
AD-A257 656

RL-TR-92-177
Final Technical Report
June 1992

THE SAM SYNCHRONIZATION MANAGER
DISTRIBUTED OBJECT-ORIENTED
PROGRAMMING

DTICD
The MITRE Corporation LECTE

NVI 81992
M. J. Prelle, A. M. Wollrath A

APPROVED FOR PUBLICRELEASE, DISMTRIBUT/ON UNLIMITED,

, 92-29703

Rome Laboratory
Air Force Systems Command

Griffiss Air Force Base, NY 13441-5700

This report has been reviewed by the Rome Laboratory Public Affairs
Office (PA) and is releasable to the National Technical Information Service
(NTIS). At NTIS it will be releasable to the general public, including
foreign nations.

RL-TR-92-177 has been reviewed and is approved for publication.

APPROVED:

CHERYL L. BLAKE, lLt, USAF
Project Engineer

FOR THE COýMANDER:

JOHN A. GRANIERO
Chief Scientist
Command, Control & Communications Directorate

If your address has changed or if you wish to be removed from the Rome
Laboratory mailing list, or if the addressee is no longer employed by
your organization, please notify RL (C3AB) Griffiss AFB NY 13441-5700.
This will assist us in maintaining a current mailing list.

Do not return copies of this report unless contractual obligations or
notices on a specific document require that it be returned.

REPORT DOCUMENTATION PAGE Form Approve.
Pub•r •r tg buds f f'in cg cirlac nn ogb a earrmted to aw • I hour pmr r uorw rc g U. U1 jt r" Wmo r g rw*V 'ucbr. sea&rfg mustrig daa so Jes
ggtm-•rg -r• -wv• UW• ,'a rue~m: u-wil cxrii• u-w revsr It.' ~ CUcle~ at kiwv7'nu-~ See-wi c1Trnw't rgmdng It bursle em~rnre • u-iy w • asec t¶.

c Jorlnm kfnota kUfg &4o a DM for redclrgzg &W t:•rld' to Wal• an HeSd.mis Suvgm, Di Orc•ate for rctYrZ¶ Operaum andiReports 12' 5 &je v so
Davi Hk'way. Sute 1204. A*nVtrk VA 22202-43Z w•n to the Office o Mwagerwt uwi BiwiK Papework Rgkiakr Profca (07W-0 80) Wastr"on DC 205Ml

1. AGENCY dSE ONLY (Leave Blank) 2. REPORT DATE a REPORT TYPE AND DATES COVERED

June 1992 Final Sep 90-)ep 91

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

THiE SAM SYNCHRONIZATION MANAGER DISTRIBUrED OBJECT- C - F19628-89-C-0001

ORIENTED PROGRAMMING PE - 62702F

6. AUTHOR(S) PR - MOIE
TA - 78

M. J. Prelle, A. M. Wollrath WT - 57

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

The MITRE Corporation REPORT NUMBER

MSA129

Bedford MA 01730

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORINGIMONITORING

Rome Laboratory (C3AB) AGENCY REPORT NUMBER

Griffiss AFB NY 13441-5700 RL-TR-92-177

11. SUPPLEMENTARY NOTES

Rome Laboratory Project Engineer: Cheryl L. Blake/C3AB (315) 330-2158

1 2a. DISTRIBUTION/AVAJLABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT(•mu.t- 2w words)

We describe a multicomputer run-time executive called the Synchronization Manager

(SaM). SaM makes it easier to develop, debug, and enhance multicomputer software

because it automatically manages the synchronization required by an object-oriented

program to produce the same results as a single-computer execution. We have us•-d

SaM to run application programs written in an object-oriented extension of C, called

CPM, on a Symult S2010 multicomputer. CPM is described and performance results are

presented that suggest the viability of our approach.

14. SUBJECT TERMS ,s NUMBER OF PAGES
84

Distributed Computing, Object-Oriented Programming Synchronization 18PRICECODE

17. SECURITY CLASSIFICATION 1 & SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF ABSTRACT
OF REPORT OF THIS PAGE OF ABSTRACT

UNCLASSIFIED [INCLAScFIED ýUNCLASSIFIED ['/I.
NSN 7540.O1-28•-5500 St.rdwo Foarm : u Hev 2 89!

Promeo Io' ANSf St-d Z-'

m ! • mni •illi nmumm 29,8i ,m

TABLE OF CONTENTS

SECTION PAGE

1 Introduction .. 1

2 The Basic -Synchronization M anager ... 3

Com putation Tim e ... 4
G lobal V irtual Tim e ... 8

3 D ynam ics of M ethod Execution .. 11

Context O bjects .. 11
Context Synchronization Manager Services .. 14

4 SaM R untim e Executive .. 17

Sam O bjects .. 18
M essage O bjects ... 18
H arness O bjects .. 19
Creator O bjects ... 21
Future O bjects .. 22
O utput O bject .. 22
Start O bject .. 23
GVTMaster and GVT_Controller Objects .. 23

5 A pplication Language ... 25

6 Synchronization Manager Performance .. 29

7 Conclusion ... 45

List of References .. 49

A ppendix .. A -1

Acce6ion For

NTIS CRA&I
k DTIC TAB

7.. Uinannouz;:cd 0

Jdstification

By
Distribution I

Availability Co,.,es

iiiI I IDi st

LIST OF FIGURES

FIGURE PAGE

1 Serial Execution .. 3

2 Event Order Synchronization ... 5

3 Recursive Message Cycle .. 6

4 M ethod Execution .. 12

5 Method Execution With Recursion ... 13

6 A Processor Other Than Processor Zero .. 17

7 Processor Zero ... 18

8 Number of Objects .. 30

9 Number of M ethods ... 31

10 States Rolled Back-8 Nodes, 0.1 Seconds Granularity 32

11 Rollbacks-8 Nodes, 0.1 Seconds Granularity .. 33

12 Summary Speedup versus Granularity .. 34

13 Summary Speedup versus Number of Nodes .. 35

14 Summary Average Runtime versus Granularity ... 36

15 Summary Average Number of Rollbacks versus Granularity 37

16 Summary Average Number of States Rolled Back versus Granularity 37

17 Ten Largest Speedup versus Granularity ... 38

18 Ten Largest Speedup versus Number of Nodes .. 39

19 Ten Largest Average Runtime versus Granularity .. 39

20 Ten Largest Average Number of Rollbacks versus Granularity 40

21 Ten Largest Average Number of States Rolled Back versus Granularity 40

22 Ten Smallest Speedup versus Granularity ... 41

23 Ten Smallest Speedup versus Number of Nodes ... 42

24 Ten Smallest Average Runtime versus Granularity 42

25 Ten Smalleit Average Number of Rollbacks versus Granularity 43

26 Ten Smallest Average Number of States Rolled Back versus Granularity 43

27 Speedup versus Granularity versus Methods/Processors 46

iv

SECTION 1

INTRODUCTION

Performance requirements for modem military application programs dictate the iieed for
more processing power than is available in conventional single-computer systems. Thus,
proposed military systems, such as SDI, JSIP, Joint Stars, and AWACS, plan to use
multicomputer systems to meet their needs. The problem with multicomputers is that
they are inherently much harder to program than single-computer systems. Programming
a multicomputer application may require managing the synchronization among tens,
hundreds, or even thousands of independent processes that must be coordinated to solve a
single problem. This project seeks to make programming such computers significantly
less difficult, thus reducing the cost and risk of using them in military systems.

A major concern is the programmer's ability to manage the synchronization required by a
large complex program. Perhaps the interactions among the program elements is very
complex, perhaps it makes use of code written by others, or perhaps synchronization at
particular points in the program depends on input data. Debugging multicomputer
programs is generally more difficult than single-computer programs, because they may
exhibit intermittent errors due to slight timing differences when two or more threads of
control access the same memory location in an unsynchronized manner. When
enhancements are made to a multicomputer program, errors may arise caused by timing
differences introduced by the enhancements. In an attempt to address these issues, we are
developing a multicomputer run-time executive called the Synchronization Manager
(SaM). SaM makes it easier to develop, debug, and enhance multicomputer software,
because it automatically manages the synchronization required by an object-oriented
program to produce the same results as a single-computer execution. Timing differences
have no effect on the results produced by an application program executed on a
multicomputer using SaM. In addition, SaM can exploit input data-dependent
concurrency that can only be identified at run time.

Object-oriented programming is a good model of computation for distributed-memory,
message-passing multicomputers, because it minimizes global information and provides
natural communication and synchronization boundaries. When writing programs for a
multicomputer, it is a good idea to assign data items and code that will be used together
to the same processor. When writing an object-oriented program, the programmer
divides the data and the functions to control that data into objects. A side effect of this
assignment is that data and functions that will be used together are identified. Thus,
object-oriented programming facilitates the automatic mapping of software to hardware
performed by SaM. Most importantly, these are a natural part of the object-oriented
programming model of computation.

I I I I I I I I I I , u ,

In this paper, we will describe the synchronization manager. The synchronization
manager uses future objects and checkpoint and rollback to generate and manage
synchronization. Context objects manage method execution, including handling
recursive cycles of messages correctly. There are a number of objects which comprise
the SaM run-time executive. These objects manage synchronization and communication
for the application program. SaM cannot run ordinary C++ application programs;
memory management and error handling must be carefully controlled in SaM. However,
our application programming language, CPM, is syntactically similar to C++. We have
used SaM to run application programs written in CPM, on a Symult S2010
multicomputer. To test the performance of SaM against a truly wide variety of
application programs, we developed a synthetic application program. Our performance
results suggest the viability of our approach.

2

SECTION 2

THE BASIC SYNCHRONIZATION MANAGER

The run-time behavior of a program with a given input data set can be represented as a
directed graph with cycles (figure 1). The circles in this figure represent objects, and the
arrows represent messages. When an object receives a message, the method associated
with that kind of message begins executing. The labels on the arrows show the order in
which messages are processed when we execute this program on a single computer.
Every arrow represents a request for processing. Associated with each request is a reply
message that is not shown.

A

1 7 11

2 6 8 9 12 415

Figure 1. Serial Execution

In SaM, each object in the system that requires synchronization services is associated
with an instance of the synchronization manager class. We refer to all instances of this
class as the synchronization manager.

SaM uses data-driven synchronization and speculative computation to gain concurrency,
and checkpoint and rollback to ensure the same results as a single-computer execution.
Data-driven synchronization means a process does not block until it needs the result of
another process' computation. SaM uses future objects to support data-driven
synchronization in basically the same way they are used in the Actor model of concurrent
object-oriented programming [Agha:861. In Actors, ES-Kit [Chatterjee:89], and
MultiLisp [Halstead:851, it is the programmer's responsibility to manage futures; in SaM,
they are created and managed automatically.

3

On a single-computer system, every object processes one message at a time in a fixed
order (dependent on the input data). On a multicomputer, messages may arrive at an
object in a different order, even with identical input data. Speculative computation means
that an object processes available messages in the correct order, but without regard for
messages not yet delivered, even if those late arriving messages would have been
processed earlier in a sequential execution.

