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ABSTRACT

The Computer Aided Prototyping System (CAPS) is designed to rapidly build

prototypes of real-time systems. A critical element in achieving this goal is a mechanism

for automated retrieval of reusable software components from a software base. There were

two major objectives of this thesis: (1) to select and prepare software components for

inclusion in the CAPS software base; (2) to design and implement a translation tool which

takes an Ada specification as input and generates the prototype system description

language (PSDL) interface required for storage and retrieval in the CAPS software base -

this is necessary since for a component to be usable in the CAPS software base, it must be

specified in PSDL. We described the abstraction and implementation of the selected

components, introduced the translator, and demonstrated the behaviors of the translator via

examples.
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L. INTRODUCTION

A. RAPID PROTOTYPING

Developing software systems which are efficient, reliable, maintainable, and
understandable is a difficult task, especially for reliable real-time systems consisting of
million lines of code. The development of software tools and methods has emerged in an
attempt to manage the complexity. One method designed to aid development of reliable
large sytems is that of rapid prototyping. A prototype is an executable model of an intended
system whose purpose is to help the system designer and customer to evaluate and validate
the feasibility of the proposed system. Rapid prototyping is the process of rapidly building
a prototype of a system. This allows the user to provide feedback to the designer in the
development phase, reducing wasted effort in building a system which does not meet the
customers needs. Thus the developement of the system follows an iterative process. The
designer constructs a prototype based on the requirements, examines the execution of the
prototype together with the customer, then adjusts the requirements based on feedback
from the customer. The prototype is modified accordingly until both the customer and the
designer agree on the requirements [10].

The key to rapid prototyping is computer-aided tools and reusable components. An
efficient way to rapidly build a prototype is to construct the system out of existing software.
For this to happen, rapid prototyping tools should include a library of high quality reusable
components in conjunction with an automated retrieval system. A specification language is
needed to specify the requirements of a system and to locate components which meet the
specifications. To achieve automated retrieval, components in the library must be stored
with an interface written in the specification language identifying their functionality.

The typical software life cycle for such a sytem is illustrated in Figure 1.1. The
designer takes a set of requirements provided by the customer and generates specifications
for the system. The prototype is realized by replacing as much of the specification as

possible with reusable components. The remaining code is written manually. The goal is to




build the prototype from as many existing compoments as possible, minimizing the amount

of code which needs to be written manually.

———3 Tequirements

y
specifications

Y

reusablecode + manual code

Y

prototype

Figure 1.1: Software Life Cycle for a Prototype
B. CAPS OVERVIEW

The Computer Aided Prototyping System (CAPS) is an integrated set of computer-
aided software tools being developed at the Naval Postgraduate School. The system is
designed to rapidly prototype hard real-time systems [9]. The main subsystems of CAPS
are illustrated in Figure 1.2. The software tools communicate by means of a specification
language, the prototype system description language (PSDL). The specification language
allows the designer to formally translate the customer’s requirements into a high level
description of the system. The specifications are used to retrieve reusable ada components
from a large software base. An automated transformation scheme then binds the retrieved
components together based on the PSDL description. The prototype is then compiled and
executed. The following sections describe each of the three major subsystems of CAPS.




CAPS

User xecution Software
Interface guxstem system
| 1
Syntax Graphic tatic D‘namic Software Design
Editor Editor Scﬁeduler Scheduler Base Database
Tools
Interface Translator Debugger

Figure 1.2: Tools in the Computer-Aided Prototyping System
1. User Interface

The user interface consists of a syntax directed editor, a graphic editor, and a tool
interface. The graphic editor is used to create a graphic representation of the system in the
form of a data flow diagram, plus timing and control constraints. Graphical objects used to
represent the sytem include operators, inputs, outputs, data flows, and operator loops [13].
The syntax directed editor provides a convenient way of entering additional annotations to
the graphics in the form of PSDL descriptions while preventing syntax errors. The tool
interface hides the details of the interfaces of the CAPS tools from the designer [7].

2. Software Database

The software database system consists of an engineering design database system
and a software database system [16]. The design database contains PSDL descriptions for
all software projects developed using CAPS. The software base provides reusable software
components for realizing given PSDL specifications [9]. The key to component storage and
retrieval is the component’s PSDL specification [18].




3. Execution Support System

The execution support system consists of four tools: translator, static scheduler,
dynamic scheduler, and a debugger (7,16]. The translator generates codes that binds
together the reusable components extracted from the software base. The static scheduler
designates time slots for operators with real-time constraints before execution begins. The
dynamic scheduler allocates time slots for operators that are not time critical. The debugger

monitors timing constraints and design integrity as the prototype runs and reports failures.

C. OBJECTIVES
For a component to be added to the CAPS software base it must be specified in the

prototyping system description language (PSDL). Writing these specfications is a time
consuming process. One goal of this thesis is to design and implement a translation tool
which takes an Ada specification as input and generates the PSDL interface required for
storage in the CAPS software base. Another goal is to prepare and test Ada components for
inclusion in the software base. These components must meet certain criteria to be usable in

a larger system.

D. ORGANIZATION OF THESIS

An overview of the design of the CAPS software base and necessary requirements for
the storage of components in the software base is provided in Chapter II. Chapter III
discusses general characteristics required for component reuse, why Ada was chosen as the
implementation language for the components, and the purpose of these components. A
description of the design and implementation of the specification interface generator is
provided in Chapter IV. Chapter V cuntains conclusions and recommendations for future

research.




II. SOFTWARE REUSE

A. APPROACHS TO SOFTWARE REUSE

One of the major purposes of software reuse is to reduce the cost of software
development and maintenance. Software reuse comes in many forms and occurs whenever
artifacts or knowledge about the development of one system is reapplied in tie
development of another [6]. Examples include the reuse of code, designs, application
generators, formal specifications, and off the shelf commerical packages. Collectively
these examples are referred to as reusable software components.

A report in 1984 stated that “of all the code written in 1983, probably less than 15%
is unique, novel, and specific to individual applications. The remaining 85% appears to be
common, generic and concemed with putting applications onto computers” [5]. Thus,
common generic software is an essential target of opportunity. There is almost no cost
involved in copying a piece of software. Software reuse also provides a natural way to
improve the quality of software. Frequent reuse of a software component can lead to
frequent evaluation and revision, thus resulting in the construction of a high quality piece
of software. Using high quality, well understood components as building blocks to
construct large complex sytems should increase the quality of the final product and at the
same time accelerate software production.

Technologies applicable to software reuse can be classified into two categories: reuse-
in-the-small and reuse-in-the-large [6]. Reuse-in-the-small is concerned with the reuse of
small pieces of source code such as classes, subroutines, Ada packages, and so on, and is
the focus of this thesis. Reuse-in-the-large is concerned both with the reuse of large-grain
components such as subsystems and the reuse of elements beyond source code such as
design structures and decisions, domain knowledge, analysis information, and so forth.

Technologies applied to reuse-in-the-small are basically concerned with component

representation and component management. Component representation deals with the form




and content of software components. There are some important characteristics specific to
reusable components which will be discussed in Chapter III. Component management is
concemned with classification, storage and retiieval of software components which will be

reviewed in the following sections of this chapter.

B. RETRIEVING REUSABALE COMPONENTS

There are two costs associated with reuse-in-the-small. The first cost is associated
with building and maintaing a component for reuse. The second is the cost associated with
storing and retrieving components. The latter has resulted in an increasing demand for tools
that aid in classifying, storing, and retrieving components. This section discusses some of

these methods and the systems which use them [16].

1. Retrieval Methods

Most of the tools developed to assist in the retrieval of software components use
one or more of three different approaches: browsers, informal specifications, or formal

specifications. A brief description of each follows:

a. Browsers

A browser is a tool, usually window based, for looking through a collection
of software components. The purpose of a browser is to allow the user to direct a search
through the available components. This can be useful for a user who is familiar with the
content and structure of a software collection. However, this method of retrieval is not
suited for a very large software base. The user can easily miss semantically similiar
components stored in separate areas of the software base. Also a user will not know when
to stop looking for a component unless the component is found or the entire software base

has been viewed.

b. Informal Specifications
Retrieval methods based on informal specifications require the user to list

some attributes of the component sought. These attributes are used to direct the user to the




approriate components. Examples of this method include keyword search, mulit-attribute
search, and natural language interface.

To perform a keyword search, a user specifies a list of words relevant to the
component being sought. For example, a user looking for a component which implements
a mathematical set, would list the keyword set. A major disadvantage to keyword search is
that the choice of words listed is crucial to success. One keyword may lead to the retrieval
of many inappropriate components that the user must review. On the other hand, the use of
too many keywords may result in missing appropriate components.

A multi-attribute search is an extension of the keyword search. Attributes
such as component class (procedure, function, package, etc.) or the number and types of
parameters are used in the search. This type of search is generally more selective but
requires the user to be familiar with the classification and storage techniques of the system.

A natural language search is based on a natural language query formed by the
user. Although a user may find it easy to formulate a query using a natural language, this
type of technique is very difficult to implement. Mechanisms built based on this method

have been limited to certain domains or the use of a restricted language.

¢. Formal Specifications

Retrieval using formal specification provides for a higher degree of
automation. The user formulates a query using a high level language to specify the
functionality of the desired component. Each component in the software base is stored with
an interface using the same specification language. The system looks for components in the
software base whose specification matches that of the user’s query. However, writing

formal specifications for components is difficult and requires substantial training.

2. Review of Current Systems

This section describes current retrieval systems that have been built and the

methods used by each system.




a. Draco

The Draco project was developed at the University of California, Irvine and
was one of the first systems to reuse components from all phases of the software lifecycle,
including designs and analysis information. The systemn organizes software components by
problem areas or domains. The retrieval scheme is based on a mulit-attribute search. A
classification scheme, called faceted classification, is used to aid in organizing and
retrieving components. Each component is described by using a set of attributes. The set of
attributes is defined by the problem domain. The values associated with attributes are
selected from a controlled vocabulary.

The system is conceptually simple to use and relatively easy to iriplement.
However, classification is generally not suitable for unconstrained domains. Also,

semantically similar components may be missed, especially if stored in different domains.

b. RAPID

RAPID (Reusable Ada Packages for Information System Development) is an
ongoing project sponsored by the U.S. Army Information Systems Software Development
Center in Washington. The system is designed to classify, store, and retrieve reusable Ada
packages in the information systems domain. RAPID uses a faceted classification scheme
similiar to Draco.

¢. Operation Support System

The Operation Support System (OSS) is an ongoing project being developed
by the Naval Ocean Systems Center. One goal of the project is to establish a Navy software
library. Currently the components stored in the library are large command, control, and
communications software subsytems. The system supports component retrieval using

faceted classification, keywords, and a textual browser.



d. Common Ada Missile Packages (CAMP)

The Common Ada Missile Packages is an ongoing project sponsored by the
Department of Defense to develope a software engineering system supported by a software
library of reusable Ada components. The system is directed to software for missile sytems.
One of the main components of the system is the Parts Engineering System (PES) Catalog.
The catalog system provides a menu driven interface for storing, modifying, and retrieving
components. Each component has an attribute list associated with it which is used as the
basis for retrieval. The method of retrieval is based on muli-attribute search since one or

more attributes may be used to drive a search.

e. CAPS
The method used in the Computer Aided Prototyping System is to retrieve

components from a software base using a formal specification.The System also supports
keyword searches and component browsing. The aim of CAPS is automated retrieval and
integration of a component into a prototype based on formal specification. A description of
the specification language PSDL is in section C and the basics of the retrieval sytsem will
be discussed in section D of this chapter.

C. PROTOTYPE SYSTEM DESCRIPTION LANGUAGE (PSDL)
The prototype system description language (PSDL) and a large software base of

reusable components form the basis of the CAPS system. PSDL is a specification language
that was designed to support rapid prototyping of large real-time sytems [8,10]. PSDL
contains a small set of powerful constructs which make it simple and easy to understand.
The language was also designed for specifying retrieval of reusable modules from a
software base.

PSDL is based on a computational model consisting of operators and data streams. A
system is designed as a network of operators connected by data streams augmented with
timing and control constraints. Operators can be either atomic or composite. A composite

operator may be decomposed into a set of lower level operators and streams. An atomic




operator cannot be further decomposed. The network can be graphically represented as a
set of data flow diagrams. The prototype as a whole is viewed as an operator which is the
top level of the data flow diagram. The top level operator is decomposed into a set of more
refined operators, and these are decomposed iteratively until all operators are atomic.

Operators can be either functions or state machines. The data streams can carry
exception conditions or values of abstract data types [9]. A data stream which carries an
instance of an abstract data type is defined as a PSDL type. This definition includes all of
the operators that can operate on that data type. PSDL operators and types are the basic
building blocks of a prototype.

A PSDL implementation of a prototype has two parts: a network consisting of the
operators in the sytem and their interconnections, and a set of reusable components
containing implementations of the atomic components in Ada. The Ada components are
retrieved from the software base based on a PSDL description provided by the designer for
each atomic component. The specification part of a PSDL component contains several
attributes that describe the interface and behavior of that component. Figure 2.1 shows an
example of a PSDL specification for an abstract data type for a set.

D. CAPS SOFTWARE BASE AND COMPONENT RETRIEVAL

The CAPS software base is an object-oriented database which contains PSDL
descriptions and code for all available reusable software components. The database
management system supports automatic retrieval and provides graphical tools for browsing
and doing keyword searches [14]. Graphical tools provide a means for storing components

in the software base as well.
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type SET specification

operator EMPTY specification
output S1 : set end

operator ADD specification
input ELEMENT : integer, S1 : set
output S2 : set end

operator IN specification
input ELEMENT : integer, S1 : set
output RESULT : boolean end

operator SUBSET specification
input S1, S2 : set
output RESULT : boolean end

operator EQUAL specification
input S1, S2: set
output RESULT : boolean end

keywords SET, INTEGER
description {Implements a set of integers)
axioms
(obj SET is sort Set.
protecting INT.
op empty : -> Set.
op add : Int Set -> Set.
opin : Int Set -> Bool.
op subset : Set Set -> Bool.
op equal : Set Set -> Bool.
vars s1 s2 : Set.
vars el e2: Int.
eq in (el,empty) = false.
eq in (e1,add(e2,s1)) = or (= =(el,e2), in(el,s1)).
eq subset(empty,sl) = true.
eq subset(add(el,s1),s2) = and(in(e1,52),subset(s1,52)).
eq equal(sl,s2) = and (subset(s1,s2),subset(s2,s1)).

endo}
end

Figure 2.1: A PSDL Specification for a Set
To store a component in the software base requires three files. A PSDL specification,
and the interface and body for the implementation code [17]. The PSDL specification gives
a means to uniformly specify the functionality of the component as described in the
interface code. The PSDL specification is passed through syntactic and semantic
normalization before being stored in the software base (see Figure 2.2). The normalization

process modifies the specification to improve the efficiency of the search. A query for a
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library component is formed by constructing the PSDL specification for the desired

component. The query specification is normalized then matched against the stored

specifications (see Figure 2.3).
Normalized
PSDL
Spec Syntactic Semantic PSDL Spec» Software
» Normalization ] Normalization Base
Figure 2.2: Component Storage
PSDL Query

. ) . Semantic Result
pec | Syntactic | p] Partitioningof . _gu! Normalization ——
®1 Normalization Software base and Matching

Figure 2.3: Component Retrieval

The retrieval process is two phased [11,17]. Syntactic matching takes place first and
partitions the software base quickly in order to narrow the list of possible candidates that
will be considered during semantic matching. The syntactic phase uses the number and
types of parameters associated with each component to narrow down the search. The
semantic matching phase uses the axioms in the latter half of a PSDL specification (see
Figure 2.1) to narrow the set of candidates further. This phase determines which
components are behaviorally close to the query.

