
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A25 7 605 STAT

THESIS

Building Reusable Software Components
for Automated Retrieval

by

Jennie Marie Sealander

September 1992

Thesis Advisor: Yuh-jeng Lee

i- Approved for public release; distribution is unlimited.

A! RE
0M
4;-

UNCLASSIFIED
SECURITY CLASSFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb. RESTRICTIVE MARKINGS

2 SIECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
2b. DECLASSiFICATION/DOWNGRADING SCHEDULE Approved for public release;

distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

NAME OF EEIFORMKG ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Computer Mcence Dept. (if applicable) Naval Postgraduate School
Naval Postgraduate School CS/LE
6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

Sm NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if a4Wpcable)

SmC ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

¶ . TITLE (Include Security Claissficaton)
BUILDING REUSEABLE SOFTWARE COMPONENTS FOR AUTOMATED RETRIEVAL
W 5 AuIRiorT) •

a r, Jennie Mane

TYP• EP RT 13b. TIME COVERED 1 E OF REPORT (Year, Month, Day) 15. PAGE COUNT
S I FROM 09/90 TO: Q•= September 1992 100

16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the United States Government.
17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIEP SUB-GROUP Reusable Software Components, Automated Retrieval, CAPS

19. ABSTRACT (Continue on reverse if necessary and iden'ify by block number)
The Computer Aided Prototyping System (CAPS) is designed to rapidly build prototypes of real-time sytems through
the automated retrieval of reusable software components. A critical element in achieving this goal is a mechanism for
automated retrieval of reusable software components from a software base. There were two major objectives of this
thesis: (1) to select and prepare software components for inclusion in the CAPS software base; (2) to design and im-
plement a translation tool which takes an Ada specification as input and generates the prototype system description
language (PSDL) interface required for storage and retrieval in the CAPS software base -this is necessary since for a
component to be usable in the CAPS software base, it must be specified in PSDL. We described the abstraction and
implementation of the selected components, introduced the translator, and demonstrated the behaviors of the transla-
tor via examples.

20. DISTRIBUTIONIAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED/UNLIMITED [] SAME AS RPT. Q DTIC USERS UNCLASSIFIED

.,NE O ENSIBLE INDIVIDUAL 22b. TELEPHONE (include Area Code) 22cfkI. LBOLTun-jeng (408) 646-2361
SFORM 1473,64 MAR 83 APR ediion may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete UNCLASSIFIED
i

Approved for public release; distribution is unlimited

BUILDING REUSABLE SOFTWARE COMPONENTS
FOR AUTOMATED RETRIEVAL

by
Jennie Marie Sealander

Lieutenant, United States Naval Reserve
B.A., Goucher College, 1983

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1992

Author: Author: l -\ Jennie'lgarie'-Sealander.

Approved By:
SThesis Advisor

Dr. Luq-i, Second Reder

SJ•..Rol cGhee hairman,
/ vDepartmen omputer Science

ii

ABSTRACT

The Computer Aided Prototyping System (CAPS) is designed to rapidly build

prototypes of real-time systems. A critical element in achieving this goal is a mechanism

for automated retrieval of reusable software components from a software base. There were

two major objectives of this thesis: (1) to select and prepare software components for

inclusion in the CAPS software base; (2) to design and implement a translation tool which

takes an Ada specification as input and generates the prototype system description

language (PSDL) interface required for storage and retrieval in the CAPS software base -

this is necessary since for a component to be usable in the CAPS software base, it must be

specified in PSDL. We described the abstraction and implementation of the selected

components, introduced the translator, and demonstrated the behaviors of the translator via

examples.

Accession For

NiTIS (~~
DTIC TP.B
Unanmow)cfd

0

JU 9t ct I n2___

By

AvatllblJ tyt C&,?.a

iii Di,

TABLE OF CONTENTS

I. INTRODUCTION ... I
A. RAPID PROTOTYPING ... 1
B. CAPS OVERVIEW ... 2

1. User Interface .. 3
2. Software Database .. 3
3. Execution Support System ... 4

C. OBJECTIVES .. 4
D. ORGANIZATION OF THESIS ... 4

II. SOFTWARE REUSE .. 5
A. APPROACHS TO SOFTWARE REUSE 5
B. RETRIEVING REUSABALE COMPONENTS ... 6

1. Retrieval Methods ... 6
2. Review of Current Systems ... 7

C. PROTOTYPE SYSTEM DESCRIPTION LANGUAGE (PSDL) 9
D. CAPS SOFTWARE BASE AND COMPONENT RETRIEVAL 10

Ill. REUSABLE SOFTWARE COMPONENTS ... 14
A. ENGINEERING SOFTWARE COMPONENTS TO FACILITATE

REUSE .. 14
B. WHY ADA? .. 15
C. ADA COMPONENTS SELECTED FOR SOFTWARE BASE 16

1. UnboundedSet .. 16
2. Bounded_Multiset ... 17
3. BoundedGraph .. 18
4. UnboundedGraph ... 19
5. UnboundedMap .. 20
6. RealNumbers .. 21
7. BoundedInteger .. 22
8. Vectors .. 22
9. M atrix ... 23

IV. PSDL INTERFACE GENERATOR ... 24
A. KODIAK .. 24

1. Lexical Scanner .. 25
2. Attribute Declarations .. 26
3. The Attribute Grammar and Equations ... 27

B. MAPPING ADA TO PSDL .. 29
C. EXPLANATION OF ATTRIBUTES .. 31

1. psdlinterfacespecification ... 31
2. filename 31
3. generic-typedeclarations ... 31
4. numberofoperators .. 31
5. operator..specification .. 31

iv

6. typedeclarations .. 32
7. inpuLparam eters ... 32
8. outpuLparam eters ... 32
9. exceptions ... 32
10. variable-type .. 32
11. variable-nam e .. 32
12. mode ... 33
13. mode_check .. 33
14. current-mode .. 33
15. composite -types .. ?3
16. newcompositetypes .. 33
17. generic-types .. 33
18. new -generic types ... 33
19. com ma .. 34

D . SAM PLE INPUT AND OUTPUT .. 34
1. Operator Exam ple ... 34
2. Type Exam ple .. 36

E. LIM ITATIONS .. 37
V. CONCLUSIONS ... 38

A. ACCOM PLISHM ENTS ... 33
B. FUTURE W ORK .. 38

APPENDIX A. ADA SPECIFICATIONS FOR REUSABLE COMPONENTS 40
A. UNBOUNDED_SET .. 40
B. BOUNDEDM ULTISET ... 42
C. BOUNDEDGRAPH .. 44
D . UNBOUNDEDGRAPH .. 48
E. UNBOUNDEDM AP ... 52
F. REALNUM BERS .. 54
G. BOUNDED_INTEGERS .. 56
H. VECTORS ... 58
I. M ATRIX ... 60

APPENDIX B. KODIAK PROGRAM LISTING .. 61
LIST OF REFERENCES ... 91
INITIAL DISTRIBUTION LIST ... 93

V

LIST OF FIGURES

Figure 1.1: Software Life Cycle for a Prototype .. 2
Figure 1.2: Tools in the Computer-Aided Prototyping System 3
Figure 2.1: A PSDL Specification for a Set .. 11
Figure 2.2: Component Storage .. 12
Figure 2.3: Component Retrieval ... 12
Figure 4.1: Kodiak Program Structure .. 25
Figure 4.2: Examples of Token declarations ... 26
Figure 4.3: Example of Attribute Declarations .. 27
Figure 4.4: Example of Attribute grammar and equations 28
Figure 4.5: Operator Template .. 29
Figure 4.6: Type Template ... 29
Figure 4.7: Example of a generic-parameterdeclarations Template 30
Figure 4.8: Ada Specification for generic bubble sort package 34
Figure 4.9: PSDL output for Ada generic bubble sort package 35
Figure 4.10: Ada Specifiation for generic set ... 35
Figure 4.11: PSDL output for Ada generic set package .. 36

vi

L INTRODUCTION

A. RAPID PROTOTYPING

Developing software systems which are efficient, reliable, maintainable, and

understandable is a difficult task, especially for reliable real-time systems consisting of

million lines of code. The development of software tools and methods has emerged in an

attempt to manage the complexity. One method designed to aid development of reliable

large sytems is that of rapid prototyping. A prototype is an executable model of an intended

system whose purpose is to help the system designer and customer to evaluate and validate

the feasibility of the proposed system. Rapid prototyping is the process of rapidly building

a prototype of a system. This allows the user to provide feedback to the designer in the

development phase, reducing wasted effort in building a system which does not meet the

customers needs. Thus the developement of the system follows an iterative process. The

designer constructs a prototype based on the requirements, examines the execution of the

prototype together with the customer, then adjusts the requirements based on feedback

from the customer. The prototype is modified accordingly until both the customer and the

designer agree on the requirements [10].

The key to rapid prototyping is computer-aided tools and reusable components. An

efficient way to rapidly build a prototype is to construct the system out of existing software.

For this to happen, rapid prototyping tools should include a library of high quality reusable

components in conjunction with an automated retrieval system. A specification language is

needed to specify the requirements of a system and to locate components which meet the

specifications. To achieve automated retrieval, components in the library must be stored

with an interface written in the specification language identifying their functionality.

The typical software life cycle for such a sytem is illustrated in Figure 1.1. The

designer takes a set of requirements provided by the customer and generates specifications

for the system. The prototype is realized by replacing as much of the specification as

possible with reusable components. The remaining code is written manually. The goal is to

build the prototype from as many existing compoments as possible, minimizing the amount

of code which needs to be written manually.

•Irequirements

I
reusable code + manual code

prototype

Figure 1.1: Software Life Cycle for a Prototype

B. CAPS OVERVIEW

The Computer Aided Prototyping System (CAPS) is an integrated set of computer-

aided software tools being developed at the Naval Postgraduate School. The system is

designed to rapidly prototype hard real-time systems [9]. The main subsystems of CAPS

are illustrated in Figure 1.2. The software tools communicate by means of a specification

language, the prototype system description language (PSDL). The specification language

allows the designer to formally translate the customer's requirements into a high level

description of the system. The specifications are used to retrieve reusable ada components

from a large software base. An automated transformation scheme then binds the retrieved

components together based on the PSDL description. The prototype is then compiled and

executed. The following sections describe each of the three major subsystems of CAPS.

aL

USer xeeir SoftwareDa

Figure 1.2: Tools in the Computer-Aided Prototyping System

1. User Interface

The user interface consists of a syntax directed editor, a graphic editor, and a tool

interface. The graphic editor is used to create a graphic representation of the system in the

form of a data flow diagram, plus timing and control constraints. Graphical objects used to

represent the sytem include operators, inputs, outputs, data flows, and operator loops [13].

The syntax directed editor provides a convenient way of entering additional annotations to

the graphics in the form of PSDL descriptions while preventing syntax errors. The tool

interface hides the details of the interfaces of the CAPS tools from the designer [7].

2. Software Database

The software database system consists of an engineering design database system

and a software database system [16]. The design database contains PSDL descriptions for

all software projects developed using CAPS. The software base provides reusable software

components for realizing given PSDL specifications [9]. The key to component storage and

retrieval is the component's PSDL specification [18].

3

3. Execution Support System

The execution support system consists of four tools: translator, static scheduler,

dynamic scheduler, and a debugger [7,16]. The translator generates codes that binds

together the reusable components extracted from the software base. The static scheduler

designates time slots for operators with real-time constraints before execution begins. The

dynamic scheduler allocates time slots for operators that are not time critical. The debugger

monitors timing constraints and design integrity as the prototype runs and reports failures.

C. OBJECTIVES

For a component to be added to the CAPS software base it must be specified in the

prototyping system description language (PSDL). Writing these specfications is a time

consuming process. One goal of this thesis is to design and implement a translation tool

which takes an Ada specification as input and generates the PSDL interface required for

storage in the CAPS software base. Another goal is to prepare and test Ada components for

inclusion in the software base. These components must meet certain criteria to be usable in

a larger system.

D. ORGANIZATION OF THESIS

An overview of the design of the CAPS software base and necessary requirements for

the storage of components in the software base is provided in Chapter II. Chapter IM

discusses general characterii-tics required for component reuse, why Ada was chosen as the

implementation language for the components, and the purpose of these components. A

description of the design and implementation of the specification interface generator is

provided in Chapter IV. Chapter V contains conclusions and recommendations for future

research.

4

H. SOFTWARE REUSE

A. APPROACHS TO SOFTWARE REUSE

One of the major purposes of software reuse is to reduce the cost of software

development and maintenance. Software reuse comes in many forms and occurs whenever

artifacts or knowledge about the development of one system is reapplied in the

development of another [6]. Examples include the reuse of code, designs, application

generators, formal specifications, and off the shelf commerical packages. Collectively

these examples are referred to as reusable software components.

A report in 1984 stated that "of all the code written in 1983, probably less than 15%

is unique, novel, and specific to individual applications. The remaining 85% appears to be

common, generic and concerned with putting applications onto computers" [5]. Thus,

common generic software is an essential target of opportunity. There is almost no cost

involved in copying a piece of software. Software reuse also provides a natural way to

improve the quality of software. Frequent reuse of a software component can lead to

frequent evaluation and revision, thus resulting in the construction of a high quality piece

of software. Using high quality, well understood components as building blocks to

construct large complex sytems should increase the quality of the final product and at the

same time accelerate software production.

Technologies applicable to software reuse can be classified into two categories: reuse-

in-the-small and reuse-in-the-large [6]. Reuse-in-the-small is concerned with the reuse of

small pieces of source code such as classes, subroutines, Ada packages, and so on, and is

the focus of this thesis. Reuse-in-the-large is concerned both with the reuse of large-grain

components such as subsystems and the reuse of elements beyond source code such as

design structures and decisions, domain knowledge, analysis information, and so forth.

Technologies applied to reuse-in-the-small are basically concerned with component

representation and component management. Component representation deals with the form

5

and content of software components. There are some important characteristics specific to

reusable components which will be discussed in Chapter HI. Component management is

concerned with classification, storage and retileval of software components which will be

reviewed in the following sections of this chapter.

B. RETRIEVING REUSABALE COMPONENTS

There are two costs associated with reuse-in-the-small. The first cost is associated

with building and maintaing a component for reuse. The second is the cost associated with

storing and retrieving components. The latter has resulted in an increasing demand for tools

that aid in classifying, storing, and retrieving components. This section discusses some of

these methods and the systems which use them [161.

1. Retrieval Methods

Most of the tools developed to assist in the retrieval of software components use

one or more of three different approaches: browsers, informal specifications, or formal

specifications. A brief description of each follows:

a. Browsers

A browser is a tool, usually window based, for looking through a collection

of software components. The purpose of a browser is to allow the user to direct a search

through the available components. This can be useful for a user who is familiar with the

content and structure of a software collection. However, this method of retrieval is not

suited for a very large software base. The user can easily miss semantically similiar

components stored in separate areas of the software base. Also a user will not know when

to stop looking for a component unless the component is found or the entire software base

has been viewed.

b. Informal Specifications

Retrieval methods based on informal specifications require the user to list

some attributes of the component sought. These attributes are used to direct the user to the

6

approriate components. Examples of this method include keyword search, mulit-attribute

search, and natural language interface.

To perform a keyword search, a user specifies a list of words relevant to the

component being sought. For example, a user looking for a component which implements

a mathematical set, would list the keyword set. A major disadvantage to keyword search is

that the choice of words listed is crucial to success. One keyword may lead to the retrieval

of many inappropriate components that the user must review. On the other hand, the use of

too many keywords may result in missing appropriate components.

A multi-attribute search is an extension of the keyword search. Attributes

such as component class (procedure, function, package, etc.) or the number and types of

parameters are used in the search. This type of search is generally more selective but

requires the user to be familiar with the classification and storage techniques of the system.

A natural language search is based on a natural language query formed by the

user. Although a user may find it easy to formulate a query using a natural language, this

type of technique is very difficult to implement. Mechanisms built based on this method

have been limited to certain domains or the use of a restricted language.

c. Formal Specifications

Retrieval using formal specification provides for a higher degree of

automation. The user formulates a query using a high level language to specify the

functionality of the desired component. Each component in the software base is stored with

an interface using the same specification language. The system looks for components in the

software base whose specification matches that of the user's query. However, writing

formal specifications for components is difficult and requires substantial training.

2. Review of Current Systems

This section describes current retrieval systems that have been built and the

methods used by each system.

7

a. Draco

The Draco project was developed at the University of California, Irvine and

was one of the first systems to reuse components from all phases of the software lifecycle,

including designs and analysis information. The system organizes software components by

problem areas or domains. The retrieval scheme is based on a mulit-attribute search. A

classification scheme, called faceted classification, is used to aid in organizing and

retrieving components. Each component is described by using a set of attributes. The set of

attributes is defined by the problem domain. The values associated with attributes are

selected from a controlled vocabulary.

The system is conceptually simple to use and relatively easy to irmplement.