To ensure the same results as a single-computer execution, we generalized the Time
Warp synchronization mechanism that was developed for distributed object-oriented
discrete-event simulation [Jefferson:87]. In both Time Warp and SaM, an object's state
is saved, or checkpointed, whenever it processes a message. If an object has processed a
message out of order, it is rolled back to the appropriate state, and messages are
reprocessed in the correct order. It may be that as a result of processing messages out of
sequence, erroneous messages were sent to other objects. During rollback negative
messages are sent to retract erroneous positive messages. When an object receives a
negative message, there are three possibilities. If the matching positive message is
among the object's unprocessed messages, the two messages cancel each other. If the
positive message has not been received yet (this is possible in a network that employs
adaptive routing [Chow:87]), the object's synchronization manager saves the negative
message so that it can cancel with the positive message when it arrives. If the positive
message has already been processed, the object's synchronization manager rolls the
object back to the state prior to the one the positive message was processed in. The
negative message then cancels with the positive message. A negative message is an
antimessage for its positive message, and a positive message is an antimessage for its
negative message.

In Time Warp, it is the responsibility of the application program to generate timestamps
that are used to order messages properly; SaM generates these timestamps automatically.
An advantage of both Time Warp and SaM is that deadlocks and races cannot occur.
This reduces the difficulty of developing software for multicomputers considerably.

Computation Time

In discrete-event simulation, simulation time is used to determine the order that events
(messages) should be processed in, and the application program is responsible for
associating a timestamp with each message an object sends. In general-purpose
computation there is no sense of time, but there is a sense of order. So we developed a
mechanism that works like simulation time to indicate the order that computation events
should be processed in. The synchronization manager associates a string of characters
with each message an object sends. This character string indicates the order that the
message would have been processed in if the computation had been executed

4

sequentially. Since the role of these character strings is similar to timestamps used in
discrete-event simulation, we call them timestamps also.

When an object processes a message with a given timestamp, its synchronization
manager appends a character to that timestamp for every message the object sends. In
figure 2, for example, the object B receives a message with timestamp "a". The
timestamp on the-first-message that B sends while processing this message is "aa", the
timestamp on the second message is "ab", then "ac", and so on. Notice G's
synchronization manager can recognize that the message from B should be processed
before the message from C because "ac" is less than "ba" lexicographically. However, G
speculatively processes whichever message arrives first. Before any message is
processed, the synchronization manager saves G's current state. Thus, if the "ba"
message arrives and is processed before the "ac" message, G can be rolled back to its
previous state when the "ac" message arrives so that "ac" and "ba" can be processed in
the correct order.

A

a b C

aa ac ba ca cc
cb

a aab bba

Figure 2. Event Order Synchronization

In general, an object processes one message at a time. Recursive cycles of messages are
an exceptiox. to this rule. In a recursive cycle, an object must process one message in the
midst of processing another message, for example, a recursive cycle can be established
directly when an object sends a print message to itself in the middle of executing a
method. It is also possible for a recursive cycle to be established indirectly through
another object. When a recursive cycle of messages is recognized, an object processes
more than one message at a time, but the processing is serialized in the same way as in a
conventional sequential execution.

5

The synchronization manager can recognize when an object has received a message that
is part of a recursive cycle of messages, because the timestamp on the object's current
state will be a prefix of the timestamp on the recursive message (following any rollback
that may be necessary as a result of receiving the recursive message). In figure 3, we see
that there are four objects that send messages to M: H, I, J, and N. Suppose that the
processing of the message from I to M results in M sending a message to N, and N's
processing of that message causes N to send a message to M, that is, a recursive cycle is
established. However, let us also assume that none of the other messages to M causes a
recursive cycle to occur.

A

a b C

aa ab a a bca c

aaa abbba aa

G) (D M:!

caaaa :caaal

Figure 3. Recursive Message Cycle

M's synchronization manager has to be able to identify three different situations: a
message with an earlier timestamp than the one it just processed or is currently
processing; a message that indicates a cycle is about to take place; a message with a later
timestarnp that is not part of a cycle. If the timestamp of the message that M is
processing is greater than the timestamp of the incoming message, then M must be rolled
back. In the example, if M is processing the "caa" message from I when it receives the
"bba" message from H, M must be rolled back.

If the timestamp of the message that M is processing is less than the timestamp of the
incoming message, then M's synchronization manager must decide if the incoming
message should be processed after the current message has been completely processed or

6

if a recursive cycle is taking place. In the example, if M is processing the "caa" message
from I when it receives the "cba" message from J, M's synchronization manager should
keep this message queued until M has completely processed the "caa" message. On the
other hand, if M receives the "caaaa" message from N, it must recognize this as a
recursive cycle which must be processed before the completion of the "caa" message.
M's synchronization manager can recognize that a recursive cycle is occurring because
the timestamp of the current message "caa" is a prefix of the timestamp of the incoming
message.

The width of a timestamp depends oi; two factors: the maximum number of messages an
object can send in the course of executing a single method, and the maximum depth of a
method invocation sequence (for example, A sends a message to B, which in turn sends a
message to C, etc.). The latter is equivalent to the maximum number of stack frames on,
processor's control stack at any given time in a single-computer execution. TK.. 256
ASCII character set permits an object to send as many as 256 messages during the
execution of a single method. For some applications, this may be insufficient. Thus, we
have implemented timestamps as an array of short integers (16-bit) also. In this
implementation, timestamp comparison is performed by comparing individual elements
of the arrays.

Thus, given timestamps A and B (IAI = the length of timestamp A, and IBI = the length of
timestamp B), their relationship is defined as follows:

A = B -+ IAI = IBI A V ie[o, IAI) (Ai = Bi)
A < B -+ IA] < IBI A V iE[O, IAI) (A= Bi)

v JAI = 0 AIAI < IBI
v 3 jE[0, min (JAI, INI)) f Aj < Bj A V iE[O, j) (Ai = Bi)}

This implementation is similar to the Dewey decimal timestamps employed in ParaTran
[Tinker:88].

The short array implementation permits an object to send many more messages in a
single method than would really be needed by a reasonable application. Thus, memory to
store timestamps is wasted unnecessarily. Furthermore, since most methods only send a
few messages, both character string and short array timestamps tend to be used sparsely.
A possible way to address this problem is to let each timestamp consist of a bit-string and
a length. For each message an object sends it appends two zero bits to the timestamp of
the message it is processing and a number of pairs of bits (01, 10, or 11) that indicate the
number of messages it sent previously. Suppose A receives a message with timestamp
11, then it sends messages with timestamps:

7

11 00 01 A's first message sent
11 00 10 A's second message sent
11 00 11 A's third message sent
11 00 0101 A's fourth message sent
11 00 0110 A's fifth message sent
11 00 0111 A's sixth message sent
11 00 1001 A's seventh message sent
11 00 1010 A's eighth message sent
11 00 1101 A's ninth message sent
11 00 1110 A's tenth message sent
11 00 1111 A's eleventh message sent
11 00 010101 A's twelfth message sent

The double zero bits are used to indicate where the breaks between timestamp segments
occur. For example, in the timestamp 11001101, 11 and 1101 are two segments.
Comparison is performed based on comparing segments, just as we compared array
elements or characters in strings. We have not implemented this version of timestamps.

Global Virtual Time

A disadvantage of a rollback scheme is that a good deal of memory can be used to save
old states and messages. Time Warp uses the concept of global virtual time (GVT) to
reduce the amount of information that must be kept. The essential idea is that the
computation is always moving forward. Thus, there is a simulation time (or, in our case,
a computation time) past which the computation can never roll back. This time is the
GVT, and ways exist for computing a safe approximation to GVT dynamically while
computation is proceeding [Jefferson:87, Samadi:85].

For GVT to be estimated correctly (that is, safely), the timestamps on all the messages in
the system must be taken into consideration, even those messages that may be in transit at
the time GVT is calculated. To ensure that the timestamp of every message is taken into
account, each message is acknowledged. (Shared memory implementations of Time
Warp may not require acknowledgements. However, we are not aware of any way they
can be avoided in a distributed-memory implementation that supports adaptive routing.)

System-wide GVT is estimated periodically in SaM by requesting application objects to
compute their object virtual time (OVT). If an application object has no unprocessed
messages and no unacknowledged messages, it reports an OVT of infinity. Otherwise, it
reports the minimum timestamp on its unprocessed and unacknowledged messages. (Our
method for calculating OVT for application objects does not make use of the timestamp
on the object's current state. As we will see in the section describing context objects, it is
the application object's contexts that keep track of the current time.) The minimum of all
the OVT's in the system is selected as the new estimate of GVT, and a message is sent to
propagate this value to all objects in the system.

8

Because GVT is calculated while the computation is proceeding, it is possible that an
object on one processor has already computed its OVT before an object on another
processor has begun. Suppose A on processor P1 and B on processor P2 are the only
application objects in the system. Suppose A is asked to calculate OVT. If A has no
unprocessed or unacknowledged messages, it reports infinity for its OVT. Now suppose
B sends A a message and receives an acknowledgement before it is asked to calculate its
OVT. If B has no unprocessed and no unacknowledged message, it reports infinity for its
OVT. Since A and B are the only objects in the system and they both reported an OVT
of infinity, GVT is assumed to be infinity, that is, the computation is assumed to be
complete. However, A is processing a message. To avoid this difficulty, if an object has
already calculated OVT, but a new GVT has not yet been assigned by the system, the
object acknowledges all messages it receives with caution. If an object has not calculated
OVT, since the last time GVT was assigned, it keeps track of the minimum timestamp on
any cautionary acknowledgements it receives. When an object is asked to calculate OVT,
it considers this value as well as its unprocessed and unacknowledged messages.

We can think of GVT as the commit time of the computation. After a GVT estimate is
computed, states and messages with earlier timestamps can be discarded. Speculative
computation can cause the application to commit errors (for example, divide by zero) that
a sequential execution would not have committed. Eventually, rollback will undo such
errors. Thus, application output and errors can only be committed when GVT has passed
the point in the computation when they were generated.

9

SECTION 3

DYNAMICS OF METHOD EXECUTION

Context Objects

In SaM, application messages are packaged inside of request messages. When an
application object processes a request message, its synchronization manager creates a
synchronization managed context object. This context object manages the execution of
the method associated with the application message that is contained within the request
message. A context object's state consists of its application object's instance variables
and its method's local variables and arguments. Although we say that during method
execution an object sends a message, it is actually the context that sends the message.
Similarly, if the value of a future is needed during method execution, it is the context's
synchronization manager that sends the message to retrieve the value, and the context's
synchronization manager that receives the reply. To support recursion and retraction of
replies, a context's state is saved each time it receives or sends a message.

After creating a context, the application object's synchronization manager sends it a start
message that contains the timestamp and argument values in the request message, and
copies of the object's instance variables. When the context processes this start message,
it begins executing its method under the control of its own synchronization manager.
When the method completes executing, the context's synchronization manager sends its
application object a done message that contains new values for the object's state
variables. Until this done message is received, the synchronization manager does not
normally allow an application object to process messages with later timestamps. An
exception to this rule is in the case of recursion, as we shall explain later.

