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INTRODUCTION

Understanding of the dynamic response of underwater towed systems has been of interest for
many years. In response to this need, many compdter programs have been developed over the past
30 years to model this response; these computer programs are based on a number of methods
including the continuum, finite element, finite segment, and lumped parameter approaches. Ref-
erences 1 through 11 describe the underlying methodologies for some of the codes in existence
today. Although the calibration and validation of these codes is not always straight forward, it is
generally believed that they capture the basic dynamics of these systems.

Many of these codes generate a set of nonlinear equations of motion that are numerically
integrated to determine the two or three dimensional motion of the system over a specified interval
of time. Because these codes function in the time-domain, they may be used to perform "numerical
experiments" to gain insight into the fundamental dynamics of these systems. However, this is at
best a trial-and-error process because the equations of motion generated and solved by the codes
are quite complex, and in themselves, provide few useful hints about the overall system behavior.

Alternatively, some of the codes110 break down dynamic response into a fewer number of
response modes of the system. In particular, Reference 1 discusses the classical normal mode
response of the system based on a numerical linearization of the nonlinear equations of motion
about a stationary steady-state equilibrium. As Reference 12 suggests, this approach offers sig-
nificant insight into the dynamical response of the system and into how this response is affected by
various system parameters. Also, by comparing the linear and nonlinear responses by time domain
simulation, nonlinear effects can be identified and evaluated. By this latter procedure, References
1 and 5 recognized the nonsymmetric response of a towed sphere under tow point excitation to be
a result of system nonlinearities.

This paper presents an overview of a procedure that combines the strictly numerical finite
segment approach pNre,4sented in References 5 and 9 with the nonlinear analytical perturbation method
of multiple scales 1. This approach involves a two-step process. First, the fully-coupled three-
dimensional nonlinear equations of motion for a finite segment model of a towed system are
decomposed about a stationary steady-state equilibrium position into a set of equations in modal
(or normal) variables; only quadratic nonlinearities are maintained in this process. These
complex-valued equations are completely uncoupled in theirlinear terms, but in general, they remain
coupled through the nonlinear terms. Inspection of these equations tells which modes are coupled
at this level of approximation. Next, the method of multiple scales may be applied to these equations
to determine the effects of quadratic nonlinearities on the response of single modes or on the
interactions between modes of the system under tow point excitation. This report outlines the
application of multiple scales to the response of a single mode only; application to mode coupling
will be presented in a future report.

This approach combines the benefits of both numerical and analytical methods. Equations
of motion about general steady-state configurations can be generated for complex systems, and
after modal decomposition, analytical procedures can be applied to gain insight into the modal
response of the system about those configurations.
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The balance of this report is divided into five sections. The first discusses the full nonlinear
equations of motion of a towed system and how they can be reduced to describe motions about
stationary steady-state configurations; terms up through quadratic nonlinearities are maintained in
the process. The second describes the modal decomposition and solution of the linearized equations.
The third discusses a set of reduced nonlinear equations for the modal variables in which the modes
of the system are coupled through the quadratic nonlinearities. The fourth section presents the
methodology for the application of the method of multiple scales to determine the effects of the
nonlinearities on the response of single underdamped modes of the system; it also includes results
computed for two modes of a towed sphere with excitations both in and normal to the towed end
of the cable. The final section contains a short summary.

EQUATIONS OF MOTION

NONLINEAR EQUATIONS

In this paper, a towed cable system is assumed to be a single or multiple branched cable
system with towed bodies. The system is assumed to be towed from a single point. The cable
branches form an open-tree system having no closed kinematic chains. Each length of cable may
have different physical properties, and the towed bodies may be simple spheres or more sophisticated
underwater vehicles. The motion of the system tow point is arbitrary. Figure 1 depicts a single
branched system with a towed body.

These systems may be modeled by segmenting the cable into a series of discrete rigid links
connected end-to-end using frictionless spherical joints. In general, the equations of motion of
these so-called finite-segment models may be written in the form

±t,=fj(x 1)=x.,i (i=1,...,N;j=l,...,2N) (1)

,ti--fi(xpuk) (i-N+I,...,2NV;j- 1,...,2NV;k-- ,...,M) (2)

where, for example, the xi(i = 1,...,N) may represent the orientation angles of the cable links and
the towed vehicles relative to some reference frame, the x,(i = N + I... ,2N) represent the first
derivatives of these angles, and the uk(k = 1,...,M) represent external inputs such as motions of the
system's tow point and motions of the towed vehicles' control flaps. There are many different
analytical approaches that can be used to provide the equations in this form; the methodology used
in this work is outlined in Reference 5.

