
(GCUJSP1P.W3;04/1 9/91

Ebe okEN FlUgMJ~i4u,

AD-A257 647 OCT22 12

DIRECTORATE rCR FREEDOM OF INFORMATIOA,

AND SECURITY REVIEW (OASD-PA)
DEPARTMENT OF DEFENSE

f&VIEW OF THIS MATMlIAL DOES NOT IMPLY
DEPARTMENT OF DEFEN'SE INDORSEMENT OE
FACTUAL ACCUACY OR OKLMOiO.

ELECTRON RECIRCULATION IN ELECTROSTATIC MULTICUSP SYSTEMS:

I - CONFINEMENT AND LOSSES IN SIMPLE POWER LAW WELLSt

Robert W. Bussard

and

Accesion For Katherine E. King
NTIS CRA&I

DTIC TAB "
Unannounced 0 EMC2-0491-03
Justification .......................

1 Y .. ..... .. . . ..... ,

Dist,-ibutionl 17Q v

Availability Codes 
ELECTIE

Avail and/or N • NV2 31992-
Dist Special APPROVE D F -) PJLIC Fr ELE;: _N0V21SE9

- A' l d DISThi 5UT 0",C 1 U • .. TED B

t This work performed under Contract No. MDA-972--9O-C-0006 for
the Defense Advanced Research Projects Agency, Defense Sciences Office.

• e ENERGY/MATTER CONVERSION CORPORATION

C. AMA C 9100 A Center Street, Manassas, VA 22110, (703) 330-7990

92-' 9

q2-f- ,f



ELECTRON RECIRCULATION IN ELECTROSTATIC MULTICUSP SYSTEMS:

I - CONFINEMENT AND LOSSES IN SIMPLE POWER LAW WELLS

I. INTRODUCTION AND BACKGROUND

A large body of work over the past 35 years has been devoted to the

study of cusp confinement of electrons, ions, and plasmas1. 2 ,3. 4 . Nearly all

of this has examined single particle electron (or ion) motion or the motion of

particles in neutral plasmas within cusped magnetic systems, generally without

internal electric potential fields. Furthermore, almost all of this work that

concerned plasmas was limited to plasmas in local thermodynamic equilibrium

(LTE); none applied to non-neutral systems. Nearly all were without internal

E fields, and used cusp B fields, only; all particles studied were at constant

(fixed) total kinetic energy throughout the system. And, almost all of the

prior work focussed on biconic cuspss - which are uniquely unable to satisfy

the configuration criteria necessary for effective electron confinement in

Polywellt*-type multicusp systems.

These are special polyhedral configurations 6 . 7 that allow formation of

stable deep electrostatic potential wells in electron/ion mixtures by radial

injection of energetic electrons into plasmas with net negative charge. Their

spatial characteristic- combined with the distribution of the internal E field

arising from electron injection, and the induced predominantly-radial ion

motion, result in long confinement times (due to many recirculation passes

through the well before escape) for the electronss. This is the sine qua non

for minimum electron energy losses, under the conditions of large ion energy

and core density achieved by the trapping of ion motion by the electron-driven

internal potential.

Thus much, if not all, of the historical work on "cusp confinement" is

simply not of relevance to the problem in PolywellTi systems. Conclusions,

perceptions, and "understanding" drawn from this body of work are thus often

either irrelevant, valueless, or wrong. This is not to say that in itself



this work is of no value; rather, the systems it models and describes are so

different in their determining physics that their conclusions can not

generally be adjusted or modified to apply well to the Polywell TM problem.

Conversely, some of the approaches used in generating these past studies

have merit if used with care here. And, in any event, the models and analyses

obtained for the Polywellt* problem must reduce to those applicable to the

simpler world of LTE, electrons-only and/or neutral plasmas, and cusps without

E fields, when these reductions are put into the Polywellt models.

In this note the problem of electron motion, confinement and losses is

analyzed in the non-LTE, electron-rich plasma system with anisotropic radial

energy in both species, in multicusp Polywelllt geometry. The bulk problem is

treated as one-dimensional, with arbitrary spatial indices of radial B and E

field variation. Bulk diamagnetic collective effects are modelled as they

influence this 1-D spatial variation of B field, but electron entry into

single cusp volumes includes elements of the geometric effects of the real 3-D

configuration. Electron motions in mirror reflection regions are analyzed on

the usual basis of conservation of magnetic moment of the electron at entry

into the confining cusp. However, turning points of this motion are modified

to account for the effects of diamagnetic currents on this process. Com-

parison with non-Polywellt" models is made where useful and appropriate.

Further details are given in the following sections.

II. CUSP NOTION: PROCESS DESCRIPTION AND TECHNICAL APPROACH

The general model of electron motion in the system is shown in Figures

(la) and (Ib). Figure (la) shows the model for non-diamagnetic behavior;

Figure (lb) that for diamagnetic behavior of electron motion. In both figures

the electrons are modelled as originating at the system center, at r = 0,

moving through a non-adiabatic region to the "beta = 1" radius (rb), thence to

that radius (rid) at which adiabatic cusp reflection will occur, and finally

to the outer radius, r = R, of the system.
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Once they have reached a radial distance (r,) at which their local gyro-

magnetic radius is sufficiently small that the total area of all of their gyro

radius circles from each of the cusps is equal to the area of the spherical

surface at that radius, they will enter one or another cusp in their outward

motion. If rb is less than this "transition radius" rX the electrons move

non-adiabatically without confinement, and enter each cusp at r., as shown in

lines (a) of Figures (la,b). No diamagnetic effects are yet effective at this

point, as the gyro radius of electrons within rb < r. is greater than the gyro

radius at r., and coherent currents counter to the external B fields can not

be generated and sustained.

Once rb becomes greater than r. the electrons inside rb will "see" a

lossy sphere with surface loss area (due to gyro radius area "holes") that is

smaller than the sphere area at rb, and they will be confined by internal

reflection within this sphere. The average number of transits an electron

will make within this sphere at rb is just the ratio of the sphere area to the

total loss area. As rb grows larger (with increasing electron current input,

and increasing central density - with requisite additional ions to maintain

charge balance) this confinement grows larger, because the fractional hole

loss area becomes smaller due to increasing B field strength at larger radial

positions. This can be thought of as the confinement of a particle inside a

perfectly-reflecting spherical shell perforated by holes - like the "wiffle

ball" toy; and it is called "wiffle-ball" (WB) confinement. The average

number of transits within rb is defined here as GJwb.

At some radius (rad) set by the mirror adiabaticity requirement that the

local B field change only little over a local gyro radius, the electron is

trapped in "mirror-reflection" (MR) oscillation within the cusp, as indicated

in lines (b) of Figures (la,b). Electron trapping in this (MR) mode is by the

usual form of mirror reflection coefficient for motion in a single cusp mirror
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system"s. This leads to a measure of the average number of transits Gjar that

an electron will make between red < r ( R within this cusp mirror geometry.

In the non-diamagnetic model, as rb is made larger still, so that it

exceeds red, the range available for the MR effect is reduced, as the elec-

trons will now recirculate in the WB mode up to r = rb > red. This is shown

*in line (c) of Figure (Ia). In the diamagnetic case, as rb grows beyond r. it

begins to distort the externally-imposed polyhedral B field distribution to

yield a configuration in which the field is compressed outwards by continuing

exapnsion of the "beta = 1" surface (rb). This results in the displacement of

the adiabaticity radius (rad) to larger radii at a rate such that, with full

diamagnetic currents, it will always fall outside the "beta = I" radius. Thus

red recedes outwards as rb exceeds r. as shown in line (c) of Figure (lb).

Eventually (in the non-diamagnetic case) rb reaches, or (in the diamag-

netic case) rb and red reach a critical radius rk at which further radial

growth of rb becomes unstable with respect to r. This is because the magnetic

pressure balance criterion is satisfied for all radii beyond rk, once it is

reached at rk. This radial position is that at which the electron (and ion)

density begins to increase rapidly with r ) rk. Up to r < rk both ion and

electron density fall approximately as 1/r 2 from the core region at radius rc

with density nc. Beyond rk both ion and electron density increase rapidly,

and the electron energy increases while the ion energy decreases as r -> R.

