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EVALUATION

This effort successfully developed an algorithm

for generating scan-based switching tests. The

algorithm identifies timing paths from incomplete

lists of nodes and automatically marks them for timing

test generation. Tests are attempted for both rising

and falling edge transitions at the source bistables

of the path. If a test cannot be generated, the logic

conflict which prohibits test generation is

identified.

The only design considerations for this algorithm

were the scan-design and the ability to execute two

functional clocks with desired interval between logic

scans. However, it became apparent from the test case

that circuits which use many state-machines and

counters, require multiple path control bistables to

be simultaneously switched in order to achieve path

sensitization. As a result, further work is needed to

address this issue.
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I. Introduction

This report describes an algorithm which provides automated timing test generation for

selected timing paths in VLSI/VHSIC-scale ASIC designs. Timing tests have many

uses besides providing delay measurements of logic paths in ASICs (See Table 1).

However, these measurements are usually difficult to make because the signals

required to control the measurement of the path delay are not directly addressable

from the chip Input/Output pins. Often, multiple levels of bistables exist between the

logic path to be measured and the I/O pins.

The manual development of functional tests that can be applied to the I/O pins of an

ASIC, and can be guaranteed to test a desired path, is difficult and time consuming.

This is true even if the tests can be applied via scan. Automatically generated tests

can reduce test generation costs and schedule risk while producing tests for a larger

number of paths. This program researches the utility of a delay test generation

algorithm which takes advantage of scan design, and does not require additional logic

design considerations.

Scan is used to load the test vectors generated by this algorithm. The test is

performed by executing two clocks which define a specific time interval. The results

are then scanned out for examination to determine if the test passed (the delay path

was shorter than the clock interval), or failed (the delay path was longer than the clock

interval). With repeated executions of a given test vector with differing clock intervals,

the precise timing of the delay path can be determined.

The switching test algorithm was implemented in Ada for demonstration on the Test-

bus Interface Unit (TIU) design, an ASIC design used in the Radiation Hard 32 bit

Processor (RH32) Program. [F30602-88-C0060]

An example circuit was generated for the purpose of describing the algorithm. This

sample circuit (Figure 6 - 'Timing Path Example') is not intended to perform any



particular function but is intended only for descriptive reference. The bistables and

gates in the example would normally drive into other logic cones. However, to simplify

the schematic, these other logic cones are not shown, nor are scan paths shown.

Test generation algorithm results for 5 delay paths from the TIU test case are

presented in.Figure 5 and Figures 7 through 10.

Delay Test Application

In a VLSI/VHSIC chip, measure delay paths Verify SPICE or other Timing Analysis
which contain particular combinations of gate program calibration.
delay, media delay, and gate loading

Measure the N longest delay paths in a Verify that required design margins are
fabricated chip. being met.

Measure selected paths in a design under Verify that environmental performance
various combinations of temperature, voltage requirements are being met
or radiation

Use delay path tests in IC fabrication test Part of a Total Quality Management plan.
screen
At the Line Replaceable Module or System Verify performance margins over time or
level, measure the timing of selected paths in after repair.
a design.

Table 1 Applications for delay path tests are not restricted to the detection of individual gate
or delay path timing faults.

Glossary Of Terms

ASIC - Application Specific Integrated Circuit.

'B' logic state - A state sensitive rising logic transition.

Bistable - An edge sensitive two state storage element. (Elements F1 through F15 in

Figure 6). Also referred to as a flip-flop.

'D' logic state - A state-sensitive falling logic transition.

2



First Level Bistable - Any bistable which drives into the logic cone enclosing a defined

timing path. (Bistables F7 through F1 4 in Figure 6).

Implicate a gate - Simulate the loads of a gate, which has had its output state

established, until a quiescent (static) logic state is reached.

Justify a gate - Establish the input states on a gate that will produce a required output

state on that gate.

Second Level Bistables - Any bistable which drives the logic cone formed by

extending the logic cone enclosing the defined timing path to the next level of

bistables. (Bistables F1 through F6 and F14 and F12 in Figure 6). Note: A first level

bistable, source bistable, or target bistable may also be a second level bistable.

Sensitize - Establish input states on a logic gate such that a logic transition on a

selected input (the sensitized input) will cause an output transition on the gate.

Source Bistable - The bistable at the beginning of the the delay path to be tested,

which will be switched by a test to send a logic transition down the path. This is a

special case of the first level bistable. (Bistable F10, for the timing path depicted by the

bold line in Figure 6).

Target Bistable - The bistable at the load end of the delay path being tested, into which

the logic transition is clocked on the second of two clocks. The target bistable receives

the pre-transition logic state if the path time is longer than the clock period, and

receives the post transition logic state if the path time is shorter than the clock period.

(Bistable F15 in Figure 6). Note: the target bistable is also a first level bistable when it

drives into the timing path logic cone.

VLSI/VHSIC - Very large scale integrated/Very high speed integrated circuit.

'X' logic state - A logic state that has not been justified to a known state.

3



II. ALGORITHM OVERVIEW

Delay Test Algorithm Characteristics

The delay test generation algorithm is designed to produce timing tests for logic paths

in ASIC designs. Tests are produced for specified logic paths between clocked

registers. Specific timing information of the logic being tested is not required by the

algorithm to generate the tests. This imposes limitations on the design architectures

that are testable (discussed in Section IV). The algorithm has the following

characteristics.

" Applicable to designs which utilize scan based Design-For-Test using edge

sensitive synchronous clocking.

" The only design considerations required are scan and the capability to cause

exactly two functional clocks to be executable between logic scans.

"* The algorithm assures that only the timing path of interest is measured and that no

alternate path is enabled.

"* When an alternate path is unavoidably enabled, no test is produced.

