
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A257 66211111;IN 1111i ! 1111111111111111111 1i o S A R A

DTIC
ELECTE
DEC02 19921 1E

S~A lueTHESIS

A STUDY ON THE EFFECTIVENESS OF
LOCKUP-FREE CACHES FOR A REDUCED

INSTRUCTION SET COMPUTER (RISC) PROCESSOR

by

Leonard Tharpe

September 1992

Thesis Advisor: Dr. Amr Zaky

Approved for public release; distribution is unlimited.

92-30654



UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;

distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

4 NAME OF JEEFORMG ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATIONCmputer 9>cince ept. (if applicable) Naval Postgraduate School
Naval Postgraduate School CS

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/CSPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

Sc. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

A Study on the Effectiveness of Lockup-Free Caches for a Reduced Instruction Set Computer (RISC) Processor

E• PERSQAL AUTHOR(S)
onard I narpe
a EPORT TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 115. PAG 8 qUNT

stepr she'sis T FROM 0991 TO 09/92 September 1992
16. SUPPLEMENTARY NOTATnIrhe views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if neceawy ad idenify by block number)

FIELD GROUP UGROUP Reduced Instruction Set Computer (RISC); Lockup-Free Cache Interface

19. ABSTRACT (Continue on reverse if necessary and identif by block number)
This thesis presents a simulation and analysis of the Reduced Instruction Set Computer (RISC) architecture, and the

effects on RISC performance of a lockup-free cache interface. RISC architectures achieve high performance by hav-
ing a small, but sufficient, instruction set with most instructions executing in one clock cycle. Current RISC perfor-
mance range from 1.5 to 2.0 CPI. The goal of RISC is to attain a CPI of 1.0. The major hinderance in attaining that
goal is attributed to instructions that require main memory access. In this thesis, we attempt to reduce the effects of
high penalties for non-cache accesses by using a non-blocking cache memory subsystem called a lockup-free cache.
This interface between the cache and main memory prevents the processor from "locking-up" when a request from
main memory occurs. This is accomplished by entering all non-cache requests into a memory queue, while the pro-
cessor continues to issue and execute other instructions. The evaluation of the effects of the lockup-free cache inter-
face is done using different variations of the interface design. The results show that using the lockup-free cache im-
proves RISC performance

20. DISTRIBUTIONIAVAILABILITY OF ABSTRACT1 21. ABSTRACT SECURITY CLASS•IFICATION

[3UNCLASSIFIED/UNLIMITED Q SAME AS RPT. [ DTIC USER& UNCLASSIFIED
3 IME, •r ESPONSIBLE INDIVIDUAL 22b TELude Area Code) j22c•fNE SYMBOL

DO FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete UNCLASSIFIED

i



Approved for public release; distribution is unlimited

A STUDY ON THE EFFECTIVENESS
OF LOCKUP-FREE CACHES FOR A REDUCED

INSTRUCTION SET COMPUTER (RISC) PROCESSOR

by
Leonard Tharpe

Captain, United States Army
B.S., Austin Peay State University

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1992

Author: _ _ _ _ _ _ _

Leonard Tharpe

Approved By: ___ _.______ "- ____-___

Dr. Amr Zaky , Thesis.A4i&

'-4

Dr. Michael L. Ned n, Second eader

Robert B. McGhee, Chairman,
Department of Computer Science

ii



ABSTRACT

This thesis presents a simulation and analysis of the Reduced Instruction Set

Computer (RISC) architecture, and the effects on RISC performance of a lockup-free cache

interface. RISC architectures achieve high performance by having a small, but sufficient,

instruction set with most instructions executing in one dock cycle. Current RISC

performance range from 1.5 to 2.0 CPI. The goal of RISC is to attain a CPI of 1.0. The

major hinderance in attaining that goal is attributed to instructions that require main

memory access. In this thesis, we attempt to reduce the effects of the high penalties for

non-cache accesses by using a non-blocking cache memory subsystem called a lockup-free

cache. This interface between the cache and main memory prevents the processor from

"locking up" when a request from main memory occurs. This is accomplished by entering

all non-cache requests into a memory request queue, while the processor continues to issue

and execute other instructions. The evaluation of the effects of the lockup-free cache

interface is done using different variations of the interface design. The results show that

using the lockup-free cache improves the RISC performance. Acce.1on For

NTIS CRA&i

DWi, I A!32
U' •:•."X ii.ced F

J:'I:b6ut H IIonJ

By...... ........ ............

D•it.ib'or

A-(J i
iii



TABLE OF CONTENTS

I. INTRODUCTION ................... .................... 1

A. COMPUTER TRENDS: The RISC Alternative .... ..... 1

B. RISC PERFORMANCE THROUGH MEMORY HIERARCHY . . . 2

C. OBJECTIVES ................. .................. 4

1. Primary Objective ............ ............. 4

2. Simulation Tools Objectives ....... ........ 5

D. ORGANIZATION OF STUDY ............ ............. 6

II. BACKGROUND ................... .................... 7

A. OVERVIEW OF THE REDUCED INSTRUCTION SET

COMPUTER .................. ................... 7

1. General ................. .................. 7

2. Characteristics of RISC Architecture . . . 9

3. RISC Pipelining ......... .............. 10

4. Computer Performance and The RISC Approach 12

a. Measuring Performance ... ......... 12

b. The RISC Approach to High Performan• e 13

B. SCALABLE PROCESSOR ARCHITECTURE (SPARC) . . 14

1. The SPARC Architecture .......... ........... 15

a. The Instruction Unit (IU) ...... ....... 15

b. The Floating-point Unit (FPU) ... 16

c. SPARC Registers and Register Windows 17

IV



2. The SPARC Instruction Set ... ......... 19

a. SPARC Instruction Types ... ........ 19

(1) Load and Store Instructions ... 19

(2) Arithmetic/Logic/Shift Instructions. 20

(3) Control Transfer Instructions. . 21

(4) Special Registers Read/Write

Instructions. .... ........... 22

(5) Coprocessor Operations ...... 22

b. SPARC Instruction Formats .. ....... 23

(1) Format I Instructions. 23

(2) Format 2 Instructions. ........... 23

(3) Format 3 Instructions. ........... 23

3. SPARC Pipelines .. ....... .............. 25

C. THE LOCKUP-FREE CACHE INTERFACE . ............. 27

1. General ................................... 27

2. The Lockup-Free Cache Interface Concept . . 28

3. Design Issues of Lockup-free Cache

Interfaces .......... ................. 29

a. Memory Request Queue .... .......... 29

b. Other Design Issues ... .......... 30

III. A LOCKUP-FREE CACHE INTERFACE MODEL ......... .. 31

A. THE LOCKUP-FREE CACHE INTERFACE DESIGN . . .. 31

1. General ............. .................. 31

2. The Major Components of the Cache Interface 31

B. OVERVIEW OF THE SYSTEM OPERATION .. ....... 33

v



1. Lockup-Free Cache Operation ... ....... 33

2. The Processor Operation Model .. ....... 34

IV. SIMULATION TOOLS .......... ................. 35

A. THE SPARC PERFORMANCE ANALYZER 1.0 SIMULATOR . 36

B. THE SPARC ADDRESS TRACE TRANSLATOR/ANALYZER . . 37

1. General ............... ................. 37

2. Instruction Address Trace Format ...... .. 38

3. The SATTA Instruction Record ... ....... .. 39

4. SATTA File Generators ..... ........... 40

a. SPARC Assembly Language Files .... 40

b. Cache Address Trace Files .. ....... 41

C. THE RISC CACHE INTERFACE SIMULATOR .. ..... 43

1. General ................. ............ ... 43

2. The RICIS Program ....... ............. 43

3. The RICIS Operation ....... ............ 44

a. Assumptions and Constraints . . . . ... 44

(1) Floating-point instructions. . .. 44

(2) Simulating cache hits and misses. 44

(3) Instruction types ... ......... .. 45

b. Setting Simulation Parameters ..... 45

c. RICIS features ...... ............. 47

(1) The Priority Event Queue (PEQ). 47

(2) Simulating the Different Memory Queue

Schemes ........ ............. 48

(3) Simulating Blocked Instructions. 48

vi



d. Calculating Performance Results . . . . 50

V. SIMULATIONS AND RESULTS OF LOCKUP-FREE CACHE

INTERFACE ................ ..................... 51

A. METHODOLOGY ............ .................. 51

1. General ............. .................. 51

2. Structures to be Evaluated ... ......... 51

3. Fixed Parameters ........ .............. 52

B. TEST PROGRAMS .......... ................. 53

1. General ............. .................. 53

2. Pseudo Code Interpreter ..... .......... 54

3. Launch Trajectory Calculator .......... 54

4. Matrix Multiplication ..................... 54

C. SIMULATION EXPERIMENTS ....................... 54

1. General ................................... 54

2. MAQ Sizes ........... ................. 55

3. MAQ Configurations ...... ............. 57

D. SUMMARY ................ ................... 59

VI. CONCLUSIONS ............... ................... 62

A. OVERVIEW ............... ................... 62

B. FUTURE RESEARCH .......... ................ 63

APPENDIX A. USING THE SPA 1.0 SIMULATOR .......... 65

APPENDIX B. USING THE RICIS PROGRAM ... ......... 70

vii



APPENDIX C. SPARC ADDRESS TRACE TRANSFORMER/ANALYZER 74

APPENDIX D. RISC CACHE INTERFACE SIMULATOR (RICIS) CODE 86

APPENDIX E. SPA RESULTS OF MATRIX MULTIPLICATION TRACE 109

APPENDIX F. SPA RESULTS OF PSEUDO CODE TRACE ..... 114

APPENDIX G. SPA RESULTS OF TRAJECTORY PROGRAM TRACE . 119

LIST OF REFERENCES ................ .................. 124

INITIAL DISTRIBUTION LIST ........... ............... 127

viii



LIST OF FIGURZS

Figure 1.1 Instruction Count Report Generation . . .. 5

Figure 1.2 Assembly Language Translation ...... ....... 5

Figure 1.3 Performance Analysis of Alternative Designs 6

Figure 2.1 RISC Processors Instruction Set Sizes. . 8

Figure 2.2 How RISC Differs from CISC Architectures. . 10

Figure 2.3 A 5-Step Sequential Process ............ 11

Figure 2.4 Pipelined Execution of a 5-Stage Process. 12

Figure 2.5 SPARC Architecture Components Diagram . . 16

Figure 2.6 SPARC Register Windows .... ........... .. 18

Figure 2.7 Sample SPARC Load and Store Instructions. . 20

Figure 2.8 Sample Arithmetic/Logic/Shift Instructions. 21

Figure 2.9 Sample Control Transfer Instructions . . . 22

Figure 2.10 SPARC Instruction Format. Courtesy of SUN

Microsystems [SPA88] .......... ................ 24

Figure 2.11 SPARC Pipelined Execution of Instructions. 25

Figure 2.12 A SPARC Four-Stage Instruction Pipeline:

Fetch (FET), Decode (DEC), Execute (EXE), Write (WRT).

S. . . . . . . . . . . . . . . . . . . . . . .. . 26

Figure 2.13 Memory Hierarchy with Lockup-Free Cache

Interface .............. ..................... 29

Figure 3.1 Structure of the Lockup-Free Cache

Interface ................ ..................... 32

Figure 3.2 MAQ Formats for Reads and Writes ...... 33

ix



Figure 4.1 Simulation Environment ... .......... 36

Figure 4.2 Trace Instruction Format ... ......... 38

Figure 4.3 Detailed Expansion of an Instruction Record 39

Figure 4.4 Assembly Language Code Produced by SATTA 41

Figure 4.5 Records from Cache Address Trace File . . 42

Figure 4.6 View of Priority Event Queue .. ....... 47

Figure 4.7 View of Simulated FIFO MAQ .. ........ 49

Figure 4.8 View of Simulated Priority MAQ .. ...... 49

Figure 4.9 View of Simulated Separate MAQ Scheme . . 49

Figure 5.1 Effects of FIFO MAQ Scheme .. ........ 56

Figure 5.2 Effects of Single-Queue-Miss-Priority MAQ

Scheme ................. ...................... 57

Figure 5.3 Effects of Separate-Queue-Miss-Priority MAQ

Scheme ................. .................... ... 58

Figure A.1 SPANNER Command Format ............. 66

Figure A.2 SPOUT Report Heading and Parameter Settings 67

Figure A.3 SPA Overall Instruction Count Listing . . . 68

Figure A.4 SPOUT Memory Access Instruction Count . . 69

Figure B.1 RICIS Startup Session .... .......... 71

'C



I. INTRODUCTION

A. COMPUTER TRENDS: The RISC Alternative

The Reduced Instruction Set Computer (RISC) architecture

is fast emerging as the architecture processor of choice in

the computer industry. Since its arrival only a decade ago,

numerous implementations and variations of RISC ha'a emerged,

and the trend is continuing to shift toward the RISC concept.

Industry experts predict that the RISC architecture could

capture a major share of the market in the 1990's [Bur90].

Until recently, the ever increasing demands for faster and

more powerful computing machinery have been met by the Complex

Instruction Set Computer (CISC) architectures. As the name

implies, these computers consist of powerful, complex

instructions interpreted by microcode residing on a chip which

controls the hardware that executes the program [Met90]. The

sizes of the machine language instruction sets of CISC

architectures become larger as they increase in complexity.

The underlying assumption of CISC is that machines that

feature many complicated instructions could provide more

computing power for its users. Despite the advantages offered

by the more complex instructions, the ideal performance of

CISC is not achieved because of the overhead resulting from

the complexity of the control circuits.

1



RISC takes a radically different approach to improved

performance. RISC architecture emphasizes simplicity and

efficiency by having a small instruction set [Dei9O]. Most

RISC architectures are designed so that all instructions would

execute in one cycle. This eliminated the more complex

instructions that required more than one cycle to execute

[SC91]. RISC architectures also avoid complicated

instructions requiring microcode support. Instead, these

complex capabilities are implemented in software (TT91].

Major characteristics of RISC architectures include a

fewer number of instructions, simple load and store operations

for register to memory transfers, large register set, deep

pipelines, and many levels of memory hierarchy [GM87]. The

most significant advantages of RISC include speed and ease of

implementation.

B. RISC PERFORMANCZ THROUGH MEMORY HIERARCHY

The performance of most computer architectures is often

limited by the design of its memory hierarchy. Typically,

memory is managed using a three-level memory hierarchy. The

first level is high speed cache, which is expensive and of

lowest capacity. The second level is real or main memory

which is slower and less expensive than cache memory. The

third level is the large capacity storage devices such as

disks. This level holds programs and data that cannot fit in

levels one and two [FM87].

2



Main memory access delays are a major factor in

performance of a program execution. With a typical miss

penalty costing between 8 and 32 clock cycles [HP90], the

ability to control and minimize access to main memory will

have a direct effect on performance. This is particularly

critical to the RISC goal of executing one instruction per

cycle.

RISC memory systems are usually complex because of the

requirement to keep instructions and data supplied to the

processors. The RISC memory hierarchy often includes an on-

chip instruction buffer to hold the next few instructions.

Some memory systems have both an instruction cache and a data

cache which may be on or off-chip. The main memory for RISC

systems are off-chip and sometimes off the processor board

[GM87]. This maximizes the penalty for cache misses or other

main memory accesses, making the requirement for highly

efficient memory management systems critical.

Improvements in RISC performance can likely be made

through improvements in its memory management systems since

memory accesses consume a considerable amount of machine

cycles. Regardless of the efficiency or hit rate of a cache

memory system, misses will occur and main memory must be

accessed. Main memory access is also required for write/store

instructions. Main memory access stalls or blocks the

processor for a specified number of cycles while data is

fetched and/or written.

3



A possible solution to reducing the costs of main memory

accesses is the concept of a lock-up free cache interface

[Kro8l] [SD91]. The lock-up free cache is a non-blocking cache

interface that queues main memory access requests (i.e., loads

and stores), allowing processing to continue while the memory

access queue is being served.

C. OBJECTIVES

1. Primary Objective

The primary objective of this thesis is to analyze the

performance of different variations of the RISC architectural

concept. Specifically, we examine the RISC architecture and

the effects on performance of a memory subsystem known as a

lockup-free cache interface. Experiments are made on models

of several design possibilities of the lockup-free cache

interface.

In accomplishing the primary objective, an

intermediate objective is to acquire or develop effective

simulation tools to observe the behavior of a RISC

implementation as it executes different types of programs.

We choose the SPARC as a model of a RISC architecture because

SPARC incorporates many characteristics that are typical of

RISC architectures, and a trace simulator for it was

available.

4



2. Simulation Tools Objectives

One objective of the simulation tools is to produce

executable SPARC binaries for input to a simulator which

produces binary address trace files. These address traces are

then used for producing instruction count data as shown in

Figure 1.1 and for translating the binary address trace into

a more readable SPARC assembler language format as shown in

Figure 1.2.

Address >Simulation -> Instruction
Trace Tool Count Report

Figure 1.1 Instruction Count Report Generation

Address > Simulation > SPARC
Trace Tool Assembler

Language

Figure 1.2 Assembly Language Translation

Another objective is to produce specially modified

address trace files to use in other simulation tools to

observe the RISC architecture under various workloads. They

also provide a view for "what-if" analysis as varied

architecture configurations are simulated.

5



A final objective of the simulation tool is to provide

functions for simulating the performance of a lockup-free

cache interface for a RISC processor (Figure 1.3). The

functions include simulating a non-blocking cache interface

and fetching instructions out of order for execution. These

specific techniques will be used to evaluate the effects of a

cache interface that minimizes main memory traffic.

Modified > [oku-7rI > Performance
Address 5Cache 5Analysis
Trace SiuaorJ

Figure 1.3 Performance Analysis of Alternative Designs

D. ORGANIZATION OF STUDY

The remainder of this thesis is divided into five

chapters. In Chapter II background information on RISC,

SPARC, and the lockup-free cache is provided. Chapter III

presents a model of a lockup-free cache. The simulation tools

used to model the lockup-free cache interface and to observe

the behavior of the SPARC architecture are discussed in

Chapter IV. In Chapter V, we simulate and evaluate

alternative design possibilities for the lockup-free cache

interface on RISC to improve the system performance. Chapter

VI presents our conclusions and further research issues.

6



II. BACKGROUND

This chapter discusses the origin and characteristics of

the RISC architecture and how RISC achieves high levels of

performance. We then focus on the SPARC architecture and how

it approaches the RISC concept. Finally, the lockup-free

cache interface design is introduced as it is modelled in this

study to determine its effect on RISC performance.

A. OVERVIEW OF THE REDUCED INSTRUCTION SET COMPUTER

1. General

The Reduced Instruction Set Computer (RISC) was

developed as a result of studies in the mid 1970's which

suggested that computer architectures consisting of many

complex instructions still executed mostly simple

instructions. Specifically, an IBM study observed that over

two-thirds of the instruction executions on their System 370

architecture accounted for only 10 simple instructions

[Dei90]. In 1979 the first RISC machine, the IBM 801, was

completed. The IBM 801 also was the first computer to feature

single-cycle instruction execution [SPA88].

The RISC architecture is based on the concept that

computers with a relatively small number of simple

instructions and a large number of registers can operate

faster than computers with a large instruction set containing

7



many complex instructions. Figure 2.1 shows instruction set

sizes of several RISC processors [Gro90] [GM87]. Although the

name Reduced Instruction Set Computer implies reduced

instruction sets, there is much more to a RISC architecture

than that. The size of the instruction set is merely an end

result of the techniques used to improve computer performance.

Generally, RISC architectures are designed to exploit the

advantages of the latest features of both hardware and

software technologies.

RISC PROCESSORS INSTRUCTIONS

UC Berkeley RISC I 31

Stanford MIPS 32

UC Berkley RISC 11 39

Motorola 88100 51

Fujitsu SPARC 67

Cypress SPARC 69

MIPS R3000 78

Intel i860 82

Bipolar Integrated SPARC 88

Pyramid 90

Figure 2.1 RISC Processors Instruction Set Sizes.

8



2. Characteristics of RISC Architecture

There are several specific characteristics that are

typical of RISC architectures that have proven to be the key

to enhanced performance. One important characteristic is that

all instructions except loads, stores, and floating point

instructions can be executed in a single cycle. The single-

cycle instruction set design makes it easier for several

instructions to be processed at the same time, thus allowing

more efficient pipeline operations.

Another characteristic of RISC is its register

intensive design. RISC machines have 32 or more general

purpose registers, a feature that greatly reduces the number

of operand memory references, thus reducing the costs of

memory accesses [BEH91]. Generally, all RISC instructions

use either two registers or a register and a constant with the

result being placed in a destination register. The large

number of registers can also be used to reduce the high cost

of branch instructions by dedicating registers e-rclusively for

branches [DW90].

RISC is also characterized by its simple fixed-format

instructions. All instructions are 32 bits long and the

operation codes and addresses are located in the same

positions of an instruction. To insure simplicity of the

instruction set, RISC uses software designed from simple

instructions to execute complex functions. Only those

functions that do not degrade performance are implemented in

9



hardware. The simple, fixed-format instruction set is also

good for real-time environments because of its speed and ease

of execution.

Another characteristic is that RISC designs have a

load/store architecture where all operations are performed on

operands stored in registers with memory being accessed only

by load and store instructions. The load/store architecture

also makes it easier for compilers to optimize register

allocation [Kan87]. Figure 2.2 summarizes the basic

characteristics of RISC and how it differs from the CISC

[Met90].

Characteristic RISC CISC

Instruction Set Small (< 100) Large (> .200)

Instruction All instructions Variable size
Format 32 bits long instruction

Cycles/Instruction 1 more than one

General Registers 32 or more 16 or less

Memory Addressing Only load/store Nearly all
instructions instructions

Figure 2.2 How RISC Differs from CISC Architectures.

3. RISC Pipelining

With the goal of achieving an execution rate of one

machine cycle per instruction, one technique RISC

architectures use is pipelining. The simple fixed instruction

10



formats make pipelining with RISC architectures very

efficient. RISC pipelines are also designed to reduce the

cycles lost to conditional branches incorrectly predicted.

One benefit of pipelining is that it provides a way to

start a new instruction before a previous one has been

completed. Figure 2.3 shows a sequential process being done

without the use of pipelining. To process the same task using

a five-stage pipeline as shown in Figure 2.4, five different

instructions may be processing at a time, and ideally, one

instruction is completed every cycle [Ibb90]. Pipelining

improves processor speed by reducing the average execution

time per instruction throughput.

Figure 2.3 A 5-Step Sequential Process.

The RISC I pipeline consisted of only two stages, a

fetch and an execute. The fetch stage, which brings the

instruction in from memory, took about the same time as the

execute stage, which actually performed the calculations and

wrote the results back to memory. The RISC II added a third

stage, write stage, which wrote the results from a destination

11



ZZLEJLEIZL5

cycles ->

Figure 2.4 Pipelined Execution of a 5-Stage Process.

register to memory at the appropriate time [GM87]. More

recent RISC architectures use four or five stage pipelines.

4. Computer Performance and The RISC Approach

a. Measuring Performance

Computer performance is measured by the amount of

the time required to execute a program. Performance

encompasses two types of time, elapsed time and CPU time.

Elapsed time is the time required to execute a program from

start to finish. It includes latency of input/output

activities such as memory and disks accesses, and it includes

overhead from the operating system, such as context switching

(HP90]. CPU time consists of user CPU time which is the

actual time the computer spends in the user program, and

system CPU time which is the time the computer spends in the

12



operating system doing some task required by the user program.

The number of clock cycles to execute an

instruction (cycles per instruction, CPI) and the number of

instructions a computer executes per second (millions of

instructions per second, MIPS) are also good indicators of

performance. CPI is calculated by knowing the number of clock

cycles and the instruction count:

Clock cycles for a program
CPI =

Instruction count

From this formula, clock cycles can be defined as CPI *

instruction count. MIPS, million instructions per second, can

be calculated as such:

Instruction count Clock rate
MIPS =

Execution time * 106 CPI * 106

MIPS and CPI values can both be used to calculate program

execution time by:

1
program time = Instruction count * CPI *

Clock rate

Observing the formulas above, improved performance, or reduced

program execution time can be achieved by decreasing either

the cycle time, the CPI, or the instruction count.

b. The RISC Approach to High Performance

RISC CPI values are typically between 1.5 and 2.0.

They achieve this by defining simple instructions and by using

13



sufficiently large cache memory systems that have low miss

rates. Simple instructions imply more efficient pipeline

operations. The low-miss-rate caches greatly influence RIKC

performance, as during a miss the controller must first fetch

the instruction or data from main memory. This incurs a

significant increase in program execution time because

numerous cycles are required to access main memory [TT91].