During steady forward or steady (circular) turning motion, and in the absence of external
disturbances, a towed system exhibits stationary steady-state equilibrium positions. In these situ-
ations, x,(i = 1,...,N) the orientation angles of the links and towed vehicles relative to the mean
ship frame remain constant. In this case, the right sides of equations (1) and (2) are zero, and the
angles defining the equilibrium shape of the system may be found by solving the N nonlinear
algebraic equations

2
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f÷+i(X;;Uke)=0 (i,j=l,...,N;k=l,...,M) (3)

where the x4 and ut represent the equilibrium values of the orientation angles and the external
inputs, respectively.

Numerically solving Equations (3) for the steady-state equilibrium orientation angles can be
difficult unless guesses very near the equilibrium values are used to initialize the solution process.
In practice, these equations can be replaced by a series of smaller sets of equations that can be solved
sequentially, allowing for a much more rapid and effective determination of the equilibrium angles.
For example, the equilibrium equations for each body (cable links and towed vehicles) in the system
may be written and solved as separate sets of equations so long as the solution process begins with
equations associated with bodies at the ends of the branches and then proceeds from body to body
towards the system tow point. For partially submerged systems or systems undergoing circular
motion, this procedure is complicated somewhat. In these cases, the procedure must be repeated
until convergence for the overall system occurs; however, this iteration process has generally been
found to converge very rapidly.

REDUCED NONLINEAR EQUATIONS - QUADRATIC NONLINEARrlrES ONLY

To describe motions of the system that result from small disturbances to the state variables
x,(i = 1, ... ,2N) and to the external input variables ut(k = 1, ... ,M), the right sides of the nonlinear
Equations of motion (1) and (2) can be expanded in a Taylor Series about the equilibrium config-
uration defined by the solution of Equations (3). To this end, introduce the variables yj to represent
perturbations of the equilibrium values of the state variables, and introduce the variables v& to
represent perturbations of the equilibrium values of the external input variables so that

x, = x' + y, (i =,...,2N) (4)

uk = u,, + v. (k I,1, ,M). (5)

Substituting these expressions into the nonlinear equations of motion, expanding in a Taylor Series
about the equilibrium configuration, and omitting terms of third and higher order in the perturbations
y, and vk results in equations of the form

j B + +cY.,yyB, , +y. D,,zv, + . Eyv• (6)
2 ,.. 2 i j.k

where
Bi a' (7)

"Ii Il I.
O 3 (8)

3
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The subscript e on the partial derivatives indicates that they are evaluated at the equilibrium con-
figuration. Because the first N equations of motion (Equations (1)) are simply definitions of the
state variables xi (i = N + 1,..., 2N), many of the A4,Bi, BCo=, Dk, and Eig take on the values of zero
or one and may be determined by inspection. All the other values may be approximated using finite
differences; in this work, second-order central differences are used. Also, note that due to the
equality between mixed second partial derivatives, the C and D arrays possess some symmetry so
that Co = Cij (j, m = 21,..2) and Dim = Di (k, I = 1,...,M).

In the case of very small excursions from the steady state equilibrium position, Equations (6)
may be further reduced by omitting the quadratic nonlinearities to give the linear equations

Sýfi =AXA + ZBa Vi. (9)
J k

MODAL DECOMPOSITION OF LINEAR EQUATIONS OF MOTION

EIGENVALUES AND EIGENVECTORS

The natural frequencies and corresponding mode shapes of the towed system motions
described by the linear Equations (9) are determined by calculating the 2N eigenvalues and
eigenvectors of the matrix A whose elements are the A, (ij = I,-, 2N). Typically, some of the
eigenvalues will be real, and the remaining will occur in complex conjugate pairs. Assuming that
the eigenvalues all have negative real parts (indicating that the steady state equilibrium is linearly
stable), the real cigenvalues represent overdamped modes, and the complex ones represent
underdamped modes. It will be assumed in the balance of this report that the steady state equilibrium
is linearly stable and that A has 2N distinct eigenvalues and hence, 2N linearly independent
eigenvectors.

As discussed in Reference 15, the eigenvector associated with the eigenvalue k- takes the
form

P, = {.(} J (10)

where pi is a 2N x 1 vector that can be partitioned into two N x 1 vectors; as indicated in Equation
(10), the bottom half vector is simply the product of the cigenvalue and the top half vector. The
eigenvector is real-valued for real eigenvalues and complex-valued for complex eigenvalues.
Moreover, eigenvectors that correspond to a pair of complex conjugate eigenvalues are themselves
complex conjugates of each other.

