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Ls Under this contract we have completed 28 projects that are

• summarized in the following publications. Except for those
iw_ represented by the enclosed reprints, all the projects have been

described in periodic progress reports to the project officer at
the Office of Naval Research, Dr. Edward Green. A summary of
our most recent progress follows the list of publications.
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RESEARCH SUMMARIES

Formation of the Alboran Oxygen Minimum Zone

The enhanced oxygen minimum in the western Alboran Sea is
the result of a chain of processes starting with nutrient
injection into the inflowing Atlantic water at the Strait of
Gibraltar. These nutrients originate in the outflowing
Levantine Intermediate Water, outflowing Mediterranean deep
water, and inflowing North Atlantic Central Water (from 200
m). They are injected into the inflowing Atlantic surface
water by strong mixing at the eastern end of the Strait. They
move with Atlantic surface waters along the Spanish coast, mix
with nutrients upwelling in the northwestern Alboran Sea and
stimulate phytoplankton productivity. The organic matter
produced by this mechanism is transported both with the
anticyclonically flowing waters of the Alboran gyre and with
the waters that converge at the center of the gyre.
Sedimentation in this convergence zone helps to deliver this
organic matter to the Levantine Intermediate Water where
bacteria metabolize it to C02 at the expense of the existing
oxygen. This mechanism develops the most intense oxygen
minimum zone in the Mediterranean Sea.

Deep-Sea CO2 Production

A biochemical mechanism that could cause changes in the
atmospheric CO 2 is the change in the deep-sea CO2 production
rate, or in other words, the deep-sea metabolic rate. This is
the rate at which the deep-sea community of organisms degrades
organic carbon and generates carbon dioxide. How much must
this process be changed for the ocean to sequester a
significant fraction of the new CO2 that is annually appearing
in the atmosphere? To answer this question the amount of C02
vented to the atmosphere and the amount injected into the deep
sea via metabolism must be known. Sediment traps provide one
way of assessing this rate. Calculating it from an
understanding of the way C02 is produced during the
degradation of organic matter is another way. Recently this
approach has yielded some interesting results. From
respiratory electron transport system measurements made in the
Sargasso Sea and in the central tropical Pacific the CO2
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production rates for the Atlantic and the Pacific have been
calculated. These calculations showed that if the deep-sea
metabolic CO2 production rate increased by only 15% it would
cause an additional 1 gigaton (Gt) carbon per year to be
sequestered in the deep sea. Since the amount of carbon that
can not be accounted for by existing global carbon budgets is
of the order of 2 Gt per year, the 15% increase in deep-sea
metabolism that we calculated above would be significant
(Packard et al.,1988).

Peru Current Oxygen Minimum Zone Studies

We have recently discovered a potential couple between El
Nino events in the Pacific Ocean and the rate at which CO? and
N2 0 are absorbed and released by the ocean. Between El Nino
events, cold deep water in the eastern Pacific ocean rises
close to the sea surface and brings nutrients that stimulate
plankton growth. This enhanced productivity has two effects on
the green house gases. First, it increases the rate at which
CO2 is removed from the atmosphere and the rate at which it is
transported, in the form of particulate organic matter, to the
deep-sea. Second, this enhanced productivity leads to
additional organic matter in the sub-surface waters which
stimulates denitrification, consumes N2 0, and thus leaves less
to be vented to the atmosphere.

New Production in the World Ocean

Deep-ocean respiration, in terms of C02 production, was
calculated from measurements of the respiratory electron
transport system in microplankton samples from the north
central Pacific Ocean and from the northeastern Sargasso Sea.
These calculations support recent arguments that the Pacific
Ocean supports more phytoplankton productivity in its surface
waters than does the Atlantic. However, more importantly,
these measurements facilitate the calculation cf new
production because the new production of the rnytoplankton
must balance the respiration (CO2 production) of all of the
deep-sea organisms below the surface layer. When this
calculation was made the result was 21.9 Gt C per year, 4 to
11 times greater than previous calculations, but very close to
a recent computation made from satellite color scanning data
and a separate computation made from a global integration of
carbon productivity data.

Phytoplankton Ecology

The results of a collaborative project with Quay Dortch of
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LUMCOM suggest that the trophic pyramids of oligotrophic and
eutrophic plankton ecosystems are the inverse of one another.
Before our study it was thought that a normal trophic pyramid,
with most living biomass comprised of plants, represented all
marine ecosystems. However, oligotrophic and eutrophic
environments differ markedly in phytoplankton biomass, but,
due to difficulties sampling and quantifying the small, non-
plant organisms, it has been difficult to determine the
relative plant and non-plant biomass. We calculated the
chlorophyll a /protein ratio (Chl/Pr) of oceanic particulate
matter from our very extensive suites of field data. This
ratio serves as an index of phytoplankton (plant) biomass to
total biomass. We found that in eutrophic areas with high
chlorophyll concentrations, the Chl/Pr ratio approaches that
of pure phytoplankton cultures, suggesting that phytoplankton
constitute most of the biomass. In contrast, the Chl/Pr
ratio from oligotrophic areas is low, indicating that most of
the biomass consists of bacteria and zooplankton and that in
these areas an inverted biomass pyramid better describes the
system. Thus, ecosystem structure must be fundamentally
different between eutrophic and oligotrophic areas.
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