RISC reduces its instruction count through the use

of a large number of registers. Variables, constants, and

addresses are placed in registers instead of time-consuming

main memory. The use of registers instead of memory for

instructions other than loads and stores also reduces the

requirement for memory access which could result in a cache

miss [AAD90J.

The cycle time is dependent mainly on available

technology. The design of the cache and pipeline determine

whether or not an architecture can achieve the aim of one

instruction executed per cycle. RISC's simple, fixed-length

instructions allow fast chip-to-cache interfacing. The fixed

formats also speeds up decoding and dependency calculations

which helps shorten the cycle time [Gar9l].

B. SCALABLI PROCESSOR ARCHITECTURE (SPARC)

The Scalable Processor Architecture (SPARC) is a Reduced

Instruction Set Ccmputer (RISC) developed by Sun Microsystems

in 1987 [SPA88]. The SPARC architecture is based on the design

14



of the Berkeley RISC-II implementation [HP90]. The main

features of SPARC, like most other RISCs, include a small,

simple instruction set which directly enhances its

performance. SPARC is an open architecture with published

design specification. This allows standard products to be

acquired from a more cost-effective vendor market as

integrated circuits can be purchased from chip vendors, and

software from software vendors. The primary objective of SPARC

was to support the C programming language, numerical

applications using FORTRAN, and artificial intelligence and

expert system applications using Lisp and Prolog [RT88].

1. The SPARC Architecture

The SPARC architecture consists of an integer unit

(IU), a floating-point unit (FPU) configured around a 32-bit

virtual address bus, and 32-bit instruction and data busses.

The storage system includes a memory management unit and a

cache system for both instructions and data. Figure 2.5 shows

the arrangement and interaction between components of the

architecture. Some implementations of SPARC also include a

coprocessor (CP). The IU, FPU, and CP each has its own set of

registers.

a. The Inatruction Unit (IU)

The IU performs the basic processing for the SPARC

architecture. It executes the logical, arithmetic (except

floating-point), control transfer, memory reference, and

15



IU FPU

instruction and data bus

main MMU
memory cache I/O

Figure 2.5 SPARC Architecture Components Diagram

multiprocessor instructions (except floating-point

operations). It can have between 40 and 520 general-purpose
I

registers, depending on the implementation and register window

configuration. In addition to the window registers, the IU

includes the processor state register (PSR), the window

invalid mask (WIM), the trap base register (TBR), the program

counters (PC and NPC), and the multiply stop register.

b. The Floatlng-point Unit (FPU)

The FPU performs floating point operations

concurrently with the IU. It has 32 floating-point registers.

Double precis'on numbers occupy an even-odd pair of register,

and extended precision values occupy four consecutive

registers. The FPU uses a queue to place floating-point

instructions until they are ready to be executed. While

floating-point operations are executing, the IU also continues

to execute instructions. The FPU registers are accessible

16



only by special memory load and store instructions. These

instructions, called floating-point load/store instructions,

are not FPU operations, but IU operations. The IU generates

the address and the FPU recognizes and processes the floating-

point instructions [Gar9l1.

c. SPARC Registers and Register Windows

The SPARC is characterized mainly by its register

intensive design. The IU, FPU, and CP each have their own set

of registers, all of which are 32-bits wide. The use of these

registers reduces memory traffic which significantly speeds up

program execution. SPARC further exploits the use of

registers through a register windowing scheme. The 40 to 520

registers available to the IU are made possible through the

partitioning of the register set into 2 to 32 overlapping

register windows [HP90]. The actual number of registers is

implementation dependent.

The primary purpose of the register windows is to

facilitate more efficient parameter passing during the

procedure calls of a program execution. During execution, a

program may access 32 general-purpose registers: 8 ins, 8

locals, and 8 outs belonging to each window, and 8 global

windows. Figure 2.6 shows a design of register windows. The

different windows are identified by the Current Window Pointer

(CWP) which decrements during a procedure call to activate the

17



next window and increments at procedure exit to activate the

previous window [Gar9l].

R[31] R[7]
: ins : globals

R(24] R[I]

R[23] R[0] 0
: locals

R(16]

R[15] R(311
: outs ins

R[8] R[24]

R[231
[ locals

R[16]

R[15]
: outs

R[8]

Figure 2.6 SPARC Register Windows.

As shown in Figure 2.6, 8 registers overlap each

window. Registers R[8] to R[15] of a procedure caller's

window become R(24] to R(31] after the call. R[16] through

R(231 are unique registers to each window. Global register

R(O] always contains the value 0, because it is the most

frequently used constant and should be easily available at all

times. The window registers are sometimes labeled I[0] to

I[7] for R[24] to R[31] respectively for in registers, L[O) to

L[7] for R(16] to R[23] for local registers, 0(0] to 0[7] for

18



R(8] to R[15] for out registers, and G(O] and G[7] for the

global registers R[O] to R[7].

Advantages of using register windows include

reductions in the number of load and store instructions and,

consequently, a decrease in the number of cache misses.

Register window operations are not without their drawbacks.

When all windows are full and a procedure call occurs, an

overflow occurs and the window trap handler must move 16

registers into memory. An underflow occurs when a procedure

return occurs and the windows are empty, causing the trap

handler to move 16 registers from memory. The cost of an

overflow and an underflow are about 60 cycles each (HP90].

2. The SPARC Instruction Set

The SPARC instruction set consists of 55 basic integer

and 13 floating-point instructions. All instructions are 32-

bits wide and are identified by one of three different

instruction formats. There are five basic categories of

SPARC instructions: (1) load and store instructions, (2)

arithmetic/logic/shift instructions, (3) control-transfer

instructions, (4) read/write control register instructions,

and (5) coprocessor operations [RT88].

a. SPARC Inatzuction Types

(1) Load and Store Instructions. Load and store

instructions are also called memory reference instructions as

they are the only instructions that access memory. These

19



instructions use byte, halfword, word, and doubleword

operands. The load and store instructions can also be used to

access up to 256 different address spaces in the system by the

use of an address space identifier (asi). Figure 2.7 shows

two different load instructions and two different store

instructions.

(1) id [%gl+520], %gl
(2) ldd [%o6+94], %gl
(3) st %o7, [%o7+140]
(4) sth %o5, [%o5+o7]

Figure 2.7 Sample SPARC Load and Store Instructions.

The first instruction is a load single integer

instruction, which moves a word from memory into register %gl.

In this example, the memory location is denoted by the sum of

contents of register %gl and the constant 94. The second

instruction, the load doubleword, moves a doubleword from the

memory location indicated to %gl. The store instruction in the

example stores the value in %o7 into the memory address

indicated by the sum of [%o6+140]. The last example, a store

halfword, moves the least significant halfword from %o5 to the

memory location specified by the sum of contents of %o5 and

%o7.

(2) Arithmetic/Logic/Shift Instructions. The

Arithmetic, logic, and shift instructions perform operations

on two operands and put the results into a destination

20



register. The operands can be either constants or register

contents. Figure 2.8 show examples of each of the three types

of instructions.

add %17,%gl,%13
or %gO,71,%o4
sll %oO,2,%o2

Figure 2.8 Sample Arithmetic/Logic/Shift Instructions.

The add instruction adds the contents of

registers %17 and %gl, placing the result in %13. The or

instruction implements a bitwise logical operation on the

contents of %gO and the constant 71, placing the results in

%o4. The shift instruction, sll, shifts the value of the

contents of %oO by the number of bits indicated, 2, placing

the result in %o2.

(3) Control Transfer Instructions. Control transfer

instructions consist of conditional and unconditional branch,

jump, call, trap, and return from call instructions. These

instructions changes the value of the program counter. Figure

2.9 shows examples of the types of control transfer

instructions.

21



bne 11, %gl
jmpl %o7,8,%gO
call 75
rett 75

Figure 2.9 Sample Control Transfer Instructions

The branch instruction, bne, evaluates a

condition code and the branch is taken if the condition is

true. In this example the target address is the PC value plus

4 (the address of the next instruction) times the value of

%gl. The jmpl instruction causes a control transfer to the

address indicated by the sum of %o7 and 8, placing the PC in

the destination register %gO. The call and rett instructions

direct a control transfer to the indicated memory address.

(4) Special Registers Read/Write Instructions.

These instructions read the contents or write new values to

the four special registers defined by the SPARC: Processor

State Register (PSR), Trap Base Register (TBR), Window Invalid

Mask (WIM), and Y register which is used for 64-bit integer

multiplication.

(5) Coprocessor Operations. These instructions

perform floating-point calculations, as well as operations on

floating-point registers. They also include instructions

involving the optional coprocessor.

22



b. SPARC Inatruction Formats

Figure 2.10 shows the three types of instruction

formats and the fields and bit positions for each format used

by the SPARC. The bit ordering in the formats is little-

endian' and the byte ordering is big-endian2 . SPARC

instructions have two basic addressing modes:

register+register and register+signed-immediate.

(1) Format 1 Instructions. Format 1 has a 30-bit

displacement field for Call, and in certain situations, Branch

instructions. A call may be made to a distant location in a

single instruction.

(2) Format 2 Instructions. Format 2 supports Sethi

(set high) and branch instructions. The Sethi instruction

loads a 22-bit immediate value into the upper 22 bits of the

destination register and clears its lower 10 bits. The 22-bit

displacement field also accommodates a ±8-Mbyte displacement

for conditional branch instructions.

(3) Format 3 Instructions. Format 3 is used for

the remaining SPARC instructions. It has fields for two

source registers and a destination register. When the i bit

1 Little-endian machines store words with the high-

numbered bits as the most significant. For example, if the
binary number 1000 were represented in litte-endian format, 1
is the high-ordered bit and the most significant bit, whereas.
For big-endian representation, 1 would be the least
significant bit.

2 Big-endian byte ordering stores the words with the

high-number byte as the least significant.

23



Format 1 (CALL)

op 1 disp3O

31 29 0

Format 2 (SETHI)

op Ird Iop2 ~ imm22

31 29 28 0

Format 2

op Ia condI op2 disp22

31 29 28 24 21 0

Format 3

op rd I op3 rsl i=0 asi or fp-op rs2

31 29 24 18 13 4 0

Format 3

op I rd I op3I rsl Ii=1 simml3

31 29 24 18 13 12 0

Figure 2.10 SPARC Instruction Format. Courtesy of SUN
Microsystems [SPA88].

is set (i-1), the 13-bit immediate field value is used instead

of the second source register. The load and store

instructions use the upper 8 bits of the immediate field as an

extension to the opcode fields to define floating-point

instructions. Unused values for opcodes are reserved for

future expansion and designated unimplemented.

24



3. SPARC Pipelines

The SPARC SF9010IU and CYC601 processors use a four-

stage pipeline: fetch, decode, execute, and write. Each

stage performs a subset of operations needed to complete the

execution of an instruction as depicted in Figure 2.11. Each

stage completes its operation in a given cycle.

enter

Fetch Stage

Decode Stage7]
I --

Execute Stage

Write Stage l

I
exit

Figure 2.11 SPARC Pipelined Execution of Instructions.

At the fetch stage, the address of the instruction is

sent out and the instruction is brought into the pipeline.

During the decode stage the source operands are read from the

registers and passed to both the execution unit and the

instruction unit for later processing. Also, at this stage

the address of the next instruction is calculated. In the

execute stage, arithmetic and logic operations are performed.

25



The results of these calculations are stored in temporary

registers before they are written into the appropriate

destination registers. The write stage of the pipeline writes

the results in the register file, and the instruction is not

finished executing [NA91].

The four-stage pipeline is illustrated in Figure 2.12.

Although it takes four cycles from start to finish of each

individual instruction, after the initial instruction

completes, an instruction is completed every cycle afterwards

(ignoring pipeline hazards). Also notice that when the first

instruction, I(1), is in the final stage of the pipe,

instructions 1(2), 1(3), and 1(4) have already entered the

pipe and are being processed.

CLOCK CYCLES

1 2 3 4 5 6 7 8

I(1) FET DEC EXE WRT

1(2) FET DEC EXE WRT

1(3) FET DEC EXE WRT

1(4) FET DEC EXE WRT

Figure 2.12 A SPARC Four-Stage Instruction Pipeline: Fetch
(FET), Decode (DEC), Execute (EXE), Write (WRT).

The SPARC B5000 uses a five-stage pipeline: fetch,

decode, execute, memory, and write. The memory stage is

located between the execute and write stages of the previous

26



pipeline example. The memory stage is used for those

instructions that have memory references. This stage performs

the data transfers after the execute stage generates the

memory address. The write stage places the results data from

the memory stage into the register file [ABMP91].

C. THE LOCKUP-FREE CACHE INTERFACE

1. General

Although RISC has proven to be a high performance

architecture, situations such as data dependencies between

instructions, conditional branch instructions, and memory

access penalties prevent RISC from achieving the goal of one

instruction per cycle. The high performance of RISC

architectures is partially attributed to their use of high

speed cache systems. One important performance criteria of a

cache is to maximize the probability that the requested data

is present which is to attain a maximum hit ratio. Another

criteria is to ensure that data access time from the cache is

minimal. Thus, cache design is a major issue in computer

performance. The parameters that are targeted in designing

more efficient caches include cache size, cache associativity,

cache replacement policy, line size, and hardware prefetching

(Por89]. Mcit cache memories have hit rates between 85% and

95%, and cache memory access times are 5 to 10 times faster

than main memory access times [LFK90].

27



Regardless of the hit rate of a cache memory system,

a miss or a write instruction will require main memory access.

Main memory access is a major factor in performance

degradation of a computer system. Generally, there are two

ways to reduce memory access penalties: (1) reducing the

number of memory requests, and (2) reducing the average

latency [Por89]. RISC approaches the first problem by

efficient register allocation. The second problem must be

solved by acquiring more memory bandwidth.

To further reduce the adverse effect of a non-cache

access on a RISC architecture, a cache-to-main memory

subsystem, called a lockup-free cache interface is proposed as

a possible solution. Such scheme was used by Kroft for a

uniprocessor architecture [Kro81], and by Scheurich and Dubois

for a multiprocessor architecture [SD91]. As the name

implies, a lockup-free cache interface prevents non-cache data

requests from "locking up" the processor. The processor is

allowed to continue processing instructions while memory

requests are being handled. Figure 2.13 illustrates a memory

hierarchy that includes a lockup-free cache interface.

2. The Lockup-Free Cache Interface Concept

A lockup-free cache interface is a component of cache-

based memory systems used to control access to main memory.

The objective of the lockup-free cache interface is to

28



CACHE <>secondary
F> INTERFACE storage:>main <-> tape,

Imemory disk,
CPU jetc.

CACHE

Figure 2.13 Memory Hierarchy with Lockup-Free Cache
Interface.

increase the effectiveness of cache-based memory systems by

minimizing the penalty for main memory accesses (Kro8l]. The

basic concept is to prevent the processor from freezing on

non-cache accesses. On RISC machines, main memory accesses

are required for cache misses and for write instructions.

3. Design Issues of Lockup-free Cache Interfaces

a. Memory Request Queue

A major design consideration of a lockup-free cache

interface is the use of a waiting queue for main memory

requests. During processing, when a cache miss or a write

instruction is encountered, the request is placed in a queue

for main memory requests. At the same time that memory

requests are being served from the queue, the processor

continues to issue new instructions until the memory request

queue fills or an instruction is dependent on data in the

memory request queue. If an issued instruction is dependent

29



on data in the memory queue, then the instruction is blocked

or put on hold until the required data is available.

b. Other Design Issues

The effects of a lockup-free cache interface on

RISC performance also depend on other important design issues.

One design issue is whether to use a shared or separate memory

request queue for misses and writes. Another issue is whether

to use a queue for blocked instructions or to freeze the

process when an instruction is dependent on a queued data

request. The length of the queue for main memory requests is

also a design issue that may determine the effects of the

lockup-free interface.

30



III. A LOCKUP-FREE CACHE INTERFACE MODEL

A. THE LOCKUP-FREE CACHE INTERFACE DESIGN

1. General

In presenting a model for a lockup-free cache

interface, we do not attempt to define a specific cache memory

design. We also assume that there is a separate cache for

instructions and data, which is the case in some SPARC

implementations. Thus, the effect of instruction misses is not

considered as it is assumed to be insignificant. With the

high hit rates of most cache systems, most main memory

accesses are likely to be writes instead of instruction

misses. A write-through policy is also assumed.

2. The Major Components of the Cache Interface

Figure 3.1 is an overview of the components needed to

implement the lockup-free cache interface. The interface has

two queues: Memory Access Queue (MAQ), and Blocked Instruction

Queue (BIQ). The MAQ is used for storing read misses and

writes. It may either be a FIFO or priority queue, or it may

be a split queue configuration with reads and writes in

separate MAQs.

The BIQ holds target register numbers of the read

instructions that are in the MAQ. The BIQ entries correspond

to the read entries in the MAQ. Therefore, the BIQ may be a

31



Data Ready Memory Ready

To Processor
tO Load in To main memorthe appropriate

register.

QFULL QFULL

a Dequeue

ENQ

BIQ MAQ

M STALL

miss write
to processor

Blocked Load Registers

From Cache Control
(Miss or Write)

Figure 3.1 Structure of the Lockup-Free Cache Interface

32



FIFO or a priority queue, depending on the MAQ. Figure 3.2

illustrates typical entries in the MAQ. The main memory

controller uses a Memory Ready (MR) signal and a Data Ready

(DR) signal to communicate with the cache interface.

R address unused

W address data

Figure 3.2 MAQ Formats for Reads and Writes

B. OVERVIEW OF THE SYSTEM OPERATION

1. Lockup-Free Cache Operation

The cache operates like a typical cache as long as no

read misses or writes are encountered. On a read miss, an

entry is added to the MAQ and the destination register of the

instruction is entered into the BIQ. On a write instruction,

an entry is enqueued in the MAQ.

The main memory controller sends a Memory Ready (MR)

signal to the cache interface indicating that another memory

access can be initiated. When the MR signal is received by

the cache interface, the next entry in the MAQ is dequeued and

sent to the memory controller. The memory controller also

sends a Data Ready (DR) signal to the interface indicating

that the data access from main memory is ready to be loaded.

33



Thus, an entry in the BIQ is then dequeued and the data loaded

into the register.

2. The Processor Operation Model

The processor stalls on three conditions: (1) the

instruction to be issued uses a register that is being used as

a target by an instruction in the MAQ or main memory, (2) the

instruction to be issued uses a register that is the target of

a blocked load instruction, (3) and the MAQ fills up. When

any of these situations occurs the processor stalls until the

DR signal is received and the BIQ dequeues the appropriate

register. The MAQ will continue to process requests until the

target register causing the stall receives the required data.

Using the lockup-free cache, the processor is assumed

to be able to issue instructions before the previous ones

complete. Thus, the instructions can complete out-of-order.

This is generally the case with writes and read misses that

must wait to be served by main memory. While these

instructions are waiting for main memory service, the

processor continues to fetch and execute instructions. The

processor cannot issue an instruction that depends on a

previous instruction that is currently blocked.

34



IV. SIMULATION TOOLS

To provide the capabilities for an analysis and view of

the lockup-free cache and the RISC architecture, three

different simulation tools are used in this study. These

tools allow us to observe the behaviors of several variations

of the architecture. Additionally, these tools produce

address traces of actual program executions. This allows for

more accurate and realistic results from the modelled RISC

architectures. Figure 4.1 illustrates the simulation

environment for this research.

The first simulator is the SPARC Performance Analyzer

(SPA) 1.0. The SPA is used to produce address traces of

programs and to provide instruction count data for those

traces. A second simulator is an address trace translator

which produces readable instruction records and modified

address trace files for use in other simulation tools. The

instruction records provide the user with information such as

instruction and data addresses, binary representations,

opcodes, and registers used. The third simulator is a lockup-

free cache interface which simulates a cache-to-main memory

subsystem used to reduce the cost of main memory access.

35



source

program
I

SPA 1.0
Simulator

statistics trace

SATTA
program

etc. addr. traceI files

Lockup-free
Cache
Interface
Simulator

etc. results

Figure 4.1 Simulation Environment

A. THE SPARC PERFORMANCE ANALYZER 1.0 SIMULATOR

The SPARC Performance Analyzer (SPA) 1.0 is a package of

simulation tools used to analyze the performance of programs

executed on SPARC machines. SPA can simulate two different

36



SPARC implementations: the Cypress CY7C601 and the Fujitsu

MB86901. Simulations can be run on SPARCstations or any

machine using a Sun OS4 operating system. The SPA was

developed by Gordon Irlam and made available to users via file

transfer protocol (ftp) . The specific version we used was

ported from ftp.uu.net:/system/sun/spa-l.0.tar. Z.

The SPA 1.0 consists of three major components: SPY,

SPANNER, and SPOUT. The SPY is a tool that traces the

execution of a program and produces an address trace file; the

SPANNER is a tool that converts the address traces into

instruction count files; and the SPOUT is a component that

formats and displays the results of the instruction count.

There are numerous other tools in the SPA package that

support the three major components. These tools add to the

flexibility of SPA by allowing the user to set various

parameters of the architecture and determining the effects on

performance. Appendix A provides additional information on

the major components of SPA and their uses.

B. THE SPARC ADDRESS TRACE TRANSLATOR/ANALYZER

1. General

The SPARC Address Trace Translator/Analyzer (SATTA) is

a program that takes as input the address trace files

generated by SPA and translates them into detailed readable

instruction records. The SATTA also generates SPARC assembly

37



language files and specially modified address traces to be

used in the lockup-free cache interface simulator.

2. Instruction Address Trace Format

The composition of each instruction record in the

address trace file is illustrated in Figure 4.2. The

execution trapped (et) field is a one that indicates the

execution status of the instruction. A 0 means the

instruction was executed, and a 1 indicates that it was not

executed. The data address valid (dav) field is a one-

character field, 0 or 1, indicating whether or not the data

address field is valid. The data address field is valid if

the instruction is a load or store instruction.

struct Instruction
char et;
char dav;
short tn;
unsigned long op;
unsigned long ia;
unsigned long da;

};

Figure 4.2 Trace Instruction Format

The op field contains the integer value of the actual

SPARC instruction. The instruction address (ia) field is the

address in memory where the instruction was referenced or

fetched, and the data address (da) field indicates the memory

location of the referenced or target data.

38



3. The SATTA Instruction Record

The SATTA program translates each address trace record

into a very detailed, more readable display of information.

A sample record is shown in Figure 4.3. This record includes

all the information generated by the SPY component. In this

example we see that the instruction was executed and that the

value indicated in the data address field is valid.

record: 1
exec status: 0
valid addr: 1
trap no.: 0
instruction: -805166984
binary representation: 11010000000000100010000001111000
op_field: 3
opcode value: 0
opcode: ld
rd value: 8
rsl value: 8
index bit: 1
simm13: 120
inst addr: 26b74
data addr: 26c78

Figure 4.3 Detailed Expansion of an Instruction Record

The value in the instruction field is the SPARC

instruction in integer form. This integer value is somewhat

vague to the user as displayed. However, the binary

representation field provides a more visual means for

determining the components of the instruction.

The 32-bit binary representation field is matched to

the SPARC instruction format templates to determine the type

of instruction, the opcode, registers used, and displacement

39



values. The opfield value is the operation type. The

operation type also determines the instruction format type.

The opcode value field is the integer value of the opcode

within the operation type. This value is translated into the

actual opcode. The rd value is the destination register; rsl

value is the source register; index bit indicates whether or

not index addressing is used; and simm13 is a signed integer

value used in calculating an immediate address. The

instruction and data address values are translated directly

from the trace file. Other instruction formats may contain

different fields such as rs2 for a second source register, or

immediate address.

4. SATTA File Generators

In addition to producing detailed instruction record

translations, the SATTA program also generates various types

of files. These files may be used for additional tracing,

further analysis, or as input files to other programs and

simulators.

a. SPARC Assembly Language Files

One type of file generated by the SATTA is an

assembly language program. The file is produced from

information taken directly from the translated instruction

record. Figure 3.4 is an excerpt from an assembly language

file generated by SATTA. This capability allows the user to

40



see the assembly language equivalent of the traced program or

to manually trace parts of the program.

