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ELECTRON RECIRCULATION IN ELECTROSTATIC MULTICUSP SYSTEMS:

I - CONFINEMENT AND LOSSES IN SIMPLE POWER LAW WELLS

1. INTRODUCTION AND BACKGROUND

A large body of work over the past 35 years has been devoted to the
study of cusp confinement of electrons, ions, and plasmas!'?:3:4, Nearly all
of this has examined single particle electron (or ion) motion or the motion of
particles in neutral plasmas within cusped magnetic systems, generally without
internal electric potential fields. Furthermore, almost all of this work that
concerned plasmas was limited to plasmas in local thermodynamic equilibrium
(LTE); none applied to non-neutral systems. Nearly all were without internal
E fields, and used cusp B fields, only; all particles studied were at constant
(fixed) total kinetic energy throughout the system. And, almost all of the
prior work focussed on biconic cusps® - which are uniquely unable to satisfy
the configuration criteria necessary for effective electron confinement in

Polywell'™-type multicusp systems.

These are special polyhedral configurations®'’ that allow formation of
stable deep electrostatic potential wells in electron/ion mixtures by radial
injection of energetic electrons into plasmas with net negative charge. Their
spatial characteristice combined with the distribution of the internal E field
arising from electron injection, and the induced predominantlyv-radial ion
motion, result in long confinement times (due to many recirculation passes
through the well before escape) for the electrons®. This is the sine qua non
for minimum electron energy losses, under the conditions of large ion energy
and core density achieved by the trapping of ion motion by the electron-driven
internal potential.

Thus much, if not all, of the historical work on "cusp confinement" is
simply not of relevance to the problem in Polywell'® systems. Conclusions,
perceptions, and "understanding” drawn from this body of work are thus often

either irrelevant, valueless, or wrong. This is not to say that in itself




this work is of no value; rather, the systems it models and describes are so
different in their determining physics that their conclusions can not

generally be adjusted or modified to apply well to the Polywell'® problenm.

Conversely, some of the approaches used in generating these past studies
have merit if used with care here. And, in any event, the models and analyses
obtained for the Polywell'® problem must reduce to those applicable to the
simpler world of LTE, electrons-only and/or neutral plasmas, and cusps without

E fields, when these reductions are put into the Polywell'® models.

In this note the problem of electron motion, confinement and losses is
analyzed in the non-LTE, electron-rich plasma system with anisotropic radial
energy in both species, in multicusp Polywell'™ geometry. The bulk problem is
treated as one-dimensional, with arbitrary spatial indices of radial B and E
field variation. Bulk diamagnetic collective effects are modelled as they
influence this 1-D spatial variation of B field, but electron entry into
single cusp volumes includes elements of the geometric effects of the real 3-D
configuration. Electron motions in mirror reflection regions are analyzed on
the usual basis of conservation of magnetic moment of the electron at entry
into the confining cusp. However, turning points of this motion are modified
to account for the effects of diamagnetic currents on this process. Com-
parison with non-Polywell® models is made where useful and appropriate.

Further details are given in the following sections.

I1I. CUSP MOTION: PROCESS DESCRIPTION AND TECHNICAL APPROACH

The general model of electron motion in the system is shown in Figures
{la) and (1b). Figure (la) shows the model for non-diamagnetic behavior;
Figure (1b) that for diamagnetic behavior of electron motion. In both figures
the electrons are modelled as originating at the system center, at r = 0,
moving through a non-adiabatic region to the "beta = 1" radius (r,), thence to
that radius (r,4) at which adiabatic cusp reflection will occur, and finally
to the outer radius, r = R, of the systen.




Once they have reached a radial distance (r,) at which their local gyro-
magnetic radius is sufficiently small that the total area of all of their gyro
radius circles from each of the cusps is equal to the area of the spherical
surface at that radius, they will enter one or another cusp in their outward
motion. If r, is less than this "transition radius" r, the electrons move
non-adiabatically without confinement, and enter each cusp at r,, as shown in
lines (a) of Figures (la,b). No diamagnetic effects are yet effective at this
point, as the gyro radius of electrons within r, < r, is greater than the gyro
radius at r,, and coherent currents counter to the external B fields can not

be generated and sustained.

Once r, becomes greater than r, the electrons inside r, will "see" a
lossy sphere with surface loss area (due to gyro radius area "holes") that is
smaller than the sphere area at r,, and they will be confined by internal
reflection within this sphere. The average number of transits an electron
will make within this sphere at r, is just the ratio of the sphere area to the
total loss area. As r, grows larger (with increasing electron current input,
and increasing central density - with requisite additional ions to maintain
charge balance) this confinement grows larger, because the fractional hole
loss area becomes smaller due to increasing B field strength at larger radial
positions. This can be thought of as the confinement of a particle inside a
perfectly-reflecting spherical shell perforated by holes - like the "wiffle
ball" toy;Aand it is called "wiffle-ball"” (WB) confinement. The average

number of transits within r, is defined here as G,,,,.

At some radius (r,,) set by the mirror adiabaticity requirement that the
local B field change only little over a local gyro radius, the electron is
trapped in "mirror-reflection” {(MR) oscillation within the cusp, as indicated
in lines (b) of Figurgs (la,b). Electron trapping in this (MR) mode is by the

usual form of mirror reflection coefficient for motion in a single cusp mirror




system'". This leads to a measure of the average number of transits G;,, that

an electron will make between r,y < r < R within this cusp mirror geometry.

In the non-diamagnetic model, as r, is made larger still, so that it
exceeds r,4, the range available for the MR effect is reduced, as the elec-

trons will now recirculate in the WB mode up to r = r, > ryy. This is shown

"in line (c) of Figure (la). In the diamagnetic case, as r, grows beyond r, it

begins to distort the externally-imposed polyhedral B field distribution to
yield a configuration in which the field is compressed outwards by continuing
exapnsion of the "beta = 1" surface (r,). This results in the displacement of
the adiabaticity radius (r,q) to larger radii at a rate such that, with full
diamagnetic currents, it will always fall outside the "beta = 1" radius. Thus

r,q recedes outwards as r, exceeds r, as shown in line (c) of Figure (1b).

Eventually (in the non-diamagnetic case) r, reaches, or (in the diamag-
netic case) ry, and r 4 reach a critical radius r, at which further radial
growth of r, becomes unstable with respect to r. This is because the magnetic
pressure balance criterion is satisfied for all radii beyond r,, once it is
reached at r,. This radial position is that at which the electron (and ion)
density begins to increase rapidly with r > ry. Up to r < r, both ion and
electron density fall approximately as 1/r? from the core region at radius e
with density n.. Beyond r, both ion and electron density increase rapidly,
and the electron energy increases while the ion energy decreases as r -> R.
Beyond r, the electron density diverges markedly from the ion density in order

to satisfy Poisson’s equation and produce the desired negative potential well.

