
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A257 577

DTIC_
ELECTE rts
DECO 4 1992 USATE THESIS

DESIGN AND IMPLEMENTATION OF A
GRAPHICAL USER INTERFACE

FOR
A MULTIMEDIA DATABASE MANAGEMENT SYSTEM

by

Metin Balci, Erhan Saridogan

September 1992

Thesis Co-Advisors: Neil C. Rowe, C. Thomas Wu

Approved for public release; distribution is unlimited.

92-30808

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION UNCLASSIFIED lb. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT
.DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;

2b. Edistribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

" NAME OF EEFORMG ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION

omputer cience Uept. (if applicable) Naval Postgraduate School
Naval Postgraduate School CS37

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT. INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City, State, andZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

DESIGN AND IMPLEMENTATION OF A GRAPHICAL USER INTERFACE FOR A MULTIMEDIA DATABASE MANAGEMENT SYSTEM

Il?..PF-,RSQNA. ffHOR(,,,leun ,te:IH R trhan SARIDOGAN

.TYPý cREPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNt36Mlaister s fh~esis FROM 099 O0/2 September 1992 3

16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of th(
Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP ' Multimedia Database Management System, Graphical User Interface,
Retrieval, InterViews, Retrival by Natural Language Captions

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

The purpose of this thesis was to design and implement a graphical user interface for a multimedia database man-
agement system prototype previously implemented at the Naval Postgraduate School. Because of complexity of
data types and difficulty of manipulating them, it was very hard for a casual user to use the previous system. Since
graphical interaction simplifies control dialogue, we designed and implemented a graphical user interface using C++
and InterViews 3.0.1 for a Sun-3 workstation under Unix X-Windows environment with mouse support. We then
connected this interface to the multimedia database system prototype. Our interface supports incremental query
specification using extended SQL and can be connected to database applications in several different ways. An
embedded global data structure, a text file or character string can be used for connections. A second version of the
interface for a Sun-4 workstation was built and connected to another database system using the character string and
text file. This version demonstrated even better performance.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
UNCLASSIFIED/UNLIMITED [] SAME AS RPT. [] DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area Code) 22c,,.FICE SYMBFL.,
Neil C. ROWE, C. Thomas WU (408) 646-2462, 646-3391 I kp, wq

DO FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete UNCLASS IFIED
i

Approved for public release; distribution is unlimited

DESIGN AND IMPLEMENTATION OF A
GRAPHICAL USER INTERFACE FOR

A MULTIMEDIA DATABASE MANAGEMENT SYSTEM

by
Metin Balci Erhan Saridogan
Lieutenant JG, Turkish Navy Lieutenant JG, Turkish Navy
B.S., Turkish Naval Academy, 1986 B.S., Turkish Naval Academy, 1986

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1992

Authors:
A~n BalciErhan Saritcgak

Approved By:
Neil C. Rowe, Thesis Co-Advisor

C. T hW isCo-,Advisor

Robert B. McGhee, Chairman,
EI•partment of Computer Science

ii

ABSTRACT

The purpose of this thesis was to design and implement a graphical user interface
for a multimedia database management system prototype previously implemented at the
Naval Postgraduate School. Because of complexity of data types and difficulty of manip-
ulating them, it was very hard for a casual user to use the previous system. Since graphi-
cal interaction simplifies control dialogue, we designed and implemented a graphical user
interface using C++ and InterViews 3.0.1 for a Sun-3 workstation under Unix X-Wimdows
environment with mouse support. We then connected this interface to the multimedia
database system prototype. Our interface supports incremental query specification using
extended SQL and can be connected to database applications in several different ways.
An embedded global data structure, a text file or character string can be used for connec-
tions. A second version of the interface for a Sun-4 workstation was built and connected
to another database system using the character string and text file. This version demon-
strated even better performance.

UAcce-jo:,i
Fcor[)TIC IM3

J. ufifcatsori
.

By.........~

0 is biit i o •--, ; iAvaija i It

fLI

iii

TABLE OF CONTENTS

I. INTRODUCTION 1
A. BRIEF DESCRIPTION OF OUR WORK I
B. CHAPTER LAYOUT 2

II. PREVIOUS AND RELATED WORK 3
A. USER INTERFACE DESIGN 3

1. Be Consistent 4
2. Provide Feedback 4
3. Minimize Error Possibilities 4
4. Provide Error Recovery 4
5. Accommodate Multiple Skill Levels 5
6. Minimize Memorization 5

B. SIMILAR WORK 5
1. Principles of Icons-Based Command Language [FRA86] 5
2. OdeView: The Graphical Interface to Ode [AGS91] 5
3. A Graphical Dataflow Query Language [CLA91] 6
4. A Multimedia Database Management System [GUG92] 6
5. Design of a Graphical User Interface for a Multimedia

Database Management System [PEA91] 6
6. A Friendly and Intelligent Approach to Data Retrieval in

a Multimedia DBMS [KKL91 7

Il. DESIGN DECISIONS 8
A. SELECTION OF WORKING ENVIRONMENT 8

1. M acintosh 8
2. IBM or Compatible Personal Computer 9
3. SUN W orkstations 9

B. SELECTION OF SOFTWARE 10
1. SunTools 10
2. ProWINDOWS 10
3. TAE (Transportable Applications Environment) 10
4. InterViews 3.0.1 10

a. X-Window Environment 11
b. Object-Oriented 11
c. Graphical Object Editor 11
d. Ease of Connecting to an Application 11
e. Picture Display Capability 11
f. A vailability .11

iv

g. H elp .12
C. IMPLEMENTATION DECISIONS 12
D. SCREEN LAYOUT DESIGN DECISIONS 13
E. ASSUMPTIONS 14

1. Hardware 14
2. Implemented Parts and Database 14
3. User .. 14
4. Future Work 15

IV. DESCRIPTION OF THE PROGRAM 16
A. SYSTEM REQUIREMENTS 16
B. PROGRAM INPUT AND OUTPUT 17
C. MAIN PARTS OF THE PROGRAM 18
D. DATA STRUCTURES USED INTHE PROGRAM 25

1. The Fields of the Record "qjrec" 25
2. The Other Data Structures Used in the Program 26

E. COMPONENTS OF THE PROGRAM 28
1. General Issues 28

a. InterViews 29
b. C and C++ Compatibility Problems 32

2. The Modules of the Interface 32
a. Module Mdbms-main 32
b. Module MainMenu 33
c. Module RetrieveDialog (_Dialog_9) 33
d. Module Aggregate Dialog (_.Dialog_10) 34
e. Module Build Condition (_Dialogj 1) 34
f. Module Tool Box Dialog (_.Diallog_12) 35
g. Module Natural Language Dialog (_.Dialog_8) 35
h. Module Help Dialog (_Dialog_7) 35
i. Module Result Dialog(Result) 35
j. Module common (common.h and common.c) 36
k. Module comm (comm.c and dbjfile) 36

F. ERROR-CHECKING FACILITIES OF THE PROGRAM 36

V. DISCUSSION OF RESULTS 38
A. VERSION 1 38
B. VERSION 2 40
C. VERSION 3 41

VI. CONCLUSION 43
A. MAJOR ACHIEVEMENTS OF OUR PROGRAM 43
B. COMPARISON 43
C. SUGGESTED FUTURE WORK 43

V

LIST OF REFERENCES 46

APPENDIX A. HOW TO USE THE INTERFACE 48
A. EXAMPLES FOR THE FIRST APPLICATION [AYG911]......... 48
B. EXAMPLE FOR THE SECOND APPLICATION [ROW92] 53

1. System Initiation 53
2. Exam ple53

APPENDIX B. WORK DIVISION 57
A. Erhan SARIDOGAN 57
B. M etin BALCI 57

APPENDIX C. PROGRAM SOURCE CODE 58
A. common.h 58
B. common.c 60
C. Mdbms-make 62
D. Mdbms-main.c 80
E. M ainM enu.h 81
F. M ainM enu.c 81
G. _Dialog.7.h 84
H. _Dilaog_7.c 84
I. _Dialog_8.h 85
. _Dialog_.8.c85

K. _Dialog.9.h 88
L. _Dialog.9.c 89
M . _Dialog_10.h 103
N. _Dialog 10.c 103
0. _Dialog- I.h 105
P. _Dialog.I L.c 106
R. _Dialog j12.c 114
S. _Dialog.-12.c 115
T. Result.h 120
U . Result.c . 120

INITIAL DISTRIBUTION LIST 126

vi

LIST OF FIGURES

Figure 4.1 Main parts of the interface program 19

Figure 4.2 Main Menu Dialog Box 20

Figure 4.3 Retrieval Dialog Box 21

Figure 4.4 Aggregates Dialog Box 21

Figure 4.5 Build Condition Dialog Box 22

Figure 4.6 Tool Box 23

Figure 4.7 Natural Language Description Dialog Box 23

Figure 4.8 Result Window 24

Figure 4.9 Global Data Structure "q-rec"... 27

Figure A. 1 The "Build Condition" dialog box 49

Figure A.2 The "Retrieval" dialog box 50

Figure A.3 The "Result" window 51

Figure A.4 The screen layout 55

Figure A.5 The screen layout with displayed pictures 56

vii

I. INTRODUCTION

Recently visual effects have gained much importance in both programming and inter-

acting with the computers. With the help of rapidly improving technology, we can put

highly detailed graphics on our computer screen instead of only text characters. This makes

the computers definitely more user-friendly. In conventional programming, there is only a

command line interface between the user and the computer, and the user has to type in

words which may lead to input errors. The user must also know about the program and its

flow and be aware of what will come next; this requires some training in typing the appro-

priate commands. However, with the help of a pointing device and a window environ-

ment, a program can be made very easy to use.

Today the expectations from computers are growing rapidly. Increasing speed and

storage capabilities make the computers very useful in large database applications. Al-

though there are some very good graphical user interfaces currently implemented for non-

database applications, user interfaces of this quality do not exist for databases [PEA91].

The user interface is an important part of a database system especially when dealing with

multimedia data. Due to different types of data and manipulating capabilities in a multi-

media database management system, a casual system user needs an interface which pro-

vides an easy but efficient way to access the formatted and media data and to display them

clearly. In this thesis, we present and implement a possible solution for a graphical user

interface to make the query specification process easier.

A. BRIEF DESCRIPTION OF OUR WORK

A multimedia database management system prototype is being implemented at the Na-

val Postgraduate School (NPS). The existing prototype program [AYG91] was designed

to work with command line interface. The user has to answer some questions, select menu

I

options and type in the conditions that are necessary to manipulate data. He has to remem-

ber which step he is in at any time and cannot see the whole query.

The goal of this thesis is to design and implement the retrieval function of a graphical

user interface for a multimedia database management system which is easier to use for the

casual users. We initially started our work by designing a partial interface for the existing

prototype. We also connected our interface to another multimedia database management

system [ROW92]. We added some extra features for this system and increased the reliabil-

ity of the interface.

We designed our interface so that it is possible to connect the application program and

the graphical user interface source code in three ways. These are:

1.) A record containing all the necessary information in order to construct a query.

2.) A C-type string containing extended SQL statements

3.) A text file containing the SQL statements.

We used the record interface to communicate with the prototype program [AYG91]

and a string and text-file-connection system for the other database program [ROW92].

B. CHAPTER LAYOUT

Chapter 11 discusses the background and previous work in this area, briefly describ-

ing the existing multimedia database programs. We included some basic guidelines in

designing user interfaces. We give examples of graphical user interfaces for database pro-

grams. Chapter III presents a detailed description of our implementation principles,

design decisions and the assumptions we made. Chapter IV describes the program we

wrote with the aid of the interface building tool. Chapter V has a discussion of the results

of our thesis. Chapter VI provides a summary and some design recommendations with

our proposal for future work.

II. PREVIOUS AND RELATED WORK

This chapter describes previous and related work in user interface design for a

multimedia database management system. In order to understand the basics, first we will

explain the general design principles for user interfaces and then give some examples from

previous attempts which address the same subject.

A. USER INTERFACE DESIGN

User interfaces can be described as the parts of the computing systems that allow the

person using the computer, access to the facilities offered by the computer. Since the

facilities offered by the computer are increasing each day, the interfacing capabilities are

becoming equally important. Researchers have shown that redesign of human-computer

interface can make a substantial difference in learning time, performance speed, error rates,

and user satisfaction. Although it seems impossible to get the best user interface at the very

first time without any iterative design periods, there are some formal methods, which help

the designer to implement interfaces correctly in accordance with the specifications worked

out in advance, with the need for after-the-fact experimentation [THI90].

Since the purpose of computers is to benefit people, the designer should consider the

system users at each phase of design and implementation. He should have a clear idea who

the users will be and what their capabilities are. The goal is to run the computer as easy

and effective as possible without special training of the user. Such a design will combine

both psychology and computer science disciplines. Since these disciplines do have very

different backgrounds, it is difficult to design a good interface which requires unification

of these two perspectives.

Today's computer world has a great potential when of using a window environment

and various pointing devices rather than the simple command line interface. Some

operating systems are using graphical environments which make their applications more

3

user-friendly, and many application programs are also being written according to these

graphical environments. Some examples are Macintosh, OS/2, Microsoft Windows, Unix

X-Windows.

Some of the basics of user interface design have been discussed in [PEA91] and

[GRP90. We considered these design principles as guidelines in our work. We summarize

these principles below:

1. Be Consistent

A consistent system is one in which the conceptual model, functionality,

sequencing and hardware bindings are uniform and follow a few simple rules. The basic

purpose is to allow the user to generalize knowledge about one aspect of the system to the

other aspects. Consistency also helps to avoid the frustration induced when a system does

not behave in an understandable and logical way.

2. Provide Feedback

The feedback is an indicator showing that the computer understands the given

commands correctly. Some examples are displaying the position of the cursor and the

pointing device, echoing the characters typed in, highlighting and echoing selections,

displaying appropriate messages about the current status of the computer.

3. Minimize Error Possibilities

The user should not be allowed to make mistakes. Some examples for this rule

are: Disabling some buttons when they should not be used, arranging the dialog boxes so

that the user does not get confused.

4. Provide Error Recovery

It is proven that people are more productive if their mistakes can be readily

corrected. With good error recovery, the user is free to explore unlearned system facilities,

program capabilities without the fear of failure. This freedom encourages exploratory

4

learning. The user's trust of systems is fragile; one experience with unexpected results will

undermine a person's willingness to use a system for a long time [SHN92].

5. Accommodate Multiple Skill Levels

The interface must provide enough features for novice users as well as efficient

methods for experienced users. If the designer favors only one part, then the interface may

not be so user-friendly for everyone.

6. Minimize Memorization

The user should not be forced to remember commands, what to do next and what

has been done so far. In general, a graphical user interface is very effective for this

guideline. Since every function can be implemented as a button or a menu selection, the

user does not need to memorize any of the commands to run the program.

B. SIMILAR WORK

With increasing success of graphical user interfaces in today's computer applications,

it was not difficult to find examples in almost every area of programming. Since

multimedia database management systems are relatively new, we could not find a complete

example, which would fullfil our needs. Other than commercial products, there are some

previously done studies and implemented programs at NPS and other research centers. We

will briefly introduce these studies.

1. Principles of Icons-Based Command Language [FRA86]

This study reviews and analyzes the usage of icons in database applications. It

proposes an "iconic" language in order to provide an easier interface to the end-user who

understands his own needs and wishes a direct interaction with the computer.

2. OdeView: The Graphical Interface to Ode [AGS91]

OdeView is the graphical front end for Ode, an object-oriented database system,

and implemented using X-Windows and HP-Widgets on a Sun workstation running the

Unix system in AT&T Bell Labs. OdeView is intended for users who do not want to write

5

programs in Ode's database programming language 0++- to interact with Ode but instead

want to use a friendlier interface to Ode.

3. A Graphical Dataflow Query Language [CLA91J

In order to find solutions to the problems of SQL, especially in the ease-of-use

area, Dataflow Query Language has been implemented on an Apple Macintosh using an

ORACLE relational database management system. It uses the Prograph language for the

implementation.

4. A Multimedia Database Management System [GUG92]

This project has been implemented as a PHD study at N PS. It explores using

captions for accessing the multimedia databases. Although the interface is not the main

topic in this study, one is built to test the actual programs. It uses ProWINDOWS (an

interface building program which is in Prolog) for the graphical user interface. It also uses

digitization method to store the image files. This method enables having many image files

in the databases.

5. Design of a Graphical User Interface for a Multimedia Database

Management System [PEA91J

This study presents criteria and necessary features to evaluate and design a good

graphical user interface for a Multimedia Database Management System. It has very nice

features for an interface in design phase, but it requires a very powerful interface building

tool which should provide an active dynamic graphical data input system. On the other

hand, we thought that it was really difficult for a casual user to create a query by using this

interface as it requires considerable knowledge about Entity Relationship Diagram and

SQL.

6. A Friendly and Intelligent Approach to Data Retrieval in a Multimedia

DBMS [KKL91]

This paper describes some design details and problems for data retrieval in a

Multimedia DBMS. In order to make the query specification process easier, it also

proposes a graphical user interface supporting incremental query specification and a natural

way of join expression. They support special operators to define the query. We thought

that their study was the closest one to our needs. Hence we used some ideas from this study,

especially table and attribute name browsers, tool box, predefined join conditions and

natural language editor are the important ideas that we used in our implementation. This

paper was a good starting point for us in the design phase of the interface.

7

III. DESIGN DECISIONS

In this chapter, we will discuss our design decisions which were based on our initial

considerations related to the existing multimedia database management system prototype

[AYG9 1]. We will also discuss how we selected the working environment, which software

selections were available, and how we designed for the interface.

A. SELECTION OF WORKING ENVIRONMENT

The existing prototype program [AYG91] was implemented for a Sun-3 type

workstation with the Unix operating system. It was using an IBM compatible Personal

Computer (PC) 286, equipped with a sound card to play the sound stored in the PC.

Ethernet was used to pass the file name from the work station to the PC. The pictures were

displayed in Unix SunView environment using some low level system functions. The main

program was implemented in C programming language. Besides normal database

functions, this program ran a Prolog program for data retrieval using natural language

description in another Unix work station having the Prolog compiler loaded. During the

initial study, we found that the SunView system was not suitable for a graphical user

interface, as it required considerable amount of low level programming and did not have

the available tools to achieve this goal. Therefore we searched for other available

environments with which implement the interface.

1. Macintosh

A Macintosh computer could be used to build and run the graphical user interface

and pass the required data to the work station. The pictures could be displayed in Unix

work station using SunTools, and sound could be played in PC. In order to achieve this,

the overall program would be running on three machines with three different operating

systems. Incompatibilities such as connecting the Macintosh computer to Unix system,

difficulties in communication of the user interface and database application programs and

portability problems can be listed as the disadvantages of this configuration. We could use

Macintosh to store and display pictures, however since the existing code was written to

store the pictures in the Unix work station, some part of it would be useless. In order to

display image files on the Macintosh, we would need to use some commercial software

which was not available in the department and also the picture files would take up too

much space in the Macintosh secondary memory which is small when compared to the

Unix system. The overall program would not be accessible from other Unix terminals.

Programming in such a different environment would require extra skill in order to establish

a connection between the different machines and use of different source codes without an

appropriate software tool.

2. IBM or Compatible Personal Computer

Using an IBM or compatible personal computer would have the same

disadvantages. Additionally, its graphics software was not as efficient as the Macintosh

computer when we began our work.

3. Sun Workstations

Since the existing code was running mainly in Sun workstations, we concentrated

on finding a solution which would combine every function of a multimedia database

management system in a work station. We found that a special sound card could be

installed into a work station to add sound capability. By using Sun workstations, we would

deal with only one type of operating system so that we wouldn't have to establish a physical

connection between the interface and the prototype program. We would be able to produce

a single executable code which would be very helpful in debugging.

When we compare the choices, we realized that the best working environment for our

work would be the Sun workstations. In addition to the advantages explained above,

availability of many software packages and our familiarity of these machines led us to

choose this environment.

9

B. SELECTION OF SOFTWARE

Several choices of software were available to us from the Computer Science

Department at NPS. Brief descriptions of these follow:

1. SunTools

The existing database prototype was designed to run in the SunView

environment. The picture display routines use some functions which are available only in

SunView. The department did not have any convenient tool to build a graphical user

interface with this environment. We would have had to implement a very low level

programming using graphics primitives. As SunView does not provide a portable

environment and does not have wide acceptance, we chose to look for another environment

for our interface.

2. ProWINDOWS

ProWINDOWS is an interface building package which uses Prolog and also has

an interface in C for applications. As indicated in Chapter H, an interface for a database

system was implemented [GUG92] using this tool. ProWINDOWS does not have an

interactive interface building tool, so instead the programmer must write the code to

construct the graphics screen; it also not widely available.

3. TAE (Transportable Applications Environment)

TAE runs in the X-Windows environment and is available only on the Sun-4

type workstations. It could not be run on the Sun-3 workstations due to its limited

portability.

4. InterViews 3.0.1

InterViews is a software system for window-based applications. It was developed

at Stanford University by a group of researchers leaded by Mark A. Linton. We will

explain its functions in Chapter IV. We selected this software system for the following

reasons:

10

a. X-Window Environment

The X-Window environment has become a standard in computers, especially

in Unix systems providing portability and compatibility for different types of computers.

InterViews is built on top of X-Window environment.

b. Object-Oriented

InterViews is implemented with object-oriented approach. This approach

makes the code generated by InterViews easier to understand and follow. Especially for

implementing a graphical user interface, this method is very powerful and efficient. Each

window is implemented as an object having its own methods for its functionality.

c. Graphical Object Editor

InterViews has a graphical object editor (Ibuild) which allows the user to

build a graphical interface having dialog boxes, buttons or menus. Inside this builder the

user can create an interface by drawing and placing the objects, then [build generates the

C++ source code with unimplemented member functions which are to be written according

to the user's need later.

d. Ease of Connecting to an Application

After writing the appropriate code for the unimplemented functions, we could

easily connect the source code generated by Ibuild to the existing C code of the prototype

program with small changes.

e. Picture Display Capability

In the InterViews manual we found some examples of displaying image files.

We could use these functions to display our picture files in the prototype program.

f. Availability

InterViews did not require permission to use and can be loaded and used on

any machine. Our work required the InterViews to be run from a Sun-3 workstation.

11

Reconfiguration of a copy of the InterViews software for the Sun-3 workstations was

feasible where for some other software was not.

g. Help

There was an InterViews group in InterNet news facility. We could

communicate with other researchers working in the same area. Even though there was not

sufficient documentation about InterViews and its general capabilities, a Reference Manual

and a brief User Manual would be guiding us in building the interface.

C. IMPLEMENTATION DECISIONS

In our design an implementation of the interface, we used the basic guidelines which

we explained in Chapter I.

We decided not to change the functional behaviors of the current prototype system

because of complexity and integrity.

We worked only on the retrieval part of the existing code. We did not attempt to

change the main algorithm or data structure of the current system. As we will propose in

Chapter VI, a similar database management system could be built with less complexity by

using a graphical user interface.

InterViews generates a source code in C++ and the existing code was written in C. We

first tried to compile all the existing modules in C++, which is more strict in type checking.

Some of the problems we encountered were type mismatches in function calls,

inappropriate modularization, lots of cross dependencies of modules without having header

files and many warning messages. We could not continue the process because of

insufficient documentation of the existing code, so we decided to use the object codes

produced by the C compiler and link them to our interface object code produced by the

C++ compiler. This main restriction lead us to use a small interface module ("common.c"

and its header file) which can be used by the two types of source codes.

12

After having the prototype program run with our interface, we rebuilt the interface for

Sun-4 workstations and connected it to another database application [ROW92]. We will

introduce this system in Appendix-A in detail.

D. SCREEN LAYOUT DESIGN DECISIONS

In order to make the interface more user friendly, we initially thought to put all of the

functions into one big window. This would contain all functional capabilities of the

program. We implemented the interface with this design on the Sun-4 workstation. We

couldn't run it on the Sun-3 workstation because of hardware and operating system

incompatibilities. Therefore we had to use another copy of the InterViews for Sun-3

workstations and recompile the same interface. This time, the large number of objects in

the window caused system stack overflow which was impossible to correct. Then, as a

major change in our design, we divided the window into smaller dialog boxes. We

managed to run the system and continued the implementation.

In the existing prototype program, the command line interface was asking the user to

enter data for the retrieval operation. It was processing the input data one at a time. The

working principle is described in the reference [AYG91] with more detail. We did not want

to establish a two-way communication between our interface and the prototype program

source code, even though they were in the same environment. Instead we decided to build

the whole query step by step and store the input data, when the query is completed, make

a function call to the prototype code. We designed the interface so that the incremental user

input is stored in the data structure, and when the query is processed, this data structure is

accessed by the database system prototype functions.

