26) for path 1 in Figure 6. The second name in the list (N32) is the name of
the first named gate in that timing path. The remaining gates follow in similar fashion
until N37, which identifies the target bistable into which the timing path transition will
be clocked. The next name in the list identifies the source bistable (/TMI-A/N$802) for
the next selected timing path (#4246 in Figure 7).

Simulation Model Generation

A simulation mode! is generated for the design containing the timing paths to be
tested, using the logic model description file as input. When the simulation model is
foaded for test generation, the model gate codes are converted to an internal form.
The internal form allows the timing test generator to simulate all of the AND, NAND,
OR, and NOR gate types as either AND or NAND gates, with varying input pin widths
and input inversions to account for the OR/NOR functions. Thus, only AND gates,
NAND gates, Bistable elements, and Input/Output pin elements are used in the model
(Figure 3 'Internal Gate Codes').




When the model is generated and loaded for simulation, all of the gates in the design
set are initialized to the unknown (X) state. The entire model is then simulated so that
the gates with inputs which are tied to a known logic state are forced to their correct
state. Signals are implicated from any gate states which change to a known state until
the simulation model reaches a quiescent state.
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1 N26

1 N32

1 N34

1 N36

1 N37

4246 /TMI_A/N$802

4246 /TMI_A/TMBUSSM_A/N$475
4246 /TMI_A/TMBUSSM_A/N$347
4246 /TMI_A/N$97

4246 /TMI_A/PKTCNTOT_A/N$120
4246 /TMI_A/PKTCNTOT A/N$174
4246 /TMI_A/PKTCNTOT_A/N$128
4246 /TMI_A/PKTCNTOT A/NS21
4246 /TMI_A/PKTCNTOT A/N$37
4247 /TMI_A/N$802

4247 /TMI_A/TMBUSSM_A/N$475
4247 /TMI_A/TMBUSSM_A/N$156
4247 /TMI_A/N$71

4247 /TMI_A/TMSTAT_A/N$74
4247 /TMI_A/TMSTAT_A/N$12
4247 /TMI_A/TMSTAT_A/NS169
4247 /TMI_A/TMSTAT_A/N$134
4248 /TMI_A/N$802

4248 /TMI_A/TMBUSSM_A/N$475
4248 /TMI_A/TMBUSSM_A/N$156
4248 /TMI_A/N$71

4248 /TMI_A/TMSTAT_A/N$74
4248 /TMI_A/TMSTAT A/N$12
4248 /TMI_A/TMSTAT_A/N$88
4248 /TMI_A/TMSTAT A/N$177
4249 /SCI_A/CNTBLK_A/N$32
4249 /SCI_A/CNTBLK_A/N$401
4249 /SCI_A/CNTBLK_A/N$443
4249 /SCI_A/CNTBLK_A/N$460
4249 /SCI_A/CNTBLK_A/N$8S
4249 /SCI_A/CNTBLK_A/N$80
4249 /SCI_A/CNTBLK_A/N$279
4249 /SCI_A/CNTBLK_A/N$214
4250 /SCI_A/BUSSM_A/N$266
4250 /SCI_A/BUSSM_A/N$633
4250 /SCI_A/BUSSM_A/N$648
4250 /SCI_A/BUSSM_A/N$482
4250 /SCI_A/BUSSM_A/N$230
4250 /SCI_A/BUSSM_A/N$177
4250 /SCI_A/BUSSM_A/N$200

Figure 7
Timing Path Identification List
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Ill.  Switching Test Algorithm

The switching test algorithm generates a test which can be used to determine the path
delay of an identified logic path between two bistables, provided that a test is possible.
The algorithm guarantees that only the intended path is measured. The generated test
vector defines the state of the register bits that must be scanned into the design. The
test is then executed by applying two clocks with a defined interval. (See "Switching
Test Algorithm Flowchart").