Once r, = r, on this model, the behavior of the system "jumps" from r,

1= The fora for asirror reflection coefficient involves a ters which is the square of the sine

of the minisum trapping angle (relative to the B field) of electron motion in the B field at the
trapping radius rg 4, for their escape at radius r = R, In the case of a systems with electrons at
constant energy and a 3 field varying as <r>® this ters varies as (r.d)'. In the present case, the
simultaneous radial varistion of the B field reduces the reflection coefficient by virtue of the
scceleration of electrons out of the systea by the potential well gradient. If this B field is equal
in sagnitude to, and varies with the sase functional form as the 3 field, no mirror trepping will
be possible in the system. If the potential well is less deep than the electron injection energy,
trapping is still posaible, but with the reflection coefficient ters reduced by a factor of about
(1 -a_,), where oq * o8, /B, iz the ratio of well depth to injection energy. In the present note the
sirror equations are nl‘i taken as for a system with a, 0, wvhich overestimates the effect of mirror
confinewent. This fssue is explored further in a félthconing EMC2 technical note.
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to R, where all further increase in system density buildup (by increasing
electron and ion injection currents) is stopped at the levels relating drive
current (I,) and core density (n.) attained at the r, = R condition. This is
(obviously) because r, can not physically become greater than R, even though
mathematically this is possible, because the B field falls past r > R and the
electron loss area thus increases with increasing r. 1In short, the B field
can not confine electrons at a density above that at which the surface elec-

tron energy density exceeds the energy density of the magnetic field systens.

Therefore, when ry = R the core and bulk densities of electrons (and
necessarily also of ions) are at their wmaximum values for the parameters
defining the system (e.g. I,, n., E;, B,, R). Further increase in electron
*drive current can not increase system density. Since fusion power output is
proportional to the square of the core density, and since this is proportional
to the surface density - and hence to the square of the B field - it is clea:.
that increasing B field strength has a strong effect on system fusion power
generation. On this simple argument, the fusion power will vary as the fourth

power of the B field, just as for conventional magnetic confinement machines.

Initially, when electron injection is started, the only confining
mechanism is mirror-reflection (MR) from the radius r,, to R, over a number of
transits G;,.. As electron injection current is increased the WB mode
develops when ry > r,, and the confinement parameter G,,p grows progressively
larger than unity. Particles between r,, and r, simply transit through this
space. Since all particles that emerge from r, (escaping the WB region) enter
the MR region at r > r,4, the total number of passes that an electron will

make before loss is the product of those in each region.

In order to describe behavior of the "average" electron in the systes,
G; in each region must be weighted by the number of particles in that region.
For the 1/r? density variation previously cited, this weighting is simply
proportional to the region radial extent, running over 0 < r < r, for the WB
region and ry, < r < R for the MR region. This simple weighting neglects the
density increase in the region r > r,, and thus underestimates the MR con-




tribution when ry, < ry, and the WB contribution when r, > r;.

In order to analyze the complete behavior of the system, from initial
injection of electron current to a final stable state of full density and full
power operation, the dependent variable parameter needed is the average number
of recirculations G;, of the "average” electron in the system before its loss
through r = R, and the variation of Gy, With system design and operating para-
meters. This is found by summing up the time spent in the MR mode with that
spent in the WB mode and dividing this total system lifetime by the average
time of transit of the average electron in one pass through the system. Thus,
it is important to estimate this average transit time as correctly as possible

‘if cusp losses are to be modelled with any degree of numerical correctness.

Unfortunately, this isvnot siaple or straightforward in the real
Polywell'® wells, because the electrons are not all unidirectional or mono-
energetic. Rather, they have a distribution in both radial and transverse
energy, and this governs their motion within the potential well. Furthermore,
the potential well is not a simple monotonic power-law well, but has a central
virtual anode in all systems of realistic interest (i.e. with large ion core
density), as well as a "rollover”" at the system boundary (this is not incor-

porated in the model used here; see Section VI, following).

The approach used was to divide the well into segments for the core, the
central virtual anode, and the outer well region, taken here as monotonic, as
shown in Figure (2). Then the transit time for the most energetic purely-
radial electron was determined by integration of {dr/v(r)} in each region of
the potential function. This resulted in an estimate of transit time t,... in
terms of the "injection time", t, = 2R/v,,, defined as the time required for
an electron to traverse the system diameter at its injection speed (i.e. in
the absence of a potential well). A more detailed treatment of this problem

is reported elsewhere®.

To describe the transit time of the average electron in the initial

electron input distribution required analysis of transit time variation across
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this distribution, for typical potential well shapes?*. As used in the EKXL
code this is a rectangular distribution in both total energyv and transverse
energy, being E,,, = E, * dE,,, and E,, = % dE,,.,. The energy spreads dE,,,
and dE,,, may be chosen independently, subject only to the restriction that
dE,oyp < dE;o,. For these distributions it was found that the ratio of the
transit time of the average electron to that of the most energetic purely-
radial electron was approximately [LN<t ;. >1/[<t_; >-1], where <t ;> =
(trern/tin). For almost all conditions of interest in the Polywell'® system
this gives the result that average transit times are 2-3 times the free-run
injection time (t;,) previously defined. Figure (3) shows this ratio as a
function of the core convergence ratio <r,> and the virtual anode height

parameter, taken from the more detailed analysis of this problem cited above?’.

I11. ANALYTIC MODELS OF ELECTRON MOTION

Consider a simple monotonic potential well with magnetic field and

electron kinetic energy variation as
B(r) = B,<r>® and E(r) = E<r>" (1)

where <r> = (r/R).3* Now define the radius of transition (r,} from uncor-
related to cusp-centered non-adiabatic motion by 4n(r,)? = Na(r (r,))?, where N
is the (effective) number of point cusps in the system (in a system with all

cusps identical, N is twice the number of full bi-polar magnetic axes) and ry

- This transit time for ions can be directly and easily calculated fros the BKXL code. Not
sc for the electrons, however, as each slement of the distribution must dbe followed through the
distribution-dependent well at each time cycle. This makes it jwpossibly time-consuming on AT-level
PCs, as the number of coaputations is so huge that it drastically increases the (already long)
running time for each case. With larger CPU computing machines it is still an impractical
coaputation.

3= The simple power-law form given for the B,2 fields is not correct for real polyhedra with
edge conductors forming the current carriers for the magnetic field coils. Por example, the field
varies inversely cubically within a truncated cube, but such less rapidly at radii approaching the
equivglent npho;lcal surface of the polyhedron. A more exact expression for the field is B(r) =
B,<r>Y[2/(14¢r>”], which yields higher field strength within the systes than is given by the simple
power-law foruula. The beneficial effect on electron confinesent of this more realistic form is
ignored in this present note.




is the "loss radius", defined as r; = k;r,. Here k; is a measure of the
departure of gyro "hole" area losses from the strict single-gyro-radius

(minimum) limit. The local gyro radius is
(rg(r))? = 2E,<r>%/r (B,)3<r>® or «<rp? = 2w/r <m" (2)

where the term w = Eo/(BoR)z is a parameter characterizing the system design,
and r, = e®/mc? = 2.818E-13 cm is the classical radius of the electron. Note
that (2w/r_.) is the square of the ratio of electron gyro radius at the system
boundary to the boundary radius, and is a measure of the "goodness" of mirror
confinement; small w gives longer mirror lifetimes than large w. With these

the transition radius in the unperturbed field is
<ry> = [Nwlky)3/2r, )3/ (=+2) (3)

Similarly, the "adiabaticity radius” in the unperturbed field (r.q,) is

defined, for an adiabaticity index!® (I,), as

[rg(rage) JIALN(B(r)/dr]| a0 = [rglrae)m/rg) = T, < 1 (4)
which yields

(Paao> = [2m%W/r (T,)2]1/(%2) .