Figure 4 illustrates the dynamics of method execution. In this figure, object A receives a
request message with timestamp "m" (Q-m). A's synchronization manager creates
context A-CO and sends it a start message with timestamp "m" (S-m). While executing
its method, A-CO sends request messages to objects B (Q-ma) and C (Q-mb). By the way
we determine computation time, these messages are sent with timestamps "ma" and
"mb." B and C handle their messages similarly to the way A handles its Q-m message.
When A-CO has completed executing its method, its synchronization manager sends a
done message (D-mc) to A with new state variable values. When A receives the done
message, its synchronization manager updates A's instance variables.

11

B

S-r~n D-mc 0-ma [Fut-A-CO-O] S-ma D-mab

A-CO B-CO

0-mb (Fut-A-CO-O) set-maa

O Application -bik

O Context CFtAC-

(D Future S-mb D-mbb

Figure 4. Method Execution

Before a method sends a request message that requires a result to be returned to another
object, the synchronization manager creates a synchronization managed future object to
hold the result of the computation that will be performed as a result of processing the
message. Figure 4 also shows a future object, Fut-A-CO-0, that is used to hold the result
of B's computation. Before A-CO sends the request message (Q-ma) to B, A-Co's
synchronization manager creates the future object Fut-A-CO-0. When the message is sent
to B, the address of Fut-A-CO-0 is passed in the result field of the message. Let us
suppose the value of B's computation must be sent to C as argument. When A-CO sends
the request message (Q-mb) to C, it passes the address of Fut-A-CO-0 as an argument.
After processing A-CO's request, B-CO's synchronization manager sends the result of the
computation to Fut-A-CO-0 in a set message (set-maa). When C-CO needs the actual
value of the future argument, its synchronization manager sends a get message (get-mba)
to Fut-A-CO-0 and suspends C-CO's method execution until a reply message is received.
If Fut-A-CO-0 has already received the set message from B-CO when it receives the get
message from C-CO, its value is returned immediately to C-CO in a reply message
(R-mba). If Fut-A-CO-0 has not received the set message from B-CO, Fut-A-CO-O's
synchronization manager postpones sending a reply to C-CO until Fut-A-CO-O's value has
been set. When C-CO receives the reply, its synchronization manager sets the variable
that holds the pointer to the future to the value contained in the reply.

12

The mechanism described thus far is not capable of handling recursive cycles, which
require that an object suspend the execution of one method, receive another message, and
execute to completion the method that corresponds to the new message, before it
continues the first method. With recursion, an object has more than one context active at
the same time. An application object's synchronization manager maintains a stack of
active contexts as part of the object's state that is used to serialize the computation
correctly when a recursive cycle occurs. The stack has a context for each level of
recursion, as well as one for the original request message.

A recursive cycle occurs if A is sent a request message by one of its own contexts or by
some other object's context as a result, direct or indirect, of a request message sent by a
context of A. Figure 5 illustrates how recursive method execution is performed. Suppose
A's context A-CO sends a request message with timestamp "ma" to A. Ordinarily, A's
synchronization manager would not permit it to process a request message with a
timestamp greater than the current request message until an appropriate done message
had been processed. But in this case, A's synchronization manager can tell a recursion
has occurred, because the current message with timestamp "m" is a prefix of the new
message's timestamp, therefore, the Q-ma message must be processed before the Q-m
message can complete.

0-rn

0-maa

S-ma

Figure 5. Method Execution With Recursion

In the figure, when A's synchronization manager receives the recursive Q-ma message, it
creates context A-Cl and pushes the new synchronization managed context onto A's
current state's active context stack. Then it sends the context that was previously on the
top of the stack, A-CO, a sendvalues message with the timestamp "ma" (SV-ma) and a

13

pointer to A-Cl. When A-CO's synchronization manager receives the SV-ma message, it
rolls back (if necessary) to A-CO's state immediately after sending the Q-ma message. It
then sends A-Cl a start message. This message contains copies of A's state variables
with the values they had at the time that A-C l sent the request message that caused the
recursion. This ensures that the method associated with A-Cl has the correct initial
values for A's state variables. When A-Cl finishes executing its method, its
synchronization manager sends A a done message with new values for the state variables.
A's synchronization manager pops A-Cl off A's active context stack and forwards the
new values to A-CO in an updatejvalues message (UV-maa). A-CO's synchronization
manager blocks A-CO's method execution in its "ma" state until it receives the UV-maa
message from A. Then it resumes A-CO's method with its copies of A's state variables
correctly reflecting the complete processing of the recursive message.

In SaM, we implemented a test that checks whether a method is sending a request
message to its own application object. When such a message is sent, the context's
synchronization manager puts it in a recursion wait state. Since it is fairly common for a
method to initiate the execution of another of its object's methods, this test reduces the
frequency that rollback occurs. However, rollback due to recursive cycles may still be
necessary if the recursion is initiated indirectly.

Context objects calculate OVT differently than application objects. If a context object
has finished executing its method, has no unprocessed messages, has no
unacknowledged messages, and has received no cautionary acknowledgements, it reports
an OVT of infinity. Otherwise, it reports the minimum timestamp on its unprocessed
messages, unacknowledged messages, cautionary acknowledgements, or its current state
(usually the timestamp on the next message it is going to send).

Context Synchronization Manager Services

In addition to managing a context object's synchronization (state saving, rollback,
unprocessed and unacknowledged messages) a context object's synchronization manager
provides services to a context as it is executing. The synchronization manager
application language translator inserts invocations for synchronization manager services
into the application method code during translation. When a context object needs to send
an application message to another object, it invokes its synchronization manager passing
the address of the object to which the message is to be sent and the information necessary
to invoke the correct method of the receiving object. Its synchronization manager creates
a synchronization managed future object (if necessary) and packages the application
message in a request message to the other object.

When a context object needs to create another application object, the context object
invokes its synchronization manager passing the information necessary to create the new

14

object. Its synchronization manager creates a synchronization managed future object and
packages the information in a makeinstance message to a creator object.

When a context object needs to output information, the context object invokes its
synchronization manager passing the information to be printed. Its synchronization
manager packages the information in a print message to an output object.

When a context object needs a future resolved to a non-future value, it invokes its
synchronization manager passing the address of the future object that contains or will
eventually contain that value. Its synchronization manager sends a get message to the
appropriate future object.

When a context object completes execution, it invokes its synchronization manager
passing the result of its computation (if appropriate). Its synchronization manager sends
the result to the appropriate future (if necessary) and sends a done message to the
context's application object.

15

SECTION 4

SAM RUNTIME EXECUTIVE

Any number of application, context, and future objects (embedded in their associated
synchronization managers) may be assigned to any processor in the system. In addition,
each processor has a harness object, a creator object (embedded in its synchronization
manager), and a gvt-controller (figure 6). Processor zero has some special objects
assigned to it including a gvt master and a start object and context (embedded in their
synchronization managers), as shown in figure 7. In addition, there are message objects
which are not shown in either figure. The role these objects play in the SaM runtime
executive will be explained in this section.

harness

ssam•c r am icatio sam-future samapp•lcatiori
saFut-A-CI-Osrn

-aaMQ~ain

Csamcext sam future samncontext

san-otext

Figure 6. A Processor Other Than Processor Zero

17

harness

sam-creator sam output samaplcto sam-future

sam future

Figure 7. Processor Zero

Sam Objects

Synchronization manager objects, sam objects, have instance variables that include:
input-queue, current-state (which includes the state variables, as well as the message the
object processed while in the state and the messages the object sent while in the state),
old-states, and unacknowledged message list. Sam objects manage the synchronization
for their respective application, context, future, creator, and output objects. The functions
of the synchronization managers for application and context objects have been explained
above. Creator, future, and output objects process messages differently from application
and context objects. Associated with each of these are specializations of the basic
synchronization manager class for application objects. Every synchronization managed
object (application, context, future, creator, and output) has a unique global object
address associated with it.

Message Objects

A message is an object that contains fields that include: the global object address of the
object to which the message is sent, the global object address of the object that sent the
message, the receive timestamp (indicating the order that the message is to be processed
in by the receiver of the message), the message type (request, done, start, send-values,
update-values, reply, getvalue, set-value, and makeinstance), the information field,
and the result field. The receiving object's synchronization manager interprets the
information and result fields differently depending on the message type. For example, in

18

a request message, the information field contains the name of the application message and
the values of the arguments that should be associated with that message. If the result of a
method invocation is required by the requesting object, the result field contains the
address of the future object that is to be sent the value when method execution is
complete, otherwise it is NULL.

In addition to these fields, each message also contains a sign field. The sign field is used
to indicate whether the message is a positive message or a negative message. Each
message also contains an acknowledgement field that indicates whether the message is an
acknowledgement or not.

One message may be considered an antimessage for another message, if the two
messages contain the same information in the corresponding fields except for the sign
field. We could check that every field (except the sign field) of two messages are
identical before deciding whether they were antimessages. However, this is not necessary
if we add another field to the message called the rollback count. Every object's
synchronization manager has a rollback count that it maintains. Every time an object is
rolled back its synchronization manager increments the rollback count. The object's
synchronization manager includes the value of the rollback count in each positive
message it sends on behalf of the object. Each state of an object has a copy of the
messages the object sent while in that state, so that negative messages can be sent if the
state is rolled back. However, a negative message need not be a complete copy of the
message; both the information and result fields can empty. This is possible because the
receiver, sender, timestamp, and rollback count are sufficient to associate a negative
message with its matching positive message. Using similar reasoning acknowledgements
and messages in the unacknowledged message list can have empty information and result
fields.

Harness Objects

The multicomputer implementation of the synchronization manager has a harness object
on each processor. The harness objects manage the other objects in the system. They
manage communication among objects, placement of new objects, routing of messages
between processors and among application objects, and scheduling of activities in the
system.

Communication among synchronization managed objects is mediated by the harness
objects. When an object is to be created, the harness object on the requestor's processor
decides on which processor the object will be created. Currently, each harness object
directs creation requests to all processors (except processor zero) in round robin fashion,
independently from other harness objects. A global object address includes the identity
of the processor on which the object was created. Since objects do not move from the
processors on which they were created, this information is sufficient to allow harness

19

objects to route messages to the processors that have the objects to which they are
directed.

The harness object on each processor executes a loop. In the first step of the harness
loop, messages are taken from the processor's input queue and delivered one by one to
the appropriate object's synchronization manager's input queue. If the message is
positive and has a receive timestamp less than or equal to the object's current state's
timestamp or the message is negative and matches a message that was previously
processed by the object, then the object's synchronization manager rolls the object back
to a state with a timestamp less than the message's timestamp. If necessary, the object's
synchronization manager sends negative messages and/or cancels the matching positive
and negative message pair. Otherwise the message is inserted into the synchronization
manager's input queue.

In the second step of the harness loop, each object's synchronization manager is given an
opportunity to handle a message from its input queue. Before handling a message, an
object's synchronization manager saves the object's current state on its old state stack.
Different kinds of messages are handled differently by the object's synchronization
manager. In the case of application request messages that cause methods to be executed,
the application object's synchronization manager creates a context object whose
responsibility it is to actually execute the method associated with the request. In the case
of replies from future objects, the context object's synchronization manager
changes the value of the variable that points the future to the value of the computation
that the future represents.