" The algorithm is also applicable to designs which can be scanned at functional

clock speed, with clock control switching between the last scan clock and a

functional clock.

The algorithm is intended for the generation of timing tests for defined individual logic

paths, and not for the generation of a comprehensive set of timing tests for a design.

Timing !ests produced by the switching test algorithm are applicable to an ASIC at the

chip, board, and Line Replaceable Module (LRM) level by a tester. The tests can be

applied at the cabinet and system level by an IEEE 1149.1 Test Access Port and

Boundary Scan interface or equivalent. Regardless of the test application logistics, the

tests are applied by scanning in a single test pattern, applying two clocks at a desired

interval, and scanning out the test results for examination. If the interval between the

two functional clocks is equal to or greater than the tested path delay, then the

expected test result state is clocked into the scan path for scan out and examination. If

the interval between the two functional clocks is less than the delay of the timing path,

then the state opposite from the expected state is clocked into the target bistable for

4



scan out and examination. Only one test, of the two possible signal transitions, is

intended to be executed at a time. However, if tests are generated for completely

disconnected logic areas in an ASIC, then two or more of these tests could be

executed at the same time.

Switching Test Logic Model

A gate-level logic model of the logic to be tested is generated from a netlist by a logic

model generation program. The model is composed of primitive gates and macro

modules which expand into primitive gates (see Figure 1 - 'Simulation Primitive Cells

and Macros'). The primitive gates include a buffer, an inverter, AND, NAND, OR, and
NOR gates with two to six inputs. There is also a set of AND and NAND primitives, with

two to four inputs, which contain input inversions to model true and complement

signals, without requiring inverters. Additionally, there is a tn-state selector gate and
a set of tri-state enable gates. The macros consist of a two input multiplexer, a latch

and a flip-flop which have asychronous sets and resets, an exclusive OR, and an

exclusive NOR. Also, there are macros for modeling ASIC bidirectional and tristate
input/output pins.

The Switching Test Algorithm accepts the logic model description of interconnected
primitive elements. The model description consists of three machine readable data

files (see Figure 2 for the record layout of these files) which define the gate code for

each gate in the model and the interconnection between the gates. The first file is the

gate identification file which contains a header record for each primitive logic element.
The header record contains an integer gate code (Figure 3 - 'Internal Gate Codes'),

the number of true inputs on the gate, five unused boolean fields, (which were

assigned early on, are not needed, but were not removed), the number of drives into

the gate, number of gates which are loads of this gate, an index into an array of the

drive index file, and an index into an array of the load index file. The second file is the

drive index file which identifies the gates which provide the signal source for each
input signal of each primitive logic element. The third file is a load index file which

d-: ines the gates being driven by each primitive logic element.

5



The model description also includes an Instance Index File and an Instance and Net
Pathname file (Figure 4 -'Instance and Net Pathname Example'). The Instance and
Pathname file defines the net names and instance names of each primitive logic

element. The Instance Index file relates each gate in the simulation model to its
instance and path name. These data files are generated by a Logic Model Partition

Generator which is run prior to running the Switching Test Generator.

After the logic model is generated, a scan check program is run to verify the proper
interconnection of the scan control logic and to automatically determine the scan chain

bit order.

6
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type t_headrecord is
record

gate-code integer;
true-inputs integer 0;
logic_trace boolean;
isjight boolean:
modelfits : boolean;
reconv back boolean;
no d_push: : boolean;
nmbr of drivs : integer;
nmbr of loads integer;
drivindx integer;
loadindx integer;

end record;

type tdrivrecord is
record

indx integer;
end record;

type tjloadrecord is
record

indx integer;
end record;

Figure 2
Header, Drive, and Load Records

andg constant 1;
nand_g : constant 2;
ing • constant := 3;
out-g constant .= 4;
ff constant .= 5;
wbusg : constant .- 8;
enab_g constant .= 9;

Figure 3
Internal Gate Codes
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Switching Test Timing Path Identification

The Switching Test Algorithm accepts an ASCII file list of path definitions composed of

logic names of elements included in the path(s) to be tested. This File may be

generated manually or by software that allows a user to define timing paths of interest,

such as a static timing analysis program (Figure 5 - 'Static Timing Analysis Example').

The names of the elements in the defined path are used for timing path definition. The

content and format of the remaining information is not of interest to the switching test

algorithm. Each defined timing path to be tested has a single bistable primary inpui

(source) to the path, and a single bistable (target) primary output from the path. Each

path definition starts with the net name that defines the primary input bistable of the

path. Each succeeding net name defines succeeding elements in the path and the

last net name defines the primary output bistable of the path. Each line of the ASCII

path definition file contains a path number, to specify a particular path, followed by the

net name of an element in the path.

Figure 7, the 'Timing Path Identification list', provides a partial list of timing path

definitions for a design. The first entry in the list 1, N26 defines the path source

bistable (N26) for path 1 in Figure 6. The second name in the list (N32) is the name of

the first named gate in that timing path. The remaining gates follow in similar fashion

until N37, which identifies the target bistable into which the timing path transition will

be clocked. The next name in the list identifies the source bistable (/TMI-A/N$802) for

the next selected timing path (#4246 in Figure 7).

Simulation Model Generation

A simulation model is generated for the design containing the timing paths to be

tested, using the logic model description file as input. When the simulation model is

loaded for test generation, the model gate codes are converted to an internal form.