As we indicated in Chapter II, it is not always possible to create the best interface at

once. Ours was not an exception. We had to modify the interface several times as we faced

new problems. However our screen layout was similar to the interface proposed in

[KKL90]. Due to the difficulties in working environment of the Sun-3 workstations, we

decided to concentrate on the second application [ROW92] and added extra features for

13

that. Since this interface is an improved version of the first one, we will explain it in

Chapter IV with more detail.

E. ASSUMPTIONS

The following is a list of the assumptions we made in writing our program:

1. Hardware

We assumed that the overall system [AYG9l] could be used with all capabilities

only with an IBM compatible PC connected to the Unix system via Ethernet and a

preferably colored Sun-3 workstation for the time being. Since the program was using

Ingres libraries we had to use a compiler that generated Sun-3 type object code. In the

second version we used a different compiler and a different database application running

on the Sun-4 workstations.

2. Implemented Parts and Database

We assumed that the "Retrieval" function of a database management system is the

most important part, so in our design and implementation we concentrated on only the main

menu and the retrieval function, we left the other functions unimplemented. We presumed

that the database already exists. We also designed our interface according to the available

implemented functions in the existing prototype. We made small changes and added some

additional functions in the second version.

3. User

Our interface was designed and implemented to be used by novice users. The user

does not have to know a lot about database systems and was assumed that has not much

experience on computers. Therefore we minimized using the keyboard which prevents

incorrect entries. This also eliminates the necessity of checking each user input with the

existing ones in many cases.

14

4. Future Work

We designed our interface so that an application program can use it with a small

change in the source code. In order to use the interface with the data structure (q-rec)

which is placed in a module (namely "common.h") the application program must be written

in C/ C++. Other applications can use the C-type character string or the text file containing

the query in extended SQL form. We assumed that future application programs will have

these properties. Two of the connection types were implemented and tested in two versions

of our interface.

15

IV. DESCRIPTION OF THE PROGRAM

In this chapter we will explain the implementation details of our program. We will

cover the system requirements, the block diagram of the system, the data structures and the

error checking facilities of the program, and also will give details about the components of

the interface program.

Our program consists of two main parts. The first part deals with the screen layout and

the data input, the other part deals with the operations to communicate with the actual

database program. We used InterViews 3.0.1and C++ to implement these parts. We will

separately discuss the implementation details and the usage of InterViews in this chapter.

A. SYSTEM REQUIREMENTS

Our program works in the AT&T Unix Operating System with the X-Windows

environment having InterViews 3.0.1 in the file server. However, due to the properties of

the X-Windows and InterViews, the program runs very slow on the Sun-3 workstations

with AT&T Unix 4.0.3 operating system. We have two versions of the program for two

different environments:

Workstation: Operating System: InterViews: C++ Compiler:

Sun-3 Unix 4.0.3 InterViews 3.0.1 AT&T 2.0

Sun-4 Unix 4.1.1 InterViews 3.0.1 AT&T 2.1

Since the previously implemented multimedia database management system

prototype [AYG91] runs only on the Sun-3 workstations with the Unix 4.0.3 operating

system, we had use the same system to implement and run the user interface. During the

initial tests we found that it was both very slow to run the user interface and work with it.

We then divided the user interface screen layout into smaller parts so that it could run faster,

but the result was still not satisfactory.

16

On the other hand, in order to demonstrate reusability, we tried a never version using

a Sun-4 type workstation together with an updated operating system and compiler. This

version was dramatically faster than the old one. We connected this interface to the

Multimedia Database Management System Project which is explained in detail in reference

[ROW92] and [GUG92].

B. PROGRAM INPUT AND OUTPUT

The graphical user interface we designed for the retrieval function of a multimedia

database management system creates extended SQL queries and display the results. The

interface can display image files and play sound in a PC as the media data.

We explain how to create a query by using this interface step by step in Appendix A.

At this point if the reader is interested in how to run the program, he may skip to Appendix

A and take a look at the examples. In general the user creates an extended SQL query

statement either by using the mouse or by typing only the condition input in the editors. All

of the information provided from the user is stored in a globai data structure named as

"q_rec". This is the most important data structure of our interface for those application

programs which can not handle direct SQL codes. Any program that wants to access a

specific information about the query, can look up this embedded data structure and use the

necessary parts for the retrieval operation. We used this data structure in order to

communicate with the first application program [AYG91]. Since the latter had a command

line interface, it was very useful to use the embedded global data structure to pass the input

query and process it. When the user activates the query processing button, the database

program which is designed for the command line input accesses the query specification

from the data structure. With this method the original program looks up appropriate field

of the data structure instead of asking it from the user. The results of the query are also

passed from this record to the graphical user interface. When the query is processed from

the interface, the function Retrieve(MODE) is called. After this function returns, the results

are ready in the data structure, so the interface can read and display the tuples in the

17

"Result" window. It is also possible to display media data from this window if the related

attributes are selected in the query. We chose this method in order not to change the flow

of the original program.

For other kinds of applications that can manipulate direct extended SQL code as a

character string or a text file we provided a file and a C-type string. We tested the string

output "sql-string" with the application Multimedia Database Management System

[ROW921,[GUG92]. We used text files ("sqloutput" and "pictureids") to read the results

of the query and the retrieved picture file names.

The global data structure "q-rec", the file "sql-fle" and the character string
"sql-string" can be interpreted as the outputs of the query building part of the graphical user

interface. The results can either be put into the data structure or into the text files. By using

one of these outputs communication can be established with the actual database application

program. We have tested both methods in two separate applications.

In addition to formatted data that is retrieved by a query, the user can select a line in

the "Result" window and display the picture or play the sound of the selected tuple if this

data is available. For test purposes we implemented both picture and sound display in the

application program Multimedia Database Management System [AYG91] and only picture

display in Multimedia Database Management System [ROW92]. We did not implement

the sound playing in the latter as the actual database program is not capable of handling

sound data at this time. We think that the latter, with the capability of handling sound, will

be a very powerful and easy-to-use database management system.

C. MAIN PARTS OF THE PROGRAM

The Figure 4.1 shows the interface program divided into several parts. The boxes

represent the modules, and the arrows shows the dependency between the modules. It is

always possible to return to the parent module. Interaction with InterViews creates the

objects and their source codes so that each module corresponds to a separate window. This

will support the idea of modularization and information hiding.

18

Mdbms

e Unimplemented
Main~nu "- Functions

[Natural Language To o

Input Editor

Database Communication
Program with application *

Result

SDisplay Play

Picture Sound

Figure 4.1 Main parts of the interface program * Application dependent

The module "Mdbms" is the main program. Most of the initializations and the

database connections are performed in this module. Inside this module, the "Main Menu"

dialog box which covers all of the basic database operations is created and displayed. We

implemented only the "Retrieval" part of this menu. When a button other than "Quit" is

19

pressed the user gets a message saying this function is not implemented. The user can exit

the program by pressing the "Quit" button in this menu. Figure 4.2 shows the "Main Menu"

dialog box.

cs!D rl a. 0 Wgo

NAVAL POSTGRADUATE SCHOOL

Multimedia Database Management System

RETRIEVE

CREATE TABLE

INSERT TUPLE

DELETE

Fig. 4.2 Main Menu Dialog Box

"Retrieval" is a dialog box in which the user can select or type some values to build

the query in extended SQL form and then process it. Extended SQL form is used to create

queries which addresses media data as well as formatted data. Detailed explanation can be

found in [AYG91]. "Retrieval" module is used to create "SELECT' and "FROM" parts

of the SQL code. Additionally it contains two windows which are used to display the

extended SQL query being built and the error or status messages. It is also possible to go

back to the "Main Menu" from here. An on-line help is available whenever the "Help"

I utton is pressed. Figure 4.3 shows the "Retrieval" dialog box. We will explain how to

use the buttons at the top and possible different combinations in Appendix A. When the

20

user presses the "Retrieval" button in the "Main Menu" the "Retrieval" and the

"Aggregates" dialog boxes are displayed on the screen. The "Aggregates" box gives the

user the choice of defining some aggregate functions before the attributes that will be

selected. Figure 4.4 shows the "Aggregates" dialog box.

CRETRIEVAL: : ,turi- ta ,aui K In iP3•tes

Build CmdWitim Clear Puery P(QRhCTED h
Selection

Tables Attributes
VISUAL

Figure 4.4 Aggregates
Dialog Box

Query umnary

Status I/ sHae

Select a table with daible-cli M

Figure4.3 Retrieval Dialog Box

The buttons "Build Condition", "Clear Query" and "Process Query" in the "Retrieval"

dialog box are related to whole interface program where the buttons "Next", "Cancel" and

"Enter" belong to the "Selection" section. The functions of these buttons are explained

with examples in Appendix A.

21

After the selection is completed, the user has the choices of either processing the query

without any condition or adding a condition to the query. The "Build Condition" button

displays another dialog box which we called "Build Condition" dialog box. Figure 4.5

shows this box.

Buld Query Coitim

Predefined Join. Condition

Figure4.5 Build Condition Dialog Box

This dialog box contains two main parts. The "Predefined Joins" section contains the

previously defined join conditions that link the tables if there are more than one table in the

database. The "Condition" section allows the user to create a condition for the query. The

user can create a condition by typing it in with the editor or by selecting the tables, attributes

and comparators one by one, or by some combination of both methods. Several conditions

can be connected by using logical operators "AND" and "OR" together with parenthesis.

The buttons on the bottom part are used to activate other dialog boxes. If the user is not

sure what kind of tools are applicable, he can invoke the "Tool Box" (Figure 4.6) to see and

use the available operators. This dialog box may be left on the screen until exiting from the

"Build Condition" dialog box. Both of these dialog boxes may be left on the screen until

returning to the main menu.

22

i• lem.eze a

Tool B9W

(iiiI•ZD~ For Grouping (w •

Figure 4.6 Tool Box

The "Natural Language Description" dialog box is one way to enter a natural language

caption for an attribute. The user does not have to know the syntactical usage of the natural

language description. This box will place the necessary keyword and quotations into the

condition editor at the end of its operation. Depending on the implementation, a search type

must be chosen. This button was required in the first version, but not in the second. Figure

4.7 shows the "Natural Language Description" dialog box.

PIb"K4m. exe 99D

Naturma Languag Deac. ptiimi

Partiatl search rull search

(Cancel]

Figure 4.7 Natural Language Description Dialog Box

23

QneY Remit]

00304.2.,'alraifr .
24,1 .'Harvey Field'
0051.1 ,'USS Lexington'
00862,1 ,'awair
0880,1 ,"Corona'
10169.1, 'Sa• Diego, CA'
5466,4,'ground/air'
5457,4,'ground/ar'
5486.4. 'ground/air'
5489,4,'ground/air
61044.2.'Anrntage Field'
61045.2,'Armrdage Field'
81102,3.'air/aire
63030,1 ,'Armitage Field'
64003,6.'Armitage Field'
64804,6,'Armnlage Field'

16631 0,1 .'G- 2 Range'
160579,2,"JSS itty Haw
174921,1,'3 Range'
178012,4,'CT-4'
806857,1 ,'Snort'

181709,2.'Arm•tage Field'
810754,1,'Armitage Field'
81a761,1 0,'CLPL*
82711,3,'air/alr'

102712,3,'airtair'
182713,3,'air/alre
183531.1 ,Puget Sound'
1858541S5,'Armitage Field'

e85860o151'Armilage Field'

Shuw Piforme Clea ýPkictur CSud(Romt

Figure 4.8 Result Window

The two Multimedia Database Management Systems [AYG9 1], [ROW92], previously

implemented database programs, are indicated by the shaded box in Figure 4.1.

We wrote all of the member functions to perform the operations when a button is

pressed and some communication modules; however, we used some other functions that we

didn't write. One of them was a function which was available in InterViews 3.0.1

Reference Manual for displaying TIF-format files in the X-Window environment. We

implemented the "Result" window [Figure 4.8] of our interface according to this picture

display method. After displaying the pictures the user can clear them by using the "Clear

Picture" button. In both systems the existing file formats were different than TIF-format

and not compatible with our display method. Therefore we used another function called

"qp-xloadimage(filename)" which was previously implemented by Gene Guglielmo and

used in a similar way in his work [GUG92] to display the image files of various formats.

24

This function does not allow the user to use the picture clear button; instead the user

must kill the picture window using the X-Window manager. We also used a special module

implemented by Gene Guglielmo, "comm.c", which contains functions to establish

communication between our interface and the latter database program.

D. DATA STRUCTURES USED IN THE PROGRAM

For modularity purposes, we put all of the global variables and data structures in a

header file named as "common.h". We think that this module will help future programmers

to go through our code easily.

The main data structure used in the program is "qjec" which is a record type of

QUERYRECORD. Figure 4.9 shows this data structure. As we indicated in Chapter III,

we assume that the database management system for our user interface is based on the

relational model. We designed our record so that it will cover all of the necessary

information to build a query in the extended SQL form. We explain the fields of this record

and the other data structures below:

1. The fields of the record "qrec"

The field "qtable" stores selected table and attribute names in an array. It also

has the information about the aggregate functions of the attributes. This field basically

corresponds the "'3ELECT' and "FROM" parts of a SQL query.

The field "qscondition" stores the conditions in the query. It is possible to specify

more than one conditions in this field. The condition part of the query can be divided into

three logical parts. The first part is the name of the attribute, the second part is the condition

tool and the third part is the condition input (right hand side of the condition tool). The

fields "condtable" and "condattribute" store the table name and attribute name

respectively. Since we have media data in our database management systems, we added

the field "condnat_description". This field stores the natural language caption which

istyped in by the user and the type of search as eitherfull or partial search. ererestructure

25

of the caption to be searched, an appropriate character must be inserted intothe field
"search -type". The next field in the "qcondition" is the "cond tool" which holds an

operator. The field "condinput" can be another attribute or a user input. The
"condjlogopr" is used to join separate conditions in the same query by using logical

operators. The application program must be capable of distinguishing the logical operator

precedence in these fields. The fields are filled by parsing the contents of the condition

editor in the "Build Condition" dialog box.

The field "q_.temptable_name" stores the name of the temporary table name to

be used in the database program for the nested query processes. In the second version of

the interface, we are able to build a nested query in SQL form. If the application program

can handle this extended SQL code, it will process multi-level queries. We believe that this

would make a good thesis topic for future studies. We will also give some

recommendations in implementing nested queries in Chapter VI.

The field "q-predefjoin" stores the selected predefined join conditions in the

query if there is more than one table in the database. The user can choose one predefined

join between two tables to specify the relation between them. It is also possible to use more

than one join condition in the case of using more than two tables.

The last field is "qjresult". It stores the necessary results of the query. This field

has three separate fields for formatted and unformatted (media) data. The prototype that

we worked on [AYG91], can handle more than one picture or sound data related to the same

tuple as the result of the query. In order to be able to perform this feature of the prototype,

we designed the data structure so that more than one picture and sound can be stored for the

same tuple.

2. The Other Data Structures Used in the Program

Besides the data structure "q.rec", we used some local array type data structures

to temporarily store the user input before sending them to the"q.rec". In these data struc-

tures, which we called "buffer", we test the user input or parse the input string to send

26

CL
0

D z

LUU

0

0

.0

0
uiU

a L

0C -

0C

0 V

a, C27

the information to the appropriate fields of the record "q-rec". In this way, we can keep

our global record with correct values throughout the operations. If the input is invalid it is

discarded and the user is informed.

Another important data structure we used is the C-type character string form of

the created SQL query. Although the data structure itself is not complicated, it is very

important as it is the main output of the user interface. This string can be used as an input

to another database management program. We used this method in the second application

program [ROW92]. The string is passed to a communication module and the module puts

the string in an inter-terminal communication package and sends it to the application

program. The same communication module returns a signal indicating that the search

process is completed and the results are ready in the text files "sqloutput" and "pictureids".

Then the interface can continue its execution by reading those result files and displaying

their contents.

We used several global variables to keep track of some important values as well

as some flag variables to enable or disable some operations. We used long but clear

variable names in order to avoid confusion.

E. COMPONENTS OF THE PROGRAM

In this section, we will explain the components of our program one by one. It is

assumed that the reader has a general idea about object-oriented programming, relational

database management systems and multimedia database management systems.

1. General Issues

Learning about InterViews was the most important and time-consuming part of

our work. We will briefly introduce InterViews and explain some important issues we used

our implementation.

28

We used C++ for our implementation and C for the connection to the database

programs. The first application program was written in C. Although C and C++ are

supposedly compatible, we had some problems in the implementation process.

a. InterViews

InterViews is a software system for window-based applications. Like most

user environments, InterViews is object-oriented in that components such as windows,

buttons, menus, browsers or editors. The name InterViews comes from the idea of a user

interface object presenting an interactive view of some data. It was developed in Stanford

University with the support of Fujitsu America, Digital Equipment Corporation, and NASA

CASIS project [IVR91]. We used the latest version, 3.0.1, which was released in October

4, 1991. The InterViews Reference Manual [IVR91] explains all the architecture,

implementation technique- "• ic terminology and the functions of the base classes.

InterVie- , ..;nerates C++ code which can be compiled by any compiler that

accepts the 2.0 or 2.1 revisions of the language, and can run on XIlR4 or XI1R5 X-

Window environments. The graphical user interface consists of windows of -many types

and analyzes the input events of these windows in concert with the window manager.

InterViews 3.0.1 contains [build, a tool interactively building a user interface. lbuild

allows the user to arrange a common interactors and scenes, generate the C++ code for the

interface, compile the code and execute the resulting application. The generated code

defines a base class from which subclasses can be written to complete the program. this

approach allows the interface to be modified later without affecting the subclasses [IVR91].

We will explain only those parts we used to build our interface and how to

use InterViews. The programmer must have InterViews in the working path and

appropriate environment settings must be done to have [build run. It would be better to

have a separate directory that contains the InterViews permanent tool fides. In the working

directory [build is started by typing "ibuild" in the command line. The interactive building

tool is displayed. The bottom part contains the basic classes so that placing it on the canvas

29

with the mouse creates an instance of that class. Therefore care should be taken when

creating the objects. The top part contains the functions to manipulate the created objects.

The properties of the objects such as size, color, class names, button state names can be

changed by using these functions. The whole interface must be built in the same canvas by

giving them appropriate window types. Once a window type is assigned to a box, a base

class is created with that name and the related files take the same names. We used

monoscene class for the Main Menu and dialog class for the other pop-up type windows.

If a change is to be made to one of the objects in a window then that window must be

dissolved until the level in which that object is created. After the change the window must

be recombined until wrapping it with a window type. This process changes the window

class names and the generated file names.

After all of the interface windows are created on the canvas, the source code

can be generated from the "Files" menu. When the compilation and linkage is completed

it is possible to run the resultant executable file which draws all of the interface windows

on the screen. Since the functions are not implemented it is not possible to use the buttons,

menus or the other interactive parts of the interface.

The generated files are based on the individual windows. Each window has

a core file containing the implementation of the screen drawing with a header file, and a

source file containing unimplemented member functions with its header file. These

functions have the names that are given by the programmer in Ibuild during drawing. Other

than these, two makefiles for command line compilation, props file containing the color

description of each object, are generated. We first generated the files using a color work

station in order to obtain color values in the properties files (in our work "Mdbms-props").

We then edited the files containing unimplemented functions and wrote the appropriate

algorithms to perform the desired action when the related buttons are pressed. We needed

to add some more member functions in order to provide reusability. We edited the

Makefile (Mdbms-make) to insert "common.c". We also added the necessary lines to

include the linkage of the object files of the database program generated by the C compiler.

30

We had to put Ingres libraries in the path defined in Mdbms-make. In order to provide

automatic dependency checking, each included header file must be placed in the Makefile.

Care must be taken to edit this file because it is very complicated and there is no

documentation about it. There may be some unusual read errors if several changes are

made at once. It is recommended that the Makefile should be tested after adding or

changing a line. The command to compile the project is "make -f Mdbms-make". This will

generate the executable file "Mdbms.exe".

There were some scope and visibility problems when we compiled the

program, therefore, we had to edit the core and header files to make some variables visible.

One of the most important changes was to declare a variable of type "TextBuffer" pointer

for each text editor in the top of the related file, in global scope. This declaration is made

in the body of the core file which the dialog box belongs to. Also we increased the sizes of

the text buffers defined in these files. The main function was changed according to the

initial window operations. The generated executable file can be run by itself from an X-

Window. The InterViews libraries must be visible from where the program is launched.

We had to go through these steps each time when we made a change in the

dialog box contents, such as adding another button, changing the size or changing a

message. We needed to include many error handlers because InterViews does not have a

default checking system.

We feel that InterViews is easy to work with once you become famlilar with

it; however, it still is difficult to manipulate the windows, browsers, buttons and editors.

The reasons for this are that InterViews does not have a good user manual and these basic

functions must be implemented by the programmer. It is also hard to make changes to an

already-created interface. We wrote some comments in our source code describing the

details of these operations.

31

b. C And C++ Compatibility Problems

When we tried to compile the C code of the first database system [AYG91]

using the C++ compiler, we encountered so many errors that we had to give up. Some

errors were missing parameters or type mismatches in function calls, invalid type

conversion, invalid pointer type, declared but not used variables, multiply declared

variables, visibility errors caused by not using header files, old type function declarations.

These situations are ignored by the C compiler, but not by the C++ compiler which is more

strict. We tried to correct these errors and warnings, we but couldn't solve all of them.

Therefore we decided to use the object code of the prototype generated by the C compiler

and call its functions from C++ programs. The functions that are written in C and defined

in a C-module without a prototype must be listed as: "extern "C" { function list)". Even

though we compiled "common.c" in C++ we used a C type header file "common.h"

because it is used by the C program.

2. The Modules of The Interface

InterViews generates four files for each of the windows. These files, as described

in the previous chapter, define the layout of the window (window name-core.h and

windowname-core.c), and their unimplemented member functions (window name.h and

windowname.c). The interface program as a whole is a combination of these windows

together with the user interactions. We describe each module of the interface below:

a. Module Mdbms-main

This module contains the main function of the whole interface. It is used for

calling the functions to establish the communication with the application program,

displaying the "Main Menu", loading the database tables into the interface and ending the

processes before quitting the program. We had only one main function in the first

application, so there was only one executable file. In the second application, the user

interface has its own main function where the database program has its own executable

generated by Prolog compiler.

32

b. Module MainMenu

This module contains the functions to initiate the main database operations.

We implemented only the retrieval function. When the "Retrieve" button is pressed, the

"Retrieve" and "Aggregate" dialog boxes are displayed on the screen. The table names

which exist in the database are listed in the "Tables" browser of the "Retrieval" dialog box.

The text file containing the help information is read into a buffer in order to provide a faster

display.

c. Module RetrieveDialog (_Dialog_9)

This module is the main dialog box for constructing the "SELECT" and

"FROM" parts of a SQL query. Figure 4.3 shows this dialog box. There are two string

browsers for "Tables" and "Attributes" of the database. Two editors are used only to

display the SQL form of query summary and status/error messages respectively. There are

many error checking facilities particularly to prevent incorrect button selections which will

be explained later in this chapter.

The "Build Condition" button activates the "Build Condition" dialog box

displaying the predefined join conditions. Once this window is activated it can be left on

the screen until returning to the "Main Menu". Hence this button is disabled if the "Build

Condition" dialog box is active.

The "Clear Query" button resets all of the editors, variables and data

structures in order to restart building the query. The same resetting processes are

performed when the user returns to this dialog box from the "Result" window.

The "RetrieveDialog" module performs the communication with the

application program when the "Process Query" button is pressed. For the first application

we call the "Retrieve(MODE)" function from the program. We modified this function so

that it loads the results into the global record "q-rec". We then create the "Result" dialog

and call the "DisplayResultso" function to display the results in this window.

33

For the second application, pressing the "Process Query" button creates the

"sql-string" by reading the "Query Summary Display", calls the function

"commwith-db(sqlstring)" to establish the communication with the database and reads

the result files (sqloutput and pictureids) into the global record "- rec" after the search

operation is completed, then it displays the "Result" window showing the results.

d. Module Aggregate Dialog (_Dialog_]O)

This module contains the aggregate functions for the SQL query. When a

button is pressed, the related aggregate function is added to the selected attribute in the form
"aggregatejfunction(attribute)". We did not handle these functions in the first application

program. We will give an example to this feature for the second application in Appendix A.

e. Module Build Condition (-Dialog_]1)

This module contains the necessary functions to build the condition part of

the query. The function related to the string browser displays the predefined joins and gets

the user's selection. An editor and its input handling function is provided to let the user

type in the condition. This editor is also used to display the condition being built. The other

functions regulates the button operations.

