
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A25 7 663

DTIC R

S ELECTE
DECO 2 19921D

A U THESIS

STATIC SCHEDULER
FOR HARD REAL-TIME TASKS

ON MULTIPROCESSOR SYSTEMS

by

Tzu-Chiang Chang

September 1992

Thesis Advisor: Man-Tak Shing

Approved for public release; distribution is unlimited.

92-30584

Unclassified
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;

distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

Naval Postgraduate School (if applicable) Naval Postgraduate School

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER

ORGANIZATION (if applicable)

National Science Foundation I
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

PROGRAM PROJECT TASK WORK UNIT
1800 G. St., NW ELEMENT NO. NO. NO. ACCESSION NO.
Washington, DC 20550

11. TITLE (Include Security Classification)

STATIC SCHEDULER FOR HARD REAL-TIME TASKS ON MULTIPROCESSOR SYSTEMS
12. PERSONAL AUTHOR(S) Tzu-Chiang Chang

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT
Master's Thesis FROM 01/92 TO: •Qa= 1992, September 11 149

16. SUPPLEMENTARY NOTATION The views expressed in this thesis are those rof the author and do not reflect the

official policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessaty and identify by block number)

FIELD GROUP SUB-GROUP hard real-time systems; static scheduler; multiprocessor scheduling;
earliest start first; earliest deadline first; simulated annealing;

19. ABSTRACT (Continue on reverse if necessaiy and identify by block number)

Task scheduling is one of the most important issues in a hard real-time system, because it is the schedule that ensures the tasks

meet their deadlines and precedence constraints. Given a set of hard real-time tasks, to determine whether a feasible schedule exists

such that the timing constraints and precedence constraints of the tasks are satisfied, and to produce such a schedule if one exists

are the purposes of a static scheduler. The previous work done for the static scheduler in the computer aided prototyping system

(CAPS) was mainly for the single processor environment.

The major work of this thesis is to develop several algorithms for scheduling hard real-time tasks on multiprocessor systems

so that the associated timing and precedence constraints, as well as the communication requirements are met under the worst-case

situation.

20. DISTRIBUION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
[3 UNCLASSIFIED/UNLIMITED [] SAME AS RPT. [] DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Man-Tak Shing (408) 646-2634 CS/Sh

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete UNCLASSIFIED
i

Approved for public release; distribution is unlimited

STATIC SCHEDULER
FOR HARD REAL-TIME TASKS

ON MULTIPROCESSOR SYSTEMS V

by
Tzu-Chiang Chang

Capt. R.O.C. (Taiwan) Army
B.S. of Applied Math. in Computer Science

Chung Cheng Institute of Technology
the Republic Of China, 1986

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SYSTEM ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL
September 1992

Author: L•j-STzu-Ci#Chang Or

Approved By:

Amr Zaky, Second Rear

"Prof. Jeffrey B. orr, Chairman,
Electronic Warfare Academic Group

ii

ABSTRACT

"E Task scheduling is one of the most important issues in a hard real-time system,

because it is the schedule that ensures the tasks meet their deadlines and precedence

constraints. Given a set of hard real-time tasks, to determine whether a feasible

schedule exists such that the timing constraints and precedence constraints of the

tasks are satisfied, and to produce such a schedule if one exists are the purposes of a

static scheduler. The previous work done for the static scheduler in the computer

aided prototyping system (CAPS) was mainly for the single processor environment.

The major work of this thesis is to develop several algorithms for scheduling

hard real-time tasks on multiprocessor systems so that the associated timing and

precedence constraints, as well as the communication requirements are met under the

worst-case situation.

AccesionFor 1

NTIS CRA&i
DTIC lAB 0
U'anaouoced
Justification

B y I
Dist-lbutionj[

Aveilat~iity "" "

I Aval ,,. ,,or

HII

TABLE OF CONTENTS

INTRODUCTION ... 1

A. BACKGROUND .. I

1. Hard Real-Tim e System .: ... 1

2. Computer Aided Prototyping System (CAPS) 3

3. Prototype System Description Language (PSDL) 5

B. SCHEDULING PROBLEM ... 6

1. Nature of the Task (Operator) .. 6

2. Constraints and Requirements 8

3. The Usage of the Schedule ... 11

C. OBJECTIVES .. 13

D. ORGANIZATION ... 14

II. SURVEY OF PREVIOUS W ORK ... 15

A. DEFINITION OF TERM S .. 15

1. HBL ... 15

2. Instance ... 15

3. Tardiness and Cost ... 16

4. Latency ... 16

5. M ET ... 16

6. FinishW ithin ... 17

7. Pipeline .. 17

8. Legal Solution and Feasible Solution 17

9. Optimal Solution and Approximate Solution 18

B. PREVIOUS RESEARCH ... 18

1. Static Scheduling for Uniprocessor .. 18

2. Static Scheduling for multiprocessor 20

iv

III. ALGORITHM DESIGN ... 23

A. ASSUMPTIONS ... 23

B. EARLIEST STARTING TIME FIRST ALGORITHM 25

C. EARLIEST DEADLINE FIRST ALGORITHM 27

D. SIMULATED ANNEALING ALGORITHM 29

1. Generic Description ... 29

2. Algorithm Description .. 32

IV. IMPLEMENTATION ... 36

A. SYSTEM FLOW ... 36

B. MODIFICATIONS ON EXISTING PACKAGES 39

1. D A TA ... 39

2. NEWDATASTRUCTURES .. 40

3. DIAGNOSTICS ... 41

C. NEW PACKAGES .. 41

1. UTILITYPKG ... 41

2. NEWSCHEDULERPKG .. 43

V. CONCLUSIONS ... 52

A. RESULTS FROM THE STATIC SCHEDULER 52

B . SU M M A R Y ... 53

C. FUTURE WORK ... 54

APPENDIX A. EXAMPLES OF TEST DATA ... 56

APPENDIX B. OUTPUT SCHEDULES FOR TEST DATA 62

APPENDIX C. ADA CODES OF THE MODIFIED PACKAGES 89

APPENDIX D. ADA CODES OF THE NEW PACKAGES 101

LIST O F REFERENCES .. 135

INITIAL DISTRIBUTION LIST ... 138

v

I. INTRODUCTION

A. BACKGROUND

This thesis addresses the development of hard real-time systems using the

computer aided prototyping system (CAPS) and the prototype system description

language (PSDL). The following sections introduce them in detail.

1. Hard Real-Time System

In (soft) real-time systems, tasks (activities, operations, jobs) are performed

by the system as fast as possible, but they are not constrained to finish by a specific

time. In a particularly restricted form of real-time systems, tasks have to be

performed not only correctly, but also in a timely fashion; otherwise, there might be

severe consequences. In other words, this kind of the real-time system is

characterized by the fact that severe consequences will result if logical as well as

timing correctness properties of the system are not satisfied. Such a real-time system

is often referred to as a hard real-time system, as opposed to a soft real-time system.

Therefore, a hard real-time system can be defined as a system in which the

correctness of the system depends not only on the logical results of the computation,

but also on the time at which the results are produced. If the results are not produced

in a timely manner, disastrous consequences may occur. Most of the hard real-time

systems are special-purpose and complex, requiring a high degree of fault tolerance,

and are typically embedded in a larger system [LEV91].

Typically, a hard real-time system consists of a controlling system and a

controlled system. For example, in an automated factory, the controlled system is the

factory floor with its robots, assembling stations, and the assembled parts, while the

controlling system includes the computer and human interfaces that manage and

coordinate the tasks on the factory floor. Thus, the controlled system can be viewed

as the environment with which the computer interacts.

The controlling system interacts with its environment based on the

information available about the environment, say, from various sensors attached to

it. It is imperative that the state of the environment, as perceived by the controlling

system, is consistent with the actual state of the environment. Otherwise, the effects

of the controlling system's tasks may be disastrous. Hence, periodic monitoring of

the environment as well as timely processing of the sensed information is necessary

[STR88].

Timing correctness requirements arise in a hard real-time system because of

the physical impact of the controlling systems' tasks upon its environment. For

example, if the computer controlling a robot does not stop or turn it on time, the robot

might collide with another object on the factory floor. Needless to say, such a mishap

can result in a major catastrophe.

A number of new and sophisticated hard real-time applications are currently

being contemplated by governments and industries around the world. In addition to

automated factories, application can be found in avionics, undersea exploration,

process control, flight control, robot and vision systems, as well as military

applications such as C3M systems, strategic defense initiative (SDI) systems, and so

forth.

In summary, the difference between the hard real-time system and the

traditional system, where there is a separation between the correctness and

performance, is that the correctness and performance are very tightly interrelated in

the hard real-time system. Thus, hard real-time systems solve the problem of missing

deadlines in ways specific to the requirements of the target application. However, it

2

should be said that the sooner a system determines that a deadline is going to be

missed, the more flexibility it will have in dealing with the exception [STR88].

Depending on where the application is used, hard real-time systems can be

categorized as either centralized or distributed systems.

* In centralized systems, the processors are located at a single point and the

inter-processor communication cost is negligible compared to the processor

execution cost. A multiprocessor system with shared memory or a system using

single processor is the example of such systems.

* In distributed systems, the processors are distributed at different points and

the inter-processor communication cost is not negligible compared to the processor

execution cost. A local area computer network (LAN) is an example of such systems.

The inter-processor communication cost is an important factor which must be

explicitly taken into account in scheduling problems of distributed systems.

2. Computer Aided Prototyping System (CAPS)

The computer aided prototyping system (CAPS), currently being developed

at the Naval Postgraduate School, is designed to improve software technology which

helps the software engineers design hard real-time software systems, automatically

construct a real-time schedule, and automatically generate an executable Ada

prototype of the proposed system from the PSDL specification. The Ada prototype is

a combination of CAPS-generated Ada programs and reusable atomic Ada

components.

CAPS also supports system management and helps control a system's

evolution [LUQ89]. This support helps designers give timely responses to

modification requests and helps protect the system's integrity as it evolves,

3

extending its life. The CAPS consists of three primary subsystems: the user interface,

the execution support, and the software database system (see Figure 1).

database eio]linterface]i::

desgn software gahctool syntax
edito interface editor

d m I ic debugger
Lsch~eduler sceduler

Figure 1: The Main Components and Their Associated Tools of CAPS

The user interface includes a graphic editor, a syntax-directed editor, and a

tool interface. The graphic editor lets the designer edit a graphical representation of

the prototype and automatically produces a PSDL representation that other CAPS

tools can use. The designer can specify parts of a prototype using graphical objects

to represent PSDL computational structures like tasks and data streams. The designer

enters text annotations with the syntax-directed editor. The tool interface hides the

details of the interfaces among CAPS tools from the designer.

4

The software database system, which includes a design database and

software base, holds reusable components and manages the configuration. It uses

existing object-oriented databases and formal models for prototyping design

database and software base [BOE89].

The execution support system includes a translator, static scheduler,

dynamic scheduler, and debugger. The translator generates codes that bind the

reusable components extracted from the software database. Its main functions are to

implement data streams, control constraints, and timers. The static scheduler uses

several algorithms to allocate time slots for tasks with real-time constraints on single

processor before execution begins [STR88]. If this allocation succeeds, all the tasks

are guaranteed to meet their deadlines even in the worst case. The dynamic scheduler

allocates time slots for tasks that are not time-critical. The debugger monitors timing

constraints and various aspects of design integrity as the prototype runs, reports

failures, and lets the designer adjust deadlines.

The CAPS is being developed as an ongoing research effort, and some of the

functions just listed were not ready when the experiments were begun. Detailed

information about CAPS is contained in [WH189], [LUK88], [JAN88], and

[MAR88].

3. Prototype System Description Language (PSDL)

The prototype system description language, which integrates the tools in

CAPS, provides the designer with a uniform conceptual framework and a high level

system description and determines the properties of proposed designs via prototype

execution and static analysis. It can describe prototypes of large software systems

with hard real-time constraints on different levels of abstraction.

5

PSDL simplifies the design of a system with hard real-time constraints by

presenting a high-level description in terms of networks of independent tasks to the

designer, and automatically introducing any required interleaving of the codes via

the execution support system.

PSDL has been designed to help the requirements analysts determine how to

adjust the proposed functions of the system, the target architecture, or both to ensure

that the requirements are feasible and provide the best service possible to the users

of the proposed software. PSDL also provides a description of a propos l design that

can be smoothly transformed into a final implementation after the requirements have

been validated and the design has been verified.

B. SCHEDULING PROBLEM

Task scheduling is one of the most important issues in hard real-time systems

because it is the schedule that ensures all tasks meet their deadlines. A scheduling

problem in a hard real-time system is characLerized by the nature of the tasks to be

scheduled, the constraints associated with the system, and the usage of the schedule.

Each of these is described in the proceeding sections.

1. Nature of the Task (Operator)

A task is a software module that can be invoked to perform a particular

function and it is the entity of the scheduling problem in a system. In PSDL, a task

corresponds to an operator and is represented by a vertex (circle) in the

implementation graph. So, we will use "operator" as a synonym of "task" from now

on. The following paragraphs introduce some characteristics of the task.

a. Time-Critical and Non-Time-Critical

A task is said to be time-critical, sometimes it is called a hard real-time

task, if there is at least one timing constraint associated with it, otherwise it is non-

time-critical. Ideally, the computer should execute time-critical tasks such that each

task will meet its timing constraints, whereas it should execute the non-time-critical

tasks such that the average response time of these tasks is minimized. The need to

meet the timing requirements for all time-critical tasks is one issue that makes the

scheduling problem a difficult one.

b. Periodic and Non-periodic

In hard real-time systems, tasks can be either periodic or non-periodic.

A periodic task is defined as one which is activated exactly once per period P. In

other words, once a periodic task is invoked at time to, then it will be activated

exactly at time (to + P), (to + 2P), (t0 + 3P),....etc.

Non-periodic tasks are those whose activation are not periodic in nature.

Such tasks can be subdivided into two categories [BUR91]: aperiodic and sporadic.

The difference between these two categories lies in the nature of their activated

frequencies. Aperiodic tasks are those whose activated frequency is unbounded. In

the extreme, this could lead to an arbitrarily large number of simultaneously active

tasks. Sporadic tasks are those who have a maximum frequency such that only one

instance of a particular task can be active at a time.

c. Preemptive and Non-Preemptive

In hard real-time systems, tasks are also distinguished as preemptive and

non-preemptive. A task is preemptive if its execution can be interrupted by other

tasks at any time and its resumption can be at the same time on a different processor

7

or at a later time on any processor afterwards. A task is non-preemptive if it must

finish without interruption once it starts. So far, non-preemptive periodic tasks have

received little attention. To schedule a periodic task non-preemptively, it is usually

assumed that the task is executed with a fixed time between successive executions of

the same task on the same processor.

d. Dependent and Independent

A task is considered independent if there are no relationships between

its execution and other tasks' executions. In other words, an independent task does

not have to wait for execution until some other tasks finish their execution.

Otherwise it is considered dependent. Usually, a complex task, for example, one

requiring access to many resources, is better handled by breaking it up into multiple

sub-tasks and each requiring a subset of the resources. In PSDL, the sub-tasks are

designated as atomic operators. From now on, all the tasks to be scheduled are

considered as atomic operators.

2. Constraints and Requirements

In a hard real-time system, a task is subject to the timing constraints,

precedence constraints, communication requirements, as well as resource

requirements. In this thesis, the resource requirements, except for the processor

resources, are always met.

a. Precedence Constraints

The precedence constraints among a set of tasks specify the relations

between the tasks. A precedence constraint ensures that a task (parent) which

produces data for another task (child) will be scheduled to complete before data is

required. These constraints can be specified between tasks scheduled on the same

8

processor as well as between tasks scheduled on different processors. Each

precedence constraint is represented by an ordered pair of tasks. For example, a task

T, is said to precede task T7, denoted as T, < Tj, if T, must finish before Tj begins.

The whole precedence constraints between tasks being scheduled form a precedence

graph. The precedence graph of a set of tasks is an acyclic directed graph. It may be

a chain, a tree, a series-parallel graph, or an arbitrary one. In a static system, the

precedence graph are known in advance. Figure 2 illustrates on example of the

precedence graph in a system.

Figure 2: A Example of Precedence Graph

b. Timing Constraints

The timing constraints of a task are specified by giving bounds on one

or more of the following basic timing parameters:

• The period (P): the time interval between any two consecutive

temporal triggering events (instance) for a periodic task.

• The starting time (START): the actual time (instant) when a task starts

to execute. It is also called "the firing time".

9

* The stop time (STOP): the time (instant) when a task finishes its

execution. In PSDL, the time interval from the starting time to the stop time of a task

forms a scheduling interval for the task.

- The arrival time (A): the time (instant) when a task is activated in the

system. The arrival time for an instance of'a periodic task with period P specifies the

time at which the instance of the periodic task is activated. It is specified as follows:

A(i+l) = A(i) + P

for iŽ1 (Eq 1.1)

where A(i) is the arrival time of the i-th instance of the periodic task.

* The ready time (R): The time (instant) when a task is ready to begin

execution. It is the earliest possible starting time for a task. The ready time of a task

is equal to or greater than its arrival time, i.e., A SR.

* The deadline (D): The time (instant) by which a task must finish. The

deadline of instances of a periodic task with period P must satisfy the following

inequality:

D(i) <A(i) + P

for i _l I (Eq 1.2)

where D(i) is the deadline of the i-th instance of the periodic task.

Being a time-critical task, at least one of the following timing

constraints associates with it:

(1) R (i) :_ START(i)

(2) STOP (i) :5 D (i) for i-Ž 1

where R(i), START (i) and STOP (i) are the ready time, the starting time and

the stop time of the i-th instance of a periodic task respectively.

10

Figure 3 shows a graphic view of the timing parameters for a periodic

task.

P

A(i) A (i+ 1)

START (i) STOP (i) D (i)

t I OI t+P time

scheduling
interval

Figure 3: Timing Constraints for A Periodic Task

c. Communication Requirements

The communication requirement which is the time delay for the data

transfer between tasks is constrained to those which have precedence relationship. In

PSDL, it is specified by the "LINK" statement. The meaning of this constraint is that

data can not be read from a stream until this time delay has elapsed.

3. The Usage of the Schedule

Depending on how and where the schedule is used, the scheduling problem

can be categorized as follows.

11

a. Static & Dynamic Scheduling

A static approach schedules tasks off-line before the system begins to

operate. Therefore, it requires the complete prior knowledge of the constraints and

requirements of the system. Although this approach has low run-time cost, they are

inflexible and hardly adapted to a changing environment or to an environment whose

behavior is not completely predictable. Whenever there are new tasks which are

added to such system, the schedule for the entire system must be recalculated and the

cost in terms of time and money is very expensive.

In contrast, a dynamic approach progressively determines the schedule

for tasks on-line and allows tasks to be dynamically activated. This approach,

because of the way it is designed, involves higher run-time cost, but it is flexible and

can be easily adapted to changes in the environment. Hence, it emerges as a

challenging new problem especially for distributed hard real-time systems.

For a system using static scheduling approach, called a static system, the

set of tasks along with their nature in the system is pre-specified, so the number of

tasks to be scheduled and the associated constraints in the system is known

beforehand. However, in a dynamic system, new tasks are allowed to arrive (to be

activated) at unpredictable times so the number of tasks that must be scheduled

changes at run time.

b. Uniprocessor & Multiprocessor Scheduling

A schedule can either assign tasks to single processor (uniprocessor) or

multiprocessor system. In uniprocessor scheduling, where tasks are scheduled only

on a single time frame, each task can execute one by one based on the order of the

schedule. There is no overlapping between any two execution of tasks, because the

CPU can execute only one job at one time. On the other hand, multiprocessor

12

scheduling assigns tasks to more than one processors, then different tasks can

execute at the same time based upon the schedule on these processors. The

scheduling problem on multiprocessor system is much more complicated than on

single processor system. One important aspect of the multiprocessor is its application

in real-time systems. Computer archite•ture had made rapid progress in the

manufacture of chips. This makes processors cheaper than before. Progress is now

limited by software problems. Scheduling problem is one of the problems that must

be solved so that the utilization of the processors can achieve maximum.

C. OBJECTIVES

The static schedule for multiprocessor systems is produced for the execution of

a prototype, which is a fixed number of sequences tasks being develcr,-d from the

prototype system description language input specification for the prototype that

obeys some predefined properties, such as timing constraints and precedence

relationships. The number of sequences depends upon the number of processors

which are available for scheduling. The static schedule gives the precise execution

order and timing of tasks with hard real-time constraints in such a manner that all

timing and precedence constraints are guaranteed to be met [OHE881.

This thesis bailds upon work previously done in the development of the CAPS.

The major work is to improve upon the existing version of the static scheduler for the

hard real-time applications in single processor systems and to develop new

algorithms for scheduling tasks on multiprocessor systems to satisfy the associated

constraints of the problems.

The function of the scheduling algorithm is to determine, for a given fixed

number of processors and a given set of tasks, whether a schedule (the sequence and

13

time periods) for executing the tasks such that the timing, precedence, and resource

constraints of the tasks are met, and to produce such a schedule if one exists.

D. ORGANIZATION

The rest of this thesis is organized as follows:

Chapter II defines the basic terms necessary for the implementation of the static

scheduler and surveys previous research about the scheduling problems. Chapter III

describes the scope of the scheduling problem being concerned by CAPS and three

scheduling algorithms being developed for the hard real-time systems. Chapter IV

describes the system flow of the implementation for the static scheduler and explains

the modification of the existing packages as well as the new packages being

developed. Chapter V summarizes the whole work in this thesis and presents

recommendations for future work. Appendix A gives some examples of the input test

data for the new static scheduler. Appendix B lists the scheduled tables obtained from

each scheduling algorithm for each case of the input test data. Appendix C and D are

the modified ADA codes of the existing packages and the new ADA packages being

developed for the static scheduler applied to multiprocessor systems.

14

II. SURVEY OF PREVIOUS WORK

Much research has been done in hard real-time scheduling problems. In this

chapter, the previous research related to the static scheduling problem as well as the

definition of terms used in the CAPS static scheduler will be discussed.

A. DEFINITION OF TERMS

The following paragraphs define the terms necessary to understand the static

scheduling algorithms.

1. HBL

The Harmonic Block Length (HBL) is the least common multiple (LCM) of

all the periods of tasks being scheduled. The reason to create the HBL is that once a

schedule has been developed for a HBL, it can be repeated over and over again.

Scheduling periodic tasks naturally leads to periodic schedules. A schedule

is called periodic with a period HBL if the following holds:

if task is executed at time t then it is also executed at time (t + HBL).

The algorithm to calculate the HBL is introduced in the package of

"HARMONIC_BLOCKBUILDER" [KIM89].

2. Instance

The instance of a periodic task is the repetition of this task in one Harmonic

Block Length. The number of instances (N) for each task in a Harmonic Block Length

is calculated as follows:

N := HBL / P (Eq 2.1)

15

3. Tardiness and Cost

The amount of time by which the stop time of an instance missed its deadline

is called the tardiness of the instance. It is an essential quantity to calculate the cost

of a schedule. If the stop time is less than or equal to the deadline, then the tardiness

is zero. The tardiness of instance i, T(i), of a task is calculated as follows:

T(i) :=max (0, STOP(i)-D(i) 1, for i I (Eq 2.2)

The cost (C) of a schedule can be defined as either the largest tardiness or

the sum of all tardiness experienced by tasks when executed according to the

schedule, i.e.,

C := max {T(i) I for all instances i of all tasks in the schedules) (Eq 2.3)

or C := XT(i), for all instances i of all tasks in the schedules (Eq 2.4)

4. Latency

To express the behavior of distributed systems, PSDL has been extended to

define optional latency attribute. The latency between two tasks is an upper bound

on the duration of the time interval between the time instant a data value is written

out to the data streams and the time instant that data value becomes available for

reading by the next task. In the absence of explicit specifications, the latency of a

stream has the deiault value zero (no delay). The purpose of these constraints is for

the specification of communication constraints due to hardware limitations imposed

by external constraints on how the software functions must be allocated to different

physical nodes of a distributed system.