83: nop
84: bvs 8
85: or %17,628,%17
86: sethi 8,%o0
87: or %oO,539,%oO
88: call 35
89: or %gO,5,%gl
90: ba 6,%oO
91: or %gO,5,%gl
92: ta %gO,0,%oo

Figure 4.4 Assembly Language Code Produced by SATTA

The assembly language file produced by SATTA can

also be used as input to other simulators to demonstrate other

features of RISC. Of particular use, the assembly language

file can be used in modelling other RISC architecture

components, such as pipelines, caches, or proposed add-ons.

The instructions are in the standard SPARC assembly language

syntax. The file is stored in ASCII format, thus can be

easily used by other programs on most any type of machine.

b. Cache Address Trace File&

Cache address trace files are specially tailored

files for use by the lockup-free cache interface simulator.

The files consist of only that information from instruction

records required to sufficiently simulate the cache interface.

The use of only pertinent information speeds up the

simulation. All data included in the files is in hexadecimal

41



form. Figure 4.5 shows records from a cache trace file.

Although the- cache address trace files were created

specifically for the lockup-free cache interface simulator,

they can also be used as address trace input files for other

cache simulators.

Code Address Rsl Rs2 Rd

2 0000213c 0e 01
0 f7fff9cO 01
2 00002140 00 01 00
2 0000000b 01
3 00002148
2 00002170 Oe 01
0 f7fff9c8 01
2 00002178 0e 13
V f7fff9d4 13
2 0000217c 0e 15

Figure 4.5 Records from Cache Address Trace File

Each instruction generates a cache interface

record. Each record is assigned a code of 2, except for

branch instructions which has a code 3. The instruction

address and the source and destination registers (Rsl, Rs2,

and Rd) are also part of the cache address trace records.

All load and store instructions generate an

additional cache interface record. The records generated by

loads are given a code of 0. The memory address of the needed

data, along with the target register for the load operation is

included in the additional load record. Similarly, the

42



additional records generated by the store instructions contain

the memory address of where the data is to be stored, and the

register number containing the data. The code for the store

instructions is 1.

The different code types are used by the lockup-

free cache interface to determine the number of cycles

required to execute each type of instruction. Branch, load,

and store instructions all generally require more than one

cycle to execute. The cache interface simulator sets the

simulated number of cycles required for these instructions.

C. THM RISC CACHZ INTERFACE SIMULATOR

1. General

The RISC Cache Interface Simulator (RICIS) is a

simulation tool that models a program executing on a RISC

machine using a lockup-free cache interface. The primary

objective of the RICIS is to calculate the performance of the

RISC using the interface. The simulator is event-driven and

uses the modified address trace files produced by SATTA as the

input program. The results from the RICIS simulation is

compared to the results from running the same program with the

SPA simulator to determine the effects of the design.

2. The RICIS Program

The RICIS is designed to simulate several different

configurations of a lockup-free cache interface. It can be

43



easily modified to simulate even more design alternatives and

to perform various statistical functions. RICIS can simulate

large program executions since the traces have been modified

to consist of only a few characters of information per

instruction, and the trace instructions are discarded after

they are processed. Therefore, although the traces generated

by SPA and SATTA consume a considerable amount of disk space,

RICIS can run most simulations without requiring additional

disk space.

3. The RICIS Operation

a. Assumptions and Constraints

The assumptions and constraints of the RICIS are &

follows: "

(1) Floating-point instructions. RICIS does

simulate floating point instructions. Floating poisl

instructions are handled the same as integer instructions and

are assumed to execute in a single cycle. Although this

differs significantly from reality, this constraint i*-

consistent with the SPA constraint. Therefore, comparing

results produced by the two simulators using floating-point

instructions should not present a problem.

(2) Simulating cache hits and misses. There is

currently no cache simulator available to determine if a load

instruction is a cache hit or miss, thus the determination of

a load hit or miss is simulated using a random number

44



generator. The user determines the hit ratio to be simulated.

Once a load instruction is encountered, the random number

generator produces a number between 0.0 and 100.0. If the

generated number is greater than the hit ratio entered by the

user, the load is considered a cache miss, otherwise a hit.

We realize that cache hits and misses are not random, but this

feature should at least produce the same percentage of hits.

(3) Instruction types. The input to the RICIS is

the modified address trace produced by SATTA. The RICIS does

not need to distinguish between instruction opcodes. Thus,

all instructions of the address are categorized into four

different types: loads, stores, branches, and others. All

instructions of each instruction type are assumed to execute

in the same amount of time. Basically, the RICIS needs to

know whether an instruction is a memory instruction or if it

requires more than one cycle to execute.

b. Setting Simulation Parameters

To run the RICIS program, the user enters the

command RICIS. The program then prompts the user to enter the

name of the address trace file and to set the parameters of

the lockup-free cache to be simulated. In setting the

parameters for the simulation, RICIS offers a variety of

design options for simulating a lockup-free cache interface.

One parameter choice is the simulated cache hit ratio. The

user may enter a percentage value from 0.0 to 100.0.

45



After entering the cache hit ratio, the user must

specify the MAQ configuration. The choices are FIFO and

priority. If priority queue is chosen, the user has a choice

between simulating a single queue for writes and read misses,

or a separate queue for each type of MAQ entries. The user

then sets the length of the MAQ.

Another parameter the user must set is the main

memory access penalty (in number of cycles) for cache misses

and store instructions. The users may also set as a parameter

the number of cycles to delay for branch instructions and for

load dependency situations. A load dependency situation

occurs when an instruction immediately following a load

instruction requires the loaded results.

The final response the user must enter is whether

or not to view a cycle-by-cycle execution of the simulation.

If the user does not wish to view the simulation, performance

results are provided at the end of the simulation run. The

view capability lets the user observe the behaviors of the

target architecture under varied workloads. With address

traces containing hundreds of thousands of instruction

records, the user may choose to view partial executions. This

is accomplished by using the option of viewing the results in

intervals. The user may elect to view interim results every

100, 700, 10,000, etc., instructions. At each interval, the

option of terminating the simulation is offered.

46



C. RIdCS features

(1) The Priority Event Queue (PEQ). The PEQ is a

priority queue that stores the events that drives the program

execution. The PEQ basically simulates the processor and the

memory controller. There are two events that are required to

run the simulation: issue instruction (ii) and leave memory

(1m). The ii event directs the simulator to issue another

instruction from the address trace file. The im event directs

the simulator to remove the next request from the memory

queue. Figure 4.6 shows a PEQ with events entered.

The time entry is the cycle number in which the

event can occur. The time is also the priority in determining

which event is to occur next. In the example, the next item

(event) to be served from the PEQ is an instruction issue,

occurring at cycle 22 of program execution. If this were a

FIFO queue, the next item to be served would be the im at

cycle 29 of execution.

PEQ
EVENT TIME

lm 29
ii 22
ii 23
lm 33

Figure 4.6 View of Priority Event Queue

47



(2) Simulating the Different Memory Queue Schemes.

The RICIS allows the user the option of simulating a either a

FIFO or a priority MAQ queue. It also offers the option of

storing the reads and misses in the same queue or to use

separate queues. Figure 4.7 shows the contents of a simulated

FIFO MAQ with memory requests served on a first-come-first

serve basis. Figure 4.8 illustrates the combined priority MAQ

simulation with memory requests served by precedence to the

given priority value. Figure 4.9 shows the contents of a

separate read and write MAQ simulations. Using this

configuration, requests are served based on the priority

assigned to reads and writes. Requests are serviced FIFO

within their respective queues. The code entry is a 0 for a

read entry and a I for a write. The address is the location

in memory where the data is read from or written to.

The priority value for determining the

precedence of a read and a write is set by the user, or it may

be entered into the actual code as a constant. The priority

value determines the next request to be served from the MAQ.

All reads will have the same priority, as will all writes.

(3) Simulating Blocked Instructions. To simulate

the blocked registers that are awaiting main memory access, we

use an array consisting of boolean values for each of the 32

registers. When a read miss occurs, the target register of

the read instruction is marked as blocked (the array index

48



MAQ
CODE ADDRESS

1 0000a130
1 0000a220
0 f7fffa3O
0 f7fffaOO
1 0000a232

Figure 4.7 View of Simulated FIFO MAQ

MAQ
CODE ADDRESS PRIORITY

0 f7fffa3O 1
0 f7fffaOO 1
1 0000a130 2
1 0000a220 2
1 0000a232 2

Figure 4.8 View of Simulated Priority MAQ

Read MAQ
CODE ADDRESS

0 f7fffa3O
0 f7fffaOO

Write MAQ
CODE ADDRESS

1 0000a130
1 0000a220
1 0000a232

Figure 4.9 View of Simulated Separate MAQ Scheme

corresponding to the blocked register is set to true),

simulating the register waiting for the data ready signal from

49



main memory. The register is unblocked (array index set to

false) when the simulation indicates that the instruction has

completed its main memory access. The blocked register array

prevents other instructions from using the blocked registers.

If a blocked register is referenced by another instruction, a

stall is simulated until the register is unblocked.

d. Calculating Performance Resulta

The CPI is calculated by dividing the number of

cycles accumulated by the number of instructions issued. The

cycle count includes memory access penalties and stall cycles

for load dependencies on block registers. Interim results may

also be obtained from the simulator, and additional

statistical data can be obtained with minimal modifications.

50



V. SIMULATIONS AND RESULTS OF LOCKUP-FREE CACHE INTERFACE

A. METHODOLOGY

1. General

In this section we conduct performance evaluations of

the lockup-free cache interface using the RICIS program. The

simulations show the effectiveness of various design

alternatives of the interface. Three different programs were

executed to present various workloads. In addition to

determining the performance (CPI value) using the interface,

a cycle-by-cycle visual trace can be generated by the user to

observe the behavior of the system.

2. Structures to be Evaluated

Evaluations are provided based on the following

parameters: size of MAQ, type of MAQ (i.e., FIFO, single-queue

-miss-priority, and separate-queue-miss-priority MAQ for loads

and stores), and combinations thereof. The single-queue-miss-

priority stores both read misses and writes in the same queue

with read misses having a higher priority. The separate-

queue-miss-priority stores read misses in one queue and writes

in a separate queue with priority of service given to the read

miss queue. For this type MAQ simulation, the combined size

of the two queues is used as the queue size. Numerous

possible configurations of the lockup-free cache can be

51



simulated. Due to time constraints, however, we can only

simulate a few designs. In determining the effects of a

particular interface parameter, for each base configuration

simulated, a single parameter is varied at a time.

3. Fixed Parameters

The following parameters are fixed for the simulation

experiments: (1) cache hit ratio is 0.9, (2) load dependency

delay is one cycle, (3) experiments are done using two

different memory access delay values, the first one is 50

cycles, and the second is 5 cycles, (4) branch delay is 3

cycles, (5) whenever a priority scheme is used, read misses

have a higher priority. The read-over-write priority is chosen

because with a high hit rate, most main memory accesses will

be writes, thus reads would have to wait until all the writes

are dequeued. This further increases the chance of a load

dependency stall.

The base configuration used by SPA to compare the

results with that of the RICTS is the SPARC CY7C601 processor

with the SS2 cache memory. Appendices E, F, and G contain of

the SPA generated statistical analysis reports of the three

test programs. To determine the effects of a lockup-free

cache interface on a RISC processor, we calculate the CPI of

the test programs run on the SPA. Since we are using memory

access penalty and cache hit ratio as parameters for the

52



lockup-free cache, we insure that the same parameters are used

with the instruction count data from SPA to determine the CPI

of the programs without using the lockup-free cache.

In calculating the CPI of the programs run on SPA, we must

first know the percentage of the total instruction count that

each instruction type (i.e., ALU, Branch, Load, and Store)

makes up. This information is attained from the SPA report.

We then use the following formula:

CPI = %ALU*a + %Branch*a*b + %Store*(m+a) + gLoad*a*r
+ %Load* (m+a)*(1-r)

where a is the number of cycles required to execute the

instruction, b is the number of cycles for a branch delay, m

is the memory access penalty, and r is the hit ratio. For our

experiments, we use: a=1, b=3, r=0.9, m=50 for the first set

of experiments, and m=5 for the second.

B. TEST PROGRAMS

1. General

To evaluate the lockup-free cache interface, three

different types of programs are used. These are all

relatively short programs ranging from about 300,000 to

600,000 SPARC assembly code instructions. All of the programs

are run under the SunOS4. The programs used for this thesis

are described below.

53



2. Pseudo Code Interpreter

This program translates and executes a specific

pseudo-code program. This particular pseudo-code is designed

for a simple computer with 2000 words of 10-digit memory. The

program reads an instruction from a memory location, decodes

it, and then executes it. This process continues until the

last instruction is executed. For testing the simulator the

pseudo-code program calculates the square and square root of

each of the numbers read from locations in memory. The

pseudo-code program execution trace consists of 359,777 SPARC

assembly language instructions.

3. Launch Trajectory Calculator

This program reads rocket launch data, such as launch

time and range, from a file, and calculates the altitude and

trajectory of all the launches. The trace consists of 342,440

instructions.

4. Matrix Multiplication

This program performs a 20 X 20 matrix multiplication.

The results of the matrix multiplication are put into a third

matrix. The lack of sufficient disk space prevents the use of

a larger trace. The program consists of 524,852 instructions.

C. SIMULATION ZXPERIMKNTS

1. General

In conducting the experiments, data was collected on

each of the test programs, using MAQ sizes of 0, 1, 4, 8, 16,

54



and 32. These sizes were chosen to determine the trend of the

performance and to determine the optimum queue size. This

experiment was conducted for each of the MAQ schemes using the

fixed parameters. Figure 5.1 shows the performance results of

the FIFO MAQ scheme. Figure 5.2 shows the results of the

single-queue-miss-priority MAQ, and Figure 5.3 shows the

results of the separate-queue-miss-priority MAQ. For

comparison, the CPI values of the test programs without using

a lockup-free cache interface are:

(1) Pseudo Code - CPI=1.71 for m=5, 4.41 for m=50

(2) Matrix Mult. - CPI=1.35 for m=5, 2.58 for m=50

(3) Trajectory - CPI=l.71 for m=5, 4.33 for m=50.

2. HAQ Sizes

This experiment examines the effects on CPI of MAQ

sizes across the three configurations. The MAQ sizes range

from 0 to 30. For first set of experiments we use a memory

access penalty of 50 cycles. For each of the configurations

and each of the test programs, the CPI improved significantly

as the queue size increased from 0 to 12. The CPI value

remained virtually the same for queue sizes greater than 12.

The average decreases in CPI from the queue size of 0 to 12

were 40% for the Pseudo-Code program, 41.1% for the trajectory

program, and 15.5% for the Matrix Multiplication program.

55



3- (m-memory access de*y) Lew

2.8 --- Tnie (m-G0)

2.6- ----- ma (m-6O)

2.4 - Psedo (m-50)

2.2- Tr--- (m,,)

2N Maw ef(m-6)
1. ......... Psudo (m-6)
1.8

1.4 ...............................................----

1.2

0.8 .
0 1 4 8 16 32

SIZE

Figure 5.1 Effects of FIFO MAQ Scheme

The largest improvement in CPI occurred as the queue

size went from 0 to 1. In this case, the average improvements

across the different MAQ schemes were 27.0% for the Trajectory

program, 12.7% for the Pseudo-Code program, and 10.0% for the

Matrix Multiplication program. A queue size of zero basically

simulates not using a queue. In this case the processor

stalls when a main memory request occurs and a request is

still in main memory.

For the second set of experi-aents we used a memory delay

of 5 cycles with each of the schemes. The results show that

there was an average improvement in CPI of less than 2.0% from

56



CPI

3- (m-memory access delay) Logrd

2.8- Trs (m-60)

2.86 ----- Ma t x (rn- O)

2.4-- Peudo (m-"0)

2.2- Trqw (m-5

2- Matrx (m-5)

1.8 Puudo(m-5)
1.8-

1.4 - .......

1.2-

1

0 .8 - ..0 1 4 8 18 32

SIZE

Figure 5.2 Effects of Single-Queue-Miss-Priority MAQ Scheme

a queue size of 0 to 1. There were no further improvement in

any of the schemes with queue sizes greater than one. As with

the previous experiments, the separate-queue-miss-priority MAQ

configuration yielded the best performance, followed by the

single-queue-miss-priority MAQ.

3. MAQ Configurations

This experiment examines the effects on the CPI of the

configuration of the MAQ. Overall, the separate-queue-miss-

priority MAQ configuration presented the best performance,

followed by the single-queue-miss-priority MAQ. For the

Pseudo-Code program with m=50, the CPI values ranged from 1.75

57



CPI

3 (mrnr-eory accss delay) L

2.8 - Tri m -Or.

2.6- ----- mk(Wr"

2.4 -_ 9 (Mp M

2.2 .... Tr~ t (n-'4)

2- Mabc(m-5)

1.8 ........ (rn.. .

1.4-

1.2 -------------------------------------------
1

0.8.
0 1 4 8 16 32

SIZE

Figure 5.3 Effects of Separate-Queue-Miss-Priority MAQ Scheme

to 2.22 using the FIFO MAQ, 1.67 to 2.13 using the single-

queue-miss-priority MAQ, and 1.41 to 1.85 with the separate-

queue-miss-priority MAQ. For the Trajectory program with

m=50, the CPI values ranged from 1.70 to 2.07 (FIFO), 1.61 to

2.07 (single), and 1.37 to 1.81 (separate) . The Matrix

Multiplication program with m=50 had CPI values of 1.35 to

1.42 (FIFO), 1.30 to 1.39 (single), and 1.15 to 1.23

(separate). Using the optimal queue size of 12 and m-50, the

separate MAQ scheme performed an average of 188% better than

not using a lockup-free cache; the single-queue-miss-priority

58



MAQ scheme performed an average of 148% better; and the FIFO

MAQ performed an average of 135% better.

Using m=5, for the Matrix Multiplication program, CPI

values ranged from 1.10 to 1.11 with the FIFO scheme, from

1.10 to 1.11 with the single-queue-miss-priority scheme, and

unchanged at 1.10 throughout the different sizes with the

separate-queue-miss-priority scheme. For the Pseudo Code

program, the CPI ranges were 1.32 to 1.33 (FIFO), 1.32 to 1.33

(single), and unchanged at 1.29 for the separate scheme. The

CPI results for the Trajectory program were 1.32 to 1.33

(FIFO), 1.32 to 1.33 (single), and unchanged at 1.28 for the

separate scheme. we notice that there was little or no change

in CPI using the different schemes for each of the programs.

This is because with a small memory access penalty, the queue

does not grow much and the turnaround time for dependent data

is minimal, thus greatly reducing the chance of a memory delay

stall.

Also with m=5, the separate MAQ scheme performed an

average of 30% better than not using a lockup-free cache; the

single-queue-miss-priority MAQ scheme performed an average of

20% better; and the FIFO MAQ performed an average of 19%

better.

D. SUMMARY

In this chapter we have presented a high-level simulation

to study the performance oF a lockup-free cache interface on

59



a RISC architecture. The simulations provide indications of

how various cache interface designs may perform. Overall, we

found that the use of a lockup-free cache resulted in a

performance improvement of up to nearly 200%.

One observation is that the size of the MAQ is a

considerable factor for each of the designs. From a queue

size of 0 to about 12, the CPI values improved. As the queue

size exceeded farther past 12 there was little or no change in

the CPI.

Another observation is that the design of the MAQ also had

an effect on performance. Whereas each of the cache interface

designs showed an improvement in CPI, the separate-queue-miss-

priority MAQ configuration yielded the CPI values. This is

probably attributed to the separate queues allowing both read

misses and writes to have assured space. This is not the case

with the single-queue-miss-priority queue where the MAQ may

consist of all the same types of entries. The separate MAQ

configuration may also further prevent a processor stall. For

example, if the write MAQ is full and a read miss occurs, the

processor will enqueue the read miss and continue processing

if the read MAQ is not full.

Finally, we observed from the results of using the memory

delays of 50 cycles and 5 cycles that the lockup-free cache

interface is more effective as the memory access penalties

increase. Also, as memory access penalties decrease, the

optimal size of the MAQ also decreases. That fact emphasizes

60



that the need for a lockup-free cache interface will grow as

the discrepancy between CPU speed and main memory access

penalty grows. Memory access penalty in future systems are

expected to exceed 140 cycles [Jou90].

61



VI. CONCLUSIONS

A. OVKRVIZW

In this thesis we presented a study on the RISC

architecture and its unique features. Our emphasis was on the

effects on RISC performance of a lockup-free cache interface.

The lockup-free cache interface features a queue to hold

memory requests, allowing processing of program to continue

while the memory requests are being served. We accomplished

this through simulating the execution of actual programs.

To simulate and analyze the performance of a RISC and a

lockup-free cache interface, we used several tools: SPA 1.0,

SATTA, and RICIS. SPA is an available set of tools used to

trace and analyze the execution of programs. We developed the

SATTA to transform the address trace generated by SPA to

detailed, more readable instruction records, and to produce

modified address trace files for the RICIS. We developed

RICIS to simulate and measure the effects of a lockup-free

cache interface.

We examined various alternative schemes of the cache

interface. The major design issues addressed were: (1) the

size of the memory request queue, (2) whether to use a FIFO

policy or one based on an assigned priority, and (3) whether

62



to use a single queue to hold both reads misses and writes in

the same queue or to store them in separate queues.

Results of the experiments showed that the lockup-free

cache considerably improved the performance of the RISC. The

queue scheme and the queue size each had considerable effects

on the performance of the cache interface. The separate-

queue-miss-priority scheme yielded the best performance

results, followed by the single-queue-miss-priority, and then

the FIFO queue. For each scheme, the performance improved as

the queue size went from 0 to about 12, after which the

performance remained virtually unchanged. The greatest

improvement was noted as the queue size advanced from 0 to 1.

A queue size of zero has the same effects as having not used

a queue in the lockup-free cache interface design.

B. FUTURE RESEARCH

The area that requires most emphasis for continued work is

the simulation environment. The RICIS can be modified to

simulate the fetching and executing of instructions out-of-

program-order. This would determine if further processor

stalling can be prevented by enqueuing instructions that are

dependent on those instructions in the memory request queue.

The dependent instructions are re-issued as the dependency

problem is resolved. Meanwhile, the fetching and execution of

new instructions continues. This feature is only partly

implemented in RICIS as the problem of the dependency posed by

63



new instructions that are dependent on those instructions in

the instruction queue needs addressing.

Another area for future research is the simulation of

floating point instructions. Later versions of SPA may

provide this feature. Minor modifications to SATTA and RICIS

would then be required. Finally, the user interface for both

the SATTA and the RICIS could be improved. An interface that

combines the three simulation tools would greatly improve the

user environment and conserve considerable computer resources,

thus allowing experiments using larger, more reliable

benchmarks.

64



APPINDIX A. USING TRE SPA 1.0 SIMULATOR

The SPY Component: Address trace generator.

In tracing the execution of a program, the SPY can pass

the address trace directly to a trace analyzer or to a file.

For instance, the command

% SPY myprog

traces the execution of the (executable) file myprog and

passes the results to a file of the format

progname.pid. invocationnumber. The command

% SPY -p 'spanner I spout' /usr/ls

generates an address trace-of the is command and passes it to

the SPANNER program. The SPANNER then performs its functions

and pipes the results to the SPOUT. The SPOUT display the

results of the trace. The -p option directs SPY to pass the

results to the analyzer. Similarly, the command

% SPY -p spanner CC myprog.C -o myprog

traces the execution of the CC command and passes the results

to SPANNER.

The SPANN3ZR Component: SPARC instruction analyzer.

The SPANNER program reads the address trace file generated

by the SPY program and compiles instruction count information.

This information includes the number of times each type of

65



instruction was executed, and the number of cycles taken by

each type of instructions. SPANNER also calculates and the

number of cycles consumed by simulated cache misses, and it

provide numerical data concerning conditional branches and

window handlers.

SPANNER offers the user various options on system

configurations as show in Figure A.1. The -c option lets the

user choose the type of cache memory system to use for the

simulation. The choices are the SSl, used in the SPARCstation

1, and the SS2 used in the SPARCstation 2. The -p option

specifies the type of processor to simulate. The choices are

the MB86901 processor, and the Cypress CY7C601.

spanner [-c cache] [-p processor] [-on]
[-un ] [-rn] [-wn] filename

Figure A.1 SPANNER Command Format

The other options allow the user to set the specific

number of cycles or the specific size for particular events.

The -o option lets the user specify the number of cycles

consumed by a register window overflow. The -u option sets

the number of cycles for a window underflow. The -r lets the

user set the interval, in cycles, to view interim output of

the trace results. The -w option specifies the number of

register windows to be simulated.

