

AD-A257 646

CLEARED FOR OPEN PUBLICATION

<BREH.W3:v.1.1;10/07/91>

OCT 13 1992 12

DIRECTORATE FOR FREEDOM OF INFORMATIO. AND SECURITY REVIEW (DASD-PA) DEPARTMENT OF DEFENSE

REVIEW OF THIS MATERIAL DOES NOT IMPLY DEPARTMENT OF DEFENSE INDORSEMENT OF. FACTUAL ACCURACY OR OTIMION.

Accesion For NTIS CRA&I DTIC QUALTER INCLUED 4 DTIC TAB Unannounced П Justification BREMMSTRAHLUNG RADIATION LOSSES By _____ Dist. ibution / Availability Codes Avail and/or Dist Special

Robert W. Bussard and Katherine E. King

IN POLYWELL^{ts} SYSTEMS

EMC2-0891-04

APPROVED FOR PUELIC RELEASE DISTRIBUTION UNLIMITED

This work performed under Contract No. MDA-972-90-C-0006 for the Defense Advanced Research Projects Agency, Defense Sciences Office.

92 11 20 096

EMC2[®] ENERGY/MATTER CONVERSION CORPORATION 9100 A Center Street, Manassas, VA 22110, (703) 330-7990

92-5- 438K

BREMMSTRAHLUNG RADIATION LOSSES IN POLYWELLth Systems

The degree to which bremmstrahlung radiation constrains or limits system performance depends on the energy E_e of the electrons which are the principal source of this radiation, through their collisions with in-situ ions. This is true in those cases in which the electron energy is such that the electron speed exceeds the ion speed, at which condition the ions can be regarded as stationary targets for the electrons. If the electron energy is so low that the electron speed is comparable to the ion speed, then the ion energy must also be taken into account in computation of bremmstrahlung.

This latter condition can obtain only in the core of the Polywelltm device, and then only if the central virtual anode is nearly zero in height, and if the electron/ion collision rates are sufficiently small that no significant collisional heating of electrons can take place during the electron lifetime in the machine. Conditions under which these effects can be achieved in the Polywelltm system (in marked contrast to magnetic confinement LTE systems; in which they can .NOT be achieved) are discussed further, following.

The basic expression for bremmstrahlung power density¹ in a mixture of electrons and j classes of ions, each with charge Z_{i} ,

$$q_{hr} = 1.69E - 32(E_{p})^{0.5} n_{p} \Sigma(n_{j} Z_{j}^{2})$$
(1)

shows this quite clearly. Here E_e is in eV and n in $1/cm^3$ for q_{br} in w/cm^3 .

In considering the range of fusion fuels it is important to note that the effect of Z > 1 can become quite profound on bremmstrahlung output, even at small Z. This is because, in the Polywelltm system, the charge density is very nearly neutral in the regions of highest density, where the principal radiation is generated, and $n_e = n_1Z_1 + n_2Z_2$ while $\Sigma(n_jZ_j^2) = (n_1Z_1^2 + n_2Z_2^2)$, where n_1 and n_2 are the local densities of the two fusion fuel species.

Writing these as fractions of the total ion density n_i , $n_1 = f_1 n_i$, $n_2 = f_2 n_i$, gives the bremmstrahlung power density as

$$q_{\rm br} = 1.69E - 32(E_{\rm a})^{0.5} n_1^2 (f_1 Z_1 + f_2 Z_2) (f_1 Z_1^2 + f_2 Z_2^2)$$
(2)

Now, the total bremmstrahlung power output is just this expression integrated over the ion density and electron density distribution in the system volume. Thus $P_{br} = \int q_{br} 4\pi r$ dr over $0 \le r \le R$. It is readily shown² that this can be written in a simpler form as the integration over the convergence core volume, multiplied by a factor K_b which is the ratio of total bremmstrahlung power to core region power, thus $K_b = P_{br}(total)/P_{br}(core)$.