5. MET

The maximum execution time (MET) is the maximum time interval of

execution for a task. It is the CPU time required to execute a task under worst-case

16

conditions. A correct implementation of a time-critical task must provide a guarantee

of service with respect to bounded computational resources, i.e., the static scheduler

must ensure that at least this much CPU time is allocated to a task between each

activation time and its deadline.

6. Finish Within

The finish-within is the hard deadline which is the largest permissible time

interval between the temporal triggering event and the completion of the execution

for a periodic task. The finishwithin is constrained by the following relation:

P >_finish_ within a MET, and

finish_within := P, by default.

Hence, the deadline of the i-th instance of a time-critical periodic task

equals:

D(i) := A(i) + finishwithin

for i2:1 (Eq 2.5)

7. Pipeline

If a task can be pipelined, then different repetitions (instances) of the task

can be scheduled on different processors with overlapping, i.e., more than one

instance of this task can be firing at the same time. A time-critical task whose period

is less than its maximum execution time, i.e., P < MET, can be realized only if it can

be pipelined. If a periodic task can be pipelined then successive executions of the task

can overlap in the schedule as long as its next instance of this task has been invoked.

8. Legal Solution and Feasible Solution

If a schedule satisfies all the precedence constraints, then it is said to be a

legal solution.

17

A schedule is called a feasible solution, if it is legal and every task when

executes according to the schedule meets its deadline, i.e., the schedule meets not

only the precedence constrains but also the timing constraints.

9. Optimal Solution and Approximate Solution

A schedule is said to be optimal if, for any set of tasks, it always produces a

schedule which satisfies all the constraints of the tasks.

A feasible solution with value (cost) close to the value (cost) of an optimal

solution is called an approximate solution. An approximate solution may not lead to

the optimal result. However, there are many problems that have no exact solutions,

and can only be solved by using approximation methods. We need an efficient

heuristic algorithm to produce a close approximation to the optimal solution.

B. PREVIOUS RESEARCH

Many researchers have attempted to solve the general case of the scheduling

problems with strong bounding conditions.The following paragraphs summarizes

previous research relating to the static scheduling problems applied to both

uniprocessor and multiprocessor environments for hard real-time systems.

1. Static Scheduling for Uniprocessor

Horn [HOR74] developed an optimal algorithm for scheduling preemptive

independent tasks with arbitrary ready time and deadlines. His approach is based on

the earliest deadline first policy. Liu and Layland [LIL73] developed a rate-

monotonic priority scheme to determine the schedulability of a set of preemptive

periodic tasks. This scheme assigns higher priorities to tasks with shorter periods.

They showed that this scheme is optimal among fixed-priority schemes. Teixeira

[TE178] presented a fixed-priority assignment scheme for a slightly different

18

problem. He assumed that the relative deadline of a periodic task can be different

from the period of the task. Sha and Lehoczky [LES86] described a technique to

modify the periods of tasks in such a way that while tasks' timing constrainits

continue to be met, better processor utilization is achieved. This modification

consists of breaking up one period task into two, each with half the computation time

and half the period as the original task. The above approaches are different from the

conventional priority-driven scheduling approaches, because they assign priorities to

tasks based on a simple function of the timing constraints, instead of one that

combines timing constraints and criticalness, of the periodic tasks.

Scheduling non-preemptive tasks is more difficult whether on uniprocessor

or multiprocessor systems. Moore [M0068] showed that the earliest deadline

algorithm is optimal for scheduling a set of tasks with the same ready time. Kise

[KIS78] developed an algorithm for the case in which a task has an earlier ready time

if and only if it has an earlier deadline. Bratley, Florian, and Robillard [BFR71]

developed an implicit enumeration algorithm to determine schedule for non-

preemptive tasks with arbitrary ready time and deadlines [BFR75]. Baker and Su

[BAS74] used a similar approach to minimize the maximum tardiness of tasks.

Erschler et al [EFM83] developed a necessary condition for scheduling tasks with

arbitrary ready time and deadlines. Their theories can be used to reduce the search

space of an enumeration algorithm.

The original design of the static scheduler of CAPS was described in

[LUQ86]. This design was further developed into a conceptual design for the pioneer

prototype of the static scheduler [OHE88], and then was implemented by the Ada

programming language in 1988 [JAN88],[MAR88].The current static scheduler

consists of four algorithms for scheduling hard real-time tasks on single processor.

19

They are earliest start first, earliest deadline first [CER89], [KIM89], exhaustive

enumeration with branch and bound [FAN90], and simulated annealing [LEV9 1].

2. Static Scheduling for multiprocessor

Horn [HOR74] described an algorithm to schedule preemptive independent

tasks with arbitrary ready times and deadlines. His approach is based on the network

flow method and coisiders processors with identical procevsing speed. Many

researchers adopted a partition approach to solve the problems of scheduling

preemptive periodic tasks on multiprocessor systems. The main idea of the approach

is to partition a set of periodic tasks among a minimum number of processors such

that each partition of the periodic tasks can be scheduled on one processor according

to the earliest deadline scheme or the rate-monotonic priority scheme. Davari and

Dhall [DAD86] showed that, if the earliest deadline scheme is used, a bin-packing

algorithm can be used to determine a suboptimal partition pattern of periodic tasks

among multiple processors preemptively. Bannister and Trivedi [BAT83] proposed

a simple best-fit partition scheme. This scheme can be used in conjunction with both

the earliest deadline scheme and the rate-monotonic priority scheme. For rate-

monotonic priority scheme, Dhall and Liu [DHL78] improved these schemes and

developed a more efficient next-fit partition scheme.

As described above, many of the scheduling algorithms designed for the

preemptive periodic tasks are based on a fixed-priority assignment scheme. The

advantage of a fixed-priority assignment scheme is that they have a very small

scheduling overhead, because they are designed for prioritized-interrupt handling

systems and the priority mechanism is often supported by hardware. However, in

general, these schemes are very inflexible, because it is expensive to change the

priority assignment once it is fixed on a system.

20

To schedule the non-preemptive tasks, a polynomial optimal algorithm is

available only for the tasks with unit computation time [SIM80], [SIM831, [SIS841,

[LAF76I. Otherwise, there is no polynomial optimal algorithm available so far for

scheduling non-preemptive tasks on multiprocessor systems. Bratley, Florian, and

Robillard [BFR75] developed a multi-stage enumeration algorithm to schedule tasks

with arbitrary ready time and deadlines. Because the worst case exponential time

complexity, the approach is designed to run off-line. Blazewicz, Drabowski, and

Weglarz [BDW86] investigated an interesting scheduling problem in which tasks

need multiple processors at the same time for processing. They showed that

polynomial-time algorithms exist if the number of processors and the processing time

required by tasks are constant.

If precedence constraints are subject to the tasks in multiprocessor system,

the scheduling problems will be much more difficult. For example, scheduling tasks

with arbitrary precedence constraints and unit computation time is NP-hard both for

the preemptive and the nonpreemptive cases [ULL75], [ULL76].

Kasahara and Narita [KAN84] have developed an implicit heuristic search

algorithm to determine the minimum schedule length for a set of nonpreemptive tasks

with arbitrary precedence constraints. They showed that their enumeration algorithm

can provide optimal or suboptimal solutions to large-scale problems within a time

limit. However, the worst case execution time grows exponentially. Elsayed [ELS82]

presented a number of heuristic algorithms for finding suboptimal solution to a

similar scheduling problem. These heuristic algorithms do not enumerate over

multiple paths in a search space. They are designed based on a straightforward

topological search scheme and the critical path method combined with a heuristic

rule. Therefore, such heuristic algorithms are much more efficient than the implicit

enumeration algorithm described above. Hsu [HUS90] introduced some basic

21

concepts needed to schedule tasks in the multiprocessor system in CAPS. But there

is no implemented codes available.

22

III. ALGORITHM DESIGN

This chapter describes the assumptions of the scheduling problem which is

going to be dealt with, and then briefly describes three scheduling algorithms being

developed for the hard real-time tasks in rriultiprocessor environment.

A. ASSUMPTIONS

Because this research is pioneers work in developing the static scheduler for

CAPS in multiprocessor environments, some assumptions about the scheduling

problem must be clarified before designing the algorithm.

(1) Since the purpose of the effort is to develop a static scheduler, all the

requirements are static in nature (off-line schedule).

(2) Let T := { o o } be a set of n periodic tasks. For each o E T, a maximum

execution time MET(o) and a period P(o) are given. If the task is a sporadic task, it

has to be converted into a periodic task. (periodic tasks)

(3) Once an execution of a task is started, it will be completed without

interruption from the same processor. (non-preemptive tasks)

(4) The processors are supposed to be identical, that is to say, each task can be

executed on any ptrocessor and the time to execute each task does not depend on the

processor. Furthermore, a processor can only execute one task at a time. (identical

processors)

(5) The ready time of the first instance for the operator who has no parent is

assumed to be 0, but for the operator who has parents is the actual starting time of its

first instance.

(6) In the scheduling process, two attributes are defined. The "LOWER" is the

lower bound of the starting time for an instance of an operator, that is the ready time

23

for that instance, which ensures that at least one period is passed from the ready time

of previous instance.

The "UPPER" is the upper bound of the starting time for an instance of an

operator, which ensures that the instance is scheduled early enough so that it can

finish execution prior to the deadline.

(7) If o0 and o2are periodic operators, then instance i1 of oi precedes instance i,

of 02, written as (o0, 1) < (02, i2), if and only if o0 is a parent of 02 and (ij - 1) * P(o1)

= (G2 - 1) * P(0 2). The purpose of the second condition is to define corresponding

synchronization points for the operators, as explained below.

If (0 1 , i0) < (02, i2) then instance i, of operator 0o must complete execution

before instance i2 of operator 02 can start execution, and instance i2 of operator 0,

must read its inputs before instance i, + 1 of operator 0o. The purpose of this

constraint is to allow the instance (02, i2) to operate on the data produced by the

instance (o0, i,). The first constraint is necessary to ensure the output of (o,, i,) has

been produced before it is used by (02, i2), and the second constraint is needed to

ensure that the output of (o0, ii) is not over-written by the output of (o,, i, + 1) before

it can be read by (02, i2). When such a relation is guaranteed between two instances

of periodic operators, the two instances are synchronized. The PSDL scheduling

policy guarantees that the first instances of any two periodic operators connected by

the precedence graph must be synchronized, and that subsequent instances are

synchronized at intervals corresponding to the least common multiple of the periods

of the two operators. In particular, if both operators have the same period, then they

are synchronized for every pair of corresponding instances. This is illustrated in

Figure 4 on next page.

24

period (a) period (b) synchronization points

2 2 (a, 1) < (b, 1), (a, 2) < (b, 2), (a, 3) < (b, 3)..-

2 3 (a, 1)<(b, 1), (a, 4)<(b, 3), (a, 7)<(b, 5)

2 4 (a, 1)<(b, 1), (a, 3)<(b, 2), (a, 5)<(b, 3)

Figure 4: Synchronization Points for Connected Periodic Operators

B. EARLIEST STARTING TIME FIRST ALGORITHM

The earliest starting time first algorithm assigns the highest priority to the task

with the earliest starting time, i.e. the task with the least lower bound of the starting

time among all activated tasks will be scheduled first. This algorithm schedules the

task with the earliest starting time to execute on the earliest available processor to

ensure all its descendants tasks can execute as soon as possible, so as not to violate

the deadline constraints. The reason to choose the earliest available processor is to

minimize the processor idle time.

In this algorithm, a priority queue is used for storing the information about the

tasks which are going to be scheduled. The order of the priority queue depends on

the lower bound of the starting time of each task (instance). The task, located at the

top of the queue, with the smallest lower bound of the starting time will be extracted

from the queue and be scheduled. Whenever a task is extracted from the priority

queue, its lower bound has to be re-calculated. A recursive procedure is used to

perform this function. Once there is a synchronized point between the task and its

parent, the lower bound of the task has to be adjusted until all its parents with

25

synchronization has been completed. If any one of its parents with synchronization

has not been scheduled, the task is pushed into a waiting list. The next task is then

extracted from the top of the priority queue. The process keeps going until a task's

lower bound has been completely calculated according to the stop time of all its

parents having synchronization. The tasks,in the waiting list are popped out and re-

inserted into the priority queue. The earliest starting time first algorithm is described

as follows.

BEGIN -- earliest starting time first algorithm

while not empty (WORK_LIST) loop

schedule the task;

if INSTANCE < (HBL / P) then

create an additional node for next instance of the same task;

insert it into the priority queue;

end if;

insert all its children whose parents have all been scheduled

into the priority queue;

next (WORKLIST);

end loop;

while not empty (priority queue) loop

extract the task from the top of the priority queue;

if INSTANCE = I then

schedule the task;

insert all its children whose parents have all been scheduled;

else

determine the new lower bound;

26

schedule the task;

end if;

if START > UPPER or STOP > HBL then

VALIDSCHEDULE:= false;

end if;

if INSTANCE < (HBL / P) then

create an additional node for next instance of the same task;

insert it into the priority queue;

end if;

end loop;

reverse the schedule;

end EARLIESTSTART;

-- The WORKLIST links the tasks which have no tasks precede them.

-- The steps of scheduling a task include: assign a processor to the task, calculate

the upper bound, the instance number, the starting time and the stop time for

the given task.

-- according to the method for adding new tasks into the linked list, the schedule

was developed in the reverse order, so it need to be reversed.

C. EARLIEST DEADLINE FIRST ALGORITHM

The earliest deadline first algorithm, similar to the earliest starting time first

algorithm, assigns the highest priority to the task with the earliest deadline. In other

words, this algorithm schedules the task with the smallest upper bound of starting

27

time to execute, before other tasks, on the earliest available processor to ensure that

the task meets its deadline constraint. The reason to choose the earliest available

processor is the same as mentioned in the earliest starting time first algorithm. The

task with the smallest upper bound of the starting time is the most urgent task should

execute before any other one because if the task was postponed for a moment, the

deadline might be missed.

In this algorithm, a priority queue is also used for storing the information about

the tasks which are going to be scheduled. The task located at the top of the queue

has the smallest upper bound of starting time and will be extracted first. The

algorithm, similar to the earliest starting time first algorithm, is described as follows.

BEGIN -- earliest deadline first algorithm

while not empty (WORK-LIST) loop

calculate the upper bound for the task;

insert it into the priority queue;

next (WORK_LIST);

end loop;

while not empty (priority queue) loop

extract the task from the top of the priority queue;

if INSTANCE = I then

schedule the task;

insert all its children whose parents have all been scheduled

into the priority queue;

else

determine the new lower bound;

28

schedule the task;

end if;

if START > UPPER or STOP > HBL then

VALIDSCHEDULE:= false;

end if;

if INSTANCE < (HBL / P) then

create an additional node for next instance of the same task;

insert it into the priority queue;

end if;

end loop;

reverse the schedule;

end EARLIESTDEADLINE;

D. SIMULATED ANNEALING ALGORITHM

1. Generic Description

The use of simulated annealing to solve combinatorial optimization

problems is an area that has received much attention lately. Combinatorial

optimization problems are those whose configuration of elements are finite or

countably infinite. An example of a combinatorial optimization problem is the

assignment problem where there are numbers of personnel available to do an equal

number of jobs. The cost for each person to do each job is known. The goal is to

assign each person to a job so that the total cost is as small as possible [OTV89].

There is a wide range of combinatorial optimization problems that the simulated

29

annealing approach can be utilized. These include graph partitioning, graph coloring,

number partitioning, VLSI design, and travelling salesman type problems.

Simulated annealing is based on the behavior of physical systems and the

laws of thermodynamics. The way that liquids freeze and crystallize or metals cool

and anneal are the principles upon which simulated annealing is based. At high

temperature, liquid molecules move freely with respect to one another. As the liquid

cools, this mobility is lost. Atoms line up and form a pure crystal that is at a minimum

energy level. As the system cools slowly nature finds the minimum energy state

[FLO84]. Examining simulated annealing in non-physical terms, a comparison is

made to the concept of local optimization or iterative improvement. Local

optimization repeatedly improves an initial solution until no further improvement of

the solution is possible. This is known as iterative improvement or "hill climbing".

Simulated annealing differs from local optimization in that random uphill

movements (acceptance of a worse solution) are permitted. This prevents the

algorithm from being trapped in a poor local optimal solution as demonstrated in

Figure 5 on next page. Because simulated annealing avoids poor local optima,

significantly better results can be found utilizing it as opposed to local optimization

[JOH891.

The key to the use of the simulated annealing approach to solving

combinatorial optimization problems is the random acceptance of worse iterative

solutions. When the system is in a high energy state (high temperature), the

probability is greater that a worse iterative solution is accepted. As the system cools

this probability decreases, but even at the lower energy states the probability for

making an uphill move still exists.

30

COST

Best
Cost

Solution

Poor
Local

Optimum

SOLUTION

Figure 5: Cost/Solution Graph Demonstrating Local Minimum Solution

As indicated in Figure 5 above, uphill moves allow the algorithm to leave a

poor local solution (point A or point B) and reach a better solution in the vicinity of

point C. This general scheme of always taking a downhill step while occasionally

taking an uphill step is known as the Metropolis algorithm, named after Metropolis,

the scientist, who with his coworkers f.;st investigated simulated annealing in 1953

[FL0841.

The choice of a probability function to determine if an uphill movement is

allowed is an important consideration. At each step of the simulated annealing

algorithm a new state is constructed based on the current state. This new state is

31

constructed by randomly displacing or adjusting a randomly selected element. If this

new state has a lower cost than the current state, the new state is accepted as the

current state. If the new state has a higher cost than the current state, the new state is

accepted with probability:

exp(-Ae/kT)

This probability function is known as the Boltzman probability distribution

where:

Ae = difference in cost between new state and current state

k = Boltzman's constant of nature relating temperature to energy

T = Current Temperature

A characteristic of this probability function is that at very high temperatures

every new state has almost the same chance ef being accepted as the current state. At

low temperatures, the states with a lower cost have a higher probability of being

accepted than the current state.

Simulated annealing is simple to implement and can be applied to a variety

of combinatorial optimization problems. To apply annealing, a description of the

problem state space, a procedure or routine to adjust the state, and some function to

determine the cost of the solution in the state space are all that is required [OTV89].

The next section will address these requirements as well as examine the algorithm

for simulated annealing.

2. Algorithm Description

The concept of simulated annealing is closely related to local optimization.

According to Johnson [JOH89], simulated annealing, which is a combinatorial

optimization algurithm, can be specified by identifying a set of solutions together

with a cost function that applies a value to each solution. There exists an optimum

32

solution which has the hainimum cost possible. (NOTE: There may be more than one

optimum solution). Starting with an arbitrary initial solution, the algorithm attempts

to improve on the initial solution by performing incremental changes on that

solution. A cost function is used to evaluate each iterative solution that is developed.

To utilize the simulated annealing algorithm, the following four elements

must be provided:

(1) A description of possible system configurations.

(2) A generator of random changes in this configuration, these changes are

"options" presented to the system.

(3) An objective function E (analog of energy) whose minimization is the

goal of the procedure.

(4) A control parameter, T (analog of temperature) and an annealing

schedule which tells how T is lowered and cooled.

The annealing schedule sets the number of random changes sampled for each

temperature T and rate at which T decreases. The range of the annealing temperature

and the value of the annealing schedule are normally established from trial and error

experimentation [FLO84]. A pseudo code representation of the simulated annealing

algorithm based on the algorithm proposed in [JOH89] follows:

Input:

(1) The solution space of the optimization problem.

(2) The control parameters for the annealing process, which include

(a) To - the initial value of the control temperature T,

(b) Freeze - the final value of T,

(c) R - the reduction factor for T (typically 0.70 <= R <= 0.99),

33

(d) L - the maximum number of attempted moves at any each value of T,

(e) L, - the maximum number of accepted moves at any each value of T.

Output:

An optimal or near-optimal solution.

Algorithm

Begin

CurrentSolution := some solution from the given solution space;

T := To;

BestSolution .= CurrentSolution,

While (T > Freeze) do

begin

N 0; /* tracks the number of moves attempted at the current value of T */

Ns:= 0; /* tracks the number of moves accepted at the current value of T */

while ((N <L) and (N, < L,)) do

begin

/* perturb current solution randomly to obtain . new legal so!ution */

NewSolution := move (Current_Solution);

N := N+ 1;

A C := cost (New-Solution) - cost (CurrentSolution);

if ((A C50) or (random 0 <= e-A CIT))

then begin

CurrentSolution := NewSolution;

N, := N, + 1

if (cost (CurrentSolution) < cost (BestSolution))

then BestSolution := CurrentSolution;

34

end;

end;

T:= TxR

end;

Output: (BestSolution);

End.

The choice of values for T0, R, and L have a significant impact on the

annealing schedule. The higher the initial temperature, the higher the cooling factor,

and the larger the number of trials at each temperature result in more solutions being

examined in order to find an optimum solution. The goal in choosing these

parameters is to ensure that a sufficient, but not excessive, number of solutions are

examined. These values are normally chosen arbitrarily and adjusted through

experimentation.

35

IV. IMPLEMENTATION

Previous works on the static scheduler in CAPS developed by Janson [JAN88],

Cervantes [HUS90], and Levine [LEV91] all applied to uniprocessor environment.

The three algorithms developed in this thesis are used for scheduling hard real-time

periodic tasks in multiprocessor environment. The ADA programming language is

used to develop the new static scheduler packages as well as to modify the existing

packages. This chapter describes the system flow of the static scheduler, also

explains the modification for the existing packages and ne', p.ackages being

developed.

A. SYSTEM FLOW

The system flow diagram is given by Figure 6 as follows.

ATOMIC.INFO

F FRONT_END

f I
PROCESSOR

rHARMONICBLOCK BUIDE

NEWDATA STRUCTURES

FTOPSORT

-i I
F STATICSCHEDULER7

SCHEDULES ON MULTIPROCESSOR

Figure 6: System Flow Diagram of the Static Scheduler

36

The first module "FRONTEND" reads the text input file "ATOMIC.INFO",

which contains the operators' identifiers, timing information, and "LINK"

statements which describe the PSDL implementation graphs, and separates the

information of the time-critical operators and stores them in a linked list "OPLIST".

It also produces the number, "OPCOUNT', of the time-critical operators which are

going to be scheduled.

The second module "PROCESSOR" calculates the periods for the sporadic

operators and tests the time-critical operators' information from the linked list

"OPLIST". At this stage, all sporadic operators are converted to their periodic

equivalents.

The third module "HARMONICBLOCKBUILDER" uses to the period

information of the periodic operators from the "OPLIST" to determine the harmonic

block length (HBL) of the static schedule as mentioneu earlier.

The forth module "NEWDAT_ STRUCTURES" is a generic package which is

instantiated in the declarative part of the package "FRONTEND". It produces a

record type of data structure named "GRAPH" which includes two entries,

"OPARRAY" and "OPMATRIX" (see Figure 7).

OP ARRAY

GRAPH 'A

OP MATRIX

Figure 7: Graph Structure

37

The first entry "OPARRAY" of "GRAPH" is a one-dimension array type

which contains all relevant information about the operators to be scheduled from the

"OPLIST". Once the information is stored in the array, the operators can be referred

to by their index number (position) in the array. This allows for immediate access of

all relevant operator information instead of having to traverse a linked list to find the

desired operator's information. Identifying operators by their index numbers as

opposed to their names reduces the storage space required for operator's

identifications throughout the static scheduler.

• The second entry "OPMATRIX" of "GRAPH" is a two-dimension (n x n)

array type, where n is the number of operators to be scheduled, which contains the

information about the parent-child relationships between operators as well as the

pipeline information about each operator.