The ability to accurately specify reusable components with PSDL is critical to the
success of automated retrieval. The CAPS software base was designed to store components
implemented in various programming languages. Because of the differences in the
capabilities of different programming languages, the software base is separated into
language domains. PSDL is not geared toward any particular programming language and

therefore must be refined to specify a particular programming language. The software base
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is designed to recognize the enumeration of PSDL for any language in the following areas:
generic parameters, abstract data types, type inheritance, and array abstract data type [14].
For a particular language library the definitions of the special identifiers are contained in a
rule file for each library. The rule file established for the Ada library guided the translation
of Ada specs into a PSDL interface (see Chapter IV).

13




III. REUSABLE SOFTWARE COMPONENTS

A. ENGINEERING SOFTWARE COMPONENTS TO FACILITATE REUSE

To fully derive the benefits of reusable software components, we must engineer our
software with reuse in mind and begin to accumulate a rich set of components for the
designer [1]. There are three factors which make it practical to formalize reuse-in-the-
small: the emergence of a widely accepted body of knowledge about data structures and
algorithms, development of software engineering principles, and the development of
programming languages, such as Ada, which support reuse. Components built for reuse
should exhibit the characteristcs of any good piece of software. For example, a component
should be maintainable, efficient, reliable, understandable, and, of course, correct.

A reusable component should be cohesive and loosely coupled. Cohesive means the
component should denote a single abstraction. Loosely coupled means the component
should be defined independently of other abstractions. For example, a component which
denotes an abstraction for real numbers should not include an abstraction for a set.
Secondly, the abstraction should not be dependent on other abstractions.

There are other desirable characteristics of reusable components. They should be
sufficient, complete, and primitive [1]. These characteristics of a component have to do
with the outside view of the component. A sufficient component captures enough
characteristics of the abstraction to permit meaningful interaction with the object. For
example, if a component represents real numbers but provides no means for adding two real
numbers together, then the component is useless. The interface of a complete component
captures all characteristics of the component. Sufficiency implies a minimal collection of
operations, whereas a complete set of operations is one that covers all aspects of the
underlying abstraction.

Primitive operations are those that can be effiiciently implemented with only access
to the underlying representation. For example, the addition of two real numbers. Those

operations which are not primitive but may be useful to the component can be easily

14




extended by the user of the component by building new composite operations. For example,
the abstraction of real numbers includes the notion of comparing two numbers. To make
the component sufficient it should include “<”and “=" operations. To enhance the
completness of the abstraction, we might add a “>" operation. However, a “>” can be built
as a composite operation of the “<” and “=" operations. The designer of a reusable

component cannot know exactly how a particular component is going to be used.

B. WHY ADA?

Ada is a language that embodies and enforces modern software engineering
principles. Ada was also designed with the explicit requirement to support reuse. Features
of Ada which support reuse include [1,2]:

1. Separation of interface from the body,

2. Generic program units,

3. Strong typing, and

4. Variety of program units including packages and subprograms

Separation of the interface from the body supports information hiding and abstraction.
An ada specification (interface) identifies the functionality of a component and is the
information visable to the user of that program unit. The body contains the unit
implementation which is hidden from the user. Unimportant details are hidden from the
user. Separation of the interface from the body is also important for storing and classifying
a component.

The Ada generic unit is the main mechanism for building reusable components. A
generic unit provides the template for the algorithm or data structure. Upon instantiation of
a generic unit the client provides the set of allowable values for a data structure.

Ada is a strongly typed language. This means objects declared of a given type may
only take on those values which are legal for that type. In addition, the only operations that
may be carried out on an object are those which are defined for its type. Strong typing can

be instrumental in improving the reliability of a program unit by guaranteeing that the
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properties of an object are not violated. The requirement for explicit declaration of objects
with their types improves the readability of a program. This guarantees the programmer
must say something about the property of an object.

Packages permit the encapsulation of a group of logically related entities which
directly supports data abstraction and information hiding. Well structured Ada systems are
decomposed into levels of abstractions, structured as collections of logically related

packages that form a model of reality.

C. ADA COMPONENTS SELECTED FOR SOFTWARE BASE

The components selected and tested as a part of this study for inclusion in the CAPS
software base all represent an abstract data type. They include an unbounded map, an
unbounded set, a bounded multiset, a bounded graph, an unbounded graph, a matrix, vector,
real numbers, and bounded integer types. All components were developed by students at
the Naval Postgraduate School. The author of this thesis tested and in most cases modified
the components. Operations were added to components which did not sufficiently define
the abstraction. Other changes corrected errors and improved efficiency and readability.
Appendix A contains the specification for each component. The following is a brief

description of the abstraction, implementation, and major changes made to the components.
1. Unbounded_Set

a. The abstraction

The mathematical abstraction set is widely used in computer science
applications. Many interesting data structures can be thought of as just implementations of
sets. Thus it makes sense to build a reuseable set component. Given a “universe” of
permissable values, a set is an unordered collection of objects belonging to that universe.
Two sets are said to be equal if they have the same members. A set is said to be empty if it
has no members. What are the important operators associated with sets? Certainly adding

and removing an element from a set are essential as well as being able to determine the size
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of the set. Other important operations include the dyadic operations union, intersection,

difference, and equality.

b. Implementation
The Unbounded_Set was implemented with a linked list structure. The
number of elements that can be added to the set are only limited by available memory. The
unit contains one generic type parameter which defines the type of elements which may be
added to the set. A hashing function could be used to simplify searching for a given

element, however, it would complicate the algorithms for the dyadic operations.

¢. Major changes
A remove procedure and a set difference procedure were added to the original
version to make the component sufficient. An error in the original add procedure which

allowed duplicate copies of an element was corrected.
2. Bounded_Multiset

a. The abstraction

A multiset is the same as a set except that items contained within a mulitiset
need not be unique. The size of a mulitset refers to the number of items contained within
the set. A multiset which contains no items is said to be empty. Operations important for a
multiset include an empty set constant, a count operation that returns the number of
instances of a given element in a given multiset, add and remove operation, an operation to
test equality, and a size operation which returns the number of distinct elements in a

multiset.

b. Implementation

The bounded_multiset is implemented with an array. The unit has two generic
parameters. Element is a generic type parameter which provides the type of items which
can be added to the set. Max_Size is a generic value parameter which determines the size

of the array (the number of unique elements that may be added to the set).
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¢. Major Changes

The original data structure kept multiple copies of any repeating elements in
the array. The data structure was changed to keep a count of each element rather than
keeping mulitple copies of the element. This representation is more efficient for any
application which contains many copies of an element, for example an inventory record.
Two procedures, Last_Element and First_Element, were removed from the package
specification and are now local to the body. They were used in the implementation of the
data type, but are not part of the definition of the data type, hence should not be visable to
the user. An overflow exception was added to the add procedure. The function empty_set
was changed from a predicate function to an empty set constant. Get and put operations

were removed from the test package and added to the generic package.
3. Bounded_Graph

a. The abstraction

Graphs are an important mathematical structure and are used widely in
computing problems. A graph is made up of a set of vertices or nodes and a set of arcs or
edges, which represent connections between the vertices. Qur abstraction represents a
directed graph or a graph in which the edges have direction. Important operations include
initializing a graph to empty, adding a node, adding an edge, checking whether there is an
edge between a given pair of nodes, finding the set of nodes connected to a given node via
an outgoing or incoming edge, removing the edge between a given pair of nodes, and

removing a node and all of the edges connected to that node.

b. Implementation

The bounded_graph is implemented using an adjacency matrix. An adjacency
matrix is a n X n boolean matrix where n represents the maximum number of nodes allowed
in the graph. If the [ij] element in the matrix is true then there is an edge from vertix i to

vertix j and false if there is not. A one dimensional array of size n is used to store the values
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values of each node. The unit has two generic parameters. One is a type parameter which
allows the user to define the allowable values for the nodes. The other is a value parameter

of type positive and determines the maximum size of the graph.

¢. Major Changes
The original version was a machine with a state variable representing the
graph declared in the specification. The state variable was removed and a parameter
representing a graph type was added to all functions and procedures. An operator which
returns an empty graph was added and overflow exception was added to a local procedure
which is called by the add operation.

4. Unbounded_Graph

a. The abstraction

The abstraction for the unbounded graph is the same as the bounded graph,
but allows an arbitrary number of nodes to be added to the graph.

b. Implementation
The unbounded graph permits an arbitrary number of nodes in the graph. The
implementation uses an adjacency list. The basic idea of an adjacency list is to list each
vertex followed by the vertices adjacent to it. This provides the basic information about a
graph: the vertices and edges. Two linked lists are used. One list links all the nodes in the
graph. Each node in the graph has an adjacency list, which lists all adjacent nodes. The unit

has one generic type parameter which imports the allowed values for each node.

¢. Major Changes
The original data structure was modified to improve readability. An
adjacency node in the original structure used a pointer to a graph node to identify an
adjacent vertix. This pointer was removed and replaced with the node element. Type

declarations used to build the graph data type were moved from the public to the private
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section of the specification. This hides unnecessary implementation details from the user.

An unnecessary type declaration was removed to improve readability.
S. Unbounded_Map

a. The abstraction

A map permits one to define arbitrary relationships among otherwise
unrelated objects. A map is a mathematical function on objects of one type, called the
domain, yeilding objects of another type called the range [1]. Thus a map consists of a
dynamic collection of bindings from the domain to the range. Bindings may be added,
removed, and modified over the lifetime of a map. The extent of a map represents how
many bindings are in the map and if a map contains no bindings the map is said to be empty.

Operations include initializing a map to empty, adding a binding to a map,
finding the range value associated with a given domain value, checking whether a given
domain value has a binding in the table, finding the number of bindings in the table, and

removing the binding associated with a value of the domain type.

b. Implementation

An unbounded abstraction should permit 2 magp vith an arbitrary number of
domain and range pairs. This can be easily done using a linked list structure whose nodes
are records containing these pairs. However, to mitigate the time for searching a gigantic
list for a given pair, the map is represented as a collection of several smaller lists. The
unbounded map is represented as a set of blocks of lists. Each block is an array where each
array component acts as a bucket which holds a list of ordered pairs. A set of blocks is
represented using a linked list. A hashing function is used to determine in which list or
bucket a map pair will be located. If the hash function returns an index outside the available
map blocks, a new block is added.

The generic unit has eight generic parameters. Two type parameters are used
to import the domain and range types. A value parameter allows the user to determine the

number of buckets per block. The remaining parameters are generic subprogram
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parameters. One is a hashing function, the others are get and put procedures for the domain

and range.

¢. Major Changes
In the original version, two state variables, NUM_BINDINGS and
NUM_BLOCKS, were declared in the package body. These variables will reflect
inaccurate data if more than one instance of the map type is declared. Thus they were

removed from the body and made part of the data structure of the map type.
6. Real_Numbers

a. The abstraction
The real abstraction is a high precision real number type representing the
standard mathematical domain of real numbers. Real literals are decimals, with at least one
digit on each side of the decimal. Operations include conversions from Ada float to real,

addition, subtraction, multiplication, division, and the comparison operators “=" and “<”.

b. Implementation
The real number data type is implemented as a record type. The record
contains three fields: the sign of the number, a digit array containing the digits of the real
number, and an exponent array. The unit has two generic value parameters, digits and
max_exponent. Digits represents the minimum required precision and determines the size

of the digit array. Max_exponent determines the largest number which can be represented.

The representation will handle numbers ranging up to 10° where e is the max_exponent.

¢. Major Changes
The original version used separate arrays to hold the whole and decimal parts
of a real number. The whole array was declared as a non-generic static type. This version
was simplified by removing the static array and normalizing the position of the decimal.

This allowed the elimination of five local subprograms and the simplification of others.
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Type declarations used to build the real data type were moved from the public to the private
section of the specification. This eliminates unnecessary implementation details from the

user.
7. Bounded_Integer

a. The abstraction

The bounded integer abstraction represents signed whole numbers of
standard mathematics. The range of the integers is bounded. Operations include conversion
from Ada integers to a bounded_integer, addition, subtraction, multiplication, division,

mod, and the comparison operators “=” and “<”.

b. Implementation
The bounded_integer type is implemented using an array. The unit has one
generic value parameter which specifies the number of decimal digits the representation

must support.

¢. Major Changes
Type declarations used to build integer type were moved from the public to

private section of specification. Many algorithms were rewritten to improve readability.

This mainly involved the removal of unnecessary local variables.
8. Vectors

a. The abstraction

A mathematical vector is a set of elements which is ordered in the sense that
each component is assigned a specific position in the set. The dimension of a vector
designates the number of elements for a given vector. Operations include conversion from
an array of elements to a vector, vector addition and subtraction, multiplication by a scalar
(value of the element type), dot product of two vectors, and the mathematical length of a

vector.
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b. Implementation

The vector is implemented using a one dimensional array. The generic unit
has a generic type parameter which determines the element type. A generic value parameter
is used to import the dimension of the vector. Generic subprogram parameters are needed

to define arithmetic operations on the element type.

¢. Major Changes

An operation to convert an array of objects to a vector was added.
9. Matrix

a. The abstraction
A mathematical matrix can be viewed as a rectangular array of elements,
having R rows and C columns. Any particular element in the matrix may be referred to
using to subscripts, the row and column position. Operations on matrices include
conversion from an array of elements to a matrix, matrix addition and subtraction,
multiplication by a scalar ( value of the element type), matrix multiplication, and

transposition.

b. Implementation

The matrix type is implemented using a dimensional array. Two generic value
parameters are used to define row and column length. A generic type parameter defines the
element type.

¢. Major Changes

None.
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IV. PSDL INTERFACE GENERATOR

The PSDL interface specification generator is a tool which automates the process of
producing the necessary PSDL interface for the storage of an Ada component in the CAPS
software base. This chapter describes the design and implementation of the translator.
Section A provides information, extracted from [4], that is necessary to understand the code
listed in Appendix B.

A. KODIAK

Kodiak is the tool we used to build the translator. It is a fourth generation language
developed at the University of Minnesota and designed for the purpose of producing
language translators. The language is based on Knuth’s description of atribute grammars
[4]. Attribute grammars are a scheme for describing syntax-directed translation, in which a
context-free grammar’s rules are augmented with equations defining these attributes. The
string is parsed into a syntax tree by applying a set of grammar rules. The root of the tree
represents the start symbol, the leaf nodes represent the terminal symbols, and the internal
nodes represent the non-terminal symbols of the grammar. Attributes can be assigned to the
nodes of the syntax tree. To translate the input string into an output string, values are
assigned to the attributes of each node. The root of the tree is given an attribute whose value
is based on the collective value of all the nodes in the tree, producing the output string.

The values of a particular node’s attributes can be determined in one of two ways. The
values of the attributes are either inherited or synthesized. Synthesized attributes are
evaluated from the bottom up, meaning the value of an attribute at a given node is derived
from that node’s descendants. Inherited attributes are evaluated from top down, meaning
the value of an attribute at a given node is derived from the node’s parent.

Every Kodiak program consists of three sections, as shown in Figure 4.1. The first
section describes the features of the lexical scanner which is used to translate the source
text into tokens and associativities for those tokens. The second section declares the

attributes and their type associated with each grammar symbol. The third section describes
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the grammar and attribute equations which define the semantics of the translation. Each
section must be separated by a double per-cent symbol (%%) on a line by itself . The
symbol “!” introduces a comment and everything written after it on a line it will be

interpreted as a comment. The following is a brief description of each section.