66



Default values are set by the SPANNER for each of the

options. The default values closely resemble the features and

characteristics of the SPARCstation 2. The SS2 is the default

cache, the CY7C601 is the default processor, 170 cycles is the

default for the register window overflow, 110 cycles is the

default underflow cost, and the default for the number of

register windows is 8.

The SPOUT Component - Instruction Count Tables Generator

The SPOUT component formats and displays tables of

instruction count data obtained from the SPANNER. A

discription of the simulated architecture configuration is

displayed in the report heading as shown in Figure A.2.

Spanner - SPARC Performance Analyzer
cpu: cy7c601
cache: ss2
register windows: 8
overflow cost: 170 cycles
underflow cost: 110 cycles

Figure A.2 SPOUT Report Heading and Parameter Settings

Figure A.3 is a table from a SPOUT report which shows an

overview of the instruction and cycle count of the program

trace. This table shows that 65.9% of all the cycles taken up

by this program execution was taken up executing

67



instructions, 2.1% was taken up by window handlers, and 25.3%

by cache cycles.

OVERALL overall (%) category (%) raw
cycles inst. cycles count cycles count

instructions 65.9 100.0 65.9 - 187588 148554
annulled slots 2.0 3.7 2.0 - 5501 5501
load-use stalls 4.6 8.8 4.6 - 13024 13024
trap cycles 0.1 0.0 0.1 - 284 71
window handlers 2.1 0.0 2.1 - 6050 43
cache cycles 25.3 2.1 25.3 - 71330 3147

total 100.0 - 100.0 - 281977

Figure A.3 SPA Overall Instruction Count Listing

Figure A.4 is another table from the same SPOUT report.

This table displays the trace data of memory access

instructions only. Here, we see that 19.7% of the cycles

required to execute the program was consumed by load

instructions, and load instructions account for 86.6% of the

memory access cycles. Other information in this table is

18.7% of all the total number of instructions traced were

loads, as with 90.7% of all the memory access instructions.

The raw data column shows that there were 27720 load

instructions traced, consuming 55440 machine cycles.

SPOUT reports also contain similarly formatted tables of

data for each SPARC instruction, each window size, each type

of cache, and control transfers. The SPOUT report provides

the user with the data to determine what instructions, events,

and configurations have the greater effects on the

architecture performance. Also, CPI values can easily be

68



MEMORY ACCESS overall (%) category (%) raw
cycles inst. cycles count cycles count

load 19.7 18.7 86.6 90.7 55440 27720
store 3.0 1.9 13.4 9.3 8556 2852
atomic 0.0 0.0 0.0 0.0 0 0

total 22.7 20.6 100.0 100.0 63996 30572

Figure A.4 SPOUT Memory Access Instruction Count

obtained and compared by dividing the raw cycles value by the

corresponding raw instructions value.

69



APPENDIX B. USING THZ RICIS PROGRAM

Obtaining Address Traces.

In order to use the RICIS, an address trace of a

executable program must first be obtained. This address trace

can be produced using the SPA 1.0 package, as explained in

Appendix A. After obtaining a trace file from SPA, a modified

version of trace must be produced for use explicitly by the

RICIS. This trace is produced by the SPARC Address Trace

Transformer/Analyzer (SATTA) tool.

To produce the modified trace using SATTA, simply type the

command SATTA at the command line prompt (%). The program

will then produce the trace file, naming it RXCIS.FIL. The

user may rename the file to a more suitable file name after

the file is generated.

The User Interface

To begin a RICTS session, type in the command RZCdS at the

command line prompt (%). The program then asks the user a

series of questions to define the parameters and scheme of the

lockup-free cache interface to simulate. Figure B.1 is an

example of a start-up session for RICIS. The first input to

the system is the address trace file name. Again, this is the

file produced by SATTA. The next input is the cache hit ratio

70



to be simulated. The value entered must be represented as a

percentage from 0.0 to 100.0. For example, to enter a hit

ratio of 0.9, the user must enter 90.0.

* RISIC

Enter name of file to parse
rocket.luf

Enter simulated CACHE HIT RATE: 90.0

Simulate FIFO or Priority Queue? (f/p) : f

Enter Memory Queue Size: 5

Do you want to use Dependent Instruction Queue? (yin) n

Enter number of stall cycles for Load dependency: 1

Do you want to view Queues after every activity? (yin)..n

Enter interval value for viewing Queues: 600000

Do you want to continue wit simulation? (y/n): n

Do you want to do another simulation? (yin): y

Keep same parameters? (yin): y

Figure B.1 RICIS Startup Session

The next input deals with the type of queue to simulate.

The user must enter the character f for FIFO simulation, and

p for priority queue simulation. If FIFO is chosen, the next

input is the size of the queue to simulate. This value must

be an integer between 0 and 50. However, if the priority

queue is chosen, the user must chose whether to simulate a

single queue or seperate queues for reads and writes. If the

seperate queue is chosen, then the user must enter the size of

71



each queue. If the single-priority queue is chosen, the user

enters the size of the queue.

Also, if a priority queue is chosen, the user must enter

a priority number for a read and for a write. For example, if

a read is to have priority over a write, then a value of 0 is

enter for Read Priority and a 1 for Write Priority. The next

question deals with the Dependent Instruction Queue. The user

must enter the value n for this response, as this feature is

not fully implemented at this time.

The user may elect to see a cycle-by-cycle trace of the

simulation. If the user wants to see only the CPI results,

the he/she must enter an n. The last start-up input to the

simulation is the interval in number of instructions in which

to view interim results. If the user wants only to see the

final results, then a very large number must be entered.

Since traces files contain hundreds of thousands of instrucion

records, a value of 1,000,000 may do it. The user can obtain

the number of instructions from running the original trace

through the SATTA program.

At each interim result pause, the user is given the option

of terminating the session or continuing. This feature is

particularly useful for long, slow sessions. After each

session terminates, the user is given a choice of conducting

another session. If the user chooses to do another

simulation, he/she may choose to keep the same parameter as

the most previous session, or to enter new ones.

72



RICIS Output.

The follow is an example of RICIS results output:

Number of Instructions Executed: 642321
Number of Cycles Elapsed: 834232
CPI Value: 1.30

The first line of the output shows the total number of

instructions issued from the trace file. The second line

shows the total number of (simulated) cycles consumed by the

program execution. The last line shows the CPI value,

attained by dividing the total cycles by the total

instructions. For interim results, the values shown would be

the results up to the instruction count.

73



.5111XX C. SPARC ADDRZSS TRAC& TRANSFORNUR/ANALYZZR

// Title: SPARC ADDRESS TRACE TRANSLATOR/ANALYZER (SATTA)
/1 Author: Leonard Tharpe, Captain, U.S. Army
I/ Date: September 1992
// Revised:
// Description: This program simulates a cycle-by-cycle execution of a program using using
// the the Sun 4 SPARC architecture. The program takes as input a binary address trace of
I/ a compiled executable program and provides the user with a detailed instruction record for
// every cycle of program execution. This information includes the cycle/instruction number,
// the status of the instruction, a 32-bit representation of each instruction, the opcode,
// the location in memory of the instruction fetch, as well as the data fetch. This program
// also provides data and information on register use. This information consists of the
// number of times each register is used as a source and as a destination, and it provides
// data on register dependency.

#include <stdlib.h>
#include <string. h>
#include <iostream.h>
#include <iomanip.h>
#include <fstream.h>

// ** This is the format of each instruction record produced by
// the address trace.

struct Instruction (
char et;
char dav;
short tn;
unsigned long op;
unsigned long ia;
unsigned long da;1;

// ** This is the record format for register-use data.
struct regdata (

int source;
int dest;
int last use;
int lox _ist;
int tot-dist;
float avg_dist;

// * This structure is used to hold and calculate register dependency data
struct dependency (

int last write;
int ref -amit;
int loan count;
int refcount;
int tot dist;
int ld used;
float avg_dep_dist;

// ************************** Begin main program *

74



main (

int ctr - 0;
int loads - 0;
int stores - 0;
int avg count - 0;
float avg dist - 0.0;
float tot dep - 0.0;
unsigned -long op _field;
unsigned long op__value;
unsigned long bi~cccond;
unsigned long ticc cond;
unsigned long displ;
unsigned long rd value;
unsigned long rsl value;
unsigned long rs-2 value;
unsigned long iniEF hold;
unsigned long index bit;
unsigned long annul bit;
unsigned long asi;
unsigned long sirnm3;
unsigned long imm22;
unsigned long displ22;
mnt ref type;
Instruction inst;
reg data reg count (32); 7/keeps data of register use
dependency regý_dep(321; //keeps data of register dependency

//------------ function definitions-----------------------
void regcalc(regý_data& reg, int& count);
void depcalc(dependency& reg, int& location, int& ref);
void check -reg dep(dependency& reg, int& count, int& ref);
void clear _screen (int& i);
void start-up (char *!file, char *0 file);
void instr count (char *afile, Instruction& instr, int& icount);

// ******** array of registers (notation) **~****

static char reg sym[32J [5] =
( "#gO"1, '"#g111 ",* 1 g2" "#g3", "#g4 ", 1"#g5 ", "*t g6*1 , "#g7",

"#011 Ittobl to "#o2 II, "bo3"l, .#o4, "*o #511, "-to 6", "f0 711,

"#f10 I, "#1 ,U#21, l"b13I, "-#14", "*15"0, "#16", "#17",

/7 ***********array of format 3, op - 121 opcodes
static char opli inst[64) (10)

( "ld", "ldub", "lduh ", "ldd", "1.t Of, "stb Or
"fsth",f "st d", "un imp", "ldsb"v, "ldsh", "unimp",
"unimp", "ldstub", "unimp", "swap". "Ida", "lduba",
"lduha", "Idda", "sta", "stba", "stha", "stda", "unimp", "ldsba".
"ldsha", "unimp", "unimp", "ldstuba", "unimp",
"swapa", "ldf", "I dfsr", "unimp". ,"lddf", "st f", "stfsr",
"stdfq", "stdf",, "~unimp", "unimp' , "unimp", "unimp", ".unimp",
"unimp", "un imp", "un imp", "ldc", "ldcsr", "un imp", "iddc",
"stc", "st csr", "stdcq", "stdc", "unimp", "unimp", "unimp",
"unimp", "unimp", "unimp", "unimp", "unimp");

7/ **~***~*~~*array of 3, f~rmat op - 10 opcodes
static char oplO inst(64] [10] =

"unimp", "unimp", "unimp", "subx", "unimp", "unimp". "unimp",
"addcc", "andcc", "C'rcc", ".xorcc", "subcc",, "'andncc", "'--rncc",
"xnorcc', "addxcc ", "unimp", "unimp", "unimp", "subxcc ", "unimp",

75



"unimp", .unimp", "taddcc", "tsubcc", "taddcctv", "tsubcctv", "mulscc",
"sl", I sri", "sra", "rdy", "rdpsr", "rdwlm", "rdtbr", "unimp" I uninzp,"Fun imp", "unimp", "wry", "wrpsr", "wrwim", "wrtbr", "Epopi ", "lfpop2","#cpopl"f, "@cpop2-", "jmpl", "rett", "ticc", "iflush", "save", "restore",
"tunimp"I, fun imp 1);1

// **************array of Trap (ticc) opcodes *A *

static char oplO -ticc(16] (6] =fl ts "ng I

/1 ~~****~~*array of format 2, op - 00 opcodes *********

static char opOG inst(8J (15) = ("unimp", "unimp", "bicc",
"Funimp"1, "1set hi" , "lunimp"', "fbfccI", "cbccc,) ;

II ~********array of branch condition opcodes
static char opOOl inst (16] [15]j ("bn ", "be ", "ble ", "bl ", "bleu ", "bcs"

/-------------- initialize register data arrays------------
for (mnt k - 0; k < 32; k++)

reqý_count (ki.source = 0;
reqý_count (ki .dest = 0;
reg count fk).last use = 0;
reg count (ki.lex 2ist - 0;
reqý_count fkJ.tot~dist - 0;
reg count tkl.avg dist - 0.0;

//-------- initialize register dependency arrays----------
for (Int n - 0; n < 32; n++)

req dep~n).last write - -1; /1last line register written to
reqF-dep[n).ref'2ist = -. 1; 1/distance between reference and last write
req_dep~nj.tot -disiz - 0;
req dep~nj.loadcount =0;

reqL~depj'n).ref 'count -0;

reqý_dep~n).ld used - 0; ,/was register's last use a load?
regý_dep~n).avgdepý_dist - -1.0;

ofst ream recfile("records.dat");
ofatream cache file("RICIS.FIL");
fstream in file;
float load percent;
char cont;
char view reg;
char view dep;
char npL In'
Int 1, Interval;
Int Ic;
Int 1 I - 0; IIload instruction 0 =no, 1I yes
mnt i I - 0; /1store instuct ion
char 711.1(20), file2 [20);
clear screen (1);
start up (filel, file2);
Instr count (filel, inst, ic);
cout "Z< "\nEnter cycle intervals to view output: "

cmn >> Interval;
ofst ream asm file (file2);

/1--- cout << "file pointer declared "<< '\n' << flush;

76



infile.open (filel, ios: :inlios: :nocreate);
// --- cout << "file is now open " << '\n" << flush;
infile.seekg(ctr*sizeof(inst), ios: :beg);
/--- cout «< "seek invoked " << '"\n' < flush;

// ** Read executable address trace until end of file reached.
while (infile.read((char *) (&inst), sizeof(inst))) (

recfile << "record : " << dec << ctr << 'In' << flush;
recfile 4< "exec status : " << int(inst.et) << "\n" << flush;
recfile << "valid addr <" int(inst.dav) << '\n" << flush;
recfile << "trap no. : " << short(inst.tn) << '\n' << flush;
recfile << "instruction : ";
recfile << int(inst.op) << "\n" << flush;
recfile << "binary representation : ";
// --------- print the bit representation of opcode ------
int i, mask;
mask - 1;
mask <<- 31;
inst hold - inst.op;
op field - inst.op;
annul bit - inst.op;
for (i - 1; i <- 32; ++i)

I
recfile << (((Mint(inst.op) & mask) =-0) ? '0' : I');
inst.op <<= 1;

// recfile << "\n';
/1------------------------------------------------------

//------------- extract "op" field--------------- --
op_field - (opfield >> 30) ;
recfile << "\nopfield : " << int (op_field) << "\n" << flush;

/------------------------------------ --------------

/-- ------------ examine format 1 - op = 01
if (op_field == 1)

(
displ - inst hold & Ox3fffffff;
recfile << 'ipcode : call " << '\n' << flush;
recfile «< "displacement : " << int(displ) << "\n" << flush;
asmfile << setw(5) << ctr << ". ;
asmfile «< setw(-10) << "call ";
asmfile «< int(displ) << "\n" << flush;
cachefile << " 2 " << setfill('O');
cachefile << setw(8) << hex << inst.ia;
cachefile < " " I<< \n';J;

// -------------- examine format 2 - op - 00----------------
if (opfield -- 0)

I
//--------------- extract opcode field-----------------
nop - 'n';
op-value = (inst hold & OxlcOO0) >> 22;
recfile << "opcode value : " << int(opvalue) << "\n' << flush;
// --- check for bicc instructions-------
if (opvalue == 2)

bicc cond = (inst hold & Oxle0OOCO0) >> 25;
recflle << "opcodc "<< op0l_inst[bicccond] < "\n' << flush;

-- check for 'nop' instruction-----

77



if (strncmp("sethi",opOO inst (op_ value],5) - 1)
recfile << "opcode <" opOO_inst[opvalue) << '"n' << flush;

else
nop - "y'; // this instruction is a potential 'nop'
/--------------------------- - -------

//------ -check annul bit--------------
annul-bit - (annul_bit >> 29);

if (annulbit -- 0)
(

--------------- extract rd register field
rd value - (inst hold & Ox3eOOOOOO) >> 25;
recfile << "rd value <" < int(rd value) << 'In' << flush;
if (nop -- In')
(

reg_count [rd value] .dest +- 1;
regcalc(regcount (rdvalue], ctr);

/--------------------------------------

//--------------- extract immediate address
imm22 - inst hold & Ox3fffff;
if (((nop --- 'y') && (imm22 - 0)) && (rd value - 0))

recfile << "opcode: nop " < '"n' << flush;
I 

r
else 4

if (op value !- 2)
recfile << "opcode << opOO inst (op value) < In' << flush;

recfile << "immediate address " « hex << f22 << 'In' << flush;
regcount [rd valuej.dest +- 1;
regcalc(regcount [rd value], ctr);
cachefile << " 2 "'<< setfill('O')

<< setw(8) << hex << imm22 << "
<< setw(2) << hex << rd value << 'In';

nop - In';I;
//-------------------

asmfile << setw(5) << ctr << . . ;
if (((strncmp("sethi",opOO inst [op value],5) - 0)

&& (imm22- 0)) £& (rd_.value 'Z- 0))
(

asmfIle << setw(-10) << "nop " << "\n << flush;
I
else
(

if (op value =- 2)
asmflle << setw(-10) << opOOl inst[bicccond] <<

else
asmfile << setw(-10) << opOOGInst[opvalue) << "

asmfile «< imm22 << ...
asmfile << reg_sym[rd-value) << '\n" << flush;

1;
I

else // annul bit is set
(

bicc cond - (inst hold & OxieOO000) >> 25;
recfale << "annulled " << "\n" << flush;

78



recfile << "condition: " << opOOl inst[bicc cond] << '\n' << flush;
// ---------------- extract displacement value-------------
displ22 - inst hold & Ox3fffff;
recfile << "displacement value <" dec << disp122 << '\n' << flush;
//------------------------------------------------------------

asmflle << setw(5) << ctr << ":.. . ;
asmfile << setw(-10) << opOOlinst[bicccond] <<
asmfile << disp122 << " .. ..

asmfile << "(annulled)" << "\n" << flush;
cachefile << " 3 " << setfill('O')

<< setw(8) << hex << inst.ia
<<" << \n';

I
1;

//-------------- examine format 3 - op = 10-----------------
if (op field =- 2)(

//--------------- extract opcode field------------------
op value = (inst hold & Oxlf80000) >> 19;
recfile << "opcode value : " << int (op_value) << '\n' << flush;
recfile << "opcode : " << oplOinst[opvalue] << '\n' << flush;

// ---- check for ticc instruction-------------------------
if (op_value == 58)

f
ticc cond = (inst hold & OxleOOOOOO) << 3;
ticc-'cond = ticc cond >> 28;
recfile << "ticc cond <" < oplOticc[ticccond] << "\n' << flush;I;

-----------------------------------------------------

/--------------- extract rd register field-------------
rd value = (inst hold & Ox3eOOOOOO) >> 25;
reofile << "rd value : " << int(rd value) << '\n" << flush; ;
reg__count [rd value) .dest += 1;
regcalc(reg_count[rd_ value], ctr);
/-------------- ---------------------------------------

//------------ extract rsl register field-------------
rsl value - (inst hold & Ox7c000) >> 14;
rec7ile << "rs! value : " << int(rsl value) << "\n" << flush;
reftype = 0; // reference type is a read
depcalc(reg dep[rsl value], ctr, ref type);
reg count[rsl valueT.source +- 1;
regcalc(reg__count[rslvalue], ctr);
// ------------------------------------------------------

//----------------- extract index bit-------------------
index bit - (inst hold & 0x2000) >> 13;
recflne << "index-bit : " << int(index bit) << '\n" << flush;
//

if (index bit -= 0)
(
//------------ extract rs2 register field-------------
rs2 value - inst hold & O:,if;
recfile << "rs2 value : " -< int (rs2 value) << '\n' -< flush;
reftype - 0; // referen>e type is a read
depcalc(reg dep[rs2 value], ctr, reftype);
regcount(rs2_value].sour,-q += ; ;

79



regcalc(reg count frs2_value), ctr);
___: --- - ----- --- -----------

asufile << sotw(5) << ctr << 1: <<« set fill(')
If (Op value - 58)
asonfi-le << settv(-10) << api0_ticc(ticc cond) <<'

else
asmfIile << setw(-i0) << api0_-inst (op value] <<

asmfile << rag symfrsi value) <<' '

asmflle << rag sym(rs2 value) <<,"
asmfile << rag sym(rd'ýalue) << '\n' « flush;
cachefile <<« 2 " :< set fill ('0')

<< setw(8) << hex << inst.ia
<< < hex << set w(2) << rsl value

<< <<" hex << set w(2) << rsf-value
<< <<" hex << setw(2) << rd7value << '\n';

else // index bit Is set

simml3 - inst hold & Oxiffif;
recfile << 'simlr 3 :" << int(simul3) << IIn' << flush;
asmfile << setw(5) << ctr C<<"

If (op value -- 58)
asmffl'e << setw(-10) << opIO-ticctticc cond) <<"

else
asmfile << setw(-l0) << oplO inst (op value) <<"

asufle* << rag sym~rsi value)]-<<"
asufile << Int~simml3)«< ",";
asmfile << rag sym~rd value) << 'n' << flush;
cachefile << " 2 " ":< set fill ('0')

<< setw(8) << hex << simmi3
<< << setw(2) << rsi value <<"

<< < setw (2) << hexCF_< rd value << 'n';

1/ - ---- examine format 3 - op - 11
if (op_field -3)

// ext ract opcode field
op value - (Inst hold & OxifBOOOO) >> 19;
recfile << "opcoTae value << «mt (op value) << 'In' << flush;
reafile << "opcode <<« opli Inst (op value) << ''sn' << flush;

II extract rd register field
rd value - (Inst-hold & Ox3eOOOOOO) >> 25;

// ~Isolate load Instructions -

I - 0;
I?(strncmp('.Ld",opll-inst (op_value),2) - 0)

h-ad, 4 1;
ref typo - 1; // reference typo Is a load
reg dep(rd value).ld used - 1;
d*pcalc(rsegdep(rd %;alue), ctr, ref type);

/------------ isolate store Instruct ions-------------------
5i - 0;

I?1 (strncmp("st",opii inst (opý_valuo),2) - 0)

stores +- 1;

80



1;

recfile << "rd value <" int(rd value) << '\n" << flush;
reg_count [rd value]. dest += 1;
regcalc(regcount[rdvalue], ctr);
/---------------------------------------------------

//------------ extract rsl register field-------------
rsl value = (inst hold & Ox7cOOO) >> 14;
recifile << "rsl value << int(rslvalue) << "\n" << flush;
ref type - 0;
depcalc(reg dep(rsl value], ctr, ref type);
req_count[rrsl value .source += i;
regcalc(reg count(rslvalue], ctr);
/1--------------- --------------------------------------

//----------------- extract index bit-------------------
index bit = (inst hold & 0x2000) >> 13;
recfile << "index-bit : " << int (indexbit) << "\n' << flush;
//- ------------------------------------------------------

if (index bit -- 0)
(
//------------ extract rs2 register field------------
rs2 value = inst hold & Oxlf;
rec-?ile << "rs2 value <" int (rs2_value) << "\n" << flush;
ref type - 0;
depcalc(regdep[rsl value], ctr, reftype);
reg_count [rs2 valuelj.source +- 1;
regcalc(reg__count(rs2_value], ctr);

//-----------------------------------------------------

//------------- extract asi field-------------------
asi = (inst hold & OxlfeO) >> 5;
recfile <<-Iasi value : " << int(asi) << " •n" << flush;
/1--------------------------------------- -
asmfile << setw(5) << ctr << ": ";
asmfile << setw(-10) << opll inst[opvalue] << U ";
asmfile << regsym[rsl value7 << "+"

<< regsym[rs2_value) << ", ";
asmfile << reg sym[rdvalue] << "\n" << flush;
if ( (1_i =- 0) && (s-i == 0))

(
cachefile << " 2 " << setfill ('O)

<< setw(8) << hex << inst.ia
<< " << setw(2) << hex << rsl value
<< .. << serw(2) << hex << rs2-value
<< . . << setw(2) << hex << rd value << '\n';

if (1_i -- 1)
(

cachefile << " 2 " << setfill('O")
<< setw(8) << hex << inst.ia
<< " " << setw(2) << hex << rsl value
"<< ".. << setw(2) << hex << rs2-value
<< ... << setw(2) << hex << rd value << '\n';

cachefile << " 0 " << setfill('O')
<< setw(8) <- hex << inst.da
<< ,o ..