The top half of the eigenvector represents the shape of the towed system. If the eigenvector
is real-valued, then all points along the cable move in-phase as the mode is excited. However, if
the eigenvector is complex, then there is a phase shift between the motions at different locations
along the cable. Although the phase angle does vary along the cable, the relative phase shift between
any two points along the cable is maintained as the cable moves. For example, it is not uncommon

4
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for motion near the system tow point to be 180 degrees out of phase with the cable near the towed
body. This is illustrated in Figure 2 that shows the steady-state configuration and five snap-shots
of an in-plane mode of a 100-foot cable towing a 500-pound spherical body at 5 knots. The dis-
placements have been magnified for clarity.

Finally, P, the "eigencolumn" or "modal" matrix of A is defined to be the 2N x 2N matrix
whose columns are formed from the eigenvectors of A. When the eigenvalues are all distinct, the
modal matrix can be used to diagonalize A as follows:

lr4Ap = [A]. (11)

Here P represents the modal matrix and [A] represents a diagonal matrix that has the eigenvalues
of A on its diagonal.

SOLUTION OF LINEAR EQUATIONS OF MOTION

The linear equations of motion (Equation (9)) can now be solved by introducing a set of
normal or modal coordinates that are related to the state variables through the modal matrix as
follows:

y, = J•Pz. (i,m =1,...,2N) (12)
m

where the P. are the elements of the modal matrix P. Substituting this relationship into the linear
equations with external inputs and premultiplying that equation by P,1 leads to a set of uncoupled
differential equations for the modal coordinates that may be written as follows:

, = ,z,+f, (r=l,...,2N) (13)

where
f, = #,*vk = YP7'Bakvt. (14)

k i~k

Equation (13) represents a set of uncoupled complex-valued first-order ordinary differential
equations for the z,. As shown in Reference 12, the general solution to Equation (13) can be found

by using the integrating factor e-x'; the solution may then be written in either of the two equivalent
forms

z, -- + e~fef"(r)dr (r=I,...,2N) (15)

or

z, =z,(0)e' + eU e" Af,(r)dc (r=1,...,2N). (16)

5
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Here the H, (r = 1,...,2N) represent 2N arbitrary constants of integration and the
z,(O) (r = 1,..-.,2N) are the values of the z, at time t = 0. The values of the state variables can now
be recovered by substituting the right sides of either Equation (15) or (16) into Equation (12) to
give

= P{H,eks + e~fe_""f,()dr4 (17)

or

Yi= Pi, (0)e + ek fe fC(r)d. (18)

Equations (17) or (18) give the general solution to the linear dynamical equations of motion of the
N degree of freedom finite-segment model of a towed system with arbitrary external excitation.

ANALYSIS OF SYSTEM MOTIONS BY MODE SUPERPOSITION

Motions of a towed system that can be described by the linear equations represented in
Equation (9) can be written as linear combinations of the eigenvectors of that system. First, z (0),
the initial modal vector is determined from y (0) the initial state vector as follows:

z(0) = r-y(O). (19)

The entries of the modal vector can then be substituted into Equation (18) to determine the system's
motion throughout time.

Note that because the motions represented by the y, on the left sides of Equation (18) are
real-valued, the sum on the right side must also be real. As discussed in Reference 12, this requires
that underdamped modes be excited in complex conjugate pairs. Corresponding to each such pair
of modes is a pair of modal coordinates that are themselves complex conjugates of each other. So
then, ff only pi and p,, a single pair of underdamped (complex conjugate) modes are excited, the
resulting time-varying state vector can be written as follows:

y(t) = zi(t)p + z(t)pj = zip, +4i = z;p1 + (zip-) (20)

where z, and zi represent the two complex conjugate modal coordinates associated with pi and pj
and the overbars represent complex conjugates. Because the right side of Equation (20) is the sum
of a complex conjugate pair, the resulting state vector is real-valued. In general, therefore, the sum
presented by Equation (18) will always be real-valued since complex values always appear in
complex-conjugate pairs.

6
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Note also that for systems undergoing external excitation, the above observations indicate an
underlying structure for the B array defined in Equation (14). In particular, if zi and z, represent a
pair of complex conjugate modal coordinates, then Ba =(- )(k = 1,...,M) to ensure proper
excitation of both modes.

REDUCED NONLINEAR EQUATIONS IN MODAL VARIABLES

Using the techniques outlined in the previous section, the reduced nonlinear Equations (6)
can also be transformed into modal variables. This is accomplished by substituting from Equation
(12) into Equation (6) and premultiplying by P1 l and simplifying. The result is a set of differerdial
equations for the modal coordinates that may be written as follows:

ti = Xz 1+ ++,+uBv -1zX9Dv+ Evkz. (t=I,...,2N) (21)
k 2v kJ ,k

where

A&= TP;.BA C., =. P.'C..WP,,P (22)

DS~I = YP.DEF. = •P 1 E4 ,P,. (23)
B I,)