However, classification is generally not suitable for unconstrained domains. Also,

semantically similar components may be missed, especially if stored in different domains.

b. RAPID

RAPID (Reusable Ada Packages for Information System Development) is an

ongoing project sponsored by the U.S. Army Information Systems Software Development

Center in Washington. The system is designed to classify, store, and retrieve reusable Ada

packages in the information systems domain. RAPID uses a faceted classification scheme

similiar to Draco.

c. Operation Support System

The Operation Support System (OSS) is an ongoing project being developed

by the Naval Ocean Systems Center. One goal of the project is to establish a Navy software

library. Currently the components stored in the library are large command, control, and

communications software subsytems. The system supports component retrieval using

faceted classification, keywords, and a textual browser.

d. Common Ada Missile Packages (CAMP)

The Common Ada Missile Packages is an ongoing project sponsored by the

Department of Defense to develope a software engineering system supported by a software

library of reusable Ada components. The system is directed to software for missile sytems.

One of the main components of the system is the Parts Engineering System (PES) Catalog.

The catalog system provides a menu driven interface for storing, modifying, and retrieving

components. Each component has an attribute list associated with it which is used as the

basis for retrieval. The method of retrieval is based on muli-attribute search since one or

more attributes may be used to drive a search.

e. CAPS

The method used in the Computer Aided Prototyping System is to retrieve

components from a software base using a formal specification.The System also supports

keyword searches and component browsing. The aim of CAPS is automated retrieval and

integration of a component into a prototype based on formal specification. A description of

the specification language PSDL is in section C and the basics of the retrieval sytsem will

be discussed in section D of this chapter.

C. PROTOTYPE SYSTEM DESCRIPTION LANGUAGE (PSDL)

The prototype system description language (PSDL) and a large software base of

reusable components form the basis of the CAPS system. PSDL is a specification language

that was designed to support rapid prototyping of large real-time sytems [8,10]. PSDL

contains a small set of powerful constructs which make it simple and easy to understand.

The language was also designed for specifying retrieval of reusable modules from a

software base.

PSDL is based on a computational model consisting of operators and data streams. A

system is designed as a network of operators connected by data streams augmented with

timing and control constraints. Operators can be either atomic or composite. A composite

operator may be decomposed into a set of lower level operators and streams. An atomic

9

operator cannot be further decomposed. The network can be graphically represented as a

set of data flow diagrams. The prototype as a whole is viewed as an operator which is the

top level of the data flow diagram. The top level operator is decomposed into a set of more

refined operators, and these are decomposed iteratively until all operators are atomic.

Operators can be either functions or state machines. The data streams can carry

exception conditions or values of abstract data types [9]. A data stream which carries an

instance of an abstract data type is defined as a PSDL type. This definition includes all of

the operators that can operate on that data type. PSDL operators and types are the basic

building blocks of a prototype.

A PSDL implementation of a prototype has two parts: a network consisting of the

operators in the sytem and their interconnections, and a set of reusable components

containing implementations of the atomic components in Ada. The Ada components are

retrieved from the software base based on a PSDL description provided by the designer for

each atomic component. The specification part of a PSDL component contains several

attributes that describe the interface and behavior of that component. Figure 2.1 shows an

example of a PSDL specification for an abstract data type for a set.

D. CAPS SOFTWARE BASE AND COMPONENT RETRIEVAL

The CAPS software base is an object-oriented database which contains PSDL

descriptions and code for all available reusable software components. The database

management system supports automatic retrieval and provides graphical tools for browsing

and doing keyword searches [14]. Graphical tools provide a means for storing components

in the software base as well.

10

type SET specification

operator EMPTY specification
output S I : set end

operator ADD specification
input ELEMENT : integer, S I: set
output 52: set end

operator IN specification
input ELEMENT : integer, S I set
output RESULT: boolean end

operator SUBSET specification
input SI, S2: set
output RESULT: boolean end

operator EQUAL specification
input S1, S2: set
output RESULT: boolean end

keywords SET, INTEGER
description (Implements a set of integers)
axioms
(obj SET is sort Set.

protecting INT.
op empty: -> Set.
op add : Int Set -> Set.
op in : Int Set -> Bool.
op subset: Set Set -> Bool.
op equal: Set Set -> Bool.
vars sl s2: Set.
var el e2: Int.
eq in (e l,empty) = false.
eq in (eiadd(e2,s1)) = or (= =(e l,e2), in(elsl)).
eq subset(empty,sl) = true.
eq subset(add(el,sl),s2) = and(in(el ,s2),subset(sI ,s2)).
eq equal(sls2) = and (subset(sls2),subset(s2,sl)).

endo)
end

Figure 2.1: A PSDL Specification for a Set

To store a component in the software base requires three files. A PSDL specification,

and the interface and body for the implementation code [17]. The PSDL specification gives

a means to uniformly specify the functionality of the component as described in the

interface code. The PSDL specification is passed through syntactic and semantic

normalization before being stored in the software base (see Figure 2.2). The normalization

process modifies the specification to improve the efficiency of the search. A query for a

I1

library component is formed by constructing the PSDL specification for the desired

component. The query specification is normalized then matched against the stored

specifications (see Figure 2.3).

PSDL NormalizedSe SnatcSmni SDLSpec Software
Normalization H Normalization 1 10 Base

Figure 2.2: Component Storage

Query
PSDL Semantic ..esult
Se Syntactic .•Partitioning Of Nomlztn

Normalization Software base and Matching

Figure 2.3: Component Retrieval

The retrieval process is two phased [11,17]. Syntactic matching takes place first and

partitions the software base quickly in order to narrow the list of possible candidates that

will be considered during semantic matching. The syntactic phase uses the number and

types of parameters associated with each component to narrow down the search. The

semantic matching phase uses the axioms in the latter half of a PSDL specification (see

Figure 2.1) to narrow the set of candidates further. This phase determines which

components are behaviorally close to the query.

The ability to accurately specify reusable components with PSDL is critical to the

success of automated retrieval. The CAPS software base was designed to store components

implemented in various programming languages. Because of the differences in the

capabilities of different programming languages, the software base is separated into

language domains. PSDL is not geared toward any particular programming language and

therefore must be refined to specify a particular programming language. The software base

12

is designed to recognize the enumeration of PSDL for any language in the following areas:

generic parameters, abstract data types, type inheritance, and array abstract data type [14].

For a particular language library the definitions of the special identifiers are contained in a

rule file for each library. The rule file established for the Ada library guided the translation

of Ada specs into a PSDL interface (see Chapter IV).

13

III. REUSABLE SOFTWARE COMPONENTS

A. ENGINEERING SOFTWARE COMPONENTS TO FACILITATE REUSE

To fully derive the benefits of reusable software components, we must engineer our

software with reuse in mind and begin to accumulate a rich set of components for the

designer [1]. There are three factors which make it practical to formalize reuse-in-the-

small: the emergence of a wideily accepted body of knowledge about data structures and

algorithms, development of software engineering principles, and the development of

programming languages, such as Ada, which support reuse. Components built for reuse

should exhibit the characteristcs of any good piece of software. For example, a component

should be maintainable, efficient, reliable, understandable, and, of course, correct.

A reusable component should be cohesive and loosely coupled. Cohesive means the

component should denote a single abstraction. Loosely coupled means the component

should be defined independently of other abstractions. For example, a component which

denotes an abstraction for real numbers should not include an abstraction for a set.

Secondly, the abstraction should not be dependent on other abstractions.

There are other desirable characteristics of reusable components. They should be

sufficient, complete, and primitive [1]. These characteristics of a component have to do

with the outside view of the component. A sufficient component captures enough

characteristics of the abstraction to permit meaningful interaction with the object. For

example, if a component represents real numbers but provides no means for adding two real

numbers together, then the component is useless. The interface of a complete component

captures all characteristics of the component. Sufficiency implies a minimal collection of

operations, whereas a complete set of operations is one that covers all aspects of the

underlying abstraction.

Primitive operations are those that can be effiiciently implemented with only access

to the underlying representation. For example, the addition of two real numbers. Those

operations which are not primitive but may be useful to the component can be easily

14

extended by the user of the component by building new composite operations. For example,

the abstraction of real numbers includes the notion of comparing two numbers. To make

the component sufficient it should include "<"and "=" operations. To enhance the

completness of the abstraction, we might add a ">" operation. However, a ">" can be built

as a composite operation of the "<" and "=" operations. The designer of a reusable

component cannot know exactly how a particular component is going to be used.

B. WHY ADA?

Ada is a language that embodies and enforces modem software engineering

principles. Ada was also designed with the explicit requirement to support reuse. Features

of Ada which support reuse include [1,21:

1. Separation of interface from the body,

2. Generic program units,

3. Strong typing, and

4. Variety of program units including packages and subprograms

Separation of the interface from the body supports information hiding and abstraction.

An ada specification (interface) identifies the functionality of a component and is the

information visable to the user of that program unit. The body contains the unit

implementation which is hidden from the user. Unimportant details are hidden from the

user. Separation of the interface from the body is also important for storing and classifying

a component.

The Ada generic unit is the main mechanism for building reusable components. A

generic unit provides the template for the algorithm or data structure. Upon instantiation of

a generic unit the client provides the set of allowable values for a data structure.

Ada is a strongly typed language. This means objects declared of a given type may

only take on those values which are legal for that type. In addition, the only operations that

may be carried out on an object are those which are defined for its type. Strong typing can

be instrumental in improving the reliability of a program unit by guaranteeing that the

15

properties of an object are not violated. The requirement for explicit declaration of objects

with their types improves the readability of a program. This guarantees the programmer

must say something about the property of an object.

Packages permit the encapsulation of a group of logically related entities which

directly supports data abstraction and information hiding. Well structured Ada systems are

decomposed into levels of abstractions, structured as collections of logically related

packages that form a model of reality.

C. ADA COMPONENTS SELECTED FOR SOFTWARE BASE

The components selected and tested as a part of this study for inclusion in the CAPS

software base all represent an abstract data type. They include an unbounded map, an

unbounded set, a bounded multiset, a bounded graph, an unbounded graph, a matrix, vector,

real numbers, and bounded integer types. All components were developed by students at

the Naval Postgraduate School. The author of this thesis tested and in most cases modified

the components. Operations were added to components which did not sufficiently define

the abstraction. Other changes corrected errors and improved efficiency and readability.

Appendix A contains the specification for each component. The following is a brief

description of the abstraction, implementation, and major changes made to the components.

1. Unbounded Set

a, The abstracon

The mathematical abstraction set is widely used in computer science

applications. Many interesting data structures can be thought of as just implementations of

sets. Thus it makes sense to build a reuseable set component. Given a "universe" of

permissable values, a set is an unordered collection of objects belonging to that universe.

Two sets are said to be equal if they have the same members. A set is said to be empty if it

has no members. What are the important operators associated with sets? Certainly adding

and removing an element from a set are essential as well as being able to determine the size

16

of the set. Other important operations include the dyadic operations union, intersection,

difference, and equality.

b. Implementation

The UnboundedSet was implemented with a linked list structure. The

number of elements that can be added to the set are only limited by available memory. The

unit contains one generic type parameter which defines the type of elements which may be

added to the set. A hashing function could be used to simplify searching for a given

element, however, it would complicate the algorithms for the dyadic operations.

c. Major changes

A remove procedure and a set difference procedure were added to the original

version to make the component sufficient. An error in the original add procedure which

allowed duplicate copies of an element was corrected.

2. BoundedMultiset

a. The abstraction

A multiset is the same as a set except that items contained within a mulitiset

need not be unique. The size of a mulitset refers to the number of items contained within

the set. A multiset which contains no items is said to be empty. Operations important for a

multiset inclade an empty set constant, a count operation that returns the number of

instances of a given element in a given multiset, add and remove operation, an operation to

test equality, and a size operation which returns the number of distinct elements in a

multiset.

b. Implementation

The boundedmultiset is implemented with an array. The unit has two generic

parameters. Element is a generic type parameter which provides the type of items which

can be added to the set. MaxSize is a generic value parameter which determines the size

of the array (the number of unique elements that may be added to the set).

17

c. Major Changes

The original data structure kept multiple copies of any repeating elements in

the array. The data structure was changed to keep a count of each element rather than

keeping mulitple copies of the element. This representation is more efficient for any

application which contains many copies of an element, for example an inventory record.

Two procedures, Last_Element and First_Element, were removed from the package

specification and are now local to the body. They were used in the implementation of the

data type, but are not part of the definition of the data type, hence should not be visable to

the user. An overflow exception was added to the add procedure. The function empty-set

was changed from a predicate function to an empty set constant. Get and put operations

were removed from the test package and added to the generic package.

3. Bounded-Graph

a. The abstraction

Graphs are an important mathematical structure and are used widely in

computing problems. A graph is made up of a set of vertices or nodes and a set of arcs or

edges, which represent connections between the vertices. Our abstraction represents a

directed graph or a graph in which the edges have direction. Important operations include

initializing a graph to empty, adding a node, adding an edge, checking whether there is an

edge between a given pair of nodes, finding the set of nodes connected to a given node via

an outgoing or incoming edge, removing the edge between a given pair of nodes, and

removing a node and all of the edges connected to that node.

b. Implementation

The bounded.graph is implemented using an adjacency matrix. An adjacency

matrix is a n x n boolean matrix where n represents the maximum number of nodes allowed

in the graph. If the [ijj element in the matrix is true then there is an edge from vertix i to

vertixj and false if there is not. A one dimensional array of size n is used to store the values

18

values of each node. The unit has two generic parameters. One is a type parameter which

allows the user to define the allowable values for the nodes. The other is a value parameter

of type positive and determines the maximum size of the graph.

c. Major Changes

The original version was a machine with a state variable representing the

graph declared in the specification. The state variable was removed and a parameter

representing a graph type was added to all functions and procedures. An operator which

returns an empty graph was added and overflow exception was added to a local procedure

which is called by the add operation.

4. Unbounded-Graph

a. The abstraction

The abstraction for the unbounded graph is the same as the bounded graph,

but allows an arbitrary number of nodes to be added to the graph.

b. Implementation

The unbounded graph permits an arbitrary number of nodes in the graph. The

implementation uses an adjacency list. The basic idea of an adjacency list is to list each

vertex followed by the vertices adjacent to it. This provides the basic information about a

graph: the vertices and edges. Two linked lists are used. One list links all the nodes in the

graph. Each node in the graph has an adjacency list, which lists all adjacent nodes. The unit

has one generic type parameter which imports the allowed values for each node.

c. Major Changes

The original data structure was modified to improve readability. An

adjacency node in the original structure used a pointer to a graph node to identify an

adjacent vertix. This pointer was removed and replaced with the node element. Type

declarations used to build the graph data type were moved from the public to the private

19

section of the specification. This hides unnecessary implementation details from the user.

An unnecessary type declaration was removed to improve readability.

5. UnboundedMap

a. The abstraction

A map permits one to define arbitrary relationships among otherwise

unrelated objects. A map is a mathematical function on objects of one type, called the

domain, yeilding objects of another type called the range [1]. Thus a map consists of a

dynamic collection of bindings from the domain to the range. Bindings may be added,

removed, and modified over the lifetime of a map. The extent of a map represents how

many bindings are in the map and if a map contains no bindings the map is said to be empty.

Operations include initializing a map to empty, adding a binding to a map,

finding the range value associated with a given domain value, checking whether a given

domain value has a binding in the table, finding the number of bindings in the table, and

removing the binding associated with a value of the domain type.

b. Implementation

An unbounded abstraction should permit a map -vith an arbitrary number of

domain and range pairs. This can be easily done using a linked list structure whose nodes

are records containing these pairs. However, to mitigate the time for searching a gigantic

list for a given pair, the map is represented as a collection of several smaller lists. The

unbounded map is represented as a set of blocks of lists. Each block is an array where each

array component acts as a bucket which holds a list of ordered pairs. A set of blocks is

represented using a linked list. A hashing function is used to determine in which list or

bucket a map pair will be located. If the hash function returns an index outside the available

map blocks, a new block is added.

The generic unit has eight generic parameters. Two type parameters are used

to import the domain and range types. A value parameter allows the user to determine the

number of buckets per block. The remaining parameters are generic subprogram

20

parameters. One is a hashing function, the others are get and put procedures for the domain

and range.

c. Major Changes

In the original version, two state variables, NUMBINDINGS and

NUMBLOCKS, were declared in the package body. These variables will reflect

inaccurate data if more than one instance of the map type is declared. Thus they were

removed from the body and made part of the data structure of the map type.

6. Real Numbers

a. The abstraction

The real abstraction is a high precision real number type representing the

standard mathematical domain of real numbers. Real literals are decimals, with at least one

digit on each side of the decimal. Operations include conversions from Ada float to real,

addition, subtraction, multiplication, division, and the comparison operators "=" and "<".

b. Implementation

The real number data type is implemented as a record type. The record

contains three fields: the sign of the number, a digit array containing the digits of the real

number, and an exponent array. The unit has two generic value parameters, digits and

max.exponent. Digits represents the minimum required precision and determines the size

of the digit array. Maxsexponent determines the largest number which can be represented.

The representation will handle numbers ranging up to 10 e where e is the maxexponent.

c. Major Changes

The original version used separate arrays to hold the whole and decimal parts

of a real number. The whole array was declared as a non-generic static type. This version

was simplified by removing the static array and normalizing the position of the decimal.

This allowed the elimination of five local subprograms and the simplification of others.

21

Type declarations used to build the real data type were moved from the public to the private

section of the specification. This eliminates unnecessary implementation details from the

user.