In the final step of the harness loop, the harness selects one of its contexts and allows it to
execute part of its method. The context selected is the one with the lowest timestamp that
is not blocked. This context executes until it completes executing its method, blocks, or
has exceeded its allotted number of execution steps.

A context will block if it needs the value of a future, sends a message to its application
object (by executing a send self message), or enters an error state. Because messages are
processed speculatively, values of variables may be the wrong type or have inappropriate
values when a statement in a method is executed. This causes the context to enter an
error state. Execution is blocked until the object rolls back or GVT passes the timestamp
on the error state. In the latter case, a real application program error has occurred (just as
it would have in a sequential execution), and the program must be aborted.

A context is allowed to execute its method until it requires service (sending an
application message, resolving a future, etc.) from its synchronization manager. This is
called an execution step. The harness decides how many execution steps a context may
take before control returns to the harness. In the current implementation the number of
execution steps is arbitrarily set to ten. A very high setting would allow contexts to take

20

as many steps as they are able to perform before checking for newly received messages.
Such a policy could result in larger numbers of unnecessary rollbacks. A very low setting
forces the context state to be saved more frequently. We have not performed any studies
to determine what the preferred setting for the number of execution steps should be.

At this point the harness may choose to go to the first step of its loop or, if the context
with the lowest timestamp is blocked, allow the context with the next lowest timestamp to
execute. In this way messages with earlier timestamps are processed before messages
with later timestamps, at least locally.

The harness on processor zero has an additional step in its loop. In this step, if a
sufficient amount of time has passed (one second in our current implementation) since the
last time GVT was calculated, the harness activates the gvtmaster.

Creator Objects

Each processor has a creator object associated with it. The purpose of a creator object is
to free context objects from the task of managing the creation of application objects
required by the computation. The application language translator automatically translates
a user invocation of the function "makeinstance" to a makeinstance message to a
creator object. In this way, a context object may continue its computation until it needs
to send a message to the newly created object.

When an application object is to be created, the synchronization manager of the context
requesting the creation creates a future object on its local processor. This future object
will ultimately hold the global object address of the new application object. The
context's synchronization manager gets a global object address from its local harness to
associate with the new future object. Then it asks its harness for the global address of an
appropriate creator object (as explained above in the section describing harness objects).
Next it sends a makeinstance message containing the future object's global object
address and the information necessary to perform the application object creation to this
creator. The context may then continue processing using the future.

When a creator receives a makeinstance message, it gets a new unique global object
address from the harness on its processor, creates the new application object, and sends a
set-value message containing the global object address of the new application object to
the future object specified in the message.

Creator class objects have associated synchronization manager objects that are
refinements of the general synchronization manager class. It is not necessary for creators
to be rolled back when they receive makeinstance messages out of sequence or negative
make_instance messages. When a creator receives a negative message for a message it
has processed, its synchronization manager removes the associated state from the old

21

state stack and cancels the positive and negative message pair-the creator is not rolled
back and does not send antimessages or reprocess input messages, except for retracting
those messages sent when the cancelled makeinstance message was originally
processed.

Creator objects do not use contexts to process makeinstance messages, as application
objects do, but rather process make-instance messages directly. When an object is
created, and the makeinstance is later retracted (via a negative message to the creator
object), the superfluous object continues to exist, in case other objects have sent messages
to it. Eventually, any messages sent to the superfluous object will be retracted, and the
object will be in its initial state with no messages in its input message queue. When the
makeinstance is retracted, the creator could send th- object a free message with the same
timestamp as the erroneous make_instance. When GVT passes the time on the free
message, the space occupied by the object could be freed. (Our current implementation
does not handle freeing objects.)

Future Objects

Future objects are similar to ordinary application objects. However, rollback is handled
differently and they do not use contexts to process messages, but process set-value and
get-value messages directly. Thus, they have special synchronization manager objects
associated with them. A future receives at most one unretracted setvalue message, but
may receive many legitimate getvalue messages. The get-value messages always have
timestamps that are greater than the setvalue message. A future's synchronization
manager holds any getvalue messages it may have received in its input queue until the
future has received and processed a set_value message.

A future is rolled back when it receives a negative message for a previously processed
set_value message. However, it is not necessary for a future to be rolled back when it
receives a get_value message out of sequence or a negative message for a get-value
message. When a future receives a negative message for a getvalue message it has
processed, its synchronization manager removes the associated state from the old state
stack and cancels the positive and negative message pair-the future is not rolled back
and does not send negative messages or reprocess input messages, except for retracting
those messages sent when the cancelled getvalue message was originally processed.

Output Object

The output object receives messages containing text to be printed to standard output and
redirects it to a file. Any other kind of output that a program might produce (for example,
file output to a user specified file, instructions to a graphical display, database, or an
external device) could be handled in a similar way, by using another type of output
object. The output object's synchronization manager does not allow it to process a

22

message until GVT has passed the time given in the timestamp of the message. Until the
system has committed to a GVT, the application program output may be retracted. Since
the output object does not process messages until GVT has passed their timestamps, there
is no chance that it will be rolled back. Therefore, it is not necessary for the output
object's synchronization manager to save states. The output object does not use contexts
to process its messages, but processes its messages directly. The computation is
considered complete when all processors have returned infinity for their processor virtual
time and the output object has no messages to process.

Start Object

Every application program has a special start-class. The main routine of the program is a
method of this class. In the multicomputer implementation, code is loaded on each
processor. A main routine begins executing on each processor which initializes the
harness object on that processor. As part of harness initialization, each harness creates a
creator object and a gvt controller object. The harness on processor zero also creates an
output object, a gvt master, and a start object based on the start class. Harness zero
inserts a run message in the start object's synchronization managerfs input queue. Then
the harnesses begin executing their processing loop. When this message is processed by
the start object, a context is created to manage the execution of the main routine of the
application program.

GVTMaster and GVT Controller Objects

The harness invokes the gvt master based on the last time GVT was calculated. If the
last GVT computation is complete, a new GVT calculation begins when the gvt master
sends calculate.gvt messages to each gvtscontroller. (The harnesses handle delivery of
these messages.) The gvtcontrollers asynchronously poll the objects on their respective
processors and send the minimum timestamp calculated to the gvtmaster. When all
controllers have reported, the master sends the minimum timestamp received in an
assign..gvt message to each controller. The controllers then assign the new GVT to each
of the synchronization managed objects on their processors. Each object drops states
with timestamps less than the newly assigned GVT.

23

SECTION 5

APPLICATION LANGUAGE

SaM cannot run ordinary C++ application programs, because memory managemeat and
error handling-must be carefully controlled in SaM. Our language, CPM (C Plus
Minus--C plus objects, minus pointers), is syntactically similar to C++. Programs
written in CPM can be executed either sequentially without the synchronization manager
or in parallel using SaM. If the program is to be executed sequentially, a translator is
used to translate object-oriented CPM code to ordinary C code. If the program is to be
executed using SaM, a different translator is used to translate the user's code into a form
that will allow SaM to manage its execution.

CPM supports two different types of classes: concurrent classes and local classes.
Concurrent objects may be distributed physically in the system. Their synchronization is
managed by SaM, that is, each of them has a synchronization manager object associated
with it. Concurrent objects have object addresses associated with them. When a
concurrent object is passed as an argument, its object address is passed. Circular
referencing among concurrent objects is supported. When we spoke of application
objects previously, we were describing concurrent application objects.

A local object may be the value of an instance variable of a concurrent object or another
local object. A local object is always part of the state of one and only one concurrent
object. Thus, their synchronization is managed by their concurrent object's
synchronization manager. When a local object is passed as an argument, it is passed by
value. The translator automatically generates copy functions to take care of packaging up
local object arguments. Pointers to local objects and circular referencing among local
objects is not supported (if circular referencing is required, concurrent objects must be
used instead).

All basic C data types are supported such as int, char, long, float, double, and statically
allocated arrays. In order to make building application programs easier, we are
implementing a library of commonly used local classes. Another reason for building
these local classes is that part of their implementation is outside the scope of the
application language as defined and needs special hand coding. Among the local classes
to be implemented are strings, linked lists (parameterized by type), and doubly linked
lists (also parameterized by type). These classes will also be robust, checking for errors
and boundary conditions. GlobI constants are allowed in the system, but not global
variables. Global variables are not safe since their synchronization is not managed by
SaM.

25

Because SaM allows objects to process messages out-of-order with respect to a sequential
execution, errors may occur in a SaM execution which would not have occurred in a
sequential execution. If the error is caused by processing messages out-of-order, it must
be possible to recover from the error by simply rolling back when the appropriate
message or messages finally arrive and are processed in the correct order. On the other
had, if the error is a real application error (that is, it would have occurred in a sequential
execution), then it can be committed to when GVT reaches the timestamp on the state
when the error occurred.

For example, errors that can be trapped by the system (divide-by-zero) send a signal to
the executing process. When an error signal is caught, the context is put in an error state.
When a context is in an error state, its synchronization manager will accept messages but
will not allow the context to execute. Eventually either a message will be received that
causes the context to be rolled back to a non-error state, or GVT will reach the timestamp
of the error state and the computation will be aborted.

Because an error may be an artifact of speculative computation and not the application
program, we cannot allow application behavior to endanger the run-time system or other
parts of the application program. Since the application and SaM share the same memory,
if we allowed pointers to local memory in our language as C and C++ do, it would be
possible to write into memory that is not part of the object's currently executing
environment. If this type of error occurred, it would not be corrected by rollback. Thus,
each object's state must be managed separately. For arrays, index out-of-bounds errors
are captured before they occur.

Interactions among concurrent objects are controlled by the SaM runtime system. The
interface points between the application method execution and the run-time system
include: creating an instance of a new concurrent object, sending an application message
to a concurrent object, printing a result, resolving a future, and completing execution
which may include sending a return value to a future.

To support recursive cycles of messages, error handling, and future processing, it must be
possible to suspend and resume method execution (possibly to a previous state) when
appropriate. We would like to treat method execution as a light weight process. Since
LWP libraries are not available on the iPSC/2 or the S2010 (and there are bugs in the Sun
LWP code), we implemented a mechanism that is similar to light-weight processes using
setjmp and longijmp system calls. To save the state of an executing method, we must save
all registers, local variables (the stack), instance variables of the object, and method
arguments. setjmp suffices to save all registers, but does not take care of saving anything
on the stack. We added code to save the appropriate amount of stack as well as instance
variables and method arguments to resume execution. The saved state of a method
execution is called an environment.

26

The interface between the application language and the runtime system is controlled by
code inserted by the preprocessor into the application code. This interface code calls the
appropriate synchronization manager services. The context's synchronization manager
performs the appropriate service and then determines whether or not to resume method
execution immediately. If method execution cannot be resumed immediately, a copy of
the environment is saved. Since an application message sent by a context can lead to a
recursive cycle of messages being established, a copy of the environment is saved when a
message is sent to another concurrent object, even if method execution is resumed
immediately.