<< setw(2) <- hex << rd value << '\n';

if (s - i = 1)
(

81



cachefile << " 2 " << setfill('O')
<< setw(8) «< hex << inst.ia
<< ... << setw(2) << hex << rsl value
<< ... << setw(2) << hex << rs2 -value
<< ". "4< setw(2) «< hex << rd value << "\n';

cachefile << " 1 " << setfill('0')
<< setw(8) << hex << inst.da
<< ,, ,,

4< setw(2) 4< hex << rd value << '\n';

else // index bit set
(
simml3 - inst hold & Oxlfff;
recfile << "s7lmm13 : " <-« int (simml3) << ' \n' << flush;
asmfile << setw(5) << ctr «< ": " << setfill(' ");
asmfile << setw(-10) << opil inst[op value] < <
asmfile << regsym[rsl valuej << "+"«<< int(simml3);
asmfile << ", , << req sym[rd value] << 'In' << flush;
if ( (1_1 - 0) && (s_7 == 0)7(

cachefile << " 2 " << setfill('0')
<< setw(8) << hex << inst.ia
<< "" << setw(2) << hex << rsl value
<< ,, ,

<< setw(2) «< hex << rd value << '\n';

if (I i - 1)
(

cachefile << " 2 " << setfill('0')
<< setw(8) << hex << inst.ia
<< ""<< setw(2) << hex << rsl value
<< ,, ,

<< setw(2) << hex << rd value << '\n';
cachefile << " 0 " << setfill('6')

<< setw(8) << hex << inst.da
<< ,, 1

<< setw(2) << hex << rd value << '\n';

if (s_i -- 1)
(

cachefile << " 2 " << setfill('O')
<< setw(8) << hex << inst.ia
<< "" << setw(2) << hex << rsl value
<< ,, ,

<< setw(2) << hex << rd value << "\n';
cachefile << " 1 " << setfill ('0')

<< setw(8) << hex << inst.da
<< ,, I
<< setw(2) << hex << rd value << "\n';

recfile << "inst addr : " «< hex «< inst.ia << '\n' << flush;
recfile << "data addr : " << hex << inst.da << '\n' << flush;
recfile << *************************** < '\n" << flush;

/--------------------------------------------------------

if ((ctr+l) * interval = 0)
(

cout << "\nDo you want to see register usage data? (y/n) ";
cin >> viewreg;

82



if ((viewreg =-- 'y') && (((ctr+l) * interval) == 0))(
cout << setiosflags(ios::left) << setw(10) << "Register"

<< setw(12) << "Register"
<< setw(12) << "Source"
<< setw(12) << "Destination"
<< setw(12) << "Average" << "\n';

cout << setiosflags(ios::left) << setw(10) << "Number"
<< setw(12) << "Symbol"
<< setw(12) << "References"
<< setw(12) << "References"
<< setw(12) << "Lex. Distance" << "\n';

for (int I - 0; i < 32; i++)
(

if ( I < 10 )
cout << "R[" << int (i) << " ";

else
cout << "R[" << int (i) << "< ";

cout << resetiosflags(ios: :left)
<< setw(12) << dec << reg_sym[i]
<< setw(12) << dec << reg count[i].source
<< setw(12) «< regcount[(].dest
<< setiosflags (ios: :fixed)
<< setw(12) << setprecision(1)
<< regcount[i].avg_dist << "\n';

cout << "\nNumber of instructions processed: " << ctr + 1 << "\n';
};
if ((ctr+l) * interval == 0)
(

cout << '\n" << ctr+1 << " instruction records processed so far !!!";
cout << "\nDo you want to see register dependency data? (y/n) ";
cin >> viewdep;

if ((viewdep -- 'y') && ((ctr+l) # interval -- 0))
(

cout << setiosflags(ios::left) << setw(10) << "Register"
<< setw(12) << "Register"
<< setw(12) << " Load"
<< setw(12) << " Source"
<< setw(12) << "Average"
<< setw(12) << "Percent" << "\n';

cout << setiosflags(ios::left) << setw(10) << "Number"
<< setw(12) << " Symbol"
<< setw(12) << " Count"
<< setw(12) << " Count"
<< setw(12) << "Distance"
<< setw(12) << "Load Use" << "\n';

totdep = 0.0;
avgcount - 0;
for (Int I - 0; i < 32; i++)(

if ( i < 10
cout << "R[" << int (i) •<<" "

else
cout << "R(" << int(i) •< "< ";

cout << resetiosflags(io'3: :left);
cout << setw(12) «< dec 1< regsym[ij;
cout << setw(12) << dec -'< reqdep[i].load count;
if (regdep(iJ.ref count < 0)

cout <<
else

83



cout << setw(12) << regdep[i].refcount;
cout << setiosflags(ios::fixed);
cout << setw(12) << setprecision(1);
if (reg dep[i].avgdepdist < 0.0)

cout << "***";

else
cout << reg_dep[ij.avg_dep_dist;

if (reg dep[iJ.loadcount < 0)
cout << " ***" << "\n";

else
load percent = float (reg dep[i] . load count) /float (loads);
load percent - load percent * 100.0;
cout << setw(12) <<-setprecision(1);
cout << load_percent << \n',

// ** calculate average dependency distance **

if (reg dep[i].avgdep__dist > 0.0)
(

tot dep #= regdep[i].avgdepdist;
avg-count ++;

avgdist - totdep/avg_count;
cout << "Average load dependency distance is: " << avgdist << "\n';
cout << "Total number of load instructions: " << loads << "\n';
cout << "\n" << "\n';
cout << "\nNumber of instructions processed: " << ctr+l << "\n';
cout << "\nPress any key to continue: ";
cin >> cont;

ctr++;
infile.seekg(ctr*sizeof(inst) , ios: :beg);

)
infile. close ();
cout << "\nTotal number of instruction records in ±zie is: " << ctr-1 << "\n';)

void checkregdep(dependency& reg, int6 count, int& ref)

void depcalc(dependency& reg, int& location, int& ref);
if (reg.ldused - 1)

depcalc(reg, count, ref);
I;

I
/------- this functions calculates register usage .::a
void regcalc(regdata& reg, int& count)

reg.lex dist - count - reg.last use;
reg.last use - count;
reg.tot_-dist +- reg.lex dist;
reg.avg_dist - float (reg.totdist)/float(reg.source + reg.dest);I

//------- this functions calculates register dependency data
void depcalc(dependency& reg, int& location, int& ref)
(

if (reg.ld used - 1)
(

if (ref -- 1)

reg.lastwrite = location;

84



req. load count++*;

else

if (reg.last write != -1)

reg.ref count ++;
reg.ref.dist location - reg.last-write;
reg.tot-dist +=reg.reZ dist;
reg.avg dep__dist = float (req.tot dist)/float(reg.ref count);
rt?q.ld us -id= 0;
reg.last-write = -1;

/------------------- this function clears the screen
void clear screen(int6 i)

for (i = 1; i <= 26; 4-#i)
cout << '\n';

II----------this function accepts inrut from user to guide simulation
void s..art up (char *ifile, char *ofile)

cout << "\nEnter address trace input file: "

ci >> ifile;
cout << "\nEnter assembly node output file: "

cm >> ofile;
cout << "\nCounting instructi.ons... .please wait ... " << '\n';

II---------this function counts the total number of instructions in file
void instr-count (char *afile, Instruction& instr, int& icount)

fstream. ifile;
icount = 0;
ifile.open(afile,ios::inlios::nocreatp);
ifilh.seekg(icount*sizeof(instr) ,ios: :beg);
while (ifile.read((char *) (&instr), sizeof(instrf))

icount++;
ifile.seekg(icount*sizeof(instr) ,ios: :beg);

// if ((icount+l) % 1000 =- 0
IIcout << 1\n1 << icount+l <<" records counted" << '\n';

ifile.closeo;
cout << "\nTotal number of instructi.on records in file is: "

cout << icount << '\n';

85



APPENDIX D. RISC CACHE INTERFACE SIMULATOR (RICIS) CODE

-- Thesis Project :RISC Cache Interface Simulator (RICIS)
-- Author :Leonard Tharpe
-- Date :September 1992
-- System :UNIX
-- Compiler :VERDIX Ada
-- Description :This program is a simulation of a lockup-free
-- cache interface. It simulates the fetching and execution of a program
-- trace. The trace input files are generated by the SPARC Address Trace
-- Transformer/Analyzer (SATTA) program. This program uses a generic queue
-- package, along with random number generator and hexidecimal-to-decimal
-- conversion packages.
-- ************************ NOTICE !!11!11!!1111 ****************************

Out-of-Order fetching/execution is "partially" implemented. This feature
-- uses the Dependent Instruction Queue (DIQ). All references to DIQ apply
-- to this feature.

with TEXT 10, QUEUES, RANDOM, HEX;

use TEXT_10, RANDOM, HEX;

procedure SPLIT is

package FLOAT INOUT is new FLOAT IO(FLOAT) ;
use FLOAT INOUT;
package INTEGERINOUT is new INTEGERIO(INTEGER);
use INTEGERINOUT;

-- This array defines the status of the registers used by the
-- trace instructions. TRUE means the register is ready for use,
-- FALSE means the register is blocked and cannot be used.
type REGISTERSTATUS is array (0..31) of BOOLEAN;

-- The following is the format of the instruction from the address
-- trace used by this program. CODE indicates what type of instruction,
-- ADDRESS indicates the address from which the instruction is taken, or
-- to where the data is to be stored or retrieved from.
type TRACE RECORD is

record
CODE :CHARACTER :-
ADDRESS :STRING(l..8) (others ->
SOURCE1 REGISTER :STRING(1..2) (others > "
SOURCE2-REGISTER :STRING(1..2) (others => "
TARGET REGISTER :STRING(1..2) := (others •>

end record;

-- This record defines the format for entries in the Memory Access
-- Queue (MAQ). The TRACE LINE is the trace instruction, and the
-- TIME VALUE hold the prlority assigned to each MAQ entry.
type MAQ RECORD is

record-
TRACE LINE :TRACE RECORD;
TIME VALUE :INTEGER;

end record;

86



-- This record defines the entries to the Priority Event Queue (PEQ).

type EVENT RECORD is
record

EVENT ID :STRING(1..2) := (others => "
PRIORITY :INTEGER := 0;

end record;

-- Memory Access Queue
package MAQ is new QUEUES (ITEM => MAQ RECORD);
use MAQ;

-- Dependent Instruction Queue
package DIQ is new QUEUES (ITEM -> MAQ RECORD);
use DIQ;

-- Priority Event Queue
package PEQ is new QUEUES (ITEM => EVENTRECORD);
use PEQ;

-- Auxillary MAQ for viewing contents of the MAQ
package MAQ VIEW is new QUEUES (ITEM => MAQ_RECORD);
use MAQ_VIEW;

-- Auxillary PEQ for viewing contents of the PEQ
package PEQVIEW is new QUEUES (ITEM -> EVENTRECORD);
use PEQVIEW;

-- MAQ for load instructions in a split-queue configuration
package QO is new QUEUES (ITEM -> MAQ_RECORD);
use QO;

-- MAQ for store instructions in a split-queue configuration
package Qi is new QUEUES (ITEM -> MAQ_RECORD);
use QZ;

-- ** * ***~************ variable declarations ***************************
ANOTHER :CHARACTER :- ,y'; -- used to perform another simulation without re-

-- running pro jram
DIQFETCHED :BOOLEAN FALSE; -- a flag thýit indicate if an instruction was taken

-- from the D.Q
DIQ SIZE :POSITIVE := 50; -- the pre-set maximum size of the DIQ
DIQUSED :CHARACTER : 'n'; -- a flag that indicates if the DIQ was used in the

simulation instead of stalling when an instruction
depends on a queued request

BLANK :STRING(l..2) :- (others => " "); -- used for checking a field to see if
-- a register is used

BLOCKED :BOOLEAN := FALSE; -- a flag that indicates if an instruction must be
-- blocked for dependency

BLOCKED REGISTER :REGISTERSTATUS := (others -> FALSE); -- an array of 32 flags that
-- indicates whether a register
-- is blocked

BLOCKS :DIQ.QUEUE(DIQ SIZE); -- the name of the entries of the DIQ
BR CPI :INTEGER := 3; the number of cycles required for a branch instruction
EVENT :EVENT RECORD; -- a temporary store for a PEQ record
EVENTS :POSIfiVE :1 100; -- the pre-set maximum size of a PEQ
EXECUTETIME :INTEGER 0; -- the cumulative execution time (in cycles) of a

-- simulation session
FILE NAME :STRING(1..30) := (others => f ');
FINISHED :BOOLEAN := FALSE; -- this flag indicates that both the instruction file

-- and PEQ are empty
HIT RATE :FLOAT := 90.0; -- • the percentage of load instructions that are cache

-- hits
HOLD VALUE :INTEGER := 0; -- temporary storage for queue position counter

87



INPUT FILE :FILE TYPE; -- trace file from SATTA
INTER1VAL :INTEGER := 0; -- the instruction count intervals in which to obtain

interim results
-- LATENCY is the penalty assessed to read misses and writes
LATENCY :INTEGER 50; -- preset main memory access penalty in cycles
LOAD DEP :INTEGER 1; -- this is the register number of an instruction that

-- immediately follows a load instruction and
-- references the destination register of the load

LOADREG :INTEGER 1; -- this is the destination register of a load instruction,
-- cache hit or miss.

LOAD SWITCH :BOOLEAN := FALSE; -- this flag indicates that the issued instruction is
-- a load and the next instruction's sourze
-- register(s) must be checked for load dependency

MAIN MEMORY :MAQRECORD; store for the main memory simulation. Since only
-- one instruction
-- can be in main memory at any one time, only one
-- MAQ record size is needed

MAQ SIZE :POSITIVE :- 100 -- preset maximum size of the MAQ
MAQ_-COUNT :MAQVIEW. QUEUE (MAQSIZE); -- entry names of a temporary MAQ used to view

-- contents
MAQ FULL :BOOLEAN FALSE; -- flag indicating that MAQ is full
MAQ LENGTH :INTEGER := 0; -- current size of the MAQ.
NAE LENGTH :INTEGER 0; -- length of filename entered by user. Derived by

-- interal function
PEQCOUNT :PEQVIEW. QUEUE (PEQSIZE); -- entry names of tempory PEQ to view contents

-- of PEQ
PEQ SIZE :POSITIVE := 200; -- the pre-set maximum size of the PEQ
Q RkADS :INTEGER := 0; -- the number of read or load instructions in the MAQ
Q-WRITES :INTEGER := 0; -- the number of write or store instructions in the MAQ
Q7 SIZE :POSITIVE := 20; -- the pre-set maximum size of the QO
Q1 SIZE :POSITIVE 20; -- the pre-set maximum size of the Qi
READ PRI :INTEGER 0; -- the priority value assigned to read or load misses
READS :QO.QUEUE(QO SIZE); -- the name of the elements in QO
RECORD COUNTER :INTEGER := 0; -- accumulates the number of instructions read from address

-- trace file
RECORD REMOVED :MAQ RECORD; -- temporary storage for elements removed from the MAQ
REQUESTS :MAQT QUEUE (MAQ SIZE);
RESPONSE :CHARACTER := 'y'; -_ used to get user yes/no response
SAME DATA :CHARACTER := "n'; -- for using the same parameters of a previous session
SEPE-RATEQ :CHARACTER := "n'; -- value that determines whether to use a single or

-- seperate MAQ scheme
TOTAL CYCLES :INTEGER := 0; -- accumulates the total number of cycles of a session
TOTALPENALTY :INTEGER := 0; -- accumulates the total cost of main memory access during

-- a session
TRACE :MAQ RECORD; -- hold data in the format of an MAQ entry
TRACE REC :-TRACE RECORD; -- formatted store of line from the address trace file
TYPE Q :CHARACTER := "f'; -- the MAQ scheme to simulate: 'f'-FIFO, "p' - Priority

UPDATE RECORD :MAQ RECORD; -- temporary store for MAQ entry
VIEW :CHARACTER :- In'; -- value that determines whether to show cycle-by-cycle

-- simulation
WAITING :PEQ.QUEUE(EVENTS); -- the name of the elements in the PEQ
WRITEPRI :INTEGER :- 0; -- the priority value assigned to write or store

-- instructions
WRITES :Q1.QUEUE(Q1 SIZE); -- the name of the elements in Q1

-- This procedure clears the CRT screen
procedure CLEARSCREEN is
begin

PUT (ASCII.ESC);
PUT (" 2J") ;

end CLEARSCREEN;

-- This procedure reads in file name and opens the input file

88



procedure GET INPUTFILE(INPUTFILE :in out FILE TYPE) is
FILE NAME :STRING(. . 30);
NAME-_LENGTH INTEGER;

begin
PUT LINE("Enter name of file to parse ");
GET-LINE(FILE NAME, NAME LENGTH);
OPEN (INPUT FILE, MODE -> IN FILE, NAME =. FILE NAME(1..NAME LENGTH));

-- The simulator is initiated by inserting the first event into
-- the PEQ. The first event being to issue an instruction (ii).
PEQ. CLEAR (WAITING);
EVENT.EVENT ID :- "ii";
EVENT.PRIORITY :- 0;
PEQ. ADD (EVENT, WAITING);

end GET INPUT FILE;

-- This procedure allows the user the option of viewing the cycle-
-- by-cycle transactions of the simulation of to execute
-- without displaying transactions. It also allows the user
-- to view interim results.
procedure GET VIEW METHOD is

begin

NEW LINE;
PUTf("Do you want to view Queues after every activity ? (y/n)..");
GET(VIEW);
NEW LINE;
PUT 7"Enter interval value for viewing Queues: ");
GET (INTERVAL);
NEW LINE;

end GETVIEWMETHOD;

-- This procedure lets the user set the parameters for the
-- target configuration.
procedure GET INITIALDATA is

begin
NEW LINE;
PUT'"Enter simulated CACHE HIT RATE: ");
GET(HIT RATE);
NEW LINE;
PUT 7"Simulate FIFO or Priority Queue? (f/p)
GET(TYPE Q);
NEW LINE;
PUT 7"Enter Memory Queue Size: ");
GET (MAQ SIZE);
NEW LINE;
if TYPE Q - "p" then

PUT(;Use seperate memory queues for Reads and Writes? (y/n) "
GET (SEPERATE Q);
if SEPERATE Q - "y" then

PUT("ENTER READ QUEUE SIZE: ");
GET(QO SIZE);
NEW LINE;
PUTfh"ENTER WRITE QUEUE SIZE: ");
GET(Q1 SIZE);
NEW LINE;

end if;

89



PUT("Enter Read Priority (0 to 1): ");
GET (READPRI);
NEW LINE;
PUT-("Enter Write Priority (0 to 1): ");
GET (WRITEPRI);
NEW LINE;

end if;
NEW LINE;
PUT7("Do you want to use Dependent Instruction Queue? (y/n)
GET (DIQ USED);
NEW LINE;
PUT7("Enter number of stall cycles for Load dependency: ");
GET (LOAD DEP) ;
GET VIEW-METHOD;
MAQ0 CLEAR (REQUESTS);

end GET INITIALDATA;

-- This procedure parses the lines from the address trace file. Each
-- line represents an instruction. The instruction is broken down
-- into components.
procedure GET FIELDS (PARSE LINE :in out STRING;

NR OF CHARS IN LINE :in out INTEGER;
TRACE_REC : in out TRACERECORD) is

VALID ADDRESS,
VALIDCODE :BOOLEAN :- FALSE;

begin
TRACE REC.CODE :- PARSE LINE(3);
TRACE-REC.ADDRESS :- PARSE LINE(6.-.13);
TRACEREC. SOURCE1 REGISTER-- :- PARSE LINE (16.. 17);
TRACE--REC.SOURCE2-REGISTER : PARSE-LINE (20.-.21);
TRACEREC.TARGET REGISTER := PARSE_LINE (24..25);

end GETFIELDS;

-- Parses the lines read in from the input file.
procedure DO LINE PARSING(INPUT FILE : in out FILE TYPE;

-- TRACEREC :in out TRACE RECORD) is

PARSE LINE :STRING(l..80) := (others -> '

NROF_-CHARSIN LINE :INTEGER;

begin
GET LINE(INPUT FILE, PARSE LINE, NR OF CHARS IN LINE);
GET-FIELDS (PARE LINE, NR 5F CHARS IN LINE, TRACE REC);
TRACE. TRACE LINE- :- TRACEREC;

end DO LINE PARSING;

-- This procedure is a viewing option for the users, allowing the
-- viewing of the status of each register.
procedure VIEW REGISTER STATUS is

COL : INTEGER;
begin

PUT(" ------------------------------------------------------------------ ) ;
NEW LINE;
PUTl("I 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 I");
NEW LINE;
for I in 0..15 loop

if BLOCKED REGISTER (I) then
PUT x");

90



else
PUT( . );

end if;
end loop;
NEW LINE;
PUT( --------------------------------------
NEW LINE;
PUT7("/ 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 /");
NEW LINE;
for I in 16..31 loop

if BLOCKEDREGISTER(I) then
PUT(" x ") ;

else
PUT ( );

end if;
end loop;
NEW LINE;
PUT (---------------------------------------------------------------------)
NEWLINE;

end VIEWREGISTERSTATUS;

-- This procedure allows the viewing of the contents of the PEQ.
procedure VIEWMAQ is

LENGTH :INTEGER;
MAQ HOLD :MAQ RECORD;
VIEW :CHARACTER : 'n';
KEY :CHARACTER;

begin

-- **************** VIEW OUTSTANDING MEMORY REQUEST QUEUE *******************

NEW LINE;
LENGTH := MAQ. LENGTH OF (REQUESTS);
if SEPERATE Q = In' Ehen

SET COL(26);
PUT-LINE (***************MAQ*** ************);
SET-COL (20);
PUT -LINE("* CODE ADDRESS PRIORITY* ");
SET-COL (20);
PUT-LINE (" * --------------------------------- *)
PUT7("MAIN MEMORY ->");
for I in 1..LENGTH loop

MAQ. REMOVE (MAQHOLD, REQUESTS);
SET COL (20);
PUTT(* to);
PUT (MAQHOLD.TRACELINE.CODE);
PUT("
PUT (MAQ_HOLD.TRACELINE.ADDRESS);
PUT(" ") ;
PUT (MAQ HOLD.TIME VALUE, WIDTH > 3);
PUT LINE(" *
MAQ.ADD (MAQ HOLD, REQUESTS);
SET COL(20);
PUT- LINE *************************************;

end loop;
NEW LINE;

else
SET COL(20);
PUT LINE("******* MAIN MEMORY *******");
SET_ COL (20);

91



PUTLINE("* CODE ADDRE.5S ~)
SETCCL (20);
PUT_-LINE ('*--------------------0

SET CCL(20);
PUY-( IF* It) ;
PUT (MAINMEMORY.TRACELINE.CODE);
PUT(" 00) ;
PUT (MAINMEMORY.TRACE LINE.ADDRESS);
PUTLINE(" *0)

SET_-CCL (20);

NEWLINE;
SET_-CCL(20);
PUT -LINE('O********** READ QUEUE ******0)

SETCCL (20);
PUT 'LINE("* CODE ADDRESS PRIORITY* 0)

SETCCL(20) ;
PUT_-LINE (0* ------------------------- 0)

for I in 1.. (QO.LENGTHOF(READS)) loop
QO.REMOVE (MAQHOLD, READS);
SET CCL (20);
PUT70-?* 00) ;

PUT (MAQHOLD.TRACELINE.CODE);
PUT(" 00) ;
PUT (AAQHOLD.TRACELINE.ADDRESS);
PUT (11 10);
PUT (MAQ HOLD. TIME VALUE, WIDTH => 3);
PUT LINE (" * 00).;

SET CCL (2 0);

QO AiDD (MAQHOLD, READS);
end loop;
If QO.IS EMPTY (READS) then

SET CdL (20) ;
PUT LINE("O (empty)*0)
SET'CCL (20);

end IT;
NEWLINE;
SETCCL (20) ;
PUTLINEr(O********** WRITE QUEUE *~***oj

SETCCL (2 0) ;
PUT_-LINE(O'* CODE ADDRESS PRIORITY* 0)

SETrCCL (20) 1
PUTLINE ("0 *--------------------------------------------* 00);
for I In 1.. (Q1.LENGTHCF(WRITES)) loop

Qi . REMOVE (MAQHOLD, WRITES);
SET COL (20) ;
PUT7r00* 00) ;

PUT (MXAQHOLD. TRACELINE. CODE);
PUT(" 00) ;

PUT (MAQHOLD.TRACELINE.ADDRESS);
PUT(" If0);
PUT (MAQ HOLD. TIME~ VALUE, WIDTH => -3),
PUT LINE~( *' 1
SET;COL (20);