Equation (21) represents a set of complex-valued first-order ordinary differential equations
for the z, that are coupled through the quadratic nonlinearities. Unlike the linear uncoupled equations
represented by Equation (13), these equations are not so easily solved. To better understand the
structure of these equations, some comments on the properties of the 6,6D, and E arrays may be
helpful at this point. As with the C and D arrays of Equation (6), the C and 15 arrays possess the
following symmetry properties:

eft =cu,(t,r,s = l,...,2N) D,=•(t= ,...,2N; k,l=,...,M). (24)

Also, as a result of the fact that the modal variables associated with pairs of complex conjugate
modes must themselves be complex conjugates of each other, additional symmetries must exist for
the B, CD6, and E arrays. In particular, if pi and p, represent a pair of complex conjugate modes,
then the following relationships hold:

ei wcj=(i (25)
J A=(-C,) DCu=(-A) (kl ,...,M) (26)

Eiik=• (E• k=I,..M) (27)

To fully understand the effects of quadratic nonlinearities on the modal response of underwater
towed systems, Equations (21) must be solved as 2N coupled equations. As with the fully nonlinear
Equations (1) and (2), this can be done by numerical integration; unfortunately, anlaytical solutions

7
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to these equations are generally not available. This approach provides perfectly acceptable solu-
tions; however, to gain significant insight into the fundamental dynamical behavior of these systems,
many such numerical solutions must be generated and studied. This trial-and-error process is very
tedious.

Actually, a close examination of Equations (21) for sample systems shows that these equations
are not fully coupled. Consider, for example, the towed system of Figure 2, consisting of a sphere
and a 100-foot cable being towed at 5 knots with no side currents. The modes for this system may
be separated into two basic categories: 1) modes that describe motions in the vertical plane of the
mean-ship motion (referred to here as in-plane modes; and 2) modes that describe motions of the
system out of this plane (referred to here as out-of-plane modes). Inspection of the numerically
generated C matrix for this case shows that the coefficients coupling some of the in-plane and
out-of-plane modes are small, indicating the possibility that coupling between those modes can be
ignored.

Unfortunately, even taking advantage of these simplifications still leaves one with too many
equations for analytical methods. However, if these equations are further simplified by ignoring
most or all of the mode coupling, perturbation (asymptotic) expansions may be sought to provide
approximate analytical solutions. To this end, the following section describes how the method of
multiple scales may be applied to the equation for a single underdamped mode and notes some of
the insights gained.

NONLINEAR PERTURBATION ANALYSIS

As mentioned above, the nonlinear dynamic response of towed systems can be modeled by
nonlinear equations )f the form of Equations (1) and (2). If we neglect cubic and higher nonlin-
earities, Equations (1) and (2) can be reduced to the form shown in Equations (6), and these equations
can, in turn, be transformed into a set of equations for modal (or normal) variables as shown in
Equation (21). Even though these equations are not fully coupled, application of analytical per-
turbation techniques to solve these equations is impractical. Hence, to apply procedures such as
the method of multiple scales to find approximate solutions to the equations, further simplifications
must be made. Obviously, simplifications made without sound justification may lead to erroneous
conclusions; consequently, any conclusions drawn from such analyses must be verified by returning
to the numerical solution of the fully nonlinear Equations (1) and (2).

As a first step, it will be assumed that all modes (except for complex-conjugate pairs) are
decoupled, allowing a single equation to be written for each mode. The following sections outline
the form of the equation for an underdamped mode with tow point excitation and the application
of the method of multiple scales to develop an asymptotic solution to the equation.

EQUATION FOR AN UNDERDAMPED MODE

Ignoring the coupling between separate modes and noting the symmetries that exist in the 8,
C, J5, and 9 arrays given in equations (25) through (27) for modal variables corresponding to

8
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complex conjugate modes, the equation for a single underdamped mode of a towed system excited
by tow point motion perturbations can be shown to be of the following form:

dz,d 8- = ,z, + o• + P, + y,;,!, + ý,(r)z, + *,(1j)7, + A,(r) (28)

where

"r(nondimensional time)=R I ,t 8, = ,/ ,i (29)

c,--- (C,,Y21 X? I0, = (C.Y21 XJ, •, = (C,,, + C.,)21 XI = ((M,,,)I kI (30)

where the indices "r" and "s" represent the complex conjugate mode numbers, and overbars represent
complex conjugates. For harmonic tow point excitation, the forcing terms j,('), ( and k,(r)
may be written in the following form:

i,(e)= + 0, 2e-'= 0,(,) e= i + 0,e"•im (31)

j,(r) = A•, 1e'im+A ,2e'+A ,3(2+ e + e-m) (32)

where the nondimensional frequency co is related to the forcing frequency & as follows: co = ,I .
The values of the Q,1 and the & in the above equations are functionally dependent on the excitation
amplitude and frequency and elements of the E array; the Ai, are functionally dependent on the
excitation amplitude and frequency and elements of the B and 5 arrays. Consequently, the .,,
the 1i, and the A,,(i = 1, 2) are coefficients of terms linear in the external input perturbations, and
the A,3 are coefficients of terms that are quadratic in the external input perturbations.