27

SECTION 6

SYNCHRONIZATION MANAGER PERFORMANCE

In general, the granularity of an application is the average amount of computation
performed per communication event. Speedup is obtained in parallel computation by
having more than one processor perform useful work at the same time. To obtain this
speedup, control information needed to activate the necessary functions as well as data
(possibly even the functions themselves) may have to be communicated to the
appropriate processors. Every multicomputer system requires a certain amount of
overhead for each interprocessor communication. A parallel machine execution
outperforms a sequential execution when the granularity is sufficiently large to overcome
the overhead. In parallel computation, granularity defines the opportunity for parallelism.
More parallelism may be exploited if the granularity of the application is small.
However, if an application program's granularity is too small compared to the
communication overhead of the multicomputer system on which it is executed, speedup
may be minimal because application processing may be overwhelmed by communication
overhead.

To test the performance of the synchronization manager against a truly wide variety of
application programs, we developed a synthetic application program. We can use this
program to generate applications that vary in their object referencing and creation
characteristics, and their granularity, which we define as the amount of computation they
perform per message processed. Essentially, a synthetic application is simply code to
control the activities of a program, a pseudo-random number generating function, plus a
granularity. The application control code. uses a pseudo-random number generating
function to decide the relational dependencies among the objects that are created initially,
what activity (sending messages, creating objects, or doing neither) an object performs in
response to receiving a message, how many times it performs the activity, and how the
relational dependencies among the objects change as the computation proceeds. In
addition to these activities, each time the application control code receives a message, it
calls a function. The purpose of this function is to allow us to control the amount of
computation the synthetic application performs per method, that is, the granularity.

When the granularity is zero, only the application control code is executed. When the
granularity is set to g the function performs g seconds of pseudo-computation. The
application set consisted of 54 basic programs with different application control codes.
Figure 8 shows the number of objects dynamically created during the execution of each
of the basic synthetic applications when they are executed on a single-computer. Figure 9
shows the number of methods invoked during the execution of each of the basic synthetic
applications when they are executed on a single-computer. Each of these basic synthetic
applications was executed in our tests at seven different granularities: 0, 0.1, 0.2, 0.4,

29

0.6, 0.8, and 1 second. Thus, there were a total of 378 synthetic application programs
used in our study. The application output of each of these 378 programs produced the
same values as the equivalent sequential executions.

Objects

450

400

p350

-300
0 250

_ 200

*150
E
C 100

50

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

basic synthetic applications
12-Sep-91

Figure 8. Number of Objects

30

Methods

900
Boo s

j700

JO 600
0
E 500

2400
-
.0 3001
S 2001

100

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

basic synthetic applications
1 2-Sep-91

Figure 9. Number of Methods

It is important to understand that these sequential applications were not ideal applications
for parallelization. An ideal application for parallelization would have many
computations that could be performed independently. Synchronization among the objects
would be relatively rare. An indication of how interdependent the computations of the
objects in the system are can be inferred from the number of rollbacks tiat occurred and
the number of states rolled back as the computation is executed using the synchronization
manager. Figure 10 shows the number of states rolled back when the basic synthetic
applications were run on eight nodes using a granularity of 0.1 seconds (0.1 seconds of
pseudo computation per method).

31

States Rolled Back
8 Nodes, 0.1 Seconds Granularity

23500-

23000.

j20W0 _ _ _

1500-
S

b.1000

E 500.

1 4 710 13'16 12225 28 31 34 37 40 43 46 49 52

basic synthetic applications
12-Sep-91

Figure 10. States Rolled Back-8 Nodes, 0. 1 Seconds Granularity

Rollbacks may be caused by positive messages received out of order, positive rollbacks,
or by negafive messages that have been sent to retract erroneously sent positive messages,
negative rollbacks. Figure I11 shows the number of positive and negative rollbacks.
Since one rollback may cause many states to be rolled back, the number of rollbacks is
smaller than the number of states rolled back. Further, one positive message processed
out of order can cause more than one negative message to be sent to retract the messages
that were sent erroneously. Thus, it is not surprising that the number of rollbacks that
were caused by negative me..sages is greater than those caused by positive messages.

32

Rollbacks
8 Nodes, 0.1 Seconds Granularity

1400

S1200
S1000.

0 600-

. o400-
1

1 4 7 10 13 16 19 22 25 28 31 34 37 40 43 46 49 52

basic synthetic applications

12-Sep-91

Figure 11. Rollbacks-8 Nodes, 0. 1 Seconds Granularity

We ran each of our synthetic applications sequentially on a single Symult S2010 node
without the synchronization manager, and in parallel on four, eight, twelve, and sixteen
S2010 nodes using the synchronization manager. Runtime was measured using the
clock() function in the C library. In the sequential execution, clocko is invoked at the
start of maino and again at the end of maino. The runtime of the program is the
difference between these two invocations of the function. In the SaM execution, clock()
is invoked initially when the harness is initialized on processor zero. It is invoked
subsequently when harness zero receives a stop message from the gvt master indicating
the computation, including all application output, is finished. We averaged the runtime
values across the seven different granularities and obtained the results shown in figure 12.
In the graph in figure 12, the x-axis represents the granularity in seconds of computation
per message processed. The y-axis represents the sequential execution runtime divided
by the parallel execution runtime, that is, the speedup. The place where the curves cross
the line y = 1 indicates the granularity where the four, eight, twelve, and sixteen
processor executions begin to outperform the sequential computation.

33

Summary
Speedup Versus Granularity

5-0.---- 16 nodes

-- 12 nodes

".0 3.•-' --- - - 8 nodes

• 2 --- 4 nodes

1. o sequential

0 0.2 0.4 0.6 0.8 1

granularity (seconds)
12-Sep-91

Figure 12. Summary Speedup versus Granularity

Another way to look at this data is to consider the amount of speedup that was obtained
for applications with different granularities. Figure 13 shows speedup of applications
with different granularities versus the number nodes used.

34

Summary
Speedup Versus Number of Nodes

6 granularity
6

5 - _0_ 1

a . 4 • - 0- -- ' -- ' o "8

-. - 0.6
• 3 " • -0 • 0.4

.3

2 6. a - 0.2

-'- 0.1

4 8 12 16 - 0-0

number of nodes
12-Sep-91

Figure 13. Summary Speedup versus Number of Nodes

It is important to realize that the limit of the speedup function does not approximate the
amount of inherent parallelism available in an application. All of the applications have
some start-up and finish-up code that must be performed sequentially. In addition, some
of the applications in the set involve recursive cycles, which can only be executed
sequentially. Thus, it is not surprising that the amount of inherent parallelism available
on the average is not higher, that is, closer to the number of available processors.

As we expected, the runtimes of the sequential executions can be approximated by a
linear function of granularity. From figure 14, it appears that the runtimes of each of the
parallel executions can be approximated fairly well by a linear function of granularity
also. This linear approximation makes sense, because the synchronization manager only
affects an application when an object sends or receives a message. In general, increasing
the amount of computation done per method, that is, the granularity, increases the amount
of synchronization manager overhead only slightly. This slight increase in overhead can
be attributed to the fact that GVT calculations are done approximately every second and
the harness management functions (for example, to check the processor input queue for
newly received messages) are invoked more frequently. Thus, the longer a program runs,
the more GVT calculations are performed. However, as can be seen from the graph, the
GVT calculation and the harness management functions are relatively inexpensive
operations. The increase in synchronization manager overhead for longer running
computations might be more significant if rollbacks were deep enough to cause lengthy

35

computations to be redone. On the average, this appears not to be the case for this set of
applications.

Summary
Average Runtime

180--
160 - 160 -16 nodes

o140--

"c 120 ,' * 12 nodes
0* 100-.'

S, ') • ° • 8 nodes

* 80
240- _.

20.•-• ,,B•• • • •.... • ... sequential

0 0.2 0.4 0.6 0.8 1

granularity (second*)
12-Sep-91

Figure 14. Summary Average Runtime versus Granularity

In the case of the eight, twelve, and sixteen node parallel executions, the zero granularity
application test set appears to have runtimes that are approximately the same as the 0.1
second granularity application test set on the average. Since the only difference between
the two sets is the granularity of the computations, this phenomenon seemed somewhat
surprising until we looked at the average number of rollbacks and the average number of
states rolled back for each of the application sets. As figure 15 and 16 show, in the eight,
twelve, and sixteen node parallel executions the number of rollbacks and number of states
rolled back in the zero granularity case is much higher than at the other granularities
tested.

36

Summary

Average Number of Rollbacks

250 ,

200 -i -16 nodes

S150 - 12 nodes

_ 0 " -- • 8 nodes
100

.E 0 - 4 nodes

2 50

0

0 0.2 0.4 0.6 0.8 1

granularity seconds
12-Sep-91

Figure 15. Summary Average Number of Rollbacks versus Granularity

Summary
Average Number States Rolled Back

700 *

Z600
*" 16 nodes

0
400 -- 12 nodes

300 8 nodes

. 200 "- " 4 nodes

E 100
ZC 0 ' I

0 0.2 0.4 0.6 0.8 1

granularity (seconds)
12-Sep-91

Figure 16. Summary Average Number of States Rolled Back versus Granularity

37

Although the lower number of rollbacks and states rolled back in the non-zero granularity
cases cannot be seen in every individual application tested, the lower number is evident in
many of them. Perhaps this phenomenon makes sense if one considers that in the non-
zero granularity cases the ratio of computation to communication is higher, which may
mitigate the asynchronous nature of the computation to some extent. However, it is
interesting that for the non-zero granularity cases, the number of rollbacks and states
rolled back varies only slightly.

It is interesting to see how well SaM performs for the large applications in the test set
compared to the entire set. Figures 17 through 21 show the same information as figures 8
through 16 but for the ten applications that have the largest number of methods executed.
As can be seen in figures 17 and 18, the speedup for the ten largest cases is significantly
larger for the non-zero granularities on eight, twelve, and s;xteen processors than it was
for the test set as a whole. As figures 20 and 21 show, this holds even though the average
number of rollbacks and states rolled back is significantly larger for these large cases.

Ten Largest
Speedup Versus Granularity

8 -U

7 -• 16 nodes

6.-
W- 12 nodes0. 5.

0 4 nodes
S~sequential

0 0.2 0.4 0.6 0.8 1

granularity (seconds)
12-Sep-91

Figure 17. Ten Largest Speedup versus Granularity

38

Ten Largest
Speedup Versus Number of Nodes

granularity

8
7-
6 --0----0.8

-" 3 0 0.4"a
2

A 0.2

01 0.

4 8 12 16

number of nodes
12-Sep-91

Figure 18. Ten Largest Speedup versus Number of Nodes

Ten Largest
Average Runtime

700 -

600- - 16 nodes

500 --- 0--.---- 12 nodes
0* 400 .