Beyond rk the electron density diverges markedly from the ion density in order

to satisfy Poisson's equation and produce the desired negative potential well.

Once rb = rk on this model, the behavior of the system "jumps" from rk

Is The form for mirror reflection coefficient involves a term which Is the square of the sine

of the minimum trapping angle (relative to the D field) of electron motion in the 3 field at the
trapping radius r ,, for their escape at radius r a R. In the case of a system with electrons at
constant energy aX a a field varying a r)m this term varies as crad"m . In the present case, the
simultaneous radial variation of the 3 field reduces the reflection coefficient by virtue of the
acceleration of electrons out of the system by the potential wall gradient. If this 3 field Is equal
in magnitude to, and varies with the same functional form as the a field, no mirror trapping will
be possible in the system. If the potential well is less deep than the electron injection energy,
trapping is still possible, but with the reflection coefficient term reduced by a factor of about
(I - aq), where aq a e* /so is the ratio of well depth to injection energy. In the present note the
mirror equations are aln taken as for a system with a 20, which overestimates the effect of mirror
confinement. This issue is explored further in a fo.thcoming ZIMC2 technical note.
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to R, where all further increase in system density buildup (by increasing

electron and ion injection currents) is stopped at the levels relating drive

current (IU) and core density (nc) attained at the rb = R condition. This is

(obviously) because rb can not physically become greater than R, even though

mathematically this is possible, because the B field falls past r > R and the

electron loss area thus increases with increasing r. In short, the B field

can not confine electrons at a density above that at which the surface elec-

tron energy density exceeds the energy density of the magnetic field system.

Therefore, when rb = R the core and bulk densities of electrons (and

necessarily also of ions) are at their maximum values for the parameters

defining the system (e.g. le, nc, E,, B,, R). Further increase in electron

drive current can not increase system density. Since fusion power output is

proportional to the square of the core density, and since this is proportional

to the surface density - and hence to the square of the B field - it is cleaý

that increasing B field strength has a strong effect on system fusion power

generation. On this simple argument, the fusion power will vary as the fourth

power of the B field, just as for conventional magnetic confinement machines.

Initially, when electron injection is started, the only confining

mechanism is mirror-reflection (MR) from the radius rm6 to R, over a number of

transits Gjer. As electron injection current is increased the WB mode

develops when rb > r., and the confinement parameter GjVb grows progressively

larger than unity. Particles between rad and rb simply transit through this

space. Since all particles that emerge from rb (escaping the WB region) enter

the MR region at r > red, the total number of passes that an electron will

make before loss is the product of those in each region.

In order to describe behavior of the "average" electron in the system,

G in each region must be weighted by the number of particles in that region.

For the 1/r 2 density variation previously cited, this weighting is simply

proportional to the region radial extent, running over 0 ( r ( rb for the WB

region and rb < r ( R for the MR region. This simple weighting neglects the

density increase in the region r > rk, and thus underestimates the MR con-
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tribution when rb < rk, and the WB contribution when rb > rk.

In order to analyze the complete behavior of the system, from initial

injection of electron current to a final stable state of full density and full

power operation, the dependent variable parameter needed is the average number

of recirculations Gjo of the "average" electron in the system before its loss

through r = R, and the variation of GJO with system design and operating para-

meters. This is found by summing up the time spent in the MR mode with that

spent in the WB mode and dividing this total system lifetime by the average

time of transit of the average electron in one pass through the system. Thus,

- it is important to estimate this average transit time as correctly as possible

if cusp losses are to be modelled with any degree of numerical correctness.
a-

Unfortunately, this is not simple or straightforward in the real

PolywellT wells, because the electrons are not all unidirectional or mono-

energetic. Rather, they have a distribution in both radial and transverse

energy, and this governs their motion within the potential well. Furthermore,

the potential well is not a simple monotonic power-law well, but has a central

virtual anode in all systems of realistic interest (i.e. with large ion core

density), as well as a "rollover" at the system boundary (this is not incor-

porated in the model used here; see Section VI, following).

The approach used was to divide the well into segments for the core, the

central virtual anode, and the outer well region, taken here as monotonic, as

shown in Figure (2). Then the transit time for the most energetic purely-

radial electron was determined by integration of [dr/v(r)] in each region of

the potential function. This resulted in an estimate of transit time trtrn in

terms of the "injection time", ti, = 2R/v 1 ,, defined as the time required for

an electron to traverse the system diameter at its injection speed (i.e. in

the absence of a potential well). A more detailed treatment of this problem

is reported elsewhere .

To describe the transit time of the average electron in the initial

electron input distribution required analysis of transit time variation across
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this distribution, for typical potential well shapes 2 8. As used in the EKXL

code this is a rectangular distribution in both total energy and transverse

energy, being Etot = E, ± dEtot and Eperp= dEsrp. The energy spreads dEta0

and dEperp may be chosen independently, subject only to the restriction that

dEperp < dEtat. For these distributions it was found that the ratio of the

transit time of the average electron to that of the most energetic purely-

radial electron was approximately [LN<trin> 1/[ <trin)-l], where <trin> =

(trtrn/tin). For almost all conditions of interest in the Polyweltin system

this gives the result that average transit times are 2-3 times the free-run

injection time (tin) previously defined. Figure (3) shows this ratio as a

function of the core convergence ratio <re> and the virtual anode height
9parameter, taken from the more detailed analysis of this problem cited above

III. ANALYTIC MODELS OF ELECTRON MOTION

Consider a simple monotonic potential well with magnetic field and

electron kinetic energy variation as

B(r) = Be<r>l and E(r) = Eo<r> (1)

where <r> (r/R). 3 * Now define the radius of transition (r.) from uncor-

related to cusp-centered non-adiabatic motion by 4n(rs.)2 = Nn(rL(r.)) 2 , where N

is the (effective) number of point cusps in the system (in a system with all

cusps identical, N is twice the number of full bi-polar magnetic axes) and rL

20 This transit time for ions can be directly and easily calculated from the EKXL code. Not
so for the electrons, however, as each element of the distribution must be followed through the
distribution-dependent well at each tie* cycle. This make@ it impossibly time-consuming on AT-level
PCs, as the number of computations is so huge that it drastically increases the (already long)
running time for each case. With larger CPU computing machines it is still an impractical
computation.

3* The simple power-law form liven for the 9.3 fields is not correct for real polyhedra with

edge conductors forming the current carriers for the magnetic field coils. For example, the field
varies inversely cubically within a truncated cube. but much less rapidly at radii approaching the
equivglent spherical surface of the polyhedron. A more exact expression for the field is 5(r) z

orý12/[1(14r •J, which yields higher field strength within the system than is given by the simple
power-law formula. The beneficial effect on electron confinement of this more realistic form is
ignored in this present note.
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is the "loss radius", defined as rL = kLrg. Here kL is a measure of the

departure of gyro "hole" area losses from the strict single-gyro-radius

(minimum) limit. The local gyro radius is

(r 1 (r)) 2 = 2E,<r>O/r,(Bo) 2<r)2" or <r1>
2 = 2w/r,(r>a (2)

where the term w = Eo/(BoR) 2 is a parameter characterizing the system design,

and re = e2/Mc2 = 2.818E-13 cm is the classical radius of the electron. Note

that ( 2 w/re) is the square of the ratio of electron gyro radius at the system

boundary to the boundary radius, and is a measure of the "goodness" of mirror

confinement; small w gives longer mirror lifetimes than large w. With these

the transition radius in the unperturbed field is

<rx>) = Nw(kL) 2/2r.1]/"'÷ 2) (3)

Similarly, the "adiabaticity radius" in the unperturbed field (red,) is

defined, for an adiabaticity index10 (r,), as

Irg(rado)]IdLN(B(r)/dr]fredo = [rg(redo)I[m/radol = 1a < (4)

which yields

(redo = [2m2w/r.(ra) )2j ]/(o2) (5)

Comparison of the criterion eq. (4) with computer simulation data 11' 1 2

for electrons of fixed energy shows10 that re z (2/3) is a reasonable fit to

the data for motion in the magnetic field configuration of a truncated cube.