Assuming that the fuel mixture remains constant¹ throughout the region of

 $^{1^{-\}pi}$ The fuel mixture will NOT be uniform over the total volume in mixtures of high-Z and low-Z fuels; high-Z fuels will be excluded from the outer regions of the machine. However, essentially all of the bremmstrahlung comes from the near core region, where the fuel mixtures will be constant.

the machine that is effective for generation of bremmstrahlung, this factor can be found by integration of eq.(2) with the appropriate distributions. In the region $0 \le r \le r_c$, both the ion density and the electron energy may be taken as constant, thus $n_i(r) = n_c$, and $E_e(r) = \eta_e E_o$, where E_o is the electron injection energy (and maximum possible well depth). The parameter $\eta_e = E_e(\text{core})/E_o$ is the fractional energy of the core electrons, expressed as a virtual anode height parameter. Note that $\eta_e \ge \eta$, where η is the height of the central virtual anode.³

From $r_c < r < r_k$ the density follows $n_i(r) = n_c(r_c/r)^2$ and the electron energy can be taken (see ref.3) as varying as $E_e(r) = \eta_e E_o(r_c/r)^2 + E_o(r/R)^3$, for a potential well with $m = 3.^{2*}$ This gives a reasonably good fit to the local potential and thus to the local electron energy, which is assumed to be in equilibrium with the potential. It can be shown⁴ that the ion density increases in the region from $r_k < r < R$ from its value of n_k at r_k to $n_R = 3.0n_k$. For convenience this can be written as $n_i(r) = n_k(r/r_k)^9$, where the exponent is given by $q = 3.0/LN(R/r_k)$.

Using these forms and integrating it is found that the first and second terms (i.e. in the region $r < r_k$) are dominant, and that the bremmstrahlung is split about 40% from the core and 60% from the central region immediately outside the core within the intermediate and inner mantle region, $r << r_k$. This result agrees with previous analyses⁵ of the distribution. Thus $K_b = 2.50$ and the bremmstrahlung power is given by

$$P_{br} = 1.69E - 32[(f_1Z_1 + f_2Z_2)(f_1Z_1^2 + f_2Z_2^2)][K_b n_{e}^2(E_{e})^{0.5}]$$
(3)

in watts for E_e in eV, where n_c is the ion (and electron) density in the core.

The total fusion power in the system can be written in terms of the local fusion power density

$$q_f = b_{i,i}(n_i(r))^2 \sigma_f(E) v_i(E) E_f$$
(4)

integrated over the system. Here b_{ij} accounts for the possible number of interactions among differing and like specie fuels. In like fuels (e.g. DD) $b_{ij} = 0.5$, and for unlike fuels (e.g. DT) $b_{ij} = f_1f_2 = f_1(1-f_1) = f_2(1-f_2)$. The maximum value of b_{ij} for unlike fuels requires that $f_1 = f_2 = 0.5$ for which $b_{ij} = 0.25$.

In a similar fashion to the bremmstrahlung analysis, above, the total fusion power can be expressed in tgerms of that generasted within the core and that outside, by the ratio $K_f = P_f(total)/P_f(core)$. However, here the ion energy distribution differs from that for the electrons, as the system is nowhere in LTE and the ions are "cold" where the electrons are "hot", and vice versa. The ion energy varies as $E_i(r) = (1-\eta)E_o(r_c/r)^2 + E_o(r/R)^3 = E_o(1-\langle r \rangle^3) - \eta E_o(r_c/r)^2$.

Detailed calculations of fusion power density distribution and total fusion power output have been made for a variety of systems, using the EKXL v.4.1

^{2*} The actual well in an m = 3 system follows the "rollover" formula $\langle r \rangle^3 f_0(r)$, where $f_0(r) = 2/(1+\langle r \rangle^5)$. However, most of the bramstrahlung comes from the inner regions where $r \ll 1$, in which the $\langle r \rangle^3$ approximation is quite good.

code. Results^{6,7} of these show that both the power density distribution and total power are functions of the central virtual anode height (and thus of the allowed ion current). The variation is such that, as the anode height increases, less of the fusion power is generated within the core convergence radius $\langle r_c \rangle$, and more comes from the region immediately outside ($r < 10r_c$) this core. As the anode height factor (7) approaches unity, the core-generated power drops to zero and all of the power comes from outside the core. From this work it is found that the factor K_f varies as

$$K_f = 2(1-\eta_0)/(1-\eta_0)$$
 (5)

where η_o is that value at which the in-core and out-of-core contributions are equal. Typically, $\eta_o \approx 0.167$.