Comparison of the criterion eq. (4) with computer simulation data!l:12
for electrons of fixed energy shows!® that [, = (2/3) is a reasonable fit to

the data for motion in the magnetic field configuration of a truncated cube.

As the electron density builds up within r < rp, < r, collective diamag-
netic effects initially will be negligible, because the gyro radius at seall r
within this region is greater than the dimension r, itself. Increasing
electron density will push r, to larger radius and, when r, approaches r,, the
diamagnetic currents due to internal electron gyro motion will begin to affect
(reduce) the local B field amplitude. As r, exceeds r, and approaches r 4,
gyro currents become relatively stronger and more concentrated around the cusp

axis, and this relative reduction in B field will increase.
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This results in an increase in the gyro radius at the initial adiabatic-
ity radius position (rg.4,), such that the true adiabatic motion condition can
no longer be satisfied at that radial position. The adiabaticity radius then
moves further out into a region of larger B field. The net result is a
progressive "pushing" of r,4 to larger radii, by r, moving out with higher
interior electron density. This pushing displacement can continue only to the
critical density turnaround radius ry,, at which point ry = r,q = r, and r,

jumps to R, as discussed previously. This collective effect can be modelled

crudely by a simple linear algorithm that scales the motion of r,4 from r 4, to
r, in proportion to the motion of r, from r, to r,. The effective adiabat-
icity radius is then

(rag”> = (Taae> + K (<rpd>-<r,>) (6a)
where

K, = (<rp>=<rago” )/ (<ryd>=<r>) (6b)

The variable parameter of choice here is <r,>; all others are computed
from system design or operating conditions. Thus k, is not a universal
constant, but is calculated for each set of <r,> and <r,;,>, each of which are
fixed parameters for any given system. In a general analysis of particle
density distributions, Krall!?® showed that the position of <r,> depends on the
the potential well shape. For typical well shapes of interest, <r,> = 0.83.

The "beta = 1" radius is the radial position at which magnetic pressure
exactly balances electron kinetic pressure, (n(r,))(E(ry)) = (B(r,))?/8x. The
variation of particle density with radius from the core density n., at r. is

n(r) = n.{rc/r)? (7)
and defining the parameter z = 8unc(rc)z. yields the “beta = 1" radius as

<rb) - (zw)ll(l02‘ (8)

Note that (zr./6) is the total number of ions (or electrons) in the core.




The filling of the system so that r, becomes greater than the transition
radius r, creates a WB confinement sphere with electron recirculation deter-

mined as G, = 4n(r,)?/Nn(r;)?. Using eqs. (2) and (8) gives this as
"Gy = 2rg2z/N(k,)? (9)
Electrons leave this region r > ry, relatively isotropically, and enter

the MR region r > r,q. Here they are recirculated with G;,, = 1/(1-R, ), where

R,. is taken here to be the usual*® mirror reflection coefficient!?

Ryy =1 - (N/4)(B(r4)/B,) (10)
so that
Gimr = 4/N<ryg>* (11a)

while r, < r,q4 for the non-diamagnetic case, or for all r, for the diamagnetic
case, and
Gjor = 4/N<rypd" (11b)

for ry, > r,4, as previously discussed (this latter condition, eq. (11b),

applies only in the non-diamagnetic case).

To determine the overall lifetime and mean number of passes made by an
electron in the system it is necessary to find these parameters for each mode
of confinement, and weight them by the fractional number of electrons parti-

cipating in each mode.

The time an electron spends in the MR mode is just that during its
transit time t,,. between r, and R, multiplied by the number of MR mode recir-
culations G;,.. Note that Gy, is determined by motion over the radial inter-

val r,y < r <Rorr, < r <R, while the transit time includes the non-reflec-

4" Also see discussion given in footnote 1*
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tive region r, < r < r,q, if such exists. For 1/r? variation of density, the
number weighting function is just (1-<r,>). Note that this underestimates the
weighting because the density actually increases at r > r,. The time spent in
the WB mode t_, is that while transiting the space 0 < r < r,, multiplied by
the number of WB mode recirculations and the number of MR passes for each such
recirculation. Its particle number weighting factor is simply <r,>; here

correct as the density variation with radius is inverse-square in this region.

Determination of these transit times requires integration over the
electron energy distribution in the potential well, for the several regions of
the well that apply to each condition. Following the techniques cutlined

‘garlier for determination of total transit time across a virtual anode well
(and detailed in an earlier note®) and making use of the potential functions
for the virtual anode well shown in Figure (2), the separate transit times can

be determined by piecewise integration for each region.

It is important to note that the definition of the relevant regions must
also attend not only to the relative positions of <r,>, <rp> and <r,4> with
respect to each other, but also with respect to the well minimum at r = r, as
indicated in the figure. This is because it is not possible to integrate the
potential distribution in closed form, and the integrals must be broken up on
either side of r,. Carrying this out results in the transit time formulae
summarized in Figure (4). With these it is possible to write the recirculation
ratios, Gj, as

Gjo = (4/N)(th)(1-<rb>)(tir/ttot) (12a)

for ry, ¢ r,, here entirely due to mirror-reflection within a multicusp system

with effective number of cusps N, and
Gjo = (}_,.m[(1-<r,,>)(4/N)t:..r + (Gyp-1)<rp>t 1/ [ o) {12b)

for r, > r,. At this condition both MR and WB modes are acting; the first
term is due to mirror effects, while the secona is that due to wiffle-ball

confinement. In these equations the term G;,., has the meanings given below.
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GJ-ro = 1/<rad>.’ Ty < Faa’ and G.i-ro = l/<rb).' Ty > Tad (12¢)

These and all of their supporting equations are given in Figure (5), for
convenient reference, for both magnetic and electric potential fields varying
as a simple power law, B,E = <r)>%, Using these formulae it is possible to
calculate G;, over a range of the system-defining parameters, (z) and (w).
Note that w is defined by system external design criteria, while z is
determined by internal conditions reached in the dense core during system
operation. It is instructive to examine G;, to see how the MR and WB contri-
butions vary with these parameters.