The internal form allows the timing test generator to simulate all of the AND, NAND,

OR, and NOR gate types as either AND or NAND gates, with varying input pin widths

and input inversions to account for the OR/NOR functions. Thus, only AND gates,
NAND gates, Bistable elements, and Input/Output pin elements are used in the model

(Figure 3 'Internal Gate Codes').
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When the model is generated and loaded for simulation, all of the gates in the design

set are initialized to the unknown (X) state. The entire model is then simulated so that

the gates with inputs which are tied to a known logic state are forced to their correct

state. Signals are implicated from any gate states which change to a known state until

the simulation model reaches a quiescent state.
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1 N26
1 N432
1 N434
1 N436
1 N37
4246 /TMI_A/N$802
4246 /TMIA/TMBUSSMA/N$475
4246 /TMIA/TMBUSSMA/N$347
4246 /TMI__A/N$97
4246 /TMI A4/PKTCNTOT -A/MS 120
4246 /TMIA/PKTCNTOTA/N$174
4246 /TMI_A/PKTCNTOTA/N$128
4246 /TMI A/P KTCNTOT A/N$ 21
4246 /TMI._A/PKTCNTOT _A/MS 37
4247 /TMIA_/N$802
4247 /TMI A/TMBUSSbA/N$475
4247 /TMI_ A/TMBUSSKA/MS 156
4247 /TMIA/1471
4247 /TMI._A/TMSTATý_A/N$74
4247 /TMI.A/TMSTATý_A/N$12
4247 /Tf(IA/TMSTATA/N$169
4247 /TMIA/TMSTATA/N$134
4248 /T11_.A/N$802
4248 /TMI.-A/TMBUSSKMA/N$475
4248 /TMI_.A/T?.ffUSSI4_A/N$156
4248 /TMI__A/N$71
4248 /TMI1_A/TMSTAT_A/N$74
4248 /TMI_A/TMSTATý_A/N$12
4248 /TMI1 A/TMSTATA/MS 88
4248 /T?4IA/TMSTATý_A/N$177
4249 /SCI_A/CNTELKý_A/N$32
4249 /SCI._A/CI4TELK_A/N$401
4249 /SCI_A/CNTBLKý_A/N$443
4249 /SCIA/CNTELIKA/N$460
4249 /SCI_ýA/CNTBLK_A/N$85
4249 /SCIA/CNTELK_A/N$80
4249 /SCI_-A/CNTBLKA/N$279
4249 /SCIAý/CNTBLKA/N$214
4250 /SCIA/BUSSMt_A/N$266
4250 /SCIA/USSDLA/N$633
4250 /SCI_A/BUSSDLA/N$648
4250 /SCI_A/BUSSMA/M$482
4250 /SCI_A/EBUSSbLA/M$230
4250 /SCI_Ah/BUSSMk_A/M$177
4250 /SCI._A/EUSSbtA/M$200

Figure 7

Timing Path Identification List
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Ill. Switching Test Algorithm

The switching test algorithm generates a test which can be used to determine the path

delay of an identified logic path between two bistables, provided that a test is possible.
The algorithm guarantees that only the intended path is measured. The generated test
vector defines the state of the register bits that must be scanned into the design. The
test is then executed by applying two clocks with a defined interval. (See "Switching

Test Algorithm Flowchart").

Delay Path Identification

After the logic model has been loaded and initialized, the first step in the switching test

algorithm is the identification of every primitive logic gate in the path to be tested. The
first timing path descriptor is read and all of the logic gates identified in the timing path
including the driving and receiving (source and target) bistables, are marked. The

timing path identification list is made at the netlist level before the design is modeled at

the primitive gate level. For this reason the identification list usually does not identify a
connected sequence of logic gates from the primary input bistable to the primary
output bistable. Therefore, after the identified gates are marked, a depth first search is

done from every marked gate to identity and mark a path through intervening gates
which were not identified in the original path description. This produces a single
marked path from the path source bistable to the target bistable. (Figure 6 shows a

delay path in bold, however, the example is made from primitive gates so no
intermediate gate identification was required). The gates in each path are marked in

the following manner:

For each user specified path
For each user specified net

If first net of path then search backwards for source bistable
Search forward from current path net to next path net.
Identify target bistable between last path net and second last net

Logic Cone Identification

After the timing path of interest has been identified, all of the gates in the logic cone

are identified from the path target bistable back to all of the bistables which drive into
logic cone. The bistables that drive into the logic gates in the cone are identified as

10
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first level bistables, and input pins are identified. In Figure 6 the first level bistables are

F7 through F14 and the input pin is H IN. The cone trace is then continued from all of

the first-level bistables back to primary input pins or second-level of bistables, where

the cone is terminated (bistable F1 through F6 and input pin G IN). Only logic gates in

the defined logic cone need be addressed for timing test generation. The first-level

bistables are identified because the test generator establishes states in these

bistables. These first-level bistables, except for the source bistable, will not change

state during the first of the two test clock pulses. The second level bistables provide

the logic states required to hold the first-level bistables.

Test Generation

Test generation starts with the initialized state of the logic cone. In the initialized state,

all of the controllable primary inputs and bistables have been set to the unknown (X)

state, and all logically tied gate inputs have been set to their tied state. The logic cone
has then been simulated to establish a quiescent state for all of the gates. The test

generation algorithm establishes the bistable states necessary to sensitize the logic

gates in the defined timing path. Therefore a state transition on the path source

bistable causes a state transition in every gate in the timing path and at the input of the

target bistable. Additionally, the test generation algorithm assures that when the first

functional clock is applied to the logic, only the source bistable changes state. This

assures that the delay path, and only the delay path, is sensitive to the source bistable

transition. Two tests are attempted for each delay path, a positive to negative

transition, and a negative to positive transition at the source bistable. The reason that

two tests are attempted is two-fold. Assuming both attempts are successful, if the path

delay of one transition differs from that of the other, the user may want to measure the

longest delay, or determine the amount of difference in the delays. Secondly, there

are some logic configurations in which only one transition is testable, as when the

target bistable is configured as a J/K flip-flop and the timing path drives only the J or K

input.