400 --- 8 nodes
*300

E -0----- 4 nodes
"E 200

100 , - A- - -....-- --- sequential

0 A - -
0 0.2 0.4 0.6 0.8 1

granularity (seconds)
12-Sep-91

Figure 19. Ten Largest Average Runtime versus Granularity

39

Ten Largest
Average Number Rollbacks

600

5001
-316 nodes

. 4000 12 nodes

" 300 -•

300 •-_ -- -- 8 nodes

E1 0 4 nodesC1 100 -

0 I I I I I

0 0.2 0.4 0.6 0.8 1

granularity (second*)
12-Sep-91

Figure 20. Ten Largest Average Number of Rollbacks versus Granularity

Ten Largest
Average Number States Rolled Back

.=1400,
U
U
. 1200

0-0-- 16 nodes

* 800 -0 -- 12 nodes

S600 - #- 8 nodes

400
b0 -4 nodes

" 200E
2C" 0 I I II

0 0.2 0.4 0.6 0.8 1

granularity (seconds)
12-Sep-91

Figure 21. Ten Largest Average Number of States Rolled Back versus Granularity

40

It is also interesting to see how well SaM performs for the small applications in the test
set compared to the entire set. Figures 22 through 26 show the same information as
figures 8 through 16 but for the ten applications that have the smallest number of methods
executed. As can be seen in figures 22 and 23, the speedup for the ten smallest cases is
significantly less for the non-zero granularities on eight, twelve, and sixteen processors
than it was for the test set as a whole. As figures 25 and 26 show, this holds even though
the average number of rollbacks and states rolled back is significantly less for these small
cases.

Ten Smallest
Speedup Versus Granularity

4,

- -- 16 nodes
3,-

3- -• 12 nodes

a 2 *-- -- 8 nodes

* • *4 nodes

-nsequential

0I I I I I
0 0.2 0.4 0.6 0.8 1

granularity (seconds)
12-Sep-91

Figure 22. Ten Smallest Speedup versus Granularity

41

Ten Smallest
Speedup Versus Number of Nodes

granularity
3.5.

3-U-

2.5 - 0.•8
CL-- 2 • ' 0.6

1.5 -0--- • 0.4

1--- 0.1

0!I I

4 8 12 16 -e- 0

number of nodes
12-Sep-91

Figure 23. Ten Smallest Speedup versus Number of Nodes

Ten Smallest
Average Runtime

30

25 16 nod

c0 20 ,, 12 nodes

15 -8 nodes

E 10 "0 ---- 4 nodes

5 A --- sequential

0 - --- . ..

0 0.2 0.4 0.6 0.8 1

granularity (seconds)
12-Sep-91

Figure 24. Ten Smallest Average Runtime versus Granularity

42

Ten Smallest
Average Number Rollbacks

16

14 16 nodes

0A 12e10 '12 nodes

S10
"8 - - 8 nodes

6 6E 40 -4 nodes
= 4
C

2

0I I II

0 0.2 0.4 0.6 0.8 1

granularity (seconds)
12-Sep-91

Figure 25. Ten Smallest Average Number of Rollbacks versus Granularity

Ten Smallest
Average Number States Rolled Back

a 30 U 16 nodes

25 12 nodes

S20
is.5__ 8 nodes

0

0 0.2 0.4 0.6 0.8 1

granularity (seconds)
12-Sep-91

Figure 26. Ten Smallest Average Number of States Rolled Back versus Granularity

43

SECTION 7

CONCLUSION

SaM assumes little about the underlying architecture except that there is an operating
system on each processor that supports typical microprocessor functionality and message
passing. Message passing is supported on distributed-memory multicomputers, but it is
easy to implement on shared-memory multiprocessors as well. SaM assumes little about
an object-oriented application program prior to runtime. The use of resources, both
processor and memory, may depend on the input data, for example, the number of
messages processed by an object, the number and kind of messages sent by an object, and
the number and kind of objects dynamically allocated. SaM assumes the synchronization
in the application program may depend on the input data and should be performed with
respect to the sequential model, that is, the program should produce the same results as if
it were executed on a sequential processor. These assumptions allow application
programs to be developed, maintained, extended, and ported more easily. Of course, so
much flexibility means that performance of a particular application program on a
particular architecture may not be as efficient as it would have been had detailed
knowledge of the program's and architecture's characteristics been considered in the
application development process.

In this paper, we described the synchronization manager. The synchronization manager
uses future objects and checkpoint and rollback to generate and manage synchronization.
Context objects manage method execution, including handling recursive cycles of
messages correctly. There are a number of objects which comprise the SaM runtime
executive. These objects manage synchronization and communication for the application
program.

We have used SaM to run application programs written in CPM on a Symult 52010
multicomputer. To test the correctness and performance of SaM against a truly wide
variety of application programs, we developed a synthetic application generator program.
We used this program to generate applications that vary in their object referencing and
creation characteristics, and in the amount of computation they perform per message
processed. We ran each of our 378 synthetic applications sequentially on a single Symult
52010 node without the synchronization manager, and in parallel on four, eight, twelve,
and sixteen S2010 nodes using the synchronization manager. The application output of
each of these 378 programs produced the same values in the multicomputer executions as
the equivalent sequential executions.

The three dimensional graph in figure 27 summarizes our results on a set of 378 synthetic
application programs. One dimension of the graph shows speed up of the parallel
execution using SaM versus running the application sequentially on a single processor

45

without SaM. Another dimension shows the granularity of the application programs.
Granularity indicates how much computation was performed per message processed by
each method executed. Not surprisingly as the granularity increases from zero seconds to
one second the speedup of the computation improves. The third dimension shows two
things simultaneously. The effect of increasing the number of processors is shown; four,
eight, twelve, and sixteen processors were used in our tests. It also shows how the ten
largest applications (those that executed the greatest number of methods) performed
versus the whole set and versus the ten smallest applications (those that executed the
fewest number of methods) in the set. As can be seen in figure 27, the speedup for the
ten largest cases is significantly larger for the non-zero granularities on eight, twelve, and
sixteen processors than it was for the test set as a whole. This holds even though the
average number of rollbacks and states rolled back is significantly larger for the large
cases.

W 16 large

E 16 summary

S6 .U 12 large

S~5
4 speedup *2summary

.01" 12 small
0.8 .

0.64 8 large
granularity 0.1 -* m

seconds 0 c8

E E co n % r'E 8 small

34 large

* 4 summary

0 4 small

Figure 27. Speedup versus Granularity versus Methods/Processors

In previous work, we investigated extensions of the synchronization manager model of
execution to support continued application processing in the presence of hardware failure
[Bensley:88] and concurrent language constructs [Prelle:91]. In addition to testing the
correctness of the SaM implementation, we have also shown the basic correctness of the

46

synchronization model mathematically. [Bridgland:911 contains the details of the
mathematical proofs, [Prelle:901 contains a more intuitive, descriptive exposition of the
arguments and the results. In essence, we have shown that the techniques we developed
can automatically manage synchronization. Further, our performance results suggest the
viability of this approach.

47

LIST OF REFERENCES

[Agha:86] Agha, G. A., ACTORS: A Model of Concurrent Computation in Distributed
Systems, Cambridge, MA: MIT Press, 1986.

[Bensley:88] Bensley, E. H., T. J. Brando, and M. J. Prelle, "An Execution Model For
Distributed Object-Oriented Computation," Proc. Third Annual Conf. on Object
Oriented Programming Systems, Languages, and Applications, San Diego, CA,
September 1988.

[Bridgland:91] Bridgland, M. F., J. I. Leivent, and R. J. Watro, Mathematical
Foundations for Time Warp Systems, MTR 10959, The MITRE Corporation,
January 1991.

[Chatterjee:89] Chattetjee, A., "Futures: A Mechanism For Concurrency Among
Objects," Proc. Supercomputing Conference, Reno, NV, November 1989.

[Chow:871 Chow, E., H. Madan, and J. Peterson, "A Real-Time Adaptive Message
Routing Network for the Hypercube Computer," Proc. Eighth Real-Time Systems
Symposium, IEEE Computer Society, December 1987.

[Halstead:85] Halstead, R. H., "MultiLisp: A Language for Concurrent Symbolic
Computation," ACM Trans. on Prog. Languages and Systems, pp. 501-538,
October 1985.

[Jefferson:87] Jefferson, D., et al., "Distributed Simulation and the Time Warp Operating
System," Proc. Eleventh ACM Symposium on Operating Systems Principles,
Austin, TX, November 1987.

[Prelle:90] Prelle, M. J., T. J. Brando, E. H. Bensley, J. I. Leivent, R. J. Watro, and
A. M. Wollrath, Distributed Object-Oriented Programming FY90 Final Report,
MTR 11058, The MITRE Corporation, December 1990.

[Prelle:91] Prelle, M. J., A. M. Wollrath, T. J. Brando, E. H. Bensley, The Impact of
Selected Concurrent Language Constructs on the SaM Runtime System, OOPS
Messenger, ACM Press, Vol. 2, No. 2, April, 1991.

[Reiher:90] Reiher, P., R. Fujimoto, S. Bellenot, and D. Jefferson, "Cancellation
Strategies in Optimistic Execution Systems," Proc. of the SCS Multiconference on
Distributed Simulation, San Diego, CA, January 1990.

[Samadi:85] Samadi, B., "Distributed Simulation, Algorithms and Performance," Ph.D.
dissertation, UCLA, 1985.

[Tinker:88] Tinker, P., and M. Katz, "Parallel Execution of Sequential Scheme with
ParaTran," Proc. of the Conference on Lisp and Functional Programming,
Snowbird, Utah, July 1988.

49

APPENDIX

AN OVERVIEW OF THE C+- (CPM) APPLICATION LANGUAGE

The application language is basically a simplified version of C++ which disallows any
pointer reference. Thus, the following built-in C operators are disabled, *, &, and ->.
Although referencing an element of an array through the bracket notation r j performs
implicit pointer operations, arrays are allowed in the CPM language and are translated
into "safe" code by the CPM translator. CPM does not allow dynamic memory allocation
at this time. Due to complications dynamic allocation would introduce, we have decided
not to support this feature yet, however it may be handled in the future.

In light of the restrictions placed on the application language, we named the language C+-
which stands for C plus objects, minus pointers (or CPM as will be referred to in this
section).

One cosmetic difference between CPM and C++ is that CPM does not use ANSI standard
parameter declarations, whereas C++ does. Instead, the style mimics that found in the
first edition of the Kernighan and Ritchie C book which lists the parameters and their
declarations separately. For example, compare the following:

max(int a, int b) // C++ declares them within the
{ ... // parameter list

and,

max(a, b) // CPM declares parameters separately
int a, b;

Another difference between CPM and C++ is the use of make-instance instead of new
for creating instances.

Format of Appendix

In the usage section of each manual page, brackets enclose optional items. If an asterisk
appears after the bracket notation, zero or more of the enclosed items are permitted.
Keywords and punctuation are in plain text. Any other items in the usage illustration are
in italics and should be replaced by code statement(s), type declaration(s), or a user-
chosen name-whichever is indicated. Also, throughout the text, CPM keywords appear
in a fixed font: for example, unsigned.

We assume the reader has some knowledge of both C and C++ syntax and familiarity
with object-oriented programming methodologies as well.

A-I

Some Basic Rules of CPM

1. All classes must be defined BEFORE their methods are defined. NOTE: there are
some exceptions, but this is the safest policy to follow.

2. local class definitions must appear in the source file BEFORE any variable (instance
variable or otherwise) is declared to be a type of that local class. NOTE: as a result,
there can be no recursive local class definitions.

