
NAVAL POSTGRADUATE SCHOOL
Monterey, California

Oý

IDTIC

S ECO 3 1992U

THESIS

COMPUTER SIMULATION OF RANDOM AND
NON-RANDOM SECOND-PHASE PARTICLE

DISTRIBUTIONS FOR BOTH CONSTANT AND
VARYING PARTICLE SIZE

by

Mark S. Manfredi
September 1992

Thesis Advisor: Terry R. McNelley

Approved for public release; distribution is unlimited.

92-30736



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

la. REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Mechanical Engineering Dept. (if applicable) Naval Postgraduate School
Naval Postgraduate School 34
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification) COMPUTER SIMULATION OF RANDOM AND NON-RANDOM SECOND -PHASE PARTICLE
DISTRIBUTIONS FOR BOTH CONSTANT AND VARYING PARTICLE SIZE.

12. PERON UTHOR(S)
Manfredi, Mark, S.

13.a. TYP REP.ORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Master s 1IheR FROM - TO: 1992, September 1 117
16. SUPPLEMENTARY NOTATION The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the United States Govemment.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP Particle distribution, random distribution, non-random distribution,
lognormal size distribution

19. ABSTRACT (Continue on reverse if necessary and identify by block number)
Mechanical properties of two phase materials, such as strength, ductility and toughness, depend on the size and

distribution of the second phase. However, no methods are presently available to accurately quantify the homogene-
ity of the distribution of the second phase. Here, random and non-random second-phase particle distributions have
been simulated by computer and analyzed for various area fractions. Distributions of particles with a lognormal size
distribution have been analyzed as well. A statistically sufficient number of particles for use in the model was deter-
mined and used for all simulations. Average first nearest neighbor spacing values for dilute arrays of particles ap-
proach those of Poisson distributions of infinitesimal points. As the particle density increases, the average spacing
values approach those of hexagonal arrays. For low area fractions there is little distinction between random and non-
random distributions, both from statistical and visual perspectives. For higher area fractions there is a discernable
difference between the statistical data for random and non-random distributions, but the visual differences are more
obvious. These observations hold for both constant size particles and particles with a lognormal size distribution.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
q UNCLASSIFIED/UNLIMITED C] SAME AS RPT. 0] DTIC USERS UNCLASSIFIED

T e r .N A E F R ,P N SIW LE I ND IV J Q A 22b. T E LE P H O N E [-Include A r ea C d ) 2c"• • M O

T c el ey ro lMec anical Engineering (408) 646-2586
OD FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete UNCLASSIFIED



Approved for public release; distribution is unlimited.

Computer Simulation of Random and Non-random
Second-Phase Particle Distributions for

Both Constant and Varying Particle Size

by

Mark S. Manfredi

Lieutenant, United States Navy

B.S., Massachusetts Maritime Academy

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN MECHANICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

September, 1992

Author: - • ,

Mark S. ,anfredi

Approved by:
Tý R. McNelley, Thesis Advis

Matthew D. Kelleher, Chairman

Department of Mechanical Engineering

ii



ABSTRACT

Mechanical properties of two phase materials, such as

strength, ductility and toughness, depend on the size and

distribution of the second phase. However, no methods are

presently available to accurately quantify the homogeneity of

the distribution of the second phase. Random and non-random

second phase particle distributions have been simulated by

computer and analyzed for various area fractions.

Distributions of particles with a lognormal size distribution

have been analyzed as well. A statistically sufficient number

of particles for use in the model was determined and used for

all simulations. Average first nearest neighbor spacing

values for dilute arrays of particles approach those of

Poisson distributions of infinitesimal points. As the

particle density increases, the average spacing values

approach those of hexagonal arrays. For low area fractions

there is little distinction between random and non-random

distributions, both from statistical and visual perspectives.

For higher area fractions there is a discernable difference

between the statistical data for random and non-random

distributions, but the visual differences are more obvious.

These obse-vations hold for both constant size particles and

particles with a lognormal size distribution.
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I. INTRODUCTION

Most engineering structural applications involve the use

of materials containing second phases in the form of discrete

precipitates or distributions of particulates. This latter

category includes discontinuously reinforced metal-matrix

composites. The behavior of these materials during processing

and the final mechanical properties depend upon the nature,

volume fraction, size and also the dispersion of the

particles.

In both conventional alloys and in metal-matrix composites

the second phase particles may be obstacles to the movement of

dislocations. If a dislocation is prevented from completely

traversing the crystal under an applied stress, then the

crystal will become harder to deform. A higher stress is then

required to move the dislocation past the obstacle and

therefore the material must be stronger. Orowan [Ref. 1]

found that the shear stress required for a dislocation to

bypass a pair of small particles may be expressed as:

Gmb (1.i)
D

where GM is the shear modulus of the matrix, b is the burgers

vector and D is the space between particles in the slip plane.

From this relationship it can be seen that a smaller inter-
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particle spacing will result in a larger stress to move the

dislocation past the particles.

Larger second phase particles will also affect nucleation

and grain growth during recrystallization of conventional

alloys. In general it has been found that greater inter-

particle spacing and larger particles will facilitate the

process of recrystallization (Ref. 2]. Close particle spacing

and small particles have the opposite effect. The second-

phase particles increase the dislocation density when the

material is plastically deformed, increasing the driving force

for recrystallization. However, they also impede the

rearrangement of dislocations to form mobil high angle grain

boundaries and thereby hinder the migration of these grain

boundaries, thus retarding recrystallization.

In research on Al alloys with an AlCu 2 particle size

greater than 0.5 gm it was found that inter-particle spacing

had the greatest effect on recrystallization (Ref. 2). For

wide particle spacings, subgrains formed by the rearrangement

of dislocations and grew until they reached a critical size,

at which point they would begin to migrate. The movement of

the subgrains was impeded by the particles. This allowed for

further nucleation of additional subgrains and resulted in

accelerated recrystallization.

The deformation structure of a deformed alloy is also

dependent on the particle size. Large particles cause local

2



distortion of the lattice and increase the rate of nucleation.

Small particles increase the homogeneity of the dislocation

distribution which slows down the nucleation rate. Therefore,

for an arrangement of coarse, widely dispersed particles the

recrystallization is significantly increased. On the other

hand, for a small particle diameter and small inter-particle

spacing, the dislocation distribution is much more dense and

homogeneous which reduces the rate of recrystallization.

Second phase particle distributions may be either random

or non-random. Random or uniform distribution infers that

local particle densities are the same throughout the material.

Non-random distributions are just the opposite and may be the

result of insufficient processing of the material. High and

low density bands of particles may be the result of processing

an MMC where the original material consisted of clustered

groups of particles [Ref. 3].

Kocks [Ref. 4] showed that the average area a swept out by

a single dislocation segment is dependent on the applied

stress a. This relationship is shown in Figure 1. It can be

seen that there exist a stress in which a dislocation can

sweep out an area and keep moving indefinitely. This

asymptotic stress is the macroscopic flow stress a. It is

also apparent that the greatest flow stress for a given

particle density is for a regular array of particles, is least

for a clustered array, and the flow stress for a random array

lies between the two. Thus the distribution of second phase

3



particles has a significant role in determining the mechanical

properties of two phase materials.

oI
a

]Regular

•2

Figure 1. Applied stress a vs mean free slip area a of
one dislocation loop, for strong obstacles of area density
1/j2, in square, random and clustered arrays (Ref. 3].

Clearly, it would be desirable to have a means of

accurately assessing the different types of microstructures

resulting from various processing techniques. With this

knowledge these techniques can be optimized to efficiently

achieve the desired properties of the material. Current

methods used to determine these values assume that the

distribution is random and that the particles are
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infinitesimal points, which is certainly not the case for real

materials. Methods do exist for finite sized particles but

here the assumption is that they are distributed in a regular

geometric array.

This study, which is essentially follows on from that of

M. Pas [Ref. 5], was undertaken to quantify such values as

average first nearest neighbor particle spacings (6) for

various area fractions, particle size distributions and for

non-random cases as well. Any trends or patterns in the

associated data was investigated as well. In order to

facilitate mathematical and computer analysis computations

were kept on a two dimensional basis.
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II. BACKGROUND

The nearest neighbor separation distance between second-

phase particles governs many properties of two phase

materials. Properties such as strength, ductility, and

toughness are sensitive to the mean separation distance and

may also be affected by the range and uniformity of this

distance throughout the material. Current methiods for

determining this spacing for particles of finite size is

actually based on the assumption that the particles are

infinitesimal points which do not occupy space. Throughout

this thesis, unless otherwise specified, the word "point"

shall be regarded as an infinitesimally small entity which

does not occupy space. The word "particle" shall be defined

as a small two or three dimensional object.

Underwood [Ref. 6] has described a method for determining

the average first nearest neighbor distance, 6, for randomly

distributed points. The method is based on the probability of

finding a nearest neighbor to a given point within an annulus,

of radius r and width dr, centered on the point (Figure. 2).

This probability can be expressed as:

P(r) dr =1 - fP(r) dr]2 dr (2.1)

where NA is the number of particles per unit area and r is the

distance between a point and its first nearest neighbor. The

6



Figure 2. The probability of locating a nearest neighbor
to a point may be found by integrating over an annulus
centered on the point.

function P(r) which satisfies equation (2.1) was shown to be:

P(r) = 2TcrNe-,2NA (2.2)

Substituting equation (2.2) into the expression that defines

the average first nearest neighbor distance results in the

following expression for 6 for a random distribution of

infinitesimal points:

8 f frP(r) dz = 0.50ONA/ 2  (2.3)
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On the other hand, if particles or points are arranged in

a regular hexagonal array, Figure 3, the nearest neighbor

distance for each particle will be the same everywhere and

will be equal to 6SHx. for the array. A geometrical analysis

results in the following expression for 6 Hex:

ex. = 075N (2.4)

Figure 3. Particles arranged in a hexagonal array.

Based on equations (2.3) and (2.4) it can be seen that,

for a given value of NA, 6SHx. is greater than 6 for a random

distribution.

If particles (or points) are arranged into any regular

array the first nearest neighbor distance (NND), r, would be

the same for each particle and therefore would equal the

8



resulting value of 6 for the array. If any one of these

particles (or points) were shifted out of its position in the

array it would come closer to at least one other particle.

Now, there would be at least two particles with a lower first

NND, but none with a larger first NND since the remaining

particles would still have other neighbors at a distance of r.