Delay Path Identification

After the logic model has been loaded and initialized, the first step in the switching test
algorithm is the identification of every primitive logic gate in the path to be tested. The
first timing path descriptor is read and all of the logic gates identified in the timing path
including the driving and receiving (source and target) bistables, are marked. The
timing path identification list is made at the netlist level before the design is modeled at
the primitive gate level. For this reason the identification list usually does not identify a
connected sequence of logic gates from the primary input bistable to the primary
output bistable. Therefore, after the identified gates are marked, a depth first search is
done from every marked gate to identity and mark a path through intervening gates
which were not identified in the original path description. This produces a single
marked path from the path source bistable to the target bistable. (Figure 6 shows a
delay path in bold, however, the example is made from primitive gates so no
intermediate gate identification was required). The gates in each path are marked in
the following manner:

For each user specified path
For each user specified net
If first net of path then search backwards for source bistable
Search forward from current path net to next path net.
Identify target bistable between last path net and second last net

Logic Cone Identification
After the timing path of interest has been identified, all of the gates in the logic cone

are identified from the path target bistable back to all of the bistables which drive into
logic cone. The bistables that drive into the logic gates in the cone are identified as
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first level bistables, and input pins are identified. In Figure 6 the first level bistables are
F7 through F14 and the input pin is H IN. The cone trace is then continued from all of
the first-level bistables back to primary input pins or second-level of bistables, where
the cone is terminated (bistable F1 through F6 and input pin G IN). Only logic gates in
the defined logic cone need be addressed for timing test generation. The first-level
bistables are identified because the test generator establishes states in these
bistables. These first-level bistables, except for the source bistable, will not change
state during the first of the two test clock pulses. The second level bistables provide
the logic states required to hold the first-level bistables.

Test Generation

Test generation starts with the initialized state of the logic cone. In the initialized state,
all of the controllable primary inputs and bistables have been set to the unknown (X)
state, and all logically tied gate inputs have been set to their tied state. The logic cone
has then been simulated to establish a quiescent state for all of the gates. The test
generation algorithm establishes the bistable states necessary to sensitize the logic
gates in the defined timing path. Therefore a state transition on the path source
bistable causes a state transition in every gate in the timing path and at the input of the
target bistable. Additionally, the test generation algorithm assures that when the first
functional clock is applied to the logic, only the source bistable changes state. This
assures that the delay path, and only the delay path, is sensitive to the source bistable
transition. Two tests are attempted for each delay path, a positive to negative
transition, and a negative to positive transition at the source bistable. The reason that
two tests are attempted is two-fold. Assuming both attempts are successful, if the path
delay of one transition differs from that of the other, the user may want to measure the
longest delay, or determine the amount of difference in the delays. Secondly, there
are some logic configurations in which only one transition is testable, as when the
target bistable is configured as a J/K flip-flop and the timing path drives only the J or K
input.

Path Sensitization
The path sensitization approach is as follows. First a logic state is selected which will
be scanned into the source bistable as the starting state for the logic transition. Next,

opposite logic state is established on the data input to the source bistable, and if the
source bistable has a clock enable, the clock enable is established. Each gate in the
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delay path is then examined to determine the gate input states required to sensitize
the delay path. The algorithm attempts to establish (justify) the gates driving the timing
path gate, and subsequently their drive gates. This continues until the necessary
states are established for the scannable bistables which drive the timing path cone.
When a state is established for a bistable driving the timing path cone (first level
bistable), the input state to the bistable is established such that the bistable will not
transition on the first functional clock.

The delay path may drive into the target bistable as either a clock enable or as a data
input. If the delay path drives into the clock enable, then a state is selected to be
scanned into the bistable, and the opposite state is established on the data input of the
bistable. If the delay path drives into the data input of the target bistable, its clock
enable is established if applicable. If the data input will cause a bistable transition in
only one direction, then the scanned in state will be the starting state tor the transition.
(If the target bistable is a D-Flip-Flop, the starting state of the target bistable is not
important because the state on the data input will be clocked into the bistable
regardless of its previous state). Thus, the gate states are established such that a
state change in the source bistable will cause a state change on the input of the target
bistable.