Path Sensitization

The path sensitization approach is as follows. First a logic state is selected which will

be scanned into the source bistable as the starting state for the logic transition. Next,

opposite logic state is established on the data input to the source bistable, and if the

source bistable has a clock enable, the clock enable is established. Each gate in the
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delay path is then examined to determine the gate input states required to sensitize

the delay path. The algorithm attempts to establish (justify) the gates driving the timing

path gate, and subsequently their drive gates. This continues until the necessary

states are established for the scannable bistables which drive the timing path cone.

When a state is established for a bistable driving the timing path cone (first level

bistable), the input state to the bistable is established such that the bistable will not

transition on the first functional clock.

The delay path may drive into the target bistable as either a clock enable or as a data

input. If the delay path drives into the clock enable, then a state is selected to be

scanned into the bistable, and the opposite state is established on the data input of the

bistable. If the delay path drives into the data input of the target bistable, its clock

enable is established if applicable. If the data input will cause a bistable transition in

only one direction, then the scanned in state will be the starting state for the transition.

(If the target bistable is a D-Flip-Flop, the starting state of the target bistable is not

important because the state on the data input will be clocked into the bistable

regardless of its previous state). Thus, the gate states are established such that a

state change in the source bistable will cause a state change on the input of the target

bistable.

The delay path sensitization process relies heavily on two procedures called gate

justification and gate implication. These procedures are used to establish gate states,

and to simulate the effect of the logic state established on a gate. The path

sensitization process utilizes a set of recursive procedures to establish the gate states

in a manner that allows for choices to be made. It also allows for alternate choices (if

available) when a choice does not produce the intended result.
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Gate Implication

A gate is implicated when a state other than 'X' is to be established on its output. The
process of implication simulates each gate driven by the gate which is implicated.

Each driven gate is evaluated in the following manner:

If the output state of the gate is X, and
the current input states produce an output other than X,

then apply the proper state to the output of the gate, and
add this gate's loads to the evaluation queue (if they are not
already in the queue),

else if the gate is pending a choice and
the new evaluated state is the same as the required output

then add this gate to the pendinggateshit list and exit
else conflict

The gate implication process for a given gate is completed by processing the
evaluation queue. No state input choices are made during this procedure.

Gate Justification

A gate is justified to establish a required state on the output of the gate. When more

than one set of input states will produce the required gate output, a choice may be
made immediately, or may be deferred until a later time, depending on the
requirements placed on the procedure by the calling routine. The procedure of gate

justification is performed as follows:

If the output state of the gate is 'X',
then call gate implicate to assign the gate state and implicate the gate
else
if no choice is available to establish the required gate output state,

then conflict (this could be a case, for instance, where an AND
gate
requires a ONE output but had a 'B' and an 'X' as inputs allowing
only a 'B' or a ZERO as possible outputs)

elseif only one input state choice exists
then for each input, justify the driving gate if it had an 'X' state

elseif no choice is to be made, then mark the gate pending

If the gate requiring justification is a first level bistable, it is processed like any other
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gate except that when evaluating a bistable, the memory capability of the bistable is

taken into account, i.e.
If clock input is disabled or data input state is same as desired bistable state
then no action is required
elseif the clock is enabled then

if the data input state is X
then justify the required data input state
elseif the data input state is opposite the required state
then conflict

elseif the clock input state is X and
the data input state is opposite the desired state
then justify the clock disable input

elseif the data input state is X
then mark the gate pending

This procedure is used extensively during timing path sensitization.

Timing Path Sensitization, First Stage

The identified timing path is sensitized in two stages. Partial justification establishes

all of the gate states required to sensitize the timing path without making any gate

input choices. During this stage, if a gate is being justified, and has more than one

choice of input states, then it is marked as pending an input choice. Its output is

established and it is implicated. The timing path is sensitized by first justifying a state

in the timing path source bistable, an opposite state on the data input to that bistable,

and a clock enable to that bistable if applicable. This assures that the source bistable

will change state when the first functional clock occurs. The gate states required to

establish this condition on the bistable are justified until a choice is required. For each

gate requiring a choice, the required gate output state is established and implicated,

but a required input state is not established. Instead, the gate is marked as pending

and will be evaluated after this path sensitization step is completed. After the source

bistable logic state is established, the gates in the identified timing path are processed

as follows:

The load gates of the timing-path element previously justified are examined
to locate the next timing path gate to be processed

If the timing-path gate output state is not 'X'
and the state is not the required state

then conflict
elseif the required logic state cannot be established
then conflict
else determine the required logic state and call gate justify
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At the end of the first stage of Timing sensitization, for a falling edge transition at the

source bistable Flo, referring to Figure 6 for the timing path in bold, the following

element output states are established: FlO, G10, and G12 are 'D'; G8 is 'B'; B8, B9,

Fl, F6, F7, F8, F9, Fll, H IN, Gi, G2, G4, and Gil are '1'; and G3 and G7 are '0'.

Gates G1, G2, G3, G4, and G 1 are pending input choices.

Since no logic input choices are made during the path sensitization step, there areno

unwinds. Therefore, any logic conflict immediately indicates that a test is not possible

for the identified timing path as a single thread path. As each gate in the timing path is

sensitized, a check is made to verify that there is only one sensitive input to the gate.

This assures that there are no alternate sensitized paths which would invalidate the

test. Should an alternate sensitive path be unavoidauly established, this is noted and

displayed by the test generation algorithm, and test generation proceeds as normal. If

this process terminates with a conflict, then a message is printed which identifies the

gate at which the conflict occurred.