There are five buttons on this dialog box. The "Clear" button is used to delete

the condition from the editor. When the "Exit" button is pressed the condition is discarded

and the dialog box will be closed. The "Enter" button first calls the condition parser, which

checks the syntax and sends the information to the global record "q-jec". After the parsing

is completed, the contents of the editor is sent to "Query Summary Display" to form the

"WHERE" part of the query. If an et 'or ,s detected during the parsing operation an error

message will be displayed in the "Message/Status" box.

The parser that we wrote can be improved for additional features. If the

application program already has an error checking mechanism and it does not use the global

data record "q-rec", then it is not necessary to use this parser. In this method, it is not

possible to check and correct only the condition part. In case of an error in the SQL code

34

the whole query must be rebuilt. We used this method in the second application program

[ROW92].

The "Tool Box" and the "Captions" buttons activate the "Tool Box" and the

"Natural Language Editor" respectively. When the user presses the "Exit" button on the

"Build Condition" dialog box, these boxes will also be closed. These two dialog boxes are

optional to use. The user can simply type the condition in the same format into the editor.

f. Module Tool Box Dialog (_DiaUog_12)

The "Tool Box" dialog box provides the opportunity of seeing and using

available tools in the interface. When a button is pressed, the selected tool is inserted into

the condition editor. We think that it is a very good feature particularly for the new users

of the program, and the user will not have to memorize the available tools in the system.

Some of the tools defined in this box are implementatio- dependent as indicated in the

source code (_Dialog_12.c).

g. Module Natural Language Dialog (.Dialog-$)

This module creates an editor (Figure 4.7) which is used to type the natural

language description of the unformatted data. The editor uses an input handling function

which provides the standard editor commands. In order to accept the contents of the editor

the user must press one of the buttons defining the search type. Depending on the syntax

rules of the implementation some keywords are inserted into the condition editor. The

"Cancel" button simply deletes this window.

h. Module Help Dialog (.Dialogj7)

This module contains the implementation of the "Exit" button and the text

editor functions to display the help text reading from the buffer.

i. Module Result Dialog(Result)

This module is used to display the result of the query. When the results are

displayed on the screen the user can choose one tuple by double-clicking on that line. Once

35

the user selects the line, the corresponding image and sound data can be displayed if any

available. In this module, there are two different functions for displaying the image files.

The first one (load(filename)) is taken from the InterViews 3.0.1 Reference Manual and it

can display only image files in TIF-format. It has also some sub-functions that resize the

picture. The second function is "qp.xloadimage(filename)". This function displays most

of the common image formats. Since existing database for the first application program

contains image files in "sun-ras" format, the function "load(filename)" is only used for test

purposes. Due to the software restrictions we could not use the "qp-loadimage(filename)"

function for this application. In the second application program, we used
"qpjloadimage(filename)". This function requires the X-Window manager to clear the

picture; therefore in this system the user can not use the "ClearPicture" button.

j. Module common (common.h and common.c)

This module contains the global variables, data structure and functions used

throughout the program. Any programmer that might wish to change our code should look

at this module at the very beginning of the study. The file "common.c" contains the

implementation of global functions which are used to clear records and load the database

information to the interface.

k. Module comm (comm.c and dbfile)

The file "comm.c" contains the functions to establish the connection between

the user interface program and the second application program. It is compiled using the C

compiler and linked to the others. The file "dbfile" contains the communication

parameters and is located at "-guglielm/marie/etc". The detailed explanation about this

communication method can be found "Quintus Prolog User Manual".

F. ERROR-CHECKING FACILITIES OF THE PROGRAM

We wrote our program as a prototype, but we included several error-checking

facilities and instructions so that a novice user can use the program without crashing or

36

loosing important data. The user must push the buttons in the correct order. When an

incorrect button is pressed, an error message is displayed in some cases to give an

instruction to the user. In other cases we have disabled buttons when they are not to be

used. For example, if the user presses the "Enter" button of the "Retrieval" dialog box

without selecting an attribute, a message will be displayed saying "There is no selected

attribute. Please select an attribute to continue.". If the user has activated the "Build

Condition" dialog box, the "Build Condition" button is disabled (shaded) to prevent

creating multiple dialog boxes.

Another aspect of error-checking is on the correct form of the query condition. We

wrote a parser to check the syntax of the condition and warn the user in case an error is

detected. If the application program has such an error-checking facility, then the parser is

disabled and the whole SQL query is checked in the application program and the error

messages are displayed in the "Result" window. The error and status messages that we use

can be found in the module "Retrieve Dialog (_Dialog_9.c)".

37

V. DISCUSSION OF RESULTS

Our user interface provides an easier query construction using graphical selection

methods. We can list the benefits of using our interface as follows:

1.) The tables and attributes are ready to be selected at all times. The user does not

have to memorize these names in order to construct a query.

2.) The selection methods prevents the user from entering an incorrect value.

3.) Predefined join conditions provides an efficient way of using multiple tables in a

query condition.

4.) The "Query Summary" displays the SQL query being constructed.

5.) The natural language editor inserts the system dependent keyword into the

condition. This feature is helpful for the new users.

6.) The media data as well as formatted data can be displayed easily and clearly.

7.) The available functions and tools are displayed so that the user can simply select

or activate them.

8.) The instructions and error messages help the user to navigate through the query

construction and execution.

9.) The user has the flexibility of canceling a process or changing a value during the

query construction.

10.) The on-line help is available at any time.

The above features are common in all versions of the interface. However there are

considerable speed differences between the first and second version. We discuss the

performance of our interface for each version.

A. VERSION 1

This version is connected to the existing multimedia database management system

[AYG91] and runs on a Sun-3 workstation. Due to the old architecture, operating system

and C++ compiler used on the Sun-3 workstations, the performance of this version was not

satisfactory. Table 5.1 shows average time values.

38

Table 5.1 TIMING VALUES OF THE FIRST VERSION

Functions Time

Initialization and Connection 45 seconds

Main Menu Window 2 minutes

Retrieval Window 2 minutes

On-line Help 1.5 minute

Build Condition Window 1.5 minute

Tool Box 2 minutes

Caption Editor 45 seconds

Result Window 1.5 minute

Displaying an image file (20 kilobyte, TIF format) 2 minutes

Resizing an image window (enlarge 50%) 2 minutes

InterViews code generation and compilation 18 minutes

Recompilation using Makefile 13 minutes

Linking all the modules 9 minutes

These values show that this environment was not suitable for software development

because we spent a lot of time during debugging. To see the effects of a change in the

source code cost sometimes 30 minutes. We could not increase this performance of the

system. Table 5.2 shows the storage amounts of the files.

Table 5.2 STORAGE AMOUNTS OF THE FIRST VERSION

Amount
Files (KiloByte)

Original database program source code 520

Source code generated by InterViews 225

User interface executable (Mdbms.exe) 590

39

Because of low performance and lack of portability, we decided to concentrate on

building a better, reusable, faster and more reliable graphical user interface for any

multimedia database management system.

B. VERSION 2

We regenerated the interface source code using the InterViews for the Sun-4

workstations and connected to another database application [ROW92]. Table 5.3 shows the

average starting time values for this version on a Sun-4 workstation.

Table 5.3 TIMING VALUES OF THE SECOND VERSION

Functions Time

Initialization and Connection 45 seconds

Main Menu Window 10 seconds

Retrieval Window 20 seconds

On-line Help 30 seconds
Build Condition Window 10 seconds

Tool Box 10 seconds

Caption Editor 2 seconds
Result Window 5-30 seconds*

Displaying an image file (20 kilobyte, TIF-format) 2 seconds

Resizing an image window (enlarge 50%) Not Applicable

InterViews code generation and compilation 6 minutes
Recompilation using Makefile 4 minutes

Linking all the modules 4 minutes

• Depends on query process time

This performance increase encouraged us to improve our interface. The additional

features we added were:

(I) Another window containing aggregate functions.

(2) Modification of the condition editor parser for additional syntax rules.

40

(3) An appropriate error checking system to prevent crashing in case of using an

incorrect button.

(4) A "C" type character string and a text file containing the query in extended SQL

form to establish communication with different database programs.

(5) Instructions to help the user to build and process the query.

(6) A different picture display function which supports various image file formats.

Table 5.4 shows the storage amounts of this version

Table 5.4 STORAGE AMOUNTS OF THE SECOND VERSION

Amount
Files (KiloByte)

User interface source code 265

User interface executable 1057

Main-memory database system 1400

C. VERSION 3

This version is almost the same as the second one except it can use natural language

captions to retrieve data. The overall system runs as four separate processes. The major

change in this version is disabling the condition input parser. Instead the query parser of

the database program written by Professor Rowe checks the SQL code. If the code is

invalid then an appropriate error message can be seen on the "Result" window. 9be timing

values are the same as the previous one only with some additional setup time to initialize

three other processes before starting the user interface. If a natural language caption is used

in a query, additional time will usually be needed to search and display the results in the

"Result" window. Table 5.5 shows the storage amounts of this version.

41

Table 5.5 STORAGE AMOUNTS OF THE THIRD VERSION

AmountFiles (KiloByte)

User interface source code 265

User interface executable 1057

Main-memory database system 1400

Natural language parser executable 1640

Fine search executable 1040

Coarse search executable 1070

Scheduler executable 1000

42

VI. CONCLUSION

A. MAJOR ACHIEVEMENTS OF OUR PROGRAM

One important achievement of our thesis is the efficient method for the retrieval of

multimedia data by using a graphical user interface with a pointing device. The user simply

selects the necessary information from the browsers, push buttons or type a condition. The

constructed query can be passed to a database program using an embedded data structure

or a character string and text file.

We built a test program for the existing multimedia database management system

[AYG91] which can retrieve and display image and sound. We then connected an

improved version of the interface to another multimedia database system [GUG92]. This

system can also retrieve data using natural language captions.

B. COMPARISON

A different interface implemented by Prof. Rowe and Gene Guglielmo [ROW921 is

capable of retrieving pictures by using natural language captions. There are two major

differences between this interface and ours. First our interface can be used with multiple

tables and predefined join conditions using separate windows. Second our interface can be

used by any database program with the three ways of communication methods.

The user interface proposed by Charles Peabody [PEA91] was to use an interactive

graphical query representation which requires more graphics on the screen. We used a text-

based query representation so that the implementation can easily be modified according to

the new design decisions. Also our user does not have know much about database

diagrams.

C. SUGGESTED FUTURE WORK

With the increasing speed of computing machines, it is getting easier to access large

databases and manipulate data. The problem now is how to make the database operations

43

easy to use and effective. We think that such a database management system will require

the graphical user interface and the database program to be designed and implemented

together.

We believe that our work can be used as a base to implement the other database

functions like insert, update or delete. InterViews can be used to build a similar user

interface by using our work as an example. We describe the major weaknesses and

unimplemented parts of our interface below. Even though these points do not affect the

running of the interface, we believe that they will help future designers.

1. We included only those functions which were already implemented in the

application programs. Even though we used extended SQL to create queries, we did not

use all of the functions in standard SQL.

2. We included the buttons for nested queries, but we did not implement and test them

with the database programs. Such a query can be constructed in SQL and if the database

program is capable of handling this SQL code at once, all the query can be passed to the

program using the string or text file. In this method our interface can generate any level of

nested queries without using the data structure "qrec". If the application program is

designed to use this data structure, then a list of data structures of type "QUERYRECORD"

should be created. Then the application program can access the fields of these records in a

an appropriate order.

3. We do not allow the user to enter a table or attribute name by typing it. This would

require some extra error-checking facilities.

4. We do not save a query after it is constructed and processed. Therefore if the results

are not satisfactory the user must build the query from the beginning. One way of

implementing this feature is to save the query in a data structure and then load it when

asked. We believe that being able to save the query will increase the user-friendliness of

the interface. Some of the queries could be saved as a graphical icon so that user would

have a chance of using it easily.

44

5. We do not use any terminal sound to warn the user. Also we did not use separate

pop-up windows showing the error messages.

6. The user cannot change any attribute of the screen layout (color, size, font etc.)

except moving the windows or iconizing them using the X-Windows manager.

7. In the "Retrieval" dialog box the selected attributes are not left highlighted due to

the properties of InterViews. Instead we display the attributes in the "Query Summary

Display" section when they are selected one by one.

8. In the result window we do not display the selected attributes in columns. This

feature mostly depends on the application program. The result window may be designed

so that the results are displayed under their corresponding attributes.

9. The parser we used in the condition input editor can handle only certain situations.

It cannot detect words or operators without spaces before and after. Depending on the type

of new query-building features, this parser should be modified.

10. The arrows on the keyboard cannot be used to move the cursor in the editors;

instead the mouse and its left button can be used.

11. We did not use the "Return" key to activate a default button or to enter the contents

of the editors.

12. We do not store the windows as bitmaps in the memory; therefore it takes some

time to draw the graphics screen each time. However, the timing is acceptable.

13. In the first version of our interface, we cannot handle group conditions. In order

to have this feature either data record "qjrec" should be modified to include the parenthesis

around the conditions or application database program should have a precedence among the

operators. Since the record "qjrec" is not used in the second and the third versions of the

interface, we can build queries with group conditions successfully.

45

LIST OF REFERENCES

[AGS91] Agrawal R., Gehani N. H., Srinivasan J., "OdeView: A U-'r Friendly

Graphical Interface to Ode", SIGMOD'90, Volume 19, Issue 2, June 1990

[AYG91] Aygun H., "Design And Implementation of A Multimedia DBMS: Complex

Query Processing", Master's Thesis, Naval Postgraduate School,

Department of Computer Science, Monterey, California, September 1991

[CLA91] Clark G.J., "DFQL: A graphical Dataflow Query Language", Master's

Thesis, Naval Postgraduate School, Department of Computer Science,

Monterey, California, September 1991

[FRA86] Frasson C., Er-radi M. "Principles ofIcon-Based Command Language",

SIGMOD'86 Volume 15, Number 2, June 1986

[GRP90] Folley J., van Dam A., Feiner S., Huckhes J., "Computer Graphics

Principles and Practice" Addison-Wesley, 1990

[GUG92] Guglielmo E. J., "Intelligent Information Retrievalfor a Multimedia

Database Using Captions", PH.D. Thesis, Naval Postgraduate School,

Department of Computer Science, Monterey, California, July, 1992

[IVR91] Linton A. M., Calder P. R., Interrante J.A, Tang S., Vlissides J. M.,

"InterViews Referance Manual Version 3.0.1", The Board of Truestees of

the Leland Stanford Junior University, October 4,1991

46

[KKL91] Keim D. A., Kim K., Lum V. Y., "A Friendly and Intelligent Approach to

Data Retrieval in a Multimedia DBMS", Naval Postgraduate SchooA,

Monterey, CA, March 1991

[PEA91] Peabody, C., "Design and Implementation of a Multimedia Database

Management System: Graphical User Interface Design and

Implementation", Master'sThesis, Naval Post Graduate School,

Department of Computer Science, Monterey, California, September 1991

[ROW92] Rowe N. C., Guglielmo E. J., "Exploiting Captions for Access to

Multimedia Databases", to be published in Information Processing

and Management 1992

[SHN92] Shneiderman B. "Designing the User Interface", Addison Wesley, 1992

[THI90] Thimbleby, H. "User Interface Design", Addison Wesley, 1990

47

APPENDIX - A

HOW TO USE THE INTERFACE

We will explain how to use the interface for the two application programs in two

separate sections. In these sections, we will give sample sessions for the database programs

[AYG91] and [ROW92].

A. EXAMPLES FOR THE FIRST APPLICATION [AYG91]

The source codes and the picture files of this system are in the "-mdbmsIMDBMS"

directory of the "virgo" file server. To run the program the user must first connect to this

file server from the X-Windows environment, change the directory and then type in

"Mdbms.exe". If the user wants to play sound data then the PC must be started as explained

in [ATT91] and [AYG91].

The following simple query will be used as an example for this database.

QUERY:

Retrieve the names, ranks, salaries and pictures of the officers whose salaries are

greater than $5000.

SQL FORM:

SELECT oname, rank, salary, o-picture

FROM officer

WHERE officer.salary > 5000

EXECUTION:

1. When the program starts it establishes the connection to the Ingres database and

displays the "Main Menu" dialog box. Press "Retrieve" on this menu.

2. When the "Retrieval" dialog box is displayed with all the database tables listed in

the browser, select "officer" from the "Tables" browser by double clicking on the left

mouse button. This will highlight the selection and the attributes of the "officer" table will

48

be displayed in the "Attributes" browser and the selection will be echoed in the "Query

Summary Display". Then select the attributes by double clicking on them.

3. The "Cancel" button can be used to cancel this selection operation. Since there is

only one table for this query, after the selections are completed press "Enter". The display

will show the SELECT and FROM parts of the query.

4. Press the "Build Condition" button to activate the "Build Condition" dialog box.

5. The condition can be typed in with the editor while the mouse cursor is inside the

frame, or the "Selection" part of the "Retrieval" dialog box can be used to select the

attributes. For this example select "officer" from the "Tables" and then select "salary" and

press "Enter". The condition editor will display "officer.salary".

6. According to the syntax we used for the conditions, a space must be left before and

after the condition tool. This tool can be chosen from the "Tool Box" or typed in. Activate

the "Tool Box" and select "> "for this example.

7. Type 5000 for the condition input.

8. Figure A.1 shows the "Build Condition" dialog box at this point.

P hm.exe

Build Query Condition

Prmdafined Joins Condition

fficera.jd = ship captiid officer.salary > 500q1
ffilcer.o0_d - ship.exoid
oflcer.ojid - base.co-ld
ollcer.oshlp-no - shipsh-no
hip.sname - weapon.sname
lficer.o_id = carrier.co_id

IL (T o o B o x] (C O NT A I NS

Figure A. 1 "Build Condition" dialog box

49

9. If the condition is not correct press "Clear", otherwise continue by pressing "Enter".

This will send the condition to the WHERE part of the query in the "Query Summary

Display".

10. The query can be processed now. Figure A.2 shows the "Retrieval" dialog box

at this stage. Check the query in the display. If it is incorrect or not satisfactory use the

"Clear Query" button to delete this query and start again from the beginning.

selection

"Tables cAttributes

hi..waponn
hip

hip weapon

orieon

r outier.o saay)IU1peapon
Sbassionem

F i g u r e Ao T he, "R e t r i eva l"r y d i a l og'b o x

'

0

iure a. ThIRtivl"dao
o

Ploy50

11. Press the "Process Query" button to activate the retrieve function of the database

program.

12. When the "Result" window" is displayed, the selected attributes and their values

except the media data will be listed.

13. Select a tuple by double clicking.

14. Press the "Show Picture" button to see the picture belonging to the selected

officer. It is also possible to resize the picture by dragging the upper left comer of the

window. Figure A.3 shows the "Result" window with pictures.

Qmery R~

o-name : Jeff Kulp rank : Capt salary . 10000,

o_nam: DaUn Hendriuck rank: Cdr salary Pla500 S i smiu
oFnamiu e uz Atile rank: Cdr salary d7500
o_nam1 e John Day rank : Cdr salary t 9000

o_name: Fred Pong rank: Lt CRerie " Wo~name : Vincent Lure rank : Capt -

o name : Su Chenq Pei rank : L~t Cdr "3

o~name : Rosemary Stewart rank : Lt Cdr

Figure A.3 The "Result" window

15. Press "Play Sound" to hear the voice.

16. Press "Clear Picture" to clear the picture.

17. Use the "Return to Retreval" button to exit from the "Result Window. Ile results

will be lost and the query will be deleted.

18. The system is now ready for another query.

The second example shows the usage of join condition between two tables.

51

QUERY:

Retrieve the name, rank, voice and picture of the ship captains together with the name

and type of their ships.

SQL FORM:

SELECT oname, rank, oyoice, o-picture, s-name, type

FROM officer, ship

"WHERE officer.oid = ship.captid

EXECUTION:

1. Select "officer" from the "Tables" browser, and the desired attributes in the query

from the "Attributes" browser then press the "Next" button. Follow the same procedure

for the "ship" table and attribute selection. When selection is completed, press the "Enter"

button. The "Query Summary Display" will show the SELECT and FROM parts of the

query.

2. Press the "Build Condition" button to activate the "Build Condition" dialog box.

3. Select "officer.oid = ship.captid" from the "Predefined Joins" browser. The

predefined join condition will be displayed as the WHERE part of the query in the "Query

Summary Display". Since there is no other condition, the query is ready to be processed.

4. Check the query in the display. If it is incorrect or not satisfactory use the "Clear

Query" button to delete this query and start again from the beginning.

5. Press the "Process Query" button to activate retrieve function of the database

program.

6. When the "Result" window is displayed, the selected attributes and their values

(except the media data) will be listed.

7. Select a tuple by double clicking.

8. Press the "Show Picture" button to see the picture belonging to the selected officer.

9. Press "Play Sound" to hear the voice.

10. Press "Clear Picture" to clear the picture.

52

11. Use the "Return to Retrieval" button to exit from the "Result" window. The

results and the query will be deleted.

12. The system is now ready for another query.

B. EXAMPLE FOR THE SECOND APPLICATION [ROW921

We will give a sample session covering both versions for the second application.

1. System Initiation

a. Start X-Windows in "-mdbms" on the Sun-3 or Sun-4 workstation.

b. Connect to "ai9" by typing in "rxtern proteon I".

c. In the new window created, do "mariefine &"; wait until it says "Fine search

initialized".

d. Do "marienlp &"; wait until it says it is done.

e. Do "mariecoarse &".

f. Do "mariesched &"; wait until it says it is done (this will take about three

minutes).

g. If "MATCHES" will be used then do "startdserver", otherwise just do

"startserver" and skip steps (c) to (f).

h. In order to run the interface, do "rxterm gemini" and type in "rundb2 in the

new window". Th "Main Menu" window will be displayed.

2. Example

QUERY:

Retrieve the picture ids, dates, quantities and descriptions of the pictures whose

quantities are greater than or equal to five and the descriptions containing "air to air view

of Sidewinder".

SQL FORM:

SELECT ID, QUANTITY, DATEORIG, CAPTION

FROM VISUAL

53

WHERE VISUAL.QUANTITY >= 5

AND

VISUAL.CAPTION MATCHES "air to air view of Sidewinder"

EXECUTION:

1. Press the "Retrieve" button on the "Main Menu".

2. Select the "VISUAL" from the "Tables" browser by double clicking on the left

mouse button then select the attributes. Each selection will be echoed in the "Query

Summary Display".

3. The "Cancel" button can be used to cancel this selection operation. Since there

is only one table for this query, after the attribute selections are completed press "Enter".

The display will show the "SELECT" and "FROM" parts of the query.

4. Press "Build Condition" button to activate the "Build Condition" dialog box.

5. The condition can be typed in with the editor while the mouse cursor is inside

the frame, or the "Selection" part of the "Retrieval" dialog box can be used to select the

attributes. For this example select "VISUAL" from the "Tables" and then select

"QUANTITY" and press "Enter". The condition editor will display "VISUAL.

QUANTITY".

6. According to the syntax we used for the conditions, a space must be left before

and after the condition tool. This tool can be chosen from the "Tool Box" or typed in.

Activate the "Tool Box" and select ">="

7. Type in 5 for the condition input.

8. For the second part of the condition, press "AND" from the "Tool Box".

9. Select "VISUAL.CAPTION".

10. Press the "CAPTION" button to activate the "Natural Language Editor".

11. Type "air to air view of Sidewinder" (no quotes) with this editor. Figure A.4

shows the screen layout at this point.

12. Press one of the search type buttons.

54

?E- - I- =-..I

Whom. ~ad;t,,

Predefind Join* Sdim

V .Q .al).a

Figure A.4 The screen layout

13. The condition has been built. Press 'Clear" if the condition is not correct,

otherwise press "•Enter". This will send the condition to the WHERE part of the query in

the "Query Summary Display".

14. The query can be processed now. Check the query in the display. If it is

incorrect or not satisfactory use the "Clear Query" button to delete this query and start again
from the beginning.

15. Press the "process Query" button.

16. When the "Result" window is displayed, the selected attributes and their

values except the media data will be listed.

17. Select a tuple by double clicking.

55

18. Press the "Show Picture" button to see the picture belonging to the selected

row. Figure A.5 shows the screen layout with displayed pictures.