7. Bounded-Integer

a. The abstraction

The bounded integer abstraction represents signed whole numbers of

standard mathematics. The range of the integers is bounded. Operations include conversion

from Ada integers to a bounded-integer, addition, subtraction, multiplication, division,

mod, and the comparison operators "=" and "<".

b. Implementation

The bounded-integer type is implemented using an array. The unit has one

generic value parameter which specifies the number of decimal digits the representation

must support.

c. Major Changes

Type declarations used to build integer type were moved from the public to

private section of specification. Many algorithms were rewritten to improve readability.

This mainly involved the removal of unnecessary local variables.

8. Vectors

a. The abstraction

A mathematical vector is a set of elements which is ordered in the sense that

each component is assigned a specific position in the set. The dimension of a vector

designates the number of elements for a given vector. Operations include conversion from

an array of elements to a vector, vector addition and subtraction, multiplication by a scalar

(value of the element type), dot product of two vectors, and the mathematical length of a

vector.

22

b. Implementation

The vector is implemented using a one dimensional array. The generic unit

has a generic type parameter which determines the element type. A generic value parameter

is used to import the dimension of the vector. Generic subprogram parameters are needed

to define arithmetic operations on the element type.

c. Major Changes

An operation to convert an array of objects to a vector was added.

9. Matrix

a. The abstraction

A mathematical matrix can be viewed as a rectangular array of elements,

having R rows and C columns. Any particular element in the matrix may be referred to

using to subscripts, the row and column position. Operations on matrices include

conversion from an array of elements to a matrix, matrix addition and subtraction,

multiplication by a scalar (value of the element type), matrix multiplication, and

transposition.

b. Implementation

The matrix type is implemented using a dimensional array. Two generic value

parameters are used to define row and column length. A generic type parameter defines the

element type.

c. Major Changes

None.

23

IV. PSDL INTERFACE GENERATOR

The PSDL interface specification generator is a tool which automates the process of

producing the necessary PSDL interface for the storage of an Ada component in the CAPS

software base. This chapter describes the design and implementation of the translator.

Section A provides information, extracted from [4], that is necessary to understand the code

listed in Appendix B.

A. KODIAK

Kodiak is the tool we used to build the translator. It is a fourth generation language

developed at the University of Minnesota and designed for the purpose of producing

language translators. The language is based on Knuth's description of attribute grammars

[4]. Attribute grammars are a scheme for describing syntax-directed translation, in which a

context-free grammar's rules are augmented with equations defining these attributes. The

string is parsed into a syntax tree by applying a set of grammar rules. The root of the tree

represents the start symbol, the leaf nodes represent the terminal symbols, and the internal

nodes represent the non-terminal symbols of the grammar. Attributes can be assigned to the

nodes of the syntax tree. To translate the input string into an output string, values are

assigned to the attributes of each node. The root of the tree is given an attribute whose value

is based on the collective value of all the nodes in the tree, producing the output string.

The values of a particular node's attributes can be determined in one of two ways. The

values of the attributes are either inherited or synthesized. Synthesized attributes are

evaluated from the bottom up, meaning the value of an attribute at a given node is derived

from that node's descendants. Inherited attributes are evaluated from top down, meaning

the value of an attribute at a given node is derived from the node's parent.

Every Kodiak program consists of three sections, as shown in Figure 4.1. The first

section describes the features of the lexical scanner which is used to translate the source

text into tokens and associativities for those tokens. The second section declares the

attributes and their type associated with each grammar symbol. The third section describes

24

the grammar and attribute equations which define the semantics of the translation. Each

section must be separated by a double per-cent symbol (%%) on a line by itself. The

symbol "!" introduces a comment and everything written after it on a line it will be

interpreted as a comment. The following is a brief description of each section.

Lexical Scanner Section

Attribute Declaration Section

Grammar rules and attribute equations

Figure 4.1: Kodiak Program Structure

1. Lexical Scanner

The lexical scanner section of a program defines the terminal symbols (leaf nodes

of the syntax tree) of the source language and how these symbols are to be transformed into

tokens. The source language in this case is Ada and the terminal symbols correspond to

Ada's lexical units. Ada's lexical units consist of identifiers, numeric literals, character

literals, and comments. Ada's reserved words, a subset of identifiers, must be defined in

this section as they are required in defining the grammar. The basic form of a token

definition is:

TERMINAL_NAME-: REGULAREXPRESSION

Terminal name is the name given to the token and appears in the definition of the grammar

in section three of the program. The regular..expression provides the definition of the token.

Code fragments from the lexical scanner section of the PSDL interface generator are given

in Figure 4.2. These declarations indicate that an occurence of the regular expression to the

left of a colon is to be replaced by the atomic terminal symbol on the right. For example,

an occurence of the string "package" or "PACKAGE" in the input text is to be replaced by

25

the symbol PACKAGE. The keyword %define introduces a definition. Square brackets

enclosing a set of characters indicates that any character of the set may be used to match

the text. Curly braces are used to invoke a substitution. The '+' operator indicates that one

or more of the previous class may be used to match the text. The '*' operator indicates that

zero or more of the previous class may be used to match the text.

!definition of lexical classes

%define Digit: [0-9]
%define Int : (Digit)+

!definition of compound symbols and keywords

PACKAGE: package I PACKAGE
REAL_LITERAL: (Int}"."{Int}

Figure 4.2: Examples of Token declarations

2. Attribute Declarations

The attribute declarations section consists of attribute declarations for all non-

terminals and terminals named in the program. Kodiak supports two primitive types for

attributes: strings and integers. Kodiak also supports higher order map types. For example

in Figure 4.3, generic.typejdeflnitions has two attributes. The attribute variable ype is

declared to be of type string. The attribute generic types is declared to be a map type whose

domain and range are both of type string. Basic_declaration has one attribute,

number_of_opemtors, which is declared to be of type integer.

Terminal symbols may also have attributes. These symbols are permitted two

predefined attributes called %text and %line in addition to user defined attributes. In Figure

4.3, the terminal IDENTIFIER has the attribute %text which will be initialized to the text

the terminal symbol IDENTIFIER matched in the input text.

26

!Attribute declarations for non-terminal symbols

start (psdlinterfacespecification : string;};

generic _typejiefinition (variable-type : string;
genericjtypes : string->string;);

basicdeclaration (number.of operators : int; };

!Attibute declarations for terminal symbols

IDENTrFIER (%text: string;);

Figure 4.3: Example of Attribute Declarations

3. The Attribute Grammar and Equations

The attribute grammar section consists of a set of BNF rules defining the grammar

of the source language. Each rule is associated with a set of equations which define how the

input text is to be translated. A fragment of the PSDL interface generator is given in Figure

4.4. The fragment defines the grammar rule for the non-terminal package-specification.

The symbol "I" is used to separate two definitions for the grammar symbol. Curly braces

surround any attribute equations. Null productions are permitted, meiining the curly braces

may be left empty.

An attribute is referred to using dot notation. The grammar symbol associated

with the attribute proceeds the dot and the name of the attribute follows. If more than one

occurence of a grammar symbol appears in a grammar rule, the leftmost symbol is taken to

be the one referred to by an attribute. To refer to a later symbol, the attribute may be

followed by a number in brackets referring to the symbols position of occurence in the rule.

Kodiak supports traditional arithmetic and relational operators for integers and

strings. An addition operator for map types is provided using the symbol "+I". A

conditional clause is also supported and is exemplified in Figure 4.4. The then portion of

the clause follows the arrow,"->", and the else portion follows a "#" sign.

27

One attribute equation is defined between the first set of curly braces in Figure

4.4. T7he equation evaluates the value for the attribute psdl-nterface-specification. This

equation contains a conditional. If the attribute number-of~operators equals one, then the

value following the arrow is assigned to the psdL-interface...specification, otherwise the

value following the # sign is used. Literal strings appear between quotes. The other

attributes which appear in the equation are evaluated to strings. All literals and attributes

between the brackets are catenated to produce the psdl interface-specification. A further

explantion of the attributes in provided in section C.

package-.specification
PACKAGE IDENTIFIR IS basic..declaativejctems END IDENTIFIR ';'

packge..specificaton.psdWinteface-.specification =
basic-declaraiveý-items.number-of~operators - I

*>I OERATOR", IDENTIFIER.%text, ',aSPECIFICATION~n",
package..speciflcation.generic-ýype-.declwaraons, 'oa",
basic declwaraveý_items.input-parameters,
basic-.declwamtivejtetns.output-.parameters,
batsic..declaratve..iterns.exceptions,

"EN~n"]
('TYPE ", IDENTIFIER.%text, "naSPECIFICATION'n",

package..specification.generic-.type-.decLwaraions. "ýn".
basicjleclarativejitems.typejeclarations,
basicý-dcclaanve...iies-operator-.specifications,

"ENI~an];

I PACKAGE IDENTIFIER IS basijcdlarative~itemns PRIVATE
basicjlecLarativejtemns END IDENTIFIER ;

(package..specification.psdljnterface..specification =
basic...eclrativeý-items.numberý-ofoperator == 1

[>I"OPERATOR ", IDENTIFIER.%text, "InSPECIFICATIONWn,
package...speciiication.genericjtypes..decLarations, 'nl",
basicjleciarat~ivtens~input-parmneters,
basic jdeclarativeý_tems.output-parameters,
basic declamtivejtems.exceptions,

"ENT7'n 1;
["TYPE ", IDENTIFIER~ext, 'ýaSPECIFICATION'a",

pacamge...speciflcation.generic-..ype .delrations, s"
basicjedecarative items.type...ecLvaraions,
basic declarative~izems.operator...speciicazions,

"END~n" 1;

Figure 4.4: Example of Attribute grammar and equations

28

B. MAPPING ADA TO PSDL

An Ada specification will be translated into either a PSDL operator or PSDL type

depending on the number of procedures and functions declared in the specification. If only

one procedure or function is declared, the specification is translated as a PSDL operator

using the template in Figure 4.5. The operator will be given the name of the procedure or

function name in the Ada specification. If the specification contains 0 or 2 or more

procedures or functions, the specification is mapped to a PSDL type using the template in

Figure 4.6. The type will be given the name of the Ada package.

OPERATOR
SPECIFICATION

GENERIC
generic-parameterdeclarations

input input-parameters
output output-parameters
exception.declarations

END

Figure 4.5: Operator Template

TYPE
SPECIFICATION

GENERIC
generic-parameterdeclarations

typedeclarations
operator..specifications

END

Figure 4.6: Type Template

29

I variable_names : GENERICVALUE

Figure 4.7: Example of a generic.parameterdeclarations Template

Each generic declaration in the Ada specification is translated into a single PSDL

generic type or built into a composite generic type. Generic value and object parameters

declared in the Ada specification are translated into a single PSDL generic type. The

parameter name is the same as the parameter in the Ada specification and the type is

translated as GENERIC-VALUE. Generic type parameters declared in the Ada

specification are also translated into a single PSDL generic type if they are not part of a

generic array type definition. The parameter name is the same as the parameter in the Ada

specification and the type is translated as GENERIC_TYPE. If the index and element part

of an array type parameter art generic parameters, they are incorporated into the definition

of the array type of t.e Pz•DL. For example given the following Ada declaration:

generic
type ELEMENT is (<>);
type LIST is array (INTEGER range <>) of ELEMENT;

only one PSDL generic type will be translated from the two generic Ada parameters as

follows:

LIST: GENERICTYPE [BASETYPE : ARRAY [
ELEMENT: DISCRETE, INDEX : INTEGER]I

Generic subprogram parameters declarer' in the Ada specification are translated into a

single generic PSDL type. The parameter name is the same as the name given in the Ada

specification, with the exception of overloaded functions named with symbols. Operator

symbols are translated into strings. For example, a generic subprogram named "+" wi~l be

renamed to "add". The type is translated as GENERIC_PROCEDURE.

30

C. EXPLANATION OF ATTRIBUTES

The following is a brief description of the attributes used to build the PSDL interface

specification generator.

1. psdl interface specification

The attribute psdl_interfacespecification is the highest attribute and stores the

result of the translation. The translation is written to a file named with the Ada package

name concatenated with the suffix ".psdl".

2. file-name

The attribute file_name is a synthesized attribute which provides the name of the

file the translation is written to.

3. generic typedeclarations

The attribute generic-type.declarations is a synthesized string which builds the

generic portion of the PSDL specification.

4. numberof operators

The attribute number-of~operators is a synthesized integer used to determine if

the PSDL specification is that of an operator or a type. This attribute counts the number of

procedures and functions declared in the Ada specification. If only one procedure or

function is declared, the operator template, Figure 4.5, is used to build the specification,

otherwise the type template, Figure 4.6, is used to build the specification.

5. operator specification

The attribute operator-specification is a synthesized string which builds the

operator specifications for a type declaration.

31

6. typejdeclarations

The attribute type-declarations is used to build the non-generic type declarations

of the PSDL specification. In this implementation only private type declarations are

translated. They are translated to the typ ADT.

7. inputparameters

The input.parameters attribute is used to build the input parameters for each

operator in the PSDL specification. Ada in and in out variables of procedures and functions

become the input parameters for a PSDL operator. The name and the type name of a PSDL

input will be that of the corresponding Ada parameter.

8. outputjparameters

The output-parameters attribute is used to build the output parameters for each

operator in the PSDL specification. The name and the type name of a PSDL output will be

that of the corresponding Ada parameter.

9. exceptions

The attribute exceptions provides the exception declarations for a PSDL operator

interface. Type interfaces do not have exceptions declarations included with the operators

in this implementation.

10. variable-type

The attribute variablejtype is a synthesized string which provides the type name

for variables declared in the generic portion and type declaration of the PSDL specification.

11. variable.name

The attribute variable_name is a synthesized string which provides the name for

each input/output parameter of an operator.

32

12. mode

The attribute mode is a synthesized map used to determine if there are any input

or output parameters to an operator specification. It is used to modify the template in

Figures 4.5 and 4.6. If there are no input parameters, the fixed input portion of the template

is to be eliminated. If there are no output parameters, the output portion is eliminated.

13. mode check

The attribute modecheck is an inherited map which is used to initialize the

attribute mode to a default value of empty string.

14. current-mode

The attribute currentmode is a synthesized string used to determine if a comma

is required between two parameters.

15. composite-types

The attribute composite types is an inherited map which is used to determine if a

generic type declaration in the ada specification is the index or element type of an array

declaration. This information is used to build an array declaration in the PSDL.

16. new composite-types

The attribute newcompositejtypes is a synthesized map which is built to provide

the value of the map composite-types.

17. generic-types

The attribute generic-types is an inherited map which provides the type name for

the index and element part of an array declartion.

18. newgenerictypes

The attribute new_.generictypes is a synthesized rT.-ap which is built to provide

the values of the map generic-types.

33

19. comma

The attribute comma is a synthesized string used to determine if a comma is

needed between two generic parameters.

D. SAMPLE INPUT AND OUTPUT

Two samples of Ada specifications used as input and the respective PSDL interface

specifications generated are shown below. The first example is translated into a PSDL

operator, the second into a PSDL type.

1. Operator Example

The first example in Figure 4.8 shows an Ada specification for a generic package

which contains one subprogram and four generic parameters. The generated PSDL

specification is shown in Figure 4.9. The PSDL specification is an operator and contains

two generic parameters. The operator specification was a result of only one subprogram

being declared in the Ada package. The three generic parameters in the Ada generated one

type definition in the PSDL. This is because the types ITEM and INDEX are used to define

the array ITEMS.

generic
type rrEM is private;
type INDEX is (<>);
type ITEMS is array (INDEX range <>) of ITEM;
with function "<" (Left: in ITEM; Right: in ITEM) return BOOLEAN;

package Bubble-Sort is

pmocedure Sort (Thejtems : in out ITEMS);

end BubbleLSort,

Figure 4.8: Ada Specification for generic bubble sort package

34

OPERATOR BubbleSort
SPECIFICATION

GENERIC
ITEMS: GENERICTYPE [BASE-TYPE: ARRAY[ARRAYELEMENT: PRIVATE,

ARRAY-INDEX: DISCRETE]],
less_than : GENERICPROCEDURE

input Thejtems: ITEMS
output TheItems: ITEMS

END

Figure 4.9: PSDL output for Ada generic bubble sort package

with textio; use texLio;

generic
type t is private;
block size : in natural := 128;
with procedure eq (x,y: in t; v: boolean);

package sb-set_.pkg is
type set is private;
type index- array is array (natural range <>) of natural;
procedure empty (s: out set);
procedure add (x: in t; si: in set; so: out set);
procedure remove (x: in out t; s: in out set);
procedure member (x: in t; s: in set; b: boolean);
procedure union (sls2 : in set; s3 : out set);
procedure difference (sls2: in set; s3 : out set);
precedure intersection (sls2: in set; s3: out set);
procedure size (s: in set; v: out natural);
procedure equal (sl,s2: in set; v: out boolean);
procedure subset (sls2: in set; v- out boolean);

private

type link is access set;
type elementstype is array (l..block_size) of t;
type set is

record
size : natural := 0; -The size of the set
elements : elements-type; --The actual elements of the set
next: link := null; -The next node in the list

end record;

-Elements (1..min(size,blocksize)) contains data
end sbset-pkg;

Figure 4.10: Ada Specifiation for generic set

35

2. Type Example

The second example in figure 4. 10 shows an ada specification for an abstract data

type the "set". The generated PSDL specification is shown in Figure 4.11. Because there is

more than one subprogram declared in the Ada, the resulting PSDL specifcation is for a

type. The example shows the translation of generic type, value, and subprogam parameters.