! Lexical Scanner Section

%%
! Attribute Declaration Section

%%
! Grammar rules and attribute equations

Figure 4.1: Kodiak Program Structure
1. Lexical Scanner

The lexical scanner section of a program defines the terminal symbols (leaf nodes
of the syntax tree) of the source language and how these symbols are to be transformed into
tokens. The source language in this case is Ada and the terminal symbols correspond to
Ada’s lexical units. Ada’s lexical units consist of identifiers, numeric literals, character
literals, and comments. Ada’s reserved words, a subset of identifiers, must be defined in
this section as they are required in defining the grammar. The basic form of a token
definition is:

TERMINAL_NAME : REGULAR_EXPRESSION

Terminal name is the name given to the token and appears in the definition of the grammar
in section three of the program. The regular_expression provides the definition of the token.
Code fragments from the lexical scanner section of the PSDL interface generator are given
in Figure 4.2. These declarations indicate that an occurence of the regular expression to the
left of a colon is to be replaced by the atomic terminal symbol on the right. For example,

an occurence of the string “package” or “PACKAGE?” in the input text is to be replaced by
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the symbol PACKAGE. The keyword %define introduces a definition. Square brackets
enclosing a set of characters indicates that any character of the set may be used to match
the text. Curly braces are used to invoke a substitution. The ‘+’ operator indicates that one
or more of the previous class may be used to match the text. The ‘*’ operator indicates that

zero or more of the previous class may be used to match the text.

ldefinition of lexical classes
%define Digit : [0-9)]
%define Int : {Digit}+

!definition of compound symbols and keywords

PACKAGE : package | PACKAGE
REAL_LITERAL : {Int}”.”{Int}

Figure 4.2: Exampies of Token declarations
2. Attribute Declarations

The attribute declarations section consists of attribute declarations for all non-
terminals and terminals named in the program. Kodiak supports two primitive types for
attributes: strings and integers. Kodiak also supports higher order map types. For example
in Figure 4.3, generic_type_definitions has two attributes. The attribute variable_type is
declared to be of type string. The attribute generic_types is declared to be a map type whose
domain and range are both of type string. Basic_declaration has one attribute,
number_of_operators, which is declared to be of type integer.

Terminal symbols may also have attributes. These symbols are permitted two
predefined attributes called %text and %line in addition to user defined attributes. In Figure
4.3, the terminal IDENTIFIER has the attribute %text which will be initialized to the text
the terminal symbol IDENTIFIER matched in the input text.




{Atribute declarations for non-terminal symbols
start { psdl_interface_specification : string; };

generic _type_definition { variable_type : string;
generic_types : string->string; };

basic_declaration { number_of_operators : int; };
!Attribute declarations for terminal symbols
IDENTIFIER {%text : string; };

Figure 4.3: Example of Attribute Declarations
3. The Attribute Grammar and Equations

The attribute grammar section consists of a set of BNF rules defining the grammar
of the source language. Each rule is associated with a set of equations which define how the
input text is to be translated. A fragment of the PSDL interface generator is given in Figure
4.4. The fragment defines the grammar rule for the non-terminal package_specification.
The symbol “I” is used to separate two definitions for the grammar symbol. Curly braces
surround any attribute equations. Null productions are permitted, mezning the curly braces
may be left empty.

An attribute is referred to using dot notation. The grammar symbol associated
with the attribute proceeds the dot and the name of the attribute follows. If more than one
occurence of a grammar symbol appears in a grammar rule, the leftmost symbol is taken to
be the one referred to by an attribute. To refer to a later symbol, the attribute may be
followed by a number in brackets referring to the symbols position of occurence in the rule.

Kodiak supports traditional arithmetic and relational operators for integers and
strings. An addition operator for map types is provided using the symbol “+I”. A
conditional clause is also supported and is exemplified in Figure 4.4. The then portion of

the clause follows the arrow,"“->", and the else portion follows a “#” sign.
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One attribute equation is defined between the first set of curly braces in Figure
4.4. The equation evaluates the value for the attribute psdl_interface_specification. This
cquation contains a conditional. If the attribute number_of_operators equals one, then the
value following the arrow is assigned to the psdl_interface_specification, otherwise the
value following the # sign is used. Literal strings appear between quotes. The other
attributes which appear in the equation are evaluated to strings. All literals and attributes
between the brackets are catenated to produce the psdl_interface_specification. A further

explantion of the attributes in provided in section C.

package_specification
: PACKAGE IDENTIFIER IS basic_declarative_items END IDENTIFIER °;’
{ package_specification.psdl_interface_specification =
basic_declarative_items.number_of_operators == 1

-> [ “OPERATOR"”, IDENTIFIER. %text, ‘“\nSPECIFICATIONW",
package_specification.generic_type_declarations, ‘“n”,
basic_declarative_items.input_parameters,
basic_declarative_items.output_parameters,
basic_declarative _items.exceptions,

“END\"™)

# [ “TYPE ", IDENTIFIER.%text, ‘“\nSPECIFICATION\",
package_specification.generic_type_declarations, ‘“\n”,
basic_declarative_items.type_declarations,
basic_declarative_items.operator_specifications,

“END\1"]; pee
I PACKAGE IDENTIFIER IS basic_declarative_items PRIVATE
basic_declarative_items END IDENTIFIER *;’
( package specification.psdl_interface_specification =
basic_declarative_items.number_of_operators == 1

-> [ “OPERATOR ", IDENTIFIER.%text, “\aSPECIFICATION\",
package_speciﬁcaﬁon.genexic_types_declaratims, ‘“n”,
basic_declarative_items.input_parameters,
basic_declarative_items.output_parameters,
basic_declarative_items.cxceptions,

“END\” 1;

# [ “TYPE ", IDENTIFIER.%text, ‘“\nSPECIFICATION\",
package_specification.generic_type_declarations, ‘\n”,
basic_declarative_items.type_declarations,
basic_declarative_items.operator_specifications,

“END\1" ]; )

Figure 4.4: Example of Attribute grammar and equations




B. MAPPING ADA TO PSDL

An Ada specification will be translated into either a PSDL operator or PSDL type
depending on the number of procedures and functions declared in the specification. If only
one procedure or function is declared, the specification is translated as a PSDL operator
using the template in Figure 4.5. The operator will be given the name of the procedure or
function name in the Ada specification. If the specification contains O or 2 or more
procedures or f‘unctions, the specification is mapped to a PSDL type using the template in
Figure 4.6 . The type will be given the name of the Ada package.

OPERATOR
SPECIFICATION
GENERIC

generic_parameter_declarations

input input_parameters
output  output_parameters
exception_declarations

END

Figure 4.5: Operator Template

TYPE
SPECIFICATION
GENERIC

generic_parameter_declarations
type_declarations
operator_specifications
END

Figure 4.6: Type Template
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variable_pames  : GENERIC_VALUE

Figure 4.7: Example of a generic_parameter_declarations Template

Each generic declaration in the Ada specification is translated into a single PSDL
generic type or built into a composite generic type. Generic value and object parameters
declared in the Ada specification are translated into a single PSDL generic type. The
parameter name is the same as the parameter in the Ada specification and the type is
translated as GENERIC_VALUE. Generic type parameters declared in the Ada
specification are also translated into a single PSDL generic type if they are not part of a
generic array type definition. The parameter name is the same as the parameter in the Ada
specification and the type is translated as GENERIC_TYPE. If the index and element part
of an array type parameter ar= generic parameters, they are incorporated into the definition
of the array type of t+¢ F>DL. For example given the following Ada declaration:

generic

type ELEMENT is (<);
type LIST is array (INTEGER range <>) of ELEMENT;

only one PSDL generic type will be translated from the two generic Ada parameters as
follows:
LIST : GENERIC_TYPE [ BASE_TYPE : ARRAY {
ELEMENT : DISCRETE, INDEX : INTEGER ]]

Generic subprogram parameters declarec’ in the Ada specification are translated into a
single generic PSDL type . The parameter name is the same as the name given in the Ada
specification, with the exception of overloaded functions named with symbols. Operator
symbols are translated into strings. For example, a generic subprogram named *“+” wil be
renamed to “add”. The type is translated as GENERIC_PROCEDURE.
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C. EXPLANATION OF ATTRIBUTES

The following is a brief description of the attributes used to build the PSDL interface

specification generator.

1. psdl_interface_specification

The attribute psdl_interface_specification is the highest attribute and stores the
result of the translation. The translation is written to a file named with the Ada package

name concatenated with the suffix “.psdl”.

2. file_name

The attribute file_name is a synthesized attribute which provides the name of the

file the translation is written to.

3. generic_type_declarations

The attribute generic_type_declarations is a synthesized string which builds the
generic portion of the PSDL specification.

4. number_of_operators
The attribute number_of_operators is a synthesized integer used to determine if
the PSDL specification is that of an operator or a type. This attribute counts the number of
procedures and functions declared in the Ada specification. If only one procedure or
function is declared, the operator template, Figure 4.5, is used to build the specification,
otherwise the type template, Figure 4.6, is used to build the specification.

5. operator_specification

The attribute operator_specification is a synthesized string which builds the

operator specifications for a type declaration.




6. type_declarations

The attribute type_declarations is used to build the non-generic type declarations
of the PSDL specification. In this implementation only private type declarations are
translated. They are translated to the type ADT.

7. input_parameters

The input_parameters attribute is used to build the input parameters for each
operator in the PSDL specification. Ada in and in out variables of procedures and functions
become the input parameters for a PSDL operator. The name and the type name of a PSDL
input will be that of the corresponding Ada parameter.

8. output_parameters

The output_parameters attribute is used to build the output parameters for each
operator in the PSDL specification. The name and the type name of a PSDL output will be
that of the corresponding Ada parameter.

9. exceptions
The attribute exceptions provides the exception declarations for a PSDL operator
interface. Type interfaces do not have exceptions declarations included with the operators
in this implementation.
10. variable_type

The attribute variable_type is a synthesized string which provides the type name
for variables declared in the generic portion and type declaration of the PSDL specification.

11. variable_name

The attribute variable_name is a synthesized string which provides the name for

each input/output parameter of an operator.

32




12. mode

The attribute mode is a synthesized map used to determine if there are any input
or output parameters to an operator specification. It is used to modify the template in
Figures 4.5 and 4.6. If there are no input parameters, the fixed input portion of the template

is to be eliminated. If there are no output parameters, the output portion is eliminated.

13. mode_check

The attribute mode_check is an inherited map which is used to initialize the

attribute mode to a default value of empty string.

14. current_mode

The attribute current_mode is a synthesized string used to determine if a comma

is required between two parameters.

15. composite_types
The attribute composite_types is an inherited map which is used to determine if a
generic type declaration in the ada specification is the index or element type of an array

declaration. This information is used to build an array declaration in the PSDL.

16. new_composite_types
The attribute new_composite_types is a synthesized map which is built to provide

the value of the map composite_types.

17. generic_types
The attribute generic_types is an inherited map which provides the type name for

the index and element part of an array declartion.

18. new_generic_types

The attribute new_generic_types is a synthesized raap which is built to provide

the values of the map generic_types.
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19. comma

The attribute comma is a synthesized string used to determine if a comma is

needed between two generic parameters.

D. SAMPLE INPUT AND OUTPUT
Two samples of Ada specifications used as input and the respective PSDL interface

specifications generated are shown below. The first example is translated into a PSDL

operator, the second into a PSDL type.

1. Operator Example

The first example in Figure 4.8 shows an Ada specification for a generic package
which contains one subprogram and four generic parameters. The generated PSDL
specification is shown in Figure 4.9. The PSDL specification is an operator and contains
two generic parameters. The operator specification was a result of only one subprogram
being declared in the Ada package. The three generic parameters in the Ada generated one
type definition in the PSDL. This is because the types ITEM and INDEX are used to define
the array ITEMS.

generic
type ITEM is private;
type INDEX is (<>);
type ITEMS is array (INDEX range < ) of ITEM;
with function “<" (Left : in ITEM; Right : in ITEM) retum BOOLEAN;

package Bubble_Sort is
procedure Sort (The_Items : in out ITEMS);
end Bubble_Sort;

Figure 4.8: Ada Specification for generic bubble sort package




OPERATOR Bubble_Sort
SPECIFICATION
GENERIC
ITEMS : GENERIC_TYPE [ BASE_TYPE: ARRAY[ARRAY_ELEMENT : PRIVATE,
ARRAY_INDEX : DISCRETE ] ],
less_than : GENERIC_PROCEDURE

input The_Items: ITEMS
output The_Items: ITEMS
END

Figure 4.9: PSDL output for Ada generic bubble sort package

with text_io; use text_io;

generic
type t is private;
block_size : in natural := 128;
with procedure eq (x,y : in t; v: boolean);
package sb_set_pkg is
type set is private;
type index_array is array (natural range <>) of natural;
procedure empty (s: out set);
procedure add (x: in t; si: in set; so: out set);
procedure remove (x: in out t; s: in out set);
procedure member (x: in t; s: in set; b: boolean);
procedure union (s1,s2 : in set; s3 : out set);
procedure difference (s1,s2 : in set; s3 : out set);
precedure intersection (s1,s2: in set; s3: out set);
procedure size (s: in set; v: out natural);
procedure equal (s1,52 : in set; v: out boolean);
procedure subset (s1,52: in set; v: out boolean);

private

type link is access set;

type elements_type is array (1..block_size) of t;

type setis

record

size : natural := 0; -~-The size of the set
clements : elements_type; --The actual elements of the set
next : link := null; --The next node in the list

end record;

—Elements (1..min(size,block_size)) contains data
end sb_set_pkg;

Figure 4.10: Ada Specifiation for generic set
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2. Type Example
The second example in figure 4.10 shows an ada specification for an abstract data
type the “set”. The generated PSDL specification is shown in Figure 4.11. Because there is
more than one subprogram declared in the Ada, the resulting PSDL specifcation is for a
type. The example shows the translation of generic type, value, and subprogam parameters.

The private type declaration, set, translated to ADT in PSDL. All subprograms were

translated to operators.
TYPE sb_set_pkg OPERATOR intersection
SPECIFICATION SPECIFICATION
GENERIC input s1, s2: set
t: GENERIC_TYPE, output s3: set
block_size: GENERIC_VALUE, END
eq: GENERIC_PROCEDURE
OPERATOR size
set: ADT SPECIFICATION
input s: set
OPERATOR empty vutput v: natural
SPECIFICATION END
output s: set
OPERATOR equal
SPECIFICATION
OPERATOR add input s1, s2: set
SPECIFICATION output v: boolean
input x: t, si: set END
output so: set
D OPERATOR subset
SPECIFICATION
OPERATOR remove input s1, s2: set
SPECIFICATION output v: boolean
input x: t, s: set END
gg%lt x:t s:set END
OPERATOR member
SPECIFICATION
input x: t, s: set, b:
OPERATOR union
SPECIFICATION
input s1, s2: set
output s3: set
END
OPERATOR difference
SPECIFICATION
input sl, s2: set
output s3: set

Figure 4.11: PSDL output for Ada generic set package
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E. LIMITATIONS

Ada is not case sensitive whereas Kodiak is. This presents a problem in parsing legal
expressions in Ada. For example, the terminal symbol PACKAGE was defined to match
any occurence of “package” or “PACKAGE” in the input string. However, it is legal in Ada
to use a mixture of upper and lower case. This will not be selected as a match in this
implementation. The way around this is to run all Ada specifications through a pretty
printer first.

This implementation does not include the grammar for the entire Ada language. The
grammar selected includes Ada package specifications and generic specifications. This
implemention does not include keywords, descriptions, exceptions for type declarations,
and OBJ3 axioms. Keywords and descriptions are not used for query by specification, but

are required for keyword search and browser, respectively.
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V. CONCLUSIONS

The use of reusable software components will be crucial to the successful
development of large software systems. One of the major problems in code reuse is the lack
of a large library of reusable software components. This problem is aggravated by the fact
that more effort is required to build a generalized component for reuse then to build one for
a specific application. A reusable component must be sufficiently powerful to accomodate
a wide range of applications. A second problem with code reuse is concemed with the
storage and retrieval of reusable components. Specifically, to automate component
retrieval, it is necessary to accurately specify the component’s functionality. The CAPS
system is designed to exploit code reuse for rapid prototyping of hard-real time systems.

The prototype is built in part by the automated retrieval of reusable Ada components.

A. ACCOMPLISHMENTS

As a part of this thesis, reusable Ada components were selected and prepared for
inclusion in the CAPS software base. However, these components represent a small subset
of the thousands of components which will be required. Another way to build up the
number of components in the CAPS software base is to adopt components which are
already being used in other software libraries. To store these components in the CAPS
software base they will need to be specified in PSDL. It is important to accurately specify
a component’s functionality in PSDL since the key to successful retrieval is this
specification. We have developed a translation tool that is able to generate in part the PSDL

specification for Ada components.