61082,312-oct-i 71,'A Mcrobests'.air to Air iew of Sidewvindert.AWM (AIM 9L) launch A 114-1K I Khocoptet miss"l coming inon tank larget.'
612711 .3.15-may-i 9741R. Mcroberts-',alr to air view of SidewvinderAlIM S9L EXT-024 firing on QF-86 drone over G Range. missile is severai 100t
02112,3.15-may-1974'.N Mcrobedstsair to air view of Sidewinder AIM SI. IEXT-024 fiig on OF-86 drone over G Range. maissile touching nose.
02713,3.15- may- I 74,.f Mcroors',Wto air view of SkWdwl~e AIM St. EXT-024 kiing on OF-SI drone overG6Range.drone inWodlng'
51701,11 .ZS-feb.. M1 SO0we phi ',WT 5607. air to air view Of F/A- 1SC OLW 183420 aircra (nose 110 and 11yin eagl On aIlO) wlh an AGM-0

1703.11.ZS-f~b-1S68.INoVA ph1',.W 66057. air to air view of F/A-18C 81.1 163428 aircrad (nose 110 and flying eagl on tai with an AGM-11
J704y11 ,Z9-%b-¶We8low phi-,W 665=7. air o air view oEF/A-15C SW 163426 alutra (nose 110 anid" Sln agl on tail) vill an AGM-11
1706 11 zs-4o-1300,N.owe VWl 1 6606117 air to air view of F/A-16C SW 163426 aircralOw 110 and flig a on t ilth an AGM-6

51 06,11,zg-bb-196a.14cwe phs,'P. SM air to air vlW of F/A-11CB 163426 sercret (nose 110 and AyingeaSo" on tail)with an AGM-S
5110S,11,2S-leS-1566.'Hova ph1',"rP 6607. air to ai view of F/A-18C OW 163426 alicral (nose 110 and flying eagle ontISM with an AGM-6
51710,11,2S-feb-1S11a1,Nowe phl'.W 68007. air to air view of F/A-16C 9W 1r / /- 0 ad flying eagle on tail) with an AGM-S
555 Phl', 68063 air to air view OfAIM-SMs sea 61713 aecrarM (nose 101) with Sidewinde
555 Phl'~ 8.T 9053. air to air view of AIMA-SM tae"~ 11713 aircrai (nose 101) wvth Slii
555 Ph1',T 69053. air to air view of AIMA-SM separm IMAGE 61713 aircraft (nose 101) with Sidevlnd

4.i arto air view of F3H- 1 SBe 133550 sircra with Chin . NOT - w with Sidewvinder missile aboard alrcr

-AVAILAB 'LE

YET

U .. (u"
Figure A.5 The screen layout with displayed pictures

19. Clear the pictures by killing the windows using the X-Windows manager.

20. Use the "Return to Retrieval" button to exit from the "Result" window. The

results will be lost and the query will be deleted.

2 1. The system is now ready for another query.

56

APPENDIX - B

WORK DIVISION

This is a joint thesis by two students. Although we both worked on the same thesis we

each worked on separate subjects. We had to work on separate workstations for especially

debugging. The following is a list of our work division:

A. Erhan SARIDOGAN

Designing the user interface

Drawing the interface using the Ibuild

Working on the InterViews

Implementation of some functions

Connecting the interface to the first application

Working on some of the functions of the first application

Adding more features to the interface by redrawing

Adding more error-checking facilities

B. Metin BALCI

Research on previous and related work

Designing the user interface

Working on InterViews

Implementation of the interface modules

Solving C and C++ compatibility problems

Connecting the interface to the first application program

Connecting the interface to the second application program

Working on an improved parser to be used in the condition editor

57

APPENDIX-C

PROGRAM SOURCE CODE

We present the source code for the third version of our interface. This version is the

improved version of the first two versions. The main difference is the way of

communication with the application database programs. We give a list for the source code

directories below. Especially, in the first version, in order to connect the existing program

to our interface, we had to modify a considerable amount of Retrieval module of that code.

The directories for the soumce code:

1. MDBMS Version 1 using the application program explained in [AYG9 I]:
"-mdbms/MDBMS"

2. MDBMS Version 2 using the application program explained in [ROW92] and

[GUG92]:

"-mdbms/guisun4"

3. MDBMS Version 3 using the same application program with version 2, in addition

to that

capable of processing natural language descriptions:

"-mdbms/rowedb"

Below is the listings of the programs for Version 3 of our interface.

A. common.h

#ifndef COMMON_H
#define COMMONH

#define MAXNAME 20
#define MAXATrIB 30
#define MAXTABLE 20
#define MAXCOND 20
#define MAXNATDESC 1000
#define MAXTEMP 5
#define MAXJOIN 50
#define MAXJOINNUM 30
#define MAXDBTABLES 30

58

#define CONDEDITLEN 500
#define MAXRESULTCHAR 200
#define MAXRESLJLT S00
#define MAXMEDIANUM 10
#define MAXPATH 60
#define MAXSQL 1000

typedef char TABLENAMEIMAXNAMEI; /* for unique table and attrib ~
typedef char ATTRIBUTENAME[MAXNAMEI;
typedef char PREDEFJOIN[MAXJOIN;

typedef char RESULTLINE[MAXRESULTCHARI;
typedef char PICTURE[MAXPATHJ;
typedef char SOUND[MAXPATH];

typedef struct
ATTRIBUTENAME attribute-name; /*attrib. names for a specific table *
char aggregate[61;
) ATTRIBUTENAMELIST;

typedef stnict I
RESULTLINE r-formatteddata;
PICTURE rLPicture[MAXMEDIANUMI;
SOUND r-soundfMAXMEDIANUMJ;

) RESULT;

typedef structl
TABLENAME table-name;
ATTRIBUTENAMELIST attrib-aray[MAXATTRIB];
TABLE;

typedef structj
char caption[MAXNATD)ESCJ;
char search-type; /* this field is application dependent *

I NATURALDESC;

typedef struct(
TABLENAME cond_table;
ATTRIBUTENAME cond~attribute;
NATURALDESC cond-nat-description;
char condjtool[10];
char condjinput[MAXCONDJ;
char cond_log~opr[4J;

I CONDITON;

typedef stnlct
TABLE qjtable[MAXTABLEI;
CONDITION q..conditian[MAXCOND];
char q-temp-table-name[MAXTEMPI;
PREDEFJOIN q-predef-join[MAXJOINNUM];
RESULT ijresultIMAXRESULT1;

I QUERYRECORD;

/* Buffertable:

59

This structure is used to get the values from the string browsers when they are clicked;
then this buffer is written into q-rec when Next or Enter is pressed. *

typedef structi
TABLENAME table-name...buffer.
ATI'RIBUTENAMELIST attrib array_ buffer[MAXATTRIBI;
IBUFFERTABLE;

extern QUERYRECORD q-rec;
extern TABLE dbtables[MAXDBTAB LES];
extern struct BUFFERTAB3LE buffertable;
exter nmt TableIndex;
extern mnt Attributelndex;
extern mnt TotalAttributelndex;
extern char* PredefinedJoins[MAXJOWNNMI;
extem char sqlstring[MAXSQLI;

extern mt Contains;
extern int BuildCondition;,
extern int ConditionReady;
extern char clipboard[CONDEDITLEN];
extern mnt NextTableSelected;
extern mt Subquery;
extern it Nested;
extern char clipboard[CONDEDITLEN];

void ClearRecordo;
void ClearConditionRecordo;
void Loaddbtableso;
void LoadPredefinedioinso;

#endif COMMONH

B. commonxc

#include <string.h>
#include <stdio.h>
#include <stdlib.h>
#include 'common.h"

#define TRUE 1
#define FALSE 0

QUERYRECORD qsrec;
TABLE dbtables[MAXDBTABLESJ; /* aggregates are not used *
struct BUFFERTABLE buffertable;
mnt Tablelndex = 0;
int AttributeIndex = 0;
int TotalAttributelndex = 0;
char sqlstring[MAXSQLI;
char* PredefmnedJoins[MAXJOINNUM];
int Contains = FALSE;
int BuildCondition = FALSE;
int ConditionReady = FALSE;

60

int NextTableSelected = FALSE;
iot Nested = FALSE;
int Subquery = FALSE;
char clipboard[CONDEDITLEN];

/* Global functions */

void ClearRecord(void)
1* q-table initialization *
for(int t = 0; t < MAXTABLE; t++)
for(int s = 0; s < MAXA17RIB; s++)
qjrec.qjtable[tI .attrib~array[sl.attribute-.name[OI =OW;
q~rec.qjtableft] .attrib-aray[si.aggregate[OI = V;

qjrec.qjýable[t].table..namne[lj = WJ;

/* condition */
for(int k = 0; k < MAXCOND; k++)I
qjrec.q_...ondition~kl.condjtable[OI = WJ;
q~rec.qsondition[kJ.cond-attribute[0I = %0';
q~rec.qconditio n[k .cond-nat-description. caption[O01 = WJ;
q~rec.qcondition[k].cond nat-description.search-type = WJ;
qjrec.q..condition(kj.cond-tool[O] = WJ;
qjrec.q_ condition~k].condjinput[OJ = WJ;
q~rec.q conditionik].condjlog..opr[OI = VJ;

1* predefined joins ~
for(int p = 0; p < MAXJOINNUM; p++) q..jec;.cj.predef~joinfp~f0J W J;

/* result array */
for(int r = 0; r < MAXRESULT; r++){

q....ec.q~resulttrl.rjformatteddatal0] V;J'
for (int k = 0; k < MAXM EDLANIJM; k++)
q~rec.qjresultrlr.r...picturetk][0] = WJ;
q...rec.q..resultlrl .r _sound[ki [01 V J;

I/* end of function *

void ClearConditionRecord(void)
for(int k = 0; k < MAXCOND; k++)
q-rec.q-sondition[kJ.condjtable[0J W J;
ci~rec.q__conditionklk.cond~attribute[OI = NY';
u-rec.uiconditionfk].condjtool[OI = WJ;
q~rec.q~condition[kl.condjinputf 01 = WJ;
q~rec.q..condition[kJ.con'Llog..opr[Ii = VJ;

void Loaddbtables()
/*database tables initialization *
for(int t = 0; t < MAXTABLE; t++) I

for(int s = 0; s < MAXATTRIB: s++)

61

dbtables[t}.attrib.array[sl.attributename[Ol = W;
dbtables[tJ.table name[O = 'W0';

/ ***~*********** This part is implementation dependent*********************
For test purposes the table and attribute names are hard coded into the program */

/* table */
strcpy(dbtables[O0.tablename, "VISUAL");
/* attributes */
strcpy(dbtables[0j.attrib.array[0l.attributename, "ID");
strcpy(dbtables[0].attrib.array[I .attributename, "DESIGNATOR");
strcpy(dbtables[0].attrib-array[2].attributename, "QUANTITY");
strcpy(dbtables[OI.attrib.array[3].attribute_name, "DATE_.ORIG");
strcpy(dbtables[O].attrib array[41.attribute~name, "RETENTION");
strcpy(dbtables[O].attribarray[5].attributename, "MEDIUMINFO");
strcpy(dbtables[0J.attrib-array[6].attributename, "PHOTOGRAPHER");
strcpy(dbtables[0].attib-array[71.attribute-name, "CODE"),
strcpy(dbtables[O].attrib, array[8].attribute-name, "LOCATION");
strcpy(dbtables[0] .attribarray[9].attribute.name, "DATELOADED");
strcpy(dbtables[0J.attrib array[10].attributename, "CAPTION");
strcpy(dbtables[O].attrib._array[11].attribute-name, "CLASSIFICATION");
strcpy(dbtables[0].attrib-array[12].attributename, "CROSSREF");

void LoadPredefinedJoins0)

* * * implementation dependent *
since there is only one table there is no join condition */

C. Mdbms-make

#* Makefile for Mdbms.exe Version 3, AUGUST 1992 ***************
******* comm.c must be compiled in C before using this Makefile.
* common.c can be compiled using this Makefile.
All include files should be placed where they are called at the end
of this Makefile. This provides dependency checking.
******* Care must be taken on using End-of-line in this file
Libraries are added for TCP connection.

***********************Generated by InterViews***********************************

Makefile generated by imake - do not edit!
$XConsortium: imake.c,v 1.51 89/12/12 12:37:30 jim Exp $
#

The cpp used on this machine replaces all newlines and multiple tabs and
spaces in a macro expansion with a single space. Imake tries to compensate
for this, but is not always successful.

Read "InterViews/template" to understand how this Makefile was generated.
Edit <InterViews/arch.def> to add support for a new platform.
Edit <InterViews/iv-sun.cf> to change platform-specific parameters.
Edit <InterViewsilocal.def> to change site-specific parameters.
Edit <./Mdbms-imake> to change actions that make should perform.

62

architecture: SUN4

platftnm: $XConsortium: sun-cf~v 1.38 89/12/23 16: 10: 10 jim Exp S
operating system: SunOS 4.0.3

SHELL =/bin/sh

[MAKE imuake
IMAKEFLAGS = \

-T 'lnterViews/template"\
-I$(CONFIGDIR) -I$(XCONFIGDIR)\
$(SPECIALJIMAKEFLAGS)
SPECIAL[IMAKEFLAGS = -DUseInstalled

DEPEND = makedepend
DEPEND.CCFLAGS = $(CCDEFINES) S(CCINCLUDES) -I/usr/include/CC

MAKE = make
PASSARCH = ARCH="$(ARCH)' SPECILI-MAKEFLAGS="$(SPECIALIMAKEFLAGSY'
ARCHORCPU = $$CPU
ARCH = $(ARCHORCPU)$(SPECIALARCH)

SPECIALARCH =

CCDRIVER = CC +p
CCSUFFIXc
SRC =.
SLASH =1
SRCS = (SRC)(SLASH)*.$(CCSUFFTX)
OBJS = .
AOUT = a.out

CCFLAGS = $(APP-CCFLAGS) $(IV-CCFLAGS) $(EXTRACCFLAGS)
IV-CCFLAGS =

$(SHARED-CCFLAGS)\
$(CCDEFINES)\
$(CCINCLUDES)

DEBUGCCFLAGS = -g
OPT[MEZE-CCFLAGS = -0

SHAREDCCFLAGS =
EXTRACCFLAGS =

CCDEFINES = $(APPCCDEFINES) $(IV -CCDEFINES) $(EXTRACCDEFIhJES)
IV.CCDEFINES = $(LANGUAGECCDEFTNES) $(BACKWARELCCDEFINES)

LANGUAGECCDEFINES =-Dcplusplus-2.0
BACKWARD-.CCDEFINES=
EXTRACCDEFINES =

CCINCLUDES = $(APP-.CCINCLUDES) $(IV-CCINCLUDES) $(EXTRA-CCINCLUDES)
IVCCINCLUDES =\

$(BACKWARD_-CCINCLUDES)\
$(TOP -CCINCLUDES)\
$(XCC[NCLUDES)
BACKWARD_-CCINCLUDES=

TOPCCINCLUDES = -IS(INCDIR)

63

XCCINCLUDES =
EXTRACCINCLUDES

CCLDFLAGS = $(APP-CCLDFLAGS) $(IV-CCLDFLAGS) $(EXTRA-CCLDFLAGS)
IV-CCLDFLAGS =

S(NONSH-ARED_-CCLDFLAGS)
NONSHARED-CCLDFLAGS=

EXTRA-CCLDFLAGS =

CCDEPLIBS = $(APP_-CCDEPLIBS) $(IV-CCDEPLIBS) $(EXTRACCDEPLIBS)
IV CCDEPLIBS =\

$(DEPLIBUNIDRAW)\
$(DEPLIBGRAPHIC)\
S(DEPLIBIV)\
$(DEPLIBXEXT)\
$(DEPLIBXI l)\
$(DEPLIBM)

EXTRACCDEPLIBS

CCLDLIBS = $(APP-.CCLDLIBS) $(IV-CCLDLIBS) $(EXTRACCLDLIBS)
IV CCLDLIBS=

$(LIBDIRPAThi)\
$(LDLIBUNIDRAW)\
$(LDLIBGRAPHIC)\
$(LDLIBIV)\
$(XLIB3DIRPATH)\
$(LDLIBXEXT)\
$(LDLIBXI 1)\
$(LDLDBM)\
$(ABSLIBDIRPATH)

EXTRA-CCLDLEBS
APPCCLDLIBS = /usrllocallq3.1.1lgenericlqplib3 .1 .1IIPCITCP/sun4-4Itcps..so

INSTALL = install
INSTPGMFLAGS = -s
INSTBINFLAGS = -m 0755
INSTUIDFLAGS = -m 4755
INSThIBFLAGS = -m 0644
INSTINCFLAGS =-m 0444
INSTMANFLAGS =-m 0444
INSTDATFLAGS =-m 0444

1?NSTKMEMFLAGS = m4755

AR = ar clq
AS = as
CP =cp
CPP = Iliblcpp $(EXTRACCDEFINES)

PREPROCESSCMD = $(CCDRIVER) -E $(EXTRACCDEFINES)
LD = d

LN = In -s
MKDIRHIER = mkdir.hieT

MV=mv

64

RANLIB = ranlib,
RANLEBINSTFLAGS

RM = nn -f
RMCMD = $(RM) ,*.emacs..* *..c *.BAK(*(j(J *.a *.bak *.In *.o aout core errs make.log make.out tags

TAGS
TROFF = psroff

TOP =
CURRENTLDIR

BINDIR = /usrllocailivlbin/$(ARCHl)
CONFIGDIR = /usr/Iocal/iv/config

INCDIR = /usr/localliv/include
LEBDIR = /usrllocal/ivllib/S(ARCH)

LIBALLDIR = fusr/local/ivflib/all
MANDIR = /usrllocal/iv/man

A13SCONFIGDIR = /usr/local/iv/config
ABSLTBDIR = /usr/local/ivilib/$(ARCH)

ABSLIBALLDIR =/usr/localfiv/lib/all
XCOINFGDIR =/usr/lib/X II/config

XINCDIR = /usi [include
XLIBDIR =/usrllib

PSFONTDIR = /usr/fib/ps
TCP-JNC = Iusrflocallq3.1.1/generic/qplib3. 1. 1/IPC/TCP

all::

Makefile::
-ý@ if I -f Makefilej1; then\
$(RM) M akefile.bak. \
$(MV) Makefile, Makefile.bak;\
else exit 0; fi.
$(IMAKE) $(IMAKEFLAGS) -DTOPDIR=$(TOP) -DCURDIR=$(CURReNLýDIR)

Makefiles::
depend::
install::

clean::
@$(RW-CMD) ~#*

*generated by ibmkmf
#***** comm.c must be compiled in C before using this Makefile

SPECL-IAJAKEFLAGS =\
-f Mdbms-imake -s Mdbms-make -DUseInstalled -DTurnOptimizing~n=-0

SRCS = \

common.$(CCStJFFIX)\
ResuIlt.(CCSUFFIX) \
Result-core. $(CCSUFFIX)\
-Dialog-9.$(CCSUFFIX) \
-Dialog-9-core.$(CCSUFFIX)\

65

..Dialog-7.$(CCSUFFIX) \
_Dialog_7-core.S(CCSUFFIX)\
-Dialogll 1.$(CCSUFFIX) \

.Dialog-.. I -core.S(CCSUFFDC)\
MairiMenu.S(CCSUFFIX) \
MainLMenu-core. $(CCSUFFIX)\
-Dialog-1O.$(CCSUFFIX) \
-Dialog_1O-core.$(CCSUFFIX)\
-Dialog_8.S(CCSUFFIIX) \
-Dialog_8-core.S(CCSUFFLX)\
-Dialog- 2.S(CCSUFFIX) \
DPialog_12-core.$(CCSUFFIX) \

Mdbms-main.$(CCSUFFIX)
OBJS = \

comm.o
common.o\
Result~o\
Result-core.o \
..Dialog-9.o \
-Dialog-9-core.o\
-Dialog-7o \
_Dialog_7-core.o \
_Dialog_1 Lo \
-Dialog-j 1-core.o \
MainMenu.o \
MainMenu-core.o\
_Dialog_1O.o\
_DialoglO-core.o \
-Dialog-8..o \
-Dialo&.8-core.o \
.Dialo&.1 2.o \
.Dialogj 2-core.o \

Mdbms-main.o
AQUT = Mdbms.exe

DEPLIBUNIDRAW
DEPLIBIV =
DEPLIBXEXT
DEPLIBX1 I
DEPLIRM =

LIBDIRPATH =-L$(LIBDIR)

LDLIBLJNIDRAW =-lUnidraw
LDLIBIV = -UIV
XLIBDIRPATH
LDLIBXEXT = -IXext
LDLIBX1 1 = -LX I 1
LDLIBM = -lm
ABSLIBDIRPATH=

BACKWARD -CCDEFINES = -Div2_-6_compatible
BACKWARD...CINCLUDES = -I$(INCDIR)/InterViews/2.6 -I$(INCDIR)IIV-look/2.6

PROGRAM = Mdbms

66

all:: S(AOUT)

$(AOUT): $(CCDEPLIBS)
-ý@if [! -w $@]; then $(RM) $@; else exit 0; fi
$(CCDRIVER) $(CCLDFLAGS) -o $@ $(OBJS) $(CCLDLIBS)

install:: $(AOUT)
@ if [Ad $(B INDIR) 1; then exit 0,\

else (set -x; $(MKDIRHIER) S(BMNIR)); fi
$(INSTALL) -c $(INSTPGMFLAGS) $(INSTBINFLAGS) $(AOUT) $(BINDIR)/$(PROGRAM)
S(RM) $(AOLJT)

depend::
$(DEPEND) -s 4 DO NOT DELETE" -- $(DEPENDCCFLAGS) -- $(SRCS)

S(AOUT): common.o
common.o: common.$(CCSUFFDC)

@$(RM) common.o common..c
S(CCDRIVER) S(CCFLAGS) -c common.S(CCS UFFIX)

$(AOtJT): Mdbms-main.o
Mdbms-main.o: Mdbms-main.S(CCSUFFIX)

@S(RM) Mdbms-main.o Mdbms-main..c
S(CCDRIVER) S(CCFLAGS) -c Mdbms-main.$(CCSIJFFIX)

$(AOUT): f~esult.o
Result.o: R sult.$(CCSUFFIX)

@$(RM) Result.o Result. .c
S(CCL)RJVER) $(CCFLAGS) -c ResuJt.$(CCSUFFJ.X)

$(AOUT): Result-core.o
Result-cot-o.: Result-core.$(CCSUFFIX)

@$(P NI) Result-core.o Result-core..c
$(CCLRIVER) $(CCFLAGS) -c Result-core.$(CCSUFFIX)

$(AOUT): ýDialog9.o
-Dialog-.S.): _Dialog-9.S(CCSUFFIX)

@$(F MI) -Dialog-9.o ...Dialog-9..c
$(CC!)RIVER) $(CCFLAGS) -c _Dialog_.9.S(CCSUFFIX)

S(AOLJT): -Dialog_9-core.o
-Dialog_.9-,;ore.o: _DialoL_9-core.S(CCSUFFIX)

@$SR,14) _DialoL_9-core.o ...DialoL9-core..c
$(CC ')RIER) S(CCFLAGS) -c _Dialog_9-core.$(CCSUFFIX)

$(AOUT): -.Dialog-7.o
...Dialog-7.o: _.Dialog-7.S(CCSLJFFIX)

@$(RM) -Dialog-7.o ..Dialog7. .c
S(CCDRIVER) S(CCFLAGS) -c _Dialog_7.$(CCSUFFIX)

$(AOUT): _Dialog_7-core.o
.Dialog-7-core.o: ..Dialog-7-core.S(CCSUFFJX)

@$(RM) ..Dialog-7-core.o -Dialogj7-core. .c
$(CCDRIVER) S(CCFLAGS) -c _Dialog_7-core.$(CCSUFFIX)

67

$(AOUT): _Dialogjl Lo
-Dialog)I Lo: ..Dialog-1 1 .S(CCSUFFIX)

@$(RM) Dialog~ll.a -Dialog-IlI..c
$(CCDRIVER) S(CCFLAGS) -c-Dialog~l l$(CCSUFFIX)

$(AOUT): _Dialog)l I-core.o
-Dialog) I -core.o: _Dialogl 1 -core.S(CCSUFFIX)

@$(RM) _.Dialogj 1 -core.o -Dialog-l i-core..c
$(CCDRIVER) $(CCFLAGS) -c _Dialog_ IlI-core.$(CCS UFFIX)