As the electron density builds up within r < rb ( r. collective diamag-

netic effects initially will be negligible, because the gyro radius at small r

within this region is greater than the dimension r, itself. Increasing

electron density will push rb to larger radius and, when rb approaches r,, the

diamagnetic currents due to internal electron gyro motion will begin to affect

(reduce) the local B field amplitude. As rb exceeds rx and approaches red,

gyro currents become relatively stronger and more concentrated around the cusp

axis, and this relative reduction in B field will increase.
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This results in an increase in the gyro radius at the initial adiabatic-

ity radius position (rado), such that the true adiabatic motion condition can

no longer be satisfied at that radial position. The adiabaticity radius then

moves further out into a region of larger B field. The net result is a

progressive "pushing" of rod to larger radii, by rb moving out with higher

interior electron density. This pushing displacement can continue only to the

critical density turnaround radius rk, at which point rb = rod = rk and rb

jumps to R, as discussed previously. This collective effect can be modelled

crudely by a simple linear algorithm that scales the motion of rad from rdo to

rk in proportion to the motion of rb from rx to rk. The effective adiabat-

icity radius is then

<rod> = <rado> + ka(<rb>-<rX>) (6a)
where

ka = (<rk>-<rado>)/(<rk>-(rx>) (6b)

The variable parameter of choice here is <rk>; all others are computed

from system design or operating conditions. Thus ka is not a universal

constant, but is calculated for each set of <rx> and <rado>, each of which are

fixed parameters for any given system. In a general analysis of particle

density distributions, Kral1 1 3 showed that the position of <rk> depends on the

the potential well shape. For typical well shapes of interest, <rk> % 0.83.

The "beta = I" radius is the radial position at which magnetic pressure

exactly balances electron kinetic pressure, (n(rb))(E(rb)) = (B(rb)) 2 /8n. The

variation of particle density with radius from the core density nc at rc is

n(r) = n,(r,/r )2 (7)

and defining the parameter z = 8nnc(rc)z, yields the "beta = 1" radius as

<rb> = (zW)MR421z (8)

Note that (zrc/6) is the total number of ions (or electrons) in the core.
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The filling of the system so that rb becomes greater than the transition

radius r. creates a WB confinement sphere with electron recirculation deter-

mined as GJWb = 4(rb) 2 /Nn(rL) 2 . Using eqs. (2) and (8) gives this as

Gjwb = 2r.z/N(kL) 2  (9)

Electrons leave this region r > rb relatively isotropically, and enter

the MR region r > rad. Here they are recirculated with Gjmr = 1/(l-Rur), where

Rer is taken here to be the usual 4 * mirror reflection coefficient 14

Ror - I - (N/4)(B(rad)/Bo) (10)

so that

Gjor = 4/N<rd>a (Ila)

while rb < rad for the non-diamagnetic case, or for all rb for the diamagnetic

case, and

Gjar = 4/N<rb>m (hib)

for rb > rad, as previously discussed (this latter condition, eq. (1ib),

applies only in the non-diamagnetic case).

To determine the overall lifetime and mean number of passes made by an

electron in the system it is necessary to find these parameters for each mode

of confinement, and weight them by the fractional number of electrons parti-

cipating in each mode.

The time an electron spends in the MR mode is just that during its

transit time tar between rb and R, multiplied by the number of MR mode recir-

culations Gjar* Note that Gjar is determined by motion over the radial inter-

val red < r < R or rb ( r < R, while the transit time includes the non-reflec-

4* Also see discussion given in footnote is
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tive region rb ( r < rad' if such exists. For 1/r 2 variation of density, the

number weighting function is just (1-(rb>). Note that this underestimates the

weighting because the density actually increases at r > rk. The time spent in

the WB mode twb is that while transiting the space 0 < r < rb, multiplied by

the number of WB mode recirculations and the number of MR passes for each such

.recirculation. Its particle number weighting factor is simply <rb>; here

correct as the density variation with radius is inverse-square in this region.

Determination of these transit times requires integration over the

electron energy distribution in the potential well, for the several regions of

the well that apply to each condition. Following the techniques oitlined

earlier for determination of total transit time across a virtual anode well

(and detailed in an earlier note 9) and making use of the potential functions

for the virtual anode well shown in Figure (2), the separate transit times can

be determined by piecewise integration for each region.

It is important to note that the definition of the relevant regions must

also attend not only to the relative positions of (rx>, (rb> and <rad> with

respect to each other, but also with respect to the well minimum at r = r,, as

indicated in the figure. This is because it is not possible to integrate the

potential distribution in closed form, and the integrals must be broken up on

either side of r.. Carrying this out results in the transit time formulae

summarized in Figure (4). With these it is possible to write the recirculation

ratios, G3 , as

Gjo = (4/N)(Gjro)(l-<rb>)(tmr/ttot) (12a)

for rb < r., here entirely due to mirror-reflection within a multicusp system

with effective number of cusps N, and

GJO = Gj.r,[(1-(rb>)( 4 /N)t~r + (GJWb-1)<rb>tb]/[ttot] (12b)

for rb > r,. At this condition both MR and WB modes are acting; the first

term is due to mirror effects, while the second is that due to wiffle-ball

confinement. In these equations the term Giero has the meanings given below.
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Gjmro = 1/(red>0, rb ( red; and Gjmro = 1/<rb>", rb > red (12c)

These and all of their supporting equations are given in Figure (5), for

convenient reference, for both magnetic and electric potential fields varying

as a simple power law, B,E - <r>O. Using these formulae it is possible to

calculate Gjo over a range of the system-defining parameters, (z) and (w).

Note that w is defined by system external design criteria, while z is

determined by internal conditions reached in the dense core during system

operation. It is instructive to examine Gjo to see how the MR and WB contri-

butions vary with these parameters.
a.

Each of these can be calculated separately from their terms in the

overall formulae for Gjo, from eqs. (12a,b,c). Calculations made for each of

these separate terms are shown in Figures (6a,b) for an effective cusp number

of N = 14,5" and B field spatial index of m = 3, for a typical set of system

conditions with core convergence ratio of <ro> 1E-2, critical density radius

of <rk> = 0.83 and a loss radius factor of kL = 2, for a potential well with

virtual anode fractional height of 1i = 0.272. Note how Gimr drops with

increasing z (increasing core density) beyond the point where rb a r.. This

is a result of the decrease in both MR mode time tar and in the weighting term

(1-<rb>), even before <rb> reaches (redo>. As (rb> moves beyond <rado> the

drop is even faster, as the diamagnetic effects of induced counter-currents in

the electron flow become larger and "push" (red> to larger radii.

The WB mode does not begin until rb ) r. and then rises rapidly with

increasing z, tvb and the weighting term (rb>. This is quite clearly seen in

Fig. (6b), where the Gjwb curves fall rapidly to unity as (z/N) approaches a

value of about 8E12/cm from above. The cutoff z value is determined directly

from the equation for Gjwb by setting this equal to 1 (unity). Thus, for all

5* The actual effective number of cusps in a pure truncated cube system is only 9.6 for the
KR mode operation, and 7.6 for the WI mode. Th ue are determined by normalizing cusp losses for
mirror reflection to 3. and for WD losseb to 3 , respectively, as described In an earlier note
(ref.16).
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values of z < N(kL)2/2r. the system will be operating solely in the MR mode.

This has the inverse consequence that WB mode physics can be tested only if

the experimental system is capable of being driven to a core density above

this cutoff limit; n,(r0 )2 > N(kL) 2 /16nr,.

Operation along a line of constant w above this point leads to a maximum

Gjb value at the boundary where rb = R; beyond this point Gjwb no longer in-

creases with greater input electron current. Also, at this point the electron

(and ion) density within the system has reached its maximum value and all

further density buildup is stopped, for here the system surface is already

operating at an electron/magnetic beta of unity; more electrons can not be

contained within this field. All of the early studiesis of this concept were

made along this line of maximum performance, at the condition r = rb.