Full Justification Second Stage

After the first stage of the timing path sensitization is complete, the gates on the

pending gate stack are processed to justify their input states. This justification step

requires logic choices whenever more than one gate input may be justified to establish

the state of a pending gate. The maximum number of choices for any gate is the

number of X state inputs on the gate. As each choice is made the choice is recorded

on an activity stack along with the gate states established as a result of making that

choice. The justification choices may also add gates to the pending gate stack. This

occurs recursively. When a choice is made as a result of processing a gate from the

pending gate stack, no further choices are made while justifying that choice until a new

pending gate is removed from the pending gate stack. Also, as was the case when

implicating gate states during timing path sensitization, if a gate state is implicated into

a pending gate, the pending gate is evaluated. If this gate's state is not justified, and

there is only one choice left, then that justification is immediately made, and the

justifications and implications required to perform that justification are made.

To perform delay justification, the assignment stack and the pending stack are marked

to indicate the starting point for delay justify. The delay justify routine will cause logic

choices to be made, and if alternate choices are required, an unwind process uses the

stack marks to determine how far to unwind. The delay justify routine is used to

15



process all of the pending gates, starting with the gate closest to the target bistable.

Each pending gate is justified using the next available logic choice of input states. The
implicate function associated with justification may establish the state of existing

pending gates, may cause new pending gates to be identified, may result in a logic
conflict. In any case, all of the activity is recorded on the activity stack and this stack is

used for unwinds if they are necessary. For final justification, the pending gates are
processed as follows:

Save an index to the top of the assign stack and the pend stack
Find the first pending gate to be justified (return if none found)
Loop through the inputs of the gate and find the first input with an X state
Call gate justify with the driving gate and required state
If justification is successful then recursively call full justify
if no conflict then return
else unwind to last index of the assign stack and the pending stack

and call gate justify with the drive gate of the next available X input state.

If this process returns with a logic conflict, a message is written indicating that no test is

possible for the identified timing path. The gate at which the logic conflict occurred is
identified in the message.
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IV Verification and Demonstration

A number of small test designs were generated for the purpose of verifying the

functionality of the algorithm. (See Attachment A for schematics of these designs).

These test designs were used for both algorithm verification and regression testing.

To facilitate the examination of test results, three test result output lists are produced.

The first output is a summary report of the delay path characteristics (Figure 8 -

'Switching Test Delay Path Summary Report').

The second output is a summary report of the switching test results. (See Figure 9 -

'Switching Test Summary Output Report').

The third output is a detailed report for each switching test generation attempt. (See

Figure 10 - "Switching Test Detail Output Report"). This report identifies the path and

the logic transition of the test. It notes whether or not a test was successfully generated

and, if not, the reason for not obtaining a test, and the gate at which the test conflict

occu rred.
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path len ph cir cen ten Li L2 L2o Liff L2ff L2ffo Llin L2in L2ino enve]
---------------------------------------------------------------------------------

1 5 0 NO NO NO 16 20 16 8 8 6 1 2 1 4
4246 16 1 YES NO NO 462 1505 1043 53 99 46 7 9 2 18
4247 14 0 YES NO NO 447 1641 1194 51 118 67 7 11 4 1:
4248 12 0 YES NO NO 4GO 1365 905 51 93 42 7 11 4 11
4249 13 1 YES NO NO 598 2259 1661 69 160 91 7 10 3 18
4250 11 0 YES NO NO 676 2397 1721 80 162 82 7 10 3 36

Header

path: Path number
len: The path length in number of gates, including both the source and

target bistables.
ph: Contains a 1 if the path is inverting and a 0 if not inverting.

cir: Contains a NO if the target bistable does not drive back into the delay
path cone and a YES if it does.

cen: Identifies whether the delay path drives a clock enable input of the
target bistable.

ten: Identifies whether the delay path drives through a tristate enable.
Li: Lists the number of elements in the first level of the delay path cone.
L2: Lists the number of elements in the second level of the cone.
L2o: Lists the number of elements only in the second level of the cone.
Llff: Lists the number of first level bistables.
L2ff: Lists the number of second level bistables.

L2ffo: Lists the number of bistables that are only second level
Li in: Lists the number of input pins driving the first level of the cone

L2in: Lists the number of input pins driving the second level of the cone
L2ino: Lists the number of input pins driving only the second level of the

cone.
envel: Lists the number of gates in the envelope formed by forward tracing

from the source bistable and backtracing from the target bistable,
including the source bistable. (This is the number of gates in the

delay path, plus the number of gates in the paths sourced by, and
reconvergent with, the delay path).

Figure 8

Switching Test Delay Path Summary Report
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path trn rslt unwind assign max pend max-depth

1 R PATH 0 27 2 0
1 F GOOD 0 30 5 6

4246 R PATH 0 557 7 0
4246 F GOOD 35 3737 10 15
4247 R PATH 0 476 8 0
4247 F GOOD 0 867 12 10
4248 R PATH 0 456 8 0
4248 F GOOD 1 905 12 11
4249 R PATH 0 140 13 0
4249 F PATH 0 306 17 0
4250 R GOOD 0 1190 9 19
4250 F PATH 0 346 6 0

Header

path: Path number
trn: Contains an 'R' for a test with a rising edge transition at

the source bistable, and an 'F' for a test with a falling
edge transition at the source bistable.

rslt: Lists one of four possible test results. 'GOOD' indicates
that a test was successfully generated. 'PATH' indicates
that a test was not generated due to the inability to
sensitize the delay path during the first stage of timing
path sensitization. 'FULL' indicates that a test was not
generated due to an unresolvable conflict during the
second stage of timing path sensitization. 'LIMT' indicates
that no test was generated due to having exhausted the
unwind limit imposed by the user, before a test could be
generated.

unwind: Lists the number of unwinds that the test generation
attempt used

assign: Lists the total number of gate assignments that were
made by the test generation attempt.

maxpend: Lists the maximum number of pending gates.
max_depth: Lists the maximum depth of the gate justification

recursion.