$(AOIJT): MaintMenu.o
MaintMenu.o: MainiMenu.$(CCSUFFIX)

@$(RM) MainMenu.o MainMenu..c
$(CCDRIVER) S(CCFLAGS) -c MaintMenu.S(CCSUFFIX)

$(AOUT): MaintMenu-core.o
MainMenu-core.o: MainMenu-core.$(CCSUFFIX)

@S(RM) MainMenu-core.o MainMenu-core. .c
$(CCDRIVER) $(CCFLAGS) -c MairiMenu-core.S(CCSUFFIX)

$(AOUT): -Dialog_1O.o
-Dialoo-lO.o: -Dialog_ O.$(CCSUFFHX)

@$(RM) _Dialog_1O.o _Dialog-IO..c
$(CCDRIVER) $(CCFLAGS) -c _Dialog_ IO.$(CCSUFFIX)

$(AOUT): ..DialoglO-core.o
-Dialog -O1-core.o: -Dialog_ O-core.$(CCSUFFIX)

@$(RMv) .ýDialog-1O-core.o -Dialog- IO-core..c
$(CCDRIVER) $(CCFLAGS) -c _Dialog_1O-core.S(CCSUFFDC)

$(AOtJT): .Dialog_8.o
-Dialog-8.o: -Dialog..8.$(CCSUFFTX)

@S(RM) _Dialog_8.o -Dialog-8..c
$(CCDRIVER) $(CCFLAGS) -c -Dialog-8.S(CCSUFFIX)

$(AOUT): -Dialog_8-core.o
.Dialog-8-core.o: -Dialog_8-core.$(CCSUFFDC)

@S(RM) _Dialog_8-core.o _Dialog_8-core..c
S(CCDRIVER) S(CCFLAGS) -c ..PialoL_8-core.$(CCSUFFIX)

$(AOUT): ..Dialog_12.o
-Dialog-12.o: -Dialog-12.S(CCSUFFIX)

@$(RM) _Dialog_12.o -Dialog-12..c
$(CCDRIVER) $(CCFLAGS) -c _.Dialog- I2.S(CCSUFF'DC)

$(AOUT): _Dialog_12-core.o
-Dialog-l2-core.o: -Dialog_ 2-core.S(CCS UFFX)

@$(RM) _.Dialog_12-core.o _Dialog-12-core..c
S(CCDRIVER) $(CCFLAGS) -c jDialogl2-core.$(CCSUFFIX)

#DO NOT DELETE

common.o: common.h
Result.o: lusrllocallivfincludellV.Iook/2.6/ThterViews/strbrowser.h

68

Result.o: /usrIlocal/ivfincludeIInterViews/2.6/InterViews/interactor.h
Result.o: /usrllocallivftncluide/InterViews/enter-scope-h
Result.o: /usr/locai/iv/incltude/InterViewsfiv.h
Result.o: /usr/local/iv/includeflnterViews/-defmnes.h
Result.o: /usrllocal/ivfincludellnterViews/2.6/-enter.h
Result.o: /usr/loca~livfinclude/InterVicws/2.6/_names.h
Result.o: /usrllocailivfinclude/OS/os.b
Result.o: /usr/local/iv/includeflnterViewslboolean.h
Result.o: /usr/llcal/ivfinclude/InterViews/Coord.h
Result.o: /usrllocailiv/include/InterViews/geometry.h
Result.o: /usr/locailivhnclude/OS/math.h
Result.o: /usr/localj'iv/includelOSfenter-scope.b
Result.o: /usrflocal/iv/include/OS/-defines.h

* Result.o: /usrllocal/ivhinclude/InterViews/_enter.h
Result.o: /usrflocai/iv/i~nclude/lnterViews/_namnes.h
Result.o: /usrllocal/ivfinclude/InterViews/_leave.h
Result.o: /usrllocallivlinclude/InterViews/glyph.h
Resuit.o: /usr/Iocal/iv/i~nclude/InterViews/resource.h
Result~o: /usrllocal/ivlinclude/InterViews/2.6llnterViews/alignment.h
Result.o: /usrllocal/ivlincludeflnterViews/2.6/_Ieave.h
Result.o: /usrIlocal/ivfincludeIInterViews/2.6IlnterViews/minmax h,
Result.o: /usr/Iocal/iv/include/InterViews/2.6flnterViews/textstyle.h
Result.o: fusrllocal/ivftnclude/IV-Iook/2.6flnterViewslbutton.h
Result.o: /usr/tocal/ivfhncludellnterViews/2.6/InterViews/subject.h Result~h
Result~o: Result-core.h /usrflocat/iv/include/IV-Iook/2.6/InterViews/dialog.h
Result.o: /usrllocal/iv/i~ncludeflnterViews/2.6flnterViews/scene.h
Resuft.o: common.h -Dialog-9.b
Result-core.o: /usT/Iocal/iv/i~nclude/TnterViews/Canvas.h
Result-core.o: /usr/Iocal/iv/iýnclude/InterViews/boolean.h
Result-core.o: /usr/IocaI/ivfinclude/TnterViews/enter-scope.h
Result-core.o: /usr/Iocai/iv/include/InterViews/i~v.h
Result-core.o: /usr/Iocal/ivfinclude/InterViews/-defines.h
Result-core.o: /usrflocallivfinclude/InterViews/2.6/-enter.h
Result-corc~o: /usrllocallivfinclude/TnterViews/2.6/_names.h
Result-core.o: /usr/iocal/ivfinclude/OS/os.h
Result-core.o: /usrflocal/iv/i~nclude/lnterViews/Coord.h
Result-core.o: /usr/Iocalliv/i~nclude/InterViews/-enter.h
Result-core.o: /usr/locaViv~include/TnterViews/-naines.h
Result-core.o: /usr/localj'iv/i~nclude/InterViews/jleave.h
Result-core.o: /usr/Iocal/iv/i~nclude/InterViews/2.6llnterViews/painter.h
Result-core.o: /usr/Iocallavfincltide/InterViewslresource.h
Result-core.o: /usr/locallivfinclude/InterViews/2.6/nterViews/textstyle.b
Result-core.o: /usr/Iocal/iv/i~nclujde/InterViews/2.6/-Ieave.b
Result-core.o: /usr/local/iv/i*ncludeflnterViews/Sensor.h
Result-core.o: /usr/locai/ivlinclude/InterViews/eventh
Result-core.o: /usr/Iocal/ivAncludeflnterViews/2.6flnterViews/box.h
Result-core.o: /usr/locaI/ivfinclude/TnterViews/2.6flnterViews/scene.h
Result-core.o: /usr/Iocal/ivfinclude/InterViews/2.6/InterViews/interactor.h

* ~Result-core.o: /usr/IocaI/ivfincludeflnterViews/geometry.h
Result-core.o: /usr/Iocal/ivfinclude/OS/math.h
Result-core.o: /usrllocal/ivfincludelOS/enter-scope.h
Result-core.o: /usr/Iocal/ivfinclude/OS/dAefines.h
Result-core.o: /usrllocal/ivfinclude/TnterViews/glyph.h
Result-core.o: /usrllocai/ivfinclude/InterViews/2.6flnterViews/alignment.h
Result-core.o: /usr/Iocailivlinclude/InterViews/2.6/ThterViews/minmax.h

69

Result-core.o: /usr/locai/ivfinclude/IV-Iook/2.6/InterViews/frame.h
Result-core.o: /usr/locai/ivfinclude/InterViews/2,6/InterViews/message.h
Result-corc.o: /usrilocalivfinclude/IV-Iook/2.6llnterViews/strbrowser.h
Result-core.o: /usr/locailivftnclude/IV-Iook/2.6/lnterViews/button.h
Result-core.o: /usrllocailivfinclude/TnterViewsl2.6/lnterViews/subject.h
Result-core.o: /usr/llcai/ivfinclude/IV.Iook/2.6flnterViews/adjuster.h
Result-coreco: /usr/Iocal/ivfinclude/IV-Iook/2.6flnterViews/scroller.h
Result-core.o: /usrflocai/ivftnclude/lnterViews/2.6/InterViews/glue.b
Result-core.o: /usr/Iocailiv/includeflnterViews/2.6llnterViews/shape.h
Result-core.o: /usrllocallivfinclude/InterViewsl2.6llnterViews/perspective.h
Result-core.o: Result.b Result-core.h
Result-core.o: /usr/local/iv/includellV-Iook/2.6/InterViews/dialog.h
_Dialog-9.o: /usr/loca~liv/include/IV.Iook/2.6/TnterViews/button.h
_Dialog-9.o: /usr/localrtv/include/bflerViews/2.6llnterViews/interactor.h
_Dialog-9.o: /usr/localfiv/uiclude/InterViews/enter-scope.h
_Dialog-9.o: fusr/Iocalfiv/include/ThterViews/iv.h
_DialoL-9.o: /usrflocal/iv/includeflnterViews/dOefines.h
-Dialog-9.o: /USrflocalliv/include/lnterViews/2.6/_enter.h
_DialoL-9.o: /usr/local/iv/include/TnterViews/2.6/-namnes.h
_DialoL-9.o: fusrllocalliv/include/OS/0s.h
..Dialog-9.o: /usr/local/ivfinclude/InterViews/boolean.h
-Dialog-9.o: /usr/localfiv/includeflnterViews/coord.h
-Dialog-9.o: /usrllocalliv/includeflnterViews/geometry.h
..Dialog-9.o: /usrllocallivuinclude/OS/math.b
_Dialog-9.o: /usr/Iocalfiv/include/OS/enter-scope.h
_DialoL-9.o: /usr/Iocalfiv/include/OS/-defines.h
-Dialog..9.o: /usrllocalliv/include/ThterV iews/e.n ter. h

_Dialog..9.o: /usrllocalfiv/includeflnterViews/_names.h
_Dialog-9.o: /usr/Iocalfiv/includeflnterViews/_Ieave.h
.Dialog_9.o: /usr/localliv/includellnterViews/glyph.h

_Dialog-9.o: /usrllocalfiv/include/InterViewsfresource.h
_Dialog-9.o: /usrllocalfiv/include/InterViews/2.6flnterViews/alignment.h
_ýDialog.3.o: /usr/Iocalfiv/includeltnterViewsl2.6/_Ieave.h
_DialoL-9.o: /usr/Iocalfiv/include/InterViews/2.6/TnterViews/Minmnax.h
_Dialog-9.o: /usr/localfivfincludellnterViews/2.6flnterViews/textstyle.h
..Dialog-9.o: /usr/Iocalfiv/include/InterViews/2.6/InterViews/subject~h
_DialoL-9.o: /usr/locallivfincludelNV-Iook/2.6flnterViews/strbrowser.h
_Dialog-9.o: /usr/IocalfivuincludeflV-Iook/2.6/InterViewsftexteditor.h
..Dialog-9.o: /usr/Iocal/iv/include/InterViews/2.6/InterViews/textbuffer.h
_Dialog-9.o: /usr/localliv/includellV-IookI2.6/IncerViews/dialog.h
-DialoL-9.o: /US/llOCalliv/include/lnterViews/2.6flnterViews/scene.h
_DialoL-9.o: -DialoL-9.h ..Dialog-9-core.h Result~h common.h MainMenu.h
_Diatog-.9.o: -DialoL-7.h ...Dialo&..8.h -Dialog-IO.h -Dialogl 2.b -Dialoo-l .b
_Dialog-9-core.o: fusr/Iocal/iv/inciude/InterViews/canvas.h
_DialoL-9-core.o: /usrllocalfiv/includellnterViewslboo lean. h
.DialoL-9-core.o: /usr/Iocailiv/include/InterViews/enter-scope.h

_Dialog-9-core.o: /usrllocalfiv/include/InterViews/iv.h
-Dialog-9-core.o: /usr/Iocal/iv/include/InterViews/dOefines.h
-Dialog-9-core.o: /usr/localfivfinclude/InterViews/2.6/-_enter.h

_Dialog-9-core.o: /usr/1ocalfiv/includellnterViewsf2.6/-names.h
.Dialogi-core.o: /usrAocalfiv/include/OS/os.h

..Dialog-9-core.o: /usr/localfiv/include/TnterViews/coord.h
-Dialog-9-core.o: /usr/local/iv/include/InterViewsf-enter.h
.Dialogj.-core.o: /usr/Iocalfiv/include/InterViews/-.names.h
-Dialog-9-core.o: /usr/Iocalliv/include/InterViews/_Ieave.h

70

...Pialog_9-core.o: /usr/local/iv/includeflnterViews/2.6/InterViews/pain ter. h
-Dialog_.9-core.o: /usr/Iocalfiv/includeflnterViews/resource.h
-Dialog-9-core.o: /usr/llcalfiv/include/InterViews/2.6/InterViews/textstyle.h
-Dialog-9-core.o: /usr/IocaIfiv/includellnterViews/2.6/jIeave.h
-Dialog-9-core.o: /usr/localfiv/includeflnterViews/sensor.h
-Dialog..9-core.o: /usrflocailiv/include/InterViewsfevent~h
-Dialog-9-core.o: /usr/Iacal/iv/includellnterViews/2.6/InterViews/box.h
.Dialog-9-core.o: /usr/localliv/includellnterViews/2.6llnterViewsfScene.h
-Dialog-9-core.o: /usr/Iocailiv/includellnterViews/2.6flnterViews/interactor.h
.Dialog_9-core.o: /usr/tocaIfiv/include/InterViews/geometry.h
-Dialog-9-core.o: /usr/!ocalfiv/include/OS/math.h
-Dialog_9-core.o: /usr/Iocalliv/includelOS/enter-scope.h
.Dialog3-9-re.o: /usr/Iocal/iv/include/OS/-defines.h
-Dialog_9-core.o: /usr/Iocal/iv/include/InterViews/glyph.h
.Dialog-9-core.o: fusrflocalliv/include/InterViews/2.6/InterViews/alignment~h
-Dialog-9-core.o: /usrllocalfiv/include/InterViews/2.6/lnterViews/Mininax.h
-Dialog-9-core.o: /usrllocalfiv/includeflV-Iook/2.6/InterViews/frame.h
-Dialog..9-core.o: fusr/Iocalliv/include/InterViews/2.6/InterViews/message.h
-Dialog-9-core.o: /usr/localliv/includeflnterViews/2.6/InterViews/glue.h
.Dialog-9-core.o: /usr/Iocalfiv/include/InterViews/2.6/InterViews/shape.h
-Dialog-9-core.o: fusr/Iocalliv/include/WV-IookI2.6/lnterViewslbutton.h
-Dialog-9-core.o: /usr/Iocalfiv/include/InterViews/2.6/InterViews/subject~h
-Dialog-9-core.o: fusr/Iocallivfinclude/IV-Iook/2.6/lnterViews/border.h
-Dialog-9-core.o: /usrllocalfiv/includellnterViews/2.6/lnterViews/scene.h
-Dialog..9-core.o: /usr/Iocalfiv/include/InterViews/2.6llnterViews/shape.h
-Dialog-9-COre.o: /usr/Iocalliv/includeflV-look/2.6/InterViews/strbrowser.h
.Dialog-9-core.o: /usr/localriv/includeflV-Iook/2.6/lnterViews/adjuster.h
-Dialog-9-core.o: /usrllocallivfincludeflV-Iook/2.6/InterViews/Scroller.h
-Dialog_9-core.o: /usr/Iocaffiv/uiclude/lV-Iook/2.6/!nterViews/texteditor.h
-Dialog..9-core.o: /usr/Iocal/iv/include/InterViewsf2.6/InterViews/textbuffer.h
-Dialog-9-core.o: /usr/Iocal/iv/include/TnterViewsf2.6/InterViews/perspective.h
-Dialog-9-core.o: -Dialog-9.h -Dialog-9-core.h
.Dialog-9-core.o: /usrflocalfiv/include/TV-IookI2.6flnterViews/dialog.h
.DialogjTo: /usrllocalliv/includeflV-IookI2.6/InterViews/texteditor.h
.Dialog-7.o: /usrllocalfiv/include/InterViews/2.6/InterViewsfmteractor.h
.Diatog-7.o: /usrflocalfiv/includeflnterViews/enter-scope.b
.Dialog-7.o: /usr/Iocalfiv/include/lnterViews/iv.h
.Dialog-7.o: /usrllocalfiv/include/InterViews/-defines.b
.Dialog-7.o: /usrflocalfiv/include/InterViews/2.6/-enter.h

..Dialog-7.o: /usr/Iocalfiv/include/InterViews/2.6/-names.b

..Dialog-7.o: /usr/Iocalfiv/include/OSfos.h
-Dialog-7.o: /usr/Iocal/iv/include/InterViewsfboolean.h

..Dialog-7.o: /usr/tocalfiv/include/InterViews/coord.h
-Dialog-7o: /usr/Iocalfiv/include/InterViewsfgeometry.h
-Dialog-7.o: /usr/Iocal/iv/include/OSfMath.h
-Dialog-7.o: /usr/Iocal/iv/include/OS/enter-scope.h
-Dialog-7.o: /usrflocalfiv/uiclude/OS/-defines.b
.DialoL-7.o: /usr/localliv/include/InterViews/e.Pnter.b
.Dialog_7.o: /usrflocalliv/include/InterViews/_names.h
-Dialog_..7o: /usrllocalliv/includebInterViews/jleave.h
.Dialog-7.o: /usrf~oca1/iv/include/InterViews/glyph.h
.Dialog-7.o: /usrllocalfiv/includeflnterViews/resource.h
.Dialog-7.o: /USr/localfiv/includeflnterViews/2.6/InterViews/alignmenLh
.Dialog-7.o: /usr/Ioca~liv/includellnterViewsf2.6/lIeave.h
-Dialog-7.o: /usrllocalfiv/includellnterViews/2.6llnterViews/mimnax.h

71

-Dialog-7.o: /usr/Iocalliv/include/InterViews/2.6flnterViews/textstyle.h
..Dialog-7.o: /usr/Iocalliv/include/InterViewslZ.6/InterViews/t~extbuffer.h
.Dialog-7.o: /usrflocalfiv/includellV-look/2.6/InterViews/button.h
.Dialog-7.o: /usr/loca~liv/includelgnterViews/2.6/InterViews/subjecLh

.. Dialog-7.o: -Dialog_7.h ..Dialog-.7-core.h
.Dialog-7.o: /usr/localliv/includellV-IookI2.6/InterViews/dialog.h
-Dialog-.7.o: /usr/IocaIfiv/include/InterViews/2.6/InterViews/scene.h
-Dialog-7-core.o: /usr/Iocal/iv/includeflnterViews/canvas.h
-Dialog-7-corc.o: /usrllocalfiv/include/InterViews/boolean.h
-Dialog.7-core.o: /usr/IocalfivfincludellnterViews/enter-scope.h
-Dialog-7-core.o: /usr/Iocal/iv/includeflnterViews/iv.h
-Dialog-7-core.o: /usr/locailiv/include/InterViewsj..deines.h
-Dialog-7-core.o: /usr/Iocalfiv/include/InterViews/2.6/-enter.h

.. Dialog.7-core.o: fusr/Iocalliv/include/InterViews/2.6/-naznes.h
-Dialog-7-core.o: /usr/localfiv/includefOSfos.h
-Dialog_7-core.o: /usr/Iocalfiv/includeflnterViews/coord.h
-Dialog-7-core.o: /usrllocalfiv/includeflnterViews/e.nter.h

.. Dialog-7-core.o: /usr/localliv/includeflnterViews/-.names.h
-Dialog..j-core.o: fusrflocal/i~v/includeflnterViewsfjIeave.h

.. Dialog-7-core.o: /usrIlocalfiv/includeflnterViews/2.6/InterViews/pa~inter.h
-Dialog-7-core.o: /usrflocalfiv/includeflnterViews/resource.h
.Dialog-7-core.o: /usrllocalfiv/include/lnterViewsl2.6/InterViews/t~extstyle.h

..Dialo&..7-core.o: /usr/localfiv/includeflnterViews/2.6/ljeave.h

.. Dialog..j-core.o: /usrllocat/iv/includellnterViews/sensor.h
-Dialog2-7COre.o: /usr/localliv/include/lnterViews/evenLh

.. Dialog-7-core.o: /usr/local/iv/include/InterViews/2.6llnterViews/box.h
-Dialog-7-core.o: /usr/Iocalfiv/includeflnterViews/2.6flnterViews/Scene.h
-Dialog-7-core.o: /usrllocalfiv/include/lnterViews/2.6flnterViewsfinteractor.h
-Dialog-7-core.o: /usr/localliv/include/Tn ter Views/geometry. h

.. Dialog_7-core.o: /usr/Iocal/ivfinclude/OS/math.h
-Dialog-7-core.o: fusr/local/ivfinclude/OS/enter-scope.h
.Dialog-7-core.o: /usrllocal/iv/include/OS/-defines.h

..DialoL-7-core.o: /usrllocal/iv/includellnterViews/glyph.h

..DialoL7-core.o: /usrllocalliv/includellnterViews/2.6/InterViews/alignment~h
-Dialog-7-core.o: /usr/Iocal/iv/includellnterViews/2.6/InterViews/miunmax.h
-Dialog-7-core.o: fusr/Iocalfiv/include/IV-Iook/2.6/InterViews/frame.h
.. DialoL-7-core.o: /usr/localfiv/include/InterViews/2.6/InterViews/glue.b
.Dialog_7-core.o: fusrllocal/iv/includellhterViews/2.6/InterViews/shape.h

..Dialog-7-core.o: /usrllocal/iv/includellnterViews/2.6/InterViews/message.h
.Dialog-7-core.o: /usr/Iocalfiv/includellV-Iook/2.6flnterViews/texteditor.h
-Dialog-7-core.o: /usrllocalfiv/include/InterViews/2.6/InterViews/textbuffer.h
-Dialog-.7-core.o: /usr/Iocalfiv/includellV-Iook/2.6llnterViews/border.h
.Dialog-7-core.o: /usr/localfiv/includellV-Iook/2.6/InterViews/adjuster.h

..Dialog_2-core.o: /usrllocalfiv/includellV-Iook/2.6flnterViews/Scroller.h
-Dialog..j-core.o: /usrllocaldiv/include/IV-Iook/2.6/InterViews/button.h
.Dialog-7-core.o: iusrllocalfiv/include/InterViews/2.6/InterViews/Subject~h

.. Dialog-7-core.o: /usr/Iocalfiv/includellnterVicws/2.6/InterViews/perspective.h

..Dialog-7-core.o: ..Dialog-7.h .Dialog-7-core.h

..Dialog-7-core.o: /usr/loca~liv/includellV-Iook/2.6/InterViews/dialog.h
-Dialogj 1.o: /usr/Iocalliv/include/IV-Iook/2.6llnterViews/button.h

.. Dialog-.. 1.0: /usr/localfiv/include/InterViews/2.6/InterViews/interactor.h
-Dialog~l 1.0: /usr/localfivfmnclude/lnterV iews/enter- scope. h
.Dialog-j Lo: /usrllo'ai/iv/include/InterViewsfiv.h

.. Dialog-j L.o: /usrflocalliv/include/InterViews/-defines.h

..Dialo&.1 1.0: /usrflocalfiv/includellnterViews/2.6/_enter.b

72

_Dialogl 1.o: /usr/localfiv/include/InterViewsl2.6/_names.h
_Dialog-j 1.0: /usr/Iocalfiv/include/OS/os.h
_Dialogl 1 Lo: /usr/localfivuinclude/InterViews/boolean. h
..Dialo&.1 1.o: /usr/localj'iv/includeflnterViews/Coord.h
_Dialogl 1.o: /usr/local/ivfincludeflnterViews/geometry.h
-Dialog- 1.0o: /usrflocalfiv/includelOS/math.h
-Dialog- I1Lo: /usr/localfiv/include/OS/enter-scope.b
_Dialogj 1.o: /usr/local/iv/include/OS/_defines.h
.DialogJ 1.0: /usr/local/iv/includeflnterViews/-_enter.h

_DialogI 1.o: /usr/localfiv/include/InterViews/-names.h
_Dialogj 1.o: /usr/Iocalfiv/include/InterViews/jleave.h
.Dialog 1l.0: /usr/local/iv/includeflnterViews/glyph.h

_Dialog-1 1.o: /usr/localfiv/includellnterViews/resource.h
_Dialogj 1.o: /usr/local/iv/includeflnterViewsl2.6llnterViews/alignment.b
.Dialogj 1.o: /usr/Iocalfiv/include/InterViews/2.6/jIeave.h