3. Local class method definitions must appear in the source file BEFORE the method is
called from any other method.

4. Increment/decrement operators (++) and (--) are not allowed.

5. The type declarations of all formal parameters for a method must appear in the same
order as specified in the parameter list. For example:

foo::bar(a, b)
int a; // correct: the order of type declarations
int b; // DOES correspond to formal parameters

On the other hand,

foo::bar(a, b)
int b; // wrong: the order of type declarations
int a; // DOES NOT correspond to formal parameters

A-2

Type Specifiers

In CPM, a type specifier can only be one of the following:

void, char, short, int, long, float, double, unsigned
or,

(concurrent] class name
local class name

Only one type specifier is allowed per variable or function declaration. The only
exception is the nfuture annotation described below.

Examples
float f; // correct
short a, t; // correct
class clock c; // correct
local class book b; // correct
long int i; // wrong: more than one type specifier

// (long and int)

nfuture

Usage
nfutu re variable-declaration

Description
Any valid type specifier can be preceded by the annotation nfuture which indicates that
the particular variable being declared will never contain a future. If the programmer
attempts to store a future value in a variable that is declared not to contain a future, the
future will be resolved before the assignment is made, so only a value will ever be stored
in an nfuture variable; correctness in assignment from futures to non-futures is enforced
at the compiler level. For the majority of cases, the nfuture declaration should not be
used before class or concurrent class declarations, since a variable of type
concurrent class will contain a future initially when the object is created (via
makeinstance).

Examples
nfuture float f; // correct
nfuture short s, t; II correct
nfuture class clock c; 1/ be careful with this one, could cut down on

// parallelism
nfuture long int i; // wrong, more than one type specifier

A-3

Class Definitions

Concurrent Classes

Concurrent classes in CPM are distributable synchronization managed objects. An
instance of a concurrent class should be treated by the application programmer as a
pointer to an object of that class. Instance variables of concurrent objects cannot be
accessed directly; they may only be accessed via a message sent to the object. Every
concurrent object has a unique global object address that can be passed as an argument to
any method; that is, a pass by reference. Therefore, another object can communicate with
this same object by using the object address. In this way, two objects can point to the
same concurrent instance.

An instance of a concurrent class must be created via a call to the CPM internal function
make-instance. CPM provides a default make instance method for each concurrent
class, but the application programmer may redefine the make instance method if
desired. There are some restrictions on makeinstance definitions: 1) no message can
be sent to any concurrent object within make-instance, 2) no future may be resolved
within make instance. The determination of messages being sent to concurrent objects
(or resolving futures) within the make instance method may be difficult (e.g., if you call
a function), so the programmer must be very careful when defining this method. One safe
policy to follow in order to prevent future resolution is to declare all formal parameters to
makeinstance with the nfuture annotation; this will avoid any futures being resolved
within the context of makeinstance.

Local Classes

Local classes are not synchronization managed objects. Therefore, a local class is only
accessible to the concurrent object in which it is contained. Unlike concurrent objects,
instance variables of local objects are directly accessible (through the dot notation) in the
context of the concurrent object. In addition, local objects that are passed as an argument
to a method (or returned from a method) are passed by value only (i.e., are copied). Two
different objects cannot point to the exact same local object.

In CPM, a keyword is added before class definitions (and variable declarations of type
class) to distinguish between local and concurrent classes. The keywords are local and
concurrent respectively. If no keyword is specified before the class definition, CPM
defaults to concurrent class.

A-4

concurrent class

Usage
[concurrent] class name [is superclass-name [, superclass-name 1*] 1

[instance-variable-declaration(s)]
[method-declarations(s)]

1;

Description
Generally, a class definition contains instance variable type declarations and method type
declarations. CPM supports multiple inheritance which is obtained by using the "is"
keyword after the class name, followed by a list of superclasses. Note that similar to a
structure definition in C, a class definition must be terminated with a semicolon.

Examples
concurrent class clock I / concurrent class definition

// instance variables
int hours, mins, secs;

// method declarations
int get hourso;
int get rainso;
int get secso;
void ticko;

I;

class cuckoo clock is clock // assumes "clock" is a concurrent class
// instance variables
int chimes;
// method
void cuckooo;

};

concurrent class clock c; // variable declaration of type concurrent
// class

class clock c; // this declaration is same as the one above

my-hours - c->gethourso; If concurrent method invocation

A-5

local class

Usage
local class name [is superclass-name [, superclass-name]*]

[instance-variable-declaration(s)]
[method-declarations(s)]

1;

Description
The definition of a local class is similar to the concurrent class definition illustrated above
with the exception of the keyword local.

The programmer need not make explicit calls to make_inLtance for local objects
because the memory for local objects is allocated when they are declared (whether it be
within a concurrent or local object definition, or as a local variable).

Note below that instance variables may be accessed using the dot notation similar to
structure member reference in C or member reference in C++.

Examples
local class birth date { // local class definition

// instance variables
int day, month, year;
// methods
void print();
int ageo;

1;

local class birth date dob; // variable declaration
myday = dob.day; // instance variable reference
myage = dob.ageo); // local method invocation

A-6

make-instance

Usage
makeinstance (class-name [, argument]*

Description
The make instance function allocates space for a concurrent object. For a more
complete description of makeinstance, see the above description about concurrent
classes. How to redefine makeinstance for a particular concurrent class will be
covered in the next section which explains the syntax of method definitions.

Examples
class clock plainclock;
class cuckooclock fancyclock;

// making use of the default makeinstance for the class clock...
plainclock - makeinstance(clock);

// if the application programmer redefines makeinstance to accept
// one or more arguments, the following is possible...
fancy_clock - makeinstance(cuckooclock, NumChimes);

A-7

Method Definitions

This section explains method invocation, method definition, and how to redefine the
default makeinstance definition for a concurrent object.

method invocation (message sending)

Usage
object. method-name ([parameter [, parameter] *])
object->method-name ([parameter [, parameter] *])

Description
Method invocation (or sending a message to an object) has the same syntax as in C++.
The self keyword is provided and is similar to the this keyword in C++. The use of
self differs slightly from this, in that self must be specified as the target object if a
method will be invoked on the object which the current method is acting on. In C++, if a
method call appears without a destination object specified, self is assumed.

Examples
In order to send a message to a local object, the following syntax is appropriate:

x.printo; // local object method invocation

self.helpo; 1/ send the help message to myself

as opposed to the following syntax for concurrent objects:

x->printo; // concurrent object method invocation
self->helpo; I/ send the help message to myself

A-8

method definition

Usage
return-type class-name: : method-name ([parameter [, parameter] *]

parameter-declaration(s)

statement(s)
I

Description
The syntax for method definition is quite similar to C++ and does not differ between local
and concurrent object method definitions. Within the body of a method, instance
variables of the class (for which the method is being defined) can be referenced by their
name. A method of the same class must be invoked using the keyword self as the object
name. For an example, see the usage of self in the example below.

Examples
// here is the print method for the local class birth-date
void birthdate::print()
I

printf("Your date of birth is: %2d/%2d/%2d\n",
month, day, year);

int birthdate::age(currentDay, currentMonth, currentYear)

int age;

// calculate age
age - currentYear - year;
if (currentMonth == month) {

if (currentDay -- day)

printf ("Happy Birthday! \n");
else if (currentDay < day)

age - age - 1;
} else if (currentMonth < month)

age - age - 1;

// print date of birth
self.printo;

return age;

A-9

make instance method definition

Usage
class class-name Class-name::make instance { [parameter [,parameterl *1)

parameter-declaration(s)
I

statement(s)
}

Description
The caveats for make instance are explained above in the section which describes
concurrent classes. B3riefly, no method invocations or future resolutions may be
permitted within makeinstance.

Examples
class cuckooclock cuckoo clock: :makeinstance(the chimes)
{

chimes - the chimes;

A-1O

Polymorphism

declaring instances

Usage
local class class-name instance-name [, instance-name I;
[concurrent] class class-name instance-name [, instance-name];
[concurrent] class class-name ? instance-name [, instance-name];

Description
Two different types of declarations are provided to declare variables (or functions, arrays,
etc.) that contain (or return) instances of classes. The first two, using class class-name
as a type specifier, declare variables that contain instances of the specific named class
only. The third, using class class-name ? as a type specifier, declares variables that
contain instances of the named class or one of its subclasses. This second type of
declaration provides the semantics of polymorphism. No polymorphism is allowed in
local classes.

Examples
class clock? cl, c2; /1 cl and c2 can either be an instance of

// clock or one of its subclasses

I/ both of the following are valid...
cl = make instance(clock);
c2 = make instance(cuckooclock, NumChimes);

A-11

Preprocessor Directives

Similar to the C-preprocessor, the CPM translator handles a few preprocessor directives
as well. However, these directives are prefixed with percent (%) instead of with the pound
sign (#) as in C. Also similar to the "#" in a C-preprocessor directive, the "%" in a CPM-
preprocessor directive must appear in the first column of the line on which it appears.

%cpmblock ... %cpmend

Usage
%cpm block
statement(s)
%cpmend

Description
The "%cpm._block ... %cpmend" preprocessor directive should be wrapped around a
block of code that the POOPC translator should not parse (and, therefore, will not appear
in the output), but the CPM translator should parse. The %cpm_block directive is mainly
used to distinguish code which will be used only in the parallel version of a user
application (in the version of the application running with the synchronization manager).

Examples
%cpmblock
printf("This will only be printed in the cpm version!\n");
% cpm end

See Also
%poopc block ... %poopcend

A-12

%declare

Usage
%declare variable-or-function-declaration

Description
The %declare preprocessor directive makes the CPM translator aware of the variable or
function declaration, but the declaration does not appear in the output of the translator.

Internal C functions referenced in the user application (any functions not appearing in the
file being preprocessed by CPM), must be either declared explicitly using a valid type
specifier recognized by CPM, or must be declared using the %declare preprocessor
directive.

Examples
%declare void printf (;
%declare void fprintf();
%declare int fopen);

See Also
%declare-block ... %declare-end

%declare block ... %declare-end

Usage
%declare block
variable-r--function-declaration(s)
%declare-end

Description
The "%declare block ... %declare end" preprocessor directive performs the same
basic function as the %declare preprocessor directive, but encloses a block of code
instead of prefixing only a single line of code.

Examples
%declare-block

void printf(;
void fprintf 0;
int fopeno;

%declare end

See Also
%declare

A-13

%ignoreblock ... %ignore-end

Usage
%ignore block
statemeni(s)
%ignore-end

Description
The "%ignoreblock ... %ignore-end" preprocessor directive performs the same
basic function as the %pass preprocessor directive, but encloses a block of code instead of
prefixing only a single line of code. The block of code will be passed through either
POOPC or CPM untouched.

Examples
%ignoreblock
#include <stdio.h>
FILE *infile;
%ignoreend

See Also
%pass

%pass

Usage
%pa s statement-or-declaration

Description
The %pass preprocessor directive allows a line of code to be ignored by the CPM
translator, and the line appears exactly "as is" in the output of the translator.