QZ . ADD (MAQHOLD, WRITES);
end loop;
if Q1.IS EI'PTY(WRITES) then
SET CCI (2 0);
PUT -LI1E(OO* (empty)*0)
SET;'COL (20);

92



PUT LINE("*********************************)
end if;
NEW LINE(2) ;

end 'if;
end VIEWMAQ;

-- This procedure allows the viewing of the contents of the DIQ
procedure VIEW DIQ is

LENGTH .INTEGER;
DIQ HOLD :MAQ RECORD;
VIEW :CHARACTER := 'n';
KEY :CHARACTER;

begin

-*** *** VIEW Dependent INSTRUCTION QUEUE ****

NEW LINE;
LENGTH :- DIQ. LENGTHOF (BLOCKS);
SET COL (20);
PUT--LINE("*********************DIQ*********************");

SET -COL (20);
PUT--LINE("* CODE ADDRESS TIME RS1 RS2 *
SET -COL (20);
PUT-LINE (" *--------------------------------------------
for-I in I..LENGTH loop

DIQ.REMOVE(DIQHOLD,BLOCKS);
SET COL (20);
PUT"( * ") ;
PUT (DIQHOLD.TRACELINE.CODE);
PUT(" .. ) ;
PUT (DIQHOLD.TRACE LINE.ADDRESS);
PUT (I . .) ;
PUT (DIQ HOLD. TIMEVALUE, WIDTH -> 3);
PUT(" # F) ;
if DIQ HOLD.TRACE LINE.SOURCE1 REGISTER /- BLANK then

PUT REX TO INTEGER (DIQHOLD.TRACELINE.SOURCEIREGIS7ER),WIDTH -> 2);
else

PUT . );

end if;
PUT (I );
if DIQ HOLD.TRACE LINE.SOURCE2 REGISTER /- BLANK then

PUT REX TO INTEGER (DIQ_ HOLD.-TRACE LINE. SOURCE2_REGISTER), WIDTH -> 2);
else

PUTC( . );
end if;
PUT LINE(" *
DIQ. ADD (DIQ HOLD, BLOCKS);
SET COL (20);PUT--LINE *************************************************P);

end loop;
NEW LINE;

end VIEW DIQ;

-- This procedure allow the viewing of the PEQ contents.
procedure VIEW PEQ is

LENGTH :INTEGER;
PEQHOLD :EVENTRECORD;

begin

93



SET COL (20);
PUT -LINE("*********** PEQ ***********");
SET-COL (20);
PUT -LINE("* EVENT TIME *");
SET-COL (20) ;
PUT -LINE ("* -------------------------
LENGTH :- PEQ.LENGTH OF(WAITING);
if not PEQ.IS EMPTY(WAITING) then

for I in 1.-.LENGTH loop
PEQ. REMOVE (PEQ__ROLD, WAITING);
SET COL (20);
PUTU"* ") ;
PUT (PEQ_HOLD.EVENT ID);
PUTC(" 11 ;
PUT (PEQ HOLD.PRIORITY, WIDTH => 5);
PUT LINE (" * ") ;
SET -COL (20);
PUT--LINE("***************************") ;
PEQ.ADD (PEQHOLD, WAITING);

end loop;
end if;

end VIEWPEQ;

-- This procedure controls the viewing of all queues and provides
-- interim results.
procedure VIEW RESULTS is

VIEW :CHARACTER : 'n';
CPI VALUE :FLOAT;

begin

NEW LINE;
PUTr7"INSTRUCTION COUNT: ");
PUT (RECORDCOUNTER, WIDTH -> 1);
NEW LINE;
PUT7 "PROGRAM EXECUTION TIME IN CYCLES: ");
PUT (EXECUTETIME, WIDTH => 1);
NEWLINE;
CPIVALUE :- FLOAT (EXECUTE TIME)/FLOAT (RECORD COUNTER);
PUT7("CURRENT CPI VALUE: ")7;

PUT(CPI VALUE, FORE -> 3, AFT -> 2, EXP -> 0);
NEW_LINE;

end VIEWRESULTS;

-- This procedure displays the contents of each address trace line (record)
procedure VIEWTRACELINE (TRACE :in MAQ RECORD) is

begin

if VIEW - 'y' then
PUT("INSTRUCTION FETCH: ");
PUT(TRACE.TRACE LINE.CODE); PUT(.' ';

PUT(TRACE. TRACE_-LINE.ADDRESS);
NEW LINE;

end i?;

end VIEW TRACE LINE;

94



-- This procedure puts entries into the MAQ

procedure ENTERMAQ (TRACE :in out MAQRECORD) is

begin

-- PUT LINE("ENQUEUING MAQ");
MAQ. ADD (TRACE, REQUESTS);

-- if the entry is a load instruction, the destination register is
-- marked as blocked.
if TRACE.TRACE LINE.CODE - '0' then

BLOCKED REGISTER(HEX TO INTEGER(TRACE. TRACE LINE.TARGET REGISTER)) = TRUE;
Q READS-:= QREADS + ;1;

else
Q WRITES :- QWRITES + 1;

end-if;
end ENTERMAQ;

-- This procedure puts entries into the LOAD queue

procedure ENTERQO(TRACE :in out MAQRECORD) is

begin

-- PUT LINE("ENQUEUING 'read Q' ");
QO .ADD (TRACE, READS);
BLOCKED REGISTER(HEX TO INTEGER(TRACE.TRACE LINE.TARGET REGISTER)) :- TRUE;

Q READS :- QREADS--+ --;
end ENTERQO;

-- This procedure put elements into the STORE queue
procedure ENTER_Q1(TRACE :in out MAQRECORD) is

begin

-- PUT LINE("ENQUEUING 'write Q' ');
QI .ADD7 TRACE, WRITES) ;
Q WRITES :- QWRITES + 1;

end-ENTER_Qi;

-- This procedure puts entries into the PEQ
procedure ENTERPEQ (EVENT :in out EVENTRECORD) is

begin
PEQ. ADD (EVENT, WAITING);

end ENTERPEQ;

-- This procedure puts elements into the DIQ
procedure ENTERDIQ(INSTRUCTION :in out MAQRECORD) is

begin
-- PUT LINE("ENQUEUING DIQ");
DIQ.ADD (INSTRUCTION, BLOCKS);

-- BLOCKED REGISTER (HEX TO INTEGER(INSTPUCTION.TRACE LINE.TARGET REGISTER))
-: TRUE;

end ENTER DIQ;

-- This procedure take instructions from the MAQ
procedure SERVEMAQ(TRACE :in out MAQ_RECORD) is

TARGET :MAQRECORD;
MAQHOLD :MAQPECRD;

95



Q LENGTH : INTEGER;
HI POSITION :INTEGER 0;
MAQ POSITION :INTEGER := 0;
QUEUE HEAD :INTEGER := 999999;
FOUND :BOOLEAN : FALSE;

begin
MAQ.REMOVE(MAQ HOLD,REQUESTS); -- request leaving main memory
QLENGTH :- MAZ.LENGTHOF(REQUESTS); -- getting the length of the queue

-- If the removed instruction is a load instruction, the destination
-- is unblocked.
if MAQ HOLD.TRACE LINE.CODE = '0' then

BLOCKED REGISTER (HEX TO INTEGER (MAQHOLD. TRACE LINE. TARGET REGISTER))
:- FALSE;

end if;

-- this statement is for determining the next item by priority to
-- remove from the queue. The target item is identified by its
-- position in the queue. Each item is removed, compared, and
-- re-entered into the queue.
if not MAQ.IS EMPTY(REQUESTS) then

for I in 1.7Q LENGTH loop
HI POSITION-:- HI POSITION + 1;
MAD . REMOVE (MAQ 16OLD, REQUESTS);
if MAQ HOLD. TIME VALUE < QUEUE HEAD then

QUEUE HEAD : - MAQ HOLD. TIME TVALUE;
MAQ POSITION :- HI POS..TION;
TARGET :- MAQ HOLD;

end if;
MAQ. ADD (MAQ_HOLD, REQUESTS);

end loop;

HOLD VALUE :- TARGET.TIME VALUE;
if VIEW - 'y" then

NEW L TNE;
PUTC"'ENTERING MAIN MEMORY: ");
PUT(TARGET.TRACE LINE.CODE); PUT( .. );
PUT(TARGET. TRACE-LINE.ADDRESS); PUT(" .. );
PUT(TARGET. TIME__ALUE, WIDTH -> 1)

end if;

-- The value of MAQ POSITION is the position in the queue of the
-- item to be removed.
HI POSITION :- 0;
MAQ .ADD (TARGET, REQUESTS);
for I in 1..Q LENGTH loop

MAQ. REMOVE (MAQ HOLD, REQUESTS);
HI POSITION :- -HI POSITION + 1;
if-MAQ POSITION /- HI POSITION then

MAQ. .DD (MAQ HOLD, REQUESTS);
end if;

end loop;

-- Numerical data collection statements
if TARGET.TRACE LINE.CODE - '0' then

Q READS :- QREADS - 1;
TOTALCYCLES-:- TOTALCYCLES + LATENCY;

else
Q WRITES :- QWRITES - 1;
TOTAL CYCLES : TOTAL CYCLES + LATENCY;

end if;
end if;

96



end SERVE MAQ;

-- This procedure removes items from the DIQ. This is a FIFO
-- queue, thus the generic REMOVE function is used.
procedure SERVEBIQ(TRACE :in out MAQRECORD) is

TARGET :MAQRECORD;
DIQ HOLD :MAQ RECORD;
Q_LENGTH :INTEGER;

begin
if not DIQ.IS EMPTY(BLOCKS) then

DIQ. REMOVE (TARGET, BLOCKS);
if TARGET.TRACE LINE.SOURCE1 REGISTER = BLANK then

if BLOCKED REGISTER (HEX TO--INTEGER (TARGET. TRACE LINE. SOURCE2_REGISTER))
- FAI.SE Then
DIQ FETCHED := TRUE;
-- The removed instruction becomes the active instruction executed
TRACE := TARGET;
-- Unblocks the destination register
BLOCKEDREGISTER (HEX TO INTEGER (TARGET. TRACELINE. TARGET REGISTER))

: FALSE;
if VIEW - 'y' then

NEW LINE;
PUT--LINE ("FETCHING FROM DIQ");
PUT,(TARGET. TRACE LINE.CODE); PUT ( ");
PUT(TARGET.TRACE LINE.ADDRESS); PUT( .);
PUT (TARGET. TIt-EALUE, WIDTH -> 1);

end if;
else

-- Put removed item back into DIQ
DIQ.ADD (TARGET, BLOCKS);
DIQ FETCHED := FALSE;

end i?;
end if;
if TARGET. TRACE LINE.SOURCE2 REGISTER - BLANK then

if BLOCKED REGISTER (HEX TO-INTEGER (TARGET. TRACE LINE.SOURCEIREGISTER))
- FALSE then
DIQ FETCHED := TRUE;
-- The removed instruction becomes the active instruction executed
TRACE :- TARGET;
-- Unblocks the destination register
BLOCKED REGISTER (HEX TO INTEGER (TARGET. TRACELINE. TARGET REGISTER))

:, FALSE;
if VIEW - 'y' then

NEW LINE;
PUTLINE ("FETCHING FROM DIQ");
PUT (TARGET.TRACE LINE.CODE); PUT(" .. );
PUT(TARGET. TRACE-LINE.ADDRESS); PUTU( . );
PUT(TARGET.TIME'VALUE, WIDTH -> 1);

end if;
else

-- Put removed item back into DIQ
DIQ. ADD (TARGET, BLOCKS);
DIQ FETCHED :- FALSE;

end i?;
end if;
if TARGET.TRACE LINE.SOURCE1 REGISTER /= BLANK and

TARGET.TRACE LINE.SOURCE2 REGISTER /- BLANK then
if BLOCKEDKEGISTER (HEX Tf0 INTEGER (TARGET.TRACE_LINE.SOURCEJREGISTER))

= FALSE
and BLOCKED REGISTER (HEX TO INTEGER (TARGET.TRACELINE.SOURCE2_REGISTER))
- FALSE thien

97

-- . . . . . . ..~ ~~~~~~~~~............ .... . ... . ... ... . .. . . . .. T . .



DIQFETCHED :- TRUE;
-- The removed instruction becomes the active instruction executed
TRACE : TARGET;
-- Unblocks the destination register
BLOCKED REGISTER (HEX TOINTEGER(TARGET.TRACE LINE.TARGET REGISTER))

* FALSE;
if VIEW - 'y' then

NEW LINE;
PUT -LINE("FETCHING FROM DIQ");
PUT,(TARGET.TRACE LINE.CODE); PUT(" . );
PUT(TARGET. TRACE -LINE.ADDRESS); PUT(" . );
PUT (TARGET. TIME_TALUE, WIDTH -> 1);

end if;
else

-- Put removed item back into DIQ
DIQ. ADD (TARGET, BLOCKS);
DIQ FETCHED :- FALSE;

end if;
end if;

end if;
end SERVEDIQ;

-- This procedure removes entries from the LOAD MAQ. The items are
-- removed FIFO.
procedure SERVEQO(TRACE :in out MAQRECORD) is

TARGET :MAQ RECORD;
QO HOLD :MAQ -RECORD;
Q_LENGTH :INTEGER;

begin
if not QO.IS EMPTY(READS) then

QO . REMOVE (TARGET, READS);
if VIEW = "y' then

NEW LINE;
PUT-LINE ("FETCHING FROM READ Q");
PUT (TARGET. TRACE LINE.CODE); PUT(" ... );
PUT(TARGET. TRACE-LINE.ADDRESS); PUT(" .. );
PUT (TARGET. TIMEVALUE, WIDTH -> 1);

end if;
TRACE := TARGET;
BLOCKEr)_REGISTER (HEX TO INTEGER (TARGET.TRACELINE.TARGETREGISTER)) :- FALSE;

end if;

end SERVE_QO;

-- This procedure removes entries from the STORE MAQ (FIFO).
procedure SERVE_Q1(TRACE :in out MAQ_RECORD) is

TARGET :MAQ RECORD;
Q1 HOLD :MAQ -RECORD;
Q _ENGTH :INTEGER;

begin
if not QZ.IS EMPTY(WRITES) then

Q1 . REMOVE (TARGET, WRITES);
if VIEW = 'y' then

NEW LINE;
PUT--LINE ("FETCHING FROM WRITE Q");
PUT(TARGET.TRACE LINE.CODE); PUT(" . );
PUT(TARGET. TRACE -LINE.ADDRESS); PUT(".);

98



PUT(TARGET.TIME VALUE,WIDTH => 1);
end if;
TRACE : TARGET;

end if;

end SERVE;_Q;

-- This procedure takes items from the PEQ. This is a priority
-- queue, so the item to be remove is identified by its priority
-- value.
procedure SERVEPEQ (TARGET . n out EVENTRECORD) is

-- TARGET -EVENT RECORD;
EVENT HOLD :EVENT RECORD;
HI POSITION :INTEGER 0;
EVENT POSITION :INTEGER 0;
QUEUE-HEAD :INTEGER := 999999;
FOUND- :BOOLEAN : FALSE;

begin

PEQ VIEW. CLEAR (PEQ COUNT);
while not PEQ.IS EMPTY(WAITING) loop

HI POSITION :--HI POSITION + 1;
PEQ. REMOVE (EVENT WOLD, WAITING);
if EVENT HOLD.PRiORITY < QUEUE HEAD then

QUEUETEAD :- EVENT HOLD.PRIORITY;
EVENTPOSITION :- Hi POSITION;
TARGET :- EVENTHOLD;

end if;
PEQ VIEW. ADD (EVENTHOLD, PEQCOUNT);

end loop;

HOLD VALUE :- TARGET.PRIORITY;
if VTEW - 'y' then

NEW LINE;
PUT7("ITEM SERVICED
PUT(TARGET.EVENT ID); PUT(" . );
PUT (TARGET. PRIORTTY, WIDTH => 1);
NEW LINE;

end I?;
PEQ. CLEAR (WAITING);

HI POSITION :- 0;
wh~le not PEQ VIEW.IS EMPTY(PEQ COUNT) loop

PEQ VIEW. REMOVE (EVENT HOLD, PEQ COUNT);
HI POSITION :- HI POSITION + 1;
if-EVENT POSITION!-- HI POSITION then

PEQ. ADD (EVENT HOLD, WAMITING);
end if;

end loop;

end SERVEPEQ;

-- This procedure displays interim results of the simulation.
procedure INTERVAL_CHECK(INTERVAL :in out INTEGER;

MAQLENGTH :in out INTEGER) is
begin

if (RECORD COUNTER mod INTERVAL) = 0 then
NEW LINEP
MAQ LENGTH :- MAQ. LENGTH OF(REQUESTS);
PUt("Number of records processed: ");
PUT(RECORD COUNTER, WIDTH => I);
NEW LINE;

99



PUT("NUMBER OF RECORDS IN MAQ: ");
if MAQ LENGTH /- 0 then

PUT (ý(MAQLENGTH-i) , WIDTH = i);
else

PUT(MAQ LENGTH, WIDTH -> 1);
end if;
NEW LINE;
VIEW QUEUES;
PUT(-"Do you want to continue with simulation? (y/n): ");
GET (RESPONSE);
NEW LINE;

end i?;
end INTERVAL CHECK;

-- This procedure checks the status of a particular register. TRUE
-- means the register is available for access, FALSE means the register
-- is blocked and awaiting new data.
procedure CHECK BLOCKED REGISTER(REGISTER :in out STRING) is

REG NO :INTEGER;

begin

if BLOCKED REGISTER (HEXTO INTEGER (REGISTER)) then
-- ENTER DIQ(TRACE);
BLOCKED : = TRUE;

end if;

-- The next statements determine if the instruction immediately following
-- a LOAD instruction requires the data from the destination register.
-- The LOAD SWITCH is set when a load instruction occurs. If the switch
-- is set (TRUE) then the following instruction's source registers are
-- are checked for dependency against the previous load. If there is
-- a load dependency, the execution time is incremented by the amount
-- of the dependency penalty (simulates a stall)
if LOAD SWITCH and LOAD REG - HEX TO INTEGER(REGISTER) then
EXECUTE TIM :- EXECUE _TIME + LOADDEP;
if VIEWF-- "y' then

PUT("Load dependency stall..");
PUT (LOADDEP,WIDTH -> 1);
PUT LINE(" cycles");

end if;
end if;

end CHECK BLOCKED REGISTER;

-- This procedure handles a MAQ full situation.
procedure CHECKMAQFULL is

CHOICE : INTEGER;
N :INTEGER;

begin

SERVE MAQ (TRACE);
if VIEW - "y' then

VIEW QUEUES;
NEW LINE;

end if;
end CHECK MAQFULL;

-- This procedure handles situations when the processor stalls
-- because of data dependency; required data is in the MAQ.

100



-- In essence the procedure performs "lm" (leave memory) events
-- until the required data is available.
procedure LM2 is

TRACE2 :MAQRECORD;

begin

-- if the MAQ has separate queues for loads and stores, the
-- procedure ensures the correct queue is served.
if SEPERATE Q = "y' then

-- If LOADS have a higher priority (lower value) then serve the
-- load queue first. If the load queue is empty, then proceed to
-- the store queue. If both are empty, then serve main memory queue,
-- which means that the needed item is currently retrieving data
-- from main memory. Registers released from main memory are
-- unblocked, as usual.
if READ PRI < WRITE PRI then

if not QO. IS EM!PTY(READS) then
SERVE QO (TRACE2) ;
MAIN -EMORY := TRACE2;

elsif not Q1.IS EMPTY(WRITES) then
SERVE Q1 (TRACE2) ;
MAIN •_EORY :- TRACE2;

else
if MAIN MEMORY.TRACE LINE.CODE = '0' then

BLOCKED REGISTER (HEX TO INTEGER (MAIN MEMORY.
TRACE LINE. TARGET_REGISTER)) = FALSE;

end if;
MAIN MEMORY.TRACE LINE.CODE :
MAINMEMORY. TRACELINE. ADDRESS = " (EMPTY)";

end i'f;

else
-- Else STORES have priority. Same logic as above applies.
if not Ql.IS EMPTY(WRITES) then

SERVE Q1 (T-RACE2) ;
MAIN MMORY :- TRACE2;

elsif not QO.IS EMPTY(READS) then
SERVE QO (TRACE2) ;
MAIN EMORY :- TRACE2;

else
if MAIN MEMORY.TRACE LINE.CODE = '0' then

BLOCKED REGISTER (HEX TO INTEGER (MAIN MEMORY.
TRACE _INE.TARGETREGISTER)) :- FALSE;

end if;
MAIN MEMORY.TRACE LINE.CODE :- "
MAIN--MEMORY. TRACELINE.ADDRESS := , (EMPTY)";

end if;
end if;

else
-- A single MAQ is used
if not MAQ.IS EMPTY(REQUESTS) then

SERVE_MAQ (T--ACE2);
end if;

end if;
end LM2;

procedure ISSUE INSTRUCTION(HIT RATE :in out FLOAT;
TRACE :in out MAQ RECORD;
VIEW :in out CHARACTER) is

101



CACHE VALUE :FLOAT := 0.0;
HOLD,
EVENT :EVENT RECORD;
MISS REGISTER :INTEGTR : 0;
PAUSE :CHARACTER;
TRACE2 :MAQ RECORD;
CHOICE : INTEGER;
Rl,R2 :STRING(1..2) ;
LM :STRING(1..2) : "lr";
II :STRING(l..2) : "ii";
N :INTEGER;
RANDOM_DIQ :FLOAT;

begin

if DIQ USED - "y" then
DIQ FETCHED :- FALSE;
SERTVE DIQ (TRACE) ;
if DI_ FETCHED - FALSE then

-- An instruction is issued from the address trace file
if not END OF FILE(INPUT FILE) then

DO LINE PARSING (INPUT FILE, TRACEREC);
VibW TR7CE LINE(TRACET;
if T-RACE.2 TACE LINE.CODE = '2' or TRACE.TRACE LINE.CODE = '3' then

RECORD COUNTER - RECORD COUNTER + 1;
end if;

end if;
end If;

else
-- An instruction is issued from the address trace file
if not END OF FILE(INPUT FILE) then

DO LINE PAOING(INPUT TILE, TRACEREC);
VIEW TRACE LINE (TRACET);

if TRACE.'TRACE LINE.CODE = '2' or TRACE.TRACE LINE.CODE = '3' then
RECORD COUNTER :- RECORD COUNTER + 1;

end if;
end if;

end if;

- checking to see if source registers of the fetched instruction
-- are blocked or waiting for memory access

BLOCKED :- FALSE;
if TRACE.TRACE LINE.SOURCE1 REGISTER /- BLANK then

CHECKBLOCKED_REGISTER (TRCACE. TRACELINE. SOURCEIREGISTER);
end if;
If TRACE. TRACE LINE.SOURCE2 REGISTER /- BLANK then

CHECK_ BLOCKED_REGISTER (TRACE. TRACE LINE. SOURCE2_ REGISTER);
end if;
RI - TRACE. TRACE LINE.SOURCEl REGISTER;
R2 - TRACE. TRACELINE. SOURCE2_REGISTER;

-- If the instruction is dependent on blocked data the system
-- stalls until the data is available.
if BLOCKED then

-- Ri and R2 are the source registers. If source registers are
-- used, they must be checked.

if DIQ USED - 'y' then
ENTER_DIQ (TRACE);

else
-- if Ri and R2 are used in the instruction
if (RI /- BLANK) and (R2 /= BLANK) then

-- serve the MAQ until the data is available

102



while BLOCKED REGISTER (HEX TO INTEGER(Rl)) or
BLOCKED REGISTER (HEX TO INTEGER (R2)) loop

-- serve the next Im event to see if it has the dependent
-- data. Effects a stall equal to the Im priority value
-- minus the current execution time. The priority value
-- of a lm event means that is the time the data will be
-- available for use.
SERVE PEQ (HOLD);
if VIEW - "y' then

PUT("Process stalled for blocked memory request..");
PUT((HOLD.PRIORITY-EXECUTETIME), WIDTH -> 1);
PUT LINE(" cycles elapsed.");

end i?;
if HOLD.EVENT ID = "lm" then

LM2;
EXECUTE TIME := HOLD.PRIORITY;

end if;
end loop;

end if; -- R1 not blank and R2 not blank

-- if R1 is used and R2 is not used
if (RI /- BLANK) and (R2 = BLANK) then

while BLOCKED REGZSTER(HEX TOINTEGER(R1)) loop
SERVE PEQ (HOLD) ;
if VIEW - "y' then