Therefore, as the particles are shifted out of a perfect

geometric array and become more random the value of 6 will

decrease towards a lower limit defined by the Poisson

distribution.

Distributions of finite size particles can not truly be

random. The area (or volume) occupied by a particle removes

the possibility that another particle can be positioned in a

portion of that area. This is the effect of non-overlapping

particles. However, for dilute arrays (low area fractions)

the possibility of two particles overlapping is small.

Therefore, it is reasonable to expect that the value of 6 for

dilute arrays of finite size particles would in fact approach

that of the Poisson distribution.

In previous work, performed by Mike Pas [Ref. 5], attempts

to demonstrate that dilute arrays approached the Poisson

distribution were not completely successful. Pas plotted NA

vs 6 for various area fractions of constant size particles.

The plots asymptotically approached values of 6 greater than

those of the Poisson distribution with decreasing area

9



fraction. However, Pas did show that as the area fraction of

particles increases, values for 6 shift towards values

approaching that of a hexagonal array, equation (2.4). Pas

also found that in non-random (high and low density bands of

particles) distributions, as the percentage of particles in

the high density bands increases, the overall value for 6

decreases.

The ultimate goal of this work would be an analytical

solution to quantify the degree of randomness of the particle

distributions in microstructures. Incorporating this solution

with a computer based image analyzing system would make it

possible to readily assess the mechanical properties dependent

on the particle distributions.

10



III. EXPERIMENTAL PROCEDURE

A. OVERVIEW

The simulations of particle distributions were generated

using a computer. Four independent programs were written, one

for each of four cases analyzed: random distribution of

constant-size particles (RANPART1); non-random distribution of

constant size particles (RANPART2); random distribution of

particles with a log-normal size distribution (RANPART3); and

non-random distribution of particles with a log normal size

distribution (RANPART4). RANPART1, 2, 3 and 4 are included in

appendices A, B, C and D respectively.

For the first two cases the algorithms were based on

programs originally developed by M. Pas (Ref. 5] and written

in TURBO PASCAL. Here, Pas's programs were rewritten in

FORTRAN 77 and incorporated several other modifications as

deemed necessary. The programs were run either on an IBM-

compatible PC or a Digital Equipment Corp. VAX 3100 work

station.

B. RANDOM DISTRIBUTION OF CONSTANT SIZE PARTICLES, RANPARTI

The flow chart for RANPART1 is shown in Figure 4. In the

input portion of the program the user enters the following

parameters:

11
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INP1UT InaiTAL PARAmETERS

_ _ GENERATE PARTICLE

POSITION

NO

SrORE PARTICLE POSITION

NO0 ALL PARTICLES POSiTONED

SEGREGATE PARTICLES
ALONG THE BORDER

DEEMMN NEAREST
NEIGHBOR SPACING

VALUES

OUTPUT DATA

Figur 4. Flow chart for the program RANPART1.OR
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"* Area percentage of particles for the defined region;

"* x dimension of the defined region;

"* y dimension of the defined region;

"* Minimum spacing between particles (if particles are
allowed to come in contact, enter 0);

"* Enter "n" if a specified number of particles is required
or enter "r" if a specified particles radius is required;

"* If entered "n", enter the total number of particles, if
entered "r", enter the particles radius;

"* Enter "A" if particles are of finite size or enter "p" if
the particles are infinitesimal points.

From these parameters the total area of the defined region,

total area occupied by the particles, the area per particle,

and the total number of particles or particle radius

(whichever value was not input) are calculated.

The particles are positioned in the next portion of the

program. A pseudorandom number generator is called twice to

provide x and y coordinates for a given particle. This

particle is then checked to ensure that it does not overlap

any other previously sited particle. This is accomplished by

calculating the distance to every other particle. If this

distance is less than twice the sum of the particle radius and

the minimum spacing, the position is rejected and the program

loops back to generate a new set of coordinates. This process

is repeated until the total number of particles required to

establish the desired area fraction has been met.

Once all the particle locations have been established,

particles located along the border are segregated from those

13
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in the interior of the defined region. This is done so that

errors in first nearest neighbor distance (NND) calculations

associated with the border will be minimized. The underlying

rationale for this step in the program will be discussed in

the next chapter. All particle positions are checked and

those having coordinates placing them within one particle

radius of the border are moved to a separate array in the

program memory.

First NND calculations are made by calculating for each

interior particle the distance to every other particle,

including those located along the border, and then finding and

saving the minimum first NND value. This process is repeated

for every other interior particle. The average first NND, 6,

is calculated by summing the minimum first NND values and

dividing by total number of interior particles .

In order to plot the distributions of first NND values an

increment had to be determined. To do this, the Sturgis rule

was applied as it is an established method for determining the

number of class intervals from a set of values. The Sturgis

rule is defined by the following expression:

N = 1 + 3.3log(n) (3.1)

Where N is the number of class intervals and n is the

number of values in the set. The value of n for this work is

equal to the number of interior particles. The number of

class intervals was divided into the difference between the

14
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maximum and minimum first NND values. This result (defined as

"dpinc" in the programs) was used as the incremental range for

sorting first NND values into equal sized intervals. The

number of NND values in each interval was then divided by the

total number of interior particles to get a relative quantity.

The output of the program consists of all input parameters,

the calculated values described above and a calculated value

for NA, the number of particles per unit area.

RANPARTI was run for area fractions ranging from 1% to 50%

utilizing a particle radius of 0.5 units. The defined area

was adjusted in each run to maintain a nominal value Np-5000

particles. The minimum spacing was kept at 0 for all

simulations.

Each run was repeated using the same parameters, but now

declaring the particles to be points. The results consisted

of point distribution and a distribution of finite sized

particles with the same value of NA.

For each simulation equation (2.1) was used to plot a

Poisson distribution corresponding the simulated distribution

of particles and points. The value of NA came from the

simulated point distribution. The probability density

function was plotted as a function of r in the range from the

minimum and maximum values of first NND derived from the point

distribution. The calculated increment Ar, based on the

Sturgis rule, was substituted into the equation for dr.

15



C. NON-RANDOM DISTRIBUTION OF CONSTANT SIZE PARTICLES,

RANPART2

The following modifications were made to RANPART1 to

produce RANPART2. The defined area in which the particles are

positioned was divided into five sub-areas of equal size. In

the input portion of the program the user declares what

proportion of the total area occupied by the particles will

be assigned to each subsection. The sum of the percentages

must equal 100%.

After each particle (for finite sized particles) is

checked for overlap, the program determines which sub-area the

particle (or point) belongs. By maintaining a running sum on

the area occupied by the particles in each sub-area, the

computer determines whether the addition of another particle

in a given sub-area would cause the area occupied by the

particles to exceed the limit. The particle position is

rejected if the limit will be exceeded. If this happens the

program loops back to generate another pair of particle

coordinates. When the process is complete the desired degree

of banding has been achieved. Figure 5 is the flow chart for

RANPART2.

All runs made for RANPART2 used 10%, 35%, 10%, 35%, and

10% sub-area particle densities. This was considered to

provide a relatively large deviation between the high and low

density bands. The simulations were made for area fractions

ranging from 0.01 to 0.30.
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D. RANDOM DISTRIBUTION OF PARTICLES WITH A LOGNORMAL SIZE

DISTRIBUTION, RANPART3

In RANPART3 a second random number generator is used to

determine a particle radius from a lognormal distribution.

The call for the particle radius is made before the call for

the particle coordinates so that, if particle overlap occurs,

only a new position will be generated but the existing radius

will still be used. Only when a particle is finally

positioned or, if particle overlap occurs 600 times

consecutively for the same particle radius, is a new particle

radius generated. This process is required in order to

maintain a lognormal size distribution and to prevent biasing

towards smaller sized particles as the particle density

increases. The program must now use individual particle radii

in subsequent calculations.

The input portion of the program was modified as follows.

The user must enter a value approximately equal to the natural

logarithm of the mean particle radius desired, which is the

mean of the underlying normal distribution, and a standard

deviation. Several iterations of these two variables may be

required to get the desired mean radius, especially for larger

standard deviations. Since a point distribution derived from

the same input parameters of constant size particles would be

no different than that for particles of varying size, this

option is not available for the programs with a lognormal

18



particle size distribution. The total number of particles

entered in the input portion of the program must be of

sufficient quantity to ensure that the number of interior

particles generated is enough to meet the desired area

fraction.) Since now the particles are no longer of constant

size there is no direct relationship between the number of

particles and the total area occupied by the particles. A

running sum of calculated particle areas is maintained.

Particle generation continues until this sum is equal to the

value corresponding to the desired area fraction.

Segregation of particles along the border is performed

much the same; but here the largest particle radius in the

distribution is used to establish the extent of the border.

Any particle whose center lies outside this border is

segregated.

The maximum, minimum and mean particle radius are

determined and provided at the output. The flow chart for

RANPART3 is shown in Figure 6.

RANPART3 was run for the same area fractions as RANPARTI.

Values of -3.07 and 0.4 were used as input for the mean of the

underlying normal distribution and for the standard deviation,

respectively.
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E. NON-RANDOM DISTRIBUTION OF PARTICLES WITH A LOGNORMAL SIZE

DISTRIBUTION, RANPART4

RANPART4 was derived from RANPART3 in the same way

RANPART2 was derived from RANPARTI. Five sub-areas were

incorporated into RANPART4 just as they were incorporated into

RANPART2. To maintain a record of the area occupied by the

particles in each sub-area, the area of each new particle

needs to be calculated and added to the existing area in which

it lies.

The flow chart for RANPART4 is shown in Figure 7.

RANPART4 was run for the same area fractions as RANPART2 and

for the same values of mean and standard deviation as

RANPART3.
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IV. RESULTS AND DISCUSSION

A. OVERVIEW

The first phase of this work consisted of a study to

determine a statistically sufficient number of particles to be

used in the simulations. The problem of particles positioned

along the border of the array was also addressed in this

phase. In the second phase, four general cases were studied:

random distribution of points and finite sized particles of

constant size; non-random distribution of points and

particles of constant size; random distribution of particles

with a log normal size distribution; and finally, non-random

distribution of particles with a log normal size distribution.