The private type declaration, set, translated to ADT in PSDL. All subprograms were

tanslated to operators.

TYPE sb..set.pkg OPERATOR intersection
SPECIFICATION SPECIFICATION

GENERIC input sl, s2: set
t: GENERICTYPE, output s3: set
block-size: GENERICYALUE, END
eq: GENERIC-PROCEDURE

OPERATOR size
set: ADT SPECIFICATION

ipput s: set
OPERATOR empty uutput v: natural
SPECIFICATION END

output s: set
END OPERATOR equal

SPECIFICATION
OPERATOR add input sl, s2: set
SPECIFICATION output v: boolean

input x: t, si: set END
output so: set

END OPERATOR subset
SPECIFICATION

OPERATOR remove input sl, s2: set
SPECIFICATION output v- boolean

input x: t, s: set END
output x: t, s: set
END END

OPERATOR member
SPECIFICATION

input x: t, s: set, b:

OPERATOR union
SPECIFICATION

input sl, s2: set
output s3: set

END
OPERATOR difference
SPECIFICATION

input sl, s2: set
output s3: set

END

Figure 4.11: PSDL output for Ada generic set package

36

E. LIMITATIONS

Ada is not case sensitive whereas Kodiak is. This presents a problem in parsing legal

expressions in Ada. For example, the terminal symbol PACKAGE was defined to match

any occurence of "package" or "PACKAGE" in the input string. However, it is legal in Ada

to use a mixture of upper and lower case. This will not be selected as a match in this

implementation. The way around this is to run all Ada specifications through a pretty

printer firsL

This implementation does not include the grammar for the entire Ada language. The

grammar selected includes Ada package specifications and generic specifications. This

implemention does not include keywords, descriptions, exceptions for type declarations,

and OBJ3 axioms. Keywords and descriptions are not used for query by specification, but

are required for keyword search and browser, respectively.

37

V. CONCLUSIONS

The use of reusable software components will be crucial to the successful

development of large software systems. One of the major problems in code reuse is the lack

of a large library of reusable software components. This problem is aggravated by the fact

that more effort is required to build a generalized component for reuse then to build one for

a specific application. A reusable component must be sufficiently powerful to accomodate

a wide range of applications. A second problem with code reuse is concerned with the

storage and retrieval of reusable components. Specifically, to automate component

retrieval, it is necessary to accurately specify the component's functionality. The CAPS

system is designed to exploit code reuse for rapid prototyping of hard-real time systems.

The prototype is built in part by the automated retrieval of reusable Ada components.

A. ACCOMPLISHMENTS

As a part of this thesis, reusable Ada components were selected and prepared for

inclusion in the CAPS software base. However, these components represent a small subset

of the thousands of components which will be required. Another way to build up the

number of components in the CAPS software base is to adopt components which are

already being used in other software libraries. To store these components in the CAPS

software base they will need to be specified in PSDL. It is important to accurately specify

a component's functionality in PSDL since the key to successful retrieval is this

specification. We have developed a translation tool that is able to generate in part the PSDL

specification for Ada components.

B. FUTURE WORK

There is still a tremendous amount of work which needs to be done in this very labor

intensive area of building reusable components. Depasquale [3] addresses the issue of

automating the production of test programs based on a component's formal specification.

More work could be done in this area to aid in component testing. If a component is built

38

based on a formal specification then it should be easier to test the component and at least

part of the Ada code may be automatically generated (see Reference 15).

The translator should be expanded to include at least some of the limitations addressed

in Chapter IV.

The opportunity and benefits for reuse are real. Building systems from reusable

components should result in higher quality and more reliable systems. CAPS is one

example of a system realizing these benefits.

39

APPENDIX A. ADA SPECIFICATIONS FOR REUSABLE COMPONENTS

A. UNBOUNDED SET

- Title: CS-4530 PROJECT I " U N B O U N DED S ET" *
* Author: Erhan SARIDOGAN *

-- * Modifications: Procedure add modifi.-d March 92 by J.M. Sealander to prevent replicate *
--*elements being added to a set., proceduc remove and function difference added to pkg.
-- Date: November,8,1991

* Course: CS -4530
-- * System: Unix *
- Compiler: Verdixada
- Description: This generic package provides to create and manipulate
- unbounded mathematical set of a given type.
- It has two generic pammetrsElemenL.Type and function *
* EquaLThe 1/O procedures need to use generic procedures. *
* Type Unbounded_Set is declared as private type.

-* All the required operations are available in the package
Link list smtcture is used to provide unlimited enry.

with T"XT JO;

use TEXTJO;

generic

type ELEMENT-TYPE is private;
with function EQUAL(X, Y : ELEMENTTYPE) return BOOLEAN is "=";

package UNBOUNDEDSETPKG is

type UNBOUNDEDSET is private;

- This array is needed to initialize a set variable with given values
type SET-ARRAY is army (NATURAL range <>) of ELEMENTTYPE;

INVALIDSETENTRY,
REPEATED.ELEMENT: exception; - used in I/O

- Operations on sets (The required ones)
function EMPTY return UNBOUNDED._SET,

pocedure ADD(X: in ELEMENTTYPE; S: in out UNBOUNDEDSET);

procedure REMOVE(X: in ELEMENT_TYPE; S : in out UNBOUNDEDSET);

funion MEMBER(X: ELEMENTTYPE; S: UNBOUNDED..SET) return BOOLEAN;

function UNION(I. S2: UNBOUNDEDSET) return UNBOUNDEDSET;

function ITERSECTION(S1, 1S2: UNBOUNDED_SET) return UNBOUNDEDSET,

function DIFFERENCE(S2, 52: UNBOUNDEDSET) return UNBOUNDED_SET;

function SUBSET(S 1, S2: UNBOUNDEDSET) return BOOLEAN;

function EQUAL(S1, S2: UNBOUNDED_SET) return BOOLEAN;

40

tiz.,. SIZE(S: UNBOUNDEDSET) return NATURAL;

function INITIALIZE(A: SETARRAY) return UNBOUNDEDSET;

- Input/output routines
- These routines must be instantiated by using differnt parameter
- procedures for each different ElemenLType.
generc
with procedure G_PUT(X: in ELEMENT_TYPE) is <>;
procedure GEN-PUT(S : in UNBOUNDEDpSET);

generic
with procedure GGET(X : out ELEMENT_TYPE) is o<;
procedure GEN.GET(S : out UNBOUNDEDSET);

generic
with procedure GPUTFILE(FILE : in FILETYPE;
X: in ELEMENTTYPE) is <>:
procedure GENFILE_.PUT(FILE: in FILE-TYPE; S : in UNBOUNDEDSET);

generic
with procedure G_GET_FLE(FILE: in FILETYPE;
X : out ELEMENT..TYPE) is 0;

procedure GENFILE-GET(FILE: in FILETYPE; S : out UNBOUNDEDSET);

private
type ELEMENT;
type UNBOUNDED-SET is access ELEMENT;
type ELEMENT is

NODE: ELEMENT-TYPE; -- contains the element
NEXT: UNBOUNDED _SET := null; - used in link list

end record

end UNBOUNDED-SETPKG;

41

B. BOUNDEDMULTISET

-Ttle: Generic specification for bounded-multisets
--Author: William D. Reese

--Modification: Modified by J.M. Sealander Apr 92. The original dam structure kept mulitple copies
--of any repea•ing elements. The data structure was changed to keep a count of each element rather than
-keeping Multiple copies. Get and put operations were removed from the test package and added
-to specification. Last_Element and TheElement were removed from the package specifications
-and are now local to the body. They reflect the implementation method, not the data type.
-Overflow exception added to procedure Add. Function emptyset removed
- and replaced with empty-set constant.
-Date: October 12, 1991
-Course : CS-4530 (Prof. Luqi)
-System : UNIX
-Compiler: VERDIX

* BOUNDED.MULTISETS * SPEC

generic
type ELEMENTTYPE is private;
MAX-SIZE: POSrIIVE.

with procedure PUT(X: ELEMENTTYPE);
with procedure GET(X: out ELEMENTTYPE);

package BOUNDEDt_MULTISETS is

"This package provides facilities for implementing bounded multisets
-as abstact data types (ADT). Operations provided include an empty
-set constant, functions for adding, removing, and counting elements,
-as well as comparison for equality between two bounded multisets.

type BOUNDEDMULTISET is private;

S,..•............o.o ,..°.... .. .

Count SPEC

function Count (IE._BOUNDEDMULTISET: in BOUNDEDMULTISET;
ELEMENTOFJINTEREST: in ELEMENTTYPE) return NATURAL;

S,.o..o..........................

- Add SPEC

procedure Add (ELEMENTTOBEADDED: in ELEMENTTYPE;
THEMULTISET: in out BOUNDEDMULTISET);

S~......o.,......................

- Remove SPEC

42

procedure Remove (ELEMENT_TO_BEREMOVED: in ELEMENTTYPE;

THEMULTISET: in out BOUNDEDMULTISET);

...........o....ooo.o.oo..oo.....

Equals SPEC

• .. o....

function Equals (SETI, SET2 : in BOUNDEDMULTISET) return BOOLEAN;

o.o.oo.o.o..... o... o........

- Size SPEC

oooo....o..o......o.o.ooo.......

function Size (THE_MULTISET: in BOUNDEDMULTISET) return NATURAL;

°. o.........oooo...... oooooooooo.

- Put_Multiset SPEC

........o.o.o.o..o.....oooooooo.o

procedure PutMultiset (MULTISET: in BOUNDEDMULTISET);

................ oooooooo.ooo...

- GetMultiset SPEC

function Get_Multiset (NUMBER_OF_ELEMENTS: in NATURAL)
return BOUNDEDMULTISET;

NOT_FOUND: exception;
OVERFLOW: exception;

rivate
type ELEMENTRECORD is

record
ELEMENT: ELEMENTTYPE;
COUNT: NATURAL := 0-,

end record;
type LIST is array (INTEGER range o) of ELEMENTRECORD;
type BOUNDEDMULTISET is

record
THE_ELEMENTS : LIST(I..MAXSIZE);
HOWFULL: NATURAL := 0;

end record;
EMPTY-SET: constant NATURAL := 0;
end BOUNDEDLMULTISETS;

43

C. BOUNDED GRAPH

with TEXT_10;
use TEXT_10;

-* Bounded_Graph * SPEC

generic

type NODETYPE is private;
max_size: integer,

package BoundecLGraph is

-- Purpose
-- The routines in this package deal with a directed graphs with a number of
-- nodes <= max size, which is established at instantiation. The package
- specification contaions the followings functions and procedures.

-- add_a_node
- add-an-.edge
- remove-an.edge
-- remove-a-node
-- nodes_connectedjn
-- nodesuconnectedout
- nodesconnected
- graph-empty

Notes
- max-size should be only a positive integer number
- NODE,_TYPE is a user defined type

- Exceptions
DUPLICATE_NODE -- Raised if a duplicate node is added to the graph.

-- NODE_NOTOUND -- Raised if a node passed in is not in the graph.
- GRAPH_IS_FULL - Raised if a node is added to a full graph.
- GRAPHIS.EMPTY -- Raised if any operation except add_a_node and graph-empty
-- is attempted on an empty graph.

-- Modifications
- 11/13/91 Michael D. O'Loughlin Initial version of specification.
- UNIX version Verdix Ada, Naval Postgraduate School
- 02)92 J.M. Sealander Ori.ginal version was a machine with state variable graph declared in
-specification. State variable removed and parameter of type GraphTypjPtr added to all functions
--and procedures. An operator which returns an empty graph was added and overflow exception
-was added to a local procedure which is called by the add operation.

type Graph_TypJ"tr is private;

DUPLICATENODE,
NODENOTFOUND,
GRAPHIS_FULL,
GRAPHISEMPTY : exception;

44

.°°...............oooo

Graph-Empty SPEC

o......o.....°..........°..o....

function GraphEmpty(GRAPH: in Graph-TypPtr) return boolean;

-Purpose
- This function will check if the graph matirx is empty (no nodes on the graph)

"°°°° .°° ...

-- Nodes_Connected SPEC

°. .o........o... e.....

procedure Nodes_Connected(graph : in out Graph-Typ Ptr;
ajnode, b.node : in NODETYPE;
corn: out CONNECTION);

-Purpose
-- This function will check if two two nodes are connected.

..... ooo...........°°°..........

- Add_ANode SPEC

... o......o.....................

procedure Add_ANode(graph: in out Graph TypPtr, node: in NODETYPE);

This procedure will add a node to the graph (adjacency matrix).

................. o°°..........I°

Add_An Edge SPEC

................... **...~o......

procedure Add.AnEdge(Graph : in out Graph.TypPwtr,
a~node, bnode : in NODETYPE);

This procedure will add an edge between the two node passed in.

.e. o......*.........o........eo..°.............

-- NodesConnected_Out SPEC

procedure NodesConnectedOut(graph : in out GraphTypPtr,
node: in NODETYPE;
out_nodes : out NODE.COUNT;
node connected: out CONNECTEDNODES);

45

Purpose
-This procedure will pass out all nodes and the number of nodes connected,

- to the node passed in, by an out edge.

"" o~.. °.......

-- Nodes_Connected_In SPEC

u °°.°........... .. °.°.°...

procedure NodesConnectedJn(Graph : in out GraphTypPtr;
node: in NODETYPE;
in-nodes: out NODELCOUNT',
node-connected : out CONNECTEDNODES);

-Purpose
-PrThis procedure will pass out all nodes and the number of nodes connected.

- to the node passed in, by an in edge.

Remove-Edge. SPEC

.. ,...............,.............

procedure Remove_-Edge(graph : in out GraphTyp_PPtr,
a~node, b_.node: in NODE.-TYPE);

--This procedure will remove an edge between the two nodes passed in.

RemoveNode. SPEC

procedure Remove Node(graph : in out Graph_Typ Pt,
node: in NODE._TYPE);

- This procedure will remove the node passed in from the graph and remove all its

- related edges.

private

subtype NODECOUNT is integer range O..max.size;
type CONNECTEDNODES is array (NODE-COUNT) of NODETYPE;
type CONNECTION is kin-edge, ouLedge, in-out-edge, noLconnected);

type NODESTATUS,_TYP is
record

empty : boolean := true; -- Empty node if true.
node..id : NODE,_TYPE; - User defined data structure.

end recordl

type NODEINDEXARRAY-TYP is - One dimensional array containing all nodes.
array (NODECOUNT) of NODE_STATUS_TYP;
type GRAPH-MATRIXTYP is -- Graph adjacency matrix.
array (NODE_-COUNT, NODECOUNT) of boolean;

46

type Graplijyp is
record
Numberýof nodes: NODE COUNT:= 0,
Nodes: NODEIINDEXATRRAYJTYP,
Grapfr..atrix: GRAPHMATRIXTYP-= (others =>(others =>rue))-;

end record;

type G aITyp-Ptr is access GRAPHTYP-,

empty-graph: NODECOUNT: 0; - Node counter for graph.

end Bounde&..Graph;

47

D. UNBOUNDED-GRAPH

* UnboundedGraph * SPEC
* *t

generic
type ELEMENT TYP is
private;

package Unbounded_Graph is
-- PURPOSE: This generic package implements an unbounded directed
-- graph type.
- INITIALIZATION EXCEPTIONS: none
-- NOTES: The graph is represented by a set of distinct nodes,

with each node having an edge list composed of a set of
distinct nodes. A directed edge exists between a node in the
graph and all nodes in it's respective edge list.

-- MODIFICATIONS:
-- 11/15/91 J.L. Budnick Initial build.
-- 05/92 modified by J.M. Sealander. An adjacency node in the original structure pointed to a graph
--node to identify an adjacent vertex. This pointer was removed and replaced with the node element. Type
--declarations used to build the data type were moved to the private section.

type GRAPH_TYP is
private;

INPUT_NODE_DOES_NOT_EXIST: exception;

°. ,°....°........

-- IsEmpty SPEC

• o...

function IsEmpty(Graph: GRAPH_TYP) return BOOLEAN;

-- PURPOSE:
-- Returns TRUE if the input Graph is empty, FALSE if it is not.
-- EXCEPTIONS: none
-- NOTES: none
-- MODIFICATIONS:

11/15/91 JIL. Budnick Initial build
oo.o.o...o...................o...

-- AddNode SPEC

procedure AddNode(NewNode: in ELEMENTLTYP; Graph: in out GRAPHTYP);

-- PURPOSE:
Adds a NewNode of type ELEMENTTYP to the input Graph.

-- EXCEPTIONS: none
-- NOTES:
-- If a node is found in the Graph which is a duplicate of

48

- the New_Node, the Graph will remain unaltered.
-- MODIFICATIONS:
-- 11/15/91 JJ.. Budnick Initial build

- .Removenode. SPEC

procedure Remove-node(Node: in ELEMENTTYP; Graph: in out GRAPHTYP);

-- PURPOSE: Removes Node from Graph.
-- EXCEPTIONS:
-- INPUTNODE_DOESNOTEXIST is raised if Node is not found in
- Graph.
-- NOTES: All references to Node are removed from Graph, even
-- references in other Node's edge lists.
-- MODIFICATIONS:

11/15/91 JL. Budnick Initial build

.................. ,....•.......