Figure 9

Switching Test Summary Output Report
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Path 1, non inverting, drives data input
Source : /F10

N26
Target : /I$19

N37
Path 1, rising transition at source
***-* warning,

delay path gate forced to logic 1 or to logic 0 value
some time during justification of delay path
at gate index 25
at net N36
at instance /G12

***** warning,
transition could not be pushed through delay path

unwinds - 0
assigns - 27

Path 1, falling transition at source
max recursion depth for full justification - 6

Test found
unwinds - 0
assigns - 30

--------------------------------

Path 4246, inverting, drives data input
Source : /TMIA/DELAYBLKA/DELAYREG3_REG/I$1335

/TMIA/DELAYBLKA/DELAYREG3_REG/N$1385
Target : /TMIA/PKTCNTOT_A/PKTOTREG REG[I]/I$1335

/TMIA/PKTCNTOT_A/PKTOTREGREG [1]/N$1385

Path 4246, rising transition at source
***** warning,

delay path gate forced to logic 1 or to logic 0 value
some time during justification of delay path
at gate index 1113
at net /TMIA/PKTCNTOT_A/U56/N$782
at instance /TMI_A/PKTCNTOTA/U56/I$767

***** warning,
transition could not be pushed through delay path

Path 4246, falling transition at source
Test found

--------------------------------
---------------------------- ----
Path 4247, non inverting, drives data input
Source : /TMI_A/DELAYBLK_A/DELAYREG3_REG/I$1335

/TMI_A/DELAYBLKA/DELAYREG3_REG/N$1385
Target : /TMI_A/TMSTATA/STATREcGREG[6]/I$1

3 3 5

/TMIA/TMSTATA/STATREGREG (6]/N$1385

Figure 10
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Path 4247, rising transition at source
warning,
justification of path gate failed
at gate index 3269
at net /TMI A/N$71
at instance /TMIA/TMBUSSM_A/U271/I$1440
place where conflict happened is
at gate index 3392
at net /TMIA/N$476
at instance /TMI_A/PKTCNTOT_A/U71/I$1440

warning,
transition could not be pushed through delay path

Path 4247, falling transition at source
Test found

Path 4248, non inverting, drives data input
Source : /'TMI_A/DELAYBLKA/DELAYREG3_REG/I$1335

/TMIA/DELAYBLK_A/DELAYREG3_REG/N $1385
Target : /TMI_A/TMSTATA/STATREGREG[4]/I$1335

/TMI_A/TMSTATA/STATREG REG [4]/N$1385

Path 4248, rising transition at source
***** warning,

justification of path gate failed
at gate index 3269
at net /TMIA/N$71
at instance /TMI_A/TMBUSSMA/U271/I$1440
place where conflict happened is
at gate index 3392
at net /TMI_A/N$476
at instance /TMI_A/PKTCNTOTA/U71/I$1440

warning,
transition could not be pushed through delay path

Path 4248, falling transition at source
Test found

Path 4249, inverting, drives data input
Source : /SCI_A/CNTBLK_A/CNTREGREG[6]/I$1335

/SCI_A/CNTBLK_A/CNTREG_REG[6]/N$1385
Target : /SCI_A/CNTBLK_A/CNTREGREG(i]/I$1335

/SCI_ A/CNTBLKA/CNTREGREG[1]/N$1385

Path 4249, rising transition at source
warning,
delay path gate forced to logic 1 or to logic 0 value
some time during justification of delay path
at gate index 2915
at net /SCI_A/CNTBLK_A/N$485

Figure 10
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at instance /SCIA/CNTBLK_A/U87/I$501

warning,
transition could not be pushed through delay path

Path 4249, falling transition at source
***** warning,

justification of path gate failed
at gate index 3338
at net /SCIA/CNTBLK_A/N$401
at instance /SCIA/CNTBLK_A/UI07/I$632
place where conflict happened is
at gate index 2430
at net /SCIA/CNTBLK_A/N$111
at instance /SCI_A/CNTBLK_A/U71/I$471

warning,
transition could not be pushed through delay path

Path 4250, non inverting, drives data input
Source : /SCIA/BUSSMA/CURR_STATEREG[2]/I$1335

/SCIA/BUSSM A/CURR_STATEREG [2] /N$1385
Target : /SCIA/BUSSMA/CURR_STATEREG[3]/I$1335

/SCIA/BUSSMA/CURR_STATEREG [3] /N$1385

Path 4250, rising transition at source
Test found

Path 4250, falling transition at source
***** warning,

justification of path gate failed
at gate index 3103
at net /SCIA/BUSSMA/N$648
at instance /SCIA/BUSSMA/U349/I$550
place where conflict happened is
at gate index 2935
at net /SCIA/BUSSMA/N$482
at instance /SCI_A/BUSSMA/U333/I$950

warning,
transition could not be pushed through delay path

Figure 10

Switching Test Detailed Output Report
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The Test-Bus Interface Unit (TIU) design for the RH32 program was selected as the

demonstration vehicle. This is a design of about 10,000 logic gates, which uses state

machines, counters and shift registers for logic control. This design had been coded in

synthesizable VHDL code using a vendor-supplied VHDL synthesis program. The

design was modeled with primitive logic gate fault models for timing test generation.

Honeywell's static timing analyzer was used to identify 5000 of the longest logic paths in

the design, for timing test generation. The switching test algorithm was applied to these

paths, and only a very small number (-10) of tests were successfully generated.