The delay path sensitization process relies heavily on two procedures called gate
justification and gate implication. These procedures are used to establish gate states,
and to simulate the effect of the logic state established on a gate. The path
sensitization process utilizes a set of recursive procedures to establish the gate states
in a manner that allows for choices to be made. It also allows for alternate choices (it
available) when a choice does not produce the intended result .
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Gate Implication

A gate is implicated when a state other than 'X' is to be established on its output. The
process of implication simulates each gate driven by the gate which is implicated.
Each driven gate is evaluated in the following manner:

If the output state of the gate is X, and
the current input states produce an output other than X,
then apply the proper state to the output of the gate, and
add this gate's loads to the evaluation queue (if they are not
already in the queue),
else if the gate is pending a choice and
the new evaluated state is the same as the required output
then add this gate to the pending_gates_hit list and exit
else conflict

The gate implication process for a given gate is completed by processing the
evaluation queue. No state input choices are made during this procedure.

Gate Justification

A gate is justified to establish a required state on the output of the gate. When more
than one set of input states will produce the required gate output, a choice may be
made immediately, or may be deferred until a later time, depending on the
requirements placed on the procedure by the calling routine. The procedure of gate
justification is performed as follows:

If the output state of the gate is 'X',

then call gate implicate to assign the gate state and implicate the gate

else

if no choice is available to establish the required gate output state,
then conflict ( this could be a case, for instance, where an AND
gate
requires a ONE output but had a 'B' and an 'X' as inputs allowing
only a '‘B' or a ZERO as possible outputs)

elseif only one input state choice exists
then for each input, justify the driving gate if it had an 'X' state

elseit no choice is to be made, then mark the gate pending

If the gate requiring justification is a first level bistable, it is processed like any other
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gate except that when evaluating a bistable, the memory capability of the bistable is

taken into account, i.e.
If clock input is disabled or data input state is same as desired bistable state
then no action is required
elseif the clock is enabled then
if the data input state is X
then justify the required data input state
elseif the data input state is opposite the required state
then conflict
elseif the clock input state is X and
the data input state is opposite the desired state
then justify the clock disable input
elseif the data input state is X
then mark the gate pending

This procedure is used extensively during timing path sensitization.
Timing Path Sensitization, First Stage

The identified timing path is sensitized in two stages. Partial justification establishes
all of the gate states required to sensitize the timing path without making any gate
input choices. During this stage, if a gate is being justitied, and has more than one
choice of input states, then it is marked as pending an input choice. Its output is
established and it is implicated. The timing path is sensitized by first justifying a state
in the timing path source bistable, an opposite state on the data input to that bistable,
and a clock enable to that bistable if applicable. This assures that the source bistable
will change state when the first functional clock occurs. The gate states required to
establish this condition on the bistable are justified until a choice is required. For each
gate requiring a choice, the required gate output state is established and implicated,
but a required input state is not established. Instead, the gate is marked as pending
and will be evaluated after this path sensitization step is completed. After the source
bistable logic state is established, the gates in the identified timing path are processed
as follows:

The load gates of the timing-path element previously justified are examined
to locate the next timing path gate to be processed

If the timing-path gate output state is not 'X'

and the state is not the required state

then contlict

elseif the required logic state cannot be established

then conflict

else determine the required logic state and call gate justify

14




At the end of the first stage of Timing sensitization, for a falling edge transition at the
source bistable F10, referring to Figure 6 for the timing path in bold, the following
element output states are established: F10, G10, and G12 are 'D'; G8is 'B'; B8, B9,
F1, F6, F7, F8, F9, F11, H IN, G1, G2, G4, and G11 are '1'; and G3 and G7 are '0".
Gates G1, G2, G3, G4, and G11 are pending input choices.

Since no logic input choices are made during the path sensitization step, there are no
unwinds. Therefore, any logic conflict immediately indicates that a test is not possible
for the identified timing path as a single thread path. As each gate in the timing path is
sensitized, a check is made to verify that there is only one sensitive input to the gate.
This assures that there are no alternate sensitized paths which would invalidate the
test. Should an alternate sensitive path be unavoidaply established, this is noted and
displayed by the test generation algorithm, and test generation proceeds as normal. If
this process terminates with a conflict, then a message is printed which identifies the
gate at which the conflict occurred. ‘

Full Justification Second Stage

After the first stage of the timing path sensitization is complete, the gates on the
pending gate stack are processed to justify their input states. This justification step
requires logic choices whenever more than one gate input may be justified to establish
the state of a pending gate. The maximum number of choices for any gate is the
number of X state inputs on the gate. As each choice is made the choice is recorded
on an activity stack along with the gate states established as a result of making that
choice. The justification choices may also add gates to the pending gate stack. This
occurs recursively. When a choice is made as a result of processing a gate from the
pending gate stack, no further choices are made while justifying that choice until a new
pending gate is removed from the pending gate stack. Also, as was the case when
implicating gate states during timing path sensitization, if a gate state is implicated into
a pending gate, the pending gate is evaluated. If this gate's state is not justified, and
there is only one choice left, then that justification is immediately made, and the
justifications and implications required to perform that justification are made.