The sum of these two terms gives Gjo for the complete system. Figures

(7a-e) show plots of this total Gj, for m = 3 power-law wells with a virtual

anode, over a range of z and w, for several values of the gyro loss radius

parameter kL, and for convergence ratio and anode height taken as in the

previous figures (<ro> = 1E-2, 1 = 0.272). A series of calculations was made

to test the effect of anode height on Gio. These showed that the variation of

Gjo with z and w is virtually independent of'i for all') > 0.01. At very

small ) -> 0 the forms used for the transit time integrals begin to break down

and give excessive transit times; for all realistic wells the dependence of

G,, on anode height is negligible for 0 <11 ( 0.3.

It is useful to distinguish three regions of differing character on

these figures. In the left hand region below (z/N) % 1E12/cm the electron

behavior is completely dominated by mirror-reflection effects. In this area

the device is simply a multicusp mirror machine, operating with the usual MR

features. In the right hand region above (z/N) % 1E16/cm, electron behavior

is completely dominated by collective mode wiffle-ball effects, and mirror

phenomena have essentially vanished. Here and above (to z/N > 1E18/cm) lies

the fusion reactor regime. This region is new and unfamiliar to the field of

cusp plasma research; it forms the basis for the original PolywellT concept
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and the early studiesis of its characteristics. In the middle region where

IE13 < (z/N) < 1E15/cm lies all of the physics of transition from MR to WB

operation. Here is the region of greatest experimental and theoretical

interest, for it is here that the physics features of the concept that allow

transition to the reactor regime either will be found - or will not.

Several especially interesting features are evident from these figures.

First, and of greatest importance, is that the overall electron recirculation

ratio Gjo increases with increasing z, beyond some critical value of z.

Elementary analysis, theory, and EKXL computer code runs all show that the

core density n¢ increases linearly with electron drive current abov! a core

density of nc t 1E13-1E14/cm3 if Gio is held constant. Here, however, the

value of G3 o, itself, is seen to increase with increasing electron current.

Thus, once the critical z region is exceeded the core density will increase at

a faster rate than the electron current. Taking the slope of the G,, vs. z

curve to be p (i.e. Gio t z%) it is easy to show that the core density will

increase about as nc % (I,)1'/1P0 at this condition. The figures show that p

% (3/4) in this region, thus nc -(1.)4 - a little extra electron drive current

goes a long way - until G,, stops when rb = R, which marks the boundary limit

for system operation, for any given value of the system design parameter w.

The second feature of importance is that the value of Gjo can drop with

increasing z, from its initial low-z value, as operation leaves the MR mode -

before WB mode confinement has taken any significant effect - subsequently

increasing again as z becomes large, due to increasing dominance of WB mode

operation. This drop is more pronounced and occupies a greater range of z as

the loss radius factor is taken to be larger. This behavior constitutes a
"gate" through which machine operation must be driven at startup. If the

device is drive-current-limited, and if the current is insufficient (for the

design values of w for the machine) to yield z values (e.g. core densities)

beyond the gate, it will not operate above the much smaller z value to which

the limited current can drive it. Here, in contrast to the positive slope of

the WB regime, the slope of the Gjo vs. z curve is negative, say Gjo a z"1, so

that n© c 1l))/(1,q)* If q = (1/2), for example, then n, s (I,)2/3 and a small

14



increase in core density can require a large increase in drive current. The

actual state of affairs will depend upon the real values found for the gyro

loss radius factor kL, and for other dependent parameters that govern the

operation and behavior of the electrons in the system.

It is very important to note the effects and characteristics anticipated

for this device. In particular, a limited-current experiment that runs into

the "gate" effect will demonstrate poorer electron (and ion) confinement with

increasing current and core density. This is to be expected in this regime.

Additional drive current past the gate point will show the opposite effect

with core density increasing much more rapidly than electron current, once the

Gjo vs. z slope has become positive.

Of course, the final use of the Gjo formalism outlined above, has been

to "close" the EKXL code calculational scheme, to allow numerical estimation

of these effects. The code now has been modified (as version 3.3) to include

these phenomena, based on the power-law model with virtual anode used here.

Until this was done, the variable Gjo was simply chosen as another arbitrary

input parameter; now it is a dependent variable computed from system operating

conditions at each time step so that all the relevant electron confinement

physics is now working synergistically in the code 6 1. Further modifications

of the electron cusp confinement model have been made to improve B and E field

distributions. These are incorporated in an extended and further revised

version (v.4.0) of EKXL, now in development, and are presented and discussed

in a separate technical note, now in process.

Calculations using version 3.3 of the EKXL code have been made paramet-

rically for a baseline case at high density ("reactor") conditions, and for

several possible models of SCIF experimental systems and operations. Results

of the SCIF computations are discussed in Section VI, following. Results of

the reactor case studies are given here, in Figures (8a,b,c). Electron drive

6* This version of the code remains "open" in respect to self-regulation of the core size by

competing collisional and angular momentum conservation mechanisms; it is planned to include these
in a future code modification.
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conditions, dimensions and other defining parameters are shown on the figures.

The basic case, shown in Figure (8a), was run with a virtual anode held

at about 17 keV above the well bottom. Note the increase in core radius due

to ion density buildup as the ions slow down towards this virtual anode core.

In the core boundary region the ion density and the potential are both varying

much faster than 1/r 2 . A parametric set of calculations was made to test this

effect of anode height on core density and DD fusion power output. Results of

these are given in Figure (8b), which shows that the competing effects of core

broadening and ion slowing-down due to the anode change in such a way as to

keep the core density and fusion output within a modest range of variation

over a wide range of anode height.

Other studies were made for a 1000-fold variation of electron drive

current, showing its effect on ion core density. Results of these, given in

Figure (8c), show that the slope of the core density vs. current curve changes

rapidly with increasing gun current, as described above from the Gj, curves of

Figures (7a-e). The slope at I. = 1000 A is approximately 4 (i.e. n. X (I.)4)

in good agreement with the effect of the Gjo vs. (z/N) slope of p = (3/4), as

previously described.

IV. EFFECTIVE LOSS RADIUS; COMPARISON WITH CUSP MODELS

One principal area of concern in considering the multicusp Polywell'

system, is how well the particles (especially electrons) will mirror-reflect;

what will be the effective gyro loss radius in such a system? In an attempt

to answer this question, considerable appeal has been made to prior models

reported in the literature1 "5 . 16 , and to single-particle orbit calculations1 1

in this geometry. As noted earlier, much of this work is not directly appli-

cable to the instant case, as it is monoenergetic, or uses single particles,

has no potential well, or uses neutral plasmas in LTE, etc, etc. Still it is

instructive to examine the question of effective loss radius in comparison

with one of these models.
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The Biconic "Spindle" Cusp Without E Field

Consider the system outlined by Grad1 6 , shown in Figure (9). This is a

biconic cusp system, with no internal E fields, in which all particles are at

constant energy. Beyond a critical radius r. these are taken to be adiabati-

cally trapped in flux shells outside r., while within rE non-adiabatic motion

is assumed, with isotropic emission into the polar point cusps at r ) rx.

There are no collisions and no direct collective effects. Electrons in the

cusp will move non-adiabatically out to larger r until they reach the adiabat-

icity radius rad. Here they still appear to the mirror region (r > rad) to be

entering with isotropic distribution, as though from radius r = r'. The equi-

valent value of kL, as used previously (eqs. 1,3,9, et al), is then given by

(kL)2 = [r.(r )] 2 /(rg(rad)1 2  (13)

For the reference case with B = Bo<r>* and Eo constant, the electron

gyromagnetic radius is 1rX(r)] 2 = 2Eo/r.(Bo) 2 (r/R) 2 , and eq. (13) reduces to

(kL) 2 = (redo>2m/<r 1 > 2 (14)

while for the general inertial-electrostatic Polywelt"-type polyhedral point

cusp system, with negative potential well index m, this becomes

(kL) 2 = <radO>2/<rX>) (15)

The adiabaticity radius is given by eq. (5) for the PolywellTM, but has

an exponent 1/(2m+2) for the reference case. Then eqs. (14) and (15) become

(kL)2 = [4m2/N( r) 2 1 2s/( 2.2) (16)

for the zero E-field biconic cusp, and

(kL) 2 = [4m2/N(r.,) 2 Is/(-2) (17)

for the PolywellT" polyhedral system.
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The single biconic cusp has an equivalent number of poles equal to twice

the number of polar axes, thus N = 4, while m 3 for this field configuration

(since B % r2z around the origin). Taking ra = (2/3), as before, gives (kL) 2

= 9.54 or kL = 3.09 from eq. (16). The actual effective loss radius is one

gyro radius larger than this because all particles whose guiding centers lie

within r3 outside the radius kLr. will pass inside r 5 kLrg, and thus can

escape through this loss channel. The effective electron loss radius is then

kLo = kL + I = 4.09, in reasonable agreement with the values cited by Grad1 7 .