.-

Each of these can be calculated separately from their terms in the
overall formulae for Gjoo from eqs. (12a,b,c). Calculations made for each of
these separate terms are shown in Figures (6a,b) for an effective cusp number
of N = 14,5 and B field spatial index of m = 3, for a typical set of system
conditions with core convergence ratio of <r,> = 1E-2, critical density radius
of <ry,> = 0.83 and a loss radius factor of k;, = 2, for a potential well with
virtual anode fractional height of 9} = 0.272. Note how G;,, drops with
increasing z (increasing core density) beyond the point where ry, 2 r,. This
is a result of the decrease in both MR mode time t,. and in the weighting term

(1-<ry,>), even before <ry,> reaches <r 4,>. As <ry,> moves beyond <r.4,> the

ado
drop is even faster, as the diamagnetic effects of induced counter-currents in

the electron flow become larger and "push" <r.4> to larger radii.

The WB mode does not begin until rp, > r, and then rises rapidly with
increasing z, t,, and the weighting term <r,>. This is quite clearly seen in
Fig. (6b), where the G;., curves fall rapidly to unity as (z/N) approaches a
value of about 8E12/cm from above. The cutoff z value is determined directly

from the equation for Gyup by setting this equal to 1 (unity). Thus, for all

5» The actual effective nuamber of cusps in & pure truncated cube system iz only 9.6 for the

MR mode operation, and 7.6 for the WB =mode. l'h’no are determined by norsalizing cusp losses for
mirror reflection to B, and for WB lossexs to B®, respectively, as described in an earlier note

(ref.16).
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values of z < N{k;)*/2r, the system will be operating solely in the MR mode.
This has the inverse consequence that WB mode physics can be tested only if
the experimental system is capable of being driven to a core density above
this cutoff limit; nc(r.)? > N(k;)%/16rr,.

Operation along a line of constant w above this point leads to a maximum
Gjup value at the boundary where r, = R; beyond this point Gj,, no longer in-
creases with greater input electron current. Also, at this point the electron
(and ion) density within the system has reached its maximum value and all
further density buildup is stopped, for here the system surface is already
operating at an electron/magnetic beta of unity; more electrons can not be
contained within this field. All of the early studies!® of this concept were

made along this line of maximum performance, at the condition r = r,.

The sum of these two terms gives G;, for the complete system. Figures
(7a-e) show plots of this total Gj, for m = 3 power-law wells with a virtual
anode, over a range of z and w, for several values of the gyro loss radijus
parameter k;, and for convergence ratio and anode height taken as in the
previous figures (<r,> = 1E-2, ® = 0.272). A series of calculations was made
to test the effect of anode height on Gj,- These showed that the variation of
Gy with z and w is virtually independent of'n for all'q > 0.01. At very
snallﬂy -> 0 the forms used for the transit time integrals begin to break down
and give excessive transit times; for all realistic wells the dependence of

G4, on anode height is negligible for 0 <7 < 0.3.

It is useful to distinguish three regions of differing character on
these figures. In the left hand region below (2/N) = 1E12/cu the electron
behavior is completely dominated by wmirror-reflection effects. In this area
the device is simply a multicusp mirror machine, operating with the usual MR
features. In the right hand region above (z/N) = 1E16/cm, electron behavior
is completely dominated by collective mode wiffle-ball effects, and mirror
phenomena have essentially vanished. Here and above (to z/N > 1E18/cm) lies
the fusion reactor regime. This region is new and unfamiliar to the field of

cusp plasma research; it forms the basis for the original Polywell'® concept
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and the early studies!® of its characteristics. In the middle region where
1E13 < (z/N) < 1E15/cm lies all of the physics of transition from MR to WB
operation. Here is the region of greatest experimental and theoretical
interest, for it is here that the physics features of the concept that allow

transition to the reactor regime either will be found - or will not.

Several especially interesting features are evident from these figures.
First, and of greatest importance, is that the overall electron recirculation
ratio G;, increases with increasing z, beyond some critical value of z.
Elementary analysis, theory, and EKXL computer code runs all show that the
core density n. increases linearly with electron drive current abov: a core
density of n_, = 1E13-1E14/cm? if Gj, is held constant. Here, however, the
value of G;,, itself, is seen to increase with increasing electron current.
Thus, once the critical z region is exceeded the core density will increase at
a faster rate than the electron current. Taking the slope of the Gjo VS, 2
curve to be p (i.e. G;, = zP) it is easy to show that the core density will
increase about as n, = (I,)}/(}-P) at this condition. The figures show that p
~ (3/4) in this region, thus n. =(I,)* - a little extra electron drive current
goes a long way - until Gjo stops when r, = R, which marks the boundary limit

for system operation, for any given value of the system design parameter w.

The second feature of importance is that the value of G;, can drop with
increasing z, from its initial low-z value, as operation leaves the MR mode -
before WB mode confinement has taken any significant effect - subsequently
increasing again as z becomes large, due to increasing dominance of WB mode
operation. This drop is more pronounced and occupies a greater range of gz as
the loss radius factor is taken to be larger. This behavior constitutes a
"gate" through which machine operation must be driven at startup. If the
device is drive-current-limited, and if the current is insufficient (for the
design values of w for the machine) to yield z values (e.g. core densities)
beyond the gate, it will not operate above the much smaller z value to which
the limited current can drive it. Here, in contrast to the positive slope of
the WB regime, the slope of the G,o vs. z curve is negative, say GJo % 279, so
that n, = (1,)}/(3*@), If q = (1/2), for example, then n, = (I,)?/? and a small
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increase in core density can require a large increase in drive current. The
actual state of affairs will depend upon the real values found for the gyro
loss radius factor k;, and for other dependent parameters that govern the

operation and behavior of the electrons in the systesm.

It is very important to note the effects and characteristics anticipated
for this device. In particular, a limited-current experiment that runs into
the "gate" effect will demonstrate poorer electron (and ion) confinement with

increasing current and core density. This is to be expected in this regime.

Additional drive current past the gate point will show the opposite effect
with core density increasing much more rapidly than electron current, once the

Gjo vs. z slope has become positive.

Of course, the final use of the G;, formalism outlined above, has been
to "close" the EKXL code calculational scheme, to allow numerical estimation
of these effects. The code now has been modified (as version 3.3) to include
these phenomena, based on the power-law model with virtual anode used here.
Until this was done, the variable G;, was simply chosen as another arbitrary
input parameter; now it is a dependent variable computed from system operating
conditions at each time step so that all the relevant electron confinement
physics is now working synergistically in the code®®. Further modifications
of the electron cusp confinement model have been nade to improve B and E field
distributions. These are incorporated in an extended and further revised
version (v.4.0) of EKXL, now in development, and are presented and discussed

in a separate technical note, now in process.

Calculations using version 3.3 of the EKXL code have been made paramet-
rically for a baseline case at high density {"reactor") conditions, and for
several possible models of SCIF experimental systems and operations. Results
of the SCIF computations are discussed in Section VI, following. Results of

the reactor case studies are given here, in Figures (8a,b,c). Electron drive

6= This version of the code remsains "open" in respect to self-regulation of the core size by

competing collisional and angular somentus conservation mechanisms; it is planned to include these
in a future code modification.
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conditions, dimensjions and other defining parameters are shown on the figures.