-- Add-Edge SPEC

.°.........°...°..°............

procedure AddEdge(FromNode: in ELEMENT_TYP;
To_Node: in ELEMENT_TYP;
Graph: in out GRAPH_TYP);

-- PURPOSE: Adds a directed edge between From_Node and ToNode
-- within Graph.
-- EXCEPTIONS:
-- INPUTNODEDOESNOTEXIST is raised if FromNode or To_Node
-- is not found in Graph.
-- NOTES: If To_Node is already an element of FromNode's edge
-- list, the graph remains unaltered.
- MODIFICATIONS:
-- 11/15/91 J.L. Budnick Initial build

........ °°...... °.. °..........

-- Remove-Edge. SPEC

procedure Removeedge (FromNode : in ELEMENTTYP;
To Node: in ELEMENT_TYP;
Graph: in out GRAPH_TYP);

-- PURPOSE: Removes an edge between From_Node and ToNode in the
-- given Graph.

EXCEPTIONS:
-- INPUT-NODEDOESNOTEXIST is raised if FromNode is not
-- found in Graph or if ToNode is not found in From_Node's edge
-- list.
-- NOTES: none

MODIFICATIONS:
-- 11/15/91 LL. Budnick Initial build

49

........o°°..................°

-Has_AlLEdge. SPEC

l..°....**....................

function HasAnEdge (From-Node: ELEMENTTYP,
To_Node: ELEMENTTYP;
Graph : GRAPH_TYP)

reurn BOOLEAN;

- PURPOSE: Determines if an edge exists between the two input
- nodes of the given Graph.
- EXCEPTIONS:
- INPUTjNODEDOES_NOTEXIST is raised if From_Node or To_Node
-- is not found in Graph.
-- NOTES: none
- MODIFICATIONS:
-- 11/15/91 J.L. Budnick Initial build

°. *...................... *......

Set_OLOutgoing_Edges. SPEC

function Set_Of_OutgoingEdges (From-Node : ELEMENT_-YPI,
Graph: GRAPH TYP) return NODESETYMTR;

-- PURPOSE: Returns the set of edges outgoing from the given
-- FrorNode in Graph.
-- EXCEPTIONS:
-- INPUTNODEDOES_NOT_EXIST is raised if FromNode
-- is not found in Graph.

NOTES: An outgoing edge set is composed of the set of all
- nodes which have directed edges coming from the From-Node to
- those in the set.
- MODIFICATIONS:
- 11/15/91 J.L. Budnick Initial build

......... *.............................

SetOfIncomingEdges. SPEC

function SetOfLIncomingEdges (ToNode: ELEMENT_TYI,
Graph: G%,APH..TYP) return NODESETPTR;

-- PURPOSE: Returns the set of edges incoming to the given ToNode
-- in Graph.
-EXCEPTIONS:

-- INPUTNODEDOES_NOT_EXIST is raised if To Node
-- is not found in Graph.
-- NOTES: An incoming edge set is composed of the set of all
-- nodes which have directed edges from themselves to the
-- ToNode.
- MODIFICATIONS:

11/15/91 J.L. Budnick Initial build

50

.. o°°°o.........°.....................°...°.

Set_Of_All_Nodes SPEC

function Set_Of_AILNodes (Graph: GRAPHTYP) return NODESET_PTR;

- PURPOSE: Returns the set of all nodes in the input Graph.
-- EXCEPTIONS: none
- NOTES: The returned node set is simply the complete set of
- nodes in Graph, and contains no interrelationship data.
- MODIFICATIONS:
- 11/15/91 J.L. Budnick Initial build

private
type GRAPH_NODE;
type GRAPH_TYP is
access GRAPHNODE;

type EDGE;
type EDGEIR is
access EDGE;

type EDGE is
record
Edgeonode : ELEMENT_TYP,
NextEdge : EDGE_PTR := null;

end record-

type GRAPHNODE is
record
Element : ELEMENT_TYP,
NextNode: GRAP-ITYP := null;
Edges: EDGE-PTR := null;

end record;

EMhfTvY_GRAPH: constant GRAPHJTYP := null;

end UnboundedGraph;

51

E. UNBOUNDED-MAP

- Name: Capt Robert M. Dixon
-- Date: 15 Nov 91
- Modifications: Modified by J. M. Sealander Feb 92. In the orignial version
- NUM1BINDINGS and NUILBLOCKS were state variables declared
- in the package body. Erroneous data resulted if more than
-- one variable of MAPTYPE was declared. They are now part
- of the MAP TYPE data structure.
-- Course: CS4530
-- Compiler. Verdix Ada 6.0
- System: Solboume
- Title: Map_ ackage
- Remarks: MapPackage implements an unbounded map using a generic Ada package.
-- The package is instantiated with a hash function, which reurms an index
-- into di hash table, based on the domain value. If the index lies outside
-- the range of the map, it links in new map blocks until the index falls
-- on a block in the map.

-- Thedomain/range value is added to the head of a linked list whose head
- pomter is stored in the map block, at the index pointed to by the hash
- function.

- Generic Parameters: DOMAINTYPE is the desired type of the domain.
- RANGETYPE is the desired type of the range.
- Hash is the user's hashing function.
- Domain Put is a put procedure for the domain type.
-- Range-Put is a put procedure for the range type.
-DomainGet is a get procedure for the domain type.
- RangeGet is a get procedure for the range type.
-- Granularity specifies how many values will be stored in
- each block of the hash table.

generic
type DOMAINTYPE is private;
typ RANGETYPE is private;
with function Hash(DomainYalue: in DOMAINTYPE) return NATURAL;
with procedure DomainPut(DomainYalue: in DOMAINTYPE);
with procedure RangePut(Range..Value : in RANGE_TYPE);
with procedure DomainGet(Domain.Value: out DOMAINfTYPE);
with procedure RangeGet(RangeValue : out RANGE_TYPE);
Granularity : in INTEGER := 100;

package MapPackage is

- MAPTYPE is the type that the package user will use to declare a map.
MAPF`INDINGSYPE is the type used to store the number of bindings in the map.

- Add adds a new domain/range pair to the map.
- RangeValue returns the range value associated with the domain_value parameter.
- Is_Bound returns amu if the domain_value is in the table.
- Number-OfBindings returns the nunber of bindings in the map.
- Remove-Binding removes a domain/range pair from the map.
- Put prints out the entire map.
- Get gets the entire map.

Empty-Map is an empty map constanL

-- DomainExists is raised if a duplicate domain is inserted into the map.
DomainNotFound is raised if a domain is not found in the map.

52

type MAPff.YPE is pnvat;.
type MAP..BINDING _TP snwNTURAL;

procedure Add(Map: in out MAP-TYPE; DomainValue: in DOMAINTYPE;
Range...Value: in RANGE-TYPE),

function Range...Value(Map: MAP-TYPE; DomainYalue : DOMAINTYPE)
return RANGE-TYPE;

function IsBound(Map: MAP._TYPE; DomainValue: DOMAIN-TYPE) return BOOLEAN;
function NumberýOfBindings(Map: MAPffYPE) reurn MAPBINDINGS-TYPE;
procedure Remove Binding(Map: in MAPJTYPE; DomainValue: DOMAIN-TYPE);
procedure Put(Map :in MAPTYPE);
procedure Get(Map: in out MAPJfYPE);

Empty-Miap: constant MAPTYPE;

Domnain-Exists : exception;
Domain_.NocFound: exception;

private
type MAPý_RECORDTYPE is
record
DomainValue: DOMAINTYPE;
Range Value : RANGE-TYPE;

end record;
type MAP...RECORDLNODE-TYPE;
type MAP._RECORD_NODEPTR'RTYPE is access MAP_RECORD_NODEJYPE;
type MAP_-RECORDNODETYPE is

record
Map_.Record: MAPRECORDJYPE;
NextNode: MAP...RECORD_NODE,_PTRJTYPE;

end record;
type MAPARRAY_.TYPE is array(O. Granularity -1) of MAPRECORDE..NODEVIX-TYPE;
typ MAPBLOCKJTYPE;
type MAP..BLOCK~rTP isacess MAI! BLOCK TYPE;
type MAP..BLOCKTYPE is

record
map-.Armay: MAP...ARRAY-TYPE;
NexL~lock: MAP BLOCKI(YIR-TYPE;

end recort
type MAPH1EADJTYPE;
type MAPý_TYPE_FIR is access MAPJ-HEAD...TYPE;
type MAP.j1EAD_.TYPE is

record
NUM-.BINDINGS : MAPBINDINGSTYPE := 0;
NUMBWOCKS : NATURAL :=O;
HEAD: MAPBLOCK PTR TYPE;

end record
type MAP_.TYPE is new MAPffYPEPrR;
Empty~map: constant MAPTfYPE := new MAPHEADJYPE;

end Map-.Package;

53

F. REAL NUMBERS

-Author original version: Dogan Ozdemir
-Author modified version : J.M. Sealander
--Original version used separate arrays to hold the whole and decimal part
--of a real number. Modified version uses one array to hold all the digits
-and the output is normalized so that the decimal point appears after the
-first digit.
-Local procedures eliminated from original version: ADD._WHOLE, SUBTRACT-WHOLE,
-M_SHJFT_.LEFT, SHIFT_.EFT, SIMPLIFY.
with TEXTJO;

generic

DIGIT: INTEGER := 10;
MAX EXP: INTEGER := 3;

package REALPKG is

type REAL is private;
INPUT_ERROR: EXCEPTION;

--functions-

function ADDITION (NUMINUM2 : REAL) return REAL;
function "+" (NUM1,NUM2 : REAL) return REAL renames ADDITION;

function SUBTRACTION (NMINM2: REAL) return REAL;
function "-" (NM1,NM2 : REAL) return REAL renames SUBTRACTION;

function MULTIPLICATION (NMI,NM2 : REAL) return REAL;
function "*" (NM1,NM2 : REAL) return REAL renames MULTIPLICATION;

function DIVISION (NM1,NM2: REAL) return REAL;
function "r" (NM1,NM2 : REAL) return REAL renames DIVISION;

function EQUAL(N1,N2 :REAL) return BOOLEAN;

function GREATER (NN2 :REAL) return BOOLEAN;
function ">" (N1,N2 :REAL) return BOOLEAN renames GREATER;

- This procedure gets a float and converts it to the respective
- real number.

function CONVREAL (FL : FLOAT) return REAL;

- procabures-

- This procedure reads the Real Number from the screen and
-- decompose it into the sign, digits and exponent
-- arrays.

procedure GET (NUM: in out REAL);

- This procedure puts the real number to the screen

procedure PUT (R : in REAL);

54

p~rivate

type SIGN is (c+',');
subtype DECIMALS is INTEGER range 0.. 9;
type MANTISSA.ARRAY is array (1.. DIGIT) of DECIMALS;
type EX -70NENTARRAY is array (1.. MAXEXP) of DECIMALS;

type REAL is
record

SIGN_WHOLE: SIGN:='+';
MANTISSA: MANTISSA_ARRAY:= (others => 0);
SIGNEXP: SIGN :='+';
EXPONENT: EXPONENTARRAY := (others => 0);

end recor

EMPTY-EXP : constant EXPONENT_ARRAY := (others => 0);
end REALPKG;

55

G. BOUNDED INTEGERS

-- TITLE: IMPLEMENTATION OF BOUNDED INTEGERS
- COURSE : CS 4530
- AUTHOR: Metin Balci
-* DATE : OCT,25,91
-* MODIFICATIONS : Modified by J. M. Sealander Apr 92. Subprogram algorithms simplified.
- SYSTEM: UNIX

* COMPILER: VERDIXADA
- FILE : balci/qtr5/cs4530/big..inLspec.a

* DESCRIPTION: This generic package contains the specifications
- for implementing the type bounded integer.The
-* type is implemented as generic big integers with
-* array representations.The generic parameter is

DIGIT and it specifies the number of decimal digits
- the represantation support.The generic parameter
- is used as value generic parameter and intialized
- to 20 as default value.You can change the generic
-- value in your implementation(or test)program.
- By using "renames" features of ADA, the operations

are overloaded for the normal operators.
- For equality check although a function "equals" is
- supported, user can use "f=" operator for this aim.
-* This feature is implemented in the test program.

with TEXT.JO;
use TEXT_1O;

generic
DIGIT: in INTEGER:= 20,

package BOUNDEDJINTEGERARRAYPACKAGE is

type BOUNDED INTEGER is private;

- for a piven integer it returns a bounded integerby calling this
- function we may have operations with both types

procedure CONVERT (NUMYAL: in INTEGER ; BNUM: out BOUNDEDPNTEGER);

- converts the string to a bounded integer type.User is supposed to
- enter the big integer as a suing

procedure STRING_TOBOUNDED_INTEGER (STR :in STRING ; LNG:in INTEGER;
B_INT :out BOUNDED INTEGER);

- the addition of two bounded integers
function ADDITION (BjNTI :in BOUNDED INTEGER;

BINT2 :in BOUNDED_INTEGER) return BOUNDEDINTEGER;

function "+" (B_INTI :in BOUNDED_INTEGER; BNT2 :in BOUNDED_INTEGER)
return BOUNDED_INTEGER renames ADDITION;

- subtraction
function SUBTRACTION (LEFT :in BOUNDEDJNTEGER; RIGHT'in BOUNDED_INTEGER)

return BOUNDED_INTEGER;

function "-" (LEFT :in BOUNDEDINTEGER; RIGHT:in BOUNDED_INTEGER)
return BOUNDED_INTEGER renames SUBTRACTION;

56

- multiplication
function MULTIPUCATION (L:in BOUNDEDINTEGER; R:in BOUNDEDINTEGER)

return BOUNDEDINTEGER;

function "*" (L:in BOUNDED_INTEGER; R:in BOUNDEDINTEGER)
return BOUNDED_INTEGER renames MULTIPLICATION;

- division
function DIVISION (DIVIDENT :in BOUNDED_INTEGER;

DIVISOR :in BOUNDED JNTEGER) return BOUNDED INTEGER;
function "r" (DIVIDENT :in BOUNDEDINTEGER; DIVISOR :in BOUNDED_INTEGER)

return BOUNDED_INTEGER renames DIVISION;

- modulo operation
function MODULO (FIRST :in BOUNDEDINTEGER; SECOND :in BOUNDED_INTEGER)

return BOUNDED.INTEGER;

function "mod" (FIRST :in BOUNDEDINTEGER: SECOND :in BOUNDEDINTEGER) return
BOUNDEDPINTEGER renames MODULO;

- returns if two bounded integer is equal or not
function EQUALS (LEFTIRIGHT: in BOUNDEDINTEGER)return BOOLEAN;

- r•um if tde first entry greater than tde second entry
function GREATERTHAN (X,Y: in BOUNDED_INTEGER) return BOOLEAN;

function ">" (X,Y: in BOUNDED_INTEGER) return BOOLEAN renames GREATERTHAN;

-- this is the get function which is implemented for test purposes
procedure GET (STR_TO_BOUNDED: out BOUNDEDINTEGER);

- this is the put function which is implemented for test purposes
procedure PUT (BOUNDEDTIQSTR : in BOUNDED_INTEGER);

private
subtype NUMNOF CHAR is INTEGER range 0..9;
type SIGN.DIGIT is (+','-');
type BJ_INLARRAY_TYPE is array (NATURAL RANGE 0.. DIGT of NUM_OF_CHAR;
type BOUNDEDLINTEGER is

record
SIGN: SIGN_DIGIT;
B_INTARRAY: B_INT_ARRAY_TYPE;

end record;

end BOUNDEDINTEGER-ARRAYPACKAGE;

57

H. VECTORS

--Tide: Vector ADT
--Author: Jennie M. Sealander
--Date: 14 November 1991
-Course: CS-4530
-Compiler: Verdix Ada
-Description: Generic package for Abstract Data Type Vector.