_Dialog-.. 1.o: /usrllocalliv/include/InterViewsl2.6llnterViews/minmax.h
_Dialogl 1.o: /usr/Iocalfiv/includellnterViewsl2.6/InterViews/textstyle.h
_Dialog-j 1.o: /usr/Iocalfiv/include/InterViews/2.6llnterViews/subjecth
_Dialogj 1.o: /usr/Iocal/iv/include/IV-IookI2.6flnterViews/strbrowser.h
_ýDialogj 1.o: /uisrllocal/iv/include/IV-IookJ2.6/InterViews/texteditor.h
..Dialog-1 1.o: /usr/localfiv/include/InterViewsf2.6flnterViews/textbuffer.h
_Dialog-j 1.0: .jDialogj 1 .h ..Dialog-I 1 -core.h
_Dialog-j1Lo: ..Dialog-8.h -Dialog-9.h ..Dialog-12.h common.h MaintMenu.h Result~h
_Dialogl 1.o: /usr/Iocal/iv/include/IV-IookI2.6llnterViews/dialog.h
_Dialog-l1.0: /usr/Iocal/iv/include/InterViewsf2.6llnterViews/scene.h
_Dialog-l 1 -core.o: /usr/Iocal/iv/include/InterViews/Canvas.h
_Dialog-j I -core.o: /usrllocalfiv/include/InterViewslboolean.h
-Dialog-j I -core.o: /usrllocal/iv/include/InterViews/enter-scope.h

_ýDialog-j 11 -core.o: /usr/local/iv/include/InterViews/iv.h
.Dialogjl 1 -core.o: /usrflocal/iv/includeflnterViews/-defines.h

.. Dialogjl I -core.o: /usr/Iocal/iv/includeflnterViews/2.6/_.enter.h

..Dialogjl 1 -core.o: /usr/Iocal/iv/include/InterViews/2.6/-names.h
.Dialogj 1 -core.o: /usr/Iocal/iv/include/OS/os.h

_Dialog.1 1 -core.o: /usr/local/i~v/includeflnterViews/Coord.h
-Dialogjl I -core.o: /usr/locat/iv/includellnterViews/-enter.h

_Dialogj 1 -core.o: /usrflocalfiv/includeflnterViews/-names.h
_Dialog~j 1 -core.o: /usrflocalliv/include/InterViews/jleave.h
_Dialog-.. 1 -core.o: /usrflocal/iv/include/InterViews/2.6flnterViews/painter.h
_Dialog-j I -core.o: /usr/Iocalfiv/include/InterViews/resource.h
_Dialog-j I -core.o: /usrllocalfiv/include/InterViews/2.6/InterViews/textstyle.h
_Dialog~j I -core.o: /usr/localfiv/include/InterViews/2.6/jIeave.h
.. Dialog-j I -core.o: /usr/localfiv/include/InterViews/sensor.h
_DialogjI 1 -core.o: /usrllocal/iv/include/InterViews/event.h
-Dialogj II-core.o: /usr/localfiv/include/InterViews/2.6/InterViews/box.h
-Dialog- 11-core.o: /usr/local/iv/include/InterViews/2.6/InterViews/scene.h

..Dialoo-l 1 -core.o: /usr/Iocalfiv/includellnterViews/2.6/hiterViews/interactor.h

.DialogJ 1 -core.o: /usr/Iocailivfinclude/InterViews/geometry.h
_Dialog-j 1 -core.o: /usr/Iocalfiv/include/OSfmath.h
..Dialog... 1 -core.o: /usrllocalfiv/includefOSfenter-scope.h
-.Dialog_ 1 -core.o: /usr/Ioca~liv/include/OS/-defines.h
_Dialogj 11-core.o: /usr/local/iv/includeflnterViews/giyph.h
-.Dialog- 1 -core.o: /usr/Iocal/iv/includeflnterViewsl2.6/InterViews/alignment.h
..Dialogj 11-core.o: fusr/Iocalfiv/includeflnterViews/2.6flnterViews/minmax.h
_Dialog-I 1 -core.o: /usrflocal/iv/includeflV-Iook/2.6llnterViews/frame.h
_Dialogl 1-corc~o: fusr/local/iv/includeflnterViews/2.6/InterViews/message.h

73

..Dialogl I -core.o: /usrflocalfiv/includellnterViewsl2.6flnterViews/scene.h
-Dialog- 1 -core.o: /usr/localfiv/include/InterViews/2.6/Izn erV iews/sh ape. h
-Dialog-l I -core.o: /usr/Iocalliv/include/IV-IookI2.6/lnterViews/button.h

.. Dialog-j 1 -corc.o: fusr/Iocalfiv/includellnterViews/2.6/InterViews/subject~h
-Dialog-l 1 -corc~o: /usr/IocaIfiv/include/InterViews/2.6flnterViews/glue.h
Dialogj 11-core.o: IusrllocallivlincludellnterViewsl2.6llinterViewslshape.h
-Dialog- 1 -core.o: /usrllocalliv/includellV-lookI2.6/InterViews/strbrowser.h
-Dialog- 1 -core.o: /usr/local/iv/include/IV-lookI2.6/InterViewslborder.h
.Dialog-11-core.o: /usr/locafv/include/IV-iook/2.6/InterViews/adjuster.h
-Dialog-j I -core.o: /usr/Iocalfiv/includellV-Iook/2.6flnterViews/Scroller.h
-Dialog-I 1 -coreco: /usr/localliv/include/IV-Iook/2.6/ThterViews/texteditor.h
-Dialog-j 1 -core.o: fusr/Iocal/iv/include/InterViews/2.6/InterViews/textbuffer.b
-Dialog-j 1 -core.o: /usr/Iocal/iv/includellnterViewst2.6flnterViews/perspective.h
-Dialog- 1 -ccore.o: -.Dialog-j 1.h -Dialog- 11 -core.h
-Dialog-j 1 -core.o: /usrflocalfiv/includeflV-Iook/2.6/InterViews/dialog.h
MainMenu.o: /usr/locaL/ivfinclude/W -Iook/2.6flnterViews/button.h
MainMenu .0: /usr/Iocal/ivfiniclude/InterViews/2.6/InterViews/interactor.h
MainiMenu.o: /usr/Iocal/ivfinclude/InterViewsfenter-scope.h
MainMenu.o: /usrflocalliv/i~ncludellnterViews/iv.h
MaintMenu.o: /usrflocal/ivlincludeflnterViews/-deftnes.h
MainMenu.o: /usr/tocal/iv/includeflnterViews/2.6/-enter.h
MaintMenu.o: /usrflocal/iv/i~nclude/InterViews/2.6/narnes.h
MainMenu.o: /usr/Iocalliv/i~nclude/OS/os.b
MainMenu.o: /usr/Iocalliv/i~nclude/InterViewslboolean.h
Mainenu.o: /usr/local/iv/includellnterViews/coord.h
MainMenu.o: /usrllocalliv/includellntcrViews/geometry.h
MainMenu.o: /usrllocal/ivftnclude/OS/matb.h
MainMenu.o: /usr/Iocal/ivfinclude/OS/enter-scope.h
MainMenu.o: /usr/Ioca~livfinclude/OS/-defines.h
MainMenu.o: /usrllocallivfincludellnterViews/-enter.h
MaintMenu.o: /usr/kocal/iv/i~ncludeflnterViews/-nanies.h
MainMenu.o: /usrllocal/iv/i~nclude/InterViews/Ileave.h
Main~enu.o: /usr/Iocal/ivfi~nclude/InterViews/glyph.h
MainMenu .o: /usrllocal/iv/inctude/lnterViewslresource.h
MainMenu.o: /usrllocal/iv/include/InterViewsl2.6/InterViews/aligrnment.h
MainMenu.o: /usr/local/iv/i~ncludeflnterViewsl2.6/-Ieave.h
MainMenu.o: /usrcaViv/i~nclude/InterViews/2.6flnterViews/minmax.h
MainMenu.o: /usr/locailivfinclude/InterViews/2.6/InterViews/textstyle.h
MainMenu.o: IusrllocallivlincludeflnterViewsl2.6llnterViews/subject.h
MainMenu.o: /usrllocal/ivfinclude/IV-IookI2.6flnterViews/texteditor.h
MainMenu.o: /usr/Iocal/ivfi~nclude/lnterViewst2.6/InterViews/textbuffer.h
MaintMenu.o: MainMenu.h MainMenu-core.h
MainMenu.o: -Dialog-9.h -Dialog-iO.h
MainMenu.o: /usr/local/ivfi~nclude/InterViews/2.6/InterViews/scene.h
MainMenu.o: /usr/Ioca]/jvfinclude/TnterViews/window.h
MaintMenu.o: fusr/local/ivhinclude/InterViews/Canvas.h
MainuMenu-core.o: /usr/local/iv/lincludeflnterViews/Canvas.h
MairtMenu.-core.o: /usr/local/ivfincludeflnterViewsfboolean.h
MaintMenu-core.o: /usrflocal/ivfinclude/InterViews/enter-scope.h
MainMenu-core.o: /usrllocailivfinclude/InterViews/iv .h
MainMenu-core.o: fusr/Iocalliv/lincludeflnterViews/-defines.h
MainMenu-core.o: /usrllocal/iv/includeflnterViewsl2.6/-enter.h
MainMenu-core.o: /usr/localliv/includeflnterViews/2.6/_names.h
MainMenu-core.o: /usr/local/ivfincludefOS/0s.h
MaintMenu-core.o: fusr/Iocal/iv/includeflnterViews/Coord.h

74

MainMenu-core.o: /usr/Iocal/iv/includeflnterViews/enter-h
MaintMenu-core.o: /usrflocal/iv/includeflnterViews/-names.h
MaintMenu-core.o: /usr/Iocal/ivfinclude/InterViews/Ieave-h
MaintMenu-core.o: /usr/Iocailiv/includellnterViews/2. 6/In terVi ews/pain ter. h
MaintMenu-core.o: /usrflocal/iv/i~nclude/InterViews/resource.h
MainMenu-core.o: /usr/local/iv/include/InterViews/2.6/InterViews/textstyle.h
MainiMenu-core.o: /usr/Iocal/iv/includeflnterViews/2.6/jIeave.h
MainMenu-core.o: /usr/Iocal/iv/include/InterViews/sensor.h
MairnMenu-core.o: /usr/Iocalliv/include/InterViews/event.h
MainMenu-core.o: /usrflocal/iv/include/IV-IookI2.6/TnterViews/frame.h
MainMenu-core.o: /usr/Iocalliv/includeflnterViews/2.6/InterViews/scene.h
MainMenu-core.o: /usr/Iocalliv/include/'nterViews/2 .6/InterViews/interactor.h
MainMenu-core.o: /usr/Thcalliv/include/TnterViews/geometry.h
MainiMenu-core.o: /usrltocalliv/include/OS/m ath. h
MainMenu-core.o: /usr/Iocaljiv/include/OS/enter-scope. h
MainMenu-core.o: /usr/Iocalliv/include/OS/-defmnes.h
MaintMenu-core.o: /usr/iocal/iv/include/lnterViews/glyph.h
MainMenu-core.o: /usr/ThvaI/iv/include/InterViews/2.6/InterViews/aLigrnment.h
MaintMenu-core.o: /usrflocal/iv/i~nclude/InterViews/2.6/InterViews/minmax.h
MainMenu-core.o: /usrflocal/iv/include/InterViews/2.6/InterViews/box.h
MaintMenu-core.o: /usrflocal/iv/i~nclude/InterViews/2l.6/InterViews/message.h
MaiftMenu-core.o: /usr/Iocal/iv/includeflnterViews/2l.6/InterViews/glue.h
MainMenu-core.o: /usrAocalliv/includeflnterViews,'2.6/InterViews/shape.h
MaintMenu-core.o: /usr/IocaI/iv/include/InterViews/2.6/TnterViews/scene.h
MainMenu-core.o: /usr/tocal/iv/includeflnterViews/2.6/InterViews/shape.h
MainMenu-core.-: /usr/Iocal/iv/includeflV-Iook/2.6/InterViewsfbutton.h
MainMenu-core.o: /usr/Tocal/iv/includefInterViews/2.6/InterViews/subject.h
MainMenu-core.o: /usr/Ioca~IIv/includefTV-look/2.6/InterViews/texteditor.h
MainMenu-core.o: /usr/Iocal/iv/includeflnterViews/2.6/InterViews/textbuffer.h
MainiMenu-core.o: /usr/Iocal/iv/i~ncludeflnterViewsl2.6/InterViews/Perspective.h
Main~enu-core.o: MainMenu.h MainMenu-core.h
MainMenu-core.o: /usr/locailiv/includellnterViews/window.h
-Dialog-.10.o: /usrflocal/iv/includeIIV-Iook/2.6/InterViews/button.h

.Dialog- 0.6: /usrflocal/iv/include/InterViews/2.6/InterViews/interacztor.h
-Dialog-j0.o: /usrllocal/iv/include/InterViews/enter- scope. h
-Dialog-jO.o: /usrllocal/i~v/include/InterViews/i~v.h

.Dialog-IO.o: Iusr/local/iv/include/InterViews/-defines.h

..-Dialog-j0.o: /usrflocal/iv/include/InterViews/2.6/..enter.h
-Dialog-IO.o: /usrllocal/iv/includeflnterViews/2.6/_names.h
-Dialog-IO.o: /usr/localliv/include/OS/os.h
-Dialoo-IO.o: /u sr/local/iv/incl udeflnterV iews/boo lean. h

...Dialog-I0.o: /usr/localfiv/include/TnterViews/Coord.h
-Dialog-JO.o: /usr/local/iv/includeflnterViews/geometry~h

... ialog-jO.o: /usr/Iocal/i~v/includefOS/math.h
-Dialog_10.o: /usrflocalfiv/inciude/OS/enter-scope.h
-Dialog-lO.o: /usr/Iocal/iv/include/OS/_defines.h
-Dialog-IO.o: /usr/Iocal/iv/incl ude/InterV iewsL~en ter. h

.Dialog-j0.o: /usrflocal/ivfinclude/InterViews/-names.h

..Dialog-jO.o: /usrflocal/iv/includeflnterViews/lieave.h
-Dialog-j0.o: /usrflocal/iv/include/InterViews/glyph.h
-Dialog-I0.o: /usrflocal/iv/includellnterViews/resource.h

...Dialog..10.o: /usrllocal/iv/includeflnterViews/2.6/InterViews/alignment.h
.Dialog..10.o: /usrflocal/iv/includeflnterViewsl2.6/_Ieai'e.h

.Dialog-.I 0.o: /usrllocal/iv/incl ude/Int~erV iews/2.6/In ter Views/minmax.h
.Di~ilog... .o: /usrllocal/ivlinclude/InterViews/2.6llnterView~sltextstyle.h

75

-Dialoo-lO.o: /usrflocalliv/includeflnterViews/2.6/InterViewsfsubject.h
,.Dialog-jO.o: _DialogjO.h -.Dialog- O-core.h _Dialog-9.h
-Dialog-1O.o: /usr/localliv/includeflV-Iook/2.6llnterViews/dialog.h
.Dialog_1O.o: /usr/Iocalfiv/includeflnterViews/2.6/lnterViews/scene.h
-Dialog_ IO-core.o: /usrllocalfiv/includeflnterViews/Canvas.h
-Dialog- 1O-core.o: /usr/Iocal/iv/include/InterV iews/baoolean. h
-Dialog_ O-core.o: /usr/Iocalliv/include/InterViews/enter-scope.h
-Dialog-1O-core.o: /usrflocal/iv/uiclude/InterViews/i~v.h
-Dialog- IO-core.o: /usrflocal/iv/include/InterViewsf-defines.h
-Dialog_10-core.o: /usr/localfiv/include/InterViews/2.6/_enter.b
-Dialog_ O-core.o: /usr/IocaIfiv/includeflnterViews/2.6/_names.h
-Dialog- O-core.o: /usr/local/iv/include/OS/os.h
-Dialog- O-core.o: /usr/localfiv/include/InterViews/Coord.b
-Dialog- O-core.o: /usr/Iocal/iv/include/InterViews/-enter.h
-Dialog- O-core.o: /usrllocal/iv/includellnterViews/-names.h
-Dialog- 1O-core.o: /usr/localliv/include/InterViews/lIeave.h
-Dialog- 1O-core.o: /usrflocalfiv/include/TnterViews/2.6/InterViews/painter.h
-.Dialog- IO-core.o: /usrllocalfiv/includeflnterViews/resource.h
-Dialog- O-core.o: /usrflocal/iv/includeflnterViews/2.6/lnterViews/textstyle.h
jDialog-1O-core.o: /usrflocal/iv/include/lnterViews/2.6fjIeave.h
-Dialog- O-core.o: /usr/Iocal/ivfinclude/InterViews/sensor.h
-Dialog- IO-core.o: /usr/Iocal/iv/include/InterViews/event.h
-Dialog- O-core.o: /usrllocalliv/includellnterViews/2.6flnterViewsfbox.h
-Dialog- IO-core.o: fusr/Iocal/iv/include/InterViews/2.6/InterViewsfscene.h
-Dialog- IO-core.o: /usr/Iocalfiv/include/InterViews/2.6llnterViews/interactor.h
-Dialog- IO-core.o: /usrllocaliv/includeflnterViews/geometry.h
-Dialog,_O1-core.o: /usrflocal/i~v/include/OS/math.h
-Dialog_ 1O-core.o: /usr/Iocal/iv/include/OS/enter-scope.h
-Dialog- O-core.o: /usr/local'iv/include/OS/-defines.h
-Dialog- 1O-core.o: /usr/IocaI/iv/include/InterViews/glyph~h
-Dialog- 1O-ccre.o: /usrllocalliv/include/InterViews/2.6/InterViews/alignmern.h
-Dialog- I O-core.o: /usr/Iocal/iv/include/InterViewsl2.6/InterViews/minmax.h
-Dialog- IO-core.o: /usr/local/i~v/includeflV-IookI2.6llnterViews/frame.h
-Dialog- O-core.o: /usrflocal/i~v/include/InterViews/2.6/InterViews/message.h
-Dialog- O-core.o: /usr/Iocal/iýv/include/InterViews/2.6/InterViews/scene.h
-Dialog- IO-core.o: /usrflocalfi~v/include/InterViewsl2.6flnterViews/shape.h
-.Dialog- O-core.o: /usrflocal/iv/include/TV-look/2.6llnterViewslbutton.b
-Dialog- jO-core.o: /usr/local/iv/includefInterViewsl2.6llnterViews/subject.h
-Dialog- O-core.o: /usr/local/i~v/includeflnterViews/2.6/InterViews/glue.h
-Dialog- IO-core.o: /usr/Iocalfiv/uiclude/InterViewst2.6flnterViews/shape.h
-Dialog- IO-core.o: /usrflocal/i*v/include/InterViewsf2.6flnterViews/perspective.h
-Dialog- O-core.o: _Dialog-IO.b -Dialog- IO-core.h
-Dialog- O-core.o: /usr/localfiv/include/IV-Iook/2.6flnterViews/dialog.h
-Dialog-8.o: /usr/Iocalfiv/include/IV-Iook/2.6/TnterViews/texteditor.h
.Dialog-8.o: /usr/Iocal/iv/include/InterViews/2.6/TnterViewsftnteractor.h
.Dialog-8.o: /usr/localliv/include/TnterViews/enter-scope.h
.DialoL-8.o: fusr/Iocal/iv/includellnterViews/iv.h
-Dialog-8.o: /usr/Iocal/iv/include/[nterViews/deines.h
-Dialog-8.o: /usrllocal/iv/includeflnterViews/2.6/-enter.h
-Dialog..8.o: /usr/locaIfiv/uicludeflnterViews/2.6/names.h
-Dialog...8.o: jusrllocallivlincludelOSfos.h
.Dialog-8.o: /USr/Iocalfiv/include/InterV iews/boo lean. h
.Dialog-8.o: /usr/Iocal/iv/includeflnter%'iews/coord.h
.Dialog_8.o: fusrllocalfiv/include/InterViews/geometry.h
-Dialog-8.o: /usrilocalfiv/include/OSfMath.h

76

-Dialog-go: /usrllocal/iv/include/OS/enter-scope.h
-Dialog-8.o: /usr/Iocaljiv/include/OS/-defines.h
ýDialog-g.o: Iusrllocalliv/includellnterV iews/enter.h
-Dialog-8.o: /usr/Iaca~liv/include/InterViews/-names.h
-Dialog..8.o: /usr/Iocaliv/include/InterViews/-jeave.h
.Dialog-8.o: /usr/Iocalliv/includeflnterV iews/glyph.h
-Dialog-8.o: /usrilocal/i~v/includellnterViews/resource.h
.Dialog_8.o: !usr/Iocal/iv/includeflnterViews/2.6/InterViews/alignment~h
-Dialog-8.o: /usr/localfiv/include/InterV iews/2.6/jIeave.h
-Dialog-8.o: /usr/Iocal/iv/include/InterViews/2.6/TnterViews/minmax.h
-Dialog-8.o: /usr/locaLriv/include/InterViews/2.6/InterViews/textstyle.h
-Dialog-8.o: /usr/localliv/include/InterViews/2.61!nterViews/textbuffer.h
-Dialog..8.o: /usrflocal/i~v/includellV-IookI2.6/InterViews/button.h
-Dialog-8.o: /usr/localfiv/include/InterViews/2.6/InterViews/.subject.h
-Dialog-8.o: -Dialog..8.h -Dialog-8-core.h
-Dialog-8.o: -Dialog..9.h -Dialog-j 1 h MainMenu.h common.h
-Dialog-8.o: /usr/Iocal/i~v/include/IV-IookI2.6/lnterViews/dialog-h
-Dialog-8.o: /usrflocal/iv/include/InterViews/2.6flnterViews/scene.h
-Dialog-8-core.o: /usr/Iocal/iv/include/InterViews/canvas.h
.Dialog...8-core.o: /usr/Iocalfiv/includellnterViews/boolean.h
.Dialog-8-core.o: /usr/Iocal/iv/include/InterViews/enter-scope.h
-Dialog-8-core.o: /usr/local/iv/include/1n ter Views/iv.h
.Dialog-8-core.o: /usr/1ocal/iv/includellnterViews/_defines.h
-Dialog-8-core.o: /usr/local/iv/include/TnterViews/2.6/-enter.h
.Dialog-8-core.o: /usr/Iocal/i~v/include/lnterViews/2.6/-names.h
.Dialog..8-core.o: /usr/Iocalfiv/include/OS/os.h
-Dialog-8-core.o: /usr/localfivfinclude/InterViews/coord.h
-Dialog..8-core.o: /usr/local/iv/includelInterViews/_!enter.h
-Dialog-8-core.o: /usr/localliv/include/InterViews/_names.h
-Dialog..8-core.o: /usr/Iocalfiv/includeflnterViews/_jeave.h
.Dialog-.8-core.o: /usr/Iocal/iv/includ (InterViews/2.6/InterViews/painter.h
-Dialog-8-core.o: /usrllocalfiv/includejlnterViews/resource.h
-Dialog..8-core.o: /usrllocal/i~v/include/InterViews/2.6flnterViews/textstyle.h
-Dialog-8-core.o: /usr/local/i~v/includeflnterViews/2.6/-jeave.h
-Dialog..8-core.o: /USr/localfi~v/includeflnterViewsfsensor.h
-Dialog..8-core.o: /usr/local/i~v/includeflnterViews/event.h
-Dialog-8-core.o: /usr/local/iv/includeflnterViews/2.6flnterViews/box.h
-Dialogj-core.o: Iusr/local/iv/includellnterViews/2.6llnterViews/scene.h
.Dialog-8-core.o: /usr/Iocalliv/include/lnterViews/2.6/InterViews/interactor.h
-Dialog-8-core.o: /usrflocal/iv/includeflnterViews/geometry.h
-Dialog-8-core.o: /USrflocalfivfinclude/OS/math.h
-Dialog-8-core.o: /usr/Iocal/iv/include/OS/tnter-scope.h
-Dialog-8-co-- n~: /I'sr/!ocaL1'ivlincludelOS/-deflnes.h
.Dialog-8-core.o: /usrllocal/iv/includellnterViews/glyph.h
.Dialog-8-core.o: /usrllocalfiv/includeflnterViews/2.6/lnterViews/alignment.h
-Dialog-8-core.o: /usr/localfiv/includellnterViews/2.6/lnterViews/Mirnmax.h
-Dialog8g-core.o: /usr/localfiv/includefWV-Iook/2.6flnterViews/frame.h
-Dialog-8-core.o: fusr/Iocalfiv/includeflnterViews/2.6/TnterViews/message.h
.Dialog-8-core.o: /usrllocal/iv/includelWV-look/2.6/InterViewsftexteditor.h
-Dialog..8 coreco: /usr/local/iv/include/Inte-Views/2.6flnter''liews!textbuf'fer.h
.Dialog..8-core.o: /uisr/local/i~v/include/Intei Views/2. 6/Inzerý'iews/Scene.h
.Dialog-8-core.o: /usr/localfiv/includefln ter *;iews/2.6/InterViews/shape.h
.Dialog-8-core.o: /usr/localfiv/include/WV-IookI2.6flnterViewsflbutton.h
.Dialog-8-core.o: /USr/Iocal/iv/include/ThterViews/2.6/lnterViews/subject.h
.Dialog-8-core.o! /usr/Iocalfiv/include/IntE rViews/2.6/InterViews/glue.h