The basic case, shown in Figure (8a), was run with a virtual anode held
at about 17 keV above the well bottom. Note the increase in core radius due
to ion density buildup as the ions slow down towards this virtual anode core.
In the core boundary region the ion density and the potential are both varying
much faster than 1/r?. A parametric set of calculations was made to test this
effect of anode height on core density and DD fusion power output. Results of
these are given in Figure (8b), which shows that the competing effects of core
broadening and ion slowing-down due to the anode change in such a way as to
keep the core density and fusion output within a modest range of variation

over a wide range of anode height.

Other studies were made for a 1000-fold variation of electron drive
current, showing its effect on ion core density. Results of these, given in
Figure (8c), show that the slope of the core density vs. current curve changes
rapidly with increasing gun current, as described above from the G;, curves of
Figures (7a-e). The slope at I, = 1000 A is approximately 4 (i.e. n, = (I,)%)
in good agreement with the effect of the Gjo vs. (z/N) slope of p = (3/4), as

previously described.

I1V. EFFECTIVE LOSS RADIUS; COMPARISON WITH CUSP MODELS

One principal area of concern in considering the multicusp Polywellt®
system, is how well the particles (especially electrons) will mirror-reflect;
what will be the effective gyro loss radius in such a system? In an attempt
to answer this question, considerable appeal has been made to prior models

1-5,16  and to single-particle orbit calculations!!

reported in the literature
in this geometry. As noted earlier, much of this work is not directly appli-
cable to the instant case, as it is monoenergetic, or uses single particles,
has no potential well, or uses neutral plasmas in LTE, etc, etc. Still it is
instructive to examine the question of effective loss radius in comparison

with one of these models.
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The Biconic “"Spindle"” Cusp Without E Field

Consider the system outlined by Grad!®, shown in Figure (9). This is a
biconic cusp system, with no internal E fields, in which all particles are at
constant energy. Beyond a critical radius r, these are taken to be adiabati-
cally trapped in flux shells outside r,, while within r, non-adiabatic motion
48 assumed, with isotropic emission into the polar point cusps at r > r,.
There are no collisions and no direct collective effects. Electrons in the
cusp will move non-adiabatically out to larger r until they reach the adiabat-
icity radius r_ 4. Here they still appear to the mirror region (r > r.4) to be
entering with isotropic distribution, as though from radius r = r,. The equi-
valent value of k,, as used previously (eqs. 1,3,9, et al), is then given by

F 33

(k)2 = (rg(r,)13/(rglr 012 (13)

For the reference case with B = B,<r>® and E, constant, the electron

gyromagnetic radius is (r!(r)]2 = ZEO/r,(Bo)z(r/R)z', and eq. (13) reduces to
(kp)? = Crggo>®™/<rp>® (14)

while for the general inertial-electrostatic Polywell'®-type polyhedral point

cusp system, with negative potential well index m, this becomes
(kp)? = <ragod®/<rO" (15)

The adiabaticity radius is given by eq. (5) for the Polywell'®, but has
an exponent 1/(2m+2) for the reference case. Then eqs. (14) and (15) become

(k)2 = [4m2/N(T,)2)2n/(2ms2) (16)
for the zero E-field biconic cusp, and

(k)2 = [402/N(T,)?]*/ (™) (17
for the Polywell'® polyhedral systea.
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The single biconic cusp has an equivalent number of poles equal to twice
the number of polar axes, thus N = 4, while m = 3 for this field configuration

(since B = r?

z around the origin). Taking [, = (2/3), as before, gives (k)2
= 9.54 or k, = 3.09 from eq. (16). The actual effective loss radius is one
gyro radius larger than this because all particles whose guiding centers lie
within rg outside the radius k;ry will pass inside r < k;r,, and thus can
escape through this loss channel. The effective electron loss radius is then

kio = kg + 1 = 4,09, in reasonable agreement with the values cited by Grad!’.

Losses through the the equatorial ring (line) cusp in the biconic
Jsonfiguration have been asserted!” as limited to escape through an "escape
width" 6eq given by geometric arguments of equality of magnetic flux area from
the polar point cusps through the equatorial ring; thus (84q/rg) = (rg/R),
where rg is taken as the gyro radius at the system surface (r = R). In fact,
for the reason cited above, particles within a guiding center one Te distant
can pass through this escape width and be lost. Thus the effective loss-
escape area is A, = 2uR[6,, + k;,r (R)], which is dominated by the gyro loss
radius, as discussed by Leung, et al.!® This is to be compared with escape

through the two point cusps with area A, = Zu[r‘(R)]zlkLolz.

For operation at high-field, high-density conditions (as for useful

reactor level systems) Ty << R, thus b.q << r, and the ratio of equatorial to

8
polar point cusp escape areas A.q/Apt = R/[kLora(R)] can become very large.

For the biconic "spindle"” cusp as a multipole system with equivalent number of
point cusps N = 4, the effective loss radius factor for equatorial losses is

then found to be simply kyoq = {k,R/[r (R)1}°3%, where k., = k,, above.

Polyhedral Multicusp Systems With E Fields

For the polyhedral negative-potential-well system, similar arguments
give k; = 2.03, k;, = 3.03 for m = 3, with N = N, = 7.6 (B?-effective cusps in
truncated cube geometry!®:2%), T, = (2/3), from eq. (17). If the cusp system
had a true effective number of cusps of N = 14 (i.e. if all cusps were
identical), eq. (17) would yield k; = 1.69, and k., = 2.69.
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It is also of interest to determine how k;, k,, vary with the number of
cusps in Polywell*™-type polyhedral systems. For the simplest polyhedra, the
pole number and spatial exponent are related roughly as given below

Number of poles (N) 8 14 26 50
Spatial exponent (m) 2 3 4 5

so that the pole number and spatial exponent can be approximated by
o = N/1.7 7 (18)

With this form, eq. (17) reduces to (k;)? = [4/1.7([,)?)®/ %) which
gives k, = 1.65, ko, = 2.65 for m = 3.

The limiting condition for very large N can be found by examination of
the B field variation with radial position in the case of high-order sultipole
fields. These were analyzed in a previous note?! which showed this to be

B(o) = (B,/0®)EXP(-0) (19a)

where o0 = z/rp is the ratio of distance in from the outer boundary, z = r-R,

to the interpolar spacing r_ = 2R/N%-5, Reducing termws this becomes

B(r)/B, = [8/N%2%(1-<r>)3]EXP[-N%3(1-<r>)/2) (19b)
Setting this equal to <r>** defines the equivalent exponent m, in terms of N
and <r>. This can be found by taking logarithms of both sides and letting N
approach ®. The dominant term remaining gives this exponent approximately as

()% = (N/4)[(1-<r>)/(LN(1/¢r>))? (20)

as compared with eq. (18). With this the effective loss radius factor becomes

k, = (1-<r>)/T LN(1/<r>) (21)
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as the limiting case when N,m -> ®, for which ¢ = 0. This results in mirror
reflection only in the region r = R (<r> -> 1), at which condition eq. (21)
reduces to k; = 1/I, = 1.5, and k;, = 2.5.