Examples
%pass #include <stdio.h>
%pass FILE *infile;

See Also
%ignoreblock ... %ignoreend

A-14

%poopcblock ... %poopcend

Usage
%poopc block
statement(s)
%poopcend

Description
The " %poopc block ... %poopcend" preprocessor directive should be wrapped
around a block of code that the CPM translator should not parse (and, therefore, will not
appear in the output), but the POOPC translator should parse. The %poopcblock
directive is mainly used to distinguish code which will be used only in the sequential
version of a user application (not in the parallel version of the application running with
the synchronization manager).

Examples
%poopc block
%pass #include <stdio.h>
%poopc end

%poopc block
/* only the seqential version of the program should have a main *1
main()

I /* ... *

%poopc end

See Also
%cpm._block ... %cpm_end

A-15

Local Class Library

A library of local classes has been implemented for the convenience of the application
programmer. These classes are parameterized by type; thus, by using preprocessor
symbolic constants, the programmer can specify the data type of the element contained in
the data structure represented by the class (stack, queue, or linked list). Consequently, it
is very simple to create a stack of integers, characters, strings, or a class of any kind.
Likewise, queues and linked lists of integers, characters, strings, etc., can be constructed.

For the local classes stack, queue, and list, there are several symbolic constants that
should be defined to specify the user-selected name of the class, the size of the structure
(stack, queue, or list), the data type of the elements in the structure, and how to print out
an element (in the stack, queue, or list). The section, Symbolic Constants, in each library
class description lists the names of the symbolic constants that can be defined if the user
wishes. Each of these constants have some default value. For example, the element type
for each local class defaults to nfuture int. Default values for other symbolic constants
will be mentioned in their respective sections below.

The procedure for defining a local class (using this library) with a user-specified element
type is as follows:

#define symbolic-constant] value]
#define symbolic-constant2 value2

#include local-class-header-file
#undef symbolic-constant1
#undef symbolic-constant2

For example, if the user wanted to use two queues, one with elements of type local
class foo and the other with elements of type local class bar, the following code
would be appropriate:

#define QueueName FooQueue
#define QueueElement local class foo
#define QueueSize 100
#define PrintQueueElement (e) e.print C)
#include "/vb/ann/cpm/lib/queue_lib.h"
#undef QueueName
#undef QueueElement
I/ dp not need to #undef QueueSize or PrintQueueElement since
// their value does not change for the next queue definition.
#define QueueName BarQueue
#define QueueElement local class bar
#include "/vb/ann/cpm/lib/queue_lib.h"
#undef QueueName
#undef QueueElement
#undef QueueSize
#undef PrintQueueElement

A-16

The programmer now has access to all methods defined for the generic queue. Local
instances of FooQueue and BarQueue are used as follows:

local class FooQueue f;
local class BarQueue b;

f.inito;
b.init (;

The following manual pages describe the local class definitions that are contained in the
library: string, stack, queue, and list. Other local classes will be added to the library as
necessary.

string

Usage
#include "/vb/ann/cpm/lib/string-lib.h"
smString identifier;
medString identifier;
Igst ring identfier;
hugeSt ring identifier;

Methods
void init (char *cp); /I initialize string
void copy ($SringType s); // copy from string argument
void set (int i, char c); // set the i-th element to the character
nfuture char get(int i); // get the i-th element in the string
void print(); // print out the string

Description
There are four classes that implement strings: smSt ring, medSt ring, lgSt ring, and
hugeSt ring (respectively small, medium, large, and huge). A small string can be up to
20 characters in length; a medium string can be up to 40 characters long; a large string
can be up to 80 characters long; finally, a huge string can be up to 256 characters in
length. These character strings are treated as null terminated strings. Subscripting of
arrays is zero-based.

NOTE: Be careful to make sure that when passing an argument of any string type that
the type matches the formal parameter of the method. For example, if a method declares
its parameter as a medString, only a medString should be passed as an argument to the
method. If an smString is passed instead, an error will occur. The compiler will not
detect these types of errors, therefore, the programmer should be very careful to use the
appropriate string types.

The init () method is used to initialize a string to a particular character string constant (a
character string between quotes). The use of a character pointer in the init () method is
an exception in the CPM language (special hand coding was necessary to implement a
pointer-pointers are not generally available in CPM).

A-17

The copy () method takes another string (of the same type) as an argument and copies the

contents of that string to itself.

The set () method sets the i-th element in the string to the character c.

get () returns the i-th character in the string.

The print () method prints out the string.

The length of the string can be retrieved by accessing the length member of the string
class.

Examples
#include "/vb/ann/cpm/lib/stringlib.h"

smString s, t;
s.init("hello world!");
t.copy(s);
s.printo;
printf ("\n");
printf("The fifth character in the string Is' is: %c\n", s.get(4));
s.set(O, 'y');
s.print (;
printf ("\n");
t.print 0;
printf ("\n");
printf("The string It' is %d characters long.\n", t.length);

=> hello world!
=> The fifth character in the string Is' is: o
-> yello world!
=> hello world!
=> The string It' is 12 characters long.

A-18

stack

Usage
#include "/vb/ann/cpm/lib/stack_lib.h"

Methods
void init() // initialize stack
void push(StackElement e) // push an element on the stack
StackElement pop() // pop an element from the stack
StackElement top() // get the top element from the stack
nfuture int size() // get the size of the stack
nfuture int isEmptyO) // test if stack is empty
void print() // print out stack contents

Symbolic Constants
StackName // name of the stack
StackSize 1/ stack size
StackElement // data type of elements in stack
PrintStackElement(e) I/ macro for printing a stack element

Defaults
#define StackName stack
#define StackSize 50
#define StackElement nfuture int
#define PrintStackElement(e) printf("%d", e)

Description
The local class stack implements a LIFO stack. A stack should be initialized before using
the init () method.

The push C) method adds an element to the top of the stack.

The pop C) method deletes the element from the top of the stack and returns that element.

The top C method returns the first element on the stack (the top element).

sizeC) returns the number of elements in the stack.

isEmpty () returns TRUE if the stack is empty, otherwise it returns FALSE.

The print () method prints out the contents of the stack.

A-19

Examples
#define StackName CharStack
#define StackElement nfuture char
#define StackSize 100
#define PrintStackElement (e) printf ("%c", e)
#include "/vb/ann/cpm/lib/stack lib.h"
#undef StackName
#undef StackElement
#undef StackSize
#undef PrintStackElement

local class CharStack cStack;
int i;

cStack.inito;
cStack.print 0;
for Ui-0; i<4; ia-i+l)

cStack.push('a' + i);
printf ("The size of the stack 'cStack' is: %d\n", cStack.sizeo);
cStack.print 0;

=> (empty)
=> The size of the stack 'cStack' is: 4
=> a

-> b
=> c

=>d

A-20

queue

Usage
#include "/vb/ann/cpm/lib/queue-lib.h"

Methods
void init() // initialize queue
void add(QueueElement e) // add element to queue
QueueElement deleteC) // delete the first element from queue
QueueElement first() // get first element from queue
QueueElement last() // get last element from queue
nfuture int size() // get the size of the queue
nfuture int isEmpty() // test if queue is empty
void print() // print out queue contents

Symbolic Constants
QueueName // name of the queue
QueueSize // queue size
QueueElement // data type of elements in the queue
PrintQueueElement(e) // macro for printing a queue element

Defaults
#define QueueName queue
#define QueueSize 50
#define QueueElement nfuture int
#define PrintQueueElement (e) printf("%d", e)

Description
The local class queue implements a FIFO queue. Before using a queue, it must be
initialized using the init () method.

The add () method, appends the element to the end of the queue.

The delete () method, removes the first element on the queue and returns that element.

The first () method returns the first element on the queue; similarly, last () returns the
last element in the queue.

size O) returns the number of elements in the queue.

isEmpty () returns TRUE if the queue is empty, otherwise it returns FALSE.

The print () method prints out the contents of the queue.

Examples
See the example in introductory explanation to this section.

A-21

list

Usage
#include "/vb/ann/cpm/lib/listlib.h"

Methods
void init() // initialize linked list
void insert(ListElement e) // add element to linked list
nfuture int remove(ListElement e) I/ remove element from list
ListElement find(ListElement key, ListElement default)

// find element in list
nfuture int size() // get the size of the list
nfuture int isMember(ListElement e) // test element for list membership
nfuture int isEmptyO) // test if list is empty
void print() // print out list contents

Symbolic Constants
ListName // name of the list
ListSize // list size
ListElement // data type of elements in linked list
PrintListElement (e) // macro for printing an element in linked list
ListElementEqual(el,e2) // macro to test element equality (for isMember)
ListElementLess(el,e2) // macro to compare elements (for insert)
ListElementKey(el,e2) // macro to compare element keys (for find)

Defaults
#define ListName list
#define ListSize 50
#define ListElement nfuture int
#define PrintListElement(e) printf("%d", e)
#define ListElementEqual(el,e2) (el == e2)
#define ListElementLess(el,e2) (el < e2)
#define ListElementKey(el,e2) (el == e2)

Description
The local class list implements a sorted linked list whose sort order is determined by the
ListElementLess macro. Before using a linked list, it must be initialized using the
init () method.

The insert () method adds the element to the linked list in sorted order.

The remove C) method deletes the element that is equivalent to the one passed as the
argument as determined by the 1-istElementEqual macro. remove 0) returns TRUE if the
element is deleted from the list, otherwise FALSE is returned (the element was not found).

The find () method returns the first element that matches the key element, using the
ListElementKey macro for comparison between the element in the list and the key
element passed as an argument. If no element in the linked list matches the key element,
the default element is returned instead.

A-22

The isMember () method returns TRUE if the element is equivalent to a member in the

list (using the ListElementEqual macro), otherwise it returns FALSE.

size () returns the number of elements in the linked list.

isEmpty () returns TRUE if the linked list is empty, otherwise it returns FALSE.

The print () method prints out the contents of the linked list.

Examples
local class employee f

int idNumber;
smString lastName;
smString firstName;
char mi;

void init();
nfuture int isEqual();
void print(0;

1;

II assume employee::init), employee::isEqual(), and employee::print()
// are defined
#define ListName EmployeeList
#define ListElement nfuture local class employee
#define PrintListElement(e) e.print()
#define ListElementEqual(el,e2) (el.isEqual(e2))
#define ListElementLess(el,e2) (el.idNumber < e2.idNumber)
#define ListElementKey(el,el) (el.idNumber == e2.idNumber)
#include "/vb/ann/cpm/lib/list lib.h"
#undef ListName
#undef ListElement
#undef PrintListElement
#undef ListElementEqual
#undef ListElementLess

local class EmployeeList elist;
local class employee emp;
smString last, first, null;
int empNum;

elist.init(; // initialize employee list
first.init("Jacob"); // initialize first name
last.init("Worker"); // initialize last name
empNum - 2869; // employee number
null.init(""); // initialize null string

emp.init(empNum, first, 'Q', last); // init employee record
elist.insert(emp); // insert employee record in list
emp.init(empNum, null, 1\0', null); // init null record with key
(elist.find(emp)).print(; // lookup employee by key and print

-> 2869 Jacob Q. Worker

U.S. GOVERNMENT PRINTING OFFICE: 1992-71O-093-60057

A-23