B. FUTURE WORK

There is still a remendous amount of work which needs to be done in this very labor
intensive area of building reusable components. Depasquale [3] addresses the issue of
automating the production of test programs based on a component’s formal specification.

More work could be done in this area to aid in component testing. If a component is built
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based on a formal specification then it should be easier to test the component and at least
part of the Ada code may be automatically generated (see Reference 15).

The translator should be expanded to include at least some of the limitations addressed
in Chapter I'V.

The opportunity and benefits for reuse are real. Building systems from reusable
components should result in higher quality and more reliable systems. CAPS is one

example of a system realizing these benefits.
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APPENDIX A. ADA SPECIFICATIONS FOR REUSABLE COMPONENTS

A. UNBOUNDED_SET

SOVEPSSEPEES EREREBBSEERNS

-* Title : CS4530PROJECT 1“UNBOUNDEDSET*™

--* Author : Erhan SARIDOGAN

--* Modifications : Procedure add modiiiad March 92 by J. M. Sealander 10 prevent replicate
--*elements being added to a set., proceduic remove and function difference added to pkg.
--* Date : November,8,1991

-~* Course : CS - 4530

--* System : Unix

--* Compiler : Verdixada

--* Description : This generic package provides to create and manipulate

-* unbounded mathematical set of a given Lype.

--* It has two generic parameters.Element_Type and function

--* Equal. The [/O procedures need to use generic procedures.

--* Type Unbounded_Set is declared as private type.

--* All the required operations are available in the package

--* Link list structure is used to provide unlimited entry.

BEPEFENERE b2 22 REBUEERERRBSRENREESR

# # # % % ¥ % ¥ ¥ B X X H #* ¥

with TEXT_IO;
use TEXT_IO;

generic

m m&%&s g,nv g&MENT_TYPE ) remrn BOOLEAN is “=";
package UNBOUNDED_SET_PKG is

type UNBOUNDED_SET is private;

- This array is needed to initialize a set variable with given values
type SET_ARRAY is ammay (NATURAL range <>) of ELEMENT_TYPE;

INVALID_SET_ENTRY,
REPEATED_ELEMENT : exception; —- used in [/O

-~ Operations on sets ( The required ones )
function EMPTY return UNBOUNDED_SET:

procedure ADD( X : in ELEMENT_TYPE; S : in out UNBOUNDED_SET );

procedure REMOVE( X : in ELEMENT_TYPE: S : in out UNBOUNDED_SET );
function MEMBER( X : ELEMENT _TYPE; S : UNBOUNDED_SET ) return BOOLEAN;
function UNION( S1, S2 : UNBOUNDED_SET ) retun UNBOUNDED_SET;

function INTERSECTION( S1, S2 : UNBOUNDED_SET ) reum UNBOUNDED_SET;
function DIFFERENCE( S1, §2 : UNBOUNDED_SET ) return UNBOUNDED_SET;
function SUBSET( S1, S2 : UNBOUNDED_SET ) retum BOOLEAN;

function EQUAL( S1, S2 : UNBOUNDED_SET ) retum BOOLEAN;




fun...... SIZE( S : UNBOUNDED_SET ) return NATURAL,;
function INITIALIZE( A : SET_ARRAY ) reeurn UNBOUNDED_SET;
- Input/output routines

-- These routines must be instantiated by using differnt parameter
— procedures for each different Element_Type.

generic
with procedure G_PUT( X : in ELEMENT_TYPE ) is <;
procedure GEN_PUT( S : in UNBOUNDED_SET );

geueric
with procedure G_GET( X : out ELEMENT_TYPE ) is ©;
procedure GEN_GET( S : out UNBOUNDED _SET);

. .
with procedure G_PUT_FILE( FILE : in FILE_TYPE;

X :in ELEMENT_TYPE)is <;

procedure GEN_FILE_PUT( FILE : in FILE_TYPE; S : in UNBOUNDED_SET );

generic

with procedure G_GET_FILE( FILE : in FILE_TYPE;

X : out ELEMENT _TYPE) is <;

procedure GEN_FILE_GET(FILE : in FILE_TYPE; S : out UNBOUNDED_SET ),

private

type ELEMENT;

type UNBOUNDED _SET is access ELEMENT;

type ELEMENT is

record
NODE : ELEMENT_TYPE; -- contains the element
NEXT : UNBOUNDED_SET := null; -- used in link list

end record;

end UNBOUNDED_SET_PKG;
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B. BOUNDED_MULTISET

--Title : Generic specification for bounded_multisets

--Author : William D. Reese

--Modification: Modified by J.M. Sealander Apr 92. The original data structure kept mulitple copies
--of any repnﬁnfeelemmts. The data structure was changed to keep a count of each element rather than
~keeping multiple copies. Get and put operations were removed from the test package and added
—to specification. Last_Element and The_Element were removed from the package specifications
--and are now local to the body. They reflect the implementation method, not the data type.
--Overflow exception added to procedure Add. Function empty_set removed

-- and replaced with empty_set constant.

-Date : October 12, 1991

~Course : CS-4530 (Prof. Luqi)

--System : UNIX

—-Compiler : VERDIX

. - »

- * BOUNDED_MULTISETS * SPEC
- L ]

*® DEERBRRBRRRE NS

g.;neric
type ELEMENT _TYPE is private;
MAX_SIZE : POSITIVE;

with procedure PUT(X: ELEMENT_TYPE),
with procedure GET(X: out ELEMENT_TYPE);

package BOUNDED_MULTISETS is
—-This package provides facilities for implementing bounded multisets
—-as abstract data types (ADT). Operations provided include an empty
--set constant, functions for adding, removing, and counting elements,
—-as well as comparison for equality between two bounded multisets.

type BOUNDED_MULTISET is private;

Count ) SPEC

function Count (THE_BOUNDED_MULTISET : in BOUNDED_MULTISET;
ELEMENT_OF_INTEREST : in ELEMENT_TYPE) return NATURAL;

Add . SPEC

procedure Add (ELEMENT_TO_BE_ADDED : in ELEMENT_TYPE;
THE_MULTISET : in out BOUNDED_MULTISET);

Remove i SPEC

42




procedure Remove (ELEMENT_TO_BE_REMOVED : in ELEMENT_TYPE;
THE_MULTISET : in out BOUNDED_MULTISET);

Equals . SPEC

function Equals (SET_1, SET_2 : in BOUNDED_MULTISET) return BOOLEAN;

Size ) SPEC

function Size (THE_MULTISET : in BOUNDED_MULTISET) return NATURAL;

. Put_Multiset . SPEC

procedure Put_Multiset (MULTISET : in BOUNDED_MULTISET);

. Get_Multiset . SPEC

function Get_Multiset NUMBER_OF_ELEMENTS : in NATURAL)
retum BOUNDED_MULTISET;

NOT_FOUND : exception;
OVERFLOW : exception;

private
type ELEMENT_RECORD is
record

ELEMENT : ELEMENT_TYPE;
COUNT : NATURAL :=0;
end record;
type LIST is array (INTEGER range <) of ELEMENT_RECORD;
type BOUNDED_MULTISET is
THE_ELEMENTS : LIST(1.MAX_SIZE);
HOW _FULL : NATURAL :=0;
end record;
EMPTY_SET : constant NATURAL :=0;
end BOUNDED_MULTISETS;
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C. BOUNDED_GRAPH

with TEXT_IO;

use TEXT_IO;

- wl ae aie aje 2 2k 3 2 e 20 ot 200 o0 aje e e ke 3k

- » =

- * Bounded_Graph * SPEC
- * *

- e aje sl ale oo o ot o o o e e ade o e o o o o o o e o R ek ok

generic

type NODE_TYPE is private;
max_size : integer;

package Bounded_Graph is

-- Purpose

-- The routines in this package deal with a directed graphs with a number of
-- nodes <= max_size, which is established at instantiation. The package

-- specification contaions the followings functions and procedures.

-- add_a_node

-- add_an_edge

-- remove_an_edge

-- remove_a_node

-- nodes_connected_in

-- nodes_connected_out

-- nodes_connected

- graph_empty

-- Notes

-- max_size should be only a positive integer number

-- NODE_TYPE is a user defined type

- Exceptions

- DUPLICATE_NODE -- Raised if a duplicate node is added to the graph.
-- NODE_NOT_FOUND -- Raised if a node passed in is not in the graph.
-- GRAPH_IS_FULL -- Raised if a node is added to a full graph.

-- GRAPH_IS_EMPTY -- Raised if any operation except add_a_node and graph_empty
-- is attempted on an empty graph.

-- Modifications

-- 11/13/91 Michael D. O’Loughlin Initial version of specification.

-- UNIX version Verdix Ada, Naval Postgraduate School

- 02/92 J. M. Sealander Original version was a machine with state variable graph declared in
--specification. State variable removed and parameter of type Graph_Typ_Ptr added to all functions
--and procedures. An operator which returns an empty graph was added and overflow exception
--was added to a local procedure which is called by the add operation.

type Graph_Typ_Ptr is private;

DUPLICATE_NODE,
NODE_NOT_FOUND,
GRAPH_IS_FULL,
GRAPH_IS_EMPTY : exception;




- . Graph_Empty . SPEC

function Graph_Empty(GRAPH : in Graph_Typ_Ptr) return boolean;

-- Purpose
-- This function will check if the graph matirx is empty (no nodes on the graph)

- . Nodes_Connected . SPEC

procedure Nodes_Connected(graph : in out Graph_

B
a_node, b_node : in NODE_TYPE;
conn : out CONNECTION);

-- This function will check if two two nodes are connected.

- . Add_A_Node . SPEC

procedure Add_A_Node(graph : in out Graph_Typ_Ptr; node : in NODE_TYPE);

-- This procedure will add a node to the graph (adjacency matrix).

- Add_An_Edge . SPEC

procedure Add_An_Edge(Graph : in out Graph_'lgp_Ptr;
a_node, b_node : in NODE_TYPE);

-

-- This procedure will add an edge between the two node passed in.

- - Nodes_Connected_Out . SPEC

procedure Nodes_Connected_Out(graph : in out Graph_Typ_Prtr;
node : in NODE_TYPE;
out_nodes : out NODE_COUNT:;
node_connected : out CONNECTED_NODES);
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Purpose
-- This procedure will pass out all nodes and the number of nodes connected,

-- to the node passed in, by an out edge.

Nodes_Connected_In . SPEC

procedure Nodes_Connected_In(Graph : in out Graph_Typ_Ptr;
node : in NODE_TYPE,
in_nodes : out NODE_COUNT,
node_connected : out CONNECTED_NODES);

-- Purpose
-- This procedure will pass out all nodes and the number of nodes connected,
-- 1o the node passed in, by an in edge.

. Remove_Edge . SPEC

procedure Remove_Edge(graph : in out Graph_Typ_Ptr;
a_node, b_node : in NODE TYPE)

Purpose
-- This procedure will remove an edge between the two nodes passed in.

. Remove_Node . SPEC

procedure Remove Node(graph in out Graph_Typ_Ptr;

: in NODE_TYPE);
- Purpose . . :
-- This procedure will remove the node passed in from the graph and remove all its
-- related edges.
private

NODE_COUNT is integer range 0..max_size;
type CONNECTED_NODES is array (NODE_COUNT) of NODE_TYPE;
type CONNECTION is (in_edge, out_edge, in_out_edge, not_connected);

type NODE_STATUS_TYP is
record

empty : boolean := true; -- Empty node if true.
node_id : NODE_TYPE; - User defined data structure.
end record;

type NODE_INDEX_ARRAY_TYP is - One dimensional array containing all nodes.
array (NODE_COUNT) of NODE_STATUS_TYP;
type GRAPH_MATRIX_TYP is -- Graph adjacency matrix.

array (NODE_COUNT, NODE_COUNT) of boolean;
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type Graph_Typ is
record
Number_of_nodes : NODE_COUNT :=0;
Nodes : NODE_INDEX_ARRAY_TYP;
Graph_matrix : GRAPH_MATRIX_TYP:= (others =>(others =>true));
end record;
type Graph_Typ_Prr is access GRAPH_TYP;

empty_graph : NODE_COUNT := 0; - Node counter for graph.

end Bounded_Graph;
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D. UNBOUNDED_GRAPH
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- * *

- *  Unbounded_Graph : SPEC
-a *

-— a0 2t e 2 3 0 30 e 20 30 0 a0 e o o e e oo o e g e ke ok
generic

type ELEMENT_TYP is

private;

package Unbounded_Graph is

- PUR:OSE: This generic package implements an unbounded directed

-~ graph type.

- INITIALIZATION EXCEPTIONS: none

-- NOTES: The graph is represented by a set of distinct nodes,

-- with each node having an edge list composed of a set of

-- distinct nodes. A directed edge exists between a node in the

-- graph and all nodes in it’s respective edge list.

-- MODIFICATIONS:

-- 11/15/91 J.L. Budnick Initial build.

-- 05/92 modified by J.M. Sealander. An adjacency node in the original structure pointed to a graph
--node to identify an adjacent vertex. This pointer was removed and replaced with the node element. Type
--declarations used to build the data type were moved to the private section.

type GRAPH_TYP is
private;

INPUT_NODE_DOES_NOT_EXIST : exception;
- . Is_Empty . SPEC

.........................

function Is_Empty(Graph : GRAPH_TYP) return BOOLEAN;

-- PURPOSE:

-- Returns TRUE if the input Graph is empty, FALSE if it is not.
-- EXCEPTIONS: none

-- NOTES: none

-- MODIFICATIONS:

-~ 11/15/91 J L. Budnick Initial build

-
..............................

- " Add_Node . SPEC

-
..............................

procedure Add_Node(New_Node : in ELEMENT_TYP; Graph : in out GRAPH_TYP);

-- PURPOSE:

-- Adds a New_Node of type ELEMENT_TYP to the input Graph.
-- EXCEPTIONS: none

-- NOTES:

-- If a node is found in the Graph which is a duplicate of
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-- the New_Node, the Graph will remain unaltered.
-- MODIFICATIONS:
-- 11/15/91 J.L. Budnick Initial build

®®=  essesesssecscscscsaccasascrnes

- Remove_node SPEC

..............................

procedure Remove_node(Node : in ELEMENT_TYP; Graph : in out GRAPH_TYP);

-- PURPOSE: Removes Node from Graph.

-- EXCEPTIONS:

- I(l;IPUl;I'__NODE_DOES_NOT_EXIST is raised if Node is not found in
-- Graph.

-- NOTES: All references to Node are removed from Graph, even

-- references in other Node’s edge lists.

-- MODIFICATIONS:

-- 11/15/91 J L. Budnick Initial build

- . Add_Edge . SPEC

procedure Add_Edge(From_Node : in ELEMENT_TYP;
To_Node : in ELEMENT_TYP;
Graph : in out GRAPH_TYP);

-- PURPOSE: Adds a directed edge between From_Node and To_Node

-- within Graph.

-- EXCEPTIONS:

-- INPUT_NODE_DOES_NOT_EXIST is raised if From_Node or To_Node
-- is not found in Graph.

-- NOTES: If To_Node is already an element of From_Node’s edge

-- list, the graph remains unaltered.

-- MODIFICATIONS:

-- 11/15/91 J L. Budnick Initial build

- . Remove_Edge . SPEC

procedure Remove_edge (From_Node : in ELEMENT_TYP;
To_Node : in ELEMENT_TYP;
Graph : in out GRAPH_TYP);

-- PURPOSE: Removes an edge between From_Node and To_Node in the
-- given Graph.

-- EXCEPTIONS:

-- INPUT_NODE_DOES_NOT_EXIST is raised if From_Node is not

- lfic;und in Graph or if To_Node is not found in From_Node’s edge

-- hist.

-- NOTES: none

-- MODIFICATIONS:

-- 11/15/91 J L. Budnick Initial build
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- . Has_An_Edge . SPEC

function Has_An_Edge (From_Node : ELEMENT_TYP;
To_Node : ELEMENT_TYP;
Graph : GRAPH_TYP)

return BOOLEAN;

-- PURPOSE: Determines if an edge exists between the two input

-- nodes of the given Graph.