To perform delay justification, the assignment stack and the pending stack are marked
to indicate the starting point for delay justify. The delay justify routine will cause logic
choices to be made, and if alternate choices are required, an unwind process uses the
stack marks to determine how far to unwind. The delay justify routine is used to
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process all of the pending gates, starting with the gate closest to the target bistable.
Each pending gate is justified using the next available logic choice of input states. The
implicate function associated with justification may establish the state of existing
pending gates, may cause new pending gates to be identified, may resuilt in a logic
conflict. In any case, all of the activity is recorded on the activity stack and this stack is
used for unwinds if they are necessary. For final justification, the pending gates are
processed as follows:

Save an index to the top of the assign stack and the pend stack
Find the first pending gate to be justified (return if none found)
Loop through the inputs of the gate and find the first input with an X state
Call gate justify with the driving gate and required state
If justification is successful then recursively call full justify
if no conflict then return
else unwind to last index of the assign stack and the pending stack
and call gate justify with the drive gate of the next available X input state.

If this process returns with a logic conflict, a message is written indicating that no test is
possible for the identified timing path. The gate at which the logic conflict occurred is
identified in the message.

16




v Verification and Demonstration

A number of small test designs were generated for the purpose of verifying the
functionality of the algorithm. (See Attachment A for schematics of these designs).
These test designs were used for both algorithm verification and regression testing.

To facilitate the examination of test results, three test result output lists are produced.
The first output is a summary report of the delay path characteristics (Figure 8 -
'Switching Test Delay Path Summary Report’).

The second output is a summary report of the switching test results. (See Figure 9 -
'‘Switching Test Summary Output Report’).

The third output is a detailed report for each switching test generation attempt. (See
Figure 10 - "Switching Test Detail Output Report”). This report identifies the path and
the logic transition of the test. It notes whether or not a test was successfully generated
and, if not, the reason for not obtaining a test, and the gate at which the test conflict
occurred.
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4
18
1z
11
18
36

path len ph cir cen ten L1 L2 L2o L1ff L2ff L2ffo Llin L2in L2ino envel
1l 5 0 NO NO NO 16 20 16 8 8 6 1 2 1
4246 16 1 YES NO NO 462 1505 1043 53 99 46 7 9 2
4247 14 O YES NO NO 447 1641 1194 51 118 67 7 11 4
4248 12 0 YES NO NO 460 1365 905 51 93 42 7 11 4
4249 13 1 YES NO NO 598 2259 1661 69 160 91 7 10 3
4250 11 O YES NO NO 676 2397 1721 80 162 82 7 10 3
Header
path : Path number
len: The path length in number of gates, including both the source and
target bistables. '
ph: Contains a 1 if the path is inverting and a 0 if not inverting.
cir: Contains a NO if the target bistable does not drive back into the delay
path cone and a YES if it does.
cen: Identifies whether the delay path drives a clock enabie input of the
target bistable.
ten: Identifies whether the delay path drives through a tristate enable.
L1: Lists the number of elements in the first level of the delay path cone.
L2: Lists the number of elements in the second level of the cone.
L20: Lists the number of elements only in the second level of the cone.
L1ff: Lists the number of first level bistables.
L2ff: Lists the number of second level bistables.
L2tfo: Lists the number of bistables that are only second level
L1in: Lists the number of input pins driving the first level of the cone
L2in: Lists the number of input pins driving the second level of the cone
L2ino: Lists the number of input pins driving only the second level of the
cone.
envel: Lists the number of gates in the envelope formed by forward tracing

from the source bistable and backtracing from the target bistable,
including the source bistable. (This is the number of gates in the
delay path, plus the number of gates in the paths sourced by, and
reconvergent with, the delay path).