Losses through the the equatorial ring (line) cusp in the biconic

*Vonfiguration have been asserted1 7 as limited to escape through an "escape

width" 68, given by geometric arguments of equality of magnetic 'ux area from

the polar point cusps through the equatorial ring; thus (8,q/r.) = (r./R),

where r1 is taken as the gyro radius at the system surface (r = R). In fact,

for the reason cited above, particles within a guiding center one r distant

can pass through this escape width and be lost. Thus the effective loss-

escape area is A., = 2nR[8*q + kLorE(R)], which is dominated by the gyro loss

radius, as discussed by Leung, et al.'s This is to be compared with escape

through the two point cusps with area Apt = 2n[ra(R)] 2 [ko]j2 .

For operation at high-field, high-density conditions (as for useful

reactor level systems) r3 << R, thus 8., (< r( and the ratio of equatorial to

polar point cusp escape areas Aeq/AP = R/[kLor(R)] can become very large.

For the biconic "spindle" cusp as a multipole system with equivalent number of

point cusps N = 4, the effective loss radius factor for equatorial losses is

then found to be simply kLeq = {kLPtR/[rg(R)]})° 5 , where kLpt = kLo above.

Polyhedral Multicusp Systems With E Fields

For the polyhedral negative-potential-well system, similar arguments

give kL = 2.03, ko ,= 3.03 for m 3, with N = N, = 7.6 (B2-effective cusps in

truncated cube geometry1 9' 20 ), rI. (2/3), from eq. (17). If the cusp system

had a true effective number of cusps of N = 14 (i.e. if all cusps were

identical), eq. (17) would yield kL = 1.69, and kL. = 2.69.

18



It is also of interest to determine how kL, kLo vary with the number of

cusps in Polywelll-type polyhedral systems. For the simplest polyhedra, the

pole number and spatial exponent are related roughly as given below

Number of poles (N) 8 14 26 50
Spatial exponent (m) 2 3 4 5

so that the pole number and spatial exponent can be approximated by

m 2 N/1.7 (18)

With this form, eq. (17) reduces to (kL)2 = [4/1.7(ra)2 )]'U•'' which

gives kL = 1.65, kLo = 2.65 for m = 3.

The limiting condition for very large N can be found by examination of

the B field variation with radial position in the case of high-order multipole

fields. These were analyzed in a previous note2 1 which showed this to be

B(o) = (Bo/O )EXP(-o) (19a)

where a = z/rP is the ratio of distance in from the outer boundary, z = r-R,

to the interpolar spacing r. = 2R/N 0 '5 . Reducing terms this becomes

B(r)/Bo = (8/N 3 / 2(1-<r>) 3 ]EXP[-N°' 5 (1-<r>)/2] (19b)

Setting this equal to (r>* defines the equivalent exponent ma in terms of N

and <r>. This can be found by taking logarithms of both sides and letting N

approach w. The dominant term remaining gives this exponent approximately as

(in) 2 % (N/4)[(1-(r>)/(LN(1/(r>)] 2  (20)

as compared with eq. (18). With this the effective loss radius factor becomes

kL X (l-<r>)/rLN(ll(r>) (21)
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as the limiting case when Nm -> , for which a % 0. This results in mirror

reflection only in the region r a R (<r> -> 1), at which condition eq. (21)

reduces to kL M i/ru = 1.5, and kLo % 2.5.

Thus the loss radius factor for polyhedral systems seems to be in the

range of 2 < k(o < 3; i.e. electron losses in the WB mode will proceed as

though leaking out through holes with an "escape" radius 2-3 times that of the

local gyro radius at the wiffle ball surface at r = rb. The overall electron

recirculation ratio, GJ = Gjo, for these cases is as shown in Figs. (6b,c).

Note that kLo values in this range begin to yield the gate effect for devices

operating with design parameter w-values in the range expected for reactor

level operation (1E-3 ) w > 1E-5 keV/(kGcm) 2 ).

V. COMPARISON WITH EXPERIMENT: THE CURRENT SCIF DEVICE

The EKXL code v.3.3 using the simplified power-law formalism outlined

above was used to calculate a number of approximations to SCIF cases, in order

to assess the viability of the current SCIF device to test the Polywellt

concept for its critical physics. Code runs were made for several different

models of operation modes proposed for the experiments. These were:

(a) Electron injection of 75 A (maximum possible) at full radius (R = 92 cm),

with a central B field of Bo = 3.1 kG in the circular coils located on the

square faces, but with the ion source at 61 cm radius. Ions were created by

electron cyclotron resonance heating (ECRH) at the 875 G magnetic field at

that point. The electron energy here was 6.6 kV, following the simple power

law form used earlier, from injection with 22.5 kV at r = R = 92 cm. This

outer radius was used to fix the value of the parameter w at that for maximum

radius, voltage and field; w = 2.76E-4 (keV/(kGcm) 2 ). This parameter has a

controlling effect on electron losses and thus on Gj. This set of conditions

matches those initially planned for SCIF experiments, and is a reasonably

realistic mockup within limitations of the EKXL code.
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(b) Operation of the system at the small (ECRH-set) 61 cm radius, only, but

with full 22.5 kV (maximum currently possible) electron injection energy, at

75 A current. This case mocks up the hypothetical prospect that the potential

may be kept relatively flat from the outer radius at 92 cm to the ECRH ion

source radius at 61 cm, with only partial electron neutralization by back-

ground ions in this region. The B field at this 61 cm surface is B = 875 G

and the w value was taken as that for this value of Bo in the small system

with full electron injection voltage. This was a case to test the effect of

an assumed external flat potential region. Its value of w is least favorable

to the attainment of high core density; w = 7.90E-3 (keV/(kGcm) 2 ).

(c) Operation with the surface B field reduced to the ECRH 875 G, so that the

ion source is at the outer boundary of the device, and use of 22.5 kV for

electron injection energy, again with 75 A electron current. This is the ECRH

small-radius case (a) with B field reduced to move the ion source radius to

the outer boundary of the device. The w value for this case is that for the

full radius of the device, with full drive voltage E. but less magnetic field

BO than that actually available; w = 3.47E-3 (keV/(kGcm)2). This case was to

test the effect of using the available ECRH ion supply at the full radius of

the existing SCIF experimental machine.

(d) System operation with the full B field and maximum electron drive current

(75 A) and voltage (22.5 kV) at the outer 92 cm radius, with ion injection at

this boundary, rather than supplied at the lesser field and radius planned for

use of the ECRH scheme. The w value here is that for the full system, as in

case (a); w = 2.77E-4 (keV/(kGcm) 2 ). This case tested operation at the best

conditions for confinement and for high ion energy that could be hoped for

experiments with the SCIF device with its current electron drive capability

(however, note that the current SCIF system has no provision for ion injection

at r = R with the full B field).