- EXCEPTIONS:

-- INPUT_NODE_DOES_NOT_EXIST is raised if From_Node or To_Node
-- is not found in Graph.

-- NOTES: none

-- MODIFICATIONS:

-- 11/15/91 J 1L.. Budnick Initial build

- - Set_Of_Outgoing_Edges . SPEC

function Set_Of_Outgoing_Edges (From_Node : ELEMENT_TYP;
Graph : GRAPH_TYP) return NODE_SET_PTR;

-- PURPOSE: Returns the set of edges outgoing from the given

-- From_Node in Graph.

-- EXCEPTIONS:

-- INPUT_NODE_DOES_NOT_EXIST is raised if From_Node

-- is not found in Graph.

-- NOTES: An outgoing edge set is composed of the set of all

-- nodes which have directed edges coming from the From_Node to
-- those in the set.

-- MODIFICATIONS:

-- 11/15/91 J L. Budnick Initial build

- . Set_Of _Incoming_Edges . SPEC

function Set_Of_Incoming_Edges (To_Node : ELEMENT_TYP;
Graph : GRAPH_TYP) return NODE_SET_PTR;

- ?U(I?POhSE: Retmns the set of edges incoming to the given To_Node
--in .
- EXC%IP’I'IONS:
-- INPUT_NODE_DOES_NOT_EXIST is raised if To_Node
-- is not found in Graph.
-- NOTES: An incoming edge set is composed of the set of all
-- nodes which have directed edges from themselves to the
-- To_Node.
-- MODIFICATIONS:
-- 11/15/91 J L. Budnick Initial build
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Set_Of_All_Nodes . SPEC

function Set_Of_All Nodes (Graph : GRAPH_TYP) return NODE_SET_PTR;

-- PURPOSE: Returns the set of all nodes in the input Graph.
-- EXCEPTIONS: none

-- NOTES: The returned node set is simply the complete set of
-- nodes in Graph, and contains no interrelationship data.

-- MODIFICATIONS:

- 11/15/91 J L. Budnick Initial build

private
type GRAPH_NODE;

type GRAPH_TYP is
access GRAPH_NODE;

type EDGE;
type EDGE_PTR is
access EDGE;
type EDGE is
record
Edge_node : ELEMENT_TYP:
Next_Edge : EDGE_PTR := null;
end record;
type GRAPH_NODE is
record
Element : ELEMENT TYP;
Next_Node : GRAPH_TYP := null;
Edges : EDGE_PTR := null;
end record;
EMPTY_GRAPH : constant GRAPH_TYP := null;

end Unbounded_Graph;
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E. UNBOUNDED_MAP

- Name: Capt Robert M. Dixon

-- Date: 15 Nov 91

-- Modifications : Modified by J. M. Sealander Feb 92. In the orignial version
-- NUM_BINDINGS and NUM_BLOCKS were state variables declared

-- in the package body. Erroneous data resulted if more than

-- one variable of MAP_TYPE was declared. They are now part

-- of the MAP_TYPE data structure.

-- Course: CS4530

-- Compiler: Verdix Ada 6.0

- Tymm Solbonme

Remarks. Map Package implements an unbounded map using a generic Ada package.
-- The package is instantiated with a hash function, which returns an index
-- into the hash table, based on the domain value. If the index lies outside
-- the range of the map, it links in new map blocks until the index falls
-- on a block in the map.
-- The domain/range value is added to the head of a linked list whose head
-Fointgrisstoredinthe map block, at the index pointed to by the hash
-- function.

- Generic Parameters: DOMAIN_TYPE is the desired type of the domain.
- RANGB_’I'YPE is the desired type of the range.
-- Hash is the user’s hashing function.
-- Domain_Put is a put procedure for the domain type.
-- Range_] Puusaputprocedumfortherangetype
-- Domain_Get is a get procedure for the domain type.
- Range_Get is a get procedure for the range type.
-- Granularity s;pecxﬁw how many values will be stored in
-- each block of the hash table.

generic
type DOMAIN_TYPE is private;
type RANGE _ TYPE is private;
with function Hash(Domain_Value : in DOMAIN_TYPE) return NATURAL;
with procedure Domain_Put(Domain_Value : in DOMAIN_TYPE);
with procedure Range_Put(Range_Value : in RANGE_TYPE);
with procedure Domain_Get(Domain_Value : out DOMAIN_TYPE);
with procedure Range_Get(Range_Value : out RANGE_TYPE);
Granularity : in IN'I‘EGER = 100;

package Map_Package is

-- MAP TYPEBM%E the package user will use to declare a map.

-- MAP_BINDINGS is the type used to store the number of bindings in the map.
- Add adds a new domain/range pair to the map.

-- Range_Value retums the range value associated with the domain_value parameter.

-- Is_Bound returns true if the domain_value is in the table.

— Number_Of_Bindings returns the number of bindings in the map.

-- Remove_Binding removes a domain/range pair from the map.

-- Put prints out the entirec map.

-- Get gets the entire map.

-- Empty_Map is an empty map constant,

-- Domain_Exists is raised if a duplicate domain is inserted into the map.
-- Domain_Not_Found is raised if a domain is not found in the map.
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type MAP_TYPE is private;
type MAP_BINDINGS_TYPE is new NATURAL,;

procedure Add(Map : in out MAP_TYPE; Domain_Value : in DOMAIN_TYPE;
Range_Value : in RANGE_TYPE);
function Range_ Value(Map MAP_TYPE; Domain_Value : DOMAIN_TYPE)
return RANGE_TYPE;
function Is_Bound(Map : MAP_TYPE; Domain_Value : DOMAIN_TYPE) return BOOLEAN;
function Nmnba'_Of_Bindings(Map : MAP_TYPE) return MAP_BINDINGS_TYPE;
Remove_Bindin : in MAP_TYPE; Domain_Value : DOMAIN_TYPE),
Put(Map : in MAP_TYPE);
procedure Get(Map : in out MAP_TYPE);

Empty_Map : constant MAP_TYPE;

Domain_Exists : exception;
Domain_Not_Found : exception;

private
type MAP_RECORD_TYPE is
record

Domain_Value : DOMAIN_TYPE;
Range_Value : RANGE_TYPE;
end record;
type MAP_RECORD_NODE_TYPE;
type MAP_RECORD_NODE_PTR_TYPE is access MAP_RECORD_NODE_TYPE;
type MAP_RECORD _NODE_TYPE is
Map_Record : MAP_RECORD_TYPE;
Next_Node : MAP_RECORD_NODE_PTR_TYPE;
end record;
type MAP_ARRAY_TYPE is array(0 .. Granularity - 1) of MAP_RECORD_NODE_PTR_TYPE;
type MAP_BLOCK_TYPE;
type MAP_BLOCK_PTR_TYPE is access MAP_BLOCK_TYPE;
type MAP_BLOCK_TYPE is

Map_Array : MAP_ARRAY_TYPE;
Next_Block : MAP_BLOCK_PTR_TYPE;
end record;
type MAP_HEAD_TYPE;
type MAP_TYPE_PTR is access MAP_HEAD_TYPE;
type MAP_HEAD_TYPE is

NUM_BINDINGS : MAP_BINDINGS_TYPE :=0;
NUM_BLOCKS : NATURAL :=0;
HEAD: MAP _BLOCK_PTR_TYPE;

type MAP_TYPE is new MAP_TYPE_PTR;
Empty_Map : constant MAP_TYPE :=new MAP_HEAD_TYPE;
end Map_Package;
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F. REAL_NUMBERS

--Author original version : Dogan Ozdemir
«Auﬂnormodlﬁedﬁon JM.Sealande:ln;oldthe hole and decimal
--Original version separate arrays to wi part
--of a real number. Modified version uses one array to hold all the digits
ngtgll_eputpuusnmnahzedsothatmedecunalpomtappemsafwrme
--Local procedures eliminated from original version: ADD_WHOLE, SUBTRACT_WHOLE,
--M_SHIFT_LEFT, SHIFT_LEFT, SIMPLIFY.
with TEXT_IO;

generic

DIGIT : INTEGER := 10;
MAX_EXP : INTEGER := 3;

package REAL_PKG is

type REAL is private;
INPUT_ERROR : EXCEPTION;

--functions--

function ADDITION (NUM1,NUM?2 : REAL) return REAL;
function “+"” (NUM1,NUM2 : REAL) return REAL renames ADDITION;

function SUBTRACTION (NM1,NM2 : REAL) return REAL;
function “-” (NM1,NM2 : REAL) retum REAL renames SUBTRACTION;

function MULTIPLICATION (NM1,NM2 : REAL) return REAL;
function “*” (NM1,NM2 : REAL) retum REAL renames MULTIPLICATION;

function DIVISION (NM1,NM2 : REAL) return REAL ;
function “/” (NM1,NM2 : REAL) return REAL renames DIVISION;

function EQUAL(N1,N2 :REAL) return BOOLEAN;

function GREATER (N1,N2 :REAL) return BOOLEAN;
function *>" (N1,N2 :REAL) return BOOLEAN renames GREATER;

-- This procedure gets a float and converts it to the respective
-- real number.

function CONV_REAL (FL : FLOAT) return REAL;
- procedures--

-- This procedure reads the Real Number from the screen and
-- decompose it into the sign, digits and exponent
-- arrays.
procedure GET (NUM : in out REAL );
-~ This procedure puts the real number to the screen

procedure PUT (R : in REAL);




private
type SIGN is (‘+',-’
DECIMALS lslNTEGERmn e (..

subtype
type MANTISSA_ARRAY is array (1 .. DIGIT) of DECIMALS;
type EX ONENT_ARRAY is array (1 .. MAX_EXP) of DECIMALS;

type REAL is
record

SIGN_WHOLE : SIGN :=‘+";

MANTISSA : MANTISSA_ARRAY := (others => 0);

SIGN_EXP : SIGN :=‘+’;

EXPONENT : EXPONENT_ARRAY := (others => 0);
end record;

EMPTY_EXP : constant EXPONENT_ARRAY := (others => 0);
end REAL_PKG;
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G. BOUNDED_INTEGERS

* REREEREEEE SRR RN RN R R R K

--* TITLE : IMPLEMENTATION OF BOUNDED INTEGERS
--* COURSE : CS 4530

—* AUTHOR : Metin Balci

--* DATE : OCT25,91

--* MODIFICATIONS : Modified by J. M. Sealander Apr 92. Subprogram algorithms simplified.
~* SYSTEM : UNIX

--* COMPILER : VERDIXADA

--* FILE : baki/qtr5/cs4530/big_int_spec.a

--* DESCRIPTION : This generic package contains the specifications
--* for implementing the type bounded integer. The

--* type is implemented as generic big integers with

--* array representations. The generic parameter is

--* DIGIT and it specifies the number of decimal digits

--* the represantation support.The generic parameter

-* is used as value generic parameter and intialized

--* to 20 as default value. You can change the generic

--* value in your implementation(or test)program.

-* By u:meg “renames” features of ADA, the operations

--* are overioaded for the normal operators.

--* For equality check although a function “equals” is

--* supported, user can use “=" operator for this aim.

--* This feature is implemented in the test pro

- Rk kR kR ok ek e ok ok ok ok R ok ok

with TEXT_IO;
use TEXT_IO;

generic
DIGIT : in INTEGER := 20;
package BOUNDED_INTEGER_ARRAY_PACKAGE is

type BOUNDED_INTEGER is private;

- for a given integer it returns a bounded integer,by calling this
-- function we may have operations with both types
procedure CONVERT (NUM_VAL : in INTEGER ; B_NUM : out BOUNDED_INTEGER);

-- converts the string to a bounded integer type.User is supposed to
-- enter the big integer as a string
procedure STRING_TO_BOUNDED_INTEGER (STR :in STRING ; LNG:in INTEGER;
B_INT :out BOUNDED_INTEGERY);

-- the addition of two bounded integers
function ADDITION ( B_INT1 :in BOUNDED_INTEGER;
B_INT2 :in BOUNDED_INTEGER) return BOUNDED_INTEGER;

function “+” (B_INT1 :in BOUNDED_INTEGER; B_INT2 :in BOUNDED_INTEGER)
return BOUNDED_INTEGER renames ADDITION;

-- subtraction
function SUBTRACTION (LEFT :in BOUNDED_INTEGER; RIGHT:in BOUNDED_INTEGER)
return BOUNDED_INTEGER;

function “-” (LEFT :in BOUNDED_INTEGER; RIGHT:in BOUNDED_INTEGER)
retum BOUNDED_INTEGER renames SUBTRACTION;
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-- multiplication
function MULTIPLICATION (L:in BOUNDED_INTEGER; R:in BOUNDED_INTEGER)
return BOUNDED_INTEGER ;

function “*” (L:in BOUNDED_INTEGER; R:in BOUNDED_INTEGER)
return BOUNDED_INTEGER renames MULTIPLICATION ;

-- division
function DIVISION (DIVIDENT :in BOUNDED_INTEGER;
DIVISOR :in BOUNDED_INTEGER) return BOUNDED_INTEGER;
function *“/” (DIVIDENT :in BOUNDED_INTEGER; DIVISOR :in BOUNDED_INTEGER)
return BOUNDED_INTEGER renames DIVISION ;

-- modulo operation
function MODULO (FIRST :in BOUNDED_INTEGER; SECOND :in BOUNDED_INTEGER)
return BOUNDED_INTEGER;

function “mod” (FIRST :in BOUNDED_INTEGER: SECOND :in BOUNDED_INTEGER) return
BOUNDED_INTEGER renames MODULO;

-- retumns if two bounded integer is equal or not
function EQUALS (LEFT.RIGHT : in BOUNDED_INTEGER )return BOOLEAN;

-- returns if the first entry greater than the second entry
function GREATER_THAN ( X,Y : in BOUNDED_INTEGER ) return BOOLEAN;

" function “>” ( X,Y : in BOUNDED_INTEGER) retum BOOLEAN renames GREATER_THAN;

-- this is the get function which is implemented for test purposes
procedure GET ( STR_TO_BOUNDED : out BOUNDED_INTEGER);

- this is the put function which is implemented for test purposes
procedure PUT (BOUNDED_TO_STR : in BOUNDED_INTEGER);

private
subtype NUM_OF_CHAR is INTEGER range 0..9;
type SIGN_DIGIT is (‘+’,”-’
type B_ INT ARRAY TYPElsarray(NATURALRANGEO DIGIT) of NUM_OF_CHAR;
type BOUNDED_INTEGER is
record
SIGN: SIGN_DIGIT ;
B_INT_ARRAY : B_INT_ARRAY_TYPE;
end record;

end BOUNDED_INTEGER_ARRAY_PACKAGE;
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H. VECTORS

--Title : Vector ADT

--Author : Jennie M. Sealander

--Date : 14 November 1991

--Course : CS-4530

-—-Compiler : Verdix Ada

--Description: Generic package for Abstract Data Type Vector.