B. DETERMINATION OF A SUFFICIENT NUMBER OF PARTICLES AND THE

PROBLEM OF PARTICLES POSITIONED ALONG THE BORDER

In order to determine a statistically sufficient number of

particles to be used in the simulations the program RANPARTI

was modified. The modifications essentially consisted of

enclosing RANPART1 inside two loops. This allowed repeated

program running for the same parameters. Then, the average of

the results of repeated runs, was calculated. This experiment

was used to calculate an average value of 6, over a given

number of runs, for various numbers of particles (NP) ,

holding NA constant. The test was conducted for two area

23



fractions, 0.10 and 0.40 and for point distributions as well.

NA was arbitrarily set equal to 100. The results of the tests

are shown in Table 1 and in Figure 8.

No.

N af = 0.1 af = 0.4 Points Runs

10 0.06801 0.08902 0.05781 1000

20 0.06562 0.08633 0.05556 1000

30 0.06442 0.08524 0.05425 1000

40 0.06376 0.08455 0.05362 1000

50 0.06349 0.08434 0.05326 1000

60 0.06318 0.08400 0.05282 500

70 0.06282 0.08370 0.05271 500

80 0.06281 0.08352 0.05257 500

90 0.06241 0.08348 0.05240 500

100 0.06233 0.08326 0.05249 100

200 0.06173 0.08255 0.05146 100

300 0.06154 0.08223 0.05131 100

400 0.06120 0.08211 0.05106 100

500 0.06127 0.08198 0.05107 50

600 0.06107 0.08195 0.05083 50

700 0.06099 0.08181 0.05098 25

800 0.06091 0.08172 0.05046 25

900 0.06087 0.08172 0.05087 25

1000 0.06076 0.08178 0.05075 5

2000 0.06059 0.08150 0.05025 5

3000 0.06035 0.08130 0.05059 5

4000 0.06048 0.08130 0.05035 5

5000 0.06041 0.08127 0.05030 5
Table 1. Results from the modified RANPARTi for area
fractions of 0.1 and 0.4 and for points, NA = 100.
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For the random distribution of points, 6 approaches the

theoretical value of 0.05 for NP Ž 1000. For both area

fractions, 0.40 and 0.10, 6 approaches and appears to remain

constant at values of about 0.081 and 0.060 respectively,

again at Np Ž 1000 in both cases.

In developing the method for positioning circles or points

on a plane the dimensions of the planar surface had to be

established. Within this finite sized area all the particles

were positioned. From this situation it became evident that

when calculating first nearest neighbor distances, a particle

whose center lies on or near the border of the defined region

could conceivably have a closer neighbor than that calculated.

Figure 9 shows a defined area and a particle, a, located near

the border. Particle a's nearest neighbor within the area is

particle b. However, it is possible that if the defined area

had been larger, particle a may have a nearest neighbor even

closer than b such as particle c. Clearly this would be the

situation in any real material (imagine the field of view of

a micrograph being expanded). Since the existence of these

additional particles could only serve to lower the first NND,

any calculations made for 6 without taking this into

considerations would be overestimated.

Calculations for 6 were repeated, holding NA constant and

for the same area fractions, as described above. The model

was modified such that first NND calculations were not made
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for particles whose centers fell within one particle radius

from the border. These border particles were used in

determining first NND for particles located inside this

exclusion range. The results are shown in Figure 10.

This attempt to eliminate the border problem was only

partially successful as shown in Figure 10 and has the

greatest effect for low numbers of particles. The values for

6 were consistently lower for calculations involving both

particles and points when the numbers of points or particles

utilized was below 1000. For Np greater than 1000 the effects

of using a larger number of particles or points compensates

for the border problem by simply increasing the relative

number of particles located inside the defined area.

The data compiled in Table 1 was used to determine a more

exact solution for the asymptotic value of 6 (as Np - a) and

show that it is a function of the &U and NP. Close

examination of Figure 8 reveals the similar form of all three

curves. That is, for any value of NP the difference between

6Ob,. and 6,. (for points) or 6b,. and 6 A^.. (for particles)

appears to be the same. Based on the previous observation

that this difference is due to the particles positioned along

the border, the following relationship was defined:

= 8obS. - aTheo. (4.1)

where NP, is the number of particles along the border and A6

28



0.10

0.10 Border particles included in 6 calculations:

-- Particles, af - 0.40, rp = 0.05
-- Particles, af - 0.10, rp - 0.05
-e-Calculated Points

U 0.09
z

o 0.08

Border particles excluded from 6 calculations:

-PQ-Particles, af - 0.40, r p 0.50
0.0 -c---Particles, af = 0.10, r~ 0.05

0' ---7Calculated Points

z

S0.06

-Theoretical

10 100 1000 10000

TOTAL NUMBER OF PARTICLES

FIg gr 0 oa ubro articles vs average first nearest
neighbor distance for NA - 0D. The three pairs of curves
demonstrate the affect of particles located on the border.

29



is the overestimate in 6 associated with each particle along

the border. For a random distribution of particles in a

square region, NP can be taken to be equal to the square of

the number of particles along the border, NF2. Therefore Npt

= N112 and equation (4.1) can be expressed as:

1 A = 8 Obs. - 6 Theo. (4.2)

App
Figure 11 is a plot of N Pl1/ vs 6b,. - 6Thm. f rom the data

compiled in Table 1. These curves clearly define a linear

relationship from which the following equations can be

derived:

Points: bobs. = 0.0235--L + 6 Theo. (4.3)

af = 0.1: bobs. = 0 . 0 2 4 8 -L-L + 0.0100 + 6 Theo. (4.4)

af= 0.4: bobs. = 0.0248-!- + 0.0309 + 6 Theo. (4.5)

By taking the limit as NP -+ o in each equation (4.3), (4.4)

and (4.5), 6 Ob, - 6 AY. The solutions for 6 AY,. in these

equations are 0.0500, 0.0600 and 0.0809, respectively. In

general, this value for 6 A,ym. can be taken to be the average

first nearest neighbor distance for any distribution of points

or particles of finite size.

30



0.04

,M4;ý 6 Obs. ý- 6 Theo. = 0.0309 + 0.0248Np0.o. 00309 + 0.0248Np

0.03

a Particles, a f 0.40, rp - 0.05

A Particles, af = 0.10, rp - 0.05

o Calculated Points

0.02

00.02

•80bs. 5 Theo. 0.0100 + 0.0248Np
0

10

0.01

-0.33

bObs. - 5 Theo. =0.0234Np

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35

-0.5

Fifure 11. N v 8 0be. - Theo. for area fractions of
0. f0 and 0.40.

31



A

Based on the results above all subsequent simulations were

made using both the border particle exclusion algorithm and a

nominal value of 5000 particles or points.

c. RANDOM DISTRIBUTION OF CONSTANT SIZE PARTICLES

For all values of NA evaluated, 1.275 5 NA 5 63.82, the

calculated distribution for random points very closely

approximated the corresponding Poisson distribution (Figure 12

-16). For area fractions less than 0.05, as shown in Figure

12, the particle distributions generated approximated the

Poisson as well. In these dilute distributions the particles

behave like points since the likelihood of two randomly

generated particles overlapping is not significant. The

difference between the distributions is that the particle

distribution becomes truncated at a value equal to twice the

particle radius. This was a result of the non-overlap

criterion preventing the particle centers from getting closer

than one particle diameter. Figures 17 - 21 are the

corresponding plots of the actual particle distributions

represented in Figures 12 - 16.

Figure 22 demonstrates the effect that, as the area

fraction is increased, the distribution is shifted towards

lower values of NND. A shift in 6 from the theoretical

Poisson value (68 = 0.5NA^') towards the value for a

hexagonal array (6He. = 1.075NAI) was also observed. At high

area fractions the distributions for particles approach delta
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Figure 12. Random distribution of points and constant size
particles.
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Figure 13. Random distribution of points and constant size
particles.

34



0.50

-Poisson Dist., N A= 12.77
-Calculated Point Dist., NA = 12.77

0.40 -.- Const. Size Particles, NA = 12.72
at = 0.10, rp = 0.05, 8 =0.1699

U

b4:

• 0.30

0

Z 0.20

- /

0.10

6 Theo. 6~e alx

0 .0 0 ' I I I I II - - F

0.00 0.10 0.20 0.30 0.40 0.50

FIRST NEAREST NEIGHBOR DISTANCE

Figure 14. Ranuom distribution of points and constant size
particles.
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Figure 15. Random distribution of points and constant size
particles.
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Figure 16. Random distribution of points and constant size
particles.
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functions with the minimum first NND having the highest

frequency of occurrence.

The effects of increasing area fraction for finite sized

particles is shown in Figure 23. As NA increases from values

of very diluted arrays to more dense distributions the

corresponding values of 6 shift from that of a random

distribution of infinitesimal points to that of a hexagonal

array. Figure 23 shows that this trend is consistent for

various particle radii. The reader should note the asymptotic

approach towards the random theoretical distribution of

points. This is indicative of using a sufficient number of

particles in the simulations.

D. NON-RANDOM DISTRIBUTION OF CONSTANT SIZE PARTICLES

A non-random distribution was simulated by dividing the

total defined area in to five sub-areas of equal size. In all

simulations there were three low density zones separated by

two high density zones. The high density zones were each

assigned 35% of the particles occupying the total area, while

the low density zones were each assigned 10%. These

parameters were used for all simulations.

The non-random distribution of constant size particles for

various area fractions are shown in Figures 24 - 27. Plots of

the particles themselves are shown in Figures 28 - 31. These

figures were compared with the corresponding distributions and

particle plots, with respect to area fraction, in the random
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Figure 23. Number of particles per unit area vs average first
nearest neighbor distance for particles of varying radius.
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Note: Banded distribution simulated
0.40 by dividing total area into 5
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Figure 24. Non-random distribution of points and constant size
particles.
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Figure 25. Non-random distribution of points and constant size
particles.
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Figure 26. Non-random distribution of points and constant size
particles.
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Figure 27. Non-random distribution of points and constant size
particles.

49



* •

* 0

S S

TOTAL PARTICLE AREA FRACTION: 0.01
SUB-AREA PARTICLE AREA FRACTIONS: 0.10, 0.35,
0.10, 0.35, 0.10
PARTICLE RADIUS: 0.05
AVERAGE NEAREST NEIGHBOR SPACING: 0.4403NUMBER PARTICLES PER UNIT AREA: 1.273

Figure 28. Non-random distribution of constant size particles.
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Figure 31. Non-random distribution of constant size particles.
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distribution case. It was observed that the fundamental form

of the distributions, trend in values of the observed 6, and

first NND were similar.