Thus the loss radius factor for polyhedral systems seems to be in the
range of 2 < k;, ¢ 3; i.e. electron losses in the WB mode will proceed as
though leaking out through holes with an "escape" radius 2-3 times that of the
local gyro radius at the wiffle ball surface at r = r,. The overall electron
recirculation ratio, G = Gj,, for these cases is as shown in Figs. (6b,c).
Note that k,, values in this range begin to yield the gate effect for devices
operating with design parameter w-values in the range expected for reactor
level operation (1E-3 > w > 1E-5 keV/(kGcm)?).

V. COMPARISON WITH EXPERIMENT: THE CURRENT SCIF DEVICE

The EKXL code v.3.3 using the simplified power-law formalism outlined
above was used to calculate a number of approximations to SCIF cases, in order
to assess the viability of the current SCIF device to test the Polywell®
concept for its critical physics. Code runs were made for several different

models of operation modes proposed for the experiments. These were:

(a) Electron injection of 75 A (maximum possible) at full radius (R = 92 cm),
with a central B field of B, = 3.1 kG in the circular coils located on the
square faces, but with the ion source at 61 cm radius. 1lons were created by
electron cyclotron resonance heating (ECRH) at the 875 G magnetic field at
that point. The electron energy here was 6.6 kV, following the simple power
law form used earlier, from injection with 22.5 kv at r = R = 92 cm. This
outer radius was used to fix the value of the parameter w at that for maximue
radius, voltage and field; w = 2.76E-4 (keV/(kGcm)?). This parameter has a
controlling effect on electron losses and thus on G;. This set of conditions
matches those initially planned for SCIF experiments, and is a reasonably
realistic mockup within limitations of the EKXL code.
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(b) Operation of the system at the small (ECRH-set) 61 cm radius, only, but
with full 22.5 kV (maximuas currently possible) electron injection energy, at
75 A current. This case mocks up the hypothetical prospect that the potential
may be kept relatively flat from the outer radius at 92 cm to the ECRH ion
source radius at 61 cm, with only partial electron neutralization by back-
ground ions in this region. The B field at this 61 cm surface is B = 875 G
and the w value was taken as that for this value of B, in the small system
with full electron injection voltage. Thié was a case to test the effect of
an assumed éxternal flat potential region. Its value of w is least favorable

to the attainment of high core density; w = 7.90E-3 (keV/(kGcm)2).

{(c) Operation with the surface B field reduced to the ECRH 875 G, so that the
ion source is at the outer boundary of the device, and use of 22.5 kV for
electron injection energy, again with 75 A electron current. This is the ECRH
small-radius case (a) with B field reduced to move the ion source radius to
the outer boundary of the device. The w value for this case is that for the
full radius of the device, with full drive voltage E, but less magnetic field
B, than that actually available; w = 3.47E-3 (keV/(kGcm)?). This case was to
test the effect of using the available ECRH ion supply at the full radius of

the existing SCIF experimental machine.

(d) System operation with the full B field and maximum electron drive current
(75 A) and voltage (22.5 kV) at the outer 92 cm radius, with ion injection at
this boundary, rather than supplied at the lesser field and radius planned for
use of the ECRH scheme. The w value here is that for the full system, as in
case (a); w = 2.77E-4 (keV/(kGcm)?). This case tested operation at the best
conditions for confinement and for high ion energy that could be hoped for
experiments with the SCIF device with its current electron drive capability
{however, note that the current SCIF system has no provision for ion injection
at r = R with the full B field).

These conditions are summarized in Table 1, following, for reference.
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TABLE 1

SCIF MODELS ASSUMED FOR EKXL CALCULATIONS USING ELECTRON MULTICUSP MODEL

RADIUS OF ELECTRON ENERGY AT B FIELD AT w, kVI(&Ga)Z
CASE IONS EBLECTRONS WELL BDGE INJEBCTION WELL BDCE POR W Bol(lol) REMARKS
(a) 6lcem 92 cm 6.8 kv 22.5 kv 0.88 kG 3.1 kG 2.88-4 SCIT? experiment case
(b) 6lcm 6l ca 22.5 kv 22.5 kv 0.88 kC 0.88 kG 7.98-3 Flat outer potential
() 92 ca 92 ca 22.5 kv 22.5 kv 0,88 kC 0.88 kC 3.5e-3 Reduced surface B field
Q) 92 cm 82 ca 22.5 kv 22.5 kv 3.1 kG 3.1 k¢ 2.88-4 Ions at r=R, w/full B,E

EKXL code calculations were made for these cases for two different
values of the loss radius factor k;, for ion injection energies taken always
such that the core radius was r. = 1 cmn. These energies are expected from the
ECRH ionization process planned for the experiments. All cases were run with
an equivalent effective number of cusps of N = 14, and a specified virtual
anode height of‘n = 0.11, except for case (a) which used'n = 0.03. The
maximum core densities n, and recirculation ratios G,, obtained from these

calculations are summarized in Table 2, below.

TABLE 2

RESULTS OF EKXL v.3.3 CALCULATIONS FOR SCIF CASES OF TABLE 1

SCIF LOSS RATIO RECIRCULATION CORE_DENSITY
CASE k, RATIO, G, n., 1/cmd
(a) 1 230 2.02E13
3 42 3.70E12
(b) 1 6 1.77E11
3 6 1.77E11
(c) 1 10 3.21E11
3 10 3.21E11
(d) 1 52 1.92E12
3 52 1.92E12

The full systes radius applied to both ions and electrons in the runs
for cases (c,d). Cases (a,b) were run with both species at 61 cm, even though

the electrons were injected at 92 cm, since these cases operated with ion
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input at the small radius (61 ca). Solutions obtained in these runs may be
superposed with electron distributions found from full radius cases, since
both species use the simple power law (m = 3) variation. By these means EKXL
code results can be used to estimate SCIF experiment conditions, even though
the code can not be used directly with the dual radius injection constraint.
Results for steady-state potential and density distributions are shown
in Figures (10) and (11) from EKXL code runs for cases (a,d) with k, = 1. From
these figures and the data available from the code output for the other cases,
it is possible to determine the relation between electron recirculation ratio
Gy, and ion/electron core density n. and radius r., as each test device starts
up and rises to steady operation. This is plotted on the lines of constant w
in Figures (12a,b), which show the range of these variations for each of the
SCIF cases listed above, on the general graphs of Gy, vs. z/N for various w

values (from Figures 7a,c), for two values of the loss radius factor k.

The important point to note here is that the regions in which the SCIF

test cases are computed as able to operate {(on the simplified model used here)
are all at the left hand side of the figures, where electron confinement (and

device) behavior is dominated by mirror-reflection physics. The only case
that can reach the collective wiffle-ball mode region is that of case (a) at
ky = 1, with small effective w, but with the small radius system. This is the
only case that succeeded in getting past the "gate". For this case the

parameter z/N = 4E13/ca, just into the lower boundary of the WB mode region.