* VECTORS * SPEC

with TEXTJO; use TEXTIJO;
generic

type ELEMENTYPE is private; --vector component type, must be a
-numeric type

DIMENSION: in POSITIVE; --dimension of vector type
with function "+" (X,Y: ELEMENTTYPE) return ELEMENTTYPE;

-purpos
--This function defines addition for the numeric ELEMENT_TYPE

with function "-" X,Y: ELEMENT_TYPE) return ELENEwNTYPE;

--This function defines subtraction for the numeric ELEE•Tw-TYPE

with function "*" (X,Y: ELEMENTTIYP) return ELENý TYPE;

--This function defines multiplication for the numeric ELEMENT_TYPE

with function ZERO return ELEMENT-TYPE;

-This function defines zero for the numeric ELEMENT_TYPE

with function SQRT(X: ELEMENTTYPE) return ELEMENTTYPE;
-purpose
-This function defines the square root for ELEMENTTYPE

with procedure PUT(X: ELEMIENTTYPE);

-This procedure defines PUT for the numeric ELEMENTTYPE

with procedure GET(X: out ELEMENT_TYPE);
--Purtpose

-This procedure defines GET for the numeric ELEMENT_TYPE

package VECTORS is

type VECTOR is array(1..DIMENSION) of ELEMENT_TYPE;

function -"+ (V1,V2: in VECTOR) return VECTOR;
-*Purpose

-Vector addition

58

function "-" (V'1,V2: in VECTOR) return VECTOR;
.-Purpo)se

--Vector Subtraction

function "*" (VI : in VECTOR; S: in ELEMENTTYPE) return VECTOR;

-Multiplication of a vector by a scalar

function "*" (VI,V2: in VECTOR) return ELEMENTTYPE;
-- Purpose

--Vector Dot Product, multiplication of two vectors

function LENGTH (V: in VECTOR) return ELEMENTTYPE;
-purpose
--Returns magnitude of vector

procedure PUTVECTOR (V: VECTOR);
--Purpose
--Outputs an object of type VECTOR

procedure GET_VECTOR (V: out VECTOR);
-Purpose
--Gets an object of type VECTOR

INPUTERROR : exception;
--Purpose
--Raised if enror in input of type VECTOR

end VECTORS;

59

L MATRIX

--Tide: Generic Matrix Package
-Audtor: William C. Hoppe
--Date: 7 November 1991
--Revised:
--Course: CS4530
-System: SUN-3 UNIX
--Compiler: Verdix Ada, VADS, Ver 6.0
--Description : Generic Package to implement the Abstract Data Type (ADT)
- Matrix, and operations: conversion from an array to a
- matrix, matrix addition and subtraction, multiplication
-- by a scalar (value of the element_type), matrix
-- multiplication, and transpose.

generic
type ROWLENGTH is (<>);
type COLUMNLENGTH is (<>);
t ITEM is private;
with function "+" (X, Y : in ITEM) return ITEM is <>;
with function "-" (X, Y: in ITEM) return ITEM is <>;
with function (X, Y : in ITEM) return ITEM is <>;

package Matrix is

type ARRAYTYPE is array(ROW_LENGTH range o, COLUMNLENGTH range <>) of ITEM;

type MATRIXTYPE is array(ROWLENGTH range o, COLUMNLENGTH range <>) of ITEM;

type TRANSPOSFMIATRIX TYPE is array(COLUMNLENGTH range <>,
ROW-LENGTH range <>) of ITEM;

NON-CONFORMABLEFORADDMONERROR: exception;

NONCONFORMABLEFORMULTIPLICATIONERROR : exception;

function ConverntoMatrix (Numerical_.Amy: ARRAY-TYPE) return MATRIXTYPE;

function MatrixAdd (Matrixl, Matrix2 : in MATRIXTYPE) remrn MATRIX_TYPE;

function MatrixSubtract (MatrixI, Matrix2: in MATRIX-TYPE) return MATRIX-TYPE;

function Matrix_Multiply (Scalar: in ITEM; Matrix: in MATRIX_TYPE) return MATRIX-TYPE;

function Matrix..Multiply (Matrix 1, Matrix2 : in MATRIX-TYPE;
InitialValue: in ITEM) return MATRIX-TYPE;

function Transpose (Matrix : in MATRIX_TYPE) return TRANSPOSEvMATRIXTYPE;

end Matrix;

60

APPENDIX B. KODIAK PROGRAM LISTING

!definition of lexical classes

%define Digit :[0-91
%define Int :(Digit)+
%define Lower :[a-z]
%define Upper :[A-ZI
%define Letter :((Lower) I (Upper})
%define Alpha :([Leuer) I(Digit})
%define Underscore ["_"
%define Blank : ['€•
%define Quote 11
%define Backslash : \v
%define Char :([A^\]{ (Backslash) (Quote) I(Backslash) {Backslash})

!definition of white space comments

:{Blank) +

!definitions of compound symbols and keywords

PACKAGE :packagelPACKAGE
IS :islIS
PRIVATE :privatelPRIVATE
END :endlEND
USE :uselUSE
TYPE :typeITYPE
PROCEDURE :procedure1PROCEDURE
FUNCTION :functionIFUNCTION
RETURN :retu-nIRETURN
IN :inlIN
OUT :outJOUT
TASK :tasklTASK
ENTRY :entryIENTRY
EXCEPTION :exceptionIEXCEPTION
RENAMES :renamesIRENAMES
CONSTANT :constantlCONSTANTl"
SUBTYPE :subtypelSUBTYPE
NEW :newlNEW
RANGE :rangelRANGE
GENERIC :genericIGENERIC
WITH :withrWlTH
DIGITS :digitsIDIGITS
DELTA :deltalDELTA
LIMITED :limitedLIMITED
FOR :forIFOR
AT :auiAT
ALL :aIIIALL
CASE :caselCASE
WHEN :whenIWHEN
OTHERS :othersIOTHERS
ACCESS :accessIACCESS
AND :"&"I"and"I"AND"
THEN :thenlTHEN
OR :"r"l"or"I"OR"
ELSE :elselELSE
NOT :nodNOT

61

XOR :xorlXOR
ABS :absJABS
NULL :nuI1INULL
EQUAL
NEQ
LT
LTE
GTE
GT
PLUS
MINUS
TIMES
DIVIDE
EXPONENT
MOD :modIMOD
REM :remIREM
ARRAY :arraylARRAY
OF :oflOF
RECORD :recordIRECORD
DISCRETE :"
ARROW =>
TO
TIC
CHARACTER_LITERAL :"'."."
STRINGLITERAL :(Quote) (Char)* (Quote)
INTEGERLITERAL :(Intl
REALLITERAL :{Int}"."[Int)
IDENTIFIER (Letter) +(((Underscore) IAlpha)* (Alpha))*

!Explanations of attributes

!psdLinterfacespecification : synthesized string, the result of the
translation

!operatorWspecification : synthesized string, builds the operator specification
for psdl types

!numberýof_operators : synthesized integer, counts the number of operators
in ada specification to determine if psdl interface
is a type or single operator

!newcomposite-types : synthesized map, used to build the inherited map,
composite._types

!compositejtypes: inherited map, used to determine if a generic declaration
is part of a composite type declaration, i.e. an array type

!new_.genericypes : synthesized map, used to build the inherited map,
generic-types

!generic-types : inherited map, provides the type names of the
index and element types for a generic array type

!generic_typedeclarations : synthesized string, builds the generic type
declaration portion of psdl then inherited
by packagespecification

type-declarations : synthesized string, builds the non-generic type
declaration portion of psdl

62

input-parameters : synthesized string, builds the input attribute of a psdl
operator

!Output..paamieters : synthesized string, builds the output attribute of a psdl
operator

!mode: synthesized map, used to determine if there are any input out output
parameters to an operator specification

!mode_check: inherited map, initializes attribute mode to default of empty
string

!current-mode: synthesized string, used to determine if a comma is required
between two parameters

!exceptions :synthesized string, provides exceptions declared in a single
operator package

!variable~nam~e : synthesized string, provides the name of an input or output
parameter

!variable,-type : synthesized string, provides the type name for variables
declared in the generic portion and type declaration of the
PSDL specification

!attribute declarations for nonteiminal symbols

start(psdl._.interface _specification:string; };

ada-interface(psdl-nterface..specification:string;
file-name:string;);

generic...specification (psdlinzerface-specification:string;
generic..jype-.declarations:string:
file.-name:string-, ;

genericjfonnal...part(generic...type-declamations:string;)
generic...parameterjleclarations (generic yr .elrtin~tig

niew-compositeý-ypes:string->string;
compositejyqpes:string->string;
new_*eneric-ypes:string->string;
genenic-types:string->string;
comma:string;);

generic-.paramreter..declaration (generic..tp.dcarios stig
newscorposite-types:string->string;
compositejtypes:string->string-,
new...generic-jypes:string->string;
generic-types:string->string;
comma string;)1;

genericjypejiefinition (variable, vpesrig
generic-types:string->string;
new-csomposite-.types:string->string;)

privatejtypejleclaration (generic jypejeclarations:string;
type-ieclarations:string;);

package...specification I psdl..interfce-specification:string;

63

number..otoperators~int;
generic-type-declarations:string;
filejiame:string-, ;

basic jleclaralivejtens(eWIeclarations:string;
operator...specification:strng;
number..p(.operators~int;
input-parameters:string;
outputcparameters:st~rig;
exceptions:string;);

basic_declaradveJtem (type-declamations:string;
opeuitor...specification~string;
input-parameters:string;
output-parameters:string;

nurnC-Lroperazrs:mtJ;

basic-.declaration(type-declaratons:string;
operator-.specificatiow:string;
lnput-parameters:string;
output-parametmr:string;
exceptions: siring;
numberý_oLoperatorsdint ;

subprogram-d.eclaration{ operatorrspecification:swring;
input-paraineters:string;
output-parameters:string;
numbe ooperators:int;
exceptions:string;);

subprogram-specification (operator .specification:slring;
input-..paraineters:string;
output..parameters:sring;
number _o~operatorsaint;
name:string;;

formal-part(input-parametcrs:string;
Output.parmecters:string;)

designator(name:string;
opentor-symbois:string->strng 1;

operatmrsymbol(name:string;);

paramneter...sPecifications(input-.parmzeters:sdring;
output-pamameters:string;
mode:smning->string;
mode-checL-string->string;
current-mode:string;);

paramneter...specihicationf input-.parameters:string;
output-parameters:string;
mode:string->stning;
mode~check:string->string;
current-mode:string-);

tyrpejieclarations(type-declarations:string; 1
type-declaration(type-declarazions:string; 1

64

fuHljypejeclarationf type-leclarations:smrng; I

exceptionjleclaration { exceptions:string;);

subtypejieclaration (typejieclarations:string; }

genericjleclaration(type-declarations:smrngj;

subtypejindication{ variable type:string;
genrwic~type:string->sbring;
new..composite..types:string->string;
elemen~type:string-,);

type definition(variableý-type:string; J

realjtype...definition (variable...type:stringl

array..typeO.efinition (variable...type:string;
genericjtypes:string->string;
newý_composite...types:string->string; }

unconstraineitarrayJleflnition (variable...type:string;
generic...typeýstring->string;
newscomposite _type:string->string; 1;

constraineitarray-leflnitio if variablejype:string;
generic -types:string->string;
new_compositeýtypes:string->string; 1

subtype-deflnitions(genericjtypes:string->string;
new-comnpositejtypes:string->string;
indekxjype:stringfl ;

index-subtype.deflnition { genericjtypes:st~ring->string;
index.type:.string;
newv_composite..types:string->stringj;

identiflerjlistf variable~names:string;
exceptions:string;);

type-mark(variablejtype:string; ~

name(variable-type-string;
variable,_name:string;
genericjtypes:string->string,
new-comnpositejtypes:string->string;
index rype:stnng;
element-type:string; 1

!attribute declarations for terminal symbols

IDENTIFIER (%text~string; 1;
STRIG_jLITRAL{ %textstring; 1

!Prodwtions of the grammar

start
ada interface

(%output(ada-interface.psdl interface-.speciflcazion);

65

%outfile(adajinterface-flleý-name,
ada_ nerface.psdljntrface..specification);

ada-interfaee
contexLclause generic-.specification

(ada~intefae.psdljnterfacespeciflcation
generic.specificazion.psdl interfaceý-specification;

adaL_interface.fllejiame
generic-specification.flle-name;)

I contexLclause package-..specification
(ada~intefae.psdl-jnrfae-specifcation

package~speciflcation.psdl interfaceý-specification;
adajinterface.file~name =

packageý-specifcation.flle...name;}

contextý_clause
with~lauses use~clauses

with_clauses
with~clauses with_clause

I with-clause

use,-clauses
use.clauses use-clause

with~clause
WITH psckage..names ;

use-clause
USE packagejiames ;

packagejiames
pac~kage-names ,V name

Iname

generic-.specification
generic-ormal-part subprogam-specification

I generic formal-part package-..specification
(pack~age..spcification.generic..type...declarations=

genericjfonrm-part.generic...tpe.eclarations;

66

generic-specification.psdl-interface-specification =
pacimge..specification.psd1Jinterfaceýspeciflcation;

genericspecfifcazion.flle~name =
pckage...specification.file...name;}

generic-fonnma-in
GENERIC generic...parameter-declarations

(generic-fonnal.parLgenericjypejlecLvaraons
r' GENBRIC~n",
generic-pmramterjldeclarations.generictypejielarations,

generic-arametet declaratons.generic-types=
generic-.parmezerjldeclamations.new-.genericjtypes

+1 {(?:string:"INDEX_TYPE"));
generic-paramneter declwaraons.compositejyps

generic-.parameter declarations.new-composiw.tyes-q
+1 ((?:string:"no")};

generic-paramneterjdeclaraions
generic.parameter..declarations geneic-paramtnew..decivamton

(generic-parameter-declarations[I .genericjypedeclarations=
generic-aramneter-declarations[21.comma == "yes"

->[generic-parameterjielarations[2].generic-typedOeclarations,

gene ic-pammtewriecaration.genericj-ype-declarationsI
[generic-parmeterjieclarations[21.genericjype-declarations,

generic...parameterjieclaration.generic...typdecL-aratonsl;
gemei,¶meter .declaratons[1].new-generic-t.ype =

[gn ric armeter-declartions[2laiew..generic..sypes +1
generic-parameter declmaraon.new...generic types;

generic-paramneterjlecLvataion.generic-types
generc4arameterjldeclrations.generc-types;

generic-paramneterdecLvaraions(21.generic..Jypes
ganeriparmeterjldeclrations[1I.genericype;

generic...parameter-declarations[I.new-sompositesypes =

generic...paameter..declwararos2].newsompositejypes
+1 generic-parmeterjjeclaation~new-comnposite.3-ypes;

genericpmmezerjldeclaratiof.comnpositejtype =
generic.parameterjieclartins.compositej-ype;

genericj-ammeter-declarazions[2].composixzejype
generic..parameter-der.arations[IJ.composite-types;

gener parameter-.Aec~varaions[1].comma
geneic-parameter-declaration.comma }

Igenerc..parametcr..eclaration
generic-pameter decLuations.generic...type decLarations=
generc..parametcrleclaration.generic....typejeclarations;

generic4parameter-decLration.generic~ypes =
generic-.parmneterjeclamtons.geneic-types;

generic..paramewerdeclaration.compositejypes
generc..parameterjeclarations.compositeý_ype;

generic-.paraaneter declarations.new compositejtypes
generic-.parameter-decLaration.new ~com~positetypes;

generic-parameter-decLvataons.new...generic rypes=
guem-p.~aamneterjeclaraon.new-genericj-ypes;

generic-.paamneter..declarations.comma =
generic..pmanmeterjldeclaraton.comma I

67

generic. parameter...eclaration
identifierjlist ':' typejark ;

[generic~parameterjielation~generic-typejieclarations
r' ",kientifierý_lsLvariablejinames,": GENERIC_VALUE"];

generic,,paramneterjleclartion.new-composite-ypes
generic jarameterjl.eclaration.new-genenc~types ="

genericparameterjieclazaton.comma = "yes";)
lidentifier list ':' IN type-.mark ';'

(generic~paameter -ec~iaton.geneic-type-dec-iaraiions=
"I"",identiflerj-isLvariablejinames,": GENERICVALUE"];

genr~c4,arameteric:eclartion.new-compositej-ypes
generic~parmeter-declaraton.new...en&cjy..
generic-.paramneterý-declaration.comma = "yes";

I identifier-list ':' IN OUT type-mark ';'
(genericparameterjideclvaraion.genericj-ype declvaraons=

r' ".identifierjiUsLvariablenames,": GENERIC_VALUE"];
generic,.parameter...decLuartion.new-composite~jpe =4'

geneiicj-aameterjldecLuaraion.new...generic -ypes-
genenc..parameter-declaration.comma = "yes";

I identifierjisz ':' type...mark EQUAL expression';
(generic-parameter declaration.generic-type declarations

r' ",identfiferjisLvariablejnaiaes,": GENERIC_VALUE"1;
geneuicjuaramtewdeclartion.new-compositejypes =`
generic..paramieterjldecLaration.new...geneic. types ';

generic jammeterýdeclaration.comma = "yes;)
I identifierjlist ':' IN typejnark EQUAL expression ;

(generic pameter-.declmaraon.generic-type..decLarations=
r' ",identzfierrjistvariable,_ames,": GENERIC-VALUE"];

generic...parameter-declaration.new-compositecsyes
generic-unaeter-declaration.new .. eec~pS -,".'