Upon analysis, it was determined that the high number of unsuccessful attempts were

due to the architecture of the TIU design not being within the capability of the algorithm.

The algorithm relies on the ability to switch only one bistable in order to cause a

transition on a path. Some logic constructs, namely counters, shift registers, and state

machines do not lend themselves to this requirement. The long TIU logic paths are

virtually all driven by these kind of constructs. For example, a large majority of the

longest timing paths identified by the timing analyzer, were sourced by a five bit counter

which counts packet bits. The counter counts from zero to seventeen to signify that a

packet of data has been received and then clears to zero for the next packet count. The

count of sixteen signifies that the data portion of a packet has been received. This count

provides the source for a large number of long delay paths. The counter is fully decoded

and the decode count of sixteen is enabled by stepping from OF hex to 10 hex. There is

no way to reach the 10 hex state by switching a single counter bit. Therefore, all of the

timing paths driven by this decode are untestable by the switching test algorithm. It could

be argued that timing testability could be improved by using a different decode scheme

or gray code counters. However there are some constructs, which are untestable without

adding test logic. If under normal operation a timing path is only enabled when multiple

bistables are switched then the test should replicate that action. In order to handle these

logic constructs, the algorithm would need to be extended to allow multiple path inputs to

be simultaneously switched under carefully controlled conditions.
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Although schedule and resource limitations prevented the analysis of a second test case,

a modification was made to the path selection procedure of the timing analyzer. The

modification allowed a limited number of the longest paths between each pair of

bistables to be selected for timing test generation. Out of approximately 5000 paths

selected by this method, over 150 tests were successfully generated. (Figure 11 -

'Switching Summary Report for Generated Timing Test'). The effect of this modification

to the timing path selection process, was the identification of a larger number of timing

paths that did not require the simultaneous switching of first level bistables in order to

sensitize the path.
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path trn rslt unwind assign maxpend max-depth
---------- --------
225 F GOOD 0 1556 8 8
415 F GOOD 0 1561 8 8
439 F GOOD 0 1546 8 6

2261 R GOOD 0 1118 9 25
2891 R GOOD 0 1164 9 13
3071 F GOOD 11 1945 8 14
3349 R GOOD 1 1475 12 18
3349 F GOOD 0 1287 10 18
3350 R GOOD 2 1485 12 19
3350 F GOOD 1 1297 10 19
3351 R GOOD 1 1469 12 19
3351 F GOOD 0 1281 10 19
3352 R GOOD 2 1486 12 19
3352 F GOOD 1 1298 10 19
3360 F GOOD 0 1172 13 8
3409 F GOOD 11 1936 8 14
3519 R GOOD 0 1287 11 14
3574 F GOOD 0 911 5 12
3636 F GOOD 0 974 15 8
3661 R GOOD 10 1356 11 8
3765 R GOOD 0 1173 10 7
3859 F GOOD 0 825 6 6
3898 F GOOD 0 1180 13 8
3908 F GOOD 11 1931 8 14
3924 R GOOD 0 960 10 6
4014 F GOOD 0 868 7 7
4060 F GOOD 0 1180 14 8
4074 F GOOD 0 941 7 8
4077 F GOOD 0 1740 14 22
4137 F GOOD 0 1740 16 22
4176 R GOOD 1 1346 13 15
4203 R GOOD 0 1073 10 5
4224 F GOOD 0 1209 9 12
4239 R GOOD 1 1379 13 15
4246 F GOOD 35 3737 10 15
4247 F GOOD 0 867 12 10
4248 F GOOD 1 905 12 11
4250 R GOOD 0 1190 9 19
4287 R GOOD 0 1090 8 10
4360 F GOOD 43 4332 8 15
4435 F GOOD 0 1017 8 8
4530 R GOOD 0 353 4 4
4530 F GOOD 0 353 4 4
4537 F GOOD 0 576 4 2
4539 F GOOD 0 414 3 2
4540 F GOOD 0 440 3 2
4541 F GOOD 0 431 3 2
4542 F GOOD 0 436 3 2
4546 F GOOD 0 1090 12 12
4553 F GOOD 1 839 4 7
4554 F GOOD 1 756 4 7
4555 F GOOD 1 843 4 7
4556 F GOOD 1 819 4 7
4560 R GOOD 0 1542 11 13
4579 R GOOD 0 1173 10 7
4605 F GOOD 0 736 4 2
4606 F GOOD 0 1188 9 28
4622 F GOOD 0 1194 13 8