MULTIPLE SCALES ANALYSIS

To determine an an approximate solution to Equation (28), the method of multiple scales1 314

is employed. To this end, a solution is sought for small but finite amplitudes of the form

z,=CM,, +e4z2 + EZZ + 0(e) (33)

with the time scales Ti = ir(i = 0,1,2). To maintain the terms ofij,(r) that are linear in the external
input perturbations as first-order effects in this expansion and all other terms as second-order effects,
it will be assumed that the forcing terms *,(r), W,('), and Tr,(,) may be written in the following form:

ý.(c)= e(Qf e•( ' + Q,2e"m) = j4,(t) i.(•) = Ql(,e"' + Q,2e-s) = e.(r) (34)

9
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,(R)= Re+ R,2e C) + eR,,(2 + e'+ e-'") = eq, (r) + elq ,2(r). (35)

Substituting from Equations (33) through (35) into the differential Equation (28) and separating
equations based on like powers of e gives the following three partial differential equations for the
z,(i = 1,2,3):

az,,
"0- (To= 1,(T) (36)

_A _•=+- + + + Yz,,,,, + •T,)Z,, + V,(T, + 71,2 (T (37

W 8,, +2azz, + Pzjzz,2 + 7,(Z,]Y,2 + Zr 2) +

*,(TO)Z,, + V,(T)Z,,. (38)

Using Equation (16), the solution to Equation (36) can be written as follows:

z,, =Ae8"rT*+Be'Or° + e-iMr° (39)
where

A =A(T,,T2) B=-,- C= -- '2 (40)8r -iC) 5,+iC& 40

As usual with the method of multiple scales, the coefficient A of the homogeneous solution is
assumed to be a function of the slower time scales. The dependence of A on these scales will be
determined at subsequent levels of the perturbation expansion through the elimination of secular
terms.

Substituting now from Equation (39) into the right side of Equation (37) and using the second
term on the right side of Equation (16) yields the following equation for the particular solution to
Equation (37):

10



CSS TM 628-92

(4 2), =A D) " D ( 4 +

(D 2 (, +i i'C T + (, ) B -q'go + (,.D 6  (4io5),D7)+

- 8, + i +7 +, + .(

where the coefficients D, through DII may bie written as follows:

D %A2  D2 =j3,;i D3 =1'AX (42)

D4 = 2o4B +%ACý+ A Q, D5=2M;C+y,AB+AQ.2  (43)

D6= 20XC + YB +AXQai D, = 2MXB +AIC +AXQ. (44)

Ds=% +P2+%U+BQ +CUQa + R,3  (45)

D9 = C 2&+ OX+ YfC +CQ, + FQa+ R,, (46)

D10 = 2 a.,B C + 2j-?C + y,(B B + C U) + C Q, + B Q,2 + BQ, +ZCQ, 2 + 2R,3  (47)

-D1  -D 2  -D 3 -D 4 D5  "D6 -D7
DII =- +_ -- +-- +- +8, 25, 3s, ,ho ho, ,-8,+w --,-S-ho

Ds D + , D+.o
8,- io +i-o 8," (48)

Eliminating the secular term from this equation requires that (MMAIT 1 ) = 0 and consequently that
A = A (T2). It should also be noted here, however, that this solution is singular whenever any of the
denominators in Equation (41) become mero; this occurs when ro=25(8,) which makes
k,-8,+iro=0. This condition corresponds to the condition that C = 23(k), that is that the forcing
frequency is twice the frequency of free-modal response. An expansion valid in the neighborhood
of this singularity is derived in the following section.

11
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To determine how A depends on T2 and to ensure an asymptotic expansion valid through
0(e), one needs only eliminate the secular terms from the right side of Equation (38). Substituting
from Equation (39) and Equation (41) into Equation (38) and setting the sum of the secular terms
to zero gives the following equation for the coefficient A:

c 'A --= aA (49)
0 T2

where

(-DIO BE5 CEE4' (BE 7  CEE6 -D 10BE 6~
a a= -5 7 --- j0 + 2++ ++

ho 8 8.4-ho 8,4+hoD Yf3
CE, 7 E•4  'E5 ) + '-QE 2, +-A QiE6  Q,-E 7  (50)

and

E4 = 2c.B +yTC+Q,, E5 =2xC +'yX+Q,2  (51)

E6 = 2PC'+ ,B + Q,, F.7=20X,+ %C + Q,2. (52)

Therefore, an asymptotic expansion for z, can be written as follows:

z,=(-Ae"2O + e-D1)e' + eB e ia + eCe-i'o + +

"48, 8, 1 iCD im
I D, 6,* D, . 8,-i-.+ -D 5 ,-V2, _.