When the experiments are actually run, if the loss radius factor is
found to be small (e.g. k; = 1) then the WB effect will have begun by the time
this ¢z value is attained, and some degree of testing of the WB physics will be
possible. On the other hand, if k; is found to be as large as 3, for example,
the WB region will not be reached in this example case. The other small w
SCIF system (case d) falls about an order of magnitude lower in z/N, even with
k, = 1, at z/N = 3E12/cm; again not quite into the WB mode. And all of the

other cases yield even lesser results.
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Based on these computations, test of the physics relevant to the WB
confinement concept requires operation of the experimental device at consider-
ably larger electron drive currents or at higher B fields (or both) than those
used in the calculations. If the electron injection voltage could be reduced
while increasing current output, keeping power constant, the value of w could
be reduced. This would result in an increase in G;, and an extension of the
experimental regime further into the WB mode phehomenology space. Of course,
another means to achieve this desideratum is to add electron guns, and raise
their voltage to increase their current output (since I = V3/? in the existing
guns), which requires larger power supplies to drive the system. Without some

means of increasing drive conditions and decreasing w, the model presented

here suggests that the current SCIF device can test the collective physics

that forms the basis of the Polywell'® concept only marginally, if at all.
However, note that the <r>® power law model used here is certain to under-
estimate electron confinement, and that more correct models will yield better

performance. This is8 discussed briefly in the following section.

VI. ELECTRON MULTICUSP MODEL; LIMITATIONS AND IMPROVEMENTS

The simple model presented above for electron trapping and losses in the
complex Polywell®™ multicusp magnetic field system with internal electrostatic
potential well, is based principally on the spatial variation of both B and E
fields assumed as following a simple power law of the form B,E = <r>®., In
actual fact, the magnetic field distribution within the volume bounded by a
polyhedral coil system that fits the Polywell'® criteria is not so simple. In
a similar vein, the linear displacement of the adiabaticity radius rg4 is an
overly simple approximation to the somewhat complex changes in internal B
field distribution caused by the generation of diamagnetic currents and their
consequent collective effects on the system. And, of course, the treatment of
MR mode confinement here is too simple, in that the deleterious effects of
non-zero potential well depth are not accounted for in the elementary formulae
used to describe MR mode electron recirculation. In fact, magnetic mirror
reflective confinement can be reduced severely if well depths are allowed to

become too large during startup. These issues are examined next, below.
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Magnetic Field and Electric Potential Distributions

Studies??:23:2% have ghown that the field variation asymptotically
approaches the simple power law form only as the radius becomes smaller

{approaching the origin) within the system. At radii beyond about <r> = 0.5,
the field modulus exhibits a "bumpiness", and its variation in any plane
section through the center of the system and one of the edge midpoints always
shows 4 "rollover" as the edge of the system is approached. Figure (13) shows

an example of this sort of variation with radial position.

The effect of this realistic departure from the power law assumed in the
model, above, is beneficial to electron confinement because it gives larger B
fields at deeper radii than does the simple power law (for the same face cusp
central field strength). The simple model is thus likely to yield results
that are conservative (or pessimistic), because of its underestimate of the
strength and effects of the real magnetic fields in the system. This can be
rectified by employing an improved description of the B field, which better
mocks up the actual variation within the polyhedron. Limiting this, as
before, to radial-only dependence (1-D can be analyzed in closed form; 2-D can
not) it is found that the edge effects can be accounted for in an approximate

way by use of the form
B(r) = Bi<r>®f (r) = B<r>*[2/(14<r>=*?] (22)

It is obvious from this that the field strength well within the systenm
will be twice that previously used, for the same value of cusp central-axis
waxisum field strength, B,. As & result, the electron gyro radii at these
inner radial positions will be roughly one-half of those previously estimated,

with concomitant improvement in electron confinement.

This simple formula has the advantage that it will still yield analytic
solutions for most (but not all) of the parameters which characterize the
system and are used in the solution methods employed in the model described

here (e.g. the specific dimensionless radii <r >, <ry>, <r,>, and the separ-
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ate mode recirculation ratio terms G;,, and Gy, ). Unfortunately, the transit
time integrals can not be obtained in useful closed forms with this more
realistic potential variation. However, since the transit time segments used
in the calculation of the electron recirculation are divided by the total
transit time in the expression for the overall system Gj, ratio, the effect of
integral departures from exact behavior are minimal for this factor, thus
these times can be taken in the forms used previously, without serious error.
Further analysis of electron confinement isnunderway using this modified
formalism. A discussion of these analyses and presentation of their results

is given in a forthcoming technical note.

Diamagnetic Effects

A second area in which system modelling might be improved is that of
collective effects giving rise to diamagnetic expansion of the B field and the
consequent shift in position of the adiabaticity radius <r 4>. Although
better than the use of the non-diamagnetic apr: ..imation, the linear formula
of eq. (6a) is a relatively poor approximation to the displacement of the
adiabaticity radius by real diamagnetic current effects. These tend to act in
an energy-conservative fashioa, such that the volume integral of the magnetic
field energy remains fixed as the field is distorted by the increasing
internal electron density (which is, itself, supported by the induced ion
density) causing expansion of the beta = 1 surface <r,>. Beyond the transi-
tion radius <r,>, increasing <r,> will tend to push the excluded external B
field into the volume remaining between ry < r < R. This "pushing” will
cause the field to pile up outside r, as this expands, giving a region of

steep field gradient, followed by one with a smaller gradient than before.

1f a simple power law form ies assumed for the B field outside ry, it is
possible to integrate B over this space and determine an equivalent exponent
(m) that conserves B field energy, for each position of r,. Or, with greater
complexity, the modified power law described above can be invoked and used to
find the equivalent exponent for this form of the B field spatial variation.
Neither approach is correct, in that both will yield a B field mean exponent

that decreases as the central beta = 1 region expands towards the system outer
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boundary. In actuality, the B field compression outside of r, will give a
larger spatial exponential index within this region, while the decreased field
gradient at greater radii will yield a smaller value of equivalent m. In this
situation the adiabaticity radius will move slowly inward, or stay relatively
fixed in position, until r, comes within a few gyro radii of r,,,. At this
point the increasing gradient in local B field will cause r_,, to recede

outward almost directly with r,.

The net result is a complex motion in which the shift of r,4 is less
unfavorable (to electron confinement) than by the linear model assumed above,
so that the MR mode will hold up somewhat longer and larger values of Gj,,
will characterize the analysis than those obtained from the model herein. The
result of all this will be an increase in the estimated performance, in that
larger values of core density can be attained for given drive current than
from the simple model here. However, the effect is expected to be slight,
since the change in critical radii (e.g. <ry>, <r,>) will only depend on the
one-fifth root of the change in the B field. The value of developing and
including such modifications for diamegnetic effects is not clear in light of

the various approximations already employed in this analysis.