With this and noting the ion collisional speed in the CM system as given by $v_i = (2E_i/m_{pi})^{0.5}$, where m_p is proton mass and $M_i = m_1m_2/(m_1+m_2)m_p$ is the normalized reduced mass of the ions, the total fusion power can be written as

$$P_{f} = 0.1 b_{ij} K_{f} n_{c}^{2} [\sigma_{f}(E_{c})] (2E_{c}/m_{p}M_{i})^{0.5} E_{f} k_{e}^{1.5}$$
(6)

in watts, for $k_e = 1.6E-12$ ergs/eV, the fusion reaction energy E_f in MeV, and the core ion energy E_c in eV. Net power output requires that the ratio $P_{fb} = P_f/P_b$ be greater than unity. From eqs.(4) and (6) this becomes

$$P_{fb} = \frac{K_{f} b_{ij} (2/m_{p} M_{i})^{0.5} (\sigma_{f} E_{f}) k_{e}^{1.5} (E_{c})^{0.5}}{K_{b} [F_{2}(Z)] 1.69 E - 31 (E_{e})^{0.5}}$$
(7)

where $F_2(Z) = (f_1Z_1+f_2Z_2)(f_1Z_1^2+f_2Z_2^2)$.

Specializing to the case where one fuel is singly-charged $(Z_1 = 1)$ and noting that $f_1+f_2 = 1$, gives $F_2(Z) = [1+(Z_2-1)f_2][1+f_2(Z_2^2-1)]$. With this and writing $E_c = (1-h)E_o$, $E_e = n_eE_o$ eq.(7) becomes

$$P_{fb} = \frac{K_{f}[F_{3}(Z)](2/m_{p}M_{i})^{0.5}(\sigma_{f}E_{f})k_{e}^{1.5}}{K_{b}1.69E-31[\eta_{e}/(1-\eta_{i})]^{0.5}}$$
(8)

Here the function $F_3(Z) = b_{ij}/[F_2(Z)] = (1-f_2)f_2/[F_2(Z)]$. Evidently there is an optimum value of the high-Z fuel fraction f_2 , that will give a maximum fusion-to-bremmstrahlung ratio. This is found by differentiation of $F_3(Z)$ to be

$$f_{2'opt} = 1/(Z_2^{1.5} + 1)$$
(9)

and the optimum ratio of $Z_1 = 1$ to high-Z fuels is $f_{12} = f_1/f_2 = Z_2^{1.5}$.

Thus, for D^{3} He, $f_{2} = f_{\text{He}} = 0.261$, $f_{12} = 2.83$, while for p^{11} B, $f_{2} = f_{B} = 0.082$, and $f_{12} = 11.2$. In the D^{3} He case the system must be rich in D, which leads to larger fraction of DD reactions and thus to higher neutron radiation output than for 50:50 or lesser mixtures. The p^{11} B case is very proton-rich, which leads to much smaller power output from a given size of device which will, in turn, drive the system to larger sizes and higher B fields. The maximum value of P_{fb} is thus determined by the natural properties of the fuels, the fusion cross-section (thus by the injection energy and well depth) and the energy of electrons in the central core. Using eqs.(5) and (8) and taking operation at optimum conditions (eq.9), the ratio P_{fb} can be written as

$$P_{fb} = [F_b(f,Z,M_i,E_f)][\sigma_{fb}(E_c)][2(1-\eta_c)/K_b][1/\eta(1-\eta_c)]^{0.5}$$
(10)

for σ_{fb} in barns (b), taken at core ion energy, $E_c = (1-\eta)E_o$, and the core electron energy factor has been set at $\eta_e = \eta$. The inherent values of the functional term, F_b are given in Table 1, below, for optimum mixtures and for 50:50: (equal) mixtures of each of the fuels shown. Also shown is a very He-rich D^3 He case, to approximate "radiation-free" (i.e. insignificant DD reactions) operation such that NO shielding is required with this fuel combination.

TABLE 1	l			
FUSION-TO-BREMMSTRAHLUNG	FACTORS	FOR	VARIOUS	FUELS

	Opti	Optimum Fuel Mixtures			50:50	Mix	1:1000
Fuel	DT	DD	D ³ He	p ¹¹ B	D ³ He	p ¹¹ B	D ³ He
E _f (MeV)	17.6	3.65	18.3	8.7	18.3	8.7	18.3
Mi	1.20	1.00	1.20	0.92	1.20	0.92	1.20
f ₂ ¦ _{opt}	0.50	(2)	0.26	0.082	0.5	0.5	0.999
F _b ⁽¹⁾	57.7	23.9	18.8	2.28	13.0	0.76	0.22

(1) for σ_{fb} in (b)

(2) b_{ij} factor for DD is 0.5

Note that the energy per fusion event is lower for DD than is frequently quoted^{8,9} for complete burning of all of the products of the initial DD reaction. This is because the fusion products always escape the core of the electrostatic system and are not used directly in the burn cycle within the confined core region. Also note that the F factor for D³He drops drasticsally as the mixture ratio is changed to seek nearly-neutron-free fusion power gfeneration, so that D³He systems than can be operated without significant radiation shielding have E values less than those for p¹¹B, which has no direct neutron output.