D6 +- e + 8 M)e + 8,+2oe (53)

As with the particular solution shown in Equation (41), this solution is singular when co= 2!(8,).

For values of co not in the neighborhood of 23(8,), Equation (50) can be used to determine
numerical values for a, and hence, whether the perturbation expansion is bounded or unbounded.
For example, should the real part of a be positive for some range of excitation amplitudes and
frequencies, it indicates that the free-oscillation terms are large. There are two possible explanations
for this occumance. The first is that the expansion has simply not been carried out to a high enough

12
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order to provide a uniform expansion. The second is that the solution for zi in Equation (39) is
fundamentally different in character from the exact solution to Equation (28), indicating that the
solution itself may exhibit relatively strong nonlinear characteristics.

Finally, note that Equation (53) contains the constant term -D10 e?/8, that is indicative of a
nonsymmetric cable response about its steady-state configuration. This behavior was noted in
References 1 and 5; it is a direct result of the quadratic nature of the fluid drag forces on the system.
The fluid forces on the system increase faster as the system moves in the direction of the tow than
they decrease as it moves opposite to the direction of the tow. D10 has been found to be nonzero
for in-plane modes and zero for out-of-plane modes as expected.

MULTIPLE SCALES ANALYSIS - EXPANSION NEAR SINGULARITY

As mentioned above, the expansion shown in Equation (53) is not valid in the neighborhood
of oa = 2Z(S,). To develop an expansion that is valid, introduce a so-called detuning parameter cy

defined such that 03=i(8,-8,)+e=2.(8,)+e. Using this definition converts the term on the
right side of Equation (37) responsible for the singularity into a secular term. In particular,

D6eP=+i_)" - E4eie e'. (54)

Then, elimination of secular terms leads to the equation:

=A -E6e'OT');i = 0. (55)

Assuming that the secular terms have been omitted, an asymptotic expansion for z, through O(e)
becomes

z, = (eA (T1'TO) + eD 1d)e 'T° + eBe"'ro + eC e +- ) +

ID1 •aro D2  3,T*o+D 3 e(.,+4,)r, D4 (6,+ao)"o "-Ds (5,-i.''

e e +-e +-ei +-e-i +

D7  +3-Do)r. e D 2  + -D9 ej. (56)
iý- _i~w 8, +i2to

The dependence of A on the time scales T1 and T2 is determined by the elimination of all secular
terms. As before, the elimination of secular terms from the right side of Equation (38) leads to the

13
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equation

-a4A (57)

where a is now defined to be

-D1j0 _!E 5 CE4  + D CE 7  BRE4 CE5
a -24 ~ ~ ~ ~ 6, io R ,- Z'+i 103 him 3

20 BfE 7  _-QE 5  QL2 -E4 .QazE758

2 ,- ,+iw) i 8,£-0 -0)io"s

Together Equations (55) and (57) can be shown to be equivalent to the differential equation

dA
d , (e,6e A)- (ea)A = 0. (59)

This equation is a first-order equation with time-varying coefficients; to transform it to an equation
with constant coefficients, let A =Ge• @2. Making this substitution, separating into real and
imaginary parts, and solving the coupled first-order equations, give the following result:

9t(G) = gle ' + g2e P (60)

3(G)=g 2ta ( I ~e %(E6) lePI + r 112 _ E2(a)-e%(E6) t 2e P2' (61)
__23~FC%~6 - 2(a)+PE _ CZ3( EO yF.

where

1h.2=e t'(a)1:•"I if p=IEj 2-_1/4+(eo+0)3(a)>0

11,.2=e%(a)±i'•/'E" fif p<O.

The first free oscillation term in this expansion grows without bound as r -- c whenever the
amplitude A is unbounded. This occurs when p > 0 and e5%(a)±4> 0 and when
p < 0 and 9t(a) > 0. As before, this may indicate either that the perturbation solution has not
been carried out to a high enough order to provide a uniform expansion or that the solution for zj,
in Equation (39) is fundamentally different in character from the exact solution to Equation (28).

14
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NUMERICAL EXAMPLES

As stated in the previous section, one possible indication of relatively strong nonlinear
response of individual modes of the towed system is the presence of unbounded free oscillation
terms in the perturbation expansions derived therin. In this section, numerical results are presented
for the individual response of two modes of a towed sphere subject to tow point excitations. Results
are presented first for an in-plane mode of the system and then for an out-of-plane mode of the
system. In particular, values of the arguments of the exponential function that appear in the definition
of the coefficientA of the free-response term are presented over the frequency range from 0.01 -- 5.0
radians/second. This range is within the response range of many surface ships and includes the free
response frequency of the selected modes.