77

-DialoL-8-core.o: fusrllocalliv/includellnterViews/2.6/InterViews/shape.h
.Dialog-g-core.o: /usr/Iocal/iv/includeflnterViews/2.6/InterViews/Perspective.h
.Dialog-8-core.o: ..Dialog_8.h _Dialog-8-core.h
.Dialog-8-core.o: /usr/localfiv/includeflV-IookI2.6flnterViews/dialog.h

.Dialog-l2.o: /usr/Iocal/iv/include/IV-Iook/2.6/InterViews/button.h
.Dialog-12.o: /usr/localiv/include/InterViews/2.6flnterViews/interactor.h
-Dialog-12.o: /usr/local/iv/include/InterViews/enter-scope.h
.Dialog-12.o: /usr/Iocal/i~v/include/InterViewsfiv.h
-Dialog-12.o: /usr/Iocal/i~v/include/InterViews/-defines.h
.Dialog-12.o: /usrflocal/i~v/includeflnterViews/2.6/_.enter.h
-Dialog-12.o: /usrflocal/iv/includeflnterViews/2.6/-names.h
-Dialog-12.o: /usr/Iocalfiv/include/OS/os.h
.Dialog_12.o: /usr/localliv/includellnterViews/boo lean. h
.Dialog-12.o: /usrflocal/i~v/include/InterViews/Coord.h
-Dialog-12.o: /usrflocalliv/includeflnterViews/geometry.h
.Dialog-12.o: /usr/Iocalfiv/include/OS/math.h
-Dialog-12.o: /usr/Iocal/iv/include/OS/enter-scope.h
.Dialog-j 2.o: /usrllocal/iv/include/OS/jlefines.h
.Dialog-12.o: /usr/localfiv/include/InterViews/-enter.h
-Dialog-j 2.o: /usr/localfiv/include/InterViews/-names.h
,Dialog-12.o: /usrflocalfi~v/include/InterViews/-Ieave.b
.Dialogj12.o: /usr/Iocalfiv/include/InterViews/glyph.h
-Dialog-12.o: /usrllocal/iv/include/InterViews/resource.h
.Dialog-12.o: /usr/loca/i/v/include/InterViews/2.6/InterViews/alignment.h
-Dialog-12.o: /usr/Iocal/iv/include/lnterViews/2.6/_Ieave.h
-Dialog-12.o: /usrflocalfiv/include/InterViewsl2.6flnterViews/minmax.h
.Dialogj12.o: /usrfocalliv/include/InterViews/2.6flnterViews/textst yle.h
.DialogI 2.o: /usrflocal/iv/include/InterViews/2.6/InterViews/subject~h
-Dialog. 12.o: /usrflocal/iv/include/InterViews/2.6flnterViewsfscene.h
-Dialog-12.o: -Dialog-12.h -Dialog- 12-core.h
'Nalog-12.o: -Dialog-9.h -Dialogj I .h common.h

- og_12.o: /usr/IocalfivlincludeflV-IookI2.6flnterViews/dialog.h
-Dialog-12.o: /usr/local/i~v/include/InterViews/2.6/InterViews/scene.h
-Dialog- 12-core.o: /usrfloca.1/iv/uicludeflnterViews/Canvas.h
-Dialog- I2-core.o: /usrflocalfiv/include/InterViews/boolean.h
-Dialog- I2-core.o: /usrllocal/iv/include/interViews/enter-scope.h
-Dialog-. 1 2-coreco: /usrflocal/iv/include/InterViews/iv.h
-Dialog- 2-corc~o: /usrflocallav/include/InterViews/-defines.h
-Dialog- 2-core.o: /usrflocalfiv/include/InterViews/2.6/-enter.h
-Dialog- 2-core.o: Iusr,'ocalfiv/include/InterViewsl2.6/_names.h
-Dialog-. I 2-core.o: /usr/local/ivfinclude/OS/os.h
-Dialog_ I 2-core .o: /usr/Iocalfiv/includellnterViews/Coord.h
-Dialog-. I 2-coremo: /usrflocalliv/iriclude/lnterViews/-enter.h
-.Dialog- 2-core.o: /usrflocalliv/include/InterViews/-names.h

-Dalog- I2-,,o't. o: /usr/Iocalfiv/include/InterViews/jleave.h
-.Dialog- 2-core.o: lusrllocalfiv/includeflnterViews/2.6flnterViews/painter.h
-.Dialog- I2-core.o: /usrflocalfiv/include/TnterViews/resource.h
-Dialog- I2-core.o: /usrflocalliv/include/InterViews/2.6flnterViews/textstyle.h
-Dialog- 2-core.o: /usr/IocaIfiv/include/InterViewsl2.6/jIeave.h
-Dialog_ I 2-core.o: /usr/Iocalfiv/includeflnterViews/sensor.h
-Dialog-I 2-core.o: /usr/Iocal/iv/include/InterViews/event.h
-Dialog- 12-core.o: I.usrflocalliv/includellnterViewsl2.6llnterViewslbox.h
-Dialog_. 1 2-core.o: /usrllocalfiv/include/ItnterViews/2.6flnterViews/scene.h
.Dialog_12-core.o: /usrllocal/iv/includeflnterViewsf2.6JlnteTViews/interactor.h
-Dialog- I2-core.o: /usr/Iocalfiiiinclude/InterViews/geometry.h

78

-Dialog- I2-core.o: /usr/Iocalliv/includefOS/math.h
-Dialog- 2-core.o: /usr/Iocalliv/includeiOS/enter-scope-h
-Dialog- I 2-core.o: /usr/localliv/includeOS/-defines.h
-Dialog- 2-core.o: /usr/local/i~v/includellncerViews/glyph.h
-Dialog- I2-core.o: /usr/localfiv/include/InterViewsl2.6llnterViews/alignment.h
-Dialog-12-core.o: /usr/local/iv/include/InterViews/2.6flnterViews/minmax.h
-Dialog- I 2-core.o: /usr/localliv/include/IV-Iook/2.6/InterViews/frame.h
-Dialog- 2-core.o: /usr/local/iv/include/InterViews/2.6flnterViews/message.h
-Dialog- I2-core.o: /usr/localliv/includellnterViewsl2.6/TnterViewsfscene.h
-Dialog_ I2-core.o: /usr/luca/iv/include/InterViews/2.6/Inter'.'iews/shape.h
-Dialog- I2-core.o: /usrllocal/i~v/include/IV-IookI2.6/lnterViewslbutton.h
-Dialog- I2-core.o: /usr/Iocal/iv/includeflnterViewst2.6llnterViews/subject.h
-Dialog- I2-core.o: /usr/Iocal/iv/include/InterViews/2.6/InterViews/glue.h
-Dialog- I2-core.o: /usrflocalfiv/include/InterViews/2.6llnterViews/shape.h
-Dialog- I2-core.o: /usr/Iocal/iv/include/InterViews/2.6/InterViews/perspective.h
-Dialog-12-core.o: -Dialog-12.h .Dialog-j 2-core.h
-Dialog- I2-core.o: /usrflocalfiv/include!IV-Iook/2.6/InterViews/dialog.h
Mdbms-main 0: /usrflocal/iv/include/Unidraw/Catalog.h
Mdbms-main.o: /usrflocalliv/include/U~nidraw/Classes.h
Mdbms-main.o: /usrflocal/iv/include/UJnidraw/globals.h
Mdbms-main.o: /usrflocalfiv/include/InterViewsl2.6/InterViews/defs.h
Mdbms-main.o: /usrflocalliv/include/InterViews/enter-scope.h
Mdbms-main.o: /usrflocal/ivfinclude/InterViews/iv.h
Mdbms-main.o: /usrflocal/iv/include/InterViews/_defines.h
Mdbms-main.o: /usr/local/i~v/include/InterViews/2.6/-enter.h
Mdbms-main.o: /usrflocalfi~v/include/InterViews/2.6/_names.h
Mdbms-main.o: /usrlocalvfivnclude/OS/os.h
Mdbms-main.o: /usrflocalfivfinclude/InterViews/boolean.h
Mdbms-main.o: /usr/localfivfinclude/InterViews/Coord.h
Mdbms-main.o: /usrllocalliv/include/InterViews/2.6/InterViews/alignment.h
Mdbms-main.o: /usr/local/iv/include/lnterViews/2.6/-Ieave.h
Mdbms-main.o: /usr/local/iv/include/InterViews/2.6flnterViews/textstyle.h
Mdbms-main.o: /usr/Iocalfi~v/include/InterViews/2.6flnterViews/minmax.h
Mdbms-main.o: /usrflocal/iv/include/Unidraw/uformat.h
Mdbms-main.o: /usrflocal/i~v/include/Unidraw/uhash.h
Mdbms-main.o: /usrflocal/iv/include/U~nidraw/umap.h
Mdbms-main.o: /usrflocalfiv/include/Unidraw/uarray.h
Mdbms-main.o: /usrflocal/ivfinclude/LJnidraw/unidraw.h
Mdbms-main.o: /usr/Iocal/iv/include/UJnidraw/Creator.h
Mdbrns-main.o: /usrflocat/ivfinclude/InterViews/Canvas.h
Mdbms-main.o: /usrflocalfiv/include/InterViews/-enter.h
Mdbms-main.o: /usrflocalfiv/include/InterViews/-names.h
Mdbms-main.o: /usr/Iocal/iv/include/InterViews/Ileave.h
Mdbms-main.o: /usr/!ocalfiv/include/TnterViews/2.6llnterViews/painter.h
Mdbms-main.o: /usr/Iocal/iv/include/InterViews/resource.h
Mdbms-main.o: /usr/Iocalfiv/include/TnterViews/sensor.h
Mdbms-main.o: /usr/localfiv/include/lnterViews/event~h
Mdbms-main.o: /usr/Iocalfivfinclude/InterViews/World.h
Mdbms-main 0: /usr/localfiv/include/TnterViews/Session.h
Mdbms-main.o: /usr/localfiv/includeflnterViewsf2. 6/InterViews/perspective.h
Mdbms-main.o: Result.h Result-core.h
Mdbms-main.o: /usrllocalfiv/includeflV-Iook/2.6flnterViews/dialog.h
Mdbms-main.o: /usr/Iocafv/includcflnterViews/2.6/InterViews/scene.h
Mdbms-main.o, /usr/ocal/iv/include/lnterViews/2.6/InterViews/interactor.h
Mdbms-main.o: /usrllocalfiv/include/InterViews/geometry.h

79

Mdbms-niain.o: /usrflocal/iv/mnclude/OS/math.h
Mdbms-main.o: /usr/localliv/include/OS/enter-scope.h
Mdbms-main.o: /usrflocalfiv/include/OS/defines.h
Mdbms-main.o: /usr/Iocalfiv/include/InterViews/glyph.h -Dialog-9.h
Mdbms-main.o: -DiaIog_9-core.h -.DiaIog-7.h -Dialog-7-core.h _DialogI L~h
Mdbms-main.o: _DIaogjl I-core.h MainMenu.h MainMenu-core.h
Mdbms-main.o: /usr/Iocal/iv/include/InterViews/2.6/InterViews/scene.h
Mdbms-main.o: /usr/localfiv/include/lnterViews/Window.h -Dialog-jO.h
Mdbms-main.o: _Dialog-1O-core.h ..Dialog-8.h -Dialog-8-core.h _Dialogl2.h
Mdbms-main.o: _Dialog-12-core.h Mdbms-props
Mdbms-main.o: Result.h Result-core.h .Dialog-l 1 h -Dialog-j I-core.h
Mdbms-main.o: _DialoL-9.h _DialoL-9-core.h _Dialog..7.h .Dialog-7-core.h
Mdbms-main.o: _Dialog-l 1 -core.h MainMenu.h MainMenu-core.h common.h

D. Mdbms-mainxc

HI Module Name: Mdbms-main.c
HI Author : Erhan SARIDOGAN, Metin BALCI
II Date :August 1992
HI The main program for Mdbms.exe
// The MainMenu window is inserted as an X-Window application.
HI Communication is established.
// Database tables are loaded into the interface

#include <Unidraw/catalog.b>
#include <Unidrawlunidraw.h,.
#include <Ilnidrawlcreator.h>
#include <InterV iewslcanvas.h>
#include <InterViews/painter.h>
#include <InterViews/sensor.h>
#include <InterVieWS/WOrld.h,.
#include <InterViews/perspectivebh>
#include <InterViewsl2.6l-enter.h>
#include "_-DialoL7.h"
#include "-Dialog-8.h"
#include "_-Dialo&..9.h"
#include "_Dialog,-O.h"
#include "_Dialog-j 1 h"
#include "_-Dialog-12.h"
#include "MainMenu.h"
#include "Result.h"
#include "common.h"
#include <stdio.h>
#include <string.h>

I/fhese are put by InterViews
static PropertyData properties[)
#include "Mdbms-props"

I nil)

static OptionDesc options(]
(nil)

80

MainMenu* mainmenu;

extern "C" (
initLcomm(char*);
donescommO;

mt main (int argc. char** argv)
H This function is declared in comm.c. It establishes the connection with
I/the other program (implementation dependent)
initmcomm(argv[1 1);

Creator creator;
Unidraw* unidraw = new Unidraw(

new Catalog("/****r', &creator), argc. argv, options, properties);
World* w = unidraw->GetWorldO;

//load the database table and attribute names into qjrec
LoaddbtablesO;

mainmenu = new MainMenu("_instance_1526");

H Insert the application into the X-window environment
w->InsertApplication(mainmenu);
unidraw->Runo;
delete unidraw;

H Disconnection
done-commO;
return 0;

E. MainMenu.h

H Module Name: MainMenu.h MAINMENU
// Author : Erhan SARIDOGAN, Metin BALCI
H Date : August 1992

#ifndef MainMenu_h
#define MainMenu_h

#include "MainMenu-core.h"

class MainMenu : public MainMenucore {
public:

MainMenu(const char*);

virtual void retrievepressedo;
virtual void createtablepressedO;
virtual void inserttuplepressedO;
virtual void modifypressedO;
virtual void deletepressedO;

81

virtual void quitpressedo;

#endif

F. Main Menuxc

IIModule Name: MainMenuxc MAINMENU
IIAuthor : Erhan SARIDOGAN, Metin BALCI

HI Date August 1992
IThis module contains the button implementations. Only the Retrieve button is
IIavailable for this version.

#include <InterViews/button.h>
#include <InterViews/texteditor.h>
#include <InterViews/textbuffer.h>
#include <InterViews/2.6/-enter.h>
finclude <InterVjews/world.h>
#include '<stream .h>
#include <stdio.h>
#include <stdlib.h>
#include "MainMenu .h"
finclude "-Dialog..9.h"
#include "-.Dialog- 1.hV

-Dialog..9* retrievedialog;

-DialoglO* aggregatedialog;

MainMenu::MainMenu(const char* name): MainMenu-core(name) ~

char helpbuffer[200001; HI hepfile.txt is read into this buffer at the beginning

void MaintMenu::retrievepressedo()
H/Two windows are inserted as applications. their positions on the screen are
fl relative to the center of the MainMenu window.
World* ret-world = Get WoridO;
World* aggregate-World = GetWorido;
int value = 0;
retrieveBS->GetValue(value);
if (value !=0)
if (retrievedialog = nil)

retrievedialog = new -Dialog_9("RetrieveDialog");
if (aggregatedialog = nil)

aggregatedialog = new _.Dialog-1I0("AggregateDialog');
mainstatuseditor->SelectAlIo;
mainstatuseditor->DeleteSelectiono;
mainstatuseditor->lnsertText("Retrieve is running...", 23);

Coord x,y;
Align(Center,0.O,x,y);
GetRelative(x~y.ret..World);
ret..world->AnsertTransient(retrievedialog.this.x.y.Center);
aggregate-world->InsertTransient(

aggregatedialog ,this, x+33 5,y+275,Center);
retrieved ialog->DisplayTableso;

82

I/read the helpfile into the buffer in order to display faster
FILE *fptr;
fptr = fopen("helpfile.txt", "r");
int i = 0;
char ch =getc(fptr);
while (ch!= EOF) I
II the length and size of the buffer must be sufficient
I/it can be adjusted in _Dialog_ý7-core.c line 112 , helpeditor

helpbufferlii = ch = getc(fptr);

fclose(fptr);
retrievedialog->DisplayMessage(0);
retrieve B S->SetV al ue(0);

IIThese buttons are not implemented
void MainMenu::createtablepressed()

int value = 0;
createtableBS->GetValue(value);
if (value! 0)
mainstatuseditor->SelectAllO;
mainstatuseditor->DeleteSelectiono;
mainstatuseditor->InsertTexqC* Create Table not implemented ",32)t-

createtableBS->SetValue(0);

void MainLMenu::inserttuplepressed()J
int value = 0;,
inserttupleBS->GetValue(value);
if (value '=0) (
mainstatuseditor->SelectAllo;
mainstatuseditor->DeleteSelectiono;
mainstatuseditor->AnsertText("* Insert Tuple not implemented *,32);

insert tupleB S->SetValue(0);

void MainMenu::modifypressed()I
int value =0;
modifyBS->GetValue(value);
if (value !=0)

mainstatuseditor->SelectAllO;
m ainstatusedi tor->De leteSelect iono;
mainstatuseditor->InsertTextC'* Modify not implemented *,26);

modifyBS->SetValue(0);

void MainMenu::deletepressed()
int value = 0;
delete BS - CetV alue(v alue);

83

if (value !=0) 1
mainstazuseditor->SelectAll();
mainstatuseditor->DeleteSelectionO;
mainstatuseditor->InsertText("* Delete not implemented *", 26);
deleteBS->SetValue(O);

void MainMenu::quitpressedO I
int value = 0;
quitBS->GetValue(value);
if (value != 0) {
cout << "Thank You for Using MDBMS.Mn";
cout.flushO;
quitBS->SetValue(0);
exit(l); //terminate the program

G. _Dialog_7.h

// Module Name: _Dialog.7.h HELP DIALOG
fl Author : Erhan SARIDOGAN. Metin BALCI
H Date : August 1992
H Header file for help dialog.

#ifndef Dialog_7_h
#defmne Dialog_7_h

#include "_Dialog_7-core.h"

class _Dialog. : public Dialog_7core J
public:

_Dialog.7(const char*);

virtual void helpexitpressedo;
virtual void InsertChar(char);
virtual void DeleteTexto;

};

#endif

H. _Dilaog7.c

H Module Name : _Dialog..7.c HELPDIALOG
H Author : Erhan SARIDOGAN. Metin BALCI
/ Date : August 1992
//This module contains the implementations of displaying help window by reading
//the help text from a buffer.

#include <InterViews/texteditor.h>
#include <interViews/textbuffer.h>
#include <InterViews/button h>
#include <InterViews/2.6/_enter.h>

84

#include "_Dialog-7.h"

_DialoLT7::_Dialog_7(const char* name): _Dialog_7_core(name) I)

void -Dialog-7::helpexitpressed0)
mnt value = 0;
helpexitBS->GetValue(value);
if (value!= 0) 1
_BS_I 1->SetValue(1); //BS -- Button State

// This BS# is in -Dialog_7-core.h
helpexitBS->SetValue(0); I

//Inserts a character into the text editor at the position of the cursor
void Dialog_7::InsertChar (char c)

helpeditor->DeleteSelectiono;
helpeditor->InsertText(&c, 1);
helpeditor->ScrollToSelectiono;

//This function clears the text editor to avoid appending
void _Dialog.7::DeleteText 0

helpeditor->SelectAll();
helpeditor->DeleteSelectionO;

I. _Dialog_.8.h

//Module Name : -Dialog.8.h NATURAL LANGUAGE EDITOR DIALOG
H Author : Ethan SARIDOGAN, Metin BALCI
H Date : August 1992
H Header file for natural language dialog. Some functions are added.

#ifndef _Dialcg_8_h
#define -Dialog_8_h

#include "_Dialog_8-core.h"
#include <InterViews/event.h>

class -Dialog_8: public _Dialog_8_core I
public:

_Dialog.8(const char*);

virtual void partialsearchpressed(;
virtual void fullsearchpressedo;
virtual void descripcancelpressedo;

//These functions are added for the editor
virtual void NatLanEditorlnsertChar (char);
virtual void Handle(Event&);

I;

#endif

85

J. Dialog_8.c

H Module Name: _Dialog_8.c NATURALLANGUAGEDIALOG
H Author : Ethan SARIDOGAN, Metin BALCI
/I Date : August 1992
//This module contains the implementations of naturallanguageeditor.
H When this window is displayed, the user can type the description and
//press one of the search types to enter as a condition after the
H keyword MATCHES. When the condition is entered, this text is sent
H/to q-rec. The application can access the field of q-rec or the
// sqlstring (or file) . The user can exit the window without writing
/ anything by pressing the Cancel button.

#include <InterViews/texteditor.h>
#include <InterViews/textbuffer.h>
#include <InterViews/button.h>
#include <InterViews/2.6/_enter.h>
#include <InterViews/world.h>
#include <InterViews/event.h>
#include <ctype.h>
#include <string.h>
#include <iostream.h>
#include <stdio.h>
#include <stdlib.h>
#include "common.h"
#include "MainMenu.h"
#include "_DialogL8.h"
#include "_Dialog_9.h"
#include "_Dialog! I .h"

#define TRUE 1
#define FALSE 0

//make some variables visible
extern _Dialog_9* retrievedialog;
extern _Dialog.ll* buildconditiondialog;
extern _Dialog_8* naturallanguagedialog;
extern TextBuffer* naturallanguagebuffer; //declared in _Dialog_8-core.c

//It is used for using the function, "Text" to get the selected text
extern char searchtypebuf; i/declared in retrievedialog

//This declaration is put by InterViews
_Dialog-8::_Dialog_8(const char* name) : _Dialog8_Lcore(name) {

//The window is exitted when this button is pressed
void _Dialog_8::descripcancelpressedO j

int value = 0;
descripcancelBS->GetValue(value);
if (value != 0) (
descripcancelBS->SetValue(0); //Reset the Cancel button
buildconditiondialog->containsBS->SetValue(O); //Reset th.! Caption buttnn
_BS_40->SetValue(l); H This BS# is in _Dialog_8-core.h
GetWorldo->Remove(naturallanguagedialog);

96

void ..Dialog_8::fuilsearchpressed()

int value = 0;
fullsearchBS->GetValue(value);
if (value != 0)(

//put 'in 'f' for the search type.
I/It can be changed later depending upon the application program
searchtypebuf = ''
HI send the contents to conditioninput editor
char nlb[MAXNATDESCI; I/create a buffer
int len = naturallanguageeditor->Doto; //find the end of text
strncpy(nlb. naturallanguagebuffer->Text(Olcn), len); //opy text
nlb[len = 'NO'; I/add the nullbyte
int i = 0;
I/insert the keyword "MATCHES" into the condition editor
buildconditiondialog->conditioninputeditor->

InsertText(" MATCH-ES'v\n"", 10);
while (nilb[iJ ! WO)
buildconditiondialog->conditioninputeditor->InsertText(&nlb[i], 1);

/fInsert the last quote
buildconditiondialog->conditioninputeditor->InsertText('N"'. I);
fullsearchBS->SetValue(O); //reset buttons
buildconditiondialog->containsBS->SetValue(0);
_BS_40->SetValue(l); // This BS# is in _Dialog8-core.h
GetWorldo->Remove(naturallanguagedialog);

void -Dialog-8::partialsearchpressed()
int value = 0;
partialsearchBS->GetValue(value);
if (value! =0)
searchtypebuf = ''
// send the contents to conditioninput editor
char nlb[MAXNATDESCJ; //create a buffer
int len = nat~urallanguageeditor->Doto:,
stmcpy(nlb, naturallanguagebuffer->Text(0,len), len);
nibileni = "NO';
int i = 0;
buildconditiondialog->conditioninputeditor->AnsertText(" MATCHES\n\"", 10)
while (nilbli] !=NY
buildconditiondialog->conditioninputeditor->AnsertText(&nlb[iI. 1);

/Iinsert the last quote
buildconditiondialog->conditioninputeditor->InsertText('N"', 1);
part ialsearchBS ->SetValue(0);
bu ildco nd itiondialog- >contains BS ->SetValue(0);
_BS_40->SetValue(1); I//This BS# is in -Dialog-8-core.h
GetWorldo->Remove(naturallanguagedialog);

87

//This function provides handling the user keyboard input
//The window mus bu active(the mouse cursor must be on the this window)
//The fuction can eable the user to insert or delete a character.and
I/position the cursor by using the mouse

void ..DialoL-8::Handle(Event& e)I
if (e.eventType =KeyEvent)

if (e.len !=O0)
char c = ekeystringi~l;
switch (c)
case 'I'
case '\177':
if (naturallanguagedialog->naturallanguageeditor->Dot()

naturallanguagedialog->naturallanguageeditor->Marko)
naturallanguagedialog->naturallanguageeditor->DeleteSelectiono;

Ielse naturallanguagedialog->naturallanguageeditor->DeleteText(-l);,
break;

case N1'
naturallanguagedialog->NatLaniEditorlnsertChar('\n');
break-,

default:~
if (!iscntrl(c)) naturallanguagedialog->NatLanEditorlnsertChar(c);
break;,
//lswitch c
//I if (e.len)
HI if (e.event..)

else if (e.eventType = DownEvent)
GetRelative(e.x, e.y. naturallariguagedialog->naturallanguageeditor)
naturallanguagedialog->naturallanguageeditor->
Select(naturallanguagedialog->naturallanguageeditor->Locate(e.x, e.y));

do
naturallanguagedialog->naturallangdiageeditor->Sc-rollToView(e.x, e.y);
naturallanguagedialog-> naturallanguageeditor->
SelectMore(naturallanguagedialog->

naturallanguageeditor->Locate(e.x, e.y));
PoUl(e);
GetRelative(e.x. e.y. naturallanguagedialog->naturallanguageeditor);
Iwhile (e.leftmouse);

//else if
HI Handle function

//Used by Handle to insert a character into the editor
void -Dialog-8::NatLanEditorlnsertChar (char c)j

naturallanguagedialog->naturallanguageeditor->DeleteSelectiono;
naturallanguagedialog->naturallanguageeditor->InsertText(&c, !);
n aturallanguagedialog-> naturallIan guageed itor->ScrollToSe lectiono;

K. _Dialog 19Q.h

// Module Name: -Dialog-9.h RETRIEVE DIALOG
IIAuthor : Erhan SARIDOGAN, Metin BALCI
IIDate :August 1992

HI Header file for retrieve dialog. Some member functions were added.