Since $K_b = 2.5$, $n_o = 0.167$, and γ must be small for effective operation, eq.(10) can be approximated as

$$P_{fb} = 0.667 F_b \sigma_{fb} / \eta^{0.5}$$
(11)

For fusion power generation to exceed breamstrahlung then requires that $P_{fb} > 1$, which will occur only when $\sigma_{fb} > K_b(\eta(1-\eta))^{0.5}/2F_b(1-\eta_o) = 1.34\eta^{0.5}/F_b$, as a necessary criterion for net fusion power.

Determination of the minimum possible value of η_e that can be achieved is of some complexity, for it involves considerations of ion/electron up- and down-scattering collisions in different regions of the system, as well as of the ratio of ion current to electron drive current used to establish and maintain the potential well.

The EKXL code runs have shown that minimum virtual anode heights will always be at or above $(1-a_q) \approx 0.005$ (i.e. the maximum well depth never gets closer to injection energy than $a_q = e\Phi_{max}/E_o \approx 0.995$). If the electrons could be kept at this energy, then $\eta_e = 0.005$, and bremmstrahlung losses will always be much less than fusion power generation capabilities. The question here is the degree to which ion/electron collisions in the core region can transfer ion energy to the electrons sufficient to raise η_e significantly above this level. It is thus necessary to examine the ion/electron collisional energy exchange process in some detail.

Such energy exchange will, of course, occur in the core, mantle and edge regions. In the outer mantle, beyond the electron "stagnation" radius $\langle r_f \rangle = (dE_o I/E_o)^{0.5}$ and in the edge region, electron/ion collisions will "cool" the electrons, while in the region inside $\langle r_f \rangle$ ions will "heat" electrons. The important feature is the balance between up- and down-scattering in a single pass of an electron through the system. If the up-scattering in core region passage is removed by the down-scattering in extra- $\langle r_f \rangle$ collisions with cold ions, then the core electron energy will be stable. This stable electron energy is thus a result of competing collisional processes in the spatially-alternating non-LTE ion/electron distribution in the system. Analysis of these processes shows the stable up-scattered electron core energy (at which equality of ion/electron energy exchange will take place in the "heating" and "cooling" sections of the system) to be approximately

$$\eta_{e} = (N_{core}/N_{tot})(\langle r_{f} \rangle^{4})/10 \langle r_{c} \rangle^{0.5}$$
(11)

Here N_{core}/N_{tot} is the fraction of electrons that "see" the core, equivalent to the single-pass core-sampling frequency of electrons circulating in the system, and the factor of 10x comes from analysis of the edge/mantle cooling collisions. The sampling frequency can be estimated by a simple ratio of electron number in each region. Using the density distributions cited above and integrating over the complete system gives this approximately as <r_c>/3. Substituting into eq.(11) yields

$$\boldsymbol{\eta}_{e} \approx (\langle \mathbf{r}_{f} \rangle^{4}) \langle \mathbf{r}_{c} \rangle^{0.5} / \underline{30}$$
(12)

If $\langle \mathbf{r}_{\mathbf{f}} \rangle = 0.707$, for example (a highly-spread electron distribution), and the convergence radius is taken to be $\langle \mathbf{r}_{\mathbf{c}} \rangle = 1E-2$, then $\eta_{\mathbf{e}} = 0.83E-3$ is found. If $\langle \mathbf{r}_{\mathbf{f}} \rangle = 1.0$ (the maximum possible value), then $\mathbf{n}_{\mathbf{e}} = 3.3E-3$, above the ion-driven virtual anode height. Taking this as $\eta = 5E-3$, as discussed above (for maximum $a_{\mathbf{q}}$), yields an electron core energy of $\eta_{\mathbf{e}} = 5.8-8.3E-3$ as an absolute minimum for a system constrained to operate at the lowest possible virtual anode height.

It is obvious, from eqs.(10,11), that maximum P_{fb} will be found for the highest possible value of the fusion cross-section, σ_{fb} , thus for operation at

that energy at the peak of the cross-section variation. However, this peak energy is not necessarily optimum for the competition of fusion with synchrotron radiation power, P_{sy} . A study of the synchrotron question has shown¹⁰ that the optimum well depths (injection energies) for maximum $P_{fs} = P_f/P_{sy}$ are as listed in Table 2, below.