The fifth module "TOPSORT" performs a topological sort on all the operators

according to the information produced by the package of

"NEWDATASTRUCTURE". It creates a true topological ordering which is not

dependent on a specific ordering of the operators in the PSDL input file. The result,

called "PRECEDENCELIST", is a linked list data structure containing each

operator's index number according to the position of the operator in the

"OPARRAY". In the head of the list, there is a dummy operator (index number 0)

created to lead all other operators.

The last module "STATICSCHEDULER" is the heart of the whole system

which combines the output of "TOPSORT" (PRECEDENCE-LIST),

"FRONTEND" (OPCOUNT), "NEWDATASTRUCTURES" (OPARRAY,

OPMATRIX), and "HARMONICBLOCKBUILDER" (HBL) to produce a static

schedule which can be applied to multiprocessor systems. This module includes three

static scheduling algorithms which have been introduced in last chapter.

38

B. MODIFICATIONS ON EXISTING PACKAGES

This section describes the modifications of the existing packages in the proposed

implementation.

1. DATA

The original "DATA" package contains the definitions of all types,

instantiation of generic packages, and global variables used by the static scheduler

for uniprocessor environment. Most of the packages remain the same. Some

additional global variables and data types which are necessary for multiprocessor

scheduling are added in this package.

* NOP : NATURAL :=4;

It is a global variable used for storing the number, which equals four in the

experimental case, of the available processors which can be applied for the tasks'

execution.

* type PROCESSORARRAY is array (L..NOP) of NATURAL;

This data type is used for the variables, for example "PROCESSORSTOP",

which track the available time (instant) of each processor at each stage during the

scheduling process.

* type SCHEDULEARRAY

is array (1..NOP) of SCHEDULEINPUTSLIST.LIST;

It is used for the variables, for example "AGENDA", which store the

pointers pointing to the linked lists of the schedule for each processor.

The other additional global variables are listed in "APPENDIX C".

39

2. NEW DATA STRUCTURES

Besides the original procedures and functions in the old version of this

package, two functions are created. Also, one procedure and one data type are

modified.

* type MATRIXOPINFO is

record

PARENT :INTEGER;

CHILD : INTEGER;

DELAYPIPELINE :INTEGER;

end record;

This data type resides in the two dimension array (matrix) "OPMATRIX"

and the additional entry "DELAYPIPELINE" is used to store the information about

the operators whether they can be pipelined or not and the information about the

latency between each pair of operators. If the "DELAYPIPELINE" in the diagonal

cell [i, i] of the matrix equals, then the operator i can be pipeline. The

"DELAY_PIPELINE" in other cells [i, J], for i1j, of the matrix determines the

latency between operator i and operator j (where i, j are the index number of the

operators).

* procedure "PRODUCEOPMATRIX":

In the old version of this procedure, the "LINK" statements were skipped

in the PSDL input file. Because the new version of the static scheduler considers the

communication delay between operators, this procedure is modified in order to store

the information of the latency between operators into the proper place.

40

* function "LATENCY":

This function is used for the new static scheduler to return the value of the

latency between two operators. The first parameter is the parent's index number and

the second parameter is the child's index number.

* function "PIPELINE":

This function returns the boolean constant "TRUE" if the operator can be

pipelined, otherwise it returns "FALSE". Its parameter is the index number of the

operator.

3. DIAGNOSTICS

This package includes four procedures: "OUTPUTOP_ID",

"OUTPUTSCHEDULE", "OUTPUTHARMONICBLOCKLENGTH", and

"OUTPUTPRECEDENCELIST". These procedures output the information to the

terminal for the purpose of diagnostics. The procedure "OUTPUTSCHEDULE" is

modified in order to output the schedule which will be applied to the multiprocessor

other than the uniprocessor to the terminal.

C. NEW PACKAGES

There are two packages, "UTILITYPKG" and "NEWSCHEDULER-PKG",

created in the new version of the static scheduler. They are the major effort of the

implementation of the static scheduler. Each will be described in the following

paragraphs.

1. UTILITY PKG

This package consists of procedures and functions which help the scheduling

algorithms to solve specific problems.

41

a. RANDOMINITIALIZE

Tla, procedure which was separate in the original version of the static

scheduler initializes the random number generator. The input parameter should be an

odd integer.

b. RANDOMNEXT

This function creates a random number which has a type of "FLOAT"

ranging from 0 to 1 and was originally separate in the old version.

c. DETERMINETHEUPPER

It is a procedure that calculates the upper bound of the starting time for

each instance of the tasks. If the starting time of an instance exceeds its upper bound,

the instance may miss its deadline. In other words, this task violates its timing

constraints and the resulting schedule would not be feasible.

d. DETERMINESTARTSTOP

This procedure calculates the actual starting time and stop time

(scheduling interval) for an instance of a task. Even though an instance has a lower

bound of the starting time, it still can not execute unless there is at least one processor

available after the lower bound. If there are more than one processor available after

this lower bound, the processor with the earliest release time will be chosen.

e. CREATEADDLNODE

After an instance of an operator has been scheduled, the operator will be

checked if it has more instances in the HBL to be scheduled. If so, an additional node

of the scheduling information about the next instance of this operator will be created

with a record data type of "SCHEDULEINPUTS" declared in the

"NEWDATASTRUCTURES" generic package. The entry "THE-START" of this

42

additional node is used to store the information about the synchronization instead of

the starting time of next instance, because it is not known at this time when the node

is created. This process includes in the "CREATEADDLNODE" procedure.

f. TESTSCHEDULE

This procedure calculates the cost of a given schedule. Ih other words,

it finds out the maximum tardiness of all instances who miss their deadlines and

whose stop time exceeds the HBL. If the cost equals 0, a feasible schedule is found.

Otherwise, the given schedule is not a feasible solution.

g. ANNEALFUNCTION

This function used in the "simulated annealing" algorithm returns a

"FLOAT" type number between 0 and 1. After comparing this number with the

random number, the annealing process then decides whether to accept the new

solution or not. The first parameter of this function is the cost of the new solution,

and the second parameter is the cost of the original one. The last parameter is the

current temperature.

h. ADJUSTPRECEDENCE

This procedure used in the "simulated annealing" algorithm adjusts the

"PRECEDENCELIST" to get a new ordering of the operator.

2. NEW SCHEDULER PKG

In this package, three algorithms were developed:

• "EARLIESTSTART"

* "EARLIESTDEADLINE"

- "SIMULATEDANNEALING"

43

Each of these has been introduced in chapter three. The following

paragraphs describe the procedures in "SIMULATEDANNEALING".

a. SCHEDULE_1stINSTANCES

This procedure schedules the first instance for each operator. Its

algorithm is described as follows.

BEGIN -- schedule the first instance for each operator

duplicate PLIST to WORKLIST;

while not empty (CHILDLIST of the dummy node) loop

calculate the upper bound, start time, stop time for the task;

schedule the task; -- (lower bound := 0)

remove this task from the WORKLIST;

if INSTANCE = (HBL / P) then

remove this task from the PLIST;

-- no need to schedule the next instance for the task

else

create an additional node of the next instance;

add it into an additional list (ALIST); -- to be scheduled for the future

end if;

next (CHILDLIST);

end loop;

while not empty (WORK-LIST) loop

calculate the lower bound, upper bound, start time and stop time;

schedule the task;

if INSTANCE = (HBL / P) then

remove this task from the PLIST;

44

-- no need to schedule the next instance for the task

else

create an additional node of the next instance;

add it into an additional list (ALIST); -- to be scheduled for the future

end if;

next (WORKLIST);

end loop;

end SCHEDULEI stINSTANCES;

-- the PLIST is the precedence list of the operators from the TOPSORT

package output.

b. SCHEDULERESTOFBLOCK

It is a continuous work for the "SCHEDULE_1stINSTANCE"

procedure. This procedure schedules the rest of the instances other than the first

instance of the tasks in one harmonic block length. After this procedure, an initial

solution is obtained for the annealing process to anneal if needed. The algorithm is

described as follows.

BEGIN -- schedule the rest instances other than the first instance in a HBL

while not empty (PLIST) loop

duplicate PLIST to WORK-LIST;

while not empty (WORKLIST) loop

extract the same task of WORKLIST from the ALIST;

DETERMINETHELOWER; -- recalculate the lower bound

if the lower bound has been recalculated then

45

schedule the task;

if INSTANCE = (HBL / P) then

remove this task from the PLIST;

-- no need to schedule the next instance for the task

else

create an additional node of the next instance;

add it into an additional list (ALIST);

-- to be scheduled for the future

end if;

remove this task from the A_LIST;

end if;

next (WORKLIST);

end loop;

end loop;

end SCHEDULERESTOFBLOCK;

-- The "PLIST" is part of the PRECEDENCELIST coming from the output of

the "SCHEDULE_1 stINSTANCES" procedure.

-- The sub-procedure"DETERMINETHELOWER" checks all the parents of

the task to be scheduled. Whenever there is any parent having a synchronized

point with this task, the lower bound of the task has to be recalculated. If the

parent has not been scheduled for the synchronized instance, the task can not

be scheduled at this time. Then the sub-procedure returns a waiting message.

46

c. ANNEAL-PROCESS

Actually this procedure is derived from the generic simulated annealing

algorithm introduced in chapter three. It occurs when the initial solution is not

feasible. It uses a priority queue, named "QUE", as in the "earliest starting time first"

algorithm. The order of the tasks in "QUE" depends on the lower bound of each task.

The task with the smallest lower bound will be put on the top of the priority queue

and will be extracted before any other tasks. The modification for the generic

simulated annealing algorithm to solve the static scheduling problem is described as

follows.

INPUT:

HBL;

AGENDA; --schedule on multiple processors.

PENALTYCOST; -- cost for a given schedule.

PRECEDENCE-LIST;

OUTPUT:

AGENDA;

PENALTYCOST;

FEASIBLESOLUTION: boolean;

BEGIN -- annealing process

duplicate AGENDA to BESTAGENA and TEMPAGENDA;

initialize the temperature T;

BESTCOST := PENALTYCOST;

while not FEASIBLESOLUTION and T > Freeze loop

clear ACCEPTCOUNT and TRIALCOUNT;

while not SOLUTIONFOUND and

47

ACCEPTCOUNT < ACCEPTNO and

TRIALCOUNT < TRIALNO loop

REARRANGE_P:= false;

find the first task whose START > UPPER on each processor;

insert them into (QUE);

while not empty (QUE) loop

extract the task from (QUE);

recalculate the lower bound;

if LOWER > UPPER then

REARRANGE_P:= true;

exit the loop;

end if;

if LOWER < START then

promote the task into a suitable time slot;

if can not find a suitable time slot then

REARRANGE_P:= true;

exit the loop;

else

remove the task from TEMPAGENDA and QUE;

next TEMPAGENDA of the same processor;

insert it into QUE;

end if;

else

remove the task from QUE;

next TEMPAGENDA of the same processor;

insert it into QUE;

48

end if;

end loop;

if not REARRANGEP then

find the first task whose STOP > HBL on each processor;

insert them into (QUE);

while not empty (QUE) loop

extract the task from (QUE);

OLDLOWER: = LOWER;

recalculate the lower bound;

if LOWER = OLDLOWER and LOWER = START then

REARRANGE_P := true;

exit the loop;

else

promote the task into a suitable time slot,

if can not find a suitable time slot then

REARRANGE_P := true;

exit the loop;

else

remove the task from TEMPAGENDA and QUE;

next TEMPAGENDA of the same processor;

insert it into QUE;

end if;

end if;

end loop;

end if;

if REARRANGEP then

49

ADJUSTPRECEDENCE;

create another solution TEMPAGENDA for the new precedence list;

end if;

TESTSCHEDULE; -- output "TEMPCOST"

if TEMPCOST < BESTCOST then

BESTCOST:- TEMPCOST;

duplicate TEMPAGENDA to BESTAGENDA;

end if;

if TEMPCOST = 0 then

FEASIBLESOLUTION := true;

elsif REARRANGEP or else

TEMPCOST <= PENALTYCOST or else

random number < ANNEALFUNCTION then

ACCEPTCOUNT:= ACCEPTCOUNT + 1;

PENALTYCOST: =TEMPCOST;

duplicate TEMPAGENDA to AGENDA;

else

duplicate AGENDA to TEMPAGENDA;

end if;

TRIALCOUNT:= TRIAL_COUNT + 1;

end loop;

T := T * COOLFACTOR;

end loop;

AGENDA := BESTAGENDA;

PENALTYCOST := BEST_COST;

50

end ANNEALPROCESS;

-- The TEMPAGENDA is a temporary schedule for the use of the annealing

process. Its cost is called TEMPCOST.

-- REARRANGEP is a boolean constant. Its value is "true" when the schedule

can not be annealed any more and the precedence list needs to be adjusted.

-- A time slot is a time interval where the processor is free from any tasks. If a

task's MET is less than or equal to this interval, the task can be scheduled

during this interval.

51

V. CONCLUSIONS

A. RESULTS FROM THE STATIC SCHEDULER

Four examples of the input PSDL text files (atomic.info) are presented in

appendix A in forms of tables and graphs. Each table lists the name (operator name),

index number (No.), maximum execution time (MET), finishwithin (Within), period

(P) and the number of instances (N) in the HBL for each operator to be scheduled.

The index number (No.) and the number of instances (N) are derived entries from the

static scheduler. Each diagram in appendix A is a precedence graph for each case.

Operators are represented by circles and their index numbers are shown in the circles.

The latencies between operators are also shown in the diagrams by the numbers

above the edges between circles.

The results from the static scheduler for each case of test data are shown in

appendix B. The schedules on each processor are listed in separate tables. Each table

lists the index number (OP), the instance number (IN), the starting time (START

TIME), the stop time (STOP TIME), the lower bound (LOWER) and the upper bound

(UPPER) of the starting time for each operator.

For case 1 and case 2 test data, the feasible schedules were found by all three

algorithms. But in cases 3 and 4, feasible schedules can not be found when the

earliest deadline first algorithm is used. The tasks which violate the timing

constraints are highlighted in the table.

When using the simulated annealing algorithm, the initial solutions for case 1

and 2 are feasible. In other words, there is no need to use the annealing process to

adjust the schedules. But in case 3 and 4, the initial solutions are not feasible. After

the annealing process, the feasible schedules are found. Furthermore, during the

52

annealing process, case 3 needs to adjust the PRECEDENCELIST several times to

obtain the feasible schedule. The proposed heuristic algorithm, based on the

simulated annealing approach, appears to be the best compromise between simple-

minded and exponential time algorithms implemented in CAPS.

B. SUMMARY

The thesis presents the research conducted to develop a static scheduler for hard

real-time tasks in multiprocessor systems. Three scheduling algorithms were

developed in the new static scheduler for CAPS. The earliest starting time first

algorithm produces the schedule according to the earliest possible starting time of

each instance of operators. The instance with the smallest earliest possible starting

time (the smallest LOWER bound) will be scheduled before any others. In a similar

way, the earliest deadline first algorithm produces the schedule according to the

deadline of each instance of operators. The instance with the most urgent deadline,

i.e. the smallest UPPER bound, will be scheduled before any others.

The simulated annealing algorithm first produces an initial solution based on

the topological ordering (PRECEDENCE_LIST) of the operators. If the initial

solution is feasible, there is no need to anneal the schedule, otherwise, the annealing

process is used. The annealing process starts to find out the first instance, whose

starting time is greater than its upper bound (i.e., missing its deadline) of the

schedule on each processor. From these instances, the annealing process then starts

to adjust each instance by choosing the instance with the smallest lower bound of the

starting time (LOWER). During the annealing process, the ordering (precedence) list

of the operators may be required to adjust in order to create another new solution.

53

Any feasible schedule produced by these scheduling algorithms guarantees that

both timing and precedence constraints are met, and the objective of the static

scheduler is achieved.

C. FUTURE WORK

This is the first work to implement the static scheduling algorithms for PSDL

tasks on multiprocessor systems. Future research is required for identification of

possible weaknesses. The continued work is recommended in the following areas:

• Modifying Proposed Algorithms Using Better Heuristics

Most heuristic methods suffer from several shortcomings such as the difficulty

in assuring the accuracies of solutions [KAN84]. If one algorithm can be proven to

be better than the other, which had been proven to be optimal, then this algorithm can

also be called optimal. The rule of thumb can be applied to all scientific inventions,

including scheduling problems. The better the understanding of the problem, the

more opportunities to invent a heuristic solution.

• Modifying the "Top -Sort" Procedure to Obtain a Better Ordering List

Since in most hard real-time systems, there exists more than one topological

ordering of operators where there are cases in which one ordering may produce a

feasible schedule while another will not. It will speed up the existing simulated

annealing algorithm if the "top-sort" procedure is good enough to produce a

topological ordering of operators such that there is no need to adjust this ordering

during the annealing process as frequently as in the present implementation. The

improvement of this procedure is recommended by using a similar method of critical

path, introduced in [HUS901, with the consideration of giving a weight to each

operator.

54

• Changing the Assumptions of Scheduling Problem

Different assumptions can lead to different results. For instance, tasks are

assumed to be non-preemptive in this research, but they could be preemptive. There

are still many open problems to be considered, such as periodic or non-periodic, any

constraints or not, whether the precedencle graph is a tree or network, scheduling

tasks on centralized or on distributed system, and so forth.

Real-time systems have substantial amounts of knowledge concerning the

characteristics of the application and the environment built into the system. A

majority of today's systems assume that much of this knowledge is available a priori

and, hence, are based on static nature of many of these systems contributes to their

high cost and inflexibility. The next generation hard real-time systems must be

designed to be dynamic and flexible.

Where as a large proportion of currently implemented hard real-time systems are

static in nature, by necessity, next-generation systems will have to adopt solutions

that are more dynamic and flexible. This is because we believe that such systems will

be large and complex and that they will function in environments that are dynamic

while being physically distributed. More important, they will have to be maintainable

and extensible due to their evolving nature and projected long lifetimes.

55

APPENDIX A. EXAMPLES OF TEST DATA

1. Case 1

operator name No. MET Within P N

OP_1 1 2000 9000 10000 3

OP_2 2 2000 10000 15000 2

OP_3 3 2000 12000 15000 2

OP_4 4 2000 20000 30000 1

OP_5 5 1000 8000 10000 3

OP_6 6 1000 12000 15000 2

OP_7 7 3000 18000 30000 1

10

0

3

56

2. Case 2

operator name No. MET Within P N

OPI 1 ,2000 9000 10000 3

OP_2 2 1000 10000 15000 2

OP_3 3 5000 15000 30000 1

OP_4 4 1000 15000 30000 1

OP_5 5 3000 11000 15000 2

OP_6 6 1000 12000 15000 2

OP_7 7 1000 18000 30000 1

OP_8 8 1000 10000 15000 2

57

00

57

3. Case 3

operator name No. MET Within P N

COMMSLINKS 1 100 - 7000 3

PARSEINPUT_F1LE 2 250 - 7000 3

DECIDEFORARCHIVING 3 100 - 7000 3

EXTRACT-TRACKS 4 150 - 7000 3

FILTERCOMMSTRACKS 5 500 - 7000 3

ADDCOMMS_TRACK 6 100 - 7000 3

CREATESENSORDATA 7 100 - 7000 3

ANALYZESENSORDATA 8 250 - 7000 3

PREPARESENSORTRACK 9 250 - 7000 3

FILTERSENSORTRACKS 10 500 - 7000 3

ADDSENSORTRACK 11 500 - 7000 3

CREATEPOSITIONDATA 12 500 - 3000 7

MONITOR_OWNSHIPPOSITION 13 500 - 3000 7

WEAPONSSYSTEMS 14 100 - 3000 7

WEAPONSINTERFACE 15 100 - 3000 7

PREPAREPERIODICREPORT 16 500 - 7000 3

MAKEROUTING 17 300 - 7000 3

FORWARDFOR_TRANSMISSION 18 100 - 7000 3

CONVERTTOTEXT_FILE 19 100 7000 3

58

O-L
800 MIDI 15

7 8
UO 0ý0

80

12 800
800 WO

111111.5 0

59

4. Case 4

operator name No. MET Within P N

COMMSLINKS 1 1200 - 10000 6

PARSEINPUT_FILE 2 500 - 10000 6

DECIDEFORARCHIVING 3 500 - 10000 6

EXTRACTTRACKS 4 500 - 10000 6

FILTERCOMMSTRACKS 5 500 - 10000 6

ADDCOMMSTRACK 6 500 - 10000 6

CREATESENSORDATA 7 800 - 20000 3

ANALYZESENSORDATA 8 500 - 20000 3

PREPARESENSOR_TRACK 9 500 - 20000 3

FILTERSENSORTRACKS 10 500 - 20000 3

ADDSENSORTRACK 11 500 - 20000 3

CREATEPOSITIONDATA 12 800 - 20000 3

MONITOROWNSHIPPOSITION 13 500 - 20000 3

WEAPONSINTERFACE 14 500 - 5000 12

WEAPONSSYSTEMS 15 500 - 5000 12

MAKEROUTING 16 500 - 15000 4

FORWARDFORTRANSMISSION 17 500 - 15000 4

CONVERT_TO_TEXTFILE 18 800 - 15000 4

CONVERTTOTEXTFILE 19 800 - 15000 4

60

12613

APPENDIX B. OUTPUT SCHEDULES FOR TEST DATA

1. Case I

The HBL:= 30000

** the Earliest Starting Time First Scheduling Algorithm **

A feasible solution found; Elapsed time = 0.02 sec.

PROCESSOR# 1

OP IN START TIME STOP TIME LOWER UPPER

4 1 0 2000 0 18000

1 2 10000 12000 10000 17000

6 2 17000 18000 17000 28000

PROCESSOR # 2

OP IN START TIME STOP TIME LOWER UPPER

3 1 0 2000 0 10000

7 1 3000 6000 3000 18000

3 2 15000 17000 15000 25000

PROCESSOR # 3

OP IN START TIME STOP TIME LOWER UPPER

2 1 0 2000 0 8000

6 1 2000 3000 2000 13000

2 2 15000 17000 15000 23000

5 3 22000 23000 22000 29000

PROCESSOR # 4

OP IN START TIME STOP TIME LOWER UPPER

1 1 0 2000 0 7000

5 1 2000 3000 2000 9000

5 2 12000 13000 12000 19000

1 3 20000 22000 20000 27000

62

** the Earliest Deadline First Scheduling Algorithm **

A feasible schedule found; Elapsed time = 0.03 sec.

PROCESSOR# II

OP IN START TIME STOP TIME LOWER UPPER

5 1 2000 3000 2000 9000

5 2 12000 13000 12000 19000

5 3 22000 23000 22000 29000

PROCESSOR # 2

OP IN START TIME STOP TIME LOWER UPPER

3 1 0 2000 0 10000

6 1 4000 5000 4000 15000

2 2 15000 17000 15000 23000

PROCESSOR # 3

OP IN START TIME STOP TIME LOWER UPPER

2 1 0 2000 0 8000

4 1 2000 4000 0 18000

7 1 5000 8000 5000 20000

3 2 15000 17000 15000 25000

6 2 19000 20000 19000 30000

PROCESSOR # 4

OP IN START TIME STOP TIME LOWER UPPER

1 1 0 2000 0 7000

1 2 10000 12000 10000 17000

1 3 20000 22000 20000 27000

63

** the Simulated Annealing Scheduling Algorithm **

A feasible schedule found; Elapsed time = 0.02 sec.