These conditions are summarized in Table 1, following, for reference.
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TABLE I

SCIF MODELS ASSUMED FOR EKXL CALCULATIONS USING ELECTRON MULTICUSP MODEL

RADIUS OF ELECTRON ENERGY AT 3 FIELD AT W, kV/( cam)
2

CASE IONS ELECTRONS WILL EDGE INJECTION WELL EDGE FOR W gO/(BoRV RERARKS

(a) 61 cm 92 ca 6.8 kV 22.5 kV 0.88 kG 3.1 kG 2.81-4 SCIF experiment case
(b) 61 ca 61 cm 22.5 kV 22.5 kV 0.88 kG 0.88 kC 7.93-3 Flat outer potential
(-c) 92 ca 92 cm 22.5 kV 22.5 kV 0.88 kG 0.88 kG 3.52-3 Reduced surface B field
(d) 92 cm 92 cm 22.5 kV 22.5 kV 3.1 kG 3.1 kG 2.81-4 Ions at r=R, wlfull 9,2

EKXL code calculations were made for these cases for two different

values of the loss radius factor kL, for ion injection energies taken always

such that the core radius was rc = 1 cm. These energies are expected from the

ECRH ionization process planned for the experiments. All cases were run with

an equivalent effective number of cusps of N = 14, and a specified virtual

anode height ofli = 0.11, except for case (a) which used I = 0.03. The

maximum core densities nc and recirculation ratios G,, obtained from these

calculations are summarized in Table 2, below.

TABLE 2

RESULTS OF EKXL v.3.3 CALCULATIONS FOR SCIF CASES OF TABLE 1

SCIF LOSS RATIO RECIRCULATION CORE DENSITY
CASE kL RATIO, Gjo nc, 1/cm 3

(a) 1 230 2.02E13
3 42 3.70E12

(b) 1 6 1.77E11
3 6 1.77Ell

(c) 1 10 3.21Ell
3 10 3.21E11

(d) 1 52 1.92E12
3 52 1.92E12

The full system radius applied to both ions and electrons in the runs

for cases (c,d). Cases (a,b) were run with both species at 61 cm, even though

the electrons were injected at 92 cm, since these cases operated with ion
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input at the small radius (61 cm). Solutions obtained in these runs may be

superposed with electron distributions found from full radius cases, since

both species use the simple power law (m = 3) variation. By these means EKXL

code results can be used to estimate SCIF experiment conditions, even though

the code can not be used directly with the dual radius injection constraint.

Results for steady-state potential and density distributions are shown

in Figures (10) and (11) from EKXL code runs for cases (a,d) with kL = 1. From

these figures and the data available from the code output for the other cases,

it is possible to determine the relation between electron recirculation ratio

GJo and ion/electron core density nc and radius rc, as each test device starts

up and rises to steady operation. This is plotted on the lines of constant w

in Figures (12a,b), which show the range of these variations for each of the

SCIF cases listed above, on the general graphs of GJo vs. zIN for various w

values (from Figures 7a,c), for two values of the loss radius factor kL.

The important point to note here is that the regions in which the SCIF

test cases are computed as able to operate (on the simplified model used here)

are all at the left hand side of the figures, where electron confinement (and

device) behavior is dominated by mirror-reflection physics. The only case

that can reach the collective wiffle-ball mode region is that of case (a) at

kL = 1, with small effective w, but with the small radius system. This is the

only case that succeeded in getting past the "gate". For this case the

parameter z/N % 4E13/cm, just into the lower boundary of the WB mode region.

When the experiments are actually run, if the loss radius factor is

found to be small (e.g. kL i 1) then the WB effect will have begun by the time

this z value is attained, and some degree of testing of the WB physics will be

possible. On the other hand, if kL is found to be as large as 3, for example,

the WB region will not be reached in this example case. The other small w

SCIF system (case d) falls about an order of magnitude lower in z/N, even with

kt = I, at z/N z 3El2/cm; again not quite into the WB mode. And all of the

other cases yield even lesser results.
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Based on these computations, test of the physics relevant to the WB

confinement concept requires operation of the experimental device at consider-

ably larger electron drive currents or at higher B fields (or both) than those

used in the calculations. If the electron injection voltage could be reduced

while increasing current output, keeping power constant, the value of w could

be reduced. This would result in an increase in Gjo and an extension of the

experimental regime further into the WB mode phenomenology space. Of course,

another means to achieve this desideratum is to add electron guns, and raise

their voltage to increase their current output (since I % V312 in the existing

guns), which requires larger power supplies to drive the system. Without some

means of increasing drive conditions and decreasing w, the model presented

here suggests that the current SCIF device can test the collective physics

that forms the basis of the Polywellt concept only marginally, if at all.

However, note that the <r>0 power law model used here is certain to under-

estimate electron confinement, and that more correct models will yield better

performance. This is discussed briefly in the following section.

VI. ELECTRON MULTICUSP MODEL; LIMITATIONS AND IMPROVE(ENTS

The simple model presented above for electron trapping and losses in the

complex Polywellt' multicusp magnetic field system with internal electrostatic

potential well, is based principally on the spatial variation of both B and E

fields assumed as following a simple power law of the form B,E % (r>*. In

actual fact, the magnetic field distribution within the volume bounded by a

polyhedral coil system that fits the Polywellt' criteria is not so simple. In

a similar vein, the linear displacement of the adiabaticity radius rid is an

overly simple approximation to the somewhat complex changes in internal B

field distribution caused by the generation of diamagnetic currents and their

consequent collective effects on the system. And, of course, the treatment of

MR mode confinement here is too simple, in that the deleterious effects of

non-zero potential well depth are not accounted for in the elementary formulae

used to describe MR mode electron recirculation. In fact, magnetic mirror

reflective confinement can be reduced severely if well depths are allowed to

become too large during startup. These issues are examined next, below.
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Magnetic Field and Electric Potential Distributions

StudiesZ22, 3 ,Z4 have shown that the field variation asymptotically

approaches the simple power law form only as the radius becomes smaller

(approaching the origin) within the system. At radii beyond about <r> = 0.5,

the field modulus exhibits a "bumpiness", and its variation in any plane

section through the center of the system and one of the edge midpoints always

shows a "rollover" as the edge of the system is approached. Figure (13) shows

an example of this sort of variation with radial position.

The effect of this realistic departure from the power law assumed in the

model, above, is beneficial to electron confinement because it gives larger B

fields at deeper radii than does the simple power law (for the same face cusp

central field strength). The simple model is thus likely to yield results

that are conservative (or pessimistic), because of its underestimate of the

strength and effects of the real magnetic fields in the system. This can be

rectified by employing an improved description of the B field, which better

mocks up the actual variation within the polyhedron. Limiting this, as

before, to radial-only dependence (1-D can be analyzed in closed form; 2-D can

not) it is found that the edge effects can be accounted for in an approximate

way by use of the form

B(r) = Bo<r>Ofo(r) = Bo<r)>[2/(l+<r>m*2 ] (22)

It is obvious from this that the field strength well within the system

will be twice that previously used, for the same value of cusp central-axis

maximum field strength, Bo. As a result, the electron gyro radii at these

inner radial positions will be roughly one-half of those previously estimated,

with concomitant improvement in electron confinement.

This simple formula has the advantage that it will still yield analytic

solutions for most (but not all) of the parameters which characterize the

system and are used in the solution methods employed in the model described

here (e.g. the specific dimensionless radii <rad>, (rb>, <rn>, and the separ-
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ate mode recirculation ratio terms Gjmr and Gjwb). Unfortunately, the transit

time integrals can not be obtained in useful closed forms with this more

realistic potential variation. However, since the transit time segments used

in the calculation of the electron recirculation are divided by the total

transit time in the expression for the overall system Gj. ratio, the effect of

integral departures from exact behavior are minimal for this factor, thus

these times can be taken in the forms used previously, without serious error.

Further analysis of electron confinement is underway using this modified

formalism. A discussion of these analyses and presentation of their results

is given in a forthcoming technical note.

Diamagnetic Effects

A second area in which system modelling might be improved is that of

collective effects giving rise to diamagnetic expansion of the B field and the

consequent shift in position of the adiabaticity radius <red>. Although

better than the use of the non-diamagnetic apr' .. 1mation, the linear formula

of eq. (6a) is a relatively poor approximation to the displacement of the

adiabaticity radius by real diamagnetic current effects. These tend to act in

an energy-conservative fashioa, such that the volume integral of the magnetic

field energy remains fixed as the field is distorted by the increasing

internal electron density (which is, itself, supported by the induced ion

density) causing expansion of the beta = 1 surface <rb>. Beyond the transi-

tion radius <rx>, increasing <rb> will tend to push the excluded external B

field into the volume remaining between rb < r < R. This "pushing" will

cause the field to pile up outside rb as this expands, giving a region of

steep field gradient, followed by one with a smaller gradient than before.