The towed system consists of a 15-inch diameter sphere towed at 15 knots at the end of 150
feet of a 0.54-inch diameter smooth jacketed cable. The sphere weighs 500 pounds in air;, the cable
weighs 0.39 pounds/foot in air and has a buoyancy of 0.089 pounds/foot in sea water. For modeling
purposes, the cable was divided into 10 links (finite-segments) with the longest link at the towed
end of the cable and the shortest link at the sphere; this is consistent with the mode shapes of the
cable.

The lowest-frequency underdamped mode of this system is an out-of-plane mode and the
next lowest-frequency underdamped mode is an in-plane mode. The eigenvalues k, associated with
these modes are

Out-of-Plane Mode: X = (-0.69357; 1.2480)

In-Plane Mode: k = (-1.0540, 1.4405).

The corresponding mode shapes are animated in Figure 3 for one complete cycle of free response
assuming no amplitude decay. For the out-of-plane mode, the motion is distributed over the entire
length of cable; larger amplitudes are experienced at the free end. In the case of the in-plane mode,
most of the motion occurs at the free end of the cable; little motion occurs near the tow point.

For this system, the reduced nonlinear Equations (6) were generated, transformed into the
form of Equation (21), and then reduced to a single equation of the form of Equation (28) for each
mode and excitation type. The external excitation was applied both in and normal to the towing
plane, the former being referred to as in-plane excitation and the latter out-of-plane excitation. The
rn-plane excitation was furthe subdivided into excitations along and normal to the cable. The
non-zero coefficients in Equation (28) for each mode and excitation are summarized in the following
table.

15



CSS TM 628-92

NON-ZERO COEFFICIENTS

MODE In-Plane Out-of-Plane
Excitation Excitation

In-Plane A A, Y, 7 1,2

Out-of-Plane *,, ,,

Note that in the case of out-of-plane excitation of the out-of-plane mode, no quadratic nonlinearities
are present; hence, the resulting equation is linear. For in-plane excitation of this mode, quadratic
nonlinearities arise only through the forcing terms. The equations for the in-plane mode are more
complex. For in-plane excitation of the in-plane mode, all possible quadratic nonlinearities are
present. For out-of-plane excitation of this mode, the linear forcing terms and some of the nonlinear
forcing terms are absent.

Consider first results for excitation of the in-plane mode. Figure 4 shows the real part and
Figure 5 shows the imaginary part of the exponent a of the expansion in Equation (53) for excitation
parallel to the towed end of the cable; the excitation amplitude is 0.5 feet (1 foot peak to trough)
and is applied over the frequency range 0.01 < 45 <5.0 radians/second. Note that results for the
range 2.8 <o &<5 3.0radians/second have been omitted to avoid the singularity at (0 2= 2(Q,) = 2.881
radians/second. Even though the real part of a appears unaffected by the presence of the singularity,
it is clear from Figure 5 that the imaginary part of a is affected by the presence of the singularity.
In fact, if one plots the real and imaginary parts of a over the range 2.8:5 < <3.0 radians/second,
it is clear that both values are affected.

For an expansion in the neighborhood of this frequency, an expansion of the form of Equation
(56) is sought; the coefficient A must satisfy Equation (59). Unfortunately, as shown in Figure 6,
the real part of g, is positive (albeit small) over this range. However, as the excitation amplitude
is lowered, the frequency range over which the exponents have positive real parts becomes smaller
and smaller around the singularity. In conclusion, the perturbation expansions developed above
are bounded throughout the frequency range shown, except in the neighborhood of
&= 2M ,,)= 2.881 radians/second. Bounded solutions can be found closer and closer to this
frequency by lowering the excitation amplitude.
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Next, consider excitation of the in-plane mode perpendicular to the towed end of the cable.
Figure 7 shows the real part, and Figure 8 shows the imaginary part of the exponent a of the expansion
in Equation (53) for an excitation amplitude of 0.5 feet (1 foot peak to trough) over the frequency
range 0.01 < wo 5 5.0 radians/secons. Note that, as above, results for the range 2.8 o )5 3.0
radians/secons have been omitted to avoid the singularity when 6) = 2(ZQ,) = 2.881 radians/second.
Unlike the above case, the real part of a is positive over the entire range of frequencies shown.
Moreover, lowering the excitation amplitude to 0.001 feet simply lowers the values of the exponents,
but they remain positive. Hence, even for extremely small excitation, the perturbation expansion
is unbounded. This is true in the neighborhood of the singularity as well.