PUT("Process stalled for blocked memory request..");
PUT ((HOLD. PRIORITY-EXECUTE TIME), WIDTH -> I);
PUT LINE(" cycles elapsed.");

end it;
if HOLD.EVENT ID = "lm" then

LM2;
EXECUTE TIME :- HOLD.PRIORITY;

end if;
end loop;

end if; -- R1 not blank and R2 is blank

-- if R1 is not used and R2 is used
if (RI - BLANK) and (R2 /= BLANK) then

while BLOCKED REGISTER(HEX TO INTEGER(R2)) loop
SERVE PEQ (HOLD) ;
if VIEW = 'y' then

PUT("Process stalled for blocked memory request..");
PUT((HOLD.PRIORITY-EXECUTE TIME),WIDTH -> I);
PUT LINE(" cycles elapsed.");

end i;
if HOLD.EVENT ID = "im" then

LM2;
EXECUTE TIME := HOLD.PRIORITY;

end if;
end loop;

end if; -- R1 blank and R2 not blank
end if; -- If/then else DIQ used

end if; -- if blocked

-- The following statements processes the fetched instruction as
-- as a store command (code = 1). An im event is entered into the
-- PEQ with a priority value equal t- the current execution time
-- plus the number of cycles requirel for a write to main memory.
-- Since the instruction is a main memory request, it is entered
-- into the MAQ.
if (TRACE.TRACE LINE.CODE = '1V) then

103



TOTAL PENALTY := TOTAL PENALTY + LATENCY;
EVENT[.EVENT ID :- LM; -
EVENT.PRIORiTY :- EXECUTE TIME + LATENCY;
ENTER PEQ (EVENT);
TRACE.TIMEVALUE :- WRITE PRI;

-- if using seperate queues for loads and stores, put into
-- store queue (Ql). If Ql is empty then put into main memory.
if SEPERATE Q = 'y' then

if Q1 SIZE = Ql.LENGTHOF(WRITES) then
SERVE PEQ (HOLD);
if VIEW - "y' then

PUT("Process stalled for blocked memory request...");
PUT( (HOLD. PRIORITY-EXECUTE TIME), WIDTH -> 1);
PUT LINE(" cycles elapsed.");

end if;
SERVE Ql(TRACE2);
MAIN MEMORY :- TRACE2;
EXECUTE TIME : HOLD.PRIORITY;

end if;
if MAIN MEMORY.TRACE LINE.CODE = " " then

MAIN _EMRY :- TRACE;
else

ENTER_Ql (TRACE);
end if;

else
if MAQ SIZE - MAQ.LENGTHOF(REQUESTS) then

SERVE PEQ(HOLD);
if VIEW - "y" then

PUT("Process stalled.. .MAQ full.. serving request...");
PUT((HOLD.PRIORITY-EXECUTE TIME), WIDTH -> 1);
PUT LINE(" cycles elapsed.");

end iT;
EXECUTE TIME :- HOLD.PRIORITY;
SERVE MAQ (TRACE2);

end if;
ENTER MAQ (TRACE);

end if;

-- Since this is Not a load instruction, the load dependency
-- switch is turned off.
LOAD SWITCH :- FALSE;

-- for viewing program execution
if VIEW = 'y' then

PUT LINE("WRITE ADDED");
end if;

-- Processes the fetched instruction as a load instruction. The
-- load is either a cache hit or miss. This is determined by the
-- hit-rate input by the user. A random number generator produces
-- a value betwee 0.0 and 100.0. If the number generated is greater
-- than the hit-rate, then the load is a miss.
-- Sorry, but that's the best I can do without a cache simulator.
elsif (TRACE.TRACE LINE.CODE - '0') then

-- Since this is-a load instruction, the next instruction fetched
-- must be checked for dependency nn this load statement, therefore,
-- the load destination register is identified and the load switch
-- is set to alert the processor to check the next instruction.
LOAD REG = HEX TO INTEGER(TRACE. TRACE LINE. TARGET REGISTER) ;
LOAD-SWITCH := TRUE;
CACHE VALUE := NUMBER IN RANGE(O.O, 100.0);

104



-- the following statements processes the load statement as a cache
-- miss. An im event is enqueued to the PEQ with a priority value
-- equal to the current execution time plus the time it takes to
-- to load from main memory. An entry must also be placed into MAQ.
if CACHE VALUE > HIT RATE then

TOTAL PENALTY : TOTAL PENALTY + LATENCY;
EVENTTEVENT ID : LM; -
EVENT.PRIORITY : EXECUTE TIME + LATENCY;
ENTER PEQ (EVENT);
TRACE.TIME VALUE :- READ PRI;
-- Put into appropriate MAQ
if SEPERATE Q - "y' then

if QO SIZE - QO.LENGTH OF(READS) then
SERVE PEQ (HOLD) ;
if VIEW - "y' then

PUT("Process stalled.. .Write Queue full...");
PUT((HOLD.PRIORITY-EXECUTE TIME),WIDTH => 1);
PUT LINE(" cycles elapsed. ");

end I?;
SERVE QO (TRACE2);
MAIN MEMORY :- TRACE2;
EXECUTE TIME : HOLD.PRIORITY;

end if;
if MAIN MEMORY.TRACE LINE.CODE = " " then

MAIN MEMORY :- TRACE;
else

ENTER QO (TRACE);
end if;

else
if MAQ SIZE - MAQ.LENGTH OF(REQUESTS) then

SERVE PEQ (HOLD);
if VIEW - "y" then

PUT("Process stalled.. .MAQ full...");
PUT ((HOLD. PRIORITY-EXECUTE TIME),WIDTH -> i);
PUT LINE(" cycles elapsed. ");

end I"?;
SERVE MAQ (TRACE2);
EXECUTE TIME :- HOLD.PRIORITY;

end if;
ENTER MAQ (TRACE);

end if;
if VIEW - 'y' then

PUT LINE("READ MISS ADDED");
end i?;

-- If the load is a cache miss then the process continues as a
-- non-memory access. An event ii is enqueued at the end of
-- the ISSUE INSTRUCTION procedure.
else -- READ HIT

TOTAL CYCLES :- TOTALCYCLES + 1;
end itf"

-- The following statements simulates a processor stall for a
-- branch instruction (code = 3). The execution time is incremented
-- by the amount of branch penalty previously specified.
elsif (TRACE.TRACE LINE.CODE = '3') t-hen -- BRANCH instruction

TOTAL CYCLES :=-TOTAL CYCLES + BF ,-PI;
EXECUTE TIME : EXECUTE TIME + BR-,'TFI - 1;
LOADSWITCH : FALSE; -

105



-- The code - 2 presents a one-cycle-execution statement. Therefore,
-- the next instruction can be executed at execution time + I.
-- This is handled at the end of the II procedure.
else -- (TRACE.CODE - '2')

TOTAL CYCLES :- TOTAL CYCLES + 1;
LOAD SWITCH :- FALSE;-

end if,

-- After processing every ii event, another ii event is put into the
-- PEQ with a priority value of the current execution time + 1, which
-- means the next instruction can be fetched on the next clock cycle.
if not END OF FILE(INPUT FILE) then

EXECUTE TIME - EXECUTE TIME + 1;
EVENT.E-VENT ID : II; -
EVENT. PRIORiTY : EXECUTETIME;
ENTER PEQ (EVENT);

end if;-

end ISSUE INSTRUCTION;

-- This procedure processes the lm (leav.- memory) event. It basically
-- takes the appropriate item from the appropriate MAQ. This simulates
-- that the request has completed its main memory access and is available
-- for use. When the item leaves main memory, the next item enters.
procedure LEAVE MEMORY is

begin

-- If seperate queues are used, then either the load or the store request
-- has priority to enter memory next. If the loads have priority, then
-- the load queue (QO) is served. If QO is empty, then the write queue
-- is served. If both queues are empty, then there are no main memory
-- requests, and no requests are currently in main memory.

-- if loads have priority over stores.

if SEPERATE Q - 'y' then
if READ PRI < WRITE PRI then

if no-t QO.IS ENPTfY(READS) then
SERVE QO (T--RACE) ;
MAIN MEMORY :- TRACE;

elsif 7iot Q1.IS EWPTY(WRITES) then
SERVE Qi (TRAC2) ;
MAIN MEMORY :- TRACE;

else
if MAIN MEMORY.TRACE LINE.CODE - '0' then

BLOCKED REGISTER (HEX TO INTEGER (MAIN MEMORY.
TRACELINE. TARGETREGISTER)) : FALSE;

end if;
MAIN MEMORY.TRACE LINE.CODE : ,
MAIN-MEMORY.TRACELINE.ADDRESS " (EMPTY) ";

end if;-

-- if stores have priority over loads
else

if not Q1. IS EMPTY(WRITES) then
SERVE QI (TRACE);
MAIN MEMORY :- TRACE;

elsif not QO.IS EMPTY(READS) then
SERVE QO (TRACE) ;
MAIN REMORY :- TRACE;

106



else
if MAIN MEMORY.TRACE LINE.CODE = '0' then

BLOCKD REGISTER (HEX TO INTEGER (MAIN MEMORY.
TRACE_7INE. TARGETREGISTER)) = FALSE;

end if;
MAIN MEMORY. TRACE LINE. CODE := "
MAINMEMORY. TRACE-LINE.ADDRESS " (EMPTY)";

end if;_
end if;

-- if only one queue is used for loads and stores, then the
-- next item in the queue is served (enters main memory).
else

if not MAQ.IS EMPTY(REQUESTS) then
SERVE MAQ (TRACE);

end if;
end if;

end LEAVEMEMORY;

-- This procedure serves items from the PEQ and processes them.
procedure PROCESSREQUEST is

PEQHOLD :EVENT RECORD;
II :STRING(1..2) := "ii";
LM :STRING(l..2) :-"";

begin

SERVE PEQ(PEQ HOLD);
if PEZ HOLD.EVENT ID - II then

ISSUE INSTRUCTION (HIT RATE, TRACE, VIEW);
elsif PEQ HOLD.EVENT ILF- LM then

LEAVE MMORY;
if END OF FILE(INPUT FILE) then
EXECUTETIME :- PEk_HOLD.PRIORITY;

end if;
else

PUT LINE("UNKNOWN EVENT... IGNORING");
end it;

end PROCESSREQUEST;

main prograM BEGINS HERE !!!!!!!!! *

begin--main procedure

CLEARSCREEN;
while ANOTHER - 'y' loop

GET INPUT FILE(INPUT FILE);
if TAME DATA = In' then

GET INITIALDATA;
end i-?;
while not PEQ.IS EMPTY(WAITING) loop

PROCESS REQUEST;
INTERVAL CHECK (INTERVAL, MAQLENGTH);
if (RESPONSE - In') then

NEW LINE;
PUT LINE("PROGRAM TERMINATED !!! ");

end it;
exit when (RESPONSE- In');
if VIEW - 'y' then

VIEW MAQ;
NEW LINE;

107



VIEW PEQ;
NEW LINE;
VIEW DIQ;
NEW LINE;

end if;
end loop;
NEW LINE;
VIEW QUEUES;
CLOSE(INPUTFILE);
------------------- Clear queues for next calculations------------------
PEQ. CLEAR (WAITING);
Qi. CLEAR (WRITES);
QO. CLEAR (READS);
MAQ. CLEAR (REQUESTS);
EXECUTE TIME :- 0;
RECORD COUNTER :- 0;
RESPONSE : ' y';

------------------------------------------------------------------------
NEW LINE (2) ;
PUT;"Do you want to do another simulation? (y/n): ");
GET (ANOTHER);
NEW LINE;
PUTf("Keep same parameters? (y/n): ");
GET (SAhE DATA);
NEW LINE;
SKITPLINE;

end loop;

end SPLIT;

108



APPZNDIX Z. SPA RESULTS OF MATRIX MUL:IPLICATION TRACE

Spanner - Sparc performance analyzer

Cpu: cy7c601
cache: ss2
register windows: 8
overflow cost: 170 cycles
underflow cost: 110 cycles

OVERALL overall (%) category (%) raw
cycles inst. cycles count cycles count

instructions 92.4 100.0 92.4 - 584500 524964
annulled delay slots 0.0 0.0 0.0 - 119 119
load-use stalls 1.7 2.0 1.7 - 10494 10494
trap cycles 0.0 0.0 0.0 - 168 42
window handlers 0.2 0.0 0.2 - 1570 11
cache cycles 5.6 0.6 5.6 - 35430 3188

total 100.0 - 100.0 - 632281

INSTRUCTIONS overall (%) category (%) raw
cycles inst. cycles count cycles count

memory access 14.3 7.5 15.5 7.5 90331 39380
alu 64.7 77.9 70.0 77.9 409110 409110
floating point 0.0 0.0 0.0 0.0 0 0
control transfer 10.5 11.0 11.4 11.0 66591 58006
other instructions 2.9 3.5 3.2 3.5 18468 18468

total 92.4 100.0 100.0 100.0 584500 524964

MEMORY ACCESS overall (%) category (%) raw
cycles inst. cycles count cycles count

load 8.8 5.3 61.7 70.8 55740 27864
store 5.5 2.2 38.3 29.2 34587 11515
atomic 0.0 0.0 0.0 0.0 4 1

total 14.3 7.5 100.0 100.0 90331 39380

LOAD overall (%) category (%) raw
cycles inst. cycles count cycles count

1db 0.6 0.4 6.8 6.8 3814 1907
1dh 0.0 0.0 0.2 0.2 124 62
Id 8.2 4.9 92.9 92.9 51764 25882
ldd 0.0 0.0 0.1 0.0 36 12
ldf 0.0 0.0 0.0 0.0 2 1
lddf 0.0 0.0 0.0 0.0 0 0

total 8.8 5.3 100.0 100.0 55740 27864

STORE overall (%) category (%) raw
cycles inst. cycles count cycles count

109



stb 0.2 0.1 3.6 3.6 1245 415
sth 0.0 0.0 0.3 0.1 39 13
st 5.2 2.1 95.8 95.9 33135 11045
std 0.0 0.0 0.5 0.4 168 42
stf 0.0 0.0 0.0 0.0 0 0
stdf 0.0 0.0 0.0 0.0 0 0

total 5.5 2.2 100.0 100.0 34587 11515

ALU overall (%) category (%) raw
cycles inst. cycles count cycles count

arithmetic 18.8 22.6 29.0 29.0 118607 118607
logical 14.6 17.6 22.5 22.5 92196 92196
shift 9.3 11.2 14.4 14.4 58895 58895
multiply 19.1 23.0 29.5 29.5 120873 120873
sethi 2.9 3.5 4.5 4.5 18539 18539

total 64.7 77.9 100.0 100.0 409110 409110

ARITHMETIC overall (%) category (%) raw
cycles inst. cycles count cycles count

add 6.9 8.3 36.7 36.7 43513 43513
addcc 8.1 9.8 43.4 43.4 51497 51497
addx 0.0 0.0 0.0 0.0 0 0
addxcc 0.0 0.0 0.0 0.0 0 0
sub 0.0 0.0 0.2 0.2 243 243
subcc 1.7 2.0 9.0 9.0 10647 10647
subx 0.0 0.0 0.0 0.0 0 0
subxcc 0.0 0.0 0.0 0.0 0 0
taddcc 0.0 0.0 0.0 0.0 0 0
taddcctv 0.0 0.0 0.0 0.0 0 0
tsubcc 0.0 0.0 0.0 0.0 0 0
tsubcctv 0.0 0.0 0.0 0.0 0 0
cmp (subcc) 1.7 2.1 9.3 9.3 10987 10987
tst (subcc) 0.3 0.3 1.5 1.5 1720 1720

total 18.8 22.6 100.0 100.0 118607 118607

LOGICAL overall (%) category (%) raw
cycles inst. cycles count cycles count

and 0.0 0.0 0.2 0.2 203 203
andcc 2.6 3.1 17.6 17.6 16263 16263
andn 0.0 0.0 0.1 0.1 55 55
andncc 1.3 1.3 8.7 8.7 8060 8060
or 4.3 5.2 29.7 29.7 27338 27338
orcc 1.3 1.6 9.0 9.0 8261 8261
orn 0.0 0.0 0.0 0.0 0 0
orncc 0.0 0.0 0.0 0.0 0 0
xor 0.0 0.0 0.0 0.0 4 4
xorcc 0.0 0.0 0.0 0.0 0 0
xorn 0.0 0.0 0.0 0.0 0 0
xorncc 0.0 0.0 0.0 0.0 0 0
mov (or) 5.1 6.1 34.6 34.6 31936 31936
tst (orcc) 0.0 0.0 0.1 0.1 76 76

total 14.6 17.6 100.0 100.0 921A 92196

110



SHIFT overall (%) category (%) raw
cycles inst. cycles count cycles count

left 6.7 8.0 71.5 71.5 42137 42137
right logical 1.4 1.7 14.7 14.7 8679 8679
right arithmetic 1.3 1.5 13.7 13.7 8079 8079

total 9.3 11.2 100.0 100.0 58895 58895

MULTIPLY overall (%) category (%) raw
cycles inst. cycles count cycles count

single step 16.6 20.0 86.7 86.7 104755 104755
read y 1.3 1.5 6.7 6.7 8059 8059
write y 1.3 1.5 6.7 6.7 8059 8059

total 19.1 23.0 100.0 100.0 120873 120873

SETHI overall (%) category (%) raw
cycles inst. cycles count cycles count

sethi 2.9 3.5 98.9 98.9 18336 18336
nop 0.0 0.0 1.1 1.1 203 203

total 2.9 3.5 100.0 100.0 18539 18539

CONTROL TRANSFER overall (%) category (%) raw
cycles inst. cycles count cycles count

conditional branch 4.9 5.9 46.6 53.6 31064 31064
unconditional branch 1.5 1.9 14.7 16.9 9795 9795
jmpl 2.7 1.6 25.8 14.8 17170 8585
call 1.4 1.6 12.9 14.8 8562 8562

total 10.5 11.0 100.0 100.0 66591 58006

COND. BR.: MB86901 overall (%) category (%) raw
cycles inst. cycles count cycles count

backward taken 0.3 0.3 3.6 5.8 1791 1791
backward untaken 0.0 0.0 0.6 0.5 306 153
forward taken 1.7 2.1 21.7 34.7 10776 10776
forward untaken 5.8 3.5 74.0 59.1 36688 18344

total 7.8 5.9 100.0 100.0 49561 31064

COND. BR.: CY7C601 overall (%) category (%) raw
cycles inst. cycles count cycles count

backward taken 0.3 0.3 5.8 5.8 1791 1791
backward untaken 0.0 0.0 0.5 0.5 153 153
forward taken 1.7 2.1 34.7 34.7 10776 10776
forward untaken 2.9 3.5 59.1 59.1 18344 18344

total 4.9 5.9 100.0 100.0 31064 31064

,JMPL overall (%) category (%) raw
cycles inst. cycles count cycles count

call (jmpl) 0.0 0.0 0.1 0.1 24 12
ret 0.0 0.0 0.3 0.3 48 24
retl 2.7 1.6 99.5 99.5 17090 8545
imp 0.0 0.0 0.0 0.0 9 4
other jmpl 0.0 0.0 0.0 0.0 0 0

111



total 2.7 1.6 100.0 100.0 17170 8585

OTHER INSTRUCTIONS overall (%) category (%) raw
cycles inst. cycles count cycles count

save 0.0 0.1 1.5 1.5 270 270
restore 0.0 0.1 1.4 1.4 267 267
ticc untaken 2.8 3.4 97.1 97.1 17931 17931
other 0.0 0.0 0.0 0.0 0 0

total 2.9 3.5 100.0 100.0 18468 18468

TRAP CYCLES overall (%) category (%) raw
cycles inst. cycles count cycles count

overflow trap 0.0 0.0 14.3 14.3 24 6
underflow trap 0.0 0.0 11.9 11.9 20 5
system call trap 0.0 0.0 73.8 73.8 124 31
other traps 0.0 0.0 0.0 0.0 0 0

total 0.0 0.0 100.0 100.0 168 42

WINDOW HANDLERS overall (%) category (%) raw
cycles inst. cycles count cycles count

overflow 0.2 0.0 65.0 54.5 1020 6
underflow 0.1 0.0 35.0 45.5 550 5
flush 0.0 0.0 0.0 0.0 0 0

total 0.2 0.0 100.0 100.0 1570 11

WINDOW SIZES overall (%) -ategory (%) raw
cycles inst. cycles count cycles count

trace 0.0 0.0 0.0 0.0 0 0
2 windows 11.9 0.1 1nC.0 100.0 75270 537
3 windows 5.2 0.0 43.5 43.4 32710 233
4 windows 3.3 0.0 27.5 27.4 20670 147
5 windows 1.7 0.0 14.4 14.3 10870 77
6 windows 0.6 0.0 4.8 4.7 3590 25
7 windows 0.4 0.0 3.1 3.0 2300 16
8 windows 0.2 0.0 2.1 2.0 1570 11
9 windows 0.1 0.0 1.1 1.1 840 6
10 windows 0.0 0.0 0.4 0.4 280 2
11 windows 0.0 0.0 0.0 0.0 0 0
12 windows 0.0 0.0 0.0 0.0 0 0
13 windows 0.0 0.0 0.0 0.0 0 0
14 windows 0.0 0.0 0.0 0.0 0 0
15 windows 0.0 0.0 0.0 0.0 0 0
16 windows 0.0 0.0 0.0 0.0 0 0

total

CACHE CYCLES: SS1 overall (%) category (%) raw
cycles inst. cycles count cycles count

I-read miss 2.2 0.2 49.0 24.7 13596 1133
D-read miss 1.3 0.1 29.3 14.8 8126 678
D-write miss 0.7 0.4 16.7 50.4 463') 2315
write buffer stalls 0.2 0.1 5.1 10.1 1422 466

total 4.4 0.9 100.0 100.0 27774 4592

112



CACHE CYCLES: SS2 overall (%) category (%) raw
cycles inst. cycles count cycles count

I-read miss 2.5 0.1 43.7 19.9 15492 633
D-read miss 1.5 0.1 27.4 12.5 9724 400
D-write miss 1.6 0.4 28.5 65.2 10101 2080
write buffer stalls 0.0 0.0 0.3 2.4 113 75

total 5.6 0.6 100.0 100.0 35430 3188

113



APPENDIX F. SPA RESULTS OF PSEUDO CODE TRACE

Spanner - Sparc performance analyzer

cpu: cy7c601
cache: ss2
register windows: 8
overflow cost: 170 cycles
underflow cost: 110 cycles