Figure 11
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4624 F GOOD 0 684 4 2
4625 F GOOD 0 684 4 2
4647 F GOOD 1 1283 13 18
4651 R GOOD 0 903 11 11
4668 R GOOD 1 1066 15 12
4689 F GOOD 0 837 7 8
4748 F GOOD 0 810 13 12
4774 F GOOD 119 5830 9 9
4779 F GOOD 0 1278 17 10
4782 F GOOD 0 452 6 2
4786 F GOOD 7 876 6 5
4842 F GOOD 0 994 5 5
4843 F GOOD 0 986 5 5
4847 F GOOD 2 1470 12 21
4877 F GOOD 0 476 6 7
4884 R GOOD 0 689 10 7
4887 R GOOD 0 332 4 3
4887 F GOOD 0 332 4 3
4903 F GOOD 143 7818 12 14
4906 F GOOD 0 477 4 6
4908 R GOOD 0 890 9 13
4914 F GOOD 0 477 4 6
4917 R GOOD 1 440 9 7
4917 F GOOD 0 653 9 16
4918 F GOOD 1 605 18 14
4926 F GOOD 0 535 6 7
4927 F GOOD 0 836 8 12
4930 F GOOD 0 819 10 12
4932 F GOOD 0 753 6 4
4940 F GOOD 1 1115 10 23
4942 F GOOD 3 1362 13 30
4949 R GOOD 0 1429 8 19
4952 F GOOD 0 594 8 8
4955 R GOOD 0 457 4 3
4955 F GOOD 0 329 4 3
4977 F GOOD 11 2122 8 16
4979 R GOOD 1 492 9 8
4979 F GOOD 0 490 10 7
4989 R GOOD 0 945 10 11
4989 F GOOD 0 945 10 11
4990 R GOOD 0 418 9 14
4990 F GOOD 0 572 9 19
4994 F GOOD 0 1019 12 15
4995 R GOOD 0 960 10 11
4995 F GOOD 0 960 10 11
4996 F GOOD 0 603 7 9
4997 R GOOD 1 1525 12 24
4997 F GOOD 2 140b 17 25
4998 R GOOD 1 1528 12 24
4998 F GOOD 2 1411 17 25
5010 R GOOD 792 41574 15 19
5022 R GOOD 0 945 10 11
5022 F GOOD 0 945 10 11
5023 R GOOD 0 947 10 11
5023 F GOOD 0 947 10 11
5024 R GOOD 0 961 10 11
5024 F GOOD 0 961 10 11
5025 R GOOD 793 41728 16 20
5027 R GOOD 0 950 10 11
5027 F GOOD 0 950 10 11

Figure 11
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5028 R GOOD 0 979 10 ii
5028 F GOOD 0 979 10 11
5029 R GOOD 0 948 10 11
5029 F GOOD 0 948 10 11
5030 R GOOD 0 973 10 11
5030 F GOOD 0 973 10 11
5031 R GOOD 0 949 10 11
5031 F GOOD 0 949 10 11
5032 R GOOD 0 985 10 11
5032 F GOOD 0 985 10 11
5034 R GOOD 0 970 10 11
5034 F GOOD 0 970 10 11
5035 R GOOD 0 948 10 11
5035 F GOOD 0 948 10 11
5048 R GOOD 793 41727 20 20
5051 R GOOD 794 41824 21 22
5052 R GOOD 794 41824 21 22
5055 R GOOD 794 41826 14 22
5056 R GOOD 794 41819 14 22
5057 R GOOD 794 41826 14 22
5066 F GOOD 0 336 5 4
5115 R GOOD 0 963 10 11
5115 F GOOD 0 963 10 11
5121 R GOOD 1 642 6 4
5122 R GOOD 792 41575 20 19
5122 F GOOD 792 41575 20 21
5123 R GOOD 792 41576 20 19
5124 R GOOD 792 42175 20 19
5125 R GOOD 792 41575 20 19
5126 R GOOD 792 41575 20 19
5126 F GOOD 794 41784 20 24
5132 F GOOD 2 1158 11 25
5137 R GOOD 794 41849 21 22
5138 R GOOD 794 41843 16 22
5186 R GOOD 0 352 3 3
5186 F GOOD 0 352 4 3
5196 R GOOD 794 41845 21 22

Figure 11

Switching Sumnary Report for Generated Timing Tests
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V Conclusion

The switching test algorithm produces results which fully satisfy the intended

algorithmic capability for a limited number of paths on the TIU demonstration case.

The algorithm identifies timing paths from an incomplete list of nodes. Identified paths

are automatically marked for timing test generation. Automated timing tests are
generated for each path for both a source rising edge transition and falling edge
transition, if allowed by the configuration of the path. If either or both of the tests

cannot be generated, the logic conflict which prohibits test generation is identified.
The measurable path delay, for tests which are generated, is determined only by the

delay of the elements in the path and does not rely on timing constraints for any control

elements driving into the path. The generated timing tests can be applied by use of
design-for-test scan paths.

Timing tests could be generated for only a limited number of paths, in the TIU test
case, because a large majority of the timing paths required that multiple path control
bistables be simultaneously switched in order to achieve path sensitization. This
simultaneous switching requirement was due to the heavy use of state machines and
counters to provide control signals. Other design architectures such as pipelined logic
and data path designs using microcoded control, would have a higher percentage of
timing paths which are sensitizable without simultaneous switching. The algorithm
would therefore be more effective on these design architectures. Extensions would
provide a capability with a wider range of applications. These extensions could
provide for the simultaneous switching of first level bistables, when required, to

successfully generate a test. This would result in the simultaneous sensitization of
multip!e paths. The alaorithm extension, however, presents some challenges and

issues.

First is the challenge of assuring that only necessary paths are sensitized. The
sensitization of multiple paths produces the possibility that the desired path is not the
path that is actually tested. The more paths that are sensitized, the higher the chance

that an alternate path will be tested. If an unintended alternate path is being tested,
and the tested path is shorter than the intended path, misleading results will be

obtained. Even if the tested path is longer than the intended path, misleading results
would be obtained if the intent of the test is to verify some specific simulation times per
Table 1.
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Second, when the algorithm is required to choose between paths to be sensitized,

timing information may be required in order to make the most appropriate choices.

However, the objert of the test is to measure actual delay times which are not known

with certainty until the test is run. Therefore, the delay times supplied to the algorithm

may cause inappropriate choices to be made.

Third, when more than one path is sensitized, it is impossible to know which path was

actually tested when the test is run. Therefore, information must be presented to the

user describing each sensitized path that could be tested by each test vector.

Fourth, the increase in the gate states that would have to be handled by the algorithm

could make test generation times prohibitive.

While there may be other reasons preventing timing test generation for certain timing

paths, our investigations have identified the requirement for switching multiple

bistables as the most prevalent cause for not successfully generating tests for a large

percentage of identified paths in the RH32 TIU. Future work should be directed in this

area.
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