SPEC

!
*
5
&
* * * »

with TEXT_IO; use TEXT_IO;
generic

type ELEMENT_TYPE is private; --vector component type, must be a
“n%%]l)gN : in POSITIVE; --dimension of vector type
with function “+” (X,Y: ELEMENT_TYPE) return ELEMENT_TYPE;
TR function defines addition for the numeric ELEMENT. TYPE
with function “-" (X,Y: ELEMENT_TYPE) return ELEMENT_TYPE;
:mmn defines subtraction for the numeric ELEMENT_TYPE
with function “*” (X,Y: ELEMENT_TYPE) return ELEMENT_TYPE;
::hﬁl'n.goﬁs:wtion defines multiplication for the numeric ELEMENT_TYPE
with function ZERO return ELEMENT_TYPE;
:P"Ihmﬁon defines zero for the numeric ELEMENT_TYPE
with function SQRT(X: ELEMENT_TYPE) retum ELEMENT_TYPE;
:mmn defines the square root for ELEMENT_TYPE
with procedure PUT(X: ELEMENT_TYPE);
:ﬁmwm defines PUT for the numeric ELEMENT_TYPE
with procedure GET(X: out ELEMENT_TYPE);
—This procedure defines GET for the numeric ELEMENT_TYPE
package VECTORS is
type VECTOR is array(1..DIMENSION) of ELEMENT_TYPE;
function “+” (V1,V2: in VECTOR) retum VECTOR;

Purpose
--Vector addition
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function *-” (V1,V2 : in VECTOR) return VECTOR;
--Purpose .
--Vector Subtraction
function “*” (V1 : in VECTOR; S: in ELEMENT_TYPE) return VECTOR;
~Purpose
--Multiplication of a vector by a scalar
function “*” (V1,V2 : in VECTOR) return ELEMENT _TYPE;
~-Purpose
--Vector Dot Product, multiplication of two vectors
function LENGTH (V : in VECTOR) retum ELEMENT_TYPE;
--Purpose )
--Returns magnitude of vector
procedure PUT_VECTOR (V: VECTOR);
--Outputs an object of type VECTOR
procedure GET_VECTOR (V: out VECTOR);
--Purpose
--Gets an object of type VECTOR

INPUT_ERROR : exception;
--Raised if error in input of type VECTOR
end VECTORS;
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I. MATRIX

OISO
--Title : Generic Matrix Package
--Author : William C. Hoppe
--Date : 7 November 1991
--Revised :
--Course : CS4530
--System : SUN-3 UNIX
--Compiler : Verdix Ada, VADS, Ver 6.0
--Description : Generic Package to implement the Abstract Data Type (ADT)
-- Matrix, and operations: conversion from an array to a
~ matrix, matrix addition and subtraction, multiplication
-- by a scalar (value of the element_type), matrix
-- mumphcanon, and transpose.
O OO

generic
type ROW_LENGTH is (<);
type COLUMN LENGTH is (<>);
type ITEM is private
with function “+ (XY in ITEM) return ITEM is <;
with function “-” (X, Y : in ITEM) retum ITEM is <>;
with functior: “*” (X, Y : in ITEM) retum ITEM is <>;
package Matrix is
type ARRAY_TYPE is array(ROW_LENGTH range <>, COLUMN_LENGTH range <>) of ITEM;
type MATRIX_TYPE is array(ROW_LENGTH range <>, COLUMN_LENGTH range <>) of ITEM;

type TRANSPOSF_MATRIX_TYPE is aray(COLUMN_LENGTH range <,
ROW_LENGTH range <) of ITEM;

NON_CONFORMABLE_FOR_ADDITION_ERROR : exception;
NON_CONFORMABLE_FOR_MULTIPLICATION_ERROR : exception;

function Convert_to_Matrix (Numerical_Array : ARRAY_TYPE) return MATRIX_TYPE;
function Matrix_Add (Matrix1, Matrix2 : in MATRIX_TYPE) reurn MATRIX_TYPE;

function Matrix_Subtract (Matrix1, Matrix2 : in MATRIX_TYPE) return MATRIX_TYPE;
function Matrix_Multiply (Scalar : in ITEM; Matrix : in MATRIX_TYPE) return MATRIX_TYPE;

function Matrix_Multiply (Matrix1, Matrix2 : in MATRIX_TYPE;
Initial_Value : in ITEM ) return MATRIX_TYPE;

function Transpose (Matrix : in MATRIX_TYPE) return TRANSPOSE_MATRIX_TYPE;

end Matrix;




APPENDIX B. KODIAK PROGRAM LISTING

tdefinition of lexical classes

%define Digit
%define Int
%define Lower
%define Upper
%%define Letter
%define Alpha
%define Underscore
%define Blank
%define Quote
%define Backslash
%define Char

:{0-9]

:{Digit}+

:{a-z]

([A-Z]
:({Lower}1{Upper})
:E‘[‘L%uer)l[ngn})

:(\]
i)

:("™\JI{Backslash} {Quote)|{Backslash) { Backslash})

!definition of white space comments

ldefinitions of compound symbols and keywords

Pé\CKAGE
I

PRIVATE
END

:packagelPACKAGE
:islIS
:privatelPRIVATE
:end[END

:useflUSE

typel TYPE
urePROCEDURE
tionFUNCTION

returnRETURN
:inlIN

:outiOUT
:taskITASK
:entrylENTRY
:exceptionlEXCEPTION
:renamesIRENAMES
:constantt CONSTANTI™
:subtypelSUBTYPE
newiNEW
:rangelRANGE
:genericlGENERIC
:withWITH
:digitsIDIGITS
:deltalDELTA
limitedILIMITED
:forlFOR

:atlAT

:alllALL

:caselCASE
:whenlWHEN
:otherslOTHERS
:accessIACCESS
:"&"I"and”"I"AND"”
:theniTHEN

"o "OR”
:elselELSE

:notiNOT
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XOR :xortXOR

ABS :abslABS

NULL :nullINULL
EQUAL ="
NEQ :n/_-_n

LT i

LTE ez

GTE s

GT N

PLUS i o

MINUS o

TIMES Mibdd

DIVIDE o
EXPONENT b

MOD :modIMOD
REM :remiREM
ARRAY :arrayl ARRAY
OF :oflOF

RECORD :recordRECORD
DISCRETE "

ARROW ="

TO "

TIC ,nrn
CHARACTER_LITERAL ™"
STRING_LITERAL :{Quote} {Char}* {Quote)
INTEGER_LITERAL :{Int}
REAL_LITERAL :(Int}”.”{Int}
IDENTIFIER :{Letter}+(({Underscore }!|Alpha)* { Alpha} )*
%%

!Explanations of attributes

'psdl interface_specification : synthesized string, the result of the
translation

'operamr specification : synthesized string, builds the operator specification
for psdl types

'number of_operators : synthesized integer, counts the number of operators
! in ada specn cation to determine if psd! interface
! is a type or single operator

'new_composite_types : synthesized map, used to build the inherited map,

! composite_types

'composne types : inherited map, used to determine if a generic declaration
is part of a composite type declaration, i.e. an array type

'new _generic_types : synthesized map, used to build the inherited map,
generic_types

! genenc types : inherited map, provides the type names of the
index and element types for a generic array type

'genenc type_declarations : synthesized string, builds the generic type
declaration portion of psdl then inherited
! by package_specification

'lype declarations : synthesized string, builds the non-generic type
declaration portion of psdl
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!input_parameters : synthesized string, builds the input attribute of a psdl
! operator

'output _parameters : synthesized string, builds the output attribute of a psdl
operator

!mode: synthesized map, used to determine if there are any input out output
! parameters to an operator specification

:mode_check: inherited map, initializes attribute mode to default of empty
! string

'current _mode: synthesized string, used to determine if a comma is required
! between two parameters

'excepuons synthesized string, provides exceptions declared in a single
! operator package

!variable_name : synthesized string, provides the name of an input or output
! parameter

'vanable _type : synthesized string, provides the type name for variables
declared in the generic portion and type declaration of the
! PSDL specification

lattribute declarations for nonterminal symbols
start{ psdl_interface_specification:string; };

ada_interface( psdl_interface_specification:string;
file_name:string; };

generic_specification{ psdl_interface_specification:string;
generic_type_declarations:string;
file_name:siring; };

generic_formal_part{ generic_type_declarations:string; };

generic_parameter,_declarations(generic_type_declarations:string;
new_composite_types:string->string;
composite_types:string->string;
new_generic_types:string->string;
generic_types:string->string;
comma:string; };

generic_parameter_declaration{generic_type_declarations:string;
new_composite_types:string->string;
composite_types:string->string;
new_generic_types:string->string;
generic_types:string->string;
comma:string; };
generic_type_definition ( variable_type:string;
generic_types:string->string;
new_composite_types:string->string; };

private_type_declaration{generic_type_declarations:string;
type_declarations:string; };

package_specification{ psdl_interface_specification:string;
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number_of_operators:int;
generic_type_declarations:string;
file_name:string; };

basic_declarative_items( type_declarations:string;
operator_specification:string;
number_of_operators:int;
input_parameters:string;
output_parameters:string;
exceptions:string; };

basic_declarative_item( type_declarations:string;
operator_specification:string;
input_parameters:string;
output_parameters:string;
exceptions:string;
number_of_operators:int; };

basic_declaration( type_declarations:string;
operator_specification:string;
input_parameters:string;
output_parameters:string;
exceptions:string;
number_of_operators:int; };

subprogram_declaration{ operator_specification:string;
input_parameters:string;
output_parameters:string;
number_of_operators:int;
exceptions:string; };

subprogram_specification( operator_specification:string;
input_parameters:string;
output_parameters:string;
number_of_operators:int;
name:string; };

formal_part{ input_parameters:string;
output_parameters:string; };

designator{ name:string;
operator_symbols:string->string; };

operator_symbol{ name:string; };

parameter_specifications( input_parameters:string;
output_parameters:string;
mode:string->string;
mode_check:string->string;
current_mode:string; };

parameter_specification{ input_parameters:string;
output_parameters:string;
mode:string->string;
mode_check:string->string;
current_mode:string; };

type_declarations( type_declarations:string; };

type_declaration ( type_declarations:string; };




full_type_declaration{ type_declarations:string; };
exception_declaration{ exceptions:string; };
subtype_declaration { type_declarations:string; };
generic_declaration{ type_declarations:string; };

subtype_indication{ variable_type:string;
generic_types:string->string;
new_composite_types:string->string;
element_type:string; };

type_definition{ variable_type:string; };
real_type_definition{ variable_type:string; };

array_type_definition{ variable_type:string;
generic_types:string->string;
new_composite_types:string->string; };

unconstrained_array_definition{ variable_type:string;
generic_types:string->string;
new_composite_types:string->string; };

constrained_array_definition{ variable_type:string;
generic_types:string->string;
new_composite_types:string->string; };

subtype_definitions{ generic_types:string->string;
new_composite_ :string->string;
index_type:string; };

index_subtype_definition{ generic_types:string->string;
index_type:string;
new_composite_types:string->string; };

identifier_list{ variable_names:string;
exceptions:string; };

type_mark ( variable_type:string; };

name(variable_type:string;
variable_name:string;
generic_types:string->string;
new_composite_types:string->string;
index_type:string;
element_type:string; };

lattribute declarations for terminal symbols

IDENTIFIER{ %text:string; };
STRING_LITERAL({ %text:string; };

%%
!Productions of the grammar

start

: ada_interface
{ %output(ada_interface.psd!_interface_specification);
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%outfile(ada_interface.file_name,
ada_interface.psdl_interface_specification); )

ada_interface
: context_clause generic_specification
( ada_interface.psdl_interface_specification =
generic_specification.psdl_interface_specification;
ada_interface.file_name =
generic_specification.file_name; }
| context_clause package_specification
{ ada_interface.psdl_interface_specification =
package_specification.psdl_interface_specification;
ada_interface.file_name =
package_specification.file_name; }

context_clause
: wi(t;l_claus@s use_clauses
|

()

with_clauses
: with_clauses with_clause

()

| with_clause
use_clauses

T ust-,]_clauses use_clause
|

0
with_clause
: W{IiI'H package_names *;’
use_clause
: Uﬂi package_names *;’

generic_specification
: ge{n?'ic_fonnal _part subprogram_specification
| generic_formal_part package_specification

{package_specification.generic_type_declarations =
generic_formal_part.generic_type_declarations;
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generic_specification.psdl_interface_specification =
package_specification.psdl_interface_specification;

generic_specification.file_name =
package_specification.file_name; )

genenc formalgan
eneric_parameter_declarations
{generic_ formal _part.generic_type_declarations =
[* GENERIC\n",
‘\ng%neric_pammeter_declarations.generic_type_declarations,
generic_parameter_declarations.generic_types =
enenc_parameter declarations.new_generic_types
+| {(2:string:"INDEX_TYPE")};
generic_parameter_declarations.composite_types =
generic_parameter_declarations.new_composite_types
| +l {(?:string:"n0™)}; }
{)

generic_parameter_declarations
: generic_parameter_declarations generic_parameter_declaration
{ generic_parameter_declarations(1].generic_| type_t declarations =
generic_parameter_declarations[2].comma == “yes™
->[generic_parameter_declarations{2).generic_type_declarations,
“\n”,
generic_parameter_declaration.generic_type_declarations]
# [generic_parameter_declarations[2].generic_type_declarations,
generic_parameter_declaration.generic_type_declarations];
generic_parameter_declarations[1].new_generic_types =
[generic_parameter_declarations[2].new_generic_types +
generic_parameter_declaration.new_generic_types];
generic_parameter_declaration.generic_types =
generic_parameter_declarations.generic_types;
generic_parameter_declarations(2].generic_types =
generic_parameter_declarations(1].generic_types;
generic_parameter_declarations[1].new_composite_types =
generic_parameter_declarations(2].new_composite_types
+| generic_parameter_declaration.new_composite_types;
generic_parameter_declaration.composite_types =
generic_parameter_declarations.composite_types;
generic_parameter_declarations{2].composite_types =
generic_parameter_declarations(1].composite_types;
generic_parameter_declarations(1].comma =
generic_parameter_declaration.comma; }
| generic_parameter_declaration
{ generic_parameter_declarations.generic_type_declarations =
generic_parameter_declaration.generic_type_declarations;
generic_parameter_declaration.generic_types =
generic_parameter_declarations.generic_types;
generic_parameter_declaration.composite_types =
generic_parameter_declarations.composite_types;
generic_parameter_declarations.new_composite_types =
generic_parameter_declaration.new_composite_types;
generic_parameter_declarations.new_generic_types =
generic_parameter_declaration.new_generic_types;
generic_parameter_declarations.comma =
generic_parameter_declaration.comma; )
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genenc _parameter_declaration
: identifier_list *:’ type_mark *;’
{generic_parameter._ declarauomgenenc type_declarations =
[“ * identifier_list.variable_names,”: GENERIC VALUE”]
generic_parameter_declaration.new_composite_types = “;
generic_parameter_declaration.new_generic_ types = 4
generic_parameter_declaration.comma = “yes™; )
lidentifier_list *:* IN type_mark *;’
{genenc _parameter_declaration. genenc type_declarations =
* identifier_list.variable_names,”; GENERIC_VALUE"];
genenc _parameter_declaration.new_compoasite_| types-—-““
generic_parameter_declaration.new_generic_types = *“‘;
generic_parameter_declaration.comma = *“yes”; }
| identifier_list ‘:* IN OUT type_mark *;’
{generic_parameter_declaration. gcncnc type_declarations =
[* “identifier_list.variable_names,”: GENERIC VALUE“]
genenc _parameter_declaration.new _composite_| types = “4
generic_parameter_declaration.new, _genenc types-
generic_parameter_declaration.comma = * yes ]
| identifier_list *:* type_mark EQUAL expression ;
{generic_parameter_declaration. genenc type_t declarations =
[“ “identifier_list.variable_names,”: GENERIC_VALUE"];
generic_parameter_declaration.new_composite_types = ““‘;
generic_parameter_declaration.new_generic_types = **;
generic_parameter_declaration.comma = “yes”; }
| identifier_list *:* IN type_mark EQUAL expression *;’
(generic_parameter_declaration. genenc type_declarations =
[* “identifier_list.variable_names,”: GENERIC_VALUE"};
generic_parameter_declaration.new_composite_types = *“;
generic_parameter_declaration.new. _genenc t ="
8eneric_parameter_declaration.comma = *“yes”; }
| identifier_list ‘:* IN OUT type_| markEQUALexpressxon‘ ’
{generic_parameter_ declarauon.genenc type_declarations =
* “identifier_list. variable_names,”: GENERIC_VALUE");
generic_parameter_declaration.new_composite_types = *“;
generic_parameter_declarat..n.new _genenc types-‘“‘
generic_parameter_declaration.comma = “yes”; }
| TYPE IDENTIFIER IS PRIVATE *;’
{generic_parameter_ declaranon.genenc type_declarations =
gemnc_pammeter declaration.composite_types(IDENTIFIER. %text)