PROCESSOR # 1

OP IN START TIME STOP TIME LOWER UPPER

4 1 0 2000 0 18000

6 2 17000 18000 17000 28000

PROCESSOR # 2

OP IN START TIME STOP TIME LOWER UPPER

3 1 0 2000 0 10000

5 1 2000 3000 2000 9000

2 2 15000 17000 15000 23000

PROCESSOR # 3

OP IN START TIME STOP TIME LOWER UPPER

2 1 0 2000 0 8000

7 1 3000 6000 3000 18000

1 2 10000 12000 10000 17000

5 2 12000 13000 12000 19000

1 3 20000 22000 20000 27000

PROCESSOR # 4

OP IN START TIME STOP TIME LOWER UPPER

1 1 0 2000 0 7000

6 1 2000 3000 2000 13000

3 2 15000 17000 15000 25000

5 3 22000 23000 22000 29000

64

2. Case 2

The HBL:= 30000

** the Earliest Starting Time First Scheduling Algorithm **

A feasible schedule found; Elapsed time = 0.01 sec..

PROCESSOR# 1

OP IN START TIME STOP TIME LOWER UPPER

4 1 2000 3000 2000 16000

7 1 7000 8000 7000 24000

2 2 17000 18000 17000 26000

8 2 25000 26000 25000 34000

PROCESSOR # 2

OP IN START TIME STOP TIME LOWER UPPER

3 1 2000 7000 2000 12000

8 1 10000 11000 10000 19000

1 3 20000 22000 20000 27000

PROCESSOR # 3

OP IN START TIME STOP TIME LOWER UPPER

2 1 2000 3000 2000 11000

5 1 7000 10000 7000 15000

6 2 18000 19000 18000 29000

PROCESSOR # 4

OP IN START TIME STOP TIME LOWER UPPER

1 1 0 2000 0 7000

6 1 3000 4000 3000 14000

1 2 10000 12000 10000 17000

5 2 22000 25000 22000 30000

65

** the Earliest Deadline First Scheduling Algorithm **

A feasible schedule found; Elapsed time = 0.01 sec.

PROCESSOR # I

OP IN START TIME STOP TIME LOWER UPPER

5 1 7000 10000 7000 15000

1 3 20000 22000 20000 27000

PROCESSOR # 2

OP IN START TIME STOP TIME LOWER UPPER

3 1 2000 7000 2000 12000

8 1 10000 11000 10000 19000

6 2 18000 19000 18000 29000

PROCESSOR # 3

OP IN START TIME STOP TIME LOWER UPPER

2 1 2000 3000 2000 11000

1 2 10000 12000 10000 17000

5 2 22000 25000 22000 30000

PROCESSOR # 4

OP IN START TIME STOP TIME LOWER UPPER

I 1 0 2000 0 7000

4 1 2000 3000 2000 16000

6 1 3000 4000 3000 14000

7 1 7000 8000 7000 24000

2 2 17000 18000 17000 26000

8 2 25000 26000 25000 34000

66

********************* * ************* ** ** ** **

** the Simulated Annealing Scheduling Algorithm **

A feasible schedule found; Elapsed time = 0.02 sec.

PROCESSOR # 1

OP IN START TIME STOP TIME LOWER UPPER

7 1 7000 8000 7000 24000

2 2 17000 18000 17000 26000

1 3 20000 22000 20000 27000

PROCESSOR # 2

OP IN START TIME STOP TIME LOWER UPPER

3 1 2000 7000 2000 12000

1 2 10000 12000 10000 17000

8 2 25000 26000 25000 34000

PROCESSOR # 3

OP IN START TIME STOP TIME LOWER UPPER

4 1 2000 3000 2000 16000

6 1 3000 4000 3000 14000

8 1 10000 11000 10000 19000

6 2 18000 19000 18000 29000

PROCESSOR # 4

OP IN START TIME STOP TIME LOWER UPPER

1 1 0 2000 0 7000

2 1 2000 3000 2000 11000

5 1 7000 10000 7000 15000

5 2 22000 25000 22000 30000

67

3. Case 3

The HBL := 2 1000

** the Earliest Starting Time First Scheduling Algorithm **

A feasible schedule found; Elapsed time = 0.02 sec.

PROCESSOR # 1

OP IN START TIME STOP TIME LOWER UPPER

14 1 0 100 0 2900

8 1 900 1150 900 7650

9 1 1650 1900 1650 8400

4 1 2650 2800 2650 9500

14 2 3000 3100 3000 5900

15 2 3600 3700 3600 6500

6 1 4300 4400 4300 11200

15 3 6600 6700 6600 9500

13 3 7300 7800 7300 9800

9 2 8650 8900 8650 15400

18 2 9200 9300 9200 16100

4 2 9650 9800 9650 16500

13 4 10300 10800 10300 12800

14 5 12000 12100 12000 14900

1 3 14000 14100 14000 20900

14 6 15000 15100 15000 17900

17 3 15400 15700 15400 22100

13 6 16300 16800 16300 18800

11 3 17400 17900 17400 23900

15 7 18600 18700 18600 21500

PROCESSOR # 2

OP IN START TIME STOP TIME LOWER UPPER

12 1 0 500 0 2500

68

PROCESSOR # 2

OP IN START TIME STOP TIME LOWER UPPER

2 1 1300 1550 1300 8050

3 1 2050 2150 2050 8950

19 1 2800 2900 2800 9700

11 1 3400 3900 3400 9900

14 3 6000 6100 6000 8900

7 2 7000 7100 7000 13900

2 2 8300 8550 8300 15050

14 4 9000 9100 9000 11900

10 2 9400 9900 9400 15900

6 2 11300 11400 11300 18200

13 5 13300 13800 13300 15800

8 3 14900 15150 14900 21650

15 6 15600 15700 15600 18500

18 3 16200 16300 16200 23100

19 3 16800 16900 16800 23700

14 7 18000 18100 18000 20900

13 7 193000 19800 19300 21800

PROCESSOR # 3

OP IN START TIME STOP TIME LOWER UPPER

7 1- 0 100 0 6900

15 1 600 700 600 3500

17 1 1400 1700 1400 8100

18 1 2200 2300 2200 9100

12 2 3000 3500 3000 5500

13 2 4300 4800 4300 6800

1 2 7000 7100 7000 13900

8 2 7900 8150 7900 14650

12 4 9000 9500 9000 11500

69

PROCESSOR # 3

OP IN START TIME STOP TIME LOWER UPPER

19 2 9800 9900 9800 16700

11 2 10400 10900 10400 16900

15 5 12600 12700 12600 15500

16 3 14100 14600 14100 20600

2 3 15300 15550 15300 22050

3 3 16050 16150 16050 22950

4 3 16650 16800 16650 23500

5 3 17300 17800 17300 23800

6 3 18300 18400 18300 25200

PROCESSOR # 4

OP IN START TIME STOP TIME LOWER UPPER

1 1 0 100 0 6900

16 1 100 600 0 6500

13 1 1300 1800 1300 3800

10 1 2400 2900 2400 8900

5 1 3300 3800 3300 9800

12 3 6000 6500 6000 8500

16 2 7100 7600 7100 13600

17 2 8400 8700 8400 15100

3 2 9050 9150 9050 15950

15 4 9600 9700 9600 12500

5 2 10300 10800 10300 16800

12 5 12000 12500 12000 14500

7 3 14000 14100 14000 20900

12 6 15000 15500 15000 17500

9 3 15650 15900 15650 22400

10 3 16400 16900 16400 22900

12 7 18000 18500 18000 20500

70

** the Earliest Deadline First Scheduling Algorithm **

feasible schedule not found; Elapsed time = 0.02 sec.

PROCESSOR # 1

OP IN START TIME STOP TIME LOWER UPPER

13 1 1300 1800 1300 3800

13 2 4300 4800 4300 6800

13 3 7300 7800 7300 9800

13 4 10300 10800 10300 12800

17 2 10800 1i116 10800 15700

13 5 13300 13800 13300 15800

18 2 13800 13900 11300 18200

15 6 15600 15700 15600 18500

9 2 15700 15950 13850 20600

14 7 18000 18100 18000 20900

17 3 18100 18400 17500 22700

10 2 18400 18900 16850 23350

18 3 18900 19000 18900 25200

11 2 20100 20600 20100 26600

19 3 21100 21200 21100 28000

11 3 27100 27600 27100 33600

PROCESSORE # 2

OP IN START TIME STOP TIME LOWER UPPER

15 1 600 700 600 3500

16 1 700 1200 0 6500

15 2 3600 3700 3600 6500

14 3 6000 6100 6000 8900

8 1 6100 6350 4100 10850

71

PROCESSORE # 2

OP IN START TIME STOP TIME LOWER UPPER

2 1 6350 6600 4400 11150

14 4 9000 9100 9000 11900

9 1 9100 9350 6800 13600

3 1 9350 9450 7100 14000

19 1 9450 9550 7100 14000

12 5 12000 12500 12000 14500

4 1 12500 12650 9950 16800

7 2 12650 12750 10200 17100

14 6 15000 15100 15000 17900

11 1 15100 15600 13100 19600

12 7 18000 18500 18000 20500

6 1 18500 18600 16500 23400

4 2 18600 18750 16950 23800

7 3 18750 18850 17200 24100

2 3 20000 20250 20000 25150

3 3 21100 21200 21100 28000

4 3 23950 24100 23950 30800

6 3 30500 30600 30500 37400

PROCESSOR # 3

OP IN START TIME STOP TIME LOWER UPPER

14 1 0 100 0 2900

12 2 3000 3500 3000 5500

17 1 3500 3800 2000 8700

15 3 6600 6700 6600 9500

15 4 9600 9700 9600 12500

14 5 12000 12100 12000 14900

10 1 12100 12600 9850 16350

1 2 12600 12700 10100 17000

72

PROCESSOR # 3

OP IN START TIME STOP TIME LOWER UPPER

8 2 13550 13800 13550 17850

2 2 13900 14150 13900 18150

13 6 16300 16800 16300 18800

13 7 19300 19800 19300 21800

5 2 20150 20650 20150 26650

10 3 23850 24350 23850 30350

PROCESSOR # 4

OP IN START TIME STOP TIME LOWER UPPER

12 1 0 500 0 2500

14 2 3000 3100 3000 5900

1 1 3100 3200 0 6900

7 1 3200 3300 0 6900

12 3 6000 6500 6000 8500

18 1 6500 6600 4300 11200

12 4 9000 9500 9000 11500

16 2 9500 10000 7700 14200

15 5 12600 12700 12600 15500

12 6 15000 15500 15000 17500

5 1 15500 16000 13150 19650

3 2 16000 16100 14650 21000

19 2 16100 16200 14100 21000

16 3 16200 16700 14700 21200

15 7 18600 18700 18600 21500

1 3 18700 18800 17100 24000

8 3 19650 19900 19650 24850

9 3 20850 21100 20850 27600

6 2 23500 23600 23500 30400

5 3 27150 27650 27150 33650

73

************************** ********* * *** ******

** the Simulated Annealing Scheduling Algorithm **

A feasible schedule found; Elapsed time = 0.25 sec.

PROCESSOR # 1

OP IN START TIME STOP TIME LOWER UPPER

14 1 0 100 0 2900

17 1 1400 1700 1400 8100

15 1 1700 1800 600 3500

9 1 2550 2800 2550 9300

2 1 2800 3050 1300 8050

4 1 4150 4300 4150 11000

1 2 7000 7100 7000 13900

8 2 7900 8150 7900 14650

14 4 9000 9100 9000 11900

19 2 9800 9900 9800 16700

3 2 10550 10650 10550 17450

5 2 11800 12300 11800 18300

15 5 12600 12700 12600 15500

16 3 14100 14600 14100 20600

12 6 15000 15500 15000 17500

15 6 15600 15700 15600 18500

13 6 16300 16800 16300 18800

11 3 18300 18800 18300 24800

13 7 19300 19800 19300 21800

PROCESSOR # 2

OP IN START TIME STOP TIME LOWER UPPER

12 1 0 500 0 2500

18 1 2200 2300 2200 9100

74

PROCESSOR # 2

OP IN START TIME STOP TIME LOWER UPPER

14 2 3000 3100 3000 5900

15 2 3600 3700 3600 6500

11 1 4300 4800 4300 10800

12 2 4800 5300 3000 5500

12 3 6000 6500 6000 8500

16 2 7100 7600 7100 13600

12 4 9000 9500 9000 11500

15 4 9600 9700 9600 12500

13 4 10300 10800 10300 12800

11 2 11300 11800 11300 17800

12 5 12000 12500 12000 14500

7 3 14000 14100 14000 20900

14 6 15000 15100 15000 17900

18 3 16200 16300 16200 23100

10 3 17300 17800 17300 23800

12 7 18000 18500 18000 20500

15 7 18600 18700 18600 21500

6 3 19800 19900 19800 26700

PROCESSOR # 3

OP IN START TIME STOP TIME LOWER UPPER

7 1 0 100 0 6900

13 1 1300 1800 1300 3800

8 1 1800 2050 900 7650

10 1 3300 3800 3300 9800

6 1 5800 5900 5800 12700

14 3 6000 6100 6000 8900

15 3 6600 6700 6600 9500

17 2 8400 8700 8400 15100

75

PROCESSOR # 3

OP IN START TIME STOP TIME LOWER UPPER

9 2 9550 9800 9550 16300

2 2 9800 10050 8300 15050

4 2 11150 11300 11150 18000

14 5 12000 12100 12000 14900

1 3 14000 14100 14000 20900

8 3 14900 15150 14900 21650

19 3 16800 16900 16800 23700

3 3 17550 17650 17550 24450

14 7 18000 18100 18000 20900

5 3 18800 19300 18800 25300

PROCESSOR # 4

OP IN START TIME STOP IME LOWER UPPER

I 1 0 100 0 6900

16 1 100 600 0 6500

19 1 2800 2900 2800 9700

3 1 3550 3650 3550 10450

5 1 4800 5300 4800 11300

13 2 6100 6600 6100 6800

7 2 7000 7100 7000 13900

13 3 7300 7800 7300 9800

18 2 9200 9300 9200 16100

10 2 10300 10800 10300 16800

6 2 12800 12900 12800 19700

13 5 13300 13800 13300 15800

17 3 15400 15700 15400 22100

9 3 16550 16800 16550 23300

2 3 16800 17050 15300 22050

4 3 18150 18300 18150 25000

76

4. Case 4

The HBL:= 60000

** the Earliest Starting Time First Scheduling Algorithm **

A feasible solution found; Elapsed time = 0.03 sec.

PROCESSOR # 1

OP IN START TIME STOP TIME LOWER UPPER

15 1 0 500 0 4500

19 1 500 1300 0 14200

16 1 2100 2600 2100 16600

3 1 3400 3900 3400 12900

11 1 4600 5100 4600 24100

6 1 6400 6900 6400 15900

2 2 12400 12900 12400 21900

5 2 15400 15900 15400 24900

16 2 17100 17600 17100 31600

12 2 20000 20800 20000 39200

13 2 21600 22100 21600 41100

10 2 23600 24100 23600 43100

5 3 25400 25900 25400 34900

15 7 30000 30500 30000 34500

16 3 32100 32600 32100 46600

18 3 34100 34900 34100 48300

6 4 36400 36900 36400 45900

15 9 40000 40500 40000 44500

14 9 41000 41500 41000 45500

9 3 42600 43100 42600 62100

11 3 44600 45100 44600 64100

14 10 46000 46500 46000 50500

18 4 49100 49900 49100 63300

77

PROCESSOR # I

OP IN START TIME STOP TIME LOWER UPPER

2 6 52400 52900 52400 61900

5 6 55400 55900 55400 64900

PROCESSOR # 2

OP IN START TIME STOP TIME LOWER UPPER

12 1 0 800 0 19200

8 1 1600 2100 1600 21100

17 1 3100 3600 3100 17600

4 1 4400 4900 4400 13900

14 2 6000 6500 6006 10500

14 3 11000 11500 11000 15500

15 4 15000 15500 15000 19500

6 2 16400 16900 16400 25900

7 2 20000 20800 20000 39200

8 2 21600 22100 21600 41100

3 3 23400 23900 23400 32900

15 6 25000 25500 25000 29500

1 4 30000 31200 30000 38800

2 4 32400 32900 32400 41900

4 4 34400 34900 34400 43900

14 8 36000 36500 36000 40500

1 5 40000 41200 40000 48800

2 5 42400 42900 42400 51900

4 5 44400 44900 44400 53900

19 4 45500 46309 45500 59700

17 4 48100 48600 48100 62600

14 11 51000 51500 51000 55500

15 12 55000 55500 55000 59500

78

PROCESSOR # 3

OP IN START TIME STOP TIME LOWER UPPER

7 1 0 800 0 19200

14 1 1000 1500 1000 5500

2 1 2400 '2900 2400 11900

10 1 3600 4100 3600 23100

15 2 5000 5500 5000 9500

1 2 10000 11200 10000 18800

4 2 14400 14900 14400 23900

14 4 16000 16500 16000 20500

18 2 '19100 19900 19100 33300

15 5 20000 20500 20000 24500

14 5 21000 21500 21000 25500

9 2 22600 23100 22600 42100

11 2 24600 25100 24600 44100

6 3 26400 26900 26400 35900

14 7 31000 31500 31000 35500

3 4 33400 33900 33400 42900

5 4 35400 35900 35400 44900

12 3 40000 40800 40000 59200

13 3 41600 42100 41600 61100

10 3' 43600 44100 43600 63100

5 5 45400 45900 45400 54900

16 4 47100 47600 47100 61600

15 11 50000 50500 50000 54500

3 6 53400 53900 53400 62900

14 12 56000 56500 56000 60500

PROCESSOR # 4

OP IN START TIME STOP TIME LOWER UPPER

I 1 0 1200 0 8800

79

PROCESSOR # 4

OP IN START TIME STOP TIME LOWER UPPER

13 1 1600 2100 1600 21100

9 1 2600 3100 2600 22100

18 1 4100 4900 4100 18300

5 1 5400 5900 5400 14900

15 3 10000 10500 10000 14500

3 2 13400 13900 13400 22900

19 2 15500 16300 15500 29700

17 2 18100 18600 18100 32600

1 3 20000 21200 20000 28800

2 3 22400 22900 22400 31900

4 3 24400 24900 24400 33900

14 6 26000 26500 26000 30500

19 3 30500 31300 30500 44700

17 3 33100 33600 33100 47600

15 8 35000 35500 35000 39500

7 3 40000 40800 40000 59200

8 3 41600 42100 41600 61100

3 5 43400 43900 43400 52900

15 10 45000 45500 45000 49500

6 5 46400 46900 46400 55900

1 6 50000 51200 50000 58800

4 6 54400 54900 54400 63900

6 6 56400 56900 56400 65900

80

** the Earliest Deadline First Scheduling Algorithm **

feasible schedule not found; Elapsed time = 0.03 sec.

PRECESSOR # 1

OP IN I START TIME STOP TIME LOWER UPPER

15 2 5000 5500 5000 9500

14 3 11000 11500 11000 15500

3 2 13400 13900 13400 22900

15 5 20000 20500 20000 24500

14 6 26000 26500 26000 30500

9 1 26500 27000 17900 37400

15 8 35000 35500 35000 39500

14 9 41000 41500 41000 45500

3 5 43400 43900 43400 52900

15 11 50000 50500 50000 54500

14 12 56000 56500 56000 60500

8 3 57100 57600 57100 68000

11 2 58700 59200 58700 78200

PROCESSOR # 2

OP IN START TIME STOP TIME LOWER UPPER

I 1 0 1200 0 8800

2 1 2400 2900 2400 11900

4 1 4400 4900 4400 13900

5 1 5400 5900 5400 14900

6 1 6400 6900 6400 15900

7 1 6900 7700 0 19200

12 1 7700 8500 0 19200

15 4 15000 15500 15000 19500

81

PROCESSOR # 2

OP IN START TIME STOP TIME LOWER UPPER

14 5 21000 21500 21000 25500

2 3 22400 22900 22400 31900

19 2 22900 23700 18900 33100

4 3 24400 24900 24400 33900

5 3 25400 25900 25400 34900

14 7 31000 31500 31000 35500

2 4 32400 32900 32400 41900

4 4 34400 34900 34400 43900

5 4 35400 35900 35400 44900

6 4 36400 36900 36400 45900

18 2 36900 37700 32500 46700

10 1 37700 38200 27500 47000

19 3 38200 39000 33900 48100

1 5 40000 41200 40000 48800

2 5 42400 42900 42400 51900

4 5 44400 44900 44400 53900

5 5 45400 45900 45400 54900

6 5 46400 46900 46400 55900

9 2 46900 47400 39100 57400

1 6 50000 51200 50000 58800

18 3 51200 52000 47500 61700

3 6 53400 53900 53400 62900

5 6 55400 55900 55400 64900

12 3 55900 56700 47700 66900

13 3 57500 58000 57500 68800

10 3 67500 68000 67500 87000

82

PROCESSOR # 3

OP IN START TIME STOP TIME LOWER UPPER

14 1 1000 1500 1000 5500

3 1 3400 3900 3400 12900

19 1 3900 4700 0 14200

15 3 10000 10500 10000 14500

16 1 10500 11000 5500 20000

14 4 16000 16500 16000 20500

17 1 16500 17000 11500 26000

1 3 20000 21200 20000 28800

18 1 21200 22000 17500 31700

3 3 23400 23900 23400 32900

15 7 30000 30500 30000 34500

14 8 36000 36500 36000 40500

7 2 36500 37300 26900 46100

12 2 37300 38100 27700 46900

8 2 38100 38600 38100 48000

13 2 38900 39400 38900 48800

15 10 45000 45500 45000 49500

14 11 51000 51500 51000 55500

2 6 52400 52900 52400 61900

19 4 52900 53700 48900 63100

4 6 54400 54900 54400 63900

16 4 54900 55400 54500 65000

6 6 56400 56900 56400 65900

18 4 62500 63300 62500 76700

PROCESSOR # 4

9P IN START TIME STOP TIME LOWER UPPER

15 1 0 500 0 4500

14 2 6000 6500 6000 10500

83

PROCESSOR # 4

OP IN START TIME STOP TIME LOWER UPPER

1 2 10000 11200 10000 18800

2 2 12400 12900 12400 21900

4 2 14400 14900 14400 23900

5 2 15400 15900 15400 24900

6 2 16400 16900 16400 25900

8 1 16900 17400 8500 28000

13 1 17400 17900 9300 28800

15 6 25000 25500 25000 29500

16 2 25500 26000 24500 35000

6 3 26400 26900 26400 35900

1 4 30000 31200 30000 38800

17 2 31200 31700 26500 41000

3 4 33400 33900 33400 42900

15 9 40000 40500 40000 44500

16 3 40500 41000 39900 50000

14 10 46000 46500 46000 50500

17 3 46500 47000 41500 56000

11. 1 47000 47500 38700 58200

15 12 55000 55500 55000 59500

7 3 55500 56300 46900 66100

10 2 56300 56800 47500 67000

17 4 56800 57300 56500 71000

9 3 57900 58400 57900 77400

11 3 78700 79200 78700 98200

84

** the Simulated Annealing Scheduling Algorithm **

A feasible schedule found; Elapsed time = 0.12 sec.