If a simple power law form is assumed for the B field outside rb, it is

possible to integrate B over this space and determine an equivalent exponent

(W) that conserves B field energy, for each position of rb. Or, with greater

complexity, the modified power law described above can be invoked and used to

find the equivalent exponent for this form of the B field spatial variation.

Neither approach is correct, in that both will yield a B field mean exponent

that decreases as the central beta I region expands towards the system outer
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boundary. In actuality, the B field compression outside of rb will give a

larger spatial exponential index within this region, while the decreased field

gradient at greater radii will yield a smaller value of equivalent m. In this

situation the adiabaticity radius will move slowly inward, or stay relatively

fixed in position, until rb comes within a few gyro radii of r~ao. At this

point the increasing gradient in local B field will cause rad to recede

outward almost directly with rb.

The net result is a complex motion in which the shift of rad is less

unfavorable (to electron confinement) than by the linear model assumed above,

so that the MR mode will hold up somewhat longer and larger values of Gjsr

will characterize the analysis than those obtained from the model herein. The

result of all this will be an increase in the estimated performance, in that

larger values of core density can be attained for given drive current than

from the simple model here. However, the effect is expected to be slight,

since the change in critical radii (e.g. <rb>, <rx>) will only depend on the

one-fifth root of the change in the B field. The value of developing and

including such modifications for diamagnetic effects is not clear in light of

the various approximations already employed in this analysis.

Multicusp Mirror Reflection and System Startup

Startup of the system is a complex problem. The bulk electron and ion

core densities must be built up through the MR mode to levels sufficient to

operate in the WB mode thereafter. In the MR mode, electron confinement is

due to cusp mirror trapping with eventual reflection by the rapidly-increasing

(with r) B field. The ratio of electron gyro radius to radial position drops

steadily with increasing r, as r W2)/ 2 , even in the least favorable case, when

the E and B fields both vary as (r>.

Initially the well has no depth; it is flat across the system. Elec-

trons injected at low current and low density make little effect until they

reach a value of the order of 1E5 - 1E6/cm3 , in systems of R = 100 cm, or so.

At this level of bulk density the well will begin to be visible, at a depth of

0.1-1.0 keV, without ions. The addition of ions to the system will create a
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more tightly focussed distribution but even this will not result in signi-

ficant well depth at these electron density levels. Typically, Poisson's

equation gives E. f 3E5[n] keV for In] as mean density per cm3 , in a 100 cm

radius electro-kinetic well of the type here.

As In] exceeds this range the well begins to deepen. This causes the MR

confinement to degrade because of the appearance of an accelerating electric

field within the confining magnetic field structure, coupled with conservation

of electron magnetic moment in this field. The effect is due to the extrac-

tion of the energy needed to increase the transverse kinetic energy of elec-

trons in cusp-trapped gyro motion, from their energy gain in the potential

field by radial outward motion of the cusp electrons, rather than from their

radial kinetic energy at the trapping point.

The relevant correction factor to multiply the formula for the electron

recirculation ratio Gjar can be shown to be [(l-a.) + (aq<r,.>=)] for a system

in which both the E and B fields vary as <r>). Here the term (1-aq) is the

ratio of the difference between the well depth and the electron injection

energy to the injection energy; it is the fractional "unused" potential in the

system; aq = e~o/Eo, where e4O is the potential well depth at its point of

maximum amplitude, and E. is the injection energy of the electrons that are

driving the system. It is evident that operation at full well depth, which

gives aq = 1, will yield GJir 0 0, and a well incapable of any electron

confinement by mirror reflection processes, at all.

Thus, operation of the system by (a) control of electron current and

voltage, and of ion current into the system, requires the following steps:

Ia. Start with a small electron current, raise the density to the

initial significant range (ca. 1E6/cm3 ). This should produce a shallow well,

but one capable of confining ions at some modest fraction of the electron

injection energy.

2a. Add ions thereafter to neutralize further well depth growth, as

electron current is increased to larger values. This should yield increasing

ion core density, following along with the increasing electron density.
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3a. This process should be continued until the ion and electron core

density has reached a value well into the WB range (e.g. to z/N > 1E14/cm).

Use of virtual anode (height) control (VAC) of ion input rate is required to

achieve this electron and ion density increase in a well-controlled Banner.

4a. Then reduce the allowed VAC height, reducing ion input, to deepen

.the well while maintaining the high ion core density needed to stay in the WB

regime beyond the gate in the GJ0 vs. z/N parameter space.

5a. Once high core density has been achieved with reasonable well

depth, the device can be driven harder (as a WB machine) with more electron

input to reach desired operating conditions beyond those of the startup phase.

An alternate method of startup is to (b) control injection voltage and

current and use controlled input of background neutral gas as the source of

initial ions in the system core, following the sequence:

lb. Raise background neutral gas to high density - well into the WB

region. Typically this is the order of lEl5-lEl6/cm3. After ionization and

heating this density will drop by at least an order of magnitude; it must

still remain in the WB regime to be effective.

2b. Drive electron current at modest voltage into the system to produce

a small negative well and strong centrally-peaked ionization of background

gas. Even though the ions are cold, this constitutes the core ion source

needed for bootstrap startup. Cold electrons are driven out by the negative

potential well.

3b. When the core ion density exceeds the z/N needed for WB regime

operation by at least ten-fold, then increase the electron voltage to the

desired value of w for system operation. This will yield a deeper well and

begin to "heat" the cold central ions, some of which will begin to Maxwell-

lanize. Be careful to add ions slowly here, so as to avoid inhibiting the

increase of well depth due to increasing electron voltage.

4b. Then raise electron current, but now with ion edge input under VAC

to continue partial neutralization until full required core density is reached

with high energy ions. From this point the device can be run as a WB machine

to any higher desired operating point.
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In both approaches, the objective is to operate the device initially as

an electron-trapping multicusp mirror machine without significant degradation

of MR cusp reflection by the negative gradient of a deep potential well. Then

to build up ion density - albeit at low energy - by continued injection of

both species while maintaining well depth sufficiently small to avoid degra-

dation of MR mode confinement. By this means to build up ion density to the

WB range of z/N, where the slope of the Gio vs. (z/N) curve has become large

and positive. Then, finally, to transition to higher z/N and higher w values

by increasing electron voltage and current (and associated increased ion

supply) for straight WB operation at the desired steady operating parameters.

Here, just as in classical mirrors, startup is the problem. In the

first scenario, startup MR degradation is limited by direct control of well

shape by VAC of ion input to constrain the system to shallow wells. In the

second one, this is accomplished by creation of a shallow well with a high

density cold plasma/ion core in the body of the system, where cold electrons

are expelled and cold ions are trapped.

In either case the electron MR confinement process can be analyzed by

use of modified models for description of trapping at the adiabaticity radius,

and subsequent MR mode operation, as described above. All of the relevant

critical radii depend on the key well-depth parameter (aq), as does the MR

ratio Gar, but the WB mode electron recirculation Gjb does not. The system

performance equations can be cast into a form in which the controlling cusp

reflection is made to have a functional dependence on the system operating

state through connection with the VAC parameter, thus allowing feedback

control of well depth to be used to optimize electron confinement. Finally,

it may prove possible to create a system in which the E field and B field do

not follow the same spatial form. Although the means to achieve this are not

yet evident, this sort of behavior can be modelled to test its effect on

electron confinement in the MR mode. It is hoped to include these more

detailed effects, as well as others discussed above, in further analysis of

electron cusp motion and confinement phenomenology, for inclusion in the next

"version of the EKXL code, now in development.
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FIG. 1 (a) NON-DIAMAGNEIC MODEL FOR EL CONFINEMT IN MULTICUSP POLYWELLtm SYSTEMS
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FIG. 1 (b) DIAMAGNETIC MODEL FOR ELEMBN COtFINEMEr IN MULTICUSF POLYWEIltm SYSTEIS
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1. Schematic outline of system behavior and parameters. (a) Non-diamagnetic model; (b) Dagnmagnetic
model. Lines ()-)(b)-.(c) on each figure denote increasing electron drive and ion supply currents
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• Transit Time Calculations for Gjo