Additionally, in the non-random case, there was a small

but consistent shift in the distribution towards lower values

of first NND. This pattern was attributed to the presence of

the high density bands. For a given NA, the greater degree of

packing of points or particles in the high density zones

caused the first NND to shift toward lower values. This

effect was also reflected in a greater frequency of the

minimum first NND when compared to that of the random case.

A summary of the observed trends in the non-random/constant

particle size distributions are shown in Figure 32.

The corresponding particle plots, comparing the relative

densities of the high and low density bands, are shown in

Figures 28 - 31. Compare these plots with those of the random

distributions for the same area fractions (Figures 17 - 21).

For af = 0.30 the difference between the random (Figure 20) and

non-random (Figure 31) distributions is completely obvious to

the eye. There is a clear distinction between the high and

low density bands in the non-random distribution. This

distinction makes it easy for the observer to tell the

difference between the random and non-random particle

distributions based on these plots. Again, for af = 0.30,

compare the distribution curves for the random (Figure. 15)
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and non-random (Figure 27) cases. The distinction is not

great and the discernable difference is a greater maximum

frequency for the lowest first NND in the non-random case.

The visual difference in the particle plots is much more

subtle for low area fractions compared to high area fractions.

Compare the random and non-random particle plots for af = 0.01

(Figures 17 and 28). Unlike the plots for the 30% area

fraction, the distinction is not obvious. However, the same

can be said for the NND distribution curves (Figures 12 and

24). For the low area fraction both curves approach the

distribution of random points. This made any distinction

between them even more subtle than the curves for the 30% area

fraction.

E. RANDOM DISTRIBUTION OF PARTICLES WITH A LOGNORMAL SIZE

DISTRIBUTION

In actual microstructures the second phase-particle size

generally will not be constant throughout the material. In

fact it has often been reported that second-phase particles

follow a lognormal size distribution. Such was the basis for

the following experiments.

The same area fractions were analyzed for particles with

a lognormal size distribution (Figures 33 - 37) as with those

for constant size particles. The corresponding particle plots

are shown in Figures 38 - 42. For very dilute arrays of

particles, the distributions approached very closely to those
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Figure 33. Random distribution of points and particles with a
lognormal size distribution. 57
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Figure 34. Random distribution of points and particles with a
lognormal size distribution.
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Figure 35. Random distribution of points and particles with a

lognormal size distribution.
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Figure 36. Random distribution of points and particles with a

lognormal size distribution.
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Figure 37. Random distribution of points and particles with a

lognormal size distribution.
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NUMBER PARTICLES PER UNIT AREA: 1.094

Figure 38. Rarcdomndistribution of particles wth a lognormal

size distribution.
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calculated for points and to the Poisson distribution (Figure

33). But now, as the area fraction is increased the particle

distribution still maintains a shape similar to the Poisson

distribution. Unlike the case for constant size particles,

the minimum first NND can be smaller than the mean particle

diameter. A smaller particle can always be fitted between two

or more larger ones, thus reducing the first NND below the

value of the mean particle diameter. This also resulted in a

more nearly constant peak frequency of first NND for all

ranges of area fractions examined.

The trends for 6 of the particles and ranges of first NND

(Figure 43) were the same as those in the constant size

particle case for lower values of NA. At larger values of NA

the value of 6 for lognormally distributed particles becomes

less than that for the corresponding constant particle sizes.

F. NON-RANDOM DISTRIBUTION OF PARTICLES WITH A LOGNORMAL SIZE

DISTRIBUTION

The same parameters for banding used in the non-random,

constant size particle case were used in the case of non-

random distribution of particles with a lognormal size

distribution. The results of this analysis are shown in

Figures 44 - 47 for the distributions and Figures 48 - 51 for

the particle plots. The features are similar in many respects

to those reported earlier for non-random/constant particle

size distributions. As the area fraction increases 6 shifts
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- Poisson Dist., N A - 1.273
-a-Calculated Point Dist., N A = 1.273
--- Lognormal Size Dist., NA = 1.074

af = 0.01, rm = 0.0502, 6 =0.4703
0.40 a - 0.4

Note: Banded distribution simulated by
dividing the total area into 5
sub-areas, each containing 10%, 35%,
10%, 35% and 10% respectively, of the
total number of points or of the total
area of particles.
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Figure 44. Non-random distribution of points and particles with a

lognormal size distribution.
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0.40 a - 0.4

Note: Banded distribution simulated by
dividing the total area into 5 sub-areas,

Seach containin 10%, 35%, 10%, 35% and
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Figure 45. Non-random distribution of points and particles with a

lognormal size distribution.
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- -Lognormal Size Dist., NA = 10.65

a, = 0.10, rm = 0.0505,

6 - 0.1745, a - 0.4
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simulated by dividing the total
area into 5 sub-areas, each

. containing 10%, 35%, 10%, 35%
and 10% respectively, of the
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Figure 46. Non-random distribution of points and particles with a
lognormal size distribution.
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Note: Banded distribution simulated by
W dividing the total area into 5 sub-areas,

each containing 10%, 35%, 10%, 35% and
S10% respective [y, of the total number of

Spoints or of the total area of particles.
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Figure 47. Non-random distribution of points and particles with a
lognormal size distribution.
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NUMBER PARTICLES PER UNIT AREA: 1.074

Figure 48. Non-random distribution of particles with a log-
normal size distribution.
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from a very close approximation to the value for a Poisson

distribution towards that of a hexagonal array. Unlike the

cases for constant size particles, the distribution curve

maintains a shape similar to the Poisson distribution and does

not reach a peak frequency of first NND corresponding to the

minimum first NND. This, again, is due to the possibility of

positioning a smaller particle between two or more larger

ones. There is a consistent increase in the maximum

occurrence of any first NND value over that of the random

case. This is also a result of the greater density of

particles in the high density zones. Figure 52 summarizes the

shift in the distributions as the area fraction increases.

In comparing the particle plots for non-random

distributions of particles with a lognormal size distribution,

Figures 48 - 51, to those of the random case, the same

observations are made as for the constant particle size

distributions. For relatively high area fractions the

difference between random and non-random particle dispersions

is obvious to the eye. But for very low area fractions it

becomes more difficult to differentiate between the two. This

observation is summarized graphically in Figures 53, 54 and

55. The first two figures represent random and non-random

distributions, respectively, for particles of constant and

varying size. Both figures are indeed very similar, each

showing the effect of smaller particles positioned between
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S--Particle Radius - 0.05
--- -Lognormal Particle Size Dist.,

rm - 0.05, a = 0.40
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Figure 53. Number of particles per unit area vs average first
nearest neighbor distance; for random distributions of constant
size p articles and for particles with a lognormal size distribution.
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Figure 54. Numbe'ar of particles per unit area ve average first
nearest neighbor distance; for non-random distributions of constant
size particles and for particles with a lognormal size distribution.
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Figure 55. Number of particles per unit area vs average first
nearest neighbor distance; for random and non-random
distributions of particles with a log normal size distribution,
rm - 0.05, o- 0.4.
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larger ones reducing the value of 6 for a given NA. Further,

in comparing the two figures the minimal deviation between

random and non-random distributions was reflected in the close

similarities of the curves. This observation is more apparent

in figure 55 for the case of random and non-random

distributions of particles with a lognormal size variance.

The analysis conducted shows that the human eye is very

capable of detecting non-randomness of particle distributions

for sufficiently dense arrays. However, when presented with

the statistical data, the discernment of random or non-random

is not so obvious. The degree of non-randomness imposed on

the model was judged to be relatively high, 35% and 10% for

high and low density bands respectively. Had the difference

between the two bands been less, there would have been even

greater similarities between the random and non-random

distributions. The question then becomes; is it possible to

develop a system which can differentiate between random and

non-random particle distributions and quantify the results?
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V. CONCLUSIONS AND RECOMMENDATIONS

The following conclusions may be drawn from the work

described in the preceding sections.

1. The simulations performed for large values of NA

reproduce the work performed by Pas [Ref. 5) and therefore

substantiate those results.

2. For more dilute arrays, because the problem of

particles along the border was not recognized, Pas's

calculations for first NND was overestimated.

3. As the number of particles utilized in any simulation

increases, the relative number of particles appearing along

the border decreases. For this reason the errors resulting in

calculations of first NND can be reduced by using a sufficient

number of particles (at least 1000). Calculations of first

NND for points approached the theoretical Poisson distribution

as the total number of points utilized was increased. The

same can be said for the distribution of finite sized

particles. However in this case, as the total number of

particles increases (approaches 1000 and beyond), 6

asymptotically approaches a constant value which lies between

the minimum possible spacing (2 x rp) and the spacing for a

hexagonal array. Based on these observations it is possible

to compensate for the statistical inaccuracies by utilizing at

least 1000 particles in the simulations.
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4. Attempts to compensate for errors arising in the first

NND calculations when using a small number of particles by

eliminating particles along the border was only partially

successful. Any gains made using the procedure to reduce the

border particle problem for small number of particles was

overtaken by simply increasing the total number of particles.

5. In all four cases analyzed (random

distribution/constant size particles, non-random

distribution/constant size particles, random

distribution/lognormal particle size distribution, and non-

random distribution/lognormal particle size distribution) the

non-overlap criterion caused the distribution to deviate from

the Poisson to that of a hexagonal array as the density of the

particles increased. Using a nominal value of 5000 particles

the model very closely simulated the Poisson distribution in

all cases for dilute arrays.

6. For constant size particles in high area fractions (af

S0.10), for both random and non-random distributions, the

most frequently occurring first NND was the minimum first NND.

This was due to the non-overlap criterion and that the minimum

first NND can not be less than the particle diameter.

7. The non-random distribution of points and constant

size particles was shifted to the left of the corresponding

Poisson distribution. This was due to the presence of the

high density zones. For a given NA, the closer packing of the
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points or particles in the high density zones causes NND to

shift towards lower values. This was also reflected in a

greater frequency of the minimum first NND when compared to

that of the random case.

8. The random distribution of particles with a lognormal

size distribution maintained the shape of a Poisson field for

all area fractions. Unlike the case for constant size

particles, the minimum first NND can be smaller than the mean

particle diameter. A smaller particle can always fit between

two or more larger ones thus lowering the minimum first NND.

This also resulted in a more constant peak frequency of first

NND for all ranges of area fractions examined. These

observations held true as well for the case of non-

random/lognormal particle size distribution.