OVERALL overall (%) category (%) raw
cycles inst. cycles count cycles count

instructions 76.6 100.0 76.6 - 466217 376324
annulled delay slots 0.7 1.1 0.7 - 4053 4053
load-use stalls 4.6 7.4 4.6 - 27914 27914
trap cycles 0.1 0.0 0.1 - 564 141
window handlers 1.0 0.0 1.0 - 6050 43
cache cycles 17.1 2.4 17.1 - 104153 9212

total 100.0 - 100.0 - 608951

INSTRUCTIONS overall (%) category (%) raw
cycles inst. cycles count cycles count

memory access 24.2 16.6 31.6 16.6 147185 62332
alu 35.5 57.5 46.4 57.5 216411 216411
floating point 0.4 0.6 0.5 0.6 2397 2397
control transfer 14.0 21.3 18.2 21.3 85062 80022
other instructions 2.5 4.0 3.3 4.0 15162 15162

total 76.6 100.0 100.0 100.0 466217 376324

MEMORY ACCESS overall (%) category (%) raw
cycles inst. cycles count cycles count

load 15.0 11.8 62.1 71.1 91406 44303
store 9.2 4.8 37.9 28.9 55775 18028
atomic 0.0 0.0 0.0 0.0 4 1

total 24.2 16.6 100.0 100.0 147185 62332

LOAD overall (%) category (%) raw
cycles inst. cycles count cycles count

idb 5.6 4.5 37.3 38.5 34136 17068
ldh 0.1 0.1 0.6 0.6 510 255
Id 7.8 6.3 52.2 53.9 47750 23875
Idd 0.1 0.0 0.4 0.3 363 121
ldf 0.1 0.1 0.7 0.7 610 305
lddf 1.3 0.7 8.8 6.0 8037 2679

total 15.0 11.8 100.0 100.0 91406 44303

114



STORE overall (%) category (%) raw
cycles inst. cycles count cycles count

stb 2.6 1.4 28.1 28.9 15645 5215
sth 0.0 0.0 0.1 0.1 75 25
st 5.4 2.9 58.6 60.5 32697 10899
std 0.2 0.1 2.1 1.6 1148 287
stf 0.1 0.1 1.1 1.1 594 198
stdf 0.9 0.4 10.1 7.8 5616 1404

total 9.2 4.8 100.0 100.0 55775 18028

ALU overall (%) category (%) raw
cycles inst. cycles count cycles count

arithmetic 13.7 22.1 38.5 38.5 83343 83343
logical 17.0 27.6 47.9 47.9 103743 103743
shift 1.3 2.0 3.5 3.5 7644 7644
multiply 1.9 3.0 5.2 5.2 11278 11278
sethi 1.7 2.8 4.8 4.8 10403 10403

total 35.5 57.5 100.0 100.0 216411 216411

ARITHMETIC overall (%) category (%) raw
cycles inst. cycles count cycles count

add 3.3 5.3 24.1 24.1 20126 20126
addcc 0.8 1.3 5.9 5.9 4915 4915
addx 0.0 0.1 0.2 0.2 189 189
addxcc 0.0 0.0 0.0 0.0 0 0
sub 0.3 0.5 2.3 2.3 1947 1947
subcc 1.6 2.7 12.0 12.0 10003 10003
subx 0.0 0.0 0.0 0.0 0 0
subxcc 0.0 0.0 0.0 0.0 0 0
taddcc 0.0 0.0 0.0 0.0 0 0
taddcctv 0.0 0.0 0.0 0.0 0 0
tsubcc 0.0 0.0 0.0 0.0 0 0
tsubcctv 0.0 0.0 0.0 0.0 0 0
cmp (subcc) 6.1 9.9 44.6 44.6 37149 37149
tst (subcc) 1.5 2.4 10.8 10.8 9014 9014

total 13.7 22.1 100.0 100.0 83343 83343

LOGICAL overall (%) category (%) raw
cycles inst. cycles count cycles count

and 0.3 0.6 2.0 2.0 2123 2123
andcc 0.9 1.4 5.2 5.2 5428 5428
andn 0.0 0.1 0.3 0.3 282 282
andncc 0.1 0.2 0.7 0.7 763 763
or 2.4 3.9 14.1 14.1 14624 14624
orcc 0.2 0.3 1.0 1.0 1048 1048
orn 0.0 0.0 0.0 0.0 0 0
orncc 0.0 0.0 0.0 0.0 0 0
xor 0.2 0.4 1.5 1.5 1505 1505
xorcc 0.0 0.0 0.0 0.0 0 0
.zorn 0.0 0.0 0.0 0.0 0 0
xorncc 0.0 0.0 0.0 0.0 0 0
mov (or) 12.0 19.5 70.6 70.6 73213 73213
tst (orcc) 0.8 1.3 4.6 4.6 4757 4757

total 17.0 27.6 100.0 100.0 103743 103743

115



SHIFT overall (%) category (%) raw
cycles inst. cycles count cycles count

left 0.8 1.3 62.3 62.3 4761 4761
right logical 0.3 0.5 25.4 25.4 1944 1944
right arithmetic 0.2 0.2 12.3 12.3 939 939

total 1.3 2.0 100.0 100.0 7644 7644

MULTIPLY overall (%) category (%) raw
cycles inst. cycles count cycles count

single step 1.6 2.6 86.8 86.8 9794 9794
read y 0.1 0.2 6.6 6.6 742 742
write y 0.1 0.2 6.6 6.6 742 742

total 1.9 3.0 100.0 100.0 11278 11278

SETHI overall (%) category (%) raw
cycles inst. cycles count cycles count

sethi 1.5 2.4 86.6 86.6 9014 9014
nop 0.2 0.4 13.4 13.4 1389 1389

total 1.7 2.8 100.0 100.0 10403 10403

CONTROL TRANSFER overall (%) category (%) raw
cycles inst. cycles count cycles count

conditional branch 10.2 16.5 72.9 77.5 61981 61981
unconditional branch 1.3 2.1 9.4 10.0 8019 8019
jmpl 1.7 1.3 11.9 6.3 10080 5040
call 0.8 1.3 5.9 6.2 4982 4982

total 14.0 21.3 100.0 100.0 85062 80022

COND. BR.: MB86901 overall (%) category (%) raw
cycles inst. cycles count cycles count

backward taken 1.4 2.3 8.9 13.7 8475 8475
backward untaken 0.2 0.2 1.6 1.2 1474 737
forward taken 3.4 5.5 21.9 33.5 20735 20735
forward untaken 10.5 8.5 67.6 51.7 64068 32034

total 15.6 16.5 100.0 100.0 94752 61981

COND. BR.: CY7C601 overall (%) category (%) raw
cycles inst. cycles count cycles count

backward taken 1.4 2.3 13.7 13.7 8475 8475
backward untaken 0.1 0.2 1.2 1.2 737 737
forward taken 3.4 5.5 33.5 33.5 20735 20735
forward untaken 5.3 8.5 51.7 51.7 32034 32034

total 10.2 16.5 100.0 100.0 61981 61981

JMPL overall (%) category (%) raw
cycles inst. cycles count cycles count

call (jmpl) 0.0 0.0 0.2 0.2 2I 12

116



ret 0.2 0.1 10.3 10.3 1034 517

retl 1.5 1.2 88.7 88.7 8944 4472

imp 0.0 0.0 0.4 0.4 44 2
other jmpl 0.0 0.0 0.3 0.3 34 17

------------------------------------------------------------------------------

total 1.7 1.3 100.0 100.0 10080 5040

OTHER INSTRUCTIONS overall (%) category (%) raw
cycles inst. cycles count cycles count

save 0.5 0.8 18.7 18.7 2833 2833
restore 0.5 0.8 18.7 18.7 2830 2830
ticc untaken 1.6 2.5 62.7 62.7 9499 9499
other 0.0 0.0 0.0 0.0 0 0

total 2.5 4.0 100.0 100.0 15162 15162

TRAP CYCLES overall (%) category (%) raw
cycles inst. cycles count cycles count

overflow trap 0.0 0.0 15.6 15.6 88 22
underflow trap 0.0 0.0 14.9 14.9 84 21
system call trap 0.1 0.0 69.5 69.5 392 98
other traps 0.0 0.0 0.0 0.0 0 0

total 0.1 0.0 100.0 100.0 564 141

WINDOW HANDLERS overall (%) category (%) raw
cycles inst. cycles count cycles count

overflow 0.6 0.0 61.8 51.2 3740 22
underflow 0.4 0.0 38.2 48.8 2310 21
flush 0.0 0.0 0.0 0.0 0 0

total 1.0 0.0 100.0 100.0 6050 43

WINDOW SIZES overall (%) category (%) raw
cycles inst. cycles count cycles count

trace 0.0 0.0 0.0 0.0 0 0
2 windows 130.2 1.5 100.0 100.0 792910 5663
3 windows 49.2 0.6 37.8 37.8 299830 2141
4 windows 2-.6 0.3 21.2 21.2 168230 1201
5 windows 15.8 0.2 12.1 12.1 96270 687
6 windows 7.9 0.1 6.1 6.1 48390 345
7 windows 1.4 0.0 1.1 1.1 8460 60
8 windows 1.0 0.0 0.8 0.8 6050 43
9 windows 0.7 0.0 0.5 0.5 4200 30
10 windows 0.5 0.0 0.4 0.4 3080 22
11 windows 0.4 0.0 0.3 0.3 2520 18
12 windows 0.4 0.0 0.3 0.3 2240 16
13 windows 0.3 0.0 0.2 0.2 1960 14
14 windows 0.3 0.0 0.2 0.2 1680 12
15 windows 0.2 0.0 0.2 0.2 1400 10
16 windows 0.2 0.0 0.1 0.1 1120 8

total

CACHE CYCLES: SS1 overall (%) category (%) raw
cycles inst. cycles count cycles count

I-read miss 6.2 0.8 45.2 19.9 37560 3130
D-read miss 2.6 0.3 18.9 8.3 15722 1311

117



D-write miss 2.0 1.6 14.8 38.9 12250 6125
write buffer stalls 2.9 1.4 21.1 32.9 17518 5172

total 13.6 4.2 100.0 100.0 83050 15738

CACHE CYCLES: SS2 overall (%) category (%) raw
cycles inst. cycles count cycles count

I-read miss 8.4 0.6 49.1 22.6 51157 2085
D-read miss 4.3 0.3 24.9 11.6 25963 1068
D-write miss 4.3 1.5 24.9 59.7 25981 5497
write buffer stalls 0.2 0.1 1.0 6.1 1052 562

total 17.1 2.4 100.0 100.0 104153 9212

118



APPENDIX G. SPA RESULTS OF TRAJECTORY PROGRAM TRACE

Spanner - Sparc performance analyzer

Cpu: cy7c601
cache: ss2
register windows: 8
overflow cost: 170 cycles
underflow cost: 110 cycles

* WARNING: More than 1% of instructions are floating point instructions. *
* Spanner does not simulate the floating point pipeline. *

OVERALL overall (%) category (%) raw
cycles inst. cycles count cycles count

instructions 77.1 100.0 77.1 - 598746 489447
annulled delay slots 0.5 0.8 0.5 - 3731 3731
load-use stalls 3.4 5.3 3.4 - 26141 26141
trap cycles 0.2 0.1 0.2 - 1672 418
window handlers 1.5 0.0 1.5 - 11540 82
cache cycles 17.3 1.9 17.3 - 134443 9513

total 100.0 - 100.0 - 776273

INSTRUCTIONS overall (%) category (%) raw
cycles inst. cycles count cycles count

memory access 21.9 14.0 28.3 14.0 169647 68638
alu 37.9 60.0 49.1 60.0 293876 293876
floating point 0.9 1.4 1.1 1.4 6673 6673
control transfer 14.8 21.8 19.2 21.8 115123 106833
other instructions 1.7 2.7 2.2 2.7 13427 13427
----- ---------- -_ ------------ ----------------- ----

total 77.1 100.0 100.0 100.0 598746 489447

MEMORY ACCESS overall (%) category (%) raw
cycles inst. cycles count cycles count

load 12.3 9.1 56.1 65.2 95168 44774
store 9.6 4.9 43.9 34.8 74475 23863
atomic 0.0 0.0 0.0 0.0 4 1
- ----------------------------------------------------------------- ------
total 21.9 14.0 100.0 100.0 169647 68638

LOAD overall (%) category (%) raw
cycles inst. cycles count cycles count

1db 4.6 3.6 37.5 39.9 35728 17864
idh 0.1 0.1 0.5 0.6 512 256
ld 5.2 4.2 42.8 45.5 40706 20353
idd 0.0 0.0 0.1 0.0 51 17

119



ldf 0.2 0.1 1.4 1.5 1362 681
iddf 2.2 1.1 17.7 12.5 16809 5603

total 12.3 9.1 100.0 100.0 95168 44774

STORE overall (%) category (%) raw
cycles inst. cycles count cycles count

stb 3.5 1.9 36.6 38.1 27285 9095
sth 0.0 0.0 0.1 0.1 75 25
st 4.4 2.4 46.4 48.2 34536 11512
std 0.0 0.0 0.3 0.3 260 65
stf 0.1 0.1 1.4 1.4 1035 345
stdf 1.5 0.6 15.2 11.8 11284 2821

total 9.6 4.9 100.0 100.0 74475 23863

ALU overall (%) category (%) raw
cycles inst. cycles count cycles count

arithmetic 14.5 23.0 38.3 38.3 112649 112649
logical 20.5 32.5 54.1 54.1 158945 158945
shift 0.5 0.8 1.4 1.4 4070 4070
multiply 0.7 1.1 1.8 1.8 5173 5173
sethi 1.7 2.7 4.4 4.4 13039 13039

total 37.9 60.0 100.0 100.0 293876 293876

ARITHMETIC overall (%) category (%) raw
cycles inst. cycles count cycles count

add 2.7 4.2 18.4 18.4 20672 20672
addcc 0.8 1.3 5.8 5.8 6532 6532
addx 0.0 0.0 0.0 0.0 0 0
addxcc 0.0 0.0 0.0 0.0 0 0
sub 0.4 0.6 2.5 2.5 2832 2832
subcc 2.4 3.8 16.4 16.4 18502 18502
subx 0.0 0.0 0.0 0.0 0 0
subxcc 0.0 0.0 0.0 0.0 0 0
taddcc 0.0 0.0 0.0 0.0 0 0
taddcctv 0.0 0.0 0.0 0.0 0 0
tsubcc 0.0 0.0 0.0 0.0 0 0
tsubcctv 0.0 0.0 0.0 0.0 0 0
cmp (subcc) 6.7 10.6 45.9 45.9 51726 51726
tst (subcc) 1.6 2.5 11.0 11.0 12385 12385

total 14.5 23.0 100.0 100.0 112649 112649

LOGICAL overall (%) category (%) raw
cycles inst. cycles count cycles count

and 0.7 1.1 3.3 3.3 5323 5323
andcc 0.5 0.8 2.4 2.4 3791 3791
andn 0.0 0.0 0.1 0.1 88 88
andncc 0.1 0.1 0.2 0.2 390 390
or 2.3 3.7 11.4 11.4 18165 18165
orcc 0.2 0.3 1.0 1.0 1663 1663
orn 0.0 0.0 0.0 0.0 0 0
orncc 0.0 0.0 0.0 0.0 0 0
xor 0.6 1.0 3.0 3.0 4785 4785
xorcc 0.0 0.0 0.0 0.0 0 0

120



xorn 0.0 0.0 0.0 0.0 0 0
:'orncc 0.0 0.0 0.0 0.0 0 0
mov (or) 15.5 24.7 75.9 75.9 120701 120701
tst (orcc) 0.5 0.8 2.5 2.5 4039 4039

total 20.5 32.5 100.0 100.0 158945 158945

SHIFT overall (%) category (%) raw
cycles inst. cycles count cycles Count

left 0.2 0.3 36.9 36.9 1500 1500
right logical 0.3 0.4 50.0 50.0 2036 2036
right arithmetic 0.1 0.1 13.1 13.1 534 534

total 0.5 0.8 100.0 100.0 4070 4070

MULTIPLY overall (%) category (%) raw
cycles inst. cycles count cycles count

single step 0.6 0.9 86.3 86.3 4463 4463
read y 0.0 0.1 6.9 6.9 355 355
write y 0.0 0.1 6.9 6.9 355 355

total 0.7 1.1 100.0 100.0 5173 5173

SETHI overall (%) category (%) raw
cycles inst. cycles count cycles count

sethi 1.5 2.4 88.8 88.8 11584 11584
nop 0.2 0.3 11.2 11.2 1455 1455

total 1.7 2.7 100.0 100.0 13039 13039

CONTROL TRANSFER overall (%) category (%) raw
cycles inst. cycles count cycles count

conditional branch 10.2 16.2 68.9 74.2 79264 79264
unconditional branch 1.4 2.3 9.7 10.5 11211 11211
jmpl 2.1 1.7 14.4 7.8 16580 8290
call 1.0 1.6 7.0 7.6 8068 8068

total 14.8 21.8 100.0 100.0 115123 106833

COND. BR.: MB86901 overall (%) category (t) raw
cycles inst. cycles count cycles count

backward taken 0.9 1.5 6.7 9.1 7244 7244
backward untaken 0.3 0.2 2.1 1.4 2286 1143
forward taken 5.6 8.9 40.2 54.7 43390 43390
forward untaken 7.1 5.6 51.0 34.7 54974 27487

total 13.9 16.2 100.0 100.0 107894 79264

COND. BR.: CY7C601 overall (%) category (%) raw
cycles inst. cycles count cycles count

backward taken 0.9 1.5 9.1 9.1 7244 7244
backward untaken 0.1 0.2 1.4 1.4 1143 1143
forward taken 5.6 8.9 54.7 54.7 43390 43390
forward untaken 3.5 5.6 34.7 34.7 27487 27487

total 10.2 16.2 100.0 100.0 79264 79264

121



JMPL overall (%) category (%) raw
cycles inst. cycles count cycles count

call (jmpl) 0.0 0.0 0.1 0.1 24 12
ret 0.1 0.1 5.1 5.1 840 420
retl 2.0 1.6 92.3 92.3 15306 7653
imp 0.0 0.0 1.3 1.3 216 108
other jmpl 0.0 0.0 1.2 1.2 194 97

total 2.1 1.7 100.0 100.0 16580 8290

OTHER INSTRUCTIONS overall (%) category (%) raw
cycles inst. cycles count cycles count

save 0.7 1.1 40.7 40.7 5463 5463
restore 0.7 1.1 40.7 40.7 5459 5459
ticc untaken 0.3 0.5 18.7 18.7 2505 2505
other 0.0 0.0 0.0 0.0 0 0

total 1.7 2.7 100.0 100.0 13427 13427

TRAP CYCLES overall (%) category (%) raw
cycles inst. cycles count cycles count

overflow trap 0.0 0.0 10.0 10.0 168 42
underflow trap 0.0 0.0 9.6 9.6 160 40
system call trap 0.2 0.1 80.1 80.1 1340 335
other traps .1 0.0 0.2 0.2 4 1

total 0.2 0.1 100.0 100.0 1672 418

WINDOW HANDLERS overall (t) category (%) raw
cycles inst. cycles count cycles count

overflow 0.9 0.0 61.9 51.2 7140 42
underflow 0.6 0.0 38.1 48.8 4400 40
flush 0.0 0.0 0.0 0.0 0 0

total 1.5 0.0 100.0 100.0 11540 82

WINDOW SIZES overall (%) category (%) raw
cycles inst. cycles count cycles count

trace 0.0 0.0 0.0 0.0 0 0
2 windows 197.0 2.2 100.0 100.0 1529200 10922
3 windows 71.9 0.8 36.5 36.5 557880 3984
4 windows 47.7 0.5 24.2 24.2 370560 2646
5 windows 28.9 0.3 14.7 14.7 224680 1604
6 windows 15.9 0.2 8.0 8.0 123040 878
7 windows 3.9 0.0 2.0 2.0 30190 215
8 windows 1.5 0.0 0.8 0.8 11540 82
9 windows 0.5 0.0 0.3 0.3 4090 29
10 windows 0.4 0.0 0.2 0.2 2970 21
11 windows 0.3 0.0 0.2 0.2 2410 17
12 windows 0.3 0.0 0.1 0.1 2130 15
13 windows 0.2 0.0 0.1 0.1 1850 13
14 windows 0.2 0.0 0.1 0.1 1570 11
15 windows 0.2 0.0 0.1 0.1 1290 9
16 windows 0.1 0.0 0.1 0.1 1010 7

total -

122



CACHE CYCLES: SS1 overall (%) category (%) raw
cycles inst. cycles count cycles count

I-read miss 8.7 1.1 58.2 31.7 67428 5619
D-read miss 1.8 0.2 11.9 6.5 13790 1150
D-write miss 1.0 0.8 6.7 21.9 7750 3875
write buffer stalls 3.5 1.4 23.2 40.0 26866 7082

total 14.9 3.6 100.0 100.0 115834 17726

CACHE CYCLES: SS2 overall (%) category (%) raw
cycles inst. cycles count cycles count

I-read miss 12.0 0.8 69.5 40.2 93389 3820
D-read miss 2.8 0.2 16.1 9.3 21653 887
D-write miss 2.0 0.7 11.8 35.1 15807 3336
write buffer stalls 0.5 0.3 2.7 15.5 3594 1470

total 17.3 1.9 100.0 100'.0 134443 9513

*************************** ** ****** * ************************************** *

* WARNING: More than 1% of instructions are floating point instructions. *
* Spanner does not simulate the floating point pipeline. *

123



LIST or REFERzNCzS

[AAD90] D. Alpert, A. Averbuch, a-1 0. Danieli, "Performance
Comparison of Load/Store and Symmetric Instruction
Set Architectures", Proc. of The 17th Annual
International Symposium on Computer Architecture.
IEEE Computer Society Press, pp.172-181, May 1990.

[ABMP91] A. Agrawal, E. W. Brown, D. Murata, and J. Pelatino,
"Bipolar ECL Implementation of SPARC", The SPARC
Technical Papers, Springer-Verlag, USA, 1991.

[BEH91] David G. Bradlee, Susan J. Eggers, and Robert R.
Henry, "The Effect on RISC Performance of Register
Set Size and Structure Versus Code Generation
Strategy", Proc. of the 18th International Symposium
on Computer Architecture, Computer Architecture News,
Vol. 19, No. 3, pp.330-339, May 1991.

[Dei90] Harvey M. Deitel, "Hardware, Software, Firmware",
Operating Systems, 2nd edition, Addison-Wesley
Publishing Company, USA, 1990.

[DW90] Jack W. Davidson and David B. Whalley, "Reducing the
Cost Branches by Using Registers", Proc. of The l7dh
Annual International Symposium on Computer
Architecture, pp.182-191, IEEE Computer Society, Los
Almitos, California, May 1990.

[FM87] Borivoje Furht and Veljko Milutinovic, "A Survey of
Microprocessor Architectures for Memory Management",
COMPUTER, March 1987.

[Gar9l] Robert B. Garner, "The Scalable Processor
Architecture (SPARC)", The SPARC Technical Papers,
Springer-Verlag, USA, 1991.

[GM87] Charles E. Gimarc and Veljko M. Milutinovic, "A
Survey of RISC Processors and Computers of the Mid-
1980s", COMPUTER, Vol. 24, No. 9, pp.59-68, September
1987.

[Gro90] Evan 0. Grossman, "Intel's RISC Chip: Better Late
than Never", PC WEEK/SPECIAL EDITION/RISC, April 2,
1990.

124



[HP90] John L. Hennessy and David A. Patterson, Computer
Architecture: A Quantitative Approach, Morgan
Kaufmann Publishers, Inc., San Mateo, California,
1990.

[Ibb9O] Roland N. Ibbett, The Architecture of High
Performance Computers, Springer-Verlag, Inc.,
New York, 1990.

[Jou90] Norman P. Jouppi, "Improving Direct Mapped Cache
Performance by the Addition of a Small Fully-
Associative Cache and Prefetch Buffers", Proc. of the
17th Annual International Symposium on Computer
Architecture, Seattle, Washington, May 1990.

[Kan87] Gerry Kane, MIPS R200 RISC Architecture, Prentice
Hall, Englewood Cliffs, New Jersey, 1987.

[Kro8l] David Kroft, "Lockup-Free Instruction Fetch/Prefetch
Cache Organization", Proc. 8th International
Symposium on Computer Architecture, pp.81-85, June
1981.

[LFK90] Gideon Langholz, Joan Francioni, and Abraham Kandel,
Elements of Computer Organization, Prentice Hall,
Inc. Englewood Cliff, New Jersey, 1990.

[Met90] Dave Methvin, "RISC-Based Systems Find Strength in
Simplicity", PC WEEK/SPECIAL EDITION/RISC, April 2,
1990.

[NA91] Masood Namjoo and Anant Agrawal, "Implementing SPARC:
A High Performance 32-Bit RISC Microprocessor", The
SPARC Technical Papers, Springer-Verlag, USA, 1991.

[Por89] Allan Kenned Porterfield, "Software Methods for
Improvement of Cache Performance on Supercomputer
Applications", PhD Dissertation, UMI Dissertation
Service Ann Harbor, Michigan, 1989.

(RT88] A RISC Tutorial, Sun Microsystems, Inc., Mountain
View, California, 1988.

[SC91] Harold S. Stone and John Cocke, "Computer
Architecture in the 1990s", COMPUTER, Vol. 20, No. 9,
pp.30-37, September 1991.

125



[SD91] C. Scheurich and M. Dubois, "Lockup-free Caches in
High-Performance Multiprocessors", Journal of
Parallel and Distributed Computing, pp.25-3 6 ,
Academic Press, Inc., 1991.

(SPA88] The SPARC Techinical Manual, Sun Microsystems, Inc.,
Mountain View, California, 1988.

[TT91] Bill Tuthill and Richard Tuck, "A RISC Tutorial",
The SPARC Techinical Papers, Springer-Verlag, USA,
1991.

126



INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 221314

Dudley Knox Library 2
Code 0142
Naval Postgraduate School
Monterey, CA 93943

Director of Research Administration
Code 012
Naval Postgraduate School
Monterey, CA 93943

Chairman, Code CS 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Dr. Amr Zaky 2
Computer Science Department (CS/Za)
Naval Postgraduate School
Monterey, CA 93943

Dr. Michael L. Nelson
Computer Science Department (CS/Ne)
Naval Postgraduate School
Monterey, CA 93943

Captain Leonard Tharpe 3
717 Powell St.
Paris, TN 38242

127