<r r> 2<r 0> 2
211 <r 0> + I <r 0 >2+ 2 [

tot V i n 7 + E 1/2 + 1/2t <r >1/2 2

For <rb> < <rw>:[<r W> 2 -<r b> 2

2R 
2 <rb> + 2 I

tMR [v-- + ]06Ew 1/2 + 1 E + ]l J / 2 <rw>I/2

<rb >2< r0> 1
t 2R <r0> + 2<r 0 >
tWB -V ] 112

I I E

For <rb> > <rw>:

t MR--Vi +Ew 11/E]/2 1Lt •0j

<r[ + > 2 -<|r +

_ 2 <~> f 2F~~ 12 1/ 1rb 1/

W E o 1212 -ro21/21+2

211 <r<>= O> [ r >
0 + 2

6EW +</> 2+

F= r<r +
0 <w W

4. Summary of formulae used for total and partial (segmented) electron transit time calculation in

virtual anode wells with simple power-law external shape



Mirror/Wime Model for jo

G = G (1-'<r b>) t MR rb < r

Gjo N b GjMRo x

ttot
Gj0- = jMRO[('-<rb) N tMR (GWB--l <b tWB r b> r x

ti to

where:

1
G. rb <r

jMRO b ad

1
G =MR __ r b> re

<rb>

2r Z
GJ'B = e2

NkL

<r> _ Z82rr 2  and W= E
<Tb> = (W)1/(m+2) Z =87M r2 an W t

NWkL2

(m 2 W 1/(m+2)

<r> ad -- <r0> + k-(<ab> _<rx>) <rd0> = r.2 r

2W k <rk> <r a0>

9 r e < r k > <r rx >

5. Summary of equations for total electron recirculation ratio, and under mirror reflection (HR) and
wiffli-ball (WD) operating modes, and formulae used for critical system radii (gyro, adiabaticity,
transition and magnetic pressure balance radii) in simple power-law wells



C\2 C\2_ 

_ 
_ 

_ 
_ 

--

AA

V 

- V

Ur)
.. .. .. .. ... .. .. .. ... .. .. ... .. .. .. ... .. .. .. .... .. ... .. .. .. ... . .. .... .. .... ... .. .. ... .. ... ... .>/

U)r

022 -

'

CC)

o o 

/- 

C.*. 
c \

4'IU 
1 .a l q 

ri. 1



02 CY

C%2CV .

v v*

Go .. ...... ...... .... .. . ......I.. ..... .... ........ ..... .. ..... . ..... ....-

coI
.. .................. ...... . . .. .... .. ........ ..... ............ .... ...... A. .

C-4
C\24

V '-4 : V

Lo.
.. . .. . . . ... . . . . ... . . . .. . . .. . . .. .. . .. . . . .. . . . .. . . .. .. . . . . .. .. . . .. . . .. . .. . .

0r)

co

. n

0)CC)

0i

N-

V 4 C4

'9-4 -- T"

0) 0) 0) 0) 0) 0) 0 1)



+ CO 0)
c1- -4

6C\2

030

-4 A
.. ......... .. .. .. .. .. ..

Sd
-4

. ................ ... .......... .... ..... ... .. ..... . . ... ......... ... o
a)0

uQs~0 40
0i ..4s- s

PO) 4

14

p4 :
01 .10 0

00
a) as

I I c0 o~

Q 4j4 0

V-0

TI



0)

V-4

-4c_ '-

ON ~0)
a)\

9-i
a CC)-CO

... .. .. .. .. ... .. .. .. .. ... . .. .. .. ... .. .. .. .. .. .. .. .. .. ... .. ... .. ... .. .. .. ... ... . .. .. ..
VW-~

01 3~ .... .... ... . .. . ..... ... .... ... .... ... ... ... .... ...

aa0

C\2oL
IVI

.. .. ... .. ... .. ... .. ... .. ... ... .. ... .. . ... .... . ... ... .. .. ... .... .. .... ... .

- .o-

o so 0

01
C'42

02 0

P4 0
. 140

r,5~-5 ge.*
................... ~~~~~~~ ~ ~ ' ............... ...... ..... ..........

2 c5

1______ 11111111 h l I Ii ii I I iiiii I I I iii h i iit I I I Iiiiiil I I I I iiiiii I I 1-11 11
toa) 1 ) ý4 09.

W) 9. ) 1) (D ) Ma 0
_ - 9- W-4 v -- 4



cc4ý

C\2

......... ... .... V
.. ... ... .. ... .... ... .. .. . .. ... ... ..... .... ... . .... ..

W. .

0 3 ......... ... .. ..... ...

.~~~~~~~~~ ~ ~ ~ ~ ~ ~ .......... .......... ... .......

.....~~~~~ ~ ~ ~~ ............... ........ ...........

.4-4
LO..

N.4

(u
. ....... .... .......... ...........

cn ........................... . .... ...

U)

IUD)

w(

....... ..... ..... .... .. .....I... ..... ........

9 
C.

a) 
-4



0)~

0 _ _ _ _ _ _ _ CO__ 0)0

A C\

co ad,

00 r

00
lull

UlU)

I n ........... ....... .. . .... ..

20 I

U) 1.-) c) I

coo~

rns-

..........

CO 1II 
Sr Uv-

0



4 +)

-Oj~~~~~~~~~.. ....... .......... .. ...

V W-

00

CoI

CC\

o 0o
00)

-c cv £

- t .aU

0

_0 0

4 .) .4a
0 0

I I)

I4 0

-4 0

Q)

V ) ) 4) Q) w) 4



(CUI/I) Al!suea 011-v JO 3071

le 0

.........I.............................. .. . . . . . . . .. ........... ..............

.......I .............. ......... ............. . ..... . . . . . . . . .

...................................

. . .. . . .-. . . . .. ................ 92s

a) a

.............. .................. ........... ............ .........., . .. I... ................... I...............I

...... I........................- ......... M

c u4

_ . . . ........... /............. .- ,......... -.... .. ...- . .......

.- . . .. .... .................. . .......... ...... ............. C ~ I~~

.-.. .. .i7..........I.... ....... ......~ ... . . . . 11111
1l C - icc

0 0 0 0 0

> 6d :o I-'~
Ij I

.A I ........... ...............- %



Cc

0

co 44

o W C:
rn~ OS

4)

IL DC
5-.4

4..4
0 g

C"fl

000

o oS

I LA C)

crcO

Vý.UJ .. lsg 9.0



(V) juaaano unf) uoj

Cco 0 II

.......... .ILIL4 L.U..-J J U...JI........ W.L.L. , v

........... .... ................... ............. ....................... .......- ............... ....... . C4

'4.

Cf C

oc
.. ... ..... ... ... ... .. . .. . .... ... ... ... ... ......... .. ... . .. . .. ...... ... ... ... ... ... . .. .. . .. . .. .

...... .. ............ .... . .................................... . . . ....... . .......... .. ............

. .... . ............... ... ....... . .. .-............ . ............... .... . .... s~~.....................--...
c .4)

N% C-1

0 ) "* * ..... ... .. .. ...... .. ... . ...

0....... .. .2: ....
4 o

44

. ...... .........-.... . . . ....... . . . . . . .

o.. .... . ......-- -- -- . ......... . ...........

4.40

4 JV0

.............. ... .... .... .~~ .~ij. ..u i .L...... 0 4w '0

C12 0 CC r o
cI2 C-4- -4

a),/I fxlVc 9) UV00



A ihabatic
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/

9. Cross section through polar sidplane of a biconic "spindle" magnetic cusp aystem, 16 showirng the
transition radius rý and the adiabaticity radius rad, together with the electron gyro radii at each
of these positions fa the field. glbctrons 'encountering the cusp m'mirrorsh at r are adiabatically
trapped beyond rad' but reach red by traversing the region between the Inner solil and middle dashed
field envelope lines In the figure, as well as by direct motion from the non-adiabatic region itself.
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