After reviewing all the accumulated data there did not

appear to be as significant a difference between the plotted

distributions of the random and non-random cases as there was

between the plots of the particles themselves. Based then on

the statistical nature of this work it appears that the best

differentiater between random and non-random particle

distributions is the human eye.

To follow up on this work the following studies are

recommended. A similar analysis should be made for the three

dimensional case in order to parallel the actual particle

distributions. Other types of non-randomness, such as

clusters, should be explored to determine their effects on
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distributions. Area fractions greater than 0.50 should be

examined as well. Finally, an analysis should be made, based

on results of this work, to determine the feasibility of

developing a computer program which could determine the degree

of randomness in the distributions of second phase particles.
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APPENDIX A. PROGRAM RANPARTI.FOR

PROGRAM RANPART1
* Glossary of variables:
* Pi 3.14159
* Xpos X coordinate of an interior particle
* Ypos Y coordinate of an interior particle
* XposB X coordinate of a particle along the
* border
* YposB Y coordinate of a particle along the
* border
* AP Area percentage of the particles
* TPA Total area fraction of the particles
* Pspace Min. spacing between particles
* Pradius Particle radius
* TOTarea Defined area where particles are positioned
* Parea Area occupied by each particle
* dp Distance between interior particles
* dp2 Distance between interior particles
* dp2B Distance between an interior particle and a
* border particle
* dp3 Nearest neighbor spacing
* dp4 Sum of nearest neighbor spacings
* dist Particle diameter plus min spacing
* dpavg Average nearest neighbor spacing
* X Horizontal dimension of defined area
* Y Vertical dimension of defined area
* dpmin Minimum nearest neighbor spacing
* dp2Bmin Distance between an interior particle and
* its nearest border particle
* dpmax Maximum nearest neighbor spacing
* dpinc Size of each range between dpmin and dpmax
* based on the Sturgis Rule
* Delta Minimum value of each range in dpinc
* Np Number of particles corrosponding to each
* Delta
* NPA Number of particles per unit area
* Pnum Total number of particles generated
* Ans Either "A" for area or "p" for points,
* depending on
* type of particles
* Part Either "n" for a preset number of particles
* or "r" for a preset particle radius
*

REAL Pi, Xpos(5200), Ypos(5200), XposB(250), YposB(250),
:TPA, AP, Pspace, Pradius, TOTarea, Parea, dp, dp2, dp2B,
:dp2Bmin, dp3(5200), dp4, dist, dpavg, X, Y, dpmin, NPA,
:dpmax, dpinc, g, Delta(30), Np(30)
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INTEGER a, b, c, d, i, j, k, 1, m, n, Pnum, f, h, e

CHARACTER Ans*1, Part*1
*

PARAMETER (Pi=3.14159)

DATA n, dp4, e, dpmin, dpmax, Np(1), a, b /
:1, 0.0, 0, 10.0, 0.001, 0, 1, 1 /
OPEN (10,file='rp*x.dat',status='new')
OPEN (20,file='rply.dat',status='new')
OPEN (30,file='Dell.dat',status='new')
OPEN (40,file='Npl.dat',status='new')
OPEN (50,file='rpl.dat',status='new')

PRINT*,' Enter the area percentage of particles.'
READ*, AP
PRINT*,' Enter the length of the X - scale.'
READ*, X
PRINT*,' Enter the length of the Y - scale.'
READ*, Y
TOTarea = X*Y
TPA = AP/100*TOTarea
PRINT*,' Enter the minimum spacing between particles.'
READ*, Pspace
PRINT*,' If particle generation is to based on a preset

:number of'
PRINT*,' particles enter "n". OR If particle

:generation is to'
PRINT*,' be based on a preset particle radius enter

READ*,Part
IF (Part .EQ. 'n') THEN
PRINT*,'Enter total number of particles.'
READ*,Pnum
Parea = TPA/Pnum
Pradius = SQRT(Parea/Pi)
ELSEIF (Part .EQ. 'r') THEN
PRINT*,' Enter the radius of the particles.'
READ*, Pradius
Parea = Pi*(Pradius**2)
Pnum = NINT(TPA/Parea)
ENDIF
PRINT*,' Are the particles finite areas or points?

:Enter "A" or "p"'.'
READ*, Ans

* Determine random position of particles.

PRINT*,' Determining random position of particles.'
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dist = 2*Pradius + Pspace
Xpos(1) = RRAND()
DO 100 1 = 1, Pnum

150 CONTINUE
Xpos(i) = RND(*X
Ypos(i) = RND(*Y

*

* Check for overlap of particles with a finite area

IF (Ans .EQ. 'p') GOTO 250
DO 200 k = 1, i - 1

dp = SQRT((Xpos(i) - Xpos(k))**2 +
(Ypos(i) - Ypos(k))**2)

IF (dp .LT. dist) GOTO 150
200 CONTINUE
250 CONTINUE
100 CONTINUE
*

* Segregate particles along the perimeter from those in
* the interior of the specified area.
.

PRINT*,' Segregating particles on the border from the
:interior.'

DO 275 d = 1, Pnum
IF ((Xpos(d) .LE. Pradius + Pspace) .OR.

(Xpos(d) .GE. X - Pradius - Pspace) .OR.
(Ypos(d) .LE. Pradius + Pspace) .OR.
(Ypos(d) .GE. Y - Pradius - Pspace)) THEN

XposB(b) = Xpos(d)
YposB(b) = Ypos(d)
b=b+ 1

ELSE
Xpos(a) = Xpos(d)
Ypos(a) = Ypos(d)
WRITE(10,*) Xpos(a)
WRITE(20,*) Ypos(a)
a=a+ 1

ENDIF
275 CONTINUE

* Determine the average distance between nearest
* neighbors.

PRINT*,' Determining nearest neighbor distances.'
DO 300 j = 1, Pnum - (b - 1)

dp3(n) = SQRT(X**2 + Y**2)
dp2Bmin = SQRT(X**2 + Y**2)
DO 350 c = 1, (b - 1)

dp2B = SQRT((Xpos(j) - XposB(c))**2 +
(Ypos(j) - YposB(c))**2)

dp2Bmin = MIN(dp2Bmin, dp2B)
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350 CONTINUE
DO 400 1 = 1, Pnum - (b - 1)

dp2 = SQRT((Xpos(1) - Xpos(j))**2 +
(Ypos(1) - Ypos(j))**2)

IF (dp2 .NE. 0.0) THEN
dp3(n) = MIN(dp2, dp3(n), dp2Bmin)

ENDIF
400 CONTINUE

n= n + 1
300 CONTINUE

DO 500 m = 1, Pnum - (b - 1)
dp4 = dp4 + dp3(m)

500 CONTINUE
dpavg = dp4/(Pnum - (b - 1))

* Determine the number of particles falling in each range
* of nearest neighbor spacings (based on the Sturgis
* rule).

PRINT*,' Grouping nearest neighbor values into ranges.'
DO 600 f = 1, Pnum - 1 - (b - 1)

dpmin = MIN(dp3(f), dp3(f+l), dpmin)
dpmax = MAX(dp3(f), dp3(f+l), dpmax)

600 CONTINUE
dpinc = (dpmax - dpmin)/(l + 3.3*LOG10(Pnum - (b - 1)))
DO 700 g = dpmin, dpmax, dpinc

e = e + 1
DO 800 h = 1, Pnum - (b - 1)

IF ((dp3(h) .GE. g) .AND. (dp3(h) .LT. g + dpinc))
THEN

Np(e) = Np(e) + 1
ENDIF

800 CONTINUE
Delta(e) = (2*g + dpinc)/2
WRtITE(30,*)Delta(e)
WFITE(40,*)Np(e)/(Pnum - (b - 1))

700 CONTINUE
NPA = (Pnum - (b - 1))/(X - 2*Pradius - 2*Pspace)/

(Y - 2*Pradius - 2*Pspace)
WRITE(50,10)'The area percentage of particles is', AP
WRITE(50,20)'X dimension is',X
WRITE(50,20)'Y dimension is',Y
WRITE(50,20) 'Min spacing between particles is' ,Pspace
WRITE(50,20)'Particle radius is', Pradius
WRITE(50,20)'Particle area is', Parea
WRITE(50,20)'Total number of particles is', Pnum
WRITE(50,20)'Number of particles along the perimeter

:is',b - 1
WRITE(50,20)'Number of particles in area interior is',a

:- 1
WRITE(50,20)'Number particles per unit area', NPA
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WRITE(50,20)'Average spacing between nearest neighbors
:is', dpavg
WRITE(50,20)'Min nearest neighbor spacing is',dpmin
WRITE(50,20)'Max nearest neighbor spacing is',dpmax
PRINT*,' The area percentage of particles is', AP
PRINT*,' X dimension is',X
PRINT*,' Y dimension is',Y
PRINT*,' Min spacing between particles is',Pspace
PRINT*,' Particle radius is', Pradius
PRINT*,' Particle area is', Parea
PRINT*,' Total number of particles is', Pnum
PRINT*,' Number of particles along the perimeter', b - 1
PRINT*,' Number of particles in area interior', a - 1
PRINT*,' Number particles per unit area is', NPA
PRINT*,,' Average spacing between nearest neighbors is',

:dpavg
PRINT*,' Min nearest neighbor spacing is',dpmin
PRINT*,' Max nearest neighbor spacing is',dpmax

10 FORMAT ( //////,T8,A,FIO.4)
20 FORMAT (T8,A,FI0.4)

END
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APPENDIX B. PROGRAM RANPART2.FOR

PROGRAM RANPART2

* Glossary of variables:
* Pi 3.14159
* Xpos X coordinate of an interior particle
* Ypos Y coordinate of an interior particle
* XposB X coordinate of a particle along the border
* YposB Y coordinate of a particle along the border
* AP Area percentage of the particles
* TPA Total area fraction of the particles
* Pspace Min. spacing between particles
* Pradius Particle radius
* TOTarea Defined area of particles
* Parea Area occupied by each particle
* dp Distance between interior particles
* dp2 Distance between interior particles
* dp2B Distance between an interior particle and a
* border particle
* dp3 Nearest neighbor spacing
* dp4 Sum of nearest neighbor spacings
* dist Particle diameter plus min spacing
* dpavg Average nearest neighbor spacing
* X Horizontal dimension of total area
* Y Vertical dimension of total area
* dpmin Minimum nearest neighbor spacing
* dp2Bmin Distance between an interior particle and
* its nearest border particle
* dpmax Maximum nearest neighbor spacing
* dpinc Size of each range between dpmin and dpmax
* based on the Sturgis Rule
* Delta Minimum value of each range in dpinc
* Np Number of particles corrosponding to each
* Delta
* NPA Number of particles per unit area
* Pnum Total number of particles generated
* Ans Either "A" for area or "p" for points,
* depending on type of particles
* Part Either "n" for a preset number of particles
* or "r" for a preset particle radius
* AF1-5 Area percentage of particles in each of the
* five sub-areas
* A1-5 Subtotal of particles in each sub-area