PROCESSOR # I

OP IN START TIME STOP TIME LOWER UPPER

15 1 0 500 0 4500

19 1 500 1300 0 14200

14 1 1300 1800 1000 5500

13 1 1800 2300 1600 21100

8 1 2300 2800 1600 21100

10 1 4300 4800 4300 23800

4 1 5800 6300 5800 15300

16 2 17100 17600 17100 31600

12 2 20000 20800 20000 39200

14 5 21000 21500 21000 25500

10 2 24300 24800 24300 43800

15 6 25000 25500 25000 29500

14 6 26000 26500 26000 30500

16 3 32100 32600 32100 46600

15 8 35009 35500 35000 39500

14 8 36000 36500 36000 40500

12 3 40000 40800 40000 59200

14 9 41000 41500 41000 45500

10 3 44300 44800 44300 63800

3 5 44800 45300 44800 54300

14 10 46000 46500 46000 50500

17 4 48100 48600 48100 62600

85

PROCESSOR # 2

OP IN START TIME STOP TIME LOWER UPPER

12 1 0 800 0 19200

17 1 3100 3600 3100 17600

11 1 5300 5800 5300 24800

14 2 6000 6500 6000 10500

19 2 15500 16300 15500 29700

5 2 16800 17300 16800 26300

6 2 17800 18300 17800 27300

1 3 20000 21200 20000 28800

13 2 21600 22100 21600 41100

2 3 22400 22900 22400 31900

3 3 24800 25300 24800 34300

6 3 27800 28300 27800 37300

15 7 30000 30500 30000 34500

14 7 31000 31500 31000 35500

17 3 33100 33600 33100 47600

7 3 40000 40800 40000 59200

9 3 43300 43800 43300 62800

15 10 45000 45500 45000 49500

16 4 47100 47600 47100 61600

18 4. 49100 49900 49100 63300

3 6 54800 55300 54800 64300

4 6 55800 56300 55800 65300

5 6 56800 57300 56800 66300

PROCESSOR # 3

OP IN START TIME STOP TIME LOWER UPPER

7 1 0 800 0 19200

16 1 2100 2600 2100 16600

9 1 3300 3800 3300 22800

86

PROCESSOR # 3

OP IN START TIME STOP TIME LOWER UPPER

2 1 3800 4300 2400 11900

3 1 4800 5300 4800 14300

6 1 7800 8300 7800 17300

1 2 10000 11200 10000 18800

2 2 12400 12900 12400 21900

3 2 14800 15300 14800 24300

4 2 15800 16300 15800 15300

18 2 19100 19900 19100 33300

15 5 20000 20500 20000 24500

8 2 21600 22100 21600 41100

11 2 25300 25800 25300 44800

4 3 25800 26300 25800 35300

5 3 26800 27300 26800 36300

1 4 30000 31200 30000 38800

18 3 34100 34900 34100 48300

4 4 35800 36300 35800 45300

1 5 40000 41200 40000 48800

8 3 41600 42100 41600 61100

2 5 42400 42900 42400 51900

19 4 45500 46300 45500 59700

1 6 50000 51200 50000 58800

2 6 52400 52900 52400 61900

14 12 56000 56500 56000 60500

6 6 57800 58300 57800 67300

87

PROCESSOR # 4

OP IN START TIME STOP TIME LOWER UPPER

1 1 0 1200 0 8800

18 1 4100 4900 4100 18300

15 2 5000 5500 5000 9500

5 1 6800 7300 6800 16300

15 3 10000 10500 10000 14500

14 3 11000 11500 11000 15500

15 4 15000 15500 15000 19500

14 4 16000 16500 16000 20500

17 2 18100 18600 18100 32600

7 2 20000 20800 20000 39200

9 2 23300 23800 23300 42800

19 3 30500 31300 30500 44700

2 4 32400 32900 32400 41900

3 4 34800 35300 34800 44300

5 4 36800 37300 36800 46300

6 4 37800 38300 37800 47300

15 9 40000 40500 40000 44500

13 3 41600 42100 41600 61100

11 3 45300 45800 45300 64800

4 5 45800 46300 45800 55300

5 5 46800 47300 46800 56300

6 5 47800 48300 47800 57300

15 11 50000 50500 50000 54500

14 11 51000 51500 51000 55500

15 12 55000 55500 55000 59500

88

APPENDIX C. ADA CODES OF THE MODIFIED PACKAGES

1. DATA

with VSTRINGS;

with SEQUENCES;

with TEXTIO;

-- This package contains all of the global declarations and definitions

-- of data structures that are necessary for the Static Scheduler

package DATA is

package VARSTRING is new VSTRINGS(80);

use VARSTRING;

subtype OPERATORID is VSTRING;

subtype VALUE is NATURAL;

subtype MET is VALUE;

subtype MRT is VALUE;

subtype MCP is VALUE;

subtype PERIOD is VALUE;

subtype WITHIN is VALUE;

subtype STARTS is VALUE;

subtype STOPS is VALUE;

subtype LOWERS is VALUE;

subtype UPPERS is VALUE;

Exception-Operator: OPERATOR-ID;

TESTVERIFIED BOOLEAN true;

NOP NATURAL 4; -- number of available processors (6/25/92)

type PROCESSORARRAY is array (1..NOP) of VALUE; --(8/12/92)

type OPERATOR is

record

THEOPERATORID OPERATOR_ID;

THEMET MET 0;

THE_MRT MRT 0;

THEMCP MCP 0;

THEPERIOD PERIOD 0;

THEWITHIN WITHIN 0;

end record;

package VLISTS is new SEQUENCES(OPERATOR); use VLISTS;

89

type SCHEDULE_INPUTS is

record

THEOPERAIOR INTECER;

THESTART STARTS 0;

THESTOP STOPS 0;

THELOWER LOWERS 0;
THEUPF.R UPPERS :=, 0;

THEINSTANCE INTEGER 1;

end record;

package SCHEDULEINPUTSLIST is new SEQUENCES(SCHEDULEINPUTS);

type SCHEDULEARRAY is array (1..NOP) of SCHEDULEINPUTSLIST.L IST;-- (7/10/92)

package NODELIST is new SEQUENCES(INTEGER);

NONCRITS TEXTIO.FILE. TYPE;

AGOUTFILE TEXTIO.FILE_TYPE;

INPUT TEXTIO.FILEMODE TEXT_IO.IN_.FILE;

OUTPUT TEXTIO.FILEMODE TEXT_IO.OUTFILE;

CurrentValue VALUE;

NewWord VARSTRING.VSTRING;

Cur-Opt OPERATOR;

OPCOUNT INTEGER;

OPLIST V_LISTS.LIST;

-- the following global variables are new for multiprocessor scheduling (7/30/92)

OPNUM INTEGER;
PARENTCOUNT INTEGER;

PARENTNUM INTEGER;

CHILDCOUNT INTEGER;

PROCESSORNUM INTEGER;

PARENTOP OPERATOR;

PARENT-LIST NODELIST.LIST;

CHILD-LIST NODELIST.LIST;

LISTHEAD NODELIST.LIST;

TEMP OPERATOR;

NEWINPUT SCHEDULEINPUTS;

ADDLNODE SCHEDULEINPUTS;

FIRST SCHEDULEINPUTS;

BEST SCHEDULEINPUTS;

end DATA;

90

2. NEWDATASTRUCTURES

with TEXT_10;

with DATA; use DATA;

-- This package contains the specifications for a graph data structure that can represent an

-- acyclic graph. Functions and procedures exist to access the information that is stored in the graph
-- as well as to find out the relationships between vertices in the graph.

generic

package NEWDATASTRUCTURES is

type GRAPH (SIZE: INTEGER) is limited private;
type GRAPHLINK is access GRAPH;

THE_GRAPH : GRAPHLINK;

procedure PRODUCEOPARRAY (INFO-LIST : in out V_LISTS.LIST;

COUNT : in INTEGER);
-- Transfer operator info from linked list to array

function OPPOSITION (OPNAME : VARSTRING.V STRING;

COUNT : INTEGER) return INTEGER;
-- Given an operator name return the operator's position in the array

procedure PRODUCEOPMATRIX (COUNT : in INTEGER);

-- Create a matrix to represent the acyclic graph of operator relationship

function OPRETURN (OPPOSITION: INTEGER) return OPERATOR:

-- Given an operator's position in the array, return the operator

function ISPARENT (OPI, OP_2: INTEGER) return BOOLEAN:

-- Return true if OPI is a parent of OP_2 or if OPI is OP_2

function ISCHILD (OP_I, OP_2: INTEGER) return BOOLEAN;

-- Return true if OP_I is a child of OP_2 or if OP_1 is OP_2

procedure RETURNPARENTLIST (PARENTLIST : in out NODELIST.LIST;

OP : in INTEGER;

COUNT : in out INTEGER);
-- Return a list of all the parents of an operator

91

procedure RETURNCHILDLIST (CHILDLIST : in out NODELIST.LIST;

OP :in INTEGER;

COUNT in out INTEGER);

-- Return a list of all the children of an operator

procedure FREE_GRAPH (AGRAPH : in out GRAPH-LINK);

-- Free the memory space used by the graph

function LATENCY(OPI,OP2: INTEGER) return INTEGER: -- (7/10/92)

function PIPELINE(OP: INTEGER) return BOOLEAN, -- (7/10/92)

private

type INFO-ARRAY is array (INTEGER range <>) of OPERATOR:

type MATRIXOPINFO is

record

PARENT : INTEGER := -1;

CHILD INTEGER -1;

DELAYPIPELINE : INTEGER := 0; --(7/10/92)

end record:

type MATRIX is array (INTEGER range <>,INTEGER range <>) of MATRIXOPINFO,

type GRAPH (SIZE: INTEGER) is

record

OPARRAY : INFOARRAY(0..SIZE);

OP_MATRIX: MATRIX(0..SIZE, 0..SIZE);

end record;

end NEWDATASTRUCTURES;

92

with UNCHECKEDDEALLOCATION;

with TEXT_10- use TEXTI0;

package body NEWDATASTRUCTURES is

pragma LINK-WITH ("heaplib.sparc.ar");

procedure FREE is new UNCHECKEDDEALLOCATION(GRAPH, GRAPHLINK);

package intio is new TEXTTO.INTEGERIO(INTEGER); use intjio;

procedure PRODUCEOPARRAY (INFOLIST in out VLISTS.LIST;

COUNT in INTEGER) is

HEAD :VLISTS.LIST:= INFOLIST:

function MAKESTARTNODE return OPERATOR is

STARTOP : OPERATOR;

begin

START_OP.THEOPERATORID VARSTRING.VSTR("DUMMY START NODE");

START_OP.THE_MET 0:

START_OPTHEMRT 0;

STARTOP.THEMCP 0;

START_OP.THEWITHIN 0;

return STARTOP;

end MAKESTARTNODE;

begin

for INDEX in reverse 1..COUNT loop

THEGRAPH.OPARRAY(INDEX):= VLISTS.VALUE(INFOLIST):

VLISTS.NEXT(INFOLIST);

end loop;

THEGRAPH.OP ARRAY(0):= MAKE_START_NODE;

VLISTS.FREELIST(HEAD); --* THIS LIST IS NO LONGER NEEDED.

end PRODUCEOPARRAY;

93

function OP_POSITION (OP NAME: VARSTRING.VSTRING:

COUNT INTEGER)return INTEGER is
begin

for INDEX in 1..COUNT loop
if VARSTRING.EQUAL(OPNAME. THEGRAPH.OP-ARRAY(INDEX).

THE_OPERATORID) then return INDEX;
end if;

end loop;
return -I, -- Operator is external since it is not in the array.

end OPPOSITION;

procedure PRODUCEOPMATRIX (COUNT:in INTEGER) is

COLUMN,
ROW,
PARENTOP.

CHILDOP :INTEGER-,
LINK :constant VARSTRING.VSTRING := VARSTRING.VSTR("L INK"):

procedure INITIALIZE (COUNT : in INTEGER;

OPMATRIX :in out MATRIX) is
begin

for ROW in O..COUNT loop
THEGRAPH.OPMATRIX(ROW.ROW).PARENT := ROW;

THEGRAPH.OPMATRIX(ROW,ROW).CHILD := ROW;

end loop;
end INITIALIZE; -.-(6/5192, S)

procedure INITIALIZE_START_NODE (COUNT : in INTEGER;

OP_MATRIX :in out MATRIX) is

begin
for INDEX in O..COUNT loop

if THEGRAPH.OPMATRIX(INDEX, INDEX).PARENT = INDEX then

THEGRAPH.OPMATRIX(INDEX,INDEX).PARENT := 0;

THIE_GRAPH.OP_-MATRIX(0,INDEX).CHILD := THEGRAPH.OPMATRIX(0.0).CHILD;

THEGRAPH.OPMATRIX(O,0).CHILD := INDEX;
THI:_GRAPH.OPMATRIX(0,INDEX).PARENT := INDEX;
end if;

end loop;,

end INITIALIZE_START_NODE;

94

begin -- PRODUCEOPMATRIX
TEXTIO.OPEN (AGOUTFILE,IiNPUT,"atomic.info"):
INITIALIZE(COUNT, THE-GRAPH.OP_-MATRIX);
VARSTRING.GET_-LINE (AG-OUTFILE. New-Word)-,
while not TEXTIO.ENDOFFILE(AGOUTFILE) loop

if VARSTRING.EQUAL (NewWord,LINK) then -- keyword "LINK"
TEXTIO.SKIPLINE(AG-OUTFILE); , -- skip LINK name
VARSTRING.GET-LINE(AGOUTFILE, New-word);
PARENTOP: OPPOSITION (NEWWORD. DATA.OP_-COUNT),
int-io.GET(AG-OUTFILE,CurrentValue); --(7/28/92)
TEXTIO.SKIP_-LINE(AG-OUTFILE);
VARSTRING.GET -LINE (AG_OUTFILE, NewWord);
CHILDOP: OPý_POSlTlON(NewWord, DATA.OP_-COUNT);
if (PARENT OP /= - I and CHILDOP /= -1) then

if THEGRAPH.OP_-MATRIX(PARENT-OPCHILDOP).DELAYPIPELINE

< CurrentValue then
THEGRAPH.OP...MATRIX(PARENT-OP,CHILD-OP).DELAYPIPELINE

= CurrentValue-,
end if;
if (THEGRAPH.OP_-MATRIX(PARENT OPCHILD OP).CHILD = -1) then

THEGRAPH.OP_-MATRIX(PARENT-OP,CHILD-OP).CHILD
:=THEGRAPH.OPMATRIX(PARENT -OPPARENTOP).CHILD:

THEGRAPH.OPý_MATRIX(PARENTOP,PARENT OP).CHILD: CHELD OP,
THEGRAPH.OPýMATRIX(PARENT-OPCHILD-OP).PARENT

--THEGRAPH.OPý_MATRIX(CHILDOPCHILD-OP).PARENT-:
THEGRAPH.OP _MATRIX(CHILD-OP,CHILDOP).PARENT: PARENT OP:,

end if;
end if:

end if;
VARSTRING.GETLINE(AGOUTFILE, New_Word):

end loop;
TEXTIO.CLOSE (AG_OUTFILE);
INITIALIZE_STARTNODE(COUNT, THE_GRAPH.OPMATRIX);

end PRODUCE_OP_MATRIX;

function OPRETURN (OPPOSITION: INTEGER) return OPERATOR is
OP: OPERATOR:

begin
OP: THEGRAPH.OPARRAY(OP _POSITION);
return OP;

end OP_-RETURN;,

95

function IS_PARENT (OP-I, OP_2: INTEGER) return BOOLEAN is

-- Return true if OP_I is a parent ofOP_2 or if OPI is OP_2

PARENT: BOOLEAN := false;

begin

ifOP_1 = OP2 then

PARENT:= true;

elsif THEGRAPH.OPMATRIX(OP 1, OP_2).PARENT/= -1 then

PARENT := true:

end if;

return PARENT:

end ISPARENT;

function ISCHILD (OPI, OP_2: INTEGER) return BOOLEAN is

-- Return true if OP_1 is a child of OP_2 or if OP1 is OP_2

CHILD: BOOLEAN := false;

begin

if OPI = OP_2 then

CHILD := true;

elsif THEGRAPH.OPMATRIX(OP_2, OPI).CHILD /= -1 then

CHILD := true;

end if;

return CHILD;

end ISCHILD;

procedure RETURNPARENTLIST (PARENTLIST : in out NODELIST.LIST;

OP : in INTEGER;

COUNT : in out INTEGER) is

ROW: INTEGER := OP;

begin

COUNT := 0;

while THEGRAPH.OPMATRIX(ROW, OP).PARENT /= OP loop

NODELIST.ADD(THEGRAPH.OPMATRIX(ROW, OP).PARENT, PARENTLIST):

COUNT:= COUNT+ 1;

ROW := THEGRAPH.OPMATRIX(ROW, OP).PARENT;

end loop;

end RETURNPARENTLIST;

96

procedure RETURN_CHILD_LIST (CHILD-LIST : in out NODELIST.LIST;

OP : in INTEGER;
COUNT : in out INTEGER) is

COLUMN: INTEGER:= OP;

begin
COUNT := 0;
while THEGRAPH.OPMATRIX(OP, COLUMN).CHILD /= OP loop

NODELIST.ADD(THEGRAPH.OPMATRIX(OP, COLUMN).CHILD, CHILDLIST);

COUNT:= COUNT + 1;
COLUMN := THEGRAPH.OPMATRIX(OP, COLUMN).CHILD;

end loop;
end RETURNCHILDLIST;

procedure FREEGRAPH (AGRAPH : in out GRAPH-LINK) is

begin
FREE(AGRAPH),

end FREEGRAPH;

function LATENCY (OPl, OP2: INTEGER) return INTEGER is --(7/10/92)

begin
return THEGRAPH.OPMATRIX(OP1,OP2).DELAY_PIPELINE;

end LATENCY;

function PIPELINE(OP: INTEGER) return BOOLEAN is --(7/10/92)

begin
if THEGRAPH.OPMATRIX(OPOP).DELAYPIPELINE = 1 then

return true;

else
return false;

end if;
end PIPELINE;

end NEW.DATASTRUCTURES;

97

3. DIAGNOSTICS

with DATA; use DATA;

package DIAGNOSTICS is

procedure OUTPUTSCHEDULE (AGENDA: in SCHEDULEARRAY); --(7/21/92)

procedure OUTPUTOPID (OPEL: in VLISTS.LIST);

procedure OUTPUTHARMONICBLOCKLENGTH (HB_LENGTH: in INTEGER);

procedure OUTPUTPRECEDENCELIST (PRECLIST: in NODELIST.LIST);

end DIAGNOSTICS;

with DATA; use DATA;

with TEXT_10; use TEXT_10; --(7/21/92)

with FRONTEND; use FRONT_END; --(7/21/92)

package body DIAGNOSTICS is

package int-io is new integerjio(integer); use intjio;

procedure OUTPUTSCHEDULE (AGENDA: in SCHEDULEARRAY) is --(7/21/92)

AGENDA_1: SCHEDULEARRAY := AGENDA; --(7/21/92)

begin

for PROCESSORNUM in 1..NOP loop

SETCOL(1);

PUT("THE PROCESSOR NO. :");

int_io.PUT(PROCESSORNUM, WIDTH=>2);

NEWLINE;

SETCOL(3);
PUT("OP#");

SETCOL(8);

PUT("INSTANCE # ");

SETCOL(20);

PUT("START TIME");

SETCOL(32);

98

PUT("STOP TIME");
SET_-COL(46):

PUT("LOWER");
SETCOL(56);
PLJT(UPPER)

NEWLINE;

while SCHEDULEINPUTSLIST.NONEMPTY(AGENDA-1(PROCESSOR-NUM)) loop
SETCOL(3);
int-io.PUIT(SCHEDULEINPUTS_LIST.VALUE(AGENDAI (PROCESSOR NUM)).

THEOPERATOR, WIDTH => 3);
SETCOL(6);

SETCOL(7;
int_io.PUT(SCHEDULEINPUTS_LIST.VALUE(AGENDA_1 (PROCESSOR NUM)).

THEINSTANCE, width => 10);
SETCOL(20);
int-io.PUT(SCHIEDULE_INPUTS_ýLIST.VALUE(AGENDA_1(PROCESSOR-NUM)).

THESTART, width => 10);
SETCOL(3 1);
int-io.PUT(SCHEDULE_INPUTSLIST.VALUE(AGENDA_1(PROCESSOR-NUM)).

THE_STOP, width => 10);

SETCOL(4 1);
mnt-io.PUT(SCHEDULE_INPUTSLIST.VALUE(AGENDA_1(PROCESSOR-NUM)).

THELOWER, width => 10);
SETCOL(5 1);
in!_io.PUT(SCHE-DULEINPUTS_LIST.VAI.AE(AGENDA 1 (PROCESSOR NUM)).

THEUPPER, width => 10);
NEW-LINE,
SCHEDULEINPUTSLIST.NEXT(AGENDAJ (PROCESSOR NUM));

end loop;
end loop;,

end OUTPUT_SCHEDULE;

procedure OUTPUT_HARMONICBLOCKLENGTH (HBLENGTH: in INTEGER) is

begin
PUT("The Harmonic Block Length is:");
mnt-io.PUT(HBLENGTH);
NEW-LINE;

end OUTPUTJ-HARMONIC_.BLOCKLENGTH;

99

procedure OUTPUT_OPJID (OP-EL: in VLISTS.LIST) is

TRAVERSE: VLISTS.L1ST := OPEL:,

begin
VARSTRING.PUT(VLISTS.VALUE(TRAVERSE).THE_OPERATOR ID);

end OUTPUT_OPJID,

procedure OUTPUTPRECEDENCEJLIST (PREC_LIST: in NODELIST.LIST) is

TRAVERSE: NODELIST.LIST := PRECLIST:

begin
while NODELIST.NONEMPTY(TRAVERSE) loop

VARSTRING.PUT(NEWGRAPH.OPRETUR(NODE_ýLIST.VALIJE(TRAVERSE)).
THE_OPERATORID);

NEWLINE:
NODELIST.NEXT(TRAVERSE);

end loop:
end OUTPUT_PRECEDENCELIST:,

end DIAGNOSTICS:

10()

APPENDIX D. ADA CODES OF THE NEW PACKAGES

1. UTILITYPKG

with DATA; use DATA;

package UTILITYPKG is

M : CONSTANT:= 2**13;

subtype NUMBER is FLOAT range 0.0.. 1.0;

subtype SEED is INTEGER range l..M-1;

procedure RANDOMINITIALIZE(STARTVALUE: in SEED); -- initialize random number generator.

function RANDOMNEXT return NUMBER; -- gives a random number between 0 and 1.

procedure DETERMINETHE_UPPER(TEMP in OPERATOR;

NEWNODE in out SCHEDULEINPUTS);

procedure DETERMINE_STARTSTOP(TEMP : in OPERATOR;

PROC_NUM in out INTEGER;

NEWNODE : in out SCHEDULEINPUTS;

PROCSTOP : in out PROCESSORARRAY);

procedure CREATEADDLNODE(NEWNODE : in SCHEDULEINPUTS;

TEMP in OPERATOR;

ADDLNODE : in out SCHEDULE_INPUTS);

procedure TESTSCHEDULE(HBL : in INTEGER

AGENDA : in SCHEDULEARRAY;

COST : in out INTEGER);

function ANNEALFUNCTION(COSTI : INTEGER;

COST_2 : INTEGER;

CURRENTTEMPER : FLOAT) return FLOAT,

procedure ADJUSTPRECEDFNCE(COUNT : in INTEGER;

P_LIST : in out NODELIST.LIST):

end UTILITY_PKG;

101

with DATA; use DATA;

with FRONTEND; use FRONT-END;

with PRIORITY-QUEUES;

with MATH; use MATH;

with TEXTIO; use TEXT_10;

with DIAGNOSTICS;

package body UTILITYPKG is

U : NATURAL;

K : CONSTANT:= 5**5;

package int-io is new TEXT_IO.INTEGERJIO(INTEGER);

procedure RANDOMINITIALIZE(STARTVALUE: in SEED) is

begin

U := START-VALUE:

end RANDOMINITIALIZE;

function RANDOMNEXT return NUMBER is

begin

U:= U * K mod M;

return FLOAT(U)/FLOAT(M);

end RANDOM-NEXT;

procedure DETERMINETHEUPPER(TEMP : in OPERATOR;

NEWNODE • in out SCHEDULEINPUTS) is

begin

if TEMP.THEWITHIN /= 0 then

NEWNODE.THEUPPER:"

NEWNODE.THELOWER + TEMP.THEWITHIN - TEMP.THE_MET;

else

NEWNODE.THEUPPER"-

NEWNODE.THELOWER + TEMP.THEPERIOD - TEMP.THEMET;

end if;

end DETERMINETHEUPPER;

102

procedure DETERMINESTART_STOP(TEMP : in OPERATOR;
PROCNUM in out INTEGER:

NEWNODE in out SCHEDULEINPUTS:

PROCSTOP in out PROCESSOR_ARRAY) is

PROCFREE: VALUE := NEWNODE.THE_LOWER;

begin

NEWNODE.THESTART := NEWNODE.THELOWER;

for I in I..NOP loop

if PROCSTOP(I) <= NEW_NODE.THELOWER then

if PROCSTOP(I) <= PROC_FREE then

NEWNODE.THESTART := NEWNODE.THELOWER;

PROCFREE := PROCSTOP(I);

PROCNUM= 1:

end if;

else

if I = 1 then
NEWNODE.THESTART := PROCSTOP(1);

PROCNUM:= 1;

elsif PROCSTOP(I) <= NEWNODE.THESTART then
NEWNODE.THESTART := PROCSTOP(I);

PROC_NUM:= I;

end if;

end if;

end loop;

NEW NODE.THE_STOP:= NEWNODE.THESTART + TEMP.THE_MET;

PROCSTOP(PROCNUM):= NEWNODE.THESTOP;

end DETERMINE_START_STOP;

procedure CREATEADDLNODE(NEWNODE : in SCHEDULE-INPUTS;

TEMP in OPERATOR;

ADDLNODE : in out SCHEDULEINPUTS) is

begin

ADDLNODE.THE_OPERATOR := NEWNODE.THE_OPERATOR;

ADDLNODE.THESTART := TEMP.THEPERIOD * NEWNODE.THEINSTANCE;

-- store synchronous information

ADDLNODE.THEINSTANCE := NEWNODE.THE_INSTANCE + 1;

if not NEWGRAPH.PIPELINE(NEWNODE.THEOPERATOR)

and then ADDLNODE.THE_LOWER < NEWNODE.THESTOP then

ADDLNODE.THELOWER := NEWNODE.THESTOP;

end if:

end CREATEADDLNODE;

103

procedure TESTSCHEDULE(HBL :in INTEGER;
AGENDA: in SCHEDULE-ARRAY:,

COST in out INTEGER) is

V SCHEDULEARRAY: AGENDA;
PREVIOUS SCHEDULEINPUTSLIST.LIST: null;

begin

COST: 0;
for T in l..NOP loop

while SCHEDULEINPUTSLIST.NONEMPTY(V(I)) loop
if COST < (SCHEDULEINPUTS_LIST.VALUE(V(1)).THE_START

- SCHEDULEINPUTSLIST.VALUE(V(I)).THE -UPPER) then
COST := SCHEDULE_-INPUTS_-LIST.VALUE(V(I)).THESTART

- SCHEDULEINPUTSLIST.VALUE(V(I)).THE UPPER:
end if:
PREVIOUS :=V()

SCHEDULE_INPUTSLIST.NEXT(V(I)):
end loop;
if SCHEDULEINPUTSLIST.VALIJE(PREVIOUS).THESTOP > HBL and then

COST < (SCHEDULEINPUTSLIST.VALUE(PREVIOUS).THE STOP - HBL) then
COST := SCHEDULEINPUTSLIST.VALUE(PREVIOUS).THESTOP - HBL:.

end if:,
end loop:

end TESTSCHEDULE:

function ANNEALFUNCTION(COST_1 : INTEGER:
COST_2 : INTEGER,
CURRENTTEMPER :FLOAT) return FLOAT is

DELTAC : FLOAT:

begin
DELTAC := (FLOAT(COST 1 - COST -2)/CURRENTTEMPER):
if DELTAC <= 15.0 then

return EXP(-DELTA&C):,
else

return 0.0:
end if:

end ANNEALFUNCTION;

104

procedure ADJUSTPRECEDENCE(COUNT in INTEGER-,
PLIST in out NODE LIST.LIST) is

MOVE_COUNT INTEGER: 0;,
OPNO INTEGER;
PRE-NO INTEGER,
PRECEDENCENEW BOOLEAN: false,
WORKLIST NODELIST.LIST,
ADJUST OP NODELIST.LIST,
AHEAD NODELIST.LIST;,

begin
while not PRECEDENCENEW loop

NODELIST.FREE LIST(WORK-LIST):
WORKLIST: PLIST:
while NODELIST.NONEMPTY(WORKLIST) loop --Move to tail of list

ADJUSTOP:= WORKLIST:
NODELIST.NEXT(WORK LIST);

end loop;
MOVECOUNT: INTEGER(RANDOMNEXT *FLOAT(COUNT));

while MOVECOUNT > 1 loop
NODELIST.PREVIOUS(ADJUST_-OP);
MOVE_-COUNT: MOVECOUNT - 1;

end loop;
WORKLIST: ADJUSTOP:-
OPNO: NODELIST.VALUE(ADJUST-OP)*;
NODE_LIST.PREVIOUS(WORK-LIST);
AHEAD: WORK_-LIST;
while NODELIST.NONEMPTY(AHEAD) and not PRECEDENCENEW loop

PRIE_NO: NODELIST.VALUE(WORK LIST),
if NEWGRAPH.ISPARENT(PRENO,OP NO) then

NODELIST.PREVIOUS(ADJUST -OP);,
OP_NO: NODELIST.VALUE(ADJUST-OP);
WORKLIST: ADJUST._OP;
NODE-LIST.PREVIOUS(WORKQLIST);
AHEAD: WORKLIST;,

else
while NODE_LIST.NON_EMPTY(WORKLIST) and

not NEW_GRAPH.IS_PARENT(PRE...NO,OP NO) loop
NODE_LIST.PREVIOUS(WORK-LIST);

if NODELIST.NON_EMPTY(WORK-LIST) then

105

PRENO: NODELIST.VALUE(WORKLIST);
end if;

end loop;
NODELIST.REMOVE(OP_-NOPLIST);

NODELIST INSERTNEXT(OP NOWORKLIST);
PRECEDENCENEW: true;

end if;
end loop;

end loop;
end ADJUSTPRECEDENCE;

end UTILITY-PKG;

106

2. NEWSCHEDULERPKG

with DATA; use DATA;

package NEWSCHEDULERPKG is

procedure EARLIESTSTART(COUNT :in INTEGER;

HBL in INTEGER;
VALIDSCHEDULE in out BOOLEAN;

AGENDA in out SCHEDULEARRAY);

procedure EARLIESTDEADLINE(COUNT in INTEGER:

HBL in INTEGER:
VALIDSCHEDULE in out BOOLEAN;

AGENDA in out SCHEDULE-ARRAY),

procedure SIMULATEDANNEAL(COUNT : in INTEGER:

HBL : in INTEGER;
PRECEDENCELIST in out NODELIST.LIST;

AGENDA : in out SCHEDULEARRAY:
VALIDSCHEDULE in out BOOLEAN);

end NEWSCHEDULERPKG;

107

with TEXT_10; use TEXT_10;

with DATA: use DATA:

with FRONTEND, use FRONTEND;

with PRIORITYQUEUES;

with UTILITY PKG; use UTILITYPKG;

with MATH; use MATH;

with DIAGNOSTICS;

package body NEWSCHEDULERPKG is

package intjio is new TEXT_IO.INTEGERIO(INTEGER); use int_io;

procedure EARLIESTSTART(COUNT :in INTEGER;

HBL :in INTEGER;

VALIDSCHEDULE in out BOOLEAN:

AGENDA in out SCHEDULE_ARRAY) is

package EST-QUEUES is new PRIORITY_QUEUES(SCHEDULEINPUTSLOWERS,"<"):

type IN-ARRAY is array (O..COUNT) of VALUE;

PROCESSORSTOP PROCESSORARRAY (others => 0);
REVAGENDA SCHEDULEARRAY (others => null);
WORKLIST NODELIST.LIST null;

PARENTHEAD NODELIST.LIST null;

CHILDHEAD NODELIST.LIST null;
QUE ESTQUEUES.LINK null;
WAITLIST SCHEDULEINPUTSLIST.LIST null;

PARENTOP OPERATOR;

CHILDOP OPERATOR;

CHILDNUM INTEGER;

TEMPNODE SCHEDULEINPUTS;

INSERT BOOLEAN;

FINISH INARRAY (others=> 0);
-- store the finishing time of 1st instance of each op

INSTANCE_NO : INARRAY (others=> 0):

-- store the # of instances of each op that have been scheduled
READY : INARRAY (others=> 0);

-- store the lower bound of the 1st instance of each op

108

procedure DETERMINEBESTLOWER(REVAGENDA: in SCHEDULEARRAY:,

INSTNO in out [N-ARRAY-.

NEW_NODE in out SCHEDULE-INPUTS:,
WAIT_LIST in out SCHEDULE INPUTSLIST.LIST:.

PRL-Q in out EST -QUEUES.LINK) is

NEXTPROCESSOR :BOOLEAN;

INSTANCEFOUND BOOLEAN;

OLD SCHEDULEINPUTS:

TEMPSCHEDULE SCHEDULE_-ARRAY:

OPNO :INTEGER;
11 NATURAL;

begin

OP_-NO: NEWNODE.THE_-OPERATOR;

if not NEWGRAPH.ISCHILD(OP-NOO) then

NEWGRAPH.RETURNPARENTLIST(PARENTLIST,OPNO.PARENTCOUNT):

LISTHEAD := PARENTLIST,

while NODELIST.NONEiMPTY(PARENT LIST) loop

PARENTNUM: NODELIST.VALUE(PARENT-LIST);
PARENTOP := NEWGRAPH.OPRETURN(PARENTNUM);

if (NEW_NODE.THESTART mod PARENTOP.THEPERIOD) = 0I then

I := (NEWNODE.THESTART / PARENTOP.THEPERIOD) + 1;

if I > INSTNO(PARENT NUM) then

SCHEDULEINPUTSLIST.ADD(NEW-NODEWAITLIST);
NEWNODE := ESTQUEUES.READ_ BESTFROMPRIORITY_QUEUE(PRLQ),

EST-QUEUES.REMOVEBESTFROM_-PRIORITY QUEIJE(PRI-Q);

DETERMINEBESTLOWER(REVAGENDA,INST-NO.NEW-NODE,WAITLIST.PRI-Q).

else

TEMPSCHEDULE := REVAGENDA;

L := 1,

INSTANCEFOUND := false;

while L <= NOP and not INSTANCE-FOUND loop

NEXTPROCESSOR := false-,

while not (INSTANCEFOUND or NEXTPROCESSOR) loop

if SCHEDULEINPUTSLIST.NONEMPTY(TEMIP_SCHEDULE(L)) then

OLD: SCHEDULEINPUTSLTST.VALUE(TEMPSCHiEDULE(L));

if OLD.THESTOP > NEWNODE.THELOWER then

if OLD.THEOPERATOR = PARENTNUM and then

OLD.THE INSTANCE = I then

INSTANCEFOUTND:= true;

109

if NEWNODE.THE-LOWER < OLD.THESTOP +

NEWGRAPH.LATENCY(PARENTNUM.OP-NO) then
NEWNODE.THE LOWER:= OLD.THBSTOP +

NEWGRAPH.LATENCY(PARENTNUMOPNO);
end if,

else
SCHEDULEINPUTSLTST.NEXT(T7EMPSCHEDULE(L));

end if-,
else

NEXTPROCESSOR: true-,
end if;,

else
NEXTPROCESSOR: true-,

end if;
end loop:,

L: L + I-,

end loop;
end if;, -- "I > INSTNO"

end if;
NODELIST.NEXT(PARENTLIST);,

end loop;
NODELIST.FREELIST(LISTHEAD);

end if;

end DETERMINEBEST_LOWER;

begin -- procedure EARLIESTSTART

NODELIST.FRBELIST(PARENTLIST):,
NODELIST.FREELIST(CmHLD-LIST):.
NEWGRAPH.RETURNCHILD-LIST(WORK LIST0,OCHILD COUNT);,
LISTHEAD: WORK-LIST;
while NODELIST.NON..EMPTY(WORK_.LIST) loop

OPNUM: NODELIST.VALUE(WORIQLIST);

TEMP: NEWGRAPH.OPRETURN(OPNUM);
NEW INPUT.THE_OPERATOR: OPNUM;
NEW INPUT.THE LOWER: 0;,
NEWINPUT.THE_-INSTANCE: 1;
DET7ERMINETHE-UPPER(TEMP.NEW-INPUT);
DETERMINESTART _STOP(TEMP,PROCESSOR_NUM,NEW-INPUT,PROCESSOR-.STOP)
READY(OPNUM): NEWINPUT.THE-START:
FINISH(OPNUM): NEW_[NPUT.THE-STOP;
INSTANCE.340(OPNUM): 1;

110.

SCHEDULE INPUTSLIST.ADD(NEW-JNPUT.REVAGENDA(PROCESSORNUM));
if NEW_INPUT.THEINSTANCE < (HBL / TEMP.THE_-PERIOD) then

ADDLNODE.THELOWER := READY(OPNUM) + TEMP.THEPERIOD;
DETERMINETHEUPPER(TEMP~ADDL_NODE);
CREATEADDLNODE(NEW_INPUT.TEMP,ADDL-NODE);
ESTLQIEUES INSERTINPRIORrrY-QUEUE(ADDLNODE,ADDLNODE.THE-LOWER.QUE):

end if;,
NEWGRAPH.RETURNCHILD-LIST(CHILDLIST,OP-NUMCHIL DCOUNT):.
CHILDHEAD: CHILDLIST;,
while NODELIST.NONEMPTY(CHIILDLIST) loop

CHILDNUM: NODELIST.VALUE(CHILDLIST);
INSERT: true;
NEWGRAPH.RETURNPARENTLIST(PARENT-LIST,CHILDNUM.PARENTCOUNT:,
PARENTHEAD: PARENT -LIST,
FIRST.THELOWER: 0;
while NODELIST.NONEMPTY(PARENT LIST) loop

PARENTNUM := NODELIST.VALUE(PARENT LIST);
if INSTANCENO(PARENT NUM) = 0 then

INSERT: false-,
PARENTLIST := null;,

else
if FINISH(PARENTNUM) + NEW_GRAPH.

LATENCY(PARENTNUM, CHILDNUM) > FIRST.THELOWER then
FIRST.THELOWER := FINISH(PARENTN1JM) + NEW_GRAPH.

LATENCY(PARENTNUM,CHILDNUM);
end if;
NODELIST.NEXT(PARENTLIST);,

end if;
end loop;
NODELIST.FREE-LIST(PARENTHEAD);,
if INSERT then

FIRST.THEOPERATOR := CHILDNUM;
CHILDOP := NEWGRAPH.OPRETURN(CHILD-NUM);
DETERMINETHEUPPER(CHILDOP.FIRST);
EST QUEUES INSERTINPRIORITYQUEUE(FIRST,FIRST.THELOWER.QUE);

end if;,
NODELIST.NEXT(CHILDLIST);

end loop;
NODELIST.FREELIST(CHILDHEAD);,
NODELIST.NEXT(WORKLIST);

end loop;

NODEL1ST.FREELIST(LIST HEAD);

while ESTQIJEUES.NON_EMPTY(QUE) loop
BEST: EST.QUEUES.READBESTFROM~_PRIORITYQUEUE(QUE);
EST QUEUES.REMOVEBESTFROMPRIORITY__QUEUE(QUE);
if BEST.THEINSTANCE = 1 then

OPNUM := BEST.THEOPERATOR;
NEWINPUT: BEST;
TEMP := NEWGRAPH.OP'_RETURN(OPNUM);
DETERMINESTART-.STOP(TEMP.PROCESSORNUMNEW_ NPUT,PROCESSORSTOP):

READY(OP-NUM) := NEWINPUT.THELOWER;
FINISH(OP.NUM) := NEWINPUT.THESTOP;
INSTANCE-NO(0P.NUM) := 1;
SCHEDULE_INPUTSLIST.ADD(NEW-INPUT,REVAGENDA(PROCESSORNUM));
NEWGRAPH.RETTJRNCHILD-LIST(CHILDLISTOPNUM.CHILD-COUNT);
CHILDHEAD: CHILDLIST;
while NODELIST.NONEMPTY(CHILDLIST) loop

CHILDNUM := NODELIST.VALUE(CHILD LIST);.
INSERT := true;
NEWGRAPH.RETURNPARENTLIST(PARENT-LISTCHILDNUM,PARENL-COUNTh,

PARENT_ýHEAD := PARENT LIST;,
FIRST.THELOWER := 0;
while NODELIST.NONEMPTY(PARENTLIST) loop

PARENTNUM := NODELIST.VALUE(PARENLTLIST);

if INSTANCE -NO(PARENT-NUM) = 0 then
INSERT: false;

PARENTLIST: null;
else

if FINISH(PARENT_NUM) + NEW_GRAPH.LATENCY
(PARENTNUM,CHILDNUM) > FIRST.THELOWER then

FIRST.THELOWER := FINISH(PARENTLNUM) + NEWGRAPH.LATENCY
(PARENTNUM,CHILD..N1JM);

end if-,
NODELIST.NEXT(PARENTLIST);

end if;
end loop;
NODELIST.FREE_..LIST(PARENTHEAD):.
if INSERT then

FIRST.THE OPERATOR := CHILDNUM;
CHILD...OP := NEWGRAPH.OPRETURN(CHILD_NUM);
DETERMINETHE_ýUPPER(CHILD...OP,FIRST);

112

EST-QUEUES .INSERT_[NPRIORffY-QUEUE(FIRST,FIRST.THELOWER.QUE):
end if;,
NODELIST.NEXT(CHILD_LIST):

end loop;
NODELIST.FREELIST(CHILDHEAD);

else
DETERMINEBESTLOWER(REVAGENDAINSTANCE_NO,BEST,WAITLIST.QUE);
OPNUM: BEST.THEOPERATOR;
NEWINPUT: BEST:
TEMP: NEWGRAPH.OP-RETURN(OPNUM);
DETERMINESTARTSTOP(TE.MP.PROCESSOR_-NUMNEWINPUTPROCESSOR_STOP);

SCHEDULEINPUTSLIST.ADD(NEW_INPUT REVAGENDA(PROCESSORNUM));
INSTANCENO(NEWINPUT.THEOPERATOR): NEWINPUT.THEINSTANCE;,
while SCHEDULEINPUTSLIST.NON EMPTY(WAITLIST) loop

TEMPNODE: SCHEDULEINPUTSLIST.VALUE(WAITLIST);
ESLýQUEUES.INSERTINPRIORITY-QUEUE(TEMP-NODE,TEMPJJNODE.THEýLOWER.QUE);
SCHEDULEINPUTS_LIST.REMOVE(TEMP NODE,WAIT LIST);

end loop;
end if;
if NEWINPUT.THESTART > NEWINPUT.THEUPPER

or NEWINPUT.THESTOP > HBL then
VALIDSCHEDULE: false;

end if;
if NEWINPUT.THE_INSTANCE < (HBL I TEMP.THE_-PERIOD) then

ADDLNODE.THELOWER: READY(NEWINPUT.THEOPERATOR)
+ TEMP.THEPERIOD * NEWINPUT.THEINSTANCE;,

DETERMINETHEUPPER(TEMPADDLNODE);
CREATEADDLNODE(NEWJINPUT,TEMIP,ADDL-NODE);
EST_QUEUES.INSERTINPRIORITY...QUEUE

(ADDLNODE,ADDLNODE.THELOWER.QUE);
end if;

end loop;

for I in 1..NOP loop
SCHEDULEINPUTSLIST.LISTREVERSE(REV_AGENDA(I), AGENDA(I));
SCHEDULE_INPUTSLIST.FREELIST(REVAGENDA(I));,

end loop;

end EARLIESTSTART;

113

procedure EARLIEST_DEADLINE(COUNT in INTEGER;

HBL :in INTEGER;
VALIDSCHEDULE : in out BOOLEAN;

AGENDA : in out SCHEDULEARRAY) is

package EDLQUEUES is new PRIORITYQUEUES(SCHEDULE-INPUTSUPPERS,"<");

type IN-ARRAY is array (0..COUNT) of VALUE;

PROCESSORSTOP PROCESSORARRAY (others => 0);

REVAGENDA SCHEDULEARRAY := (others => null);

WORKLIST : NODELIST.LIST null;

PARENTHEAD NODELIST.LIST := null;

CHILDHEAD : NODELIST.LIST := null;
WAITLIST : SCHEDULEINPUTSLIST.LIST:= null;

PARENTOP OPERATOR;

CHILDOP OPERATOR;

CHILDNUM INTEGER;

QUE EDLQUEUES.LINK null;

INSERT BOOLEAN;

TEMPNODE SCHEDULEINPUTS;

FINISH INARRAY (others=> 0);

INSTANCENO • INARRAY (others=> 0);

READY : INARRAY (others=> 0);

procedure DETERMINEBESTLOWER(REV_AGENDA: in SCHEDULEARRAY;

INSTNO : in out INARRAY;

NEWNODE : in out SCHEDULEINPUTS;

WAITLIST : in out SCHEDULEINPUTSLT.LIST;

PRIQ : in out EDL QUEUES.LINK) is

NEXTPROCESSOR : BOOLEAN;

INSTANCEFOUND : BOOLEAN;

OLD : SCHEDULEINPUTS;

TEMPSCHEDULE : SCHEDULEARRAY:

OPNO : INTEGER;

I,L : NATURAL;

begin

OPNO := NEWNODE.THEOPERATOR;

if not NEWGRAPH.IS_CHILD(OPNO,0) then

114

NEWGRAPH.RETURNPARENTLIST(PARENT-LISTOPNO,PARENT COUNT):,
LISTHEAD: PARENT_-LIST:
while NODELIST.NON_EMPTY(PARENT LIST) loop

PARENT_NUM: NODELIST.VALUE(PARENT LIST);,
PARENTOP :=NEWGRAPH.OPRETURN(PARENT -NUM);
if (NEW_NODE.THESTART mod PARENTOP.THEPERIOD) = 0 then

I=(NEW NODE.THESTART / PARENTOP.THEPERIOD) + 1,
if I > INSTNO(PARENTNUM) then

SCHEDULEINPUTS_LIST.ADD(NEWNODEWAITLIST);
NEWNODE: EDLQUEUES.READ_BESTFROMPRIORITYQUEUE(PRIQ)
EDL-QUEUES.REMOVEBESTFROM_PRIORITYQUEUE(PRI-Q);
DETERMINE_BESTLOWER

(REV_AGENDAINSTNO,NEW-NODE,WAIT-LIST,PRI-Q);
else

TEMPSCHEDULE: REVAGENDA;
L := 1;
INSTANCEFOUND: false;
while L <= NOP and not INSTANCEFOUND loop

NEXTPROCESSOR := false;
while not (INSTANCE-FOUND or NEXT_-PROCESSOR) loop

if SCHEDULEINPUTS_LIST.NONEMPTY(TEMPSCHEDULE(L)) then
OLD := SCHEDULE_-INPUTSLIST.VALUE(TEMPSCHEDULE(L));
if OLD.THESTOP > NEWNODE.THELOWER then

if OLD.THEOPERATOR = PARENTNUM and then

OLD.THEINSTANCE = I then
INSTANCEFOUND := true;,
if NEWNODE.THELOWER < OLD.THESTOP

+ NEWGRAPH.LATENCY(PARjENT NUM,OP -NO) then
NEWNODE.THELOWER:= OLD.THE_-STOP

+ NEWGRAPH.LATENCY(PARENT NUM.OP NO);
end if;

else
SCHEDULEINPUTSLIST.NEXT(TEMP-SCHEDULE(L));

end if;
else

NEXTPROCESSOR := true;
end if;,

else
NEXTPROCESSOR := true;

end if;,
end loop;

115

L: L + I-,
end loop;

end if; -- "I > INSTNO"
end if:,
NODELIST.NEXT(PARENT-LIST),

end loop;
NODE-LIST.FREELIST(LISTHEAD);

end if;

end DETERMINEBESTLOWER:

begin -- procedure EARL IESTDE ADLINE
NODELIST.FREELIST(PARIENT -LIST);
NODELIST.FREELIST(CHILDLIST):