Figure 8
Switching Test Delay Path Summary Report
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path trn rslt unwind assign max_pend max_depth

4246
4246
4247
4247
4248
4248
4249
4249
4250
4250

Header
path:
trn:

rsit:

unwind:
assign:

max_pend:
max_depth:

R PATH 0 27 2 0
F GOOD 0 30 5 6
R PATH 0 557 7 0
F GOOD 35 3737 10 15
R PATH 0 476 8 0
F GOOD 0 867 12 10
R PATH . 0 456 8 0
F GOOD 1 905 12 11
R PATH 0 140 13 0
F PATH 0 306 17 0
R GOOD 0 1190 9 19
F PATH 0 346 6 0

Path number

Contains an 'R’ for a test with a rising edge transition at
the source bistable, and an 'F' for a test with a falling
edge transition at the source bistable.

Lists one of four possible test results. 'GOOD’ indicates
that a test was successfully generated. 'PATH' indicates
that a test was not generated due to the inability to
sensitize the delay path during the first stage of timing
path sensitization. 'FULL' indicates that a test was not
generated due to an unresolvable conflict during the
second stage of timing path sensitization. ‘'LIMT' indicates
that no test was generated due to having exhausted the
unwind limit imposed by the user, before a test could be
generated.

Lists the number of unwinds that the test generation
attempt used

Lists the total number of gate assignments that were
made by the test generation attempt.

Lists the maximum number of pending gates.

Lists the maximum depth of the gate justification
recursion.

Figure 9
Switching Test Summary Output Report
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Path 1, non inverting, drives data input
Source : /F10

N26
Target : /I$19
N37
Path 1, rising transition at source

2 2 2 24 warning,
delay path gate forced to logic 1 or to logic 0 value
some time during justification of delay path
at gate index 25
at net N36
at instance /G1l2

*xx*x* warning,
transition could not be pushed through delay path

unwinds = 0
assigns = 27

Path 1, falling transition at source
max recursion depth for full justification = 6
Test found
unwinds = 0
assigns = 30

Path 4246, inverting, drives data input

Source : /TMI_A/DELAYBLK_A/DELAYREG3_REG/I$1335
/TMI_A/DELAYBLK_A/DELAYREG3_REG/N$1385

Target : /TMI_A/PKTCNTOT_A/PKTOTREG_REG[1]/I$1335
/TMI_A/PKTCNTOT A/PKTOTREG_REG[1]/N$1385

Path 4246, rising transition at source
khkhk® warning'
delay path gate forced to logic 1 or to logic 0 value
some time during justification of delay path
at gate index 1113
at net /TMI_A/PKTCNTOT_A/US6/N$782
at instance /TMI_A/PKTCNTOT_A/US56/1$767

AhkkRRk warning'
transition could not be pushed through delay path

Path 4246, falling transition at source
Test found

Path 4247, non inverting, drives data input

Source : /TMI_A/DELAYBLK_A/DELAYREG3_REG/I$1335
/TMI_A/DELAYBLK_A/DELAYREG3_REG/N$1385

Target : /TMI_A/TMSTAT A/STATREG_REG[6]/I$1335
/TMI_A/TMSTAT_A/STATREG_REG[6]/N$l385

Figure 10
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Path 4247, rising transition at source
kRRKK warning’
justification of path gate fajiled
at gate index 3269
at net /TMI_A/NS$71
at instance /TMI_A/TMBUSSM_A/U271/1$1440
place where conflict happened is
at gate index 3392
at net /TMI_A/N$476
at instance /TMI_A/PKTCNTOT_A/U71/1$1440

*x*x*** warning,
transition could not be pushed through delay path

Path 4247, falling transition at source
Test found

Path 4248, non inverting, drives data input

Source : ,TMI_A/DELAYBLK_A/DELAYREG3_REG/I$1335
/TMI_A/DELAYBLK_A/DELAYREG3 REG/N$1385

Target : /TMI_A/TMSTAT_A/STATREG_REG([4]/I$1335
/TMI_A/TMSTAT A/STATREG_REG({4]/N$1385

Path 4248, rising transition at source
*xx*x* warning,
justification of path gate failed
at gate index 3269
at net /TMI_A/NS$71
at instance /TMI_A/TMBUSSM_A/U271/1$1440
place where conflict happened is
at gate index 3392
at net /TMI_A/N$476
at instance /TMI_A/PKTCNTOT_A/U71/1$1440