-,plc.Jarameter declaration.commra = "yeso;)
I idecntifiecrjist *:' IN OUT typejark EQUAL expression ';'

(generic~prmeterdecztge~gneric -typejlecLaraions=
"(' ,dentifier-list~variablejinames,": GENERIC_VALUE"];

gaenerc.parameterjleciaraton.new-compositejyes "'4

generic..pammeer..declaratLai.new...genericjtypes-",
generic~parameterý-decLaration.comnma = "yes";)

I TYPE IDENTIFIER IS PRIVATE ';'
I generic..parameterdecration.generic-jpejleciaratons=

genericmprneter...declaon.comnpositejypes(DENTIFIER.%text)
"="yes"

[" ",IDENTIFIE.%text,": GENERICTYPE"I;
generic-.parameter-declaratio.new-generic-ypes=

((IDENTIFIER.%text:"PRIVATE")j; 4.;

generic-parameteajtecluataion.comma=
gaenerc-.paameter -declwation.conipositejypes(IDENTIFIR.%text)

"="yes"

"#"yes";)
I TYPE IDENTIFIER IS discriminant...part PRIVATE%';

(generic pameterjdeclaration.genericjypejdeclarations=
generic..parametejelrzoncmoieypes(IDENTIFIER.%text) yes"
->'.a"

K("",IDENTIFIER.%text,": GENERIC_.TYPE"];
generic-parameter...declmbaon.new-generic-ypes=

((IDENTIFIER.%texL:"PRIVATE"));
generic-pamramter...declaration.new-compositejypes
generic-.pararmter..declaraion.comma =

68

generic-parmeterý_declamation.composite.Jypes(IDENTIFIER.%text)
->.4w n
Yes"

1 TYPE IDENTIFIER IS LIMrTED PRIVATE ';'
(generic..parameter declaration.genericjtype...declarations

generic..parameter declaralion.comnpositejypes(IDENTIFIER.%texc)
"44Yes~

-"44"

#r' ",IDENTIFIER.%text,": GENERIC_-TYPE"];
genenc~jparamezer-declaration.new...genericjtypes=

{(IDENTIFIER.%texL:"PRIVAIE"));
genernc-ermeterjidcclration-nww cojmpositiejype
generic..parameterjdeclaration.comma-

generic~parameter drcamtion.coinposite.-types(IDENTIFIER.%text)

-> noý
"Yes";

I TYPE IDENTIFIER discriminanc...part IS LIvMiTD PRIVATE ';'
(generic-.parameterýdelwaton.generic-jypejleclaraiions=

generc...paramcer Kdeclaration.conipositejypes(IDENTIFIER. %text)
4.yes"

#r' ",IDENTIFIER.%text,": GENERIC_TYPE"];
generic-mamanelrdeclarahion.new~generic-types-

generic...parametez _declaration.new_compositetype "'

generic..parameter-decLvaraion.comma =
generic..parameter -decbaraion.comnposite-types(IDENTIFLER.%text)

"yes"

"yes";)
I TYPE IDENTIFIER IS gcnericjtype...efinition ;

(generic~paramezet~erýdcLarion.genericjypedeclarations=
gei eric-parameterdecclaration.composite-jypes(IDENTIFIER. %text)

"="yes"
>4'"d

#r' ",IDENTIFIER.%text,":"
generic~rpedefinition.variabIeýtpvl

genrwicjype definition.genericjtypes =
generic-parameterýdeclaration.genericj-ypes;

genenic..parameterdeclaration.new-generic-types-
((IDEN1FIER.%texL:"DISCRETE"))

geneic-paramcterdeclarazion.new compositejypes=
genencjypW-e dinionanew~compositejypes;

genericparameterý-declaration.comma =
genecic-.psrmeter -declaration.comnpositej-ypes(IDENTIFIER.%text)

==6 es"
-> ".now
"yes";

I WiTH subprogram-specification ;

(genecrcparameter-sdec~uataion.generic-jype declarations
[" ",subprogram...specification.name,": GE-NERIC_-PROCEDURE"];

generic~jurameterjtecLaration.new-compositej-ypes = '"';
generfpffuetea declaratio3n.nw...gene~ricjtypes ` 4';

generic...parameterjleclaration.comma, = "Yes";)
I WITH subprogram-.specification IS name ';*

{geieric-paramiee ýdeclaration.genericjyejlelarations=
[" ",subprograzTspecificalion.name,": GENERICPROCEDURE"];

generic-paraeterdeclmaraion.new-compositej-ypes ';

generic..parameter declarafion.new..genericjtyp "'

69

generic..parameterdeclaration.comma = "yes";)
I WITH subprograzr-specificatiofl IS DISCRETE';'

(gcenrc~parameter-dcc ration.genericjrype...declarations=
[" .",subprogram-specification~namne,": GENERICPROCEDURE"];

genrcw...pamezer declaraton.news-omposite.-jypes=
genem-parametezjieClaration.new-genencflCJme
generic..parmcterý-decl-araton.commna = "yes";)

package-.specification
PACKAGE IMENTIFIER IS basicjieclarative-items END IDENTIFIER ;

(packagecspeciflcation.psdl interface-specification=
basic_ caaiv~tm~umberý-ofoperators =

-> [OPERATOR ",IDENTIFIER.%text,"\JISPECEFICATION~O",
package-speciflcation.gefleric..JypC clarations,"'a",
basic-leclarativej-tems.input~parameters,
basicjieclarative -items.output..parameters,"ýn",
basic -declarativeý-items.exceptions,

["TYPE "JDENTHIFI.%text$'nSPECIFICATION~'f,
gae~specifcation.generic...type-decLarations,"\n",

gvcqdecamfio~iems~ypdeclarations,
basic declmtivejitems.operator _speciflcaL~on,

"ENIY'iil;
package-speciflcation.fllejiame = [IDENTIFIR.%text. ".psdl'1;)

I PACKAGE IDENTIFER IS basic-declarative-items PRIVATE
basicjleclarative items END IDENTIFER,

(package~speciflcation~psdl interface~specification=
basic -declamtive-jtems.number of~operators = I

->["OPERATOR "JIDENTTFER,. %text,'"jiSPECIFICATION'a",
pwckage...specfifcation.genericjypAe-ecdamabons,"\n".
basic _declaativej-tems.input4-armeters.
bsic~decimavej _tems.output-parameters,
basic-declarative -items.exceptions,

["TYPE "JDENTERq.%text,'ýnSPECIFICATION*-n",
package...specification~generic-...ypedec-araion,"\n,
basic...hudvclaivetemns.type-declaratons,
basic _decluaraive-items.operator...specificatiofl,

"ENIM'1;
package..speciflcation.fillejame = [IDENTIffIER.%text.".psdl"];)

basic jieclarativoeitms
basicJlaclartive~items basiceseclarative,-item

basic...eclarative-itemst II.type...eclarations=
[basic declwArve-items[2].typejccLaratiofls,

basicjleclaravejtemn.type...declamtions];
basicjleclaraloivetems1Il.operator...speciflcation=

[basideclarative items[21.operator...speciflcation,
"ka",basicdeclaraive-item.operator..speciflcationl;

basicjledlaative-items(I].input-parameters =
[basic declarative~items[2].input-parameters,

basic..decaraive-.itemn.lfput-piamaeters];
basic-declarativeitems(1I].output-paramneters =

basic declarativej-temns[2] .output-paramfeters,
basic..declwaraive...item.output..paraflneters];

basic-.declarativejtems[lI exceptiofls =
[basic..declardativ..items[2].exceptions,

basic..delarative item.exceptions);

70

basic-declaraive items(I].number...otoperators =
basicjdclarative -itemsII2I.number -ofoperators +
basic..declarativeitem.number -oLoperators;)

(basic declarafive~items.type_declarations=
basic;_dcclarazivejtems.operatorý_specification-
basic -declarativej-tems.numberý-oLoperators 0;
basic-declarative-items.input-parameters =..
basicjleclarative items.output-parameters=';
basic;_declarative_items.exceptions=

basic jleclarativejitem
basic_declaration

f(basicdelabrativeý-item.typejleclarations=
basicjleclaration.typedeclarations;

basic_declarativeý_item.operatcrspecification=
basicý-declaration.operator...specification;

basic-declarative-item.inpu&..paramneters
basic -decLaration.input-parameters;

basic-declarativeý-item.output-parameters=
basic -declaration.output..parameters;

basic_declarativeý_item.exceptions
basic_declaration.exceptions;

basic-declakrative~item.numberý-ofoperators
basic-leclaration.nwnber...ofjperators;

I representation_clause

I use jclause

basic-.declaration
object~declaration

f basicjideclaration.numberýoLoperators =0,

basic-decLlaration.typejleclarations ='
basic -dccLaration.operatorspecification =";

I typesicjlearationtyeecaton
basiedeclaration.type...declarations;

basic-declaration.operaor-specification=
basic;-eclamtion~number...oLoperators = 0;)

I subprograrn..declaration
(basic declaration.type~jleclaratons=
basic-declwaraon.operator...specification=

subprogram -declwaraon.operator~specification;
basic-declvaraon.mput-parameters =

subprogramdecLakration.input~paramneters;
basic-declarazion.output..parameters =

subprogramndeclaraion.output-parazneters;
basic leclaration.exceptions ='-;
basic;Declarationxnumber _of operators

subprogramjleclaration.numbnier .otoperators + 1;
I task-declaration

I exception-declaration
(basic-declaration.exceptions = exception~declaration.exceptions;
basic...declanation.type -declarations=

* ~~basicjlecLaration~input..parameters=
basic-declaration.oupuit-parameters
basic..declaration.operator...specification

71

basic-declaraxon.numberý-of~perators = 0;I
I renaming-declaratiofl

(basic-declaration.type declarations=
basicý-declaration.operazor-s7 ecification ";

basic-decLaration.numberý-o .. perators = 0
I subtyrpejleclaration

(basic -decluaraon.type declarations=
subtypejeclaration.typ..decLarations;

basic-declairazion.operatorspecification ='

basic-declaration.number-of-sperators =0;)J
I genericjdeclaration

(basic~declaration.typejleclarations
basic-declaration.operazor...specification "'

basic;_declaration.number...of.operawors =0;)

representation-clause
type...representation_cplause
(II

I addressý-clause
; fI

type representafion~clause
enumerationjrepresentation-clause
I)

I length-clause

I recordjrepresentation~clause

addressL~claus
FOR IDENTIFIER USE AT simple.-.expression ;

enumeration...representationSlause
FOR IDENTIF1ER USE aggregate ';'

length clause
FOR attribute USE simple...expression ;

recordj~epresentation-clause

FOR IDENTIF1ER USE RECORD aligment clauses component-clauses

EN RCRD;

alignmeriLclauses
alignmen~clauses alignment-clause

aligmnenLclause

72

AT MOD simple...expression ;

* comnponent~clauses
componenLclauses comnponent~clause

comnponent_clause
name AT simple...expression RANGE range';'

object..declaration
ideniferjlist ' subtype-indication';

I identifier list ' constrained-.anray-definition ;

I identifier list %' CONSTANT subtype-indication''

I identifier lIist ':' CONSTANT constrained-array-definition ;

I(dnii1 it''sbye-niainEULepeso
I identifierjist %'COSTN sulnypeindication EQUAL expression ';'

I identifier UList :'CONSTAiNT subtypeindiction EQUAL expression';

I identifier lIist ''constraine-d~array...efinition EQUAL expression';'

I identiferlit: constrainedaramy-.definition EULepeso ;

I IDENTMFER CONTAN subypejndicatio n T;

I IDENTIFIER CONTAN conorin saray...def ra-fiitionn T

I IDENTIFIER :'CONSTANT subtype-indication EQALeprsio

I IDENTIFIER ''CONSTrAiNT onsraydinionEQUrAL..expression ';'

I IDENTIFIR ':' sutypnejndarryAftion EQUAL expression ;

(DNIIR''CNTN subtypejndication EQUAL expression
I iDENTIFItER ':' dcnwaind.ary.dfntionEQAexrsin;

(ypedejectaaorapedelaatnn
Iul privtye-qWdeclanation

(type-declaration.type-declarations ";I

pnivatet ype-declaration.type-declarations;)

73

subprogram-declaration
subprogram....specification';

fsubprogam-declaration.operaur-specification
subprograznspecificafion.operator -specification;

subprogram jledlartion~input-parameters =
subprommspecification.input-parameters;

subprogram-declarazion.output-parAzneters
subprogram...secification.output-parameters;

subprogramjleclaration.number -ofoperators =0;)

task-declaration
task-specification ;

exception-declaration
IDENTIFIER ':' EXCEPTION';'

(exception declaration.exceptions
r' eýxception: ",IDENTIFIER.%text,'* "1.";)

I identifier_list ':' EXCEPTION ';'
{exception-declaration.exceptions

r' exception: ",identifierjiSt~eXCeptions, 'Nn"];)

renaming-lecLaration
IDENTIFIER':' type-.mark RENAM[ES name';'

I IDENTIFIER :' EXCEPTON RENAMES name';'

I PACKAGE IDENTIFIER RENAMES name';'

I subprogram-.specification RENAMES name ;

subtype-ieclaration
SUBTYPE IDENTIF1ER IS subtype-indication ;

(subtypeeclartion.typejleclarafions=";

generic-.declaration
generic...specification';

fuflljype-declaration
TYPE IDENTIFIER discriminant-part IS type-definition ;

incompletety eD declaration
TYPE IDENTIFIER di.qcriminant-part';'

discrimtpf
"('distcnmmant-specifications)

74

discriminant specifications
discriminiant specifications ';' discriminant-specification

I disciia~pcfcto

Idiscriminant-specification

identifierýýlist ri tpe-mark
(1)

I identifierjist :' ypemark EQUAL expression

type-definition
enumeraion Vpen-definition

I real -type- definition
I)

I record rype-deflnition

I derived..type-definition
(II

I integertypedefinition

I armyyrype-.definition

I access-type-definition

subprogram...speciflcation
PROCEDURE IDENTIFIER formaL~part,

(subprograinspeciflcation.opemwratrspeciflcation
[OPERATOR ",IDENTHFIER.%text,"\n SPECIFICATION~n",

fonnal-parnanput~parameters
fopwgant..peilarotionunpparameters, =NW1

[fomal...aitnpu parmtepraml; r
subprograspecification.output-parameters=

su[formal~partoutput~parametersI;te;
su-pcfcainnm = IDENTIFIER.%ex

IFUN dsinato orWpart RETURN type-mark
subprogran...peification.opertor...peification =
r,"OPERATOR ",designator.namne,'\n SPECMFCATIONW",

format~pmrinput-.parameters.
output "designator.name,".

typemark.varialble-rype,'\n ENDWn 1;
subprgam..specification.name = designator.narr.e:
subpngram-specification.input-parameters=

[formai..part~input-parameters];
subprogram -specification.output-parameters=

r, output ",designator.name,":
type-mark-variablejtypel;)

designator
IDENTEFIER

(designatormanae = IDENTEFIER.%text;)
I STRINGLITERAL

75

(designator.operator -symbols = C \7"d)
("\V-\"":"subtractC) ('*\"*\'"':"multiply") ('"A'"':"divide")
('\V"A""equal") ('\"<\"":"Iessjhan") ('~V>\7":"greater than")

('\<=\":LTE) ('=\"":"GTE")
(?:string:"overloade4_operator"));
designator.name =

designator.operatorýsymbols(STRING_LITERAL.% text);)

formal part
'(paramewerspecifications ')'
Iparamneter-specifications.modeý-check =(?:tig`)
formal-part~input-parameters =

parameter...specificationsanode("input-parameter") =- "yes"
*> r, input ",parameter-speciflcations.input-parameters,

formal-parLoutput-parameters
paramneter...specifications.mode("output-paramneter") == "yes"
-> ["output ",paramneter-specifications.output..parameters,

Ifonnal-part~input-.parameters
fonnal.4,art.output-parameters= "}

parameter-specifications
parameter...specifications ';' parameter..specification

(paraneter..specifications[I].input~parameters =
((pararnete..specification.current~mode -- "in'") 11

(paramewriýspecificazion.currenLmode -"inout")) &&
((parameter...specifications[2].current~mode =- "in") 11
(jparameter...specifications[21.current~mode == "inout"))

->fparanieter...specifications[21.input-parameter,
"4"praee spc4c6o~np~aaees

[pmmeter~specifications].input parameters,
parameter...specifications2.input-parameters];

parameter...specifications[I].output-.paramneters=
((parameter -speciflcation.current~mode == "out") 11

(parameter -specification.current~mode == "inout")) &&
((parameter..specifications[21.currenLmode == "out") 11
(parameter...specifications [21 .current~mode == "inout"))

->[parameter...sp~ecifications[211.output-paramneters,
"",,paramer -specificauon.output-parametersI

[pamnmeterspecificationsf2].output-.parameters,
parameter..specification.output-.parameters];

paramewerspecificationst I].mode =
pwrmeter~specifications[2].mode
+1 parameter...specification.mode;

parameter...specificationsll2].mode_check=
parameter -specifications[1].mode_check;

parameter...specdfication.modeý_check
parameter...speciflcations[1].mode~check;

paramneter...specifications[Il.current-mode =
parameterspecifications[2J.currentmode;)

I parameter-specification
Iparamneter-specifications.input-parameters=

parameter-specification.input-paramneters;
parameter-specifications.output-parameters=
parameter-specification.output-parameters;

76

parameteir..specifications.mode = parameterspecification.mode;
parameter...specification.mode-check =

paramete..specifications.mode-check;
parameter...speciflcations.current_mode

* ~~paramete-.specification.current-mode;

parameter-specification
identifierlist ':' type...mark

(paramtner..specification.input...paramneters=
[identifierjlist~variabie-names, ": ",type-mark.variable-type];

parameter-specification.output.4,aramneters =";
parameterspeciflcation.mode = (("input~parameter":"yes")

+1 paramneter.specification.mode-check;
parameter -specificazion.current_mode = "in";

I identifier -list':' IN type-..mark
para meterý-speciflcation.input~paramneters=
[identifier-list~variable_namnes, ": ",tyrpe mark.variablejype];

parameter -specification.output-paramecters = "
parameter...speciflcation.mode = (("'inpuLparameter":"yes") I

+1 parameter...specification.mode-check;
paramneterý.specification.cunrent~mode = "in";

Iidentifierjlist,':' IN OUT type_mark
(parameter...specification.input~pararneters=
[identifierý-list.variable-namnes, ": ",typx-.mark.variable-typel;

parameter..specification.output-parameters =I
[identifierý_listvariableý_namnes, ": ",typemark.variable-type];
parameterýspociflcation.mode = {("input-parameter":"yes"),