NEWGRAPH.RETURNCHILD_LIST(WORKLIST.O.CHILDCOUNT):,
LIST-HEAD: WORKLIST:,
while NODELIST.NON_EMPTY(WORKLIST) loop

OPNUM: NODELIST.VALUE(WORK LIST):
TEMP: NEWGRAPH.OPRETURN(OP-NUM):
FIRST.THEOPERATOR: OPNUM:
FIRST.THELOWER: 0;
DETERMINETHE_UPPER(TEMRFIRST);
EDL QUEUES .INSERTINPRIORITY-QUEUE(FIRST,FIRST.THE-IUPPER,QUE):,
NODELIST.NEXT(WORK_LIST):

end loop:
NODELIST.FREELIST(LIST-HEAD):

while EDL_QUEUES.NON_EMPTY(QUE) loop
BEST: EDLQUEIJES.READ_BEST_FROMPRIORITYQUEUE(QUE);
EDL QUEUES.REMOVE_BESTFROMPRIORITY-QUEUE(QUE),

if BEST.THEINSTANCE = 1 then

OPý_NUM := BEST.THE_OPERATOR:
NEWINPUT: BEST:
TEMP: NEWGRAPH.OPRETURN(OP-NUM):,
DETERMINESTARTSTOP

(TEMP,PROCESSORNUM,NEWINPUT,PROCESSORSTOP);.
if NEWGRAPH.IS CHILD(OP-NUM,0) then

READY(OP..NUM) := NEWINPUT.THESTART:
else

116

READY(OP-NUM): NEW_INPUT.THELOWER;
end if;,
FINISH(OP-NUM) := NEWINPUT.THE_STOP;
INSTANCENO(OPNUM): 1;
SCHEDULEINPUTSLIST.ADD(NEWINPUT,REVAGENDA(PROCESSORNUM));

NEWGRAPH.RETIJRNCHILDLIST(CHILD-LIST,OP-NUM,CHILDCOUNT):
CHILDHEAD: CHILDLIST:
while NODELIST.NONEMPTY(CHILD LIST) loop

CHILDNUM := NODELIST.VALUE(CHILDLIST);
INSERT: true;
NEWGRAPH.RETURNPARENTLIST

(PARENT LIST.CHILDNUM,PARENT COUNT);
PARENTHEAD: PARENTLIST,
FIRST.THELOWER: 0;,
while NODELIST.NON EMPTY(PARENT_-LIST) loop

PARENTNUM: NODELIST.VALUE(PARENTLIST);
if INSTANCENO(PARENTNUrv) = 0 then

INSERT := false;
PARENTLIST := null;

else
if FIRS T.THELOWER < FINISH(PARENT-NUM)

+ NEWGRAPH.L.XTENCY(P.ARENT_NtTMCHILD_NUM) then
FIRST.THELOWER := FINISH(PAREiNT NUM)

+ NEWGRAPH.LATENCY(PARENT-NUM,CHILDNUM);
end if;
NODELIST.NEXT(PARENTLIST);

end if;
end loop;
NODELIST.FREELIST(PARENT HEAD);

if INSERT then
FIRST.THEOPERATOR := CHILD-NUM;
CHILDOP := NEWGRAPH.OP RETURN(CHILDNUM);
DETERMINETHEUPPER(CHILDOP.FIRST);
EDLQUEUES .INSERTINPRIORITY QUEUE(FIRST,FIRST.THE UPPER,QUE);

end if;
NODELIST.NEXT(CHILDLIST);

end loop;.
NODELIST.FREELIST(CHILD_HEAD);

else

117

DETERMINEBESTLOWER(REV-AGENDA.INSTANCENO,BEST,WAITLIST.QUE);

OPNUM: BEST.THEOPERATOR:

NEWINPUT: BEST:

TEMP: NEWGRAPH.OP-RETURN(OPNUM).

DETERMINESTARTSTOP(TEMP.PROCESSOR_-NUM.NEW-INPUTPROCFSSORSTOP):

SCHEDULEINPUT SLIST.ADD(NEW-INPUTREVAGENDA(PROCESSORNUM)):

INSTANCENO(NEW-INPUT.TIIEOPERATOR): NEW_INPUT.THEINSTANCE:-
while SCHEDULEINPUTSLIST.NONEMPTY(WAITLIST) loop

TEMPNODE: SCHEDULEINPUTSLIST.VALUE(WAITLIST);

EDLQUEUES.INSERTINPRIORITYQUEUE

(TEMPNODE TEMPNODE.THIEUPPER.QUE);

SCHEDULEINPUTSLIST.REMOVE(TEMP NODE,WAIT LIST);

end loop:

end if;

if NEWINPUT.THESTART > NEWINPUT.THEUPPER

or NEWINPUT.THESTOP > HBL then

VALIDSCHEDULE: false;

end if;

if NEWINPUT.THEINSTANCE < (HBL / TEMP.THEPERIOD) then

ADDLNODE.THIELOWER: READY(NEWINPUT.THEOPERATOR) +

TEMP.THEPERIOD * NEWINPUT.THEINSTANCE:

DETERMINETHEUPPER(TEMP,ADDL_NODE);

CREATEADDL-NODE(NEW-INPUT,TEMP,ADDL -NODE);
EDLQUEUES.INSERTINPRIORITY-QUEUE

(ADDL-NODE,ADDLNODE.THEUPPERQUE);,

end if;,

end loop;

for I in l..NOP loop

SCHEDULE-INPUTSLIST.LISTREVERSE(REVAGENDA(I). AGENDA(I));

SCHEDULEINPUTSLIST.FREE..LIST(REV-AGENDA(I));,

end loop;

end EARLI[ESTDEADLINE;

118

procedure SIMULATEDANNEAL(COUNT in INTEGER;

HBL in INTEGER;
PRECEDENCELIST in out NODELIST.LIST:
AGENDA in out SCHEDULEARRAY:
VALIDSCHEDULE in out BOOLEAN) is

package floatio is new TEXTIO.FLOATIO(FLOAT); use floatio;

package PRIORITYQ is new PRIORITY_QUEUES(SCHEDULEINPUTSLOWERS,"<");

use PRIORITYQ;

type IN-ARRAY is array (0..COUNT) of VALUE;
PROCESSOR-STOP PROCESSOR-ARRAY;
REVAGENDA SCHEDULEARRAY:

INSTANCENO : INARRAY;
READY : INARRAY;
PLIST NODELIST.LIST:- null;

ADDLLIST SCHEDULEINPUTSLIST.LIST;
A_LIST : SCHEDULEINPUTSLIST.LIST := null-

HEADA SCHEDULEINPUTSLIST.LIST null;

COST : INTEGER;

QUE PRIORITYQ.LINK := null;

119

procedure SCHEDULE_1st_INSTANCES(HBL in INTEGER:
READY in out INARRAY:
PLIST in out NODELIST.LIST-:
PROCSTOP :in out PROCESSOR_-ARRAY;
REVAGENDA :in out SCHEDULE-ARRAY:
ALIST: in out SCHEDULEINPUTSLIST.LIST) is

FINISH : INARRAY: (others => 0),
WORKLIST : NODELIST.LIST,
PARENTHEAD : NODELIST.LIST:,

begin
NODELIST.FREE-LIST(PARENTLIST);
NODELIST.FREE LIST(CHILD-LIST);

SCHEDULEINPUTSLIST.FRIEELIST(A-LIST):
REV_AGENDA := (others=> null);
PROCSTOP := (others=> 0);,
READY := (others => 0):
NODELIST.REMOVE(0,P -LIST);
NODELIST.DUPLICATE(P LIST,WORK-LIST):
NEWGRAPH.RETURNCHILD-LIST(CHILDLIST.0,CHILD-COUNT):
LIST-HEAD := CHILD-LIST;
while NODELIST.NONEMPITY(CHILDLIST) loop

OP_NUM := NODELIST.VALUE(CHI-LD LIST):
TEMP := NEWGRAPH.OP_-RETURN(OP-NUM);
NEWINPUT.THE-OPERATOR := OP-NUM:
NEWINPUT.THE LOWER := 0;
NEWINPUT.THEJINSTANCE := 1;
DETERMINETHEUPPER(TEMP,NEW_INPUT);
DETERMINESTART_-STOP(TEMP,PROCESSOR NUM.NEWINPUT,PROCSTOP):
READY(OP-NUM) := NEWINPUT.THESTART:,
FINISH(OPNUM) := NEW_INPUT.THESTOP:
SCHEDULE-INPUTSLIST.ADD(NEW-INPUT,REVAGENDA(PROCESSORNUM)):,
NODELIST.REMOVE(OPNUMWORKLIST):
if NEWINPUT.THEINSTANCE = (HBL / TEMP.THEPERIOD) then

NODELIST.REMOVE(OP NUMP-LIST):
else

ADDLNODE.TIE-ILOWER := READY(OP -NUM) + TEMP.TH-E_PERIOD:
DETERMINE_-THEIJPPER(TEMPADDLNODE):
CREATEADDL.JODE(NEWINPUT,TEMP,ADDL NODE):
SCHE.DULEINPUTS_LIST.ADD(ADDLNODE,ALIST):

120

end if;
NODELIST.NEXT(CHILD LIST);

end loop;
NODE_LIST.FREE LIST(LIST -HEAD);
LISTHEAD:= WORK-LIST:
while NODELIST.NON_EMPTY(WORK-LIST) loop

OPNUM: NODELIST.VALUE(WORKL LIST);
TEMP: NEW_ýGRAPH.OP_RETURN(OPNUM);
NEWINPUT.THEOPERATOR: OPNUM,
NEWINPUT.THE_-LOWER: 0.
NEWGRAPH.RETURN_PARENT_-LIST(PARENTLIST,OP NUM.PARENTCOUNT);
PARENTHEAD: PARENT -LIST;
while NODELIST.NONEMPTY(PARENT -LIST) loop

PARENTNUM: NODELIST.VALUE(PARENTLIST);
PARENT_OP :=NEWGRAPH.OPRETURN(PARENTNUM);,
if NEWINPUT.THiELOWER < FINISH(PARENT-NUM)

+ NEW_GRAPH.LATENCY(PARENL-NUM,OP-NUM) then
NEWINPUT.THELOWER: FINISH(PARENT-NUM)

+ NEWGRAPH.LATENCY(PARENT_NUM,OPNUM);

end if;
NODELIST.NEXT(PARENTLIST);

end loop;
NODELIST.FREELIST(PARENTHEAD);
DETERMINETHEUPPER(TEMP.NEW-INPUT);,
DETERMINESTARTSTOP(TEMP,PROCESSORNUM,NEWINPUT.PROCSTOP);,
READY(OP...NUM): NEWINPUT.THELOWER;
FINISH(OP-NUM): NEWINPUT.THESTOP;
SCHE-DULEINPUTSLIST.ADD(NEWINPUT REV_AGENDA(PROCESSORNUM));
if NEWINPUT.THEINSTANCE = (HBL / TIEMP.THE_PERIOD) then

NODELIST.REMOVE(OP.YNUM,P-LIST);
else

ADDLNODE.THELOWER: READY(OP-NUM) + TEMP'THEPERIOD;
DETERMINETHEUPPER(TEMP,ADDL_NODE);

CREATE_-ADDLNODE(NEWJINPUT.TEMP,ADDL_ýNODE):
SCHEDULE_INPUTS_LIST.ADD(ADDLNODE,A-LIST);

end if;
NODE_LIST.NEXT(WORK..LIST);

end loop;
NODELIST.FREELIST(LIST..HEAD);

end SCHEDULE_1IstINSTANCES;

121

procedure SCHEDULE_R-ESTOFBLOCK(HBL :in INTEGER:
PLIST in out NODE_-LIST LIST:
ALIST in out SCHEDULE_-INPUTS_-LIST-LIST;

REVAGENDA: in out SCHEDULE-ARRAY.
PROCSTOP :in out PROCESSOR_-ARRAY;
INSTNO :in out IN_-ARRAY:
READY :in IN-ARRAY) is

WOR-KLIST: NODELIST.LIST;,
HEADA :SCHEDULEINPUTSLIST.LIST;,
OPFOU`ND :BOOLE AN;
AWAIT :BOOLEAN,

procedure DETERMINETHELOWER(REV_AGENDA: in SCHEDULEARRAY;
AWAIT :out BOOLEAN;
INSTNO :in out INARRAY;
NEWNODE :in out SCHEDULEINPUTS) is

PARENTFOUND :BOOLEAN;
OLD :SCHEDULE-INPUTS-.
TEMIPSCHEDULE SCHEDULEARRAY-
OPNO : INTEGER:
J.M : INTEGER;

begin

OPNO := NEWNODE.THEOPERATOR:.
NEWGRAPH.RETURNPARENTLIST(PARENT-LIST,OPNO.PAPRENTCOUNT):
if NODELIST.VALUE(PARENTLIST) = 0 then

NODELIST.REMOVE(0,PARENTLIST);

end if:
LISTHEAD := PARENTLIST;
while NODELIST.NONEMPTY(PARENT_LIST) loop

PARENTNUM: NODELIST.VALUE(PARENT LIST);
PARENTOQP := NEWGRAPH.OPRETIJRN(PARENTNUM):.
if (NEW_NODE.THESTART mod PARENTOP.THEPERIOD) =0 then

J := (NEWNODE.THESTART / PARENTOP.THEPERIOD) + 1:
AWAIT := false;

if J > INST_NO(PARENT NUM) then
AWAIT := true,
NODELIST.FREELIST(LISTHEAD);

122

exit;
else

TEMPSCHEDULE: REVAGENDA:
PARENTFOUND: false-,

for Min 1..NOP loop
while SCHEDULEINPUTS_LIST.NONEMPTY(TEMPSCHEDULE(M))

and not PARENTFOUND loop
OLD: SCHEDULEINPUTSLIST.VALUE(TEMPSCHEDIJLE(M));
if OLD.THESTOP > NEWNODE.THELOWER then

if OLD.THEOPERATOR = PARENTNUM
and then OLD.THEINSTANCE = J then

PARENTFOUND: true,
TEMPSCHEDULE(M): null;
if NEWNODE.THELOWER < OLD.THESTOP

NEWGRAPH.LATENCY(PARENTN'UM,OP -NO) then
NEWNODE.THELOWER: OLD.THESTOP

+ NEWGRAPH.LATENCY(PARENT NUM,OP NO):,
end if;

else
SCHEDULEINPUTSLIST.NEXT(TEMP-SCHEDULE(M));

end if-,
else

TEMPSCHEDULE(M): null;
end if;,

end loop;
if PAJPENTFOUND then

exit;
end if;

end loop;
end if; -- "if J >

end if;
NODELIST.NEXT(PARENT LIST);,

end loop;
NODELIST.FREE-LIST(LISTHEAD);

end DETERMINETHELOWER;

123

begin -- schedule the rest of the block

INST_NO :=(others=> 1);
while NODELIST.NONEMPTY(PLIST) loop

NODELIST.DUPLICATE(P -LIST.WORK LIST):,
LISTHEAD: WORKLIST;,
while NODELIST.NQNEMPTY(WORK, LIST) loop

OPNUM: NODE_-LIST.VALUE(WORK_ LIST);
TEMP:= NEWGRAPH.OPRETURN(OP...NUM);,
OPFOUND:= false;
HEADA: ALIST;
while SCHEDULEINPUTSLIST.VALUE(A LIST).THIEOPERATOR 1= OPNUM loop

SCHEDULEINPUTSLIST.NEXT(A&LIST);
end loop;
BEST: SCHEDULEINPUTSLIST.VALUE(A-LIST);,
NEWINPUT: BEST;
DETERMINETHELOWER(REV-AGENDA,AWAIT,INSTNONEWINPUT),
if not AWAIT then

DETERMINESTARTSTOP(TEMP,PROCESSORNUM.NEWINPUT.PROQ -STOP);
SCHEDULE_INPUTS_LIST.ADD(NEWJINPUT,REVAGENDA(PROCESSOR_NUM));
INSTNO(OPNUM)= NEWINPUT.THE_INSTANCE;
if NEWINPUT.THEINSTANCE = (HBL / TEMP.THE_PERIOD) then

NODELIST.REMOVE(OP NUM,P LIST);
else

ADDLNODE.THELOWER := READY(OP-NUM)
+ TEMP.THE_PERIOD * NEWjNPUT.THEINSTANCE;

DETERMINETHEUPPER(TEMPADDLYODE);,
CREATE_-ADDLNODE(NEWINPUT,TEMP,ADDL NODE);
SCHEDULEjNPUTS_LIST.INSERTýNEXT(ADDLNODE.&_LIST);

end if;,
ALIST := HEAD_.A;
SCHEDULE_INPUTS_LIST.REMOVE(BEST,A&LIST);

else
ALIST := HEAD-A;

end if;
NODELIST.NEXT(WORJC.LIST);

end loop;
NODE_LIST.FREE-LIST(LIST_HEAD);

end loop;

end SCHEDULERESTOF_BLOCK;

124

procedure ANNEALPROCESS(HBL :in INTEGER;

AGENDA in out SCHEDULE-ARRAY:

SOLUTION in out BOOLEAN,
PENALTYCOST in out INTEGER:

INSTNO in out IN-ARRAY;

PRECLIST in out NODELIST.LIST) is
BESTAGENDA SCHEDULE-ARRAY;
TEMPAGENDA SCHEDULEARRAY:

TEMPERATURE FLOAT;
BESTCOST : INTEGER;

TEMPCOST INTEGER;

TRIALNUM : INTEGER 100:

ACCEPTNUM : INTEGER :- 35;
FREEZE . FLOAT 1.0;

COOLINGFACTOR • FLOAT := 0.95;
TRIALCOUNT • INTEGER;

ACCEPTCOUNT : INTEGER:
P_LISTNEW BOOLEAN := false;

P_LIST : NODELIST.LIST;

APFOUND BOOLEAN:

REARRANGEP : BOOLEAN;
TEMPLOWER : INTEGER;

OLDLOWER INTEGER;
V SCHEDULEARRAY;

procedure DETERMINENEWLOWER(TEMP in OPERATOR;

TEMPAGENDA: in SCHEDULEARRAY:

NEWNODE : in out SCHEDULEINPUTS)is

NEXTPROC : BOOLEAN;
INSFOUND : BOOLEAN;

INST, I : INTEGER;
OPNO : INTEGER;

W : SCHEDULEARRAY := TEMPAGENDA;

begin
OPNO := NEWNODE. THEOPERATOR;

if TEMP.THEWITHIN/= 0 then
NEW NODE.THELOWER := NEWNODE.THE_UPPER + TEMP.THEMET-TEMPTHE_WITHIN;

else
NEWNODE.THELOWER:= NEWNODE.THEUPPER + TEMPTHEMET - TEMP.THEPERIOD

end if:

125

if not NEWGRAPH.PIPELINE(OP _NO) then
INS_FOUND: false;
for I n 1..NOP loop

NEXTPROC: false-,
while SCHEDULEINPUTSLIST.NON_EMPTY(W(I)) and not NEXTPROC loop

if SCHEDULEINPUTSLIST.VALUE(W(I)).THE_OPERATOR = OPNO then
if SCHEDULEINPUTSLIST.VALUE(W(I)).THEINSTANCE

>= NEWNODE.THEINSTANCE - 1 then
NEXTPROC := true;
if SCHEDULE_INPUTSLIST.VALUE(W(I)).THE INSTANCE

= NEWNODE.THEINSTANCE - 1 then
INSFOUND := true;
if SCHEDULEINPUTSLIST.VALUE(W(I)).THESTOP

> NEWNODE.THELOWER then
NEWNODE.THELOWER:

SCHEDULEINPUTSLIST.VALUE(W(I)).THESTOP;
end if;

end if;
else

SCHEDULEINPUTSLIST.NEXT(W(I));,
end if;

else
if SCHEDULE INPUTS-LIST.VALUE(W(I)).THESTART >= NE WNODE.THE START then

NEXTPROC: true;
else

SCHEDULEINPUTS_LIST.NEXT(W(I)),
end if;,

end if;
end looe,
if INSFOUND then

exit;
end if;,

end loop;
end if; -- " not PIPELINE"
NEW GRAPH.RETURNPARENTLIST(PARENT _LIST,OP NO,PARENTCOUNT);
LISTHEAD := PARENTLIST;,
if NODELIST.VALUE(PARLENT LIST) = 0 then

NODELIST.NEXT(PARENT LIST);
end if,
while NODE _LIST.NONEMPTY(PARENT LIST) loop

PARENTNUM :=NODELIST.VALUE(PARENTLIST);.

126

PARENTOP NEWGRAPH.OP_-RETURN(PARENT-NUM);,
if ((NEW-NODE.THEINSTANCE - 1)*(TEMP.THEPERIOD))

mod PARENTOP.THEPERIO') = 0 then
INST := (((NEW_NODE.THEINSTANCE - 1) * (TEMP.THE_PERIOD))

/ PARENTOP.TI{EPERIOD) + I;
INSFOUND := false-,
W: TEMP AGENDA;,
for I in L.NOP loop

NEXTPROC := false;
while SCHEDULEINPUTSLIST.NONEMPTY(W(I)) and not NEXTPROC loop

if SCHEDULEINPUTS_ýLIST.VALUE(W(I)).THE_.OPERATOR = PARENT_-NUM then
if SCHEDULEINPUTSLIST.VALUE(W(I)).THEINSTANCE >= INST then

NEXTPROC := true;
if SCHEDULEINPUTSLIST.VALUE(W(I)).THEINSTANCE = INST then

INSFOUND := true;
if SCHEDULEINPUTSUIST.VALUE(W(I)).THE STOP+NEWGRAPiLLAThNCY(PA RENT N'UNOP NO)

> NEWNODE.THELOWER then
NEWNODF i1HE.LOWER:= SCHEDULE_-INPUTSý_UST.VALUE(WQl)).THE STOP

NEW_GRAPH.LATENCY(PARENTNUMOPNO);
~r~ir,

end if;
else

SCHEDULEINPUTSLIST.NEXT(W(I));
end if;,

else
if SCHEDULEINPUTSLIST.VALUE(W(I)).THE_START >= NEWNODE.THESTART

then NEXTPROC: true;
else

SCHEDULEINPUTSLIST.NEXT(W(I));
end if;

end if;
end loop:,
if INSFOUND then

exit;
end if-.

end loop;
end if;
NODELIST.NEXT(PARENT LIST):,

end loop;
NODE_LIST.FREELIST(LISTHEAD);

end DETERMINE NEW-LOWER;,

127

procedure ADJUSTJIT(TEMP in OPERATOR;
REARRANGE in out BOOLEAN,
NEWNODE :in out SCHEDULEINPUTS;
TEMPAGENDA: in out SCHEDULE_ARRAY) is

DIFF, I ANTEGER;
NEW_-PROCESSOR :INTEGER,

STOPTIME :INTEGER;
W :SCHEDULEARRAY := TEMPAGENDA;

begin
DIFF := -1;
for T in l..NOP loop

while SCHEDULEINPUJTSLIST.NONEMPTY(W(I)) loop
if SCHEDULEINPUTSLIST.VALUE(W(I)).THE STOP > NEW-NODE.THELOWER then

if (SCHEDULEINPUT-SLIST.VALUE(W(1)).THE START - NEW_-NODE.THiESTOP) s DIFF then

DIFF:=(SCHEDULE INPUTS_LIST.VALUE(W(I)).THESTART-NEW-NODE.THE_STOP);

NEWPROCESSOR := 1;

end if;
exit;

else

SCHEDULEINPUTSLIST.NEXT(W(I)):,
end if;

end loop;
end loop
if DIFF < 0 then

NEWNODE.THESTART := NEWNODE.THEUPPER + 10;,
for T in l..NOP loop

if SCHEDULEINPUTSLIST.NON_-EMPTY(W(I)) then
STOPý_TIME := SCHEDULE_INPUTSLIST.VALUE(W(I)).THE-STOP;
SCHE-DULE~jNPUTS_LIST.NEXT(W(I));
while SCHEDULELNPUTS-LIST.NON_EMPTY(W(I)) loop

if SCHEDULEJ-NPUTSLIST.VALUE(W(I)).THE-START - STOPJ-IME < TEMP.THEMET then

STOPTIME := SCHEDULEINPUTS_LýIST.VALUE(W(I)).THE-STIOP:
SCHEDULE_INPUTSLIST.NEXT(W(I));

else
exit;

end if;
end loop;
if STOP _TIME < NEWNODE.THESTART then

NEW..NODE.THE__START := STOPTIME;,

NEWPROCESSOR := I.