Multicusp Mirror Reflection and System Startup

Startup of the system is a complex problem. The bulk electron and ion
core densities must be built up through the MR mode to levels sufficient to
operate in the WB mode thereafter. In the MR mode, electron confinement is
due to cusp mirror trapping with eventual reflection by the rapidly-increasing
{with r) B field. The ratio of electron gyro radius to radial position drops
steadily with increasing r, as r®?)/2 even in the least favorable case, when
the E and B fields both vary as <r>®.

Initially the well has no depth; it is flat across the system. Elec-
trons injected at low current and low density make little effect until they
reach a value of the order of 1E5 - 1E6/ca®, in systems of R = 100 cm, or so.
At this level of bulk density the well will begin to be visible, at a depth of
0.1-1.0 keV, without ions. The addition of ions to the system will create a
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more tightly focussed distribution but even this will not result in signi-
ficant well depth at these electron density levels. Typically, Poisson's
equation gives E, = 3E5[n] keV for [n] as mean density per cam®, in a 100 cm

radius electro-kinetic well of the type here.

. "As [n] exceeds this range the well begins to deepen. This causes the MR
confinement to degrade because of the appearance of an accelerating electric
field within the confining magnetic field structure, coupled with conservation
of electron magnetic moment in this field. The effect is due to the extrac-
tion of the energy needed to increase the transverse kinetic energy of elec-
trons in cusp-trapped gyro motion, from their energy gain in the potential
field by radial outward motion of the cusp electrons, rather than from their

radial kinetic energy at the trapping point.

The relevant correction factor to multiply the formula for the electron
recirculation ratio Gy, can be shown to be [(1-ay) + (@ <r,y>")] for a system
in which both the E and B fields vary as <r>*. Here the teram (1-gq;) is the
ratio of the difference between the well depth and the electron injection
energy to the injection energy; it is the fractional "unused" potential ‘in the
system; a, = e®,/E,, where e®, is the potential well depth at its point of
maximum amplitude, and E, is the injection energy of the electrons that are
driving the system. It is evident that operation at full well depth, which
gives a, = 1, will yield Gy,, = 0, and a well incapable of any electron

confinement by mirror reflection processes, at all.

Thus, operation of the system by (a) control of electron current and
voltage, and of ion current into the system, requires the following steps:

la. Start with a small electron current, raise the density to the
initial significant range (ca. 1E6/cm®). This should produce a shallow well,
but one capable of confining ions at some modest fraction of the electron
injection energy. '

2a. Add ions thereafter to neutralize further well depth growth, as
electron current is increased to larger values. This should yield increasing

ion core density, following along with the increasing electron density.
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3a. This process should be continued until the ion and electron core
density has reached a value well into the WB range (e.g. to z/N > 1El4/cm).
Use of virtual anode (height) control (VAC) of ion input rate is required to
achieve this electron and ion density increase in a well-controlled manner.

4a. Then reduce the allowed VAC height, reducing ion input, to deepen
the well while maintaining the high ion core density needed to stay in the WB
regime beyond the gate in the Gj, vs. z/N parameter space.

5a. Once high core density has been achieved with reasonable well
depth, the device can be driven harder (as a WB machine) with more electron

input to reach desired operating conditions beyond those of the startup phase.

An alternate method of startup is to (b) control injection voltage and
‘-current and use controlled input of background neutral gas as the source of

initial ions in the system core, following the sequence:

1b. Raise background neutral gas to high density - well into the WB
region. Typically this is the order of 1E15-1E16/cm®. After ionization and
heating this density will drop by at least an order of magnitude; it must
still remain in the WB regime to be effective.

2b. Drive electron current at modest voltage into the system to produce
a small negative well and strong centrally-peaked ionization of background
gas. Even though the ions are cold, this constitutes the core ion source
needed for bootstrap startup. Cold electrons are driven out by the negative
potential well.

3b. When the core ion density exceeds the z/N needed for WB regime
operation by at least ten-fold, then increase the electron voltage to the
desired value of w for system operation. This will yield a deeper well and
begin to "heat"” the cold central ions, some of which will begin to Maxwell-
ianize. Be careful to add ions slowly here, so as to avoid inhibiting the
increase of well depth due to increasing electron voltage.

4b. Then raise electron current, but now with ion edge input under VAC
to continue partial neutralization until full required core density is reached
with high energy ions. From this point the device can be run as a WB machine

to any higher desired operating point.
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In both approaches, the objective is to operate the device initially as
an electron-trapping multicusp mirror machine without significant degradation
of MR cusp reflection by the negative gradient of a deep potential well. Then
to build up ion density - albeit at low energy - by continued injection of
both species while maintaining well depth sufficiently small to avoid degra-
dation of MR mode confinement. By this means to_build up ion density to the
WB range of z/N, where the slope of the Gj, vs. (2/N) curve has become large
and positive. Then, finally, to transition to higher z/N and higher w values
by increasing electron voltage and current (and associated increased ion
supply) for straight WB operation at the desired steady operating parameters.

.- Here, just as in classical mirrors, startup is the problem. In the
first scenario, startup MR degradation is limited by direct control of well
shape by VAC of ion input to constrain the system to shallow wells. In the
second one, this is accomplished by creation of a shallow well with a high
density cold plasma/ion core in the body of the system, where cold electrons

are expelled and cold ions are trapped.

In either case the electron MR confinement process can be analyzed by
use of modified models for description of trapping at the adiabaticity radius,
and subsequent MR mode operation, as described above. All of the relevant
cyitical radii depend on the key well-depth parameter (aq), as does the MR
ratio Gj,., but the WB mode electron recirculation Gj,, does not. The system
performance equations can be cast into a form in which the controlling cusp
reflection is made to have a functional dependence on the system operating
state through connection with the VAC parameter, thus allowing feedback
control of well depth to be used to optimize electron confinement. Finally,
it may prove possible to create a system in which the E field and B field do
not follow the same spatial form. Although the means to achieve this are not
yet evident, this sort of behavior can be modelled to test its effect on
electron confinement in the MR mode. It is hoped to include these more
detailed effects, as well as others discussed above, in further analysis of
electron cusp motion and confinement phenomenology, for inclusion in the next

version of the EKXL code, now in development.
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4. Sunmary of formulae used for total and partial (segmented) electron transit ti

virtual anode wells with simple power-law external shape
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Mirror/Wiffle Model for G,
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$. Summary of equations for total electron recirculation ratio, and under mirror reflection (MR) and
wiffle-ball (WB) operating modes, and formulae used for critical systes radii (gyro, adiabaticity,
transition and magnetic pressure balance radii) in simple power-law wells
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9. Cross section through polar midplane of a biconic "spindle" sagnetic cusp -ystn.“ showing the
transition radius r, and the adiabaticity radius r,4, together with the electron gyro radii at each
of these positions ru the field. Electrons encountering the cusp "airrors"” at r_ are adiabatically
trapped beyond rg 4, but reach r 4 by traversing the region between the inner -oux and middle dashed
field envelope lines in the figure, as well as by direct motion from the non-adiabatic region itself.
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