#(“ “IDENTIFIER.%text,” : GENERIC_TYPE"],
generic_parameter_ declaration.new _generic_types =
{(IDENTIFIER.%text:"PRIVATE")} ;
generic_parameter_declaration.new_composite_types = “‘;
generic_parameter_declaration.comma =
generic_parameter_declaration.composite_types(IDENTIFIER. %text)
- uyesn
->*“no”

es”; )
I TYPEY])ENTIFIER IS discriminant_part PRIVATE °*;’
{generic_parameter_declaration.generic_type_declarations =
generic_parameter_declaration.composite_types(IDENTIFIER. %text)
-> e

L “,IDENTIFIER %text,” : GENERIC_TYPE"];
generi ter_declaration.new_generic_types =

[(ID R.%text"PRIVATE)};
generic_parameter_declaration.new compositc_typw ="
generic_parameter_declaration.comma =

= uyesn




genenc _parameter_ declaration.composite_types(IDENTIFIER. %text)
== “yes”
-> Olnox
# “yes”; }
| TYPE IDENTIFIER IS LIMITED PRIVA
{genenc_pammeter declaration.generic_ type declarations =
ge«mc_pammeter declaration.composite_types(IDENTIFIER. %text)
“yes

_> ““
#[* “JIDENTIFIER.%text,” : GENERIC_TYPE"];
generic_parameter_declaration.new_generic_types =
{(IDENTIFIER. %text:"PRIVATE")};
generic_parameter_declaration.new_composite_types = *“*;
generic_parameter_declaration.comma =
generic_parameter_declaration.composite_types(IDENTIFIER. %text)
= [ w”
> “no
# «yes R )
| TYPE IDENTIFIER discriminant_part IS LIMITED PRIVATE *;
(generic_parameter_declaration.generic_type_declarations =
generic_parameter_declaration.composite_types(IDENTIFIER. %text)
- Ciy w”
_> L)
#* “JIDENTIFIER.%text,” : GENERIC_TYPE"];
generic_parameter_declaration.new_generic_types =
{(IDENTIFIER.%text:"PRIVATE")};
generic_parameter_declaration.new composite_types =
generic_parameter_declaration.comma =
generic_parameter_declaration.composite_types(IDENTIFIER. %text)
- 4, es”
> “noz
# “yes”;
I TYPE IDENTIF[ER IS generic_type_definition *;
(generic_parameter_declaration.generic_type_ declarauons-
genmc_pammeter declaration, composxte types(IDENTIFIER. %text)
== yes
-> [}
#* “JDENTIFIER.%text,” : *,
generic_type_definition.variable_type};
generic_type_definition.generic_types =
generic_parameter_declaration.generic_types;
generic_parameter_declaration.new_generic_types =
{(IDENTIFIER. %text:"DISCRETE")} ;
generic_parameter_declaration.new_composite_types =
generic_type_definition.new_composite_types;
generic_parameter_declaration.comma =
generic_parameter_declaration.composite_types(IDENTIFIER. %text)
e ., es"
-> “DO
# “yes”;}
| WITH subprogram_specification *;’
{ generic_parameter_ declaration. generic_| type_ declarations =
[* *subprogram_specification.name,”; GENERIC PROCEDURE"],
generic_parameter_declaration.new _Composite_| types— “
generic_parameter_declaration.new_generic_types =
generic_parameter_declaration, comma = “yes )
| WITH subprogram_specification IS name *
{ generic_parameter_declaration.generic_ type declarations =
(* “subprogram_specification.name,”: GENERIC_PROCEDURE"];
generic_parameter_declaration.new_composite_types = *““;
generic_parameter_declaration.new_generic_types = *“*;
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generic_parameter_declaration.comma = “yes”; }
| WITH subprogram_specification IS DISCRETE *;’
( generic_parameter_declaration.generic_type_declarations =
[* “subprogram_specification.name,”. GENERIC_PROCEDURE"};
generic_parameter_declaration.new_composite_types = ““;
generic_parameter_declaration.new_generic_types = *“;
generic_parameter_declaration.comma = “yes”; }

package_specification
- PACKAGE IDENTIFIER IS basic_declarative_items END IDENTIFIER *;’
( package_specification.psdl_interface_specification =
basic_declarative_items.number_of_operators == 1
-> [“OPERATOR “,IDENTIFIER.%text, \nSPECIFICATIONwW",
package_specification.generic_type_declarations,™n",
basic_declarative_items.input_parameters,
basic_declarative_items.output_parameters,™n",
basic_declarative_items.exceptions,
“END\n

"]
# [“TYPE “ IDENTIFIER. %text,"\nSPECIFICATION\”,
ge_specification.generic_type_declarations,™n”,
ic_declarative_items.type_declarations,
basic_declarative_items.operator_specificaion,
“ENDwW"};
package_specification.file_name = (IDENTIFIER.%text, “.psdl”]; }
| PACKAGE IDENTIFIER IS basic_declarative_items PRIVATE
basic_declarative_items END IDENTIFIER *;’
( package_specification.psdl_interface_specification =
basic_declarative_items.number_of_operators == 1
-> [“OPERATOR “ IDENTIFIER.%text, \nSPECIFICATIONW",
package_specification.generic_type_declarations,™n",
basic_declarative_items.input_parameters,
basic_declarative_items.output_parameters,
basic_declarative_items.exceptions,
“END\n"]
# [“TYPE “ JDENTIFIER.%text,\nSPECIFICATIONW",
package_specification.generic_type_declarations,™\n",
basic_declarative_items.type_declarations,

basic_declarative_items.operator_specification,
“ENDA\"™};
package_specification.file_name = (IDENTIFIER.%text, “.psdl”]; )

.
’

basic_declarative_items
: basic_declarative_items basic_declarative_item
{ basic_declarative_items{1].type_declarations =
[ basic_declarative_items(2].type_declarations,
basic_declarative_item.type_declarations];
basic_declarative_items([1].operator_specification =
[ basic_declarative_items([2].operator_specification,
‘An” basic_declarative_item.operator_specification];
basic_declarative_items([1].input_parameters =
( basic_declarative_items([2].input_parameters,
basic_declarative_item.input_parameters];
basic_declarative_items({1).output_parameters =
[ basic_declarative_items([2].output_parameters,
basic_declarative_item.output_parameters];
basic_declarative_items[1].exceptions =
( basic_declarative_items([2].exceptions,
basic_declarative_item.exceptions};
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basic_declarative_items([1].number_of_operators =
basic_declarative_items(2].number_of_operators +
basic_declarative_item.number_of_operators; )
|

{ basic_declarative_items.type_declarations = *““;
basic_declarative_items.operator_specification = “;
basic_declarative_items.number_of_operators = 0;
basic_declarative_items.input_parameters = *““‘;
basic_declarative_items.output_parameters = ‘“‘;
basic_declarative_items.exceptions = *; }

basic_declarative_item
: basic_declaration
{ basic_declarative_item.type_declarations =
basic_declaration.type_declarations;
basic_declarative_item.operator_specification =
basic_declaration.operator_specification;
basic_declarative_item.input_parameters =
basic_declaration.input_parameters;
basic_declarative_item.output_parameters =
basic_declaration.output_parameters;
basic_declarative_item.exceptions =
basic_declaration.exceptions;
basic_declarative_item.number_of_operators =
basic_declaration.number_of_operators; )
I re[pjlesentar.ion_clause
| use_clause
{}

basic_declaration
: object_declaration
{ basic_declaration.number_of_operators = ;
basic_declaration.type_declarations = “;
basic_declaration.operator_specification = *“; }
] _declaration
basic_declaration.type_declarations =
type_declaration.type_declarations;
basic_declaration.operator_specification = “;
basic_declaration.number_of_operators = 0; ]
| subprogram_declaration
{ basic_declaration.type_declarations = ““;
bm:ﬁ%ecmugémopemwr_ _speciﬁcationiz
subprogram_ tion. " cation;
basic_declaration.input pammctgt;'ssgec
subprogram_declaration.input_parameters;
basic_declaration.output_parameters =
subprogram_declaration.output_parameters;
basic_declaration.exceptions = ““*;
basic_declaration.number_of_operators =
subprogram_declaration.number_of_operators + 1; }
| task_declaration

()

| exception_declaration
{basic_declaration.exceptions = exception_declaration.exceptions;
basic_declaration.type_declarations = ‘“;
basic_declaration.input_parameters = ““;
basic_declaration.output_parameters = *“‘;
basic_declaration.operator_specification = *“;
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basic_declaration.number_of _operators = 0; }
| renaming_declaration
{basic_declaration.type_declarations = *“;
basic_declaration.operator_specification = ““;
basic_declaration.number_of_operators = 0; }
| subtype_declaration
{basic_declaration.type_declarations =
subtype_declaration.type_declarations;
basic_declaration.operator_specification = *“*;
basic_declaration.number_of_operators = 0; }
| generic_declaration
{basic_declaration.type_declarations = “;
basic_declaration.operator_specification = *“*;
basic_declaration.number_of_operators = 0; }

representation_clause
: type_representation_clause

| a%lmss_clause

?

type_representation_clause
: enumeration_representation_clause

| le%n:gth_clause

! re[c}ord_reptesemation_clause

address_clause
: F{O}R IDENTIFIER USE AT simple_expression *;’

enumeration_representation_clause
: F?}R IDENTIFIER USE aggregate *;’

1

length_clause
: F?]R attribute USE simple_expression *;’

’

record_representation_clause
: FOR IDENTIFIER USE RECORD alignment_clauses component_clauses
END RECORD *;’
{)
alignment_clauses
: al{x nt_clauses alignment_clause

|
1§

.
*

alignment_clause
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o

: A’(Ii MOD simple_expression *;’

’ component_clauses
: component_clauses component_clause

()
1
()

.
1]

component_clause
: nz{u]ne AT simple_expression RANGE range *;’

object_declaration
: identifier_list *:* subtype_indication *;’

| idLLtiﬁer_list *:* constrained_array_definition °;’

| id[e}ntiﬁer_list ‘:* CONSTANT subtype_indication *;’

| id[e]ntiﬁer_list ‘:* CONSTANT constrained_array_definition ‘;’

| id{e]miﬁer_list *:* subtype_indication EQUAL expression *;’

| id{e}ntiﬁer_list *:* CONSTANT subtype_indication EQUAL expression *;’
| identifier_list ‘:” constrained_array_definition EQUAL expression *;’

(}
] id{e}ntiﬁcr_list *:* constrained _array_definition EQUAL expression ‘;’
I Il?!}-:NTIFIER ‘:* subtype_indication *;’
| IDENTIFIER ‘:’ constrained_array_definition *;’

{
| IDENTIFIER *:" CONSTANT subtype_indication *;’

{)
| IDENTIFIER *:' CONSTANT constrained_array_definition *;’

{)
| IDENTIFIER “:’ subtype_indication EQUAL expression *;’

{}
| H?I}-ZNTIFIER ‘:* CONSTANT subtype_indication EQUAL expression *;’
| I]ﬁiN'I‘lFIER *:* constrained_array_definition EQUAL expression ‘;’
| II?I}E.NTIFIER *:* constrained_array_definition EQUAL expression *;’

’

type_declaration

: full_type_declaration
{ type_declaration.type_declarations = **; )

| incomplete_type_declaration
( type_declaration.type_declarations = *“‘; }

| private_type_declaration
{ type_declaration.type_declarations =

private_type_declaration.type_declarations; }

73




subprogram declaration
: subprogram_specification *;’
{ subprogram_declaration operamr_speciﬁcation =
subprogram_specification.operator_specification;
subprogram_declaration.input_parameters =
subprogram_specification.input_parameters;
subprogram_declaration.output_parameters =
subprogram_specification.output_parameters;
subprogram_declaration.number_of_operators = 0; }

task_declaration
: task_specification *;’

{}
exception_declaralion
: IDENTIFIER ‘:* EXCEPTION *;’
{exception_ declaration. excepuons =
[* exception : “ IDENTIFIER.%text, ‘\n™]; }
| identifier_list *:” EXCEPTION *;’
(excepﬁon_declamﬁon.excepﬁons =
[* exception : “,identifier_list.exceptions, ‘“\n”]; }
renaming_declaration
: IDENTIFIER “:’ type_mark RENAMES name *;’

i
| IDENTIFIER *:* EXCEPTION RENAMES name *;’

()
| P?CKAGE IDENTIFIER RENAMES name °;
[ su{l;pmgmm_speciﬁcation RENAMES name *;’

subtype declaration
: SUBTYPE IDENTIFIER IS subtype_indication *;
{ subtype_declaration.type_declarations = *“*; ]

geueric_declaration
: gt{el]\eric_speciﬂcation 3
full type declaration

TEPE IDENTIFIER discriminant_part IS type_definition *;

mcomplete !yge _declaration
ENTIFIER discriminant_part *;

discriminant_part
: ‘({‘ }discriminam_speciﬁcatims Y
|

(
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discriminant_specifications
: di{s}ctiminant_speciﬁcations ‘;* discriminant_specification
| di{s;:ﬁminant_speciﬁcation

1]

discriminant_specification
: identifier_list ‘" type_mark

()
! idﬁltiﬁer_list ‘. type_mark EQUAL expression

type_:deﬁniu'on
: enumeration_type_definition

| re{a}l_type_deﬁnition
I record_type_definition

{}
] de{xiived_type_deﬁnition
! in{u)ager_type_deﬁnition

| array_type._definition

| aﬁm_type_deﬁnition

1

subprogram_specification
: PROCEDURE IDENTIFIER formal_part
{ subprogram_specification.operator_specification =
[“ OPERATOR “ IDENTIFIER.%text,\n SPECIFICATION\",
formal_part.input_parameters,
formal_part.output_parameters,” END\n" J;
subprogram_specification.input_parameters =
(formal_part.input_parameters];
subprogram_specification.output_parameters =
[formal_part.output_parameters];
sul gam_speciﬁmtion.name = [DENTIFIER.%text; }
{ FUN N designator formal_part RETURN type_mark
{ subprogram_specification.operator_specification =
[“ OPERATOR *“ designator.name,”\n SPECIFICATIONW",
formal_part.input_parameters,
“  output “,designator.name,” : *,
type_mark.variable_type,n END\n” ];
subprogram_specification.name = designator.name:
subprogram_specification.input_parameters =
[formal _part.irlg,mt _parameters];
subprogram_specification.output_parameters =
[“ output “designator.name,” : “,
type_mark.variable_typel; }
designator
: IDENTIFIER

* { designator.name = IDENTIFIER.%text; }
| STRING_LITERAL
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{ designator.operator_symbols = {(‘“\"+\"":"add”)
(“\"-\"":"subtract™) (*“\"*\"™":"multiply”) (\"A™":"divide™)

(‘\”=\m . ”equaln) (t\n<\m' . nless.m") (4 \n>\n n: ”greawr_man ”)

(N'<=\"""LTE") (‘\">=\"":"GTE")

(?:string:"overloaded_operator”)};

designator.name =
designator.operator_symbols(STRING_LITERAL.%text); )

formal_part
: *(* parameter_specifications ‘)’
{ parameter_specifications.mode_check = {(?:string:™)};

formal_part.input_parameters =
parameter_specifications.mode(“input_parameter”) == “yes”
-> [* input “,parameter_specifications.input_parameters,

c\‘ln]

# uu;

formal _part.output_parameters =

parameter_specifications.mode(*‘output_parameter”) == “yes”

-> [* output “,parameter_specifications.output_parameters,
(V"