128

end if;,
end if,

end loop;
end if;
if NEWNODE.THESTART > NEWNODE.THEUPPER then

REARRANGE: true;
else

NEWNODE.THESTOP :=NEWNODE.THESTART + TEMP.THEMET;
SCHEDULEINPUTSLIST.PRIEVIOUS(W(NEWPROCESSOR));
SCHEDULEINPUTSLIST.INSERTNEXT(NEW-NODE.W(NEW PROCESSOR));

end if;

end ADJUSTIT;

begin-- ANNEAL PROCESS!
for Iin 1..NOP loop

SCHEDULE_INPUTSLIST.DUPLICATE(AGENDA(I), BEST_AGENDA(I)):,

SCHEDULE_INPUTSLIST.DUPLICATE(AGENDA(I), TEMPAGENDA(l));

end loop;

TEMPERATURE: 0.9 * FLOAT(PENALTYCOST);

BESTCOST: PENALTYCOST;

while not SOLUTION and TEMPERATURE > FREEZE loop

ACCEPTCOUNT: 0;

TRIALCOUNT: 0;
while not SOLUTION and ACCEPT_COUNT < ACCEPTNUM and TRIALCOUNT < TRILLNUM loop

REARRANGEP: false;,

QUE: INITfiALIZEPRIORITYQUEUE;

V: TEMP_AGENDA;
for T in 1..NOP loop

AP_-FOUND: false;

while SCHEDULEINPUTSLIST.NONEMPTY(V(I)) and not APFOUND loop

if SCHEDULEINPUTSLIST.VALUE(V(I)).THESTART

> SCHEDULEINPUTSLIST.VALUE(V(I)).THE_UPPER then

TEMPLOWER: SCHEDULEINPUTSLIST.VALUE(V(I)).THE_LOWER;

APFOUND: true;

INSERT_-IN_PRIORITY-QUEUE

(SCHEDULEINPUTSLIST.VALUE(V(I)),TEMPLOWER,QUE):
else

SCHEDULE_INPUTSLIST.NEXT(V(I));,

end if;

end loop;

129.

end loop:

while PRIORITY_Q.NON_EMPTY(QUE) loop

BEST: READBESTFROMPRIORITYQUEUE(QUE):

OPNUM: BEST.THEOPERATOR;

for I in 1.NOP loop

if SCHEDULEINPUTS LIST.NONEM.PTY(V(I)) and then

SCH'EDULEINPUTS_LIST.VALUE(V(I)) = BEST then

PROCESSORNJM := 1, -

exit;

end if;

end loop;

N-EWINPUT := BEST;

TEMP := NEWGRAPH.OPRETURN(OPNUM);

DETERMINENEWLOWER(TEMP TEMPAGENDA,,NEW_INPUT);

if NEW_INPUT.THELOWER > NEW_[NPUT.THEUPPER then

REARRANGE_P := true;

exit;

end if;

if NEWINPUT.THELOWER < NEWINPUT.THESTART then

NEWLNPUT.THESTART := NEWINPUT.THELOWER;

NEWINPUT.THESTOP := NEWINPUT.THESTART + TEMP.THEMET;

ADJUSTIT(TEMPREARRANGEPNEWINPUT.TEMP_-AGENDA);

if REARRANGEP then

exit;

else

SCHEDULEINPUTSLIST.NEXT(V(PROCESSORNUM));

SCHEDULE -rPUTS...LIST.REMOVE(BESTTEMP AGENDA(PROCESSOR-NUM)):,

REMOVEBESTFROMPRIORITYQUEUE(QUE):

if SCHEDULEINPUTSLIST.NONEMPTY(V(PROCESSORNUJM)) then

TEMPLOWER:=SCHEDULEJINPUTS_LISTVALLJE(V(PROCESSOR)).THE_LOWER,
INSERT_INPRIORITYQUEUE

(SCHEDULEJINPUTSLIST.VALUE(V(PROCESSORNUM)).TEMPLOWER.QUE);

end if;
end if;

else

REMOVEBESTFROMPRIORITYQUEUE(QUE);

SCHEDULEINPUTSLIST.NEXT(V(PROCESSOR_NUM));
if SCHEDULE_INPUTS_LIST.NONEMPTY(V(PROCESSOR_NUM)) then

TEMPLOWER

SCHEDULEINUTSLIST.VALUE(V(PROCESSOR-NUM)).TI-E_LOWER;

130

INSERTINPRIORITY-QUEUE

(SCHEDULEIN4PUTSLIST.VALUE(V(PROCESSOR NUM)).TEMPLOWER.QUE):,
end if;

end if;

end loop,

if not REARRANGEP then
QUE: INITIALIZEPRIORITY_QUEUE:

V:= TEMPAGENDA;

for T in I..NOP loop

APFOUND: false;

while SCHEDULEINPUTSLIST.NONEMPTY(V(I)) and not APFOUND loop

if SCHEDULE INPUTSLIST.VALUE(V(I)).THESTOP > HBL then
TEMPLOWER: SCHEDULEINPUTSLIST.VALUE(V(I)).THE_LOWER:

APFOUND: true,

INSERTINPRIORITY-QUEUE

(SCHEDULEINPUTSLIST.VALUE(V(I)),TEMP_LOWER.QUE):

else

SCHEDULEINPUTSLIST.NEXT(V(I)):

end if:

end loop:

end loop:

while PRIORITYQ.NONEMPTY(QUE) loop

BEST: READBESTFROMPRIORITYQUEUE(QUE);

OPNUM: BEST.THEOPERATOR;

for ITin 1..NOP loop

if SCHEDULEINPUTSLIST.NONEMPTY(V(I)) and then

SCHEDULEINPUTSLIST.VALUE(V(I)) = BEST then

PROCESSORNUM:' I;

exit;

end if:

end loop:

NEWINPUT := BEST,

TEMP := NEWGRAPH.OPRETITRN(OP -NUM):

OLDLOWER: NEWINPUT.THELOWER;

DETERMINENEW LOWER(TEMP,TEMPAGENDA NEWINPUT);

if NEWINPUT.THELOWER = OLDLOWER and then

NEWINPUT.THESTART =NEWINPUT.THELOWER then

REARRANGEP: true;

131

exit;

else

N'EWINPUT.THBSTART: NEW_[NPUT.THIELOWER;

NEWINPUT.THESTOP: NEWINPUT.THESTART + TEMP.THEMET,

ADJUSTIT(TEMP,REARRANGE-P,NEWINPUT,TEMP_AGENDA);

if REARRANGEP then

exit;

else

SCHEDULEINPUTSLIST.NEXT(V(PROCES SORNIJM));
SCHEDULEINPUTSLIST.REMOVE(BEST.TEMP-AGENDA(PROCESSORNIJM));

REMOVE_BESTFROMPRIORITYQUEUE(QUE);

if SCHEDULEINPUTSLIST.NONEMPTY(V(PROCESSOR NUM)) then

TEMPLOWER:=

SCHEDULEINPUTSLIST.VALUE(V(PROCESSORNIJM)).THELOWER

INSERTINPRIORITY-QUELJE

(SCHEDULEINPUTSLIST.VALUE(V(PROCESSORNIJM)),TEMPLOWER.QUE);

end if;

end if;

end if;

end loop;

end if;,

if REARRANGEP then

ADJUSTPRECEDENCE(COUNT,PREC-LIST);

NODELIST.DUPLICATE-(PREQLISTPLIST);
SCHEDULE_1 stINSTANCES(HBL,READYPLIST.PROCESSORSTOP.REVAGENDA.ADDL-LIST):

SCHEDULE_INPUTSLIST.LISTREVERSE(ADDLLIST,ALIST)-.

SCHEDULEINPUTSLIST.FREE&LIST(ADDL-LIST);
SCHEDULERESTOFBLOCK(HBL,P-LIST.A LIST.REV-AGENDA.PROCESSOR-STOP,INSTN',O.READY):

for I in 1.NOP loop

SCHEDULEINPUTSLIST.FREE-LIST(TEMPAGENDA(I)):

SCHEDULEINPUTSLIST.LISTREVERSE(REV-AGENDA(I),TEMPAGENDA(I));

end loop;

end if;

TESTSCHEDULE(HBL,TEMPAGENDA,TEMP COST);,

if TEMPCOST < BESTCOST then

BESTCOST := TEMPCOST;

for T in l.NOP loop

SCHEDULE_INPUTS_LIST.DUPLICATE(TEMPAGENDA(I).BESTAGENDA(I));

end loop;

end if;

132

if TEMPCOST <= 0 then
SOLUTION: true',

elsif REARRANGEP or else TEMPCOST <= PENALTYCOST or else
RANDOM-NEXT < ANNEALFUNCTION(TEMP-COSTPENAL1I Y_COST.TEMPERATURE) then

ACCEPTCOUNT ACCEPT_COUNT + I;

PENALTY-COST TEMPCOST;

for I in 1..NOP loop
SCHEDULEINPUTSLIST.DUPLICATE(TEMPAGENDA(I),AGENDA(1));

end loop:
else

for I in I..NOP loop
SCHEDULE INPUTSLIST.DUPLICATE(AGENDA(I), TEMPAGENDA(l)):

end loop-,
end if;
TRIALCOUNT: TRIALCOUNT + 1:

end loop;
TEMPERATURE: TEMPERATURE * COOLINGFACTOR;

end loop,
AGENDA: BESTAGENDA;
PENALTYCOST: BEST_COST;

exception

when MATH.RANGEERROR =>
TEXTIO.PUT LINE('THE FOLLOWING VALUES CAUSED A RANGE ERROR");
TEXTIO.PUT("PENALTY COST:)

TEXTIO.SET -COL(15);
mnt_io.put(PENALTYCOST. width=>5);
TEXTIO.NEW_LINE;
TEXTIO.PUT("TEMP COST:.1
TEXTIO.SET -COL(15);,
int_io.put(TEM[P..COST, width=>5);
TEXTIO.NEWLINE
TEXTIO.PUIT("TEMPERATURE:)

TEXTIO.SET -COL(15);
fioat~io.PUT(TEMPERATURE, fore=>5, aft=>5, exp=>O);
TEXTIO.NIEWLINE;
AGENDA := (others=> null);,

end ANNEALPROCESS;

133

begin -- main SIMULATED ANNEAL

NODELIST.DUPLICATE(PRECEDENCELIST P_-LIST);
SCHEDULE_1IstNSTANCESHB L, READYP-LISTPROCESSORSTOP.REVAGENDA. ADDLLIST).-

SCHEDULEINPUTSLIST.LISTREVERSE(ADDL-LIST.A_LIST);

SCHEDULE INPUTSLIST.FREE LIST(ADDLLIST);

SCHEDULERESTOFBLOCK

(HBLPLIST ALIST.REV_AGENDA.PROCESSORSTOPINSTANCENO.READY)-;

for I in l..NOP loop

SCHEDULEINPUTSLIST.LISTREVERSE(REVAGENDA(I).AGENDA(I));

SCHEDULEINPUTSLIST.FREELIST(REV-AGENDA(I)):

end loop:

TESTSCHEDULE(HBL.AGENDA,COST);

if COST > 0 then

VALIDSCHEDULE: false,

RANDOMINITIALIZE(2*COUNT + 1);
-- Initialize Random Number Generator with an odd number.

ANNEALPROCESS

(HBL,AGEDA.VALIDSCHEDULE,COST.INSTANCE_NO,PRECEDENCELIST):

else

VALIDSCHEDULE: true;

end if;,

end SIMULATEDANNEAL;,

end NEWSCHEDULERYPKG;

134

LIST OF REFERENCES

[BAS74] Baker, K. R. and Su, Z. S., "Sequencing with Due-Dates and Early Start
Times to Minimize Maximum Tardiness", Naval Research Logistics
Quarterly, 21, 1974.

[BAT83] Bannister, J. A. and Trivedi, K. S., "Task Allocation in Fault-Tolerant
Distributed Systems". In Acta Informatica, Springer-Verlag, 1983.

[BDW86] Blazewicz, J., Drabowski, M. and Weglarz, J., "Scheduling Multiprocessor
Tasks to Minimize Schedule Length". IEEE Trans., on Computer, C-35(5),
1986.

[BFR7 11 Bratley, P., Florian, M. and Robillard, P., "Scheduling with Earliest Start and
Due Date Constraints", Naval Research Logistics Quarterly, 18(4), Dec.
1971.

[BFR75] Bratley, P., Florian, M. and Robillard, P., "Scheduling with Earliest Start and
Due Date Constraints on Multiple Machines", Naval Research Logistics
Quarterly, 22, 1975.

[BOE89] Borison, E., "Program Changers and Cost of Selective Recompilation",
Tech. Report CMU-CS-89-205, Computer Science Dept. Carnegie-Mellon
University, Pittsburgh, 1989.

[BUR91] Burns, A., "Scheduling Hard Real-Time Systems: A Review", Software Eng.,
Journal, 6, pp. 116-128, 1991.

[CER89] Cervantes, Julian J., "An Optimal Static Scheduling Algorithm for Hard
Real-Time Systems", M.S. thesis, NPS, Dec. 1989.

[DAD86] Davari, S. and Dhall, S. K., "An On-Line Algorithm for Real-Time Tasks
Allocation". In IEEE Real-Time Systems Symposium, Dec. 1986.

[DHL78] Dhall, S. K. and Liu, C. L., "On a Real-Time Problem", Operations Research,
26(1), 1978.

[EFM83] Erschler, J., Fontan, G., Merce, C. and Roubellat, F., "A New Dominance
Concept in Scheduling N Jobs on a Single Machine with Ready Times and
Due Dates", Operations Research, 31(1), 1983.

[ELS821 Elsayed, E. A., "Algorithms for project scheduling with resource
constraints", International journal of Production Research, 20(1), 1982.

135

[FAN90] Fan, Bao Hua, "Evaluations of Some Scheduling Algorithms for Hard Real-
Time Systems", M.S. thesis, NPS, Jun. 1990.

[FL084] Flannery, B.P. and other, "Numerical Recipes in C, The Art of Scientific
Computing", pp. 343-352, Cambridge University Press, 1984.

[HOR74] Horn, W.A., "Some Simple Scheduling Algorithms", Naval Research, 9,
1974.

[HUS90] Hsu, Liang Chuan, "An Efficient Heuristic Scheduler for Hard Real-Time
System", M.S. thesis, NPS, Jun. 1990.

[JAN88] Janson, D.M., "A Static Scheduler for the Computer Aided Prototyping
System", M.S. Thesis, Computer Science, NPS, Sep. 1988.

[JOH891 Johnson, D. S. and others, "Optimization by Simulated Annealing: An
Experimental Evaluation, Part I (Graph Portioning)", Operation Research,
v. 37 pp. 865-892, Nov.-Dec. 1989.

[KAN84] Kasahara, H. and Narita, S., "Practical Multiprocessor Scheduling
Algorithm for Efficient Parallel Processing", IEEE Transactions on
Computer, Vol. c-33, No.11, pp.1023-1029, Nov. 1984.

[KIM89] Killic, Murat, "Static Schedulers for Embedded Real-Time System", MS.
thesis, NPS, Dec. 1989.

[KIS78] Kise, H., "A Solvable Case of the One-Machine Scheduling Problem with
Ready and Due Times", Operations Research, 26(1), 1978.

[LAF76] Lang, T. and Fernandez, E. B., "Scheduling of Unit-Length Independent
Tasks with Execution Constraints", Information Processing Letters, 4(4),
1976.

[LES86] Lehoczky, J. P. and Sha, L., "Performance of Bus Scheduling Algorithm". In
Performance 86, 1986.

[LEV91] Levine, John Glenn, "An Efficient Heuristic Scheduler for Hard Real-Time
Systems", M.S. thesis, NPS, Sep. 1991.

[LIL73] Liu, C. L. and Layland, J., "Scheduling Algorithms for Multiprogramming in
a Hard Real-Time Environment', J. ACM, 20(1), 1973.

[LUK88] Luqi and Ketabchi, M., "A Computer Aided Prototype System", Technical
Report, NPS52-87-011,NPS. 1987 and in [IEEE Software, pp. 66-72], Mar.
1988.

136

[LUQ86] Luqi, "Rapid Prototyping for Large Software System Design", Ph.D. Thesis,
University of Minnesota, Duluth, Minnesota, May. 1986.

[LUQ89] Luqi, "Software Evolution Through Rapid Prototyping", pp. 13-25, May.
1989.

[MAR88] Marlowe, Laura C., "A Static Scheduler for Critical Timing Constraints",
M.S. thesis, NPS, Dec. 1988.

[M0068] Moore, J. M., "An n Job, One Machine Sequencing Algorithm for Minimize
the Number of Late Jobs", Management Science, 15(1), 1968.

[OHE881 O'hern, J.T., "A Conceptual Level Design for a Static Scheduler for Hard
Real-Time System", M.S. Thesis, Computer Science, NPS, Sep. 1988.

[OTV89] Otten, R. H. and Van Ginneken, L. P., "The Annealing Algorithm", Kluwer
Academic Publishers, 1989.

[SIM80] Simons, B., "A Fast Algorithm for Multiprocessor Scheduling", Ln Proc.
21 st Annual Symposium on Foundation of Computer Science, 1980.

[SIM83] Simons, B., "Multiprocessor Scheduling of Unit-Time Jobs with Arbitrary
Release Times and Deadlines", SIAM Journal for Computing, Dec. 1983.

[SIS84] Simons, B. and Sipser, M., "On Scheduling Unit-Length Jobs with Multiple
Release TimelDeadline Intervals", Operations research, 32(1), 1984.

[STR881 Stankovic J. A., Ramarnitham, K., "Hard Real-Time System", IEEE
Computer Society Press, Washington, DC., 1988.

[TE1781 Teixeira, T., "Static Priority Interrupt Scheduling". In Proc. of the Seventh
Texas Conference on Computing Systems, Nov. 1978.

[ULL75] Ullman, J.D., "Np-Complete Scheduling Problem", Journal of Computer and
System Sciences,Oct. 1975.

[ULL76] Ullman, J. D., "Complexity of Sequence Problem". In E. G. Coffman, editor,
Computer and Job- Shop Scheduling Theory, J. Wiley New York, 1976.

[WH189] White, J.L., "The Development of a Rapid Prototyping Environment", M.S.
Thesis, Computer Science, NPS, Dec. 1989.

137

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey, CA 93943

3. Computer Science Department 2
Code CS
Naval Postgraduate School
Monterey, CA 93943

4. Office of the Assistant Secretary of the Navy
Research Development and Acquisition
Department of the Navy
Attn: Mr. Gerald A. Cann
Washington, DC 20380-1000

5. Office of the Chief of Naval Operations
OP-094
Department of the Navy
Atm: VADM J. 0. Tuttle, USN
Washington, DC 20301-3040

6. Director of Defense Information
Office of the Assistant Secretary of Defense
(Command, Control, Communications, & Intelligence)
Attn: Mr. Paul Strassmann
Washington, DC 20301-0208

7. Center for Naval Analysis
4401 Ford Avenue
Alexandria, VA 22302-0268

8. Prof. Man-Tak Shing, Code CS/Sh 5
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

138

9. Chairman, Code CS I
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5100

10. Prof. Luqi, Code CS/Lq 10
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

11. Chief of Naval Research I
Attn: ADM. Miller
800 N. Quincy Street
Arlington, VA 22217

12. Director, Ada Joint Program Office
OUSDRE (R&AT)
Room 3El 14, The Pentagon
Attn: Dr. John P. Solomond
Washington, DC 20301-0208

13. Carnegie Mellon University
Software Engineering Institute
Atn: Dr. Dan Berry
Pittsburgh, PA 15260

14. Office of Naval Technology (ONT)
Code 227
Attn: Dr. Elizabeth Wald
800 N. Quincy St.
Arlington, VA 22217-5000

15. Defense Advanced Research Projects Agency (DARPA)
Integrated Strategic Technology Office (ISTO)
Attn: Dr. B. Boehm
1400 Wilson Boulevard
Arlington, VA 22209-2308

16. Defense Advanced Research Projects Agency (DARPA)
ISTO
1400 Wilson Boulevard
Attn: LCol Eric Mattala
Arlington, VA 2209-2308

139

17. Defense Advanced Research Projects Agency (DARPA)
Director, Tactical Technology Office
1400 Wilson Boulevard
Arlington, VA 2209-2308

18. National Science Foundation
Division of Computer and Computation Research
Attn: K. C. Tai
Washington, DC 20550

19. Commander Space and Naval Warfare Systems Command
SPAWAR 3212
Department of the Navy
Attn: Cdr M. Romeo
Washington, DC 20363-5100

20. Office of Naval Research
Computer Science Division, Code 1133
Attn: Dr. Gary Koob
800 N. Quincy Street
Arlington, VA 22217-5000

21. Office of Naval Research
Computer Science Division, Code 1133
Attn: Dr. A. M. Van Tilborg
800 N. Quincy Street
Arlington, VA 22217-5000

22. Office of Naval Research
Computer Science Division, Code 1133
Attn: Dr. R. Wachter
800 N. Quincy Street
Arlington, VA 22217-5000

23. University of CA at Berkeley
Department of Electrical Engineering and
Computer Science
Computer Science Division
Attn: Dr. C.V. Ramamoorthy
Berkeley, CA 90024

140

24. University of MD
College of Business Management
Tydings Hall, Room 0137
Attn: Dr. Alan Hevner
College Park, MD 20742

25. University of MD
Computer Science Department
Attn: Dr. N. Roussapoulos
College Park, MD 20742

26. University of Massachusetts
Department of Computer and Information Science
Attn: Dr. John A. Stankovic
Amherst, MA 01003

27. University of Pittsburgh
Department of Computer Science
Attn: Dr. Alfs Berztiss
Pittsburgh, PA 15260

28. Commander, Naval Surface Warfare Center,
Code U-33
Attn: Dr. Philip Hwang
10901 New Hampshire Avenue
Silver Spring, MD 20903-5000

29. Attn: Joel Trimble
1211 South Fern Street, C107
Arlington, VA 22202

30. United States Laboratory Command
Army Research Office
Attn: Dr. David Hislop
P. O. Box 12211
Research Triangle Park, NC 27709-2211

31. Persistent Data Systems
75 W. Chapel Ridge Road
Attn: Dr. John Nester
Pittsburgh, PA 15238

141

32. Prof. Amr Zaky, Code CS/Za
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

33. Library of
Chung Shan Institute of Science and Technology
Lung-Tan, Tao-Yuan
Taiwan, R.O.C.

34. Library of
Chung Cheng Institute of Technology
Ta-Shi, Tao-Yuan
Taiwan, R.O.C.

35. Department of Electrical Engineering
Chung Cheng Institute of Technology
Ta-Shi, Tao-Yuan
Taiwan, R.O.C.

36. Department of Computer Science
Chung Cheng Institute of Technology
Ta-Shi, Tao-Yuan
Taiwan, R.O.C.

37. Computer Center
Chung Cheng Institute of Technology
Ta-Shi, Tao-Yuan
Taiwan, R.O.C.

38. Tzu-Chiang Chang 2
4 F, No. 12, Alley 21, Lane 136,
Ming Chih Rd, Sec.2,
Tai-Shan, 243, Taipei,
Taiwan, R.O.C.

1

142