**x*x* warning,
transition could not be pushed through delay path

Path 4248, falling transition at source
Test found

Path 4249, inverting, drives data input

Source : /SCI _A/CNTBLK_A/CNTREG_REG([6]/I$1335
/SCI_A/CNTBLK_A/CNTREG_REG[6]/N$138S

Target : /SCI_A/CNTBLK_A/CNTREG_REG(1]/1$1335
/SCI_A/CNTBLK_A/CNTREG_REG[1]/N$1385

Path 4249, rising transition at source
*=xxx* warning,
delay path gate forced to logic 1 or to logic 0 value
some time during justification of delay path
at gate index 2915
at net /SCI_A/CNTBLK_A/NS$485

Figure 10

19b




at instance /SCI_A/CNTBLK_A,/U87/1$501

**xx*x* warning,
transition could not be pushed through delay path

Path 4249, falling transition at source
**x** warning,

justification of path gate failed

at gate index 3338

at net /SCI_A/CNTBLK_A/N$401

at instance /SCI_A/CNTBLK_A/Ul107/1$632

place where conflict happened is

at gate index 2430

at net /SCI_A/CNTBLK_A/NS$111

at instance /SCI_A/CNTBLK_A/U71/1I$471

***** warning,
transition could not be pushed through delay path

Path 4250, non inverting, drives data input

Source : /SCI_A/BUSSM_A/CURR_STATE_REG(2]/I$1335
/SCI_A/BUSSM_A/CURR_STATE_REG[2]/N$1385

Target : /SCI_A/BUSSM_A/CURR_STATE_REG(3]/I$1335
/SCI_A/BUSSM_A/CURR_STATE REG[3]/N$1385

Path 4250, rising transition at source
Test found

Path 4250, falling transition at source
[ 2 2 2 X warning,
justification of path gate failed
at gate index 3103
at net /SCI_A/BUSSM_A/N$648
at instance /SCI_A/BUSSM_A/U349/I$550
place where conflict happened is
at gate index 2935
at net /SCI_A/BUSSM_A/N$482
at instance /SCI_A/BUSSM_A/U333/I$950

kRN warning,
transition could not be pushed through delay path

Figure 10
Switching Test Detailed Output Report
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The Test-Bus Interface Unit (TIU) design for the RH32 program was selected as the
demonstration vehicle. This is a design of about 10,000 logic gates, which uses state
machines, counters and shift registers for logic control. This design had been coded in
synthesizable VHDL code using a vendor-supplied VHDL synthesis program. The
design was modeled with primitive logic gate fault models for timing test generation.
Honeywell's static timing analyzer was used to identify 5000 of the longest logic paths in
the design, for timing test generation. The switching test algorithm was applied to these
paths, and only a very small number (~10) of tests were successfully generated.

Upon analysis, it was determined that the high number of unsuccessful attempts were
due to the architecture of the TIU design not being within the capability of the algorithm.
The algorithm relies on the ability to switch only one bistable in order to cause a
transition on a path. Some logic constructs, namely counters, shift registers, and state
machines do not lend themselves to this requirement. The long TIU logic paths are
virtually all driven by these kind of constructs. For example, a large majority of the
longest timing paths identified by the timing analyzer, were sourced by a five bit counter
which counts packet bits. The counter counts from zero to seventeen to signify that a
packet of data has been received and then clears to zero for the next packet count. The
count of sixteen signifies that the data portion of a packet has been received. This count
provides the source for a large number of long delay paths. The counter is fully decoded
and the decode count of sixteen is enabled by stepping from OF hex to 10 hex. There is
no way to reach the 10 hex state by switching a single counter bit. Therefore, all of the
timing paths driven by this decode are untestable by the switching test algorithm. It could
be argued that timing testability could be improved by using a different decode scheme
or gray code counters. However there are some constructs, which are untestable without
adding test logic. If under normal operation a timing path is only enabled when multiple
bistables are switched then the test should replicate that action. In order to handle these
logic constructs, the algorithm would need to be extended to allow multiple path inputs to
be simultaneously switched under carefully controlled conditions.
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Although schedule and resource limitations prevented the analysis of a second test case,
a modification was made to the path selection procedure of the timing analyzer. The
modification allowed a limited number of the longest paths between each pair of
bistables to be selected for timing test generation. Out of approximately 5000 paths
selected by this method, over 150 tests were successfully generated. (Figure 11 -
'Switching Summary Report for Generated Timing Test’). The effect of this modification
to the timing path selection process, was the identification of a larger number of timing
paths that did not require the simultaneous switching of first level bistables in order to
sensitize the path.
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path trn rslt unwind assign max_pend max_depth