REAL Pi, Xpos(5200), Ypos(5200), XposB(250), YposB(250),
:TPA, AP, Pspace, Pradius, TOTarea, Parea, dp, dp2, dp2B,
:dp2Bmin, dp3(5200), dp4, dist, dpavg, X, Y, dpmin, NPA,
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:dpmax, dpinc, g, Delta(30), Np(30), Al, AFI, A2, AF2,
:A3, AF3, A4, AF4, A5, AF5

INTEGER a, b, c, d, i, j, k, 1, m, n, Pnum, f, h, e

CHARACTER Ans*l, Part*l

PARAMETER (Pi=3.14159)

DATA n, dp4, e, dpmin, dpmax, Np(l), a, b, Al, A2, A3,
:A4, A5 /
:1, 0.0, 0, 10.0, 0.001, 0, 1, 1, 0.0, 0.0, 0.0, 0.0,
:0.0/

,
OPEN (10,file='rp2x.dat',status='new')
OPEN (20,file='rp2y.dat',status='new')
OPEN (30,file='Del2.dat',status='new')
OPEN (40,file='Np2.dat',status='new')
OPEN (50,file='rp2.dat',status='new')

PRINT*,' Enter the area percentage of particles.'
READ*, AP
PRINT*,' Enter 5 sub-area percentages of particles.'
READ*, AF1, AF2, AF3, AF4, AF5
AF1 = AF1/100
AF2 = AF2/100
AF3 = AF3/100
AF4 = AF4/100
AF5 = AF5/100
PRINT*,,' Enter the length of the X - scale.'
READ*, X
PRINT*,' Enter the length of the Y - scale.'
READ*, Y
TOTarea = X*Y
TPA = AP/100*TOTarea
PRINT*,' Enter the minimum spacing between particles.'
READ*, Pspace
PRINT*,' If particle generation is to based on a preset

:number of'
PRINT*,' particles enter "n". OR If particle

:generation is to'
PRINT*,' be based on a preset particle radius enter

READ*,Part
IF (Part .EQ. 'n') THEN

PRINT*,'Enter total number of particles.'
READ*,Pnum
Parea = TPA/Pnum
Pradius = SQRTParea/Pi)

ELSEIF (Part .EQ. 'r') THEN
PRINT*,' Enter the radius of the particles.'
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READ*, Pradius
Parea = Pi*(Pradius**2)
Pnum = NINT(TPA/Parea)

ENDIF
PRINT*,' Are the particles finite areas or points?

:Enter "A" or "p".'
READ*, Ans

* Determine random position of particles.

PRINT*,' Determining random-banded position of
:particles.'
dist = 2*Pradius + Pspace
Xpos(l) = RRAND()
DO 100 i = 1, Pnum

150 CONTINUE
Xpos(i) = RND()*X
Ypos(i) = RND)*Y

* Check for overlap of particles with a finite area

IF (Ans .EQ. 'p') GOTO 250
DO 200 k = 1, i - 1

dp = SQRT((Xpos(i) - Xpos(k))**2 +
(Ypos(i) - Ypos(k))**2)

IF (dp .LT. dist) GOTO 150
200 CONTINUE
250 CONTINUE

IF ((Ypos(i) .GE. 0.0) .AND. (Ypos(i) .LT. 0.2*Y)) THEN
IF (Al .GT. TPA*AF1) GOTO 150
Al = Al + Parea

ELSEIF ((Ypos(i) .GE. 0.2*Y) .AND. (Ypos(i) .LT. 0.4*Y))
:THEN

IF (A2 .GT. TPA*AF2) GOTO 150
A2 = A2 + Parea

ELSEIF ((Ypos(i) .GE. 0.4*Y) .AND. (Ypos(i) .LT. 0.6*Y))
:THEN

IF (A3 .GT. TPA*AF3) GOTO 150
A3 = A3 + Parea

ELSEIF ((Ypos(i) .GE. 0.6*Y) .AND. (Ypos(i) .LT. 0.8*Y))
:THEN

IF (A4 .GT. TPA*AF4) GOTO 150
A4 = A4 + Parea

ELSEIF ((Ypos(i) .GE. 0.8) .AND. (Ypos(i) .LE. Y)) THEN
IF (AS .GT. TPA*AF5) GOTO 150
A5 = A5 + Parea

ENDIF
100 CONTINUE
*

* Segregate particles along the perimeter from those in
* the interior of the specified area.
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PRINT*,' Segregating particles on the border from the
:interior.'

DO 275 d = 1, Pnum
IF ((Xpos(d) .LE. Pradius + Pspace) .OR.

(Xpos(d) .GE. X - Pradius - Pspace) .OR.
(Ypos(d) .LE. Pradius + Pspace) .OR.
(Ypos(d) .GE. Y - Pradius - Pspace)) THEN

XposB(b) = Xpos(d)
YposB(b) = Ypos(d)
b=b+ 1

ELSE
Xpos(a) = Xpos(d)
Ypos(a) = Ypos(d)
WRITE(10,*) Xpos(a)
WRITE(20,*) Ypos(a)
a = a + 1

ENDIF
275 CONTINUE

* Determine the average distance between nearest
* neighbors.
,

PRINT*,' Determining nearest neighbor distances.'
DO 300 j = 1, Pnum - (b - 1)

dp3(n) = SQRT(X**2 + Y**2)
dp2Bmin = SQRT(X**2 + Y**2)
DO 350 c = 1, (b - 1)

dp2B = SQRT((Xpos(j) - XposB(c))**2 +
(Ypos(j) - YposB(c))**2)

dp2Bmin = MIN(dp2Bmin, dp2B)
350 CONTINUE

DO 400 1 = 1, Pnum - (b - 1)
dp2 = SQRT((Xpos(l) - Xpos(j))**2 +

(Ypos(l) - Ypos(j))**2)
IF (dp2 .NE. 0.0) THEN
dp3(n) = MIN(dp2, dp3(n), dp2Bmin)

ENDIF
400 CONTINUE

n = n + 1
300 CONTINUE

DO 500 m = 1, Pnum - (b - 1)
dp4 = dp4 + dp3(m)

500 CONTINUE
dpavg = dp4/(Pnum - (b - 1))

* Determine the number of particles falling in each range
* of nearest neighbor spacings (based on the Sturgis
* rule).
*

DO 600 f = 1, Pnum - 1 - (b - 1)
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dpmin = MIN(dp3(f), dp3(f+l), dpmin)
dpmax = MAX(dp3(f), dp3(f+l), dpmax)

600 CONTINUE
dpinc = (dpmax - dpmin)/(l + 3.3*LOG1O(Pnum - (b - 1)))
DO 700 g = dpmin, dpmax, dpinc

e = e + 1
DO 800 h = 1, Pnum - (b - 1)

IF ((dp3(h) .GE. g) .AND. (dp3(h) .LT. g + dpinc))
THEN

Np(e) = Np(e) + 1
ENDIF

800 CONTINUE
Delta(e) = (2*g + dpinc)/2
WRITE(30,*)Delta(e)
WRITE(40,*)Np(e)/(Pnum- (b - 1))

700 CONTINUE
NPA = (Pnum - (b - 1))/(X - 2*Pradius - 2*Pspace)/

(Y - 2*Pradius - 2*Pspace)
WRITE(50,10)'The area percentage of particles is', AP
WRITE(50,20)'X dimension is',X
WRITE(50,20)'Y dimension is',Y
WRITE(50,20)'Min spacing between particles is',Pspace
WRITE(50,20)'Particle radius is', Pradius
WRITE(50,20)'Particle area is', Parea
WRITE(50,20)'Total number of particles is', Pnum
WRITE(50,20)'Number of particles along the perimeter

:is',b - 1
WRITE(50,20)'Number of particles in area interior is',a

:- 1
WRITE(50,20)'Number particles per unit area', NPA
WRITE(50,20)'Average spacing between nearest neighbors

:is', dpavg
WRITE(50,20)'Min nearest neighbor spacing is',dpmin
WRITE(50,20)'Max nearest neighbor spacing is',dpmax
PRINT*,' The area percentage of particles is', AP
PRINT*,' X dimension is',X
PRINT*,' Y dimension is',Y
PRINT*,' Min spacing between particles is',Pspace
PRINT*,' Particle radius is', Pradius
PRINT*,' Particle area is', Parea
PRINT*,' Total number of particles is', Pnum
PRINT*,' Number of particles along the perimeter', b -
:1
PRINT*,' Number of particles in area interior', a - 1
PRINT*,' Number particles per unit area is', NPA
PRINT*,' Average spacing between nearest neighbors is',

:dpavg
PRINT*,' Min nearest neighbor spacing is',dpmin
PRINT*,' Max nearest neighbor spacing is',dpmax
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10 FORMAT ( //////,T8,A,F1O.4)
20 FORMAT (T8,A,F10.4)

END
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APPENDIX C. PROGRAM RANPART3.FOR

PROGRAM RANPART3

* Glossary of variables:
* Pi 3.14159
* Xpos X coordinate of an interior particle
* Ypos Y coordinate of an interior particle
* XposB X coordinate of a particle along the border
* YposB Y coordinate of a particle along the border
* AP Area percentage of the particles
* TPA Total area occupied by the particles
* Pspace Min. spacing between particles
* TOTarea Defined area of particles
* Parea Area occupied by each particle
* dp Distance between interior particles
* dp2 Distance between interior particles
* dp2B Distance between an interior particle and a
* border particle
* dp3 Nearest neighbor spacing
* dp4 Sum of nearest neighbor spacings
* dist Particle diameter plus min spacing
* dpavg Average nearest neighbor spacing
* X Horizontal dimension of total area
* Y Vertical dimension of total area
* dpmin Minimum nearest neighbor spacing
* dp2Bmin Distance between an interior particle and
* its nearest border particle
* dpmax Maximum nearest neighbor spacing
* dpinc Size of each range between dpmin and dpmax
* based on the Sturgis Rule
* Delta Minimum value of each range in dpinc
* Np Number of particles corrosponding to each
* Delta
* NPA Number of particles per unit area
* Pnum Total number of particles generated
* R Generated particle radius from lonormal
* distribution
* Rad(i) Stored particle radius
* RadB(i) Stored border particle radius
* S Standard deviation
* u Log mean particle radius
* Radmax Maximum particle radius
* Radmin Minimum particle radius
* RadBmax Largest border particle