The results for out-of-plane excitation of this mode are shown in Figure 9. The real part of
a is negative over the entire frequency range, indicating a bounded expansion. Note that, unlike
the case of in-plane excitation, no singularity exists in this case because the coefficientD6 in Equation
(41) is zero, hence eliminating the singular term in the expansion.

Consider finally, results for excitation of the out-of-plane mode. Since Equation (28) reduces
to a linear equation for out-of-plane excitation of the out-of-plane mode, perturbation methods are
not required to study its response when cubic and higher order nonlinearities are ignored. For
in-plane excitation of this mode, the steady-state solution is zero and nonzero response exists only
for nonzero initial conditions; that is, the modal coordinate simply relaxes from its perturbed initial
state back to zero. For in-plane excitation along or normal to the cable, the real part of a is zero
for all frequencies, and the imaginary part of a is near zero except very near the singularity at
S = 2!(A,). Hence, the perturbation expansion is bounded at all frequencies, except at frequencies
very near the singularity. A plot of the imaginary part of a for in-plane excitation normal to the
cable is shown in Figure 10. As in the cases above, using detuning around the singularity still
resulted in an unbounded expansion. Also, as before, as the amplitude of the external excitation is
lowered, bounded expansions can be found closer to the the singularity point.

As a cross-check of the above results, the differential equations governing the modal variables
were numerically integrated at selected excitation frequencies. The results of the integration of the
equations (of the form of Equation (28)) containing the quadratic nonlinearities were compared
with those of the integration of the linearized forms of these equations. These comparisons led to
the following conclusions. First, in cases where 9t(a) is negative, the differences between the linear
and nonlinear solutions were relatively small in comparison to the cases when 9t(a) is positive.
Also, as 9t(a) gets larger (more positive), the nonlinear behavior becomes stronger. In general, the
results suggest that 9t(a) can be used to indicate how nonlinear the response of individual modes
are to harmonic excitation. This is consistent with the notion that perturbation methods may be
applied most successfully to weakly nonlinear systems.

It should be noted here that numerical integration uncovered no particularly unusual behavior
at the singular point & = 23Z(,). As a result, this singularity should not be considered an indication
of highly nonlinear behavior but rather a product of the perturbation expansion itself.
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SUMMARY

This paper presents the methodology for developing perturbation expansions to describe
the response of individual modes of a towed system to tow point excitation using the method of
multiple scales. The equations of perturbed motion (up through quadratic nonlinearities) are
developed about a general steady-state equilibrium configuration using a numerical, finite-
segment computer program used at the Coastal Systems Station to model the nonlinear dynamics
of towed cable systems.

Results are shown for two modes of a sphere towed at 15 knots from a 150-foot cable; one
of the modes is characterized by motions in the towing plane (in-plane) and the other is charac-
terized by motions normal to the towing plane (out-of-plane). Each mode was subjected to in-
plane and out-of-plane harmonic excitation at the system's tow point. The results indicate that
the out-of-plane mode responds linearly to out-of-plane excitation, but that the in-plane mode has
nonlinear response to in-plane excitation. For the towed sphere system presented, the strength of
the nonlinear response depends on the direction of the in-plane excitation; excitation normal to
the towed end of the cable is shown to produce a stronger nonlinear response than excitation par-
allel to the cable. Weak nonlinear response is characterized by a bounded perturbation expan-
sion and strong nonlinear response is characterized by an unbounded expansion.

Perturbation expansions for in-plane excitation of in-plane modes are shown to have a sin-
gularity when the excitation frequency is twice the free-response frequency of that mode. The
frequency range over which the expansion breaks down can be narrowed by lowering the
excitation amplitude.

Numerical integration of the differential equations governing the modal variables (associ-
ated with the above modes) supports the conclusions drawn from the perturbation analysis.
However, no unusual behavior was found at the frequency associated with the singularity in the
perturbation expansion, indicating that the singularity was a product of the expansion alone and
not an indicator of highly nonlinear behavior.

The present analysis could be easily extended to include systems with external excitations
at locations other than the system tow point, such as, say, the control surfaces of a towed vehicle.
It can also be extended to study the coupled response of pairs of modes of towed systems and the
effects of cubic nonlinearities. The procedure can be used to investigate the fundamental
dynamic properties of towed systems and could possibly be used to generate low-order dynamic
models that include a minimal number of modes to describe system dynamics. Numerical inte-
gration of the equations of motion of such models can be compared with numerical integration of
the fully nonlinear Equations (1) and (2) to determine the accuracy of these models.
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Tow Point

FIGURE 1. TOWED SYSTEM WITH A SINGLE VEHICLE AND TOW CABLE
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AT 5 KNOTS
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ANALYSIS: IN-PLANE EXCITATION, ALONG CABLE
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