225 F GOOD 0 1556 8 8

415 F GOOD 0 1561 8 8

439 F GOOD 0 1546 8 6
2261 R GOOD 0 1118 9 25
2891 R GOOD 0 1164 9 13
3071 F GOOD 11 1945 8 14
3349 R GOOD 1 1475 12 18
3349 F GOOD 0 1287 10 18
3350 R GOOD 2 1485 12 19
3350 F GOOD 1 1297 10 19
3351 R GOOD 1 1469 12 19
3351 F GOOD 0 1281 10 19
3352 R GOOD 2 1486 12 19
3352 F GOOD 1 1298 10 19
3360 F GOOD 0 1172 13 8
3409 F GOOD 11 1936 8 14
3519 R GOOD 0 1287 11 14
3574 F GOOD 0 911 5 12
3636 F GOOD 0 974 15 8
3661 R GOOD 10 1356 11 8
3765 R GOOD 0 1173 10 7
3859 F GOOD 0 825 6 6
3898 F GOOD 0 1180 13 8
3908 F GOOD 11 1931 8 14
3924 R GOOD 0 960 10 6
4014 F GOOD o 868 7 7
4060 F GOOD 0 1180 14 8
4074 F GOOD 0 941 7 8
4077 F GOOD 0 1740 14 22
4137 F GOOD 0 1740 16 22
4176 R GOOD 1l 1346 13 15
4203 R GOOD 0o 1073 10 5
4224 F GOOD 0 1209 9 12
4239 R GOOD 1 1379 13 15
4246 F GOOD 35 3737 10 15
4247 F GOOD 0 867 12 10
4248 F GOOD 1 905 12 11
4250 R GOOD 0 1190 9 19
4287 R GOOD 0 1090 8 10
4360 F GOOD 43 4332 8 15
4435 F GOOD 0 1017 8 8
4530 R GOOD 0 353 4 4
4530 F GOOD 0 353 4 4
4537 F GOOD 0 576 4 2
4539 F GOOD 0 414 3 2
4540 F GOOD 0 440 3 2
4541 F GOOD 0 431 3 2
4542 F GOOD 0 436 3 2
4546 F GOOD 0 1090 12 12
4553 F GOOD 1 839 4 7
4554 F GOOD 1 756 4 7
4555 F GOOD 1 843 4 7
4556 F GOOD 1 819 4 7
4560 R GOOD 0 1542 11 13
4579 R GOOD 0 1173 10 7
4605 F GOOD 0 736 4 2
4606 F GOOD 0 1188 9 28
4622 F GOOD 0 1194 13 8

Figure 11
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4624
4625
4647
4651
4668
4689
4748
4774
4779
4782
4786
4842
4843
4847
4877
4884
4887
4887
4903
4906
4908
4914
4917
4917
4918
4926
4927
4930
4932
4940
4942
4949
4952
4955
4955
4977
4979
4979
4989
4989
4990
4990
4994
4995
4995
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4997
4997
4998
4998
5010
5022
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5023
5023
5024
5024
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837
810
5830
1278
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876
994
986
1470
476
689
332
332
7818
477
890
477
440
653
605
535
836
819
753
1115
1362
1429
594
457
329
2122
492
490
945
945
418
572
1019
960
960
603
1528
140%
1528
1411
41574
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945
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947
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961
41728
950
950
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5028
5028
5029
5029
5030
5030
5031
5031
5032
5032
5034
5034
5035
5035
5048
5051
5052
5055
5056
5057
5066
5115
5115
5121
5122
5122
5123
5124
5125
5126
5126
5132
5137
5138
5186
5186
5196