Fusion-to-bremmstrahlung power ratios, P_{fb} , are given in Table 2 for each of the fuel mixtures used in Table 1, above, for a variety of well depth or injection energy conditions. These calculations have been made using a practical minimum value of $\eta_e = 0.01$ for the core electron energy ratio; from eq.(11) this gives $P_{fb} = 6.667F_b\sigma_{fb}$.

TABLE 2 CPTIMUM OPERATION FOR FUSION/BREMMSTRAHLUNG POWER BALANCE

	Optimum Fuel Mixtures			50:50	50:50 Mix		
Fuel D1	DT	DD	D ³ He	p ¹¹ B	D ³ He	p ¹¹ B	D ³ He
E _f (MeV)	17.6	3.65	18.3	8.7	18.3	8.7	18.3
f ₂ ppt	0.50	(2)	0.26	0.082	0.5	0.5	0.999
$F_{b}^{(1)}$	57.7	23.9	18.8	2.28	13.0	0.76	0.22
for opt syne	 chrotr	on los	 Bes		********		
E (keV)	30	23	110	500	110	500	110
$\sigma_{eb}(E_{abc})$ (b) 4.0	0.030	0.50	0.70	0.50	0.70	0.50
Pfblayn	1539	4.78	62.7	10.64	43.3	3.55	0.73
for optimum	bremm	strahl	ung				
E _{nk} (keV)	40	600	170	560	170	560	170
$\sigma_{eb}(E_{nk})$ (b)	5.0	0.20	0.70	0.80	0.70	0.80	0.70
Pfblaax	1923	31.86	87.7	12.16	60.7	4.05	1.03
(1) for a							

(1) for σ_{fb} in (b) (2) b_{ii} factor for DD is 0.5

Note from Table 2 that all of the fuels can operate at bremmstrahlungoptimum mixture ratios with negligible bremmstrahlung losses if the electron energy state can be kept as low as assumed above. However, losses with $p^{11}B$ at 50:50 mixtures are significant in comparison with fusion power generation, and losses in D³He at the 1:1000 mixture ratio taken for radiation-free operation are prohibitive. DT is able to operate easily at all conditions, and can function quite well at any virtual anode height condition. In fact, all of the fuels at optimum mixture conditions can operate with minimal bremmstrahlung at anode heights of $\eta_e \leq 0.15$, or so. Also, it is clear that DD and D³He is similar performance envelopes at optimum mixture conditions, while D³He is similar to $p^{11}B$ when operated in a non-radiative mode. Finally, note that bremmstrahlung is a more pervasive constraint than synchrotron radiation because the latter can be reflected by bounding metal walls, and the loss fractions are much less than given above when the effects of resonance self-absorption within the plasma are taken into account.¹⁰ Bremmstrahlung power generation is inherent in the plasma mixture, it can not be suppressed, reflected or self-absorbed - it is simply a loss mechanism.

In conclusion it is gratifying to see that all four of the fuel combinations can be made to work effectively in the Polywelltm system; a result that is not true for use of these fuel combinations in "conventional" magnetic, Maxwellian fusion systems in local thermodynamic equilibrium.

REFERENCES

1. D.L. Book, "NRL Plasma Formularv," 1983 rev., Naval Research Laboratory, Wash., D.C., p. 57

2. R.W. Bussard, G.P. Jellison, G.E. McClellan, "Preliminary Research Studies of a New Method for Control of Charged Particle Interactions," Pacific-Sierra Research Corp. Report PSR 1899, 30 November 1988, Final Report under Contract DNA001-87-C-0052

3. R.W. Bussard and K.E. King, "Electron Transit Time in Central Virtual Anode Wells," Energy/Matter Conversion Corp. Technical Note, EMC2-0291-03, Mar. 1991

4. R.W. Bussard, "Edge Region Distributions and Svnchrotron Radiation," Energy/Matter Conversion Corp. Technical Note, EMC2-0991-04, Sept. 1991

5. Op cit ref. 2, App. A, Sect. 2(d)

6. Robert W. Bussard and Katherine E. King, "Virtual Anode Height Variation in Polvwelltm Systems," Energy/Matter Conversion Corporation Technical Note, EMC2-0991-02

7. EMC2 Presentn to Meeting of HEPS Program Sci. Advisory Board, San Diego, CA, 29,30 July 1991

8. Robert A. Gross, "Nuclear Fusion," John Wiley & Sons, New York, 1984, Chaps. 1-3

9. S. Glasstone and R. Lovberg, "Controlled Thermonuclear Reactions," Van Nostrand. New York, 1960, Chaps. 1,2

10. Op cit ref. 4