REAL Pi, Xpos(10000), Ypos(10000), Rad(10000),
:XposB(300), YposB(300), RadB(300), R, TPA, AP, Pspace,
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:TOTarea, Parea, dp, TRad, dp2, dp2B, dp2Bmin, u, S,
:dp3(10000), dp4, dist, dpavg, X, Y, dpmin, NPA,
:dpmax, dpinc, g, Delta(50), Np(50), Pnum, RadBmax,
:Radmax, Radmin

INTEGER a, b, c, d, e, f, h, i, j, k, 1, m, n, p, q, nq

PARAMETER (Pi=3.14159)

DATA n, dp4, e, dpmin, dpmax, Np(1), a, b, Parea, TRad,
:RadBmax, Radmax, Radmin, nr, nq /
:1, 0.0, 0, 10.0, 0.001, 0, 1, 1, 0.0, 0.0, .00001,
:.00001, 1000, 0, 0 /

OPEN (10,file='rp3x.dat',status='NEW')
OPEN (20,file='rp3y.dat',status='NEW')
OPEN (30,file='Del3.dat',status='NEW')
OPEN (40,file='Np3.dat',status='NEW')
OPEN (50,file='rp3.dat',status='NEW')
OPEN (60,file='Rad3.dat',status='NEW')

PRINT*,' Enter the area percentage of particles.'
READ*, AP
PRINT*,' Enter the length of the X - scale.'
READ*, X
PRINT*,' Enter the length of the Y - scale.'
READ*, Y
TOTarea = X*Y
TPA = AP/100*TOTarea
PRINT*,' Enter the mean particle radius and standard

:deviation...'
READ*, u, S
PRINT*,' Enter the minimum spacing between particles.'
READ*, Pspace
PRINT*,' Enter the total number of particles...'
READ*,Pnum

* Determine random position and radius of each particle.

ISEED = 0
CALL RNSET (ISEED)
DO 100 i = 1, Pnum

175 CONTINUE
q= 0
CALL RNLNL (1, u, S, R)

150 CONTINUE
q=q+ 1
IF (q .GE. 600) THEN
nq = nq + 1
GOTO 175
ENDIF
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Xpos(i) = RNUNF0*X
Ypos (i) = RNUNF ()*Y
Rad(i) = R

* Check f or overlap of particles

DO 200 k = 1, i - 1
dp, = SQRT((Xpos(i) - Xpos(k))**2 +

(Ypos(i) - Ypos(k))**2)
dist = Rad(i) + Rad(k) + Pspace
IF (dp .LT. dist) GOTO 150

200 CONTINUE
Parea = Parea + pi*Rad(i)**2
IF (Parea .GE. TPA) THEN 4

Pnum = i
GOTO 250

ENDIF
100 CONTINUE
250 CONTINUE

* Segregate particles along the perimeter from those in
* the interior of the specified area.

DO 275 d = 1, Pnum
IF ((Xpos(d) .LE. Rad(d) + Pspace) .OR.
* ~(Xpos(d) .GE. X - Rad(d) - Pspace) .OR.
* ~(Ypos(d) .LE. Rad(d) + Pspace) .OR.
* ~(Ypos(d) *GE. Y - Rad(d) - Pspace)) THEN

RadBmax = MAX(Rad(d), RadBmax)
ENDIF

275 CONTINUE
DO 280 p = 1, Pnum

IF ((Xpos(p) *LE. RadBmax + Pspace) .OR.
* (Xpos(p) .GE. X - RadBmax - Pspace) .OR.
* (Ypos(p) .LE. RadBmax + Pspace) *OR.
* (Ypos(p) .GE. Y - RadBmax -Pspace)) THEN
XposB(b) = Xpos(p)
YposB(b) = Ypos(p)
RadB(b) = Rad(p)
b =b +I

ELSE
Xpos(a) = Xpos(p)
Ypos(a) = Ypos(p)
Rad(a) = Rad(p)
TRad = TRad + Rad(a)
WRITE(l0,*) Xpos(a)
WRITE(20,*) Ypos(a)
WRITE(60,*) Rad(a)
a =a + 1

ENDIF
280 CONTINUE
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* Determine the average distance between nearest
* neighbors.

DO 300 j = 1, Pnum - (b - 1)
dp3(n) = SQRT(X**2 + Y**2)
dp2Bmin = SQRT(X**2 + Y**2)
DO 350 c = 1, (b - 1)

dp2B = SQRT((Xpos(j) - XposB(c))**2 +
(Ypos(j) - YposB(c))**2)

dp2Bmin = MIN(dp2Bmin, dp2B)
350 i-ONTINUE

DO 400 1 = 1, Pnum - (b - 1)
dp2 = SQRT((Xpos(1) - Xpos(j))**2 +

(Ypos(1) - Ypos(j))**2)
IF (dp2 .NE. 0.0) THEN
dp3(n) = MIN(dp2, dp3(n), dp2Bmin)

ENDIF
400 CONTINUE

n = n + 1
300 CONTINUE

DO 500 m = 1, Pnum - (b - 1)
dp4 = dp4 + dp3(m)

500 CONTINUE
dpavg = dp4/(Pnum - (b - 1))

* Determine the number of particles falling in each
* range of nearest neighbor spacings (based on the Sturgis
* rule).

DO 600 f = 1, Pnum - (b - 1)
dpmin = MIN(dp3(f), dpmin)
dpmax = MAX(dp3(f), dpmax)
Radmin = MIN(Rad(f), Radmin)
Radmax = MAX(Rad(f), Radmax)

600 CONTINUE
dpinc = (dpmax - dpmin)/(l + 3.3*LOGl0(Pnum - (b - 1)))
DO 700 g = dpmin, dpmax, dpinc

e = e + 1
DO 800 h = 1, Pnum - (b - 1)

IF ((dp3(h) .GE. g) .AND. (dp3(h) .LT. g + dpinc))
THEN

Np(e) = Np(e) + 1
ENDIF

800 CONTINUE
Delta(e) = (2*g + dpinc)/2
WRITE(30, *)Delta(e)
WRITE(40,*)Np(e)/(Pnum - (b - 1))

700 CONTINUE
NPA = (Pnum - (b - 1))/(X - 2*RadBmax - 2*Pspace)/

(Y - 2*RadBmax - 2*Pspace)
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WRITE(50,10)'The area percentage of particles is', AP
WRITE(50,20)'X dimension is',X
WRITE(50,20)'Y dimension is',Y
WRITE(50,20)'Min spacing between particles is',Pspace
WRITE(50,20)'Mean particle radius is', TRad/(Pnum - (b

:- 1))
WRITE(50,20)'Total area occupied by particles', Parea
WRITE(50,20)'Total number of particles is', Pnum
WRITE(50,30)'Number of particles along the border is',b

:- 1
WRITE(50,?0)'Number of particles in area interior is',a

:- 1
WRITE(50,20)'Number particles per unit area', NPA
WRITE(50,20) 'Average nearest neighbor spacing is', dpavg
WRITE(50,20)'Min nearest neighbor spacing is',dpmin
WRITE(50,20)'Max nearest neighbor spacing is',dpmax
WRITE(50,20)'Max particle radius is',Radmax
WRITE(50,20)'Min particle radius is',Radmin
PRINT*,' The area percentage of particles is', AP
PRINT*,' X dimension is',X
PRINT*,' Y dimension is',Y
PRINT*,' Min spacing between particles is',Pspace
PRINT*,' Mean particle radius is', TRad/(Pnum - (b - 1))
PRINT*,' Total area occupied by particles is', Parea
PRINT*,' Total number of particles is', Pnum
PRINT*,' Number of particles along the border', b - 1
PRINT*,' Number of particles in area interior', a - 1
PRINT*,' Number particles per unit area is', NPA
PRINT*,' Average nearest neighbor spacing is', dpavg
PRINT*,' Min nearest neighbor spacing is',dpmin
PRINT*,' Max nearest neighbor spacing is',dpmax
PRINT*,' Max particle radius is',Radmax
PRINT*,' Min particle radius is',Radmin

10 FORMAT(T6,A,T50,FlO.4)
20 FORMAT(T6,A,T50,FI0.4)
30 FORMAT(T6,A,T46,I9)

END
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APPENDIX D. PROGRAM RANPART4.FOR

PROGRAM RANPART4

* Glossary of variables:
* Pi 3.14159
* Xpos X coordinate of an interior particle
* Ypos Y coordinate of an interior particle
* XposB X coordinate of a particle along the border
* YposB Y coordinate of a particle along the border
* AP Area percentage of the particles
* TPA Total area occupied by the particles
* Pspace Min. spacing between particles
* TOTarea Defined area of particles
* Parea Area occupied by each particle
* dp Distance between interior particles
* dp2 Distance between interior particles
* dp2B Distance between an interior particle and a
* border particle
* dp3 Nearest neighbor spacing
* dp4 Sum of nearest neighbor spacings
* dist Particle diameter plus min spacing
* dpavg Average nearest neighbor spacing
* X Horizontal dimension of total area
* Y Vertical dimension of total area
* dpmin Minimum nearest neighbor spacing
* dp2Bmin Distance between an interior particle and
* its nearest border particle
* dpmax Maximum nearest neighbor spacing
* dpinc Size of each range between dpmin and dpmax
* based on the Sturgis Rule
* Delta Minimum value of each range in dpinc
* Np Number of particles corrosponding to each
* Delta
* NPA Number of particles per unit area
* Pnum Total number of particles generated
* R Generated particle radius from lonormal
* distribution
* Rad(i) Stored particle radius
* RadB(i) Stored border particle radius
* S Standard deviation
* u Log mean particle radius
* Radmax Maximum particle radius
* Radmin Minimum particle radius
* RadBmax Largest border particle
* AF1-5 Area percentage of particles in each of the
* five sub-areas
* Al-5 Subtotal of particles in each sub-area
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REAL Pi, Xpos(10000), Ypos(10000), Rad(10000),
:XposB(300), YposB(300), RadB(300), R, TPA, AP, Pspace,
:u, TOTarea, Parea, dp, TRad, dp2, dp2B, dp2Bmin, S,
:dp3(10000), dp4, dist, dpavg, X, Y, dpmin, NPA, dpmax,
:dpinc, g, Delta(50), Np(50), Pnum, RadBmax, Radmax,
:Radmin, Al, AFI, A2, AF2, A3, AF3, A4, AF4, A5, AF5