VMV ODVT YOOI 000DOMT DTN DN Y

Switching

GOOD 0 979 10 11
GOOD 0 979 10 11
GOOD 0 948 10 11
GOOD 0 948 10 11
GOOD 0 973 10 11
GOOD 0 973 10 11
GOOD 0 949 10 11
GOOD 0 949 10 11
GOOD 0 985 10 11
GOOD 0 985 10 11
GOOD 0 970 10 11
GOOD 0 970 10 11
GOOD 0 948 10 11
GOOD 0 948 10 11
GOOD 793 41727 20 20
GOOD 794 41824 21 22
GOOD 794 41824 21 22
GOOD 794 41826 14 22
GOOD 794 41819 14 22
GOOD 794 41826 14 22
GOOD 0 336 S 4
GOOD 0 963 10 11
GOOD 0 963 10 11
GOOD 1 642 6 4
GOOD 792 41575 20 19
GOOD 792 41575 20 21
GOOD 792 41576 20 19
GOOD 792 42175 20 19
GOOD 792 41575 20 19
GOOD 792 41575 20 19
GOQD 794 41784 20 24
GOOD 2 1158 11 25
GOOD 794 41849 21 22
GOOD 794 41843 16 22
GOOD 0 352 3 3
GOOD 0 352 4 3
GOOD 794 41845 21 22
Figure 11

Summary Report for Generated Timing Tests
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\" Conclusion

The switching test algorithm produces results which fully satisty the intended
algorithmic capability for a limited number of paths on the TIU demonstration case.
The algorithm identifies timing paths from an incomplete list of nodes. Identified paths
are automatically marked for timing test generation. Automated timing tests are
generated for each path for both a source rising edge transition and falling edge
transition, if allowed by the configuration of the path. If either or both of the tests
cannot be generated, the logic conflict which prohibits test generation is identified. -
The measurable path delay, for tests which are generated, is determined only by the
delay of the elements in the path and does not rely on timing constraints for any control
elements driving into the path. The generated timing tests can be applied by use of
design-for-test scan paths.

Timing tests could be generated for only a limited number of paths, in the TIU test
case, because a large majority of the timing paths required that multiple path control
bistables be simultaneously switched in order to achieve path sensitization. This
simultaneous switching requirement was due to the heavy use of state machines and
counters to provide control signals. Other design architectures such as pipelined logic
and data path designs using microcoded control, would have a higher percentage of
timing paths which are sensitizable without simultaneous switching. The -algorithm
would therefore be more effective on these design architectures. Extensions would
provide a capability with a wider range of applications. These extensions could
provide for the simultaneous switching of first level bistables, when required, to
successfully generate a test. This would result in the simultaneous sensitization of
multicle paths. The algorithm extension, however, presents some challenges and
issues.

First is the challenge of assuring that only necessary paths are sensitized. The
sensitization of multiple paths produces the possibility that the desired path is not the
path that is actually tested. The more paths that are sensitized, the higher the chance
that an alternate path will be tested. If an unintended alternate path is being tested,
and the tested path is shorter than the intended path, misleading results will be
obtained. Even if the tested path is longer than the intended path, misleading results
would be obtained if the intent of the test is to verify some specific simulation times per
Table 1.
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Second, when the algorithm is required to choose between paths to be sensitized,
timing information may be required in order to make the most appropriate choices.
However, the objent of the test is to measure actual delay times which are not known
with certainty until the test is run. Therefore, the delay times supplied to the algorithm
may cause inapyropriate choices to be made.

Third, when more than one path is sensitized, it is impossible to know which path was
actually tested when the test is run. Therefore, information must be presented to the
user describing each sensitized path that could be tested by each test vector.

Fourth, the increase in the gate states that would have to be handled by the algorithm
could make test generation times prohibitive.

While there may be other reasons preventing timing test generation for certain timing
paths, our investigations have identified the requirement for switching multiple
bistables as the most prevalent cause for not successfully generating tests for a large
percentage of identified paths in the RH32 TIU. Future work should be directed in this
area.
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