("output~parameter": "yes") I
+1 paramneter..specification.niode-check;

parameter-specification.current~mode = "inout";)
I identifier_list ':' OUT tyrpe mark

f parameterý-.speciflcation.input-.parameters
parameter...specification.output..parameters=
[identifierý_lisLvariable_namnes,: ",typemark.vaniablej-ypel;

parameter-.specification.mode = (('outputj.parameter":"yes") I
+1 paaeter -specification.mode_check;

parameter...speciflcation.current mode = "out";
I identifierjlist ':' qypW.mark EQUAL expression

{paramnewe-.specification.input-.parameters =
[identifier-list~variable names, ": ",type...nark.variablejtype];)

I identifierjlist ':' IN type..mark EQUAL expression
(parameter...specification.input-parameters =
[identifierjlistyariable names, ": ",tyrpe..mark.variablej-ype];}

I identifierjlist ':' IN OUT type mark EQUAL expression
(paramnetr.ý.specification.input~parameters =
[identifierý-lisLvariable,-namnes, ": ",tyrpe...mark.variable,_ypel;

parameterspecification.output..parameters =
[identifieir_list~variable,_names, ': ",rype..mark.variable-typel;J

I identifierJist ':' OUT rype..mark EQUAL expression(parameterspecification.output parameters =
[identifierjlist~variable_ýnames, ": ",type-mark.vaniable..jype]; I

task-.specification
TASK IDENTIFER

(I)
I TASK TYPE IDENTIFIR

(I)
I TASK IDENTIFI1ER IS entry-declarations representation-clauses

77

END IDENTIF1ER

I TASK TYPE IDENTIFIER IS entry..declarations representation-clauses
END IDENTIFIER,

entry declarations
entry-declarations entry-..declaration

representation-clauses
rersntation clauses representation-clause

entry_*.dclaration
ENTRY IDENTIFIR formal~part ';'

I{I
I ENTRY IDENTIFIER '(discrete-range)'formal-part ;

subtype-indication
:name

(subtype-indication.variablejtype = name.variable~type;
subtypejindication.elemeiL type = nanie.elemenLtype;,
name.generic-ypes = subtypejndication.generic..jypes;
subtype - ndication~newscompositejtypes=

name.new-comnposite...types;
I name constraint

{subtype-indication.variableýjype = name.variablejtype;
subtype indication.element type = name.element-type;
namne.generic..types = subtype-jndication.generic-types;
subtypejndication~new-composite tyes

name.new_composite _types;

type-mark
:name

(typemark.variablejtype =name.variable _type;)

constraint
range~constraint

I fixea..iýiint-constraint

I floating~point constraint

I discriminariLconstrainit

I index constraint

78

derived type-definition
NEW subtype-indication

range,_onstraint
RANGE range

range
attribute

I simple~expression TO simple-expression

discriminaniLconstraint
C(disriminant~associations')

discrinunant~associations
discnminant~associations ,'discriminant~association

I iciia) -soito

Idiscriminant~association

exr~ression

I dirsuscrimiachoices ARROW expression

discriminant choices
*discriminant choices TI IDENTIFIER

1IDENTIFIER

generic-type-definition
'CDISCRETE ,)Y

(generic type definition.variable-.type ="DISCRETE";

generic .ype-definition.newscomposite..jypes ";I

I RANGE DISCRETE
(generic-..tpejlefinition.variable...type = "DISCRETE";
generic ype definition.new-somposite-tyrpes ='

I DIGITS DISCRETE

I DELTA DISCRETE

I arraytyrpejiefinition
Igenenic-ype-.definition.vaniable...type-
aramyype definition.variable-type;

affay....typedefinition.generic-.types =
gcneric..tpedehinition.gencric types;

generic type definition.ne-w-omposite - ypes
arrayjypejlefinition.new-compositejtypes;I

79

I access vype-.definition

generic-instantiation
PACKAGE IDENTIFIER IS NEW namne generic..acwuat.pan ';'

I PROCEDURE IDENTIFIER IS NEW name generic..acWa-part ;

I FUNCTION designator IS NEW name generic..actua..part ;

generic-acbialpart
('generic-associations)

generic-associations
generic-associations ''generic-association

(1ecasoito

Igeneric_association

generic-formnal-prameter ARROW generic-acwal..parameter

I generic...actn-parameter

generic-formal~parameter
IDENTIFIER

I STRING-LITERAL !operator...symbol

generic...actuaparameter
ex~ression

Iname

privateype-declanation
TYPE IDENTIFIER discriminwnt.part IS PRIVATE ;

(Privateýtwdetion io-eneric -type..deciarations
[IDENTIFIER.%text,": GENERIC_TYPE'n'i;

privaz.typejLW eclaration.type...decLarations=

I TYPE IDENTIFIER discriminant...part IS LMUTED PRIVATE%';

incompletejtype..declaration
TYPE IDENTIFIER discriminant-part ;'

80

deferred constant declaration
identifierjlist ':' CONSTANT name ';'

DI

attribute
prefix TIC attribute-designator

attribute-designator
IDENTIFIR

(I)
I IDENTIFIER ''expression')'

expression
relation
I(eaio) nreain

I relation andrelations.

I rlto o~eain
I relation or~heTrelations

I relation xorý.erelations

Irjelations ANdDtenelations

Srjelations OReserelations

andrjelations
andremlations AND relation

or4jdelainsrai
or tenrelations OR relation

I81

or _else relations
0rý_elsej~elations OR relation

relation
simple-expression

I simple...expression relational~operator simple-..expression

I ipe() pesonI ag
I simple..expressionNO IN range

I simpleý-expression IN name

I sim le~expression NOT IN name

simple-..expression
term !Not really required because 3rd choice can break clown to term

I()
I unary-adding-operator term

I term bbina adding..operator binary-terms
(I

I unary adding~operator binary_terms

binaryjterms
binayerms binayjer

I
I binaryjterm

binaryjterm
:term

I term binary...adding~operator

term
factor multiplying-o.peratorjactor

multiplying..operaor-factcr
multiplymngoperator-factor multiplying-operator factor

82

multiplyinLgoperator

£ ~I DMVDE

IMOD

IREM

factor
:primary

I hi hest4,recedence, operator primary

Iprimary highest..precedenceýoperator primary

bighest,.preedence-operator
:EXPONENT

I ABS

I NOT

priar

numeric-literal
0)

I NULL

I affregate

I STRING-LITERAL

Iname

I allocator

I function call

I type-conversion

I qualifiecLexpression

I ''expression)

(I

I REALULTERAL

aggregate

83

'(component~associations C)'

coinponent~associations
componenLassociations V, componenLassoclation

I()
I comnponent~association

componenLassociation
exrression

I choices ARROW expression

choices
choices TI choice

I choice

allocator
NEW quaULfied-.expression

I NEW subtype~jndication

funcbon cafl
:namne

I name actua-parameter4part

actual-parameterpart
ararmn te..ssociatons)

pwAmeterassociations
parameter-associations V' parameter...association

I parameteruasociation

paramnelrýassociation
IDENTIffER ARROW acWal.paramneter

I actalparmneter

acWparamnee
exfresson

84

I namne T(narne T)

I namne

type-conversion
name '(' expression)

qualifiecLexpression
name TIC '(' expression)

I()
I namne TIC aggregate

relational~operator
EQUAL

I NEQ
I(1

I LTE

I G
I GTE

binary-.adding...operator
PLUS

I MN4US
1)

I AND &, suring concatenation
; 0

unary..adding~operator
PLUS

NOMNUS

mutibplying-opemator
:TIMES

I DIVIDE

IMOD

IREM

enwneratioi..typejiefinition

85

''enumerationik-ieral..speciflcations '

enumerationjfiteralspecifications
enumerationjiwrtuW.specifications *'enumeration-literal

I(1mrainliea

Ienumeration~literal

IDENTIFIER

I CHARACTERLITERAL

integerijype definition
range-constraint

real type definition
fioatingW.pint~constraint

I fixed_.point-constraint

ffioating.pouccuraint definition

I floating~accuracy-definition range..sonstraint

fioating~accuracy-defnirtion
DIGITS simple....expression

flxed~pomLconsftaint
fixed..ccuracyjefinition

I flxe&..accuracy...definition range...consuwtra

fixed-accuracydeflnition
DELTA simple,.-expression

array-ryp-efienition
unconstrained arrayjlefinition

(arrayjypejlefinition.variable-type
unconistrined-ray.-.definition.variable - ype;

uwncoatrinedarrydeflnition.gene~ricj-ypes=
amyjtypejefinition.geneficjrypes;

array r.ypejiefinition.new~pompositetyrpes

86

uncosinedaray.A efinition.newsomposite..jype;
I constrained~arrayjiefinition

Iarray-type-dcfinition.variable~type
constrained array definition.variable Vype;

constraine..arrmyjifinition.genericjtypes
arazy-ypedefinition.genericjypes;

array-tpejlefinition.newscompositesye r
conszrained-array-jlfinition.new-compositejtypes;)

unconstrained-.arrayjlefinition
ARRAY '(' subtype-definitions ')' OF subtype~indication

(unconstmined..affay....efinition.variable type =
V"GENERICTYPE[BASE_-TYPE: ARRAXY[ARRAYELEMENT:",
subtypejindication.elemen~typ,",\n\PlA~RRAYINDEX:",
subtype definitions.index-tyPe,"III"];

subtyejW -efinitions.genenicjye =
unconstrainedarryjiefintion.generictypes;

subtye-indication~generic-ypes =
unconsuieitaray..definition.genericjypes;

unconstrained4.array~definition.new compositejye r
subtype definitions~new-composite types +1
subtype indication.new-composite -types;

subtype-diefinitions
subtype-..definitions ',' index-subtype-definition

indxubyedefiion.generic-types=
subypedefnitons.generic.types;

subtype-definitions.index..type =
index subtype definition.index-type,

subtype elefinutions(I] .new...composite~types=
subtypejiefinitions(2].new-compositej-ypes +1
index-subtypedefinition.new-composite typs;

I index-.subtype-definition
(index.subtype definition.generic-ypes=

subtype-lefinitions.generic-.types;
subtype..definitions.index-type =
index-subtype-iefinition.index tye

subtype - efinitions.newcPompositejypes=
index_sutxpe..efinition~new-composite types;

conswraied.array...definition
ARR-AY ind-ex-constraint OF subtype-indication

Iconstrained array definition.variable type =
["GENERICJYtPE[BASE_TYPE: ARRAYIIARRAY_ELEMENT:",
subtype .indication.element type,
"aWzARRAYjNDEX:DiSCRETE]]"];

subtypejindication~generic types=
constrained-array...definition.generic-types;

constrainiedarrayjlefinition.new- coinposite-types=
subtype-idiaton.new-composite -types;

index..subtype..definition
name RANGE DISCRETE

Iname.generic-ypes = index...subtype-definition.generic-types;
indeX...subtypejleinition.indeX type = "4DISCRETE";
index..subtypejefinition.new-compositejtypes=

namecamwscomposite-types;)

87

index_constraint
''discretejanges)

discrete-ranges
discrete - anges ',discretejange

(I dsrt~a

Idiscretejange,

subtype,- ndication

Irange

record tpedefinition
RECORD componentjist END RECORD

cornponeniLlist
component_declarations

I component declarations; variant-.part
I()

I variant-.part

INULL';

componentjleclarations
component~declarazions conlponeniLdeclaration

I componenticdclaration

cotnponenLdeclaration
identiflerliHst :'subtype-indication ;

I)
I identifierilist :'subtype-indicatior EQUAL expression ;

discriminant-part
('discriminant~specifications)

discriminanLspecifications
discriminant speifications ''discriminant~speciflcation

I discriminant-specification

88

discriminant specification
identifier list ':' name

a (0
I identifierjlist :' name EQUAL expression

variant-part
CASE IDENTIFIER IS variants END CASE ';'

variants
variants variant

I{aran

Ivariant

WHEN choices ARROW component-list

choice
simpleexpression

I discretejrange

I OTHERS
f)

I IDENTIF1ER

accessý-ypejlefinition
ACCESS subtype-indication

name
IDENTIFIER

(name.variablejype = IDENTIFIER.%text;
name.variable-namne = IDENTIFIER.%text;
name.elernent-type = name.genericM.tpe(IDENTIFIER.%text);
name.index_type = name.genericj-ypes(IDENTIFIIR. %text);
namne.new-composite-types = {QIDENTIFIEiR.%ext: -'yes"));)

I CHARACTERLITE7RAL

I STRING_-LITERAL !operator-symbol

I indexed component

I slice

I selected~component

I attribute

89

RE:TRIEAL U) NRVAL POSTGRADUATE SCHOOL MONTEREY CA
J M EALAN[ER SEP 92 XB-NPS

UNCLAtI,6IFIELj NLEl.'

111112.

Hýl 125 ~ i1-6

prefix
name
I)

I function-call

indexed_component
prefix '(' expressions

expressions

exressions ,'expression

I expression

slice
:prefix '('discrete-range')

selected_component
prefix '.' selector

selector
ALL
(}I

I CHARACTERLiTERAL
I

I STRING-LITERAL !operator...symbol
I()

I IDENTIF9ER !simple-name

identifierjlist
identiflerjist ,' IDENTIFIER

{identifierýlist[1J.variableiý-anies
[identifier list[2].variable,..names,", ",IDENTIfIER.%textl;)

I IDENTIFER
(identifier-list~variable-names = IDENTIIER.%text I

90

LIST OF REFERENCES

I [1] Booch, G., "Software Components with Ada, Structures, Tools, and Subsystems",
The Benjamin/Cummings Publishing Company, 1987.

[21 Booch, G., "Software Engineering with Ada", 2nd ed., The Benjamin/Cummings
Publishing Company, 1987.

[3] DePasquale, G., "Design and Implementation of Module Driver and Output
Analyzer Generator", Master's Thesis, Naval Postgraduate School, Monterey,
CA, June 1990.

[4] Herndon, R., "The Incomplete AG User's Guide and Reference Manual",
University of Minnesota Computer Science Technical Report 85-37, October
1985.

[5] Jones, C., "Reusability in Programming: A Survey of the State of the Art", IEEE
Transactions on Software Engineering, September 1984, Vol. SE-10 (5).

[6] Li, H., van Katwijk, J., "Issues Concerning Software Reuse-in-the-Large", in
Proceedings of the Second International Conference on Systems Integration,
Morristown, NJ, June 1992, pp. 66-75.

[7] Luqi, "Computer-Aided Prototyping for a Command-And-Control System Using
CAPS", IEEE Software, January 1992, pp. 56-67.

[8] Luqi, "Real-Time Constraints in a Rapid Prototyping Language", Journal of
Computer Languages, Spring 1991, Vol. 18, No. 2, pp. 77-103.

[9] Luqi, "Software Evolution Through Rapid Prototyping", IEEE Computer, May
1989, pp. 13-25.

[10] Luqi, Berzins, V., Yeh, R., "A Prototyping Language for Real-Time-Software",
IEEE Transactions on Software Engineering, October 1988, Vol. 14, No. 10, pp.
1409-1423.

[11] Luqi, Lee, Y, "Towards Automated Retrieval of Reusable Software
Components", in Workshop Notes of the AAAI Workshop on Artificial
Intelligence and Automated Program Understanding, San Jose, CA, July 13,
1992, pp. 85-88.

[12] Luqi, McDowell, J., "Software Reuse in Specification-Based Prototyping", in
Proceedings of the 14th Annual Software Reuse Workshop, Herndon, VA,
November 18-22, 1991, pp. 1-7.

91

(13] Luqi, Steigerwald, R., Hughes, G., Naveda, F, Berzins, V., "CAPS as a
Requirements Engineering Tool", in Proceedings of Requirements Engineering
and Analysis Workshop, Software Engineering Institute, Carnegie Mellon
University, March 12-14, 1991, Pittsburgh, PA, pp. 1-8.

[14] McDowell, J., "A Reusable Component Retrieval System for Prototyping",
Master's Thesis, Naval Postgraduate School, Monterey, CA, September 1991.

[15] Rachal, Randy J., "Design and Implementation of a Concrete Interface
Generation System", Master's Thesis, Naval Postgraduate School, Monterey,
CA, December 1990.

[16] Steigerwald, R., "Reusable Software Component Retrieval via Normalized
Algebraic Specifications", Ph.D. Dissertation, Naval Posgraduate School,
Monterey, CA, December 1991.

[17] Steigerwald, R., Luqi, Berzins, V., "A Tool for Reusable Software Component
Retrieval via Normalized Specifications", in Proceedings of the Hawaii
Conference on System Sciences, Koloa, Hawaii, January 7-10, 1992, pp. 18-26.

[18] Steigerwald, R., Luqi, McDowell, J., "CASE Tool for Reusable Software
Component Storage and Retrieval in Rapid Prototyping", Information and
Software Technology, England, November 1991, Vol. 38, No. 11.

92

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Dudley Knox Library 2
Code 52
Naval Postgraduate School
Monterey, CA 93943-5002

3. Chairman
Code CS, Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5100

4. Dr. Yuh-jeng Lee 8
Code CS/LE, Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5100

5. Dr. Luqi
Code CS/LQ, Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5100

6. Lieutenant Jennie M. Sealander
COMFAIRMED (N8)
PSC 810, Box 2
FPO AE 09619-2000

93