INTEGER a, b, c, d, e, f, h, i, j, k, 1, m, n, p, q, nq

PARAMETER (Pi=3.14159)

DATA n, dp4, e, dpmin, dpmax, Np(1), a, b, Parea, TRad,
:RadBmax, Radmax, Radmin, Al, A2, A3, A4, A5, nr, nq /
:1, 0.0, 0, 10.0, 0.001, 0, 1, 1, 0.0, 0.0, .00001,
:.00001, 1000, 0.0, 0.0, 0.0, 0.0, 0.0, 0, 0 /
OPEN (lO,file='rp4x.dat',status='NEW')
OPEN (20,file='rp4y.dat',status='NEW')
OPEN (30,file='Del4.dat',status='NEW')
OPEN (40,file='Np4.dat',status='NEW')
OPEN (50,file='rp4.dat',status='NEW')
OPEN (60,file='Rad4.dat',status='NEW')

PRINT*,' Enter the area percentage of particles.'
READ*, AP
PRINT*,' Enter 5 sub-area percentages of particles'
READ*, AFl, AF2, AF3, AF4, AF5
AFl = AFI/00
AF2 = AF2/100
AF3 = AF3/100
AF4 = AF4/100
AF5 = AF5/I00
PRINT*,' Enter the length of the X - scale.'
READ*, X
PRINT*,' Enter the length of the Y - scale.'
READ*, Y
TOTarea = X*Y
TPA = AP/100*TOTarea
PRINT*,' Enter the mean particle radius and standard

:deviation...'
READ*, u, S
PRINT*,' Enter the minimum spacing between particles.'
READ*, Pspace
PRINT*,' Enter the total number of particles...'
READ*,Pnum

* Determine random position and radius of each particle.

ISEED = 0
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CALL RNSET (ISEED)
DO 100 i = 1, Pnum

175 CONTINUE
q = 0
CALL RNLNL (1, U, S, R)

150 CONTINUE
q=q+ 1
IF (q .GE. 600) THEN
nq = nq + 1
GOTO 175
ENDIF
Xpos(i) = RNUNF()*X
Ypos(i) = RNUNF0*Y
Rad(i) = LOG(R)

*

* Check for overlap of particles

DO 200 k = 1, i - 1
dp = SQRT((Xpos(i) - Xpos(k))**2 +

(Ypos(i) - Ypos(k))**2)
dist = Rad(i) + Rad(k) + Pspace
IF (dp .LT. dist) GOTO 150

200 CONTINUE
IF ((Ypos(i) .GE. 0.0) .AND. (Ypos(i) .LT. 0.2*Y)) THEN

IF (Al .GT. TPA*AF1) GOTO 150
Al = Al + Pi*Rad(i)**2

ELSEIF ((Ypos(i) .GE. 0.2*Y) .AND. (Ypos(i) .LT. 0.4*Y))
:THEN

IF (A2 .GT. TPA*AF2) GOTO 150
A2 = A2 + Pi*Rad(i)**2

ELSEIF ((Ypos(i) .GE. 0.4*Y) .AND. (Ypos(i) .LT. 0.6*Y))
:THEN

IF (A3 .GT. TPA*AF3) GOTO 150
A3 = A3 + Pi*Rad(i)**2

ELSEIF ((Ypos(i) .GE. 0.6*Y) .AND. (Ypos(i) .LT. 0.8*Y))
:THEN

IF (A4 .GT. TPA*AF4) GOTO 150
A4 = A4 + Pi*Rad(i)**2

ELSEIF ((Ypos(i) .GE. 0.8*Y) .AND. (Ypos(i) .LE. Y))
:THEN

IF (A5 .GT. TPA*AF5) GOTO 150
A5 = A5 + Pi*Rad(i)**2

ENDIF
Parea = Parea + Pi*Rad(i)**2
IF (Parea .GE. TPA) THEN

Pnum = i
GOTO 250

ENDIF

100 CONTINUE
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250 CONTINUE

* segregate particles along the border from those in
* the in of the specified area.

DO 275 d = 1, Pnum
IF ((Xpos(d) .LE. Rad(d) + Pspace) .OR.

(Xpos(d) .GE. X - Rad(d) - Pspace) .OR.
(Ypos(d) .LE. Rad(d) + Pspace) .OR.
(Ypos(d) .GE. Y - Rad(d) - Pspace)) THEN

RadBmax = MAX (Rad (d), RadBmax)
ENDIF

275 CONTINUE
DO 280 p = 1, Pnum

IF ((Xpos(p) .LE. RadBmax + Pspace) .OR.
* (Xpos(p) .GE. X - RadBmax - Pspace) .OR.
* (Ypos(p) .LE. RadBmax + Pspace) .OR.
* (Ypos(p) .GE. Y - RadBmax -Pspace)) THEN
XposB(b) = Xpos(p)
YposB(b) = Ypos(p)
RadB(b) = Rad(p)
b =b + 1

ELSE
Xpos (a) = Xpos (p)
Ypos(a) = Ypos(p)
Rad(a) = Rad(p)
TRad = TRad + Rad(a)
WRITE(10,*) Xpos(a)
WRITE(20,*) Ypos(a)
WRITE(60,*) Rad(a)
a= a+ 1

ENDIF
280 CONTINUE

* Determine the average distance between nearest

DO 300 j = 1, Pnum - (b - 1)
dp3(n) = SQRT(X**2 + Y**2)
dp2Bmin = SQRT(X**2 + Y**2)
DO 350 c = 1, (b - 1)
dp2B = SQRT((Xpos(j) - XposB(c))**2 +

(Ypos(j) - YposB(c))**2)
dp2Bmin = MIN(dp2Bmin, dp2B)

350 CONTINUE
DO 400 1 = 1, Pnum - (b - 1)

dp2 = SQRT((Xpos(l) - Xpos(j))**2 +
* (Ypos(1) - Ypos(j))**2)
IF (dp2 .NE. 0.0) THEN
dp3(n) = MIN(dp2, dp3(n), dp2Bmin)

ENDI F
400 CONTINUE
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n = n + 1
300 CONTINUE

DO 500 m = 1, Pnum - (b - 1)
dp4 = dp4 + dp3(m)

500 CONTINUE
dpavg = dp4/(Pnum - (b - 1))

* Determine the number of particles falling in each range
* of nearest neighbor spacings (based on the Sturgis
* rule).

DO 600 f = 1, Pnum - (b - 1)
dpmin = MIN(dp3(f), dpmin)
dpmax = MAX(dp3(f), dpmax)
Radmin = MIN(Rad(f), Radmin)
Radmax = MAX(Rad(f), Radmax)

600 CONTINUE
dpinc = (dpmax - dpmin)/(l + 3.3*LOG10(Pnum - (b - 1)))
DO 700 g = dpmin, dpmax, dpinc

e=e+ 1
DO 800 h = 1, Pnum - (b - 1)

IF ((dp3(h) .GE. g) .AND. (dp3(h) .LT. g + dpinc))
THEN

Np(e) = Np(e) + 1
ENDIF

800 CONTINUE
Delta(e) = (2*g + dpinc)/2
WRITE(30,*)Delta(e)
WRITE(40,*)Np(e)/(Pnum - (b - 1))

700 CONTINUE
NPA = (Pnum - (b - l))/(X - 2*RadBmax - 2*Pspace)/

(Y - 2*RadBmax - 2*Pspace)
WRITE(50,10)'The area percentage of particles is', AP
WRITE(50,50) 'The sub-area percentages of particles

:are:'
WRITE(50,40) AF1,AF2,AF3,AF4,AF5
WRITE(50,20)'X dimension is',X
WRITE(50,20)'Y dimension is',Y
WRITE(50,20)'Min spacing between particles is',Pspace
WRITE(50,20)'Mean particle radius is', TRad/(Pnum - (b

:- 1))
WRITE(50,20)'Total area occupied by particles', Parea
WRITE(50,20)'Total number of particles is', Pnum
WRITE(50,30)'Number of particles along the border is',b

:- 1
WRITE(50,30)'Number of particles in area interior is',a
:- 1

WRITE(50,20)'Number particles per unit area', NPA
WRITE(50,20) 'Average nearest neighbor spacing is', dpavg
WRITE(50,20)'Min nearest neighbor spacing is',dpmin
WRITE(50,20)'Max nearest neighbor spacing is',dpmax
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WRITE(50,20)'Max particle radius is',Radmax
WRITE(50,20) 'Min particle radius is',Radmin
PRINT*,' The area percentage of particles is', AP
PRINT'(T6,A,T45,5F4.1)','The sub-area percentages of

:particles are',AF1,AF2,AF3,AF4,AF5
PRINT' (T6,A,T45,5F6.2) ', 'The area occupied by particles

:in each sub-area is...',Al, A2, A3, A4, A5
PRINT*,' X dimension is',X
PRINT*,' Y dimension is',Y
PRINT*,' Min spacing between particles is',Pspace
PRINT*,' Mean particle radius is', TRad/(Pnum - (b - 1))
PRINT*,' Total area occupied by particles is', Parea
PRINT*,' Total number of particles is', Pnum
PRINT*,' Number of particles along the border', b - 1
PRINT*,' Number of particles in area interior', a - 1
PRINT*,' Number particles per unit area is', NPA
PRINT*,' Average nearest neighbor spacing is', dpavg
PRINT*,' Min nearest neighbor spacing is',dpmin
PRINT*,' Max nearest neighbor spacing is',dpmax
PRINT*," Max particle radius is',Radmax
PRINT*,' Min particle radius is',Radmin

10 FORMAT(T6,A,T50,FI0.4)
20 FORMAT(T6,A,T50,FI0.4)
30 FORMAT(T6,A,T45,I1O)
40 FORMAT(5F6.2)
50 FORMAT(A)

END
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