# u“; ]
!
{ formal_part.input_parameters = ““;
formal_part.output_parameters = “*; }

.
L3

parameter_specifications
: parameter_specifications ‘;’ parameter_specification
{ parameter_specifications[1).input_parameters =
((parameter_specification.current_mode == “in™) Il
(parameter_specification.current_mode == “inout”)) &&
((parameter_specifications[2].current_mode == “in™) il
(parameter_specifications[2).current_mode == “inout™))
->[parameter_specifications[2].input_parameters,
*, “ parameter_specification.input_parameters]
# [parameter_snecifications{2].input_parameters,
parameter_specification.input_parameters];
parameter_specifications{1].output_parameters =
((parameter_specification.current_mode = “out”™) |l
(parameter_specification.current_mode = “inout™)) &&
((parameter_specifications[2].current_mode == “out”) Il
(parameter_specifications[2].current_mode == “inout™))
->[parameter_specifications(2].output_parameters,
“, “ parameter_specification.output_parameters]
# [parameter_specifications{2].output_parameters,
parameter_specification.output_parameters];
parameter_specifications[1].mode =
parameter_specifications[2].mode
+! parameter_specification.mode;
parameter_specifications{2].mode_check =
parameter_specifications(1].mode_check;
parameter_specification.mode_check =
parameter_specifications[1].mode_check;
parameter_specifications[1].current_mode =
parameter_specifications(2].current_mode; )
| parameter_specification
{ parameter_specifications.input_parameters =
parameter_specification.input_parameters;
parameter_specifications.output_parameters =
parameter_specification.output_parameters;
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parameter_specifications.mode = parameter_specification.mode;

parameter_specification.mode_check =
parameter_specifications.mode_check;

parameter_specifications.current_mode =
parameter_specification.current_mode; }

.
)

parameter_specification
: identifier_list ‘:’ type_mark
( parameter_specification.input_parameters =
[identifier_list.variable_names, “: “,type_mark.variable_typel;
parameter_specification.output _parameters =44
parameter_specification.mode = {(“mput_parameter” "yes™)}
+ parameter_specification.mode_check;
parameter_specification.current_mode = “in”; }
| identifier_list *:" IN type_mark
{ parameter_specification.input_parameters =
[identifier_list.variable_names, “: “,type_mark.variable_type];
parameter_specification.output_parameters = *“*;
parameter_specification.mode = {(“input_ parameter "yes”)}
+| parameter_specification.mode_check;
parameter_specification.current_mode = “in”; }
| identifier_list ‘:’ IN OUT type_mark
{ parameter_specification.input_parameters =
lidentifier_list.variable_names, *“: *“,type_mark.variable_typel;
parameter_specification.output_parameters =
lidentifier_list.variable_names, *: “‘,type_mark.variable_typel;
parameter_specification.mode = {(“input_parameter™:"yes”),
(“output_parameter™:"yes™)}
+ parameter_ spemﬁcauon mode_check;
parameter_specification.current_mode = “inout”; }
| identifier_list :> OUT type_mark
{ parameter_ specnﬁcauon input_parameters = *“*
parameter_specification.output_parameters =
[identifier_list.variable_names, “: “ type_mark.variabie_type];
parameter_specification.mode = {(“output _parameter™:"yes™)}
+i eter_specification.mode_check;
parameter_specification.current_mode = “out”™; }
| identifier_list *:* type_mark EQUAL expression
{ parameter_specification.input_parameters =
{identifier_list.variable_names, “: “,type_mark.variable_type];}
| identifier_list ‘:” IN type_mark EQUAL expression
{ parameter_specification.input_parameters =
[identifier_list.variable_names, “: ,type_mark.variable_type];}
| identifier_list *:* IN OUT type_mark EQUAL expression
{ parameter_specification.input_parameters =
lidentifier_list.variable_names, *“: *,type_mark.variable_type];
parameter_specification.output_parameters =
[identifier_list.variable_names, “: “,type_mark.variable_type];)
| identifier_list *:* QUT type_mark EQUAL expression

{ parameter_ spec:ﬁcanon output_parameters =
[identifier_list.variable_names, “: *,type_mark.variable_type];}

task_specification
: TASK IDENTIFIER

{}
I TI??K TYPE IDENTIFIER
| TASK IDENTIFIER IS entry_declarations representation_clauses
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0 END IDENTIFIER
I TASK TYPE IDENTIFIER IS entry_declarations representation_clauses
0 END IDENTIFIER

.
’

entry_declarations
: en{tx}’y_@claraﬁons entry_declaration
I

{

.
’

representation_clauses i
: representation_clauses representation_clause

|
0

.
»

entry_declaration
: ENTRY IDENTIFIER formal_part ‘;’

{)
1 EI‘{I'}I'RY IDENTIFIER ‘(* discrete_range ‘)’ formal_part *;’

subtype_indication
: name
{subtype_indication.variable_type = name.variable_type;
subtype_indication.clement_type = name.element_type;
name.generic_types = subtype_indication.generic_types;
subtype_indication.new_composite_types =
name.new_composite_types; )
| name constraint
{subtype_indication.variable_type = name.variable_type;
subtype_indication.element_type = name.element_type;
name.generic_types = subtype_indication.generic_types;
subtype_indication.new_composite_types =
name.new_composite_types; }

type_mark
: name
{type_mark.variable_type = name.variable_type; )
constraint
: range_constraint

{}
| fixed_goint_constraint

| floating_point_constraint
! djs{c;riminant_constraim
| im[k]ax_consuaint
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derived_type_definition
: NI{E]W subtype_indication

.
4

range_constraint
: RI[\]NGE range

.
’

range
: attribute

| simple_expression TO simple_expression

discriminant_constraint )
: ‘(‘{ c}ixsctiminant_assocnations Yy

discriminant_associations o
: discriminant_associations ‘,” discriminant_association
{}
| discriminant_association
(}

4

discriminant_association
s ex ion

)
! diﬁn'minam_choices ARROW expression

discriminant_choices
: diﬁriminam_choices ‘I" IDENTIFIER
! ID{E}.NTIFIER

generic_type_definition
: ‘(" DISCRETE ‘)’
{ generic_type_definition.variable_type = “DISCRETE”;
generic_type_definition.new_composite_types = “; }
| RANGE DISCRETE
( generic_type_definition.variable_type = “DISCRETE”;
generic_type_definition.new_composite_types = “; }
| DIGITS DISCRETE

()
| D]%TA DISCRETE
| array_type_definition
{ generic_type_definition.variable_type =
array_type_definition.variable_type;
array_type_definition.generic_types =
generic_type_definition.generic_types;
generic_type_definition.new_composite_types =
array_type_definition.new_composite_types; }
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| aa{:?s _type_definition

generic_instantiation
: PACKAGE IDENTIFIER IS NEW name generic_actual_part ‘;’

0
| PROCEDURE IDENTIFIER IS NEW name generic_actual_part *;’

{}
| FUI[*I}C'I'ION designator IS NEW name generic_actual_part *;’

generic_actual _part
: *(* generic_associations ‘)’

|
8]

generic_associations ]
: generic_associations *,’ generic_association

| generic_association
’

generic_association
: generic_formal_parameter ARROW generic_actual_parameter

Ige?]cric_acnml |_parameter
generic_formal_parameter
: IDENTIFIER

()
I STRING_LITERAL !operator_symbol

(}

generic_actual_parameter
: e:{( ion

| name

)

pnvalc type_declaration
TYPE IDENTIFIER discriminant_part IS PRIVA
{ private_type_declaration.generic_type_ declaranons-
(IDENTIFIER. %text,” GENERIC _TYPEW"];
private_type_ declaration. type_ declarations =
[“ * IDENTIFIER. %text,” : ADT\n"]; )
I TH’E IDENTIFIER discriminant _part IS LIMITED PRIVA

.
’

xmompletc type_declaration
TH’E IDENTIFIER discriminant_part *;’

80




deferred_constant_declaration
: ida{’,?tiﬁer_list *.* CONSTANT name ;'

attribute

: prﬁix TIC attribute_designator
auribute_designator

: ID{E}NT[F[ER

1 IDI[:'.]NTIF[ER ‘(* expression ‘)’
expression

: re]a]tion

(

| relation and_relations

| relation or_relations

I rel[a}tion xor_relations

| rela}tion and_then_relations

| relation or_else_relations

!
0

and_relations
: an[d}_xelations AND relation
l
0

or_relations
: or[_;'elations OR relation
|
0

xor_relations
: xor_relations XOR relation

()
I
(}

.
*

and_then_relations
: an(d}_thcn_relatims OR relation
{
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0
or_else_relations

: ori_flse_relaﬁons OR relation

|

{}

.
]

relation
: simple_expression

| simple_expression relational_operator simple_expression
| simple_expression IN range

| simple_expression NOT IN range

| simple_expression IN name

| sir%l})le__expression NOT IN name

simple_expression
: term 'Not really required because 3rd choice can break down to term

| un(a;y_adding_opemtor term
I w:al binary_adding_operator binary_terms
1 unﬁy_adding_opetator binary_terms

binary_terms
:bix{?ry_tenns binary_term
| binary_term
0

binary_term

: term

| wr% binary_adding_operator

-
1

term
: fac[:t}or multiplying_operator_factor

.
»

multiplying_operator_factor
: mulniﬁplying_opemor_factor multplying_operator factor

|
0

.
’
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| multiplying_operator
: TIMES

\ {}
| s I DIVIDE

| highest_precedence_operator primary
| primary highest_precedence_operator primary
{}

highest_precedence_operator
: EXPONENT

()
| ABS

{
INOT
0

| function_call

()
| type_conversion
| qualified_expression
1*(* expression ‘)’
0
numeric_literal

: INTEGER_LITERAL

I RE{J]\L_LITERAL

0
aggregate
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: *(* component_associations ‘)’
()
component_associations .
: component_associations ‘,’ component_association

()

l co?]npomm_association

.
*

component_association
:ex on

}
| ch?]lces ARROW expression
choices
: ch&icm ‘I" choice

| choice

()

allocator
: NEW qualified_expression

| NEE‘.:W subtype_indication
function_call
: name

Ina%e actual_parameter_part

acmal_;()aramew_pan y
¢ eter_associations ‘)’
_ {5

parameter_associations
: pa(r]ametu_associaﬁons *,’ parameter_association
| paﬁmeuer_mociaﬁm

parameter_association
: H)(!iZNT!FIER ARROW actual_parameter
Iacﬁal _parameter

actual_parameter

: exﬁrenion




| name ‘(‘ name *)’
(}

| name

(}

type_conversion )
B : na{n]le ‘(* expression *)’

qualified_expression
: name TIC *(* expression ‘)’

| nagle TIC aggregate

relational_operator
: EQUAL

binary_adding_operator
: PLUS

{}
I MINUS

{)
|A1;1D 1&, string concatenation
}
unary_adding operator

:PLUS

()
I MINUS

0
multiplying_operator
: TIMES

I DIVIDE

enumeration_type_definition
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: *(* enumeration_literal _specifications ‘)’

enumeration_literal_specifications
: enumeration_literal_specifications *,” enumeration_literal

(}
| enumeration_literal
0
enumeration_literal
: ID[I%NTIFIER
| C}iIiARACI'ER_LITERAL

integer_type_definition
: range_constraint

{}

real_type_definition
: floating_point_constraint

| ﬁx{e}d |_point_constraint
ﬂoating_poim_consn'aint
: (Ea}ﬁng_accm'acy_deﬁnition

| ﬂo[a}ting_accuracy_deﬁnition range_constraint

floating_accuracy_definition
: DI[(]HTS simple_expression

.
’

fixed_point_constraint
: fixed_accuracy_definition

{ ﬁxe]d_accuracy_deﬁnilion range_constraint

fixed_accuracy_definition
: Dl{E;,TA simple_expression

.
’

array_type_definition
: unc ined_array_definition
{ array_type_definition.variable_type =
unconstrained_array_definition.variable_type;
unconstrained_array_definition.generic_types =
array_type_definition.generic_types;
array_type_definition.new_composite_types =
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unconstrained_array_definition.new_composite_types: )
| constrained_array_definition
{ array_type_definition.variable_type =
constrained_array_definition.vanable_type;
constrained_array_definition.generic_types =
array_type_definition.generic_types;
array_type_definition.new_composite_types =
constrained_array_definition.new_composite_types; )

.
s

unconstrained_array_definition
: ARRAY “(* subtype definitions ‘)’ OF subtype_indication

{ unconstrained_array_definition.variable_type =
[“GENERIC_TYPE{BASE_TYPE: ARRAY[ARRAY_ELEMENT:”,
subtype_indication.clement_type,” \0\NNNARRAY_INDEX:”,
subtype_definitions.index_type,”1]"1;

subtype_definitions.generic_types =
unconstrained_array_definition.generic_types;

subtype_indication.generic_types =
unconstrained_array_definition.generic_types;

unconstrained_array_definition.new_composite_types =
subtype_definitions.new_composite_types +!
subtype_indication.new_composite_types; )

subtype_definitions
: subtype_definitions *,’ index_subtype_definition
{ index_sub deﬁmuon .generic_types =
subtype_definitions.generic_types;
subtype_definitions.index_type =
index_su _definition.index_type;
subtype_ itions(1).new _composite_types =
subtype_definitions{2).new_composite_types +|
index_subtype_definition.new_composite_types; )
| index_subtype_definition
{ index_subtype_definition.generic_types =
subtype_definitions.generic_types;
subtype_definitions.index_type =
index sgeb'tiympe _definition.index_type;
subtype_ tions.new_composite_types =
index_subtype_definition.new_composite_types; }

»

constrained_array_definition
: ARRAY index_constraint OF subtype_indication

{ constrained_array_definition.variable_type =
[“GENERIC ’I'YPE[BASE TYPE: ARRAY{ARRAY_ELEMENT:",
subtype_indication.clement_type,
‘\nN\MMARRAY _INDEX:DISCRETE]]"];

subtype_indication.generic_types =
constrained_array_definition.generic_types;

constrained_array_definition.new_composite_types =
subtype_indication.new_composite_types; )

.
v

index_subtype_definition
: name RANGE DISCRETE
{name generic_types = index_subtype_definition.generic_types;
index_subtype_definition.index_type = “DISCRETE";
index_subtype_definition.new_composite_types =
name.new_composite_types; )
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index_constraint
: ‘(‘{?isctete-ranges )

discrete_ranges
: di?ci.retc__rang&e ¢, discrete_range
( disﬁrete__range

discrete_range
: subtype_indication

{range
0

record_type_definition
: RI?]CORD component_list END RECORD

component_list )
: component_declarations

(}
| component_declarations variant_part

component_declarations
: component_declarations component_declaration

{}
| c?']nponent_declamtion
component_declaration
: identifier_list *:” subtype_indication *;’

{}
| id{e;zﬁﬁer_list *:* subtype_indicatior EQUAL expression *;’
discriminant_part
: ‘({‘}discriminant_speciﬁcations y
discriminant_specifications
: di(s}criminam_speciﬁcaﬁms *;” discriminant_specification

| di{s;:riminam_speciﬁcation
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discriminant_specification
: identifier_list :’ name

()
| identifier_list *:’ name EQUAL expression

0

variant_part
: CGSE IDENTIFIER IS variants END CASE *;’

variants ) )
: variants variant
{}
| variant
0

variant
: W[’HEN choices ARROW component_list
}

v

choice
: simple_expression

{)
| OTHERS

III%.NTIF[ER

1

access_type_definition
: A(()?CESS subtype_indication

name
: IDENTIFIER
{ name.variable_type = IDENTIFIER.%text;

name.variable_name = [IDENTIFIER. %text;
name.element_type = name.generic_types(IDENTIFIER. %text);
name.index_type = name.generic_types(IDENTIFIER. %text);
name.new_composite_types = {(IDENTIFIER. %text: “yes™)}; }

| CHARACTER_LITERAL

{}
| STRING_LITERAL loperator_symbol

{}
| indexed_component

()
| SIﬁe
| sel?ctedjomponem

| attribute

0
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.
*

prefix
: name

J f\{x;ction_call

indexed_component
: pﬁﬁx ‘(* expressions °)’

expressions
: eeressnons ‘,” expression

| expression
slice
: plieﬁx ‘(* discrete_range ‘)’
}

’

selected_component
: pﬁﬁx ¢’ selector

selector
:ALL

{0
| CHARACTER_LITERAL

{}
| S{'I}'RII\IG_LI’I‘ERAL !operator_symbol
{ IDENTIFIER Isimple_name

(3

identifier_list
: identifier_list ‘,” IDENTIFIER
{ identifier_list{1].variable_names =
[identifier_list[2].variable_names,”, “ IDENTIFIER.%text]; }
| IDENTIFIER
{ identifier_list.variable_names = IDENTIFIER.%text; }
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