88

#ifndef Dialog_9_h
#define _Dialog_9_h

#include '°Dialog_9-core.h"

class _Dialog_9 : public Dialog_9_core
public:

_Dialog_9(const char*);

virtual void returntomainmenupressedO;
virtual void helppressedo;
virtual void buildconditionenteredO;
virtual void clearquerypressedO;
virtual void processquerypressedO;
virtual void nextpressedO;
virtual void cancelpressedo;
virtual void enterpressedO;
virtual void tableselectedO;
virtual void attributeselectedO;

//These member functions were added
virtual void DisplayAttributes(int);
virtual void DisplayTablesO;
virtual void DisplayMessage(int);
virtual void ClearBuffero;
virtual void CreateSqlFileO;
virtual void SetProcessQueryButton(int value);

#endif

L. _Dialog_9.c

fl Module Name: _Dialog_9.c RETRIEVEDTALOG
H Author : Erhan SARIDOGAN, Metin BALCI
H Date : August 1992
// This module contains the implementations of buttons, browsers and editors.
H/The query is constructed using this window by mouse selections.
H/The condition dialog box is activated by pressing the Build Condition button.

// The Query Summary display is a passive editor like the message editor.

#include <InterViews/button.h>
#include <InterViews/strbrowser.h>
#include <InterViews/texteditor.h>
#include <lnterViews/textbuffer.h>
#include <InterViews/2.6/-enter.h>
#include <InterViews/world.h>
#include <ctype.h>
#include <string.h>
#include <iostream.h>
#include <stdio.h>
#include <stdlib.h>
#include "_Dialog_7.h"
#include "_Dialog_8.h"

89

#include "_Dialog_9.h"
#include "_Dialog_1O.h"
#include "_Dialog- IN.h"
#include "_Dialog.12.h"
#include "MainMenu.h"
#include "Resulth"
#include "common.h"

#define TRUE I
#define FALSE 0

//Make some global variables visible
extern MainMenu* mainmenu;
extern _DialogL8* naturallanguagedialog;
extern _Dialog.9* retrievedialog;
extern _Dialog I0* aggregatedialog;
extern _Dialog.12* toolboxdialog;
extern MainMenu* mainmenu;
extern TextBuffer* querydisplaybuffer; //declared in _Dialog._9-core.c
extern int Whereinserted;
extern char helpbuffer[200001; //declared in MainMenu.c

extern "C" comm with.rdb(char*); //This implementation dependent C function
//establishes the TCP connection

//Declare some variables in global scope
.DialogI I* buildconditiondialog;
Result* resultdialog;
char aggregatebuffer[61; //temporarily holds the selected aggregate
int buildconditionactive = FALSE;
int attributeselectionOK = FALSE; I/used to detect if at least one

//attribute is selected

I/local variable,used for accessing the attributes of the selected table
static int selectedtableindex = 0;

//These function are local and used only in this module
void DisplayResultso;
void ReadResultFileO;

_Dialog_9::_Dialog_9(const char* name): _Dialog_9_core(name) (I

//When this button is pressed, first toolbox dialog is removed, then Build
//Condition dialog is cleared and removed. Some other variables are set to
I/allow another query operation.

void _Dialog.9::returntomainmenupressedO{
int value = 0;
returntomainmenuBS->GetValue(value);
if (value != 0) {

if (toolboxdialog != nil) GetWorldO->Remove(toolboxdialog);
if (buildconditiondialog != nil) I
buildconditiondialog->conditioninputeditor->SelectAll();
buildconditiondialog->conditioninputeditor->DeleteSelectionO;

90

GetWorldo->Remove(buildconditiondialog);
//n•ornalize the Build Condition button

buildconditionBS->SetValue(O);
BuildCondition = FALSE;

//remove aggregate dialog box
if (aggregatedialog != nil) GetWorld0->Remove(aggregatedialog);
f/reset all variables
TableIndex = 0; //for table browser
Attributelndex = 0; //for attribute browser
TotalAttributelndex = 0; f/total number of selected attributes
Contains = FALSE; /lenable caption editor
Whereinserted = FALSE; //for checking the keyword insertion
Nested = FALSE; //any of the nested keyword are used or not
Subquery = FALSE; //subquery button is pressed
ConditionReady = FALSE; //to enable Process Query button
NextTableSelected = FALSE; //to use next button
//reset sqlstring
for (int p = 0; p < MAXSQL; p++) sqlstring[p] = 'M0;
I/reset aggregate buffer
aggregatebuffer[01 = '\Y';
f/clear the condition record
ClearRecordO;
f/clear the table/attribute selection buffer
ClearBufferO;
f/clear the table browser
tablesbrowser->ClearO;
//clear Query Summary Display
querydisplayeditor->SelectAllO;
querydisplayeditor->DeleteSelectionO;
f/clear the message on the main menu box
mainmenu->mainstatuseditor->SelectAll();
mainmenu->mainstatuseditor->DeleteSelectionO;
//set the button state to the default value
returntomainmenu BS->SetValue(O);
llremove itself
GetWorldO->Remove(retrievedialog);

//When this button is pressed, the help text is read into the editor from the
//help buffer. The user can scroll through this text and use the Exit button.

void _Dialog.9::helppressedO(
static _Dialog.7* helpdialog;
World* help-world = GetWorldO;
int value = 0;
helpBS->GetValue(value);
if (value != 0) (

if (helpdialog = nil) helpdialog = new Dialog_7("HelpDialog");
Coord xy;
Align(Center.O,O.x,y);
GetRelative(x.y,help_world);
help-world->InsertTransient(helpdialog,this,x+ 100,y,Center);

91

H/display helpbuffer in helpeditor
int len = strlen(helpbuffer);
for (int i = 0; i < len; i++) helpdialog->InsertChar(helpbufferfi]);
helpBS->SetValue(0);
boolean accept = helpdialog->Accepto; //get the exit button signal
helpdialog->DeleteTexto; H/otherwise it appends to the previous one
GetWorldo->Remove(helpdialog);

//This button activates the build condition dialog and places it on the right side of
lithe retrieval dialog box. It loads predefined joins into the q-rec and displays them.
//The button state value is not reset to 0 here in order to disable the button
//against a second use while the window is already active.

void _Dialog_9::buildconditionenteredO(
int value = 0;
buildconditionBS->GetValue(value);
if (value != 0) (
f/this variable is used in redirection of the output of the selection
I/enter button and disabling the next button
BuildCondition = TRUE;
//solve the problem when the user presses enter before build condition
//to send the selections to the build condition editor
buildconditionactive = TRUE;
//a message about what to do next
DisplayMessage(11);
//create and insert the window
World* bcw --GetWorldO;
buildconditiondialog = new _Dialog_| 1("BuildConditionDialog");
I/this provides constant location on screen relative to the retrieve dialog
Coord x,y;
Align(Center,0,0,x.y);
GetRelative(x.ybcw);
bcw->InsertTransient(buildconditiondialog,thisx+514,y+25,Center);
LoadPredefinedJoinso;
buildconditiondialog->DisplayJoinsO;
boolean accept = buildconditiondialog->Accepto0

//When this button is pressed, all variables, records and buffers are reset.
//The query has to be built from the beginning.

void _Dialog_9::clearquerypressed0 I
int value = 0;
clearqueryBS->GetValue(value);
if (value!= 0) (
// reset variables

TableIndex = 0;
AttributeIndex = 0;
TotalAttribvtelndex = 0;
BuildCondition = FALSE;
Contains = FALSE;
Whereinserted = FALSE;

92

Nested =FALSE;
Subquery =FALSE;
ConditionReady = FALSE; //disable process query button

// set the variable to activate the joinsbrowser
NextTableSelected = FALSE.

//reset sqlstring
for (int p =0; p < MAXSQL; p++) sqistringipi = MV;

//reset aggregate buffer
aggregatebuffer [01 = V

//reset records
ClearRecordo;
ClearBuffero;

//clear cor.dition input editor if it is used
if (buildconditiondialog !=nil) I //if the window is active
buildconditiondialog->conditioninputeditor->SelectAllO);
buildconditiondialog->conditioninputeditor->DeleteSelectiono;

//clear attribute browser
attributesbrowser->Clearo;

I/clear Query Summary Display
querydisplayeditor->SelectAflO;
querydisplayeditor->DeleteSelectiono;
clearqueryBS->SetValue(0);
DisplayMessage(10);

//This button creates the result window, reads the query display editor and
I/writes the contents into the sqlstring and sqlfile~then calls an
I/implementation dependent function to process the query, reads the results
Hland displays them in the result window.
I/In order to prevent proceesing another query while the result window is active,
lithe button state is reset in Result dialog.

void ._Dialog-9: :processquerypressed()
World* result~world = GetWorldO;
int value = 0;
processqueryBS->GetValue(value);
if (value !=0)

I/These are for the test purposes. Default output window is used.
cout<-eTable Name ="<<q~rec.qjable[0I.table-name <<"n";
cout.flusho;

//the first selected attribute
cout<-'Attrib. Name = "<<q-rec.c-table[0i .attrib~aray[Ol .attribute..name<<\ii';
cout~flushO);
cout«"eCondition Table = '«<qrec.qaconditionI01.cond table << ""Ai";
cout.flusho;
cout<.e'Condition Attribute = '«<qjec.q..condition[Ol.cond-attribute«<"n";
cout.flushO;
cout«"eCondition Tool = '<q-rec.q-condition[0I.cond..tooI <<'^W';
cout.flushO;
cout«<Condition input = "<<qjec.q-condition[0j .con&..input <<"n";
cout~flusho;
cout<-eCondition log-opr = "<<eq..rec.q..condition[101.cond-log-opr <<-'O';
cout~fiusho;

93

querydisplayeditor->EndOfrextO; //put the cursor to the end

CreateSqlFileo; //write the query into a file

//**

I/The Retrieve(MODE) function of the first application is called here for the
//first version.

commwithdb(sqlstring); I/implementation dependent
ReadResultFileO; I/implementation dependent

IIH*

//insert the result dialog box
if (resultdialog = nil) resultdialog = new Result(-ResuItDialog');
Coord x.y;
Align(Center.O.Ox.y);
GetRelative(x.yresult.world);
resultworld->LnsertTransient(resultdialog,this.x+250.yCenter).

NextTableSelected = FALSE; I/enable the next button again
ConditionReady = FALSE; I/disable process query button
DisplayResultso; I/read the results from q.rec
// if there are tuples to display then display a message
if (qrec.q_result[0l.r._formatteddata[Ol != VO') DisplayMessage(6);

//This button is used to select more than one table during selection process.
//It is disabled after the enter button pressed.
//It is enabled again when the condition is entered, or query is processed,
//or a nested query is to be built.

void _Dialog._9::nextpressed0)
int value = 0;
nextBS->GetValue(value);
if (value != 0) (

DisplayMessage(1);
I/If at least one attribute is selected allow to use the button
//There are restrictions to use this button

//check if it is pressed before selecting one attribute
if (TotalAttributelndex > 0) (

//check if it is pressed during condition building
if (!BuildCondition)
Tablelndex++;

//copy tables,attributes and aggregates into q-jec.
strcpy(q-rec.q.table[Tablelndex- 1 .table.name,

buffertable.table name buffer);
for (int j = 0; j < AttributeIndex; j++) (
strcpy(qcrec.q.tablelTablelndex- i I.attrib.arrayU].atrributename.

buffertable.attribarraybufferU i.attributename);
strcpy(q_rec.q_table[TableIndex- I I.attribarrayjl.aggregate.

buffertable.attrib-array-bufferU].aggregate);

//set the variable to activate the joinsbrowser
NextTableSelected = TRUE;

94

/ reset buffers
ClearBufferO;
aggregatebufferd0] = W0';
AttributeIndex = 0;
attributes browser->ClearO;

}else (
DisplayMessage(13); //Next button is not available

else
DisplayMessage(13); //Next button is not available

nextBS->SetValue(0);

//This button clears the selection part only. The user can select the tables
//and attributes again. The whole query is not changed.

void _Dialog._9::cancelpressed0)
int value = 0;
cancelBS->GetValue(value);
if (value!= 0) 1

DisplayMessage(3);
//reset buffers
ClearBuffer0;
aggregatebuffer[0] = 'NO';
Attributelndex = 0;
TableIndex = 0;
attributesbrowser->Clearo;
cancelBS->Set Value(O);

//This button copies the selection buffer into qjrec and resets indexes;
I/then it writes to Query Summary Display from the q-jec when it is first
//pressed. It echos the selected tables and attributes in the query
//summary display for the first selection process..
//When it is used for condition input editor no echo can be seen.
//Only one attribute at a time for each table can be entered into the condition editor.

void _Dialog_9::enterpressed0 {
int value = 0;
char q201, a[20]; //buffers to hold only one table and attribute
intn=0, count=0;
int tlen = 0, alen = 0;
enterBS->GetValue(value);
if (value!= 0) (
//if the button is pressed after condition enter pressed
//don't do anything, exit the function.
if (ConditionReady) goto end;
//check if at least one attribute is selected
if (!attributeselectionOK) I

DisplayMessage(19);
goto end;

95

if (!BuildCondition) (I//in order to use for condition input
DisplayMessage(5);
strcpy(q-rec.c~table1TablelndexJ.table-name.

buffertble.table-namebuffer);
//if aggregate all is selected, then copy all the attributes of that
//table into qjrec
if (strcmp(aggregatebuffer, "*')==O) I //all is pressed

int k = 0;
while (dbtables[selectedtableindexJ.

attrb..may[kj.attribute~name[j ! 0'W)
strcpy(qjyec.~aable[Tablelndexl.atrib~aray[ki.attribute..name,

dbtables[selectedtableindexl.attrib~array[kI .attribute..name);
i/empty the aggregates of these selected attributes
qjrec.qjtable[Table Index).attfib~arrayfl k .aggregate [0 10'

else I lthe button is used to send the selections to condition editor
for (n j = 0; j < AttributeIndex; j++)(
stcpy(qjrec.q-ablefTable Index1. attrib..arayU].attribute-name.

buffertable.attrib-abay...bufferUl.attiibute-name),
strcpy(qjrec.qjýable[Table Index1. attrib-arrayU].aggregate,

buffertable.attrib..array..bufferU].aggreg ate);

Tablelndex++;
ClearBuffero;

I/if nested query is not to be built, then clear the display editor
i/from table or attribute echos
if ((!Nested)ll(!Subquery))I
querydisplayeditor->SelectAllo;
queryd isplayeditor->DeleteSe lect iono;

ifwrite to Query Summary Display from qjrec

//************** "SELECT" part *******

querydisplayeditor->InsertText("S ELECT ",7);
IIwrite attributes
if (strcmp(aggregatebuffer. "*")-==0) I/all attributes are selected

querydisplayeditor->InsertText("*", 1);
else(

for (int m = 0; m < Tablelndex; m++)
HI loop until finding an empty attributename

while (o-rec.a-tablefmj .attrib-.arraytnJ .attribute..name[OI != `V')
strcpy(a. qjrec.qjtable[mJ .attrib-aray[nI .attribute-name);
alen = strien(a);

I/check if there is any aggregate function
if (qjrec.qjtablef m .attrib~array[nJ].aggregate[~ 01'

ele(querydisplayeditor->InsertText(a,alen);

//write aggregates in the form of " SUM(...) -
int In = strlen(a-rec.cjjablefm].attrib..array[ni aggregate);
querydisplayeditor->InsertText(

q-rec.q-table~m J.attirib..aray n].aggregate, in);
querydisplayeditor->lnsertText("(", 1);
querydisplayeditor->AnsertText(a,alen);

96

querydisplayeditor->InsertText(")', 1);
I I/else
count++;
I/check the number of attributes in one line
if (count < TotalAttributelndex)

quetydisplayeditor->lnsertTextCX .2)
//write to the second row after 3 attributes
if ((count%3 == 0) && (count! To talAttribute Index))

querydisplayeditor->InsertTextC"\n -.8);

/ /end while
n = 0;

)// end for loop
I/else

TotalAttributeindex = 0;

H******* "FROM" part
//write the table names
queryd isplayed itor->lnsertTe xt('\n FROM ".8);
for (int f =0; f < Tablelndex; f++)I

strcpy(t, qjec.qj-able[fl.table~name);
tien = strlen(t);
querydisplayeditor->InsertText(t~tlen);
if (f < (Tablelndex- 1)) querydisplayeditor.>InsertText(.. ...2);

/1reset indexes
Tablelndex = 0.
Attributelndex = 0;
attribute sbrowser->Clearo;

else I // now the table/attrib browsers are to be used for condition input

I/if enter pressed second time to send the selections to condition
I/editor BEFORE build condition is pressed, then
I/don't do anything, exit the function.
if (! buildcondi tion active)I

DisplayMessage(18);
goto end;

DisplayMessage(9);
Tablelndex = 0;
Attributelndex = 0;
buildcond itiondi alog->cond it ion inputed itor->

InsertText(buffertable.table-name-buffer.
strlen(buffertable.table_name_buffer));

buildconditiondialog->conditioninputeditor->InsertText('.", 1);
buildconditiondialog->conditioninputeditor->

InsertText(buffertable.attib...array~bufferlOl.attribute_name.
strien(buffertable.attrib array..buffer[0I.3ttribute name));

attributesbrowser->Clearo;
I // for else

I/to enable condition editor when this box is active
BuildCondition = TRUE;
attributeselectionOK = FALSE; I/for the next time

97

end:
enterBS->SetValue(O);

//When a table is selected by double-clicking,its string value is written
I/into a buffer and its index is returned from the browser.
//This index is later used to find the attributes of that table and display
/in the attributes browser.

void _Dialog_9::tableselectedO(
int value = 0;
char* t;
tablesBS->GetValue(value);
if (value != 0) {
//get the chosen string
selectedtableindex = tablesbrowser->Selection(O); H select a tablename
t = tablesbrowser->String(selectedtableindex);
if (!BuildCondition) {
if ((!Nested)I1(!Subquery))
//display the selected table in the query display (echoing)
querydisplayeditor->SelectAUO;
querydisplayeditor->DeleteSelectionO;
querydisplayeditor->InsertText(" FROM ", 6);
querydisplayeditor->InsertText(t,strlen(t));

strcpy(buffertable.table name__buffert); I/copy to buffer
DisplayAttributes(selectedtableindex);
if (BuildCondition) DisplayMessage(12);
else DisplayMessage(l);
tablesBS->SetValue(O);

//The selected attributes are written into the buffer. more than one attribute
I/can be selected.

void _Dialog_9::attributeselectedO I
int value = 0;
int index;
char* at;
attributesBS->GetValue(value);
if (value != 0)
//get the chosen string
index = attributesbrowser->Selection(0); /H select an attribute
at = attributesbrowser->String(index); H char ptr to be sent to buffer
//display the selected attributes one by one
//available for only table/attribute selection, not for building condition
if (!BuildCondition) J

if ((!Nested)lI(!Subquery))
I/display the selected attribute in query summary display
querydisplayeditor->SelectAllO;
querydisplayeditor->DeleteSelectiono;
querydisplayeditor->lnsertText("SELECT ". 8);

98

if (aggregatebufferfOl != W0) I I/display the aggregate function also
queiydisplayeditor.>lnsertText(aggregatebuffer,

strlen(aggregatebuffer));
querydisplayeditor->InsertText("('. 1);
querydisplayeditor->AnsertText(at.strlen(at)),
querydisplayeditor->TnsertText(1)", 1);
Ielse querydisplayeditor->InsertText(at,strlen(at));

if (BuildCondition) DisplayMessage(8);
else DisplayMessage(2);
strcpy(buffertable.attrib array~bufferj Atributelndexl.attribute_name~at);
I/copy the current value in aggregatebuffer. even an empty string
strcpy(buffertable.attrib array~bufferl Attributelndex].aggregate,

aggregatebuffer);
Attribute Index++, I/ready for the next attrib selection
TotalAttributelndex++;
I/reset aggregatebuffer for the next selection
aggiregatebuffer[01 = '*
attributeseloctionOK = TRUE; H/at least one attribute has been selected
attributes B S->SetValue(0);

IHThis function is: called when the retrieve button is pressed ftim the main
I/menu. It displays the table names by reading from dbtables.

void ..Dialog..9: :DisplayTables() I
int i = 0;
while (dbtableslii.table~nameIOI !=)N')
tablesbrowser->Append(dbtablesl.table_name);
i++.

//This function displays the attributes of a selected table.
//The input index is used to locate the table entry in the dbtables.

void ..Dialog-9::DisplayAttributes(int index)(
int aind = 0;
attributesbrowser->Clearo;
while (dbtables [index]. attrib..arrayf aind J.attri bute..n anefl 0!= "0')
attributesbrowser->Append(

dbtableslindexl .attrib..array[aind].attribute-.name);
ainL'++;

//*********************MESSAGES ***************

I/This is a local variable used to store the messages.
I/The message window is 49 characters width.

char* messages! 2001
"*MO-Select a table with double-click.
"M I-Select the attributes.\n You may choose an aggregate function before\n\

99

each attribute.
"M2-You may select another attribute orin if you want to use another table\
press Next'n otherwise press Enter to accept selections.
"M3-Selections are cancelled.\n Please select a new Table.
"M4-Condition has been entered.\n The query may be processed now.
"MS-Selections have been entered.\n Now you can process the query or build\

a condition.
"M6-If you have media data, select the line\n then press the Show Picture\

or Play Sound buttons. ",
"M7-Condition has been cleared.An Select a tool or type it with space \

before and after,\n then type the condition and press Enter.
"M8-Press Enter to accept this attribute.
"M9-Select a tool or type it between spacesM then type the condition\

and press Enter.\n Use the Caption Editor if you have a caption.
"M 10-Whole query has been cleared.\n Select a table. \

"M 11-Build Condition Window is activated.\n You can activate the Tool\
Rox.\n Select or type table and attribute names.
"M 12-Select an attribute.
"M 13-Next button is not available.
"M 14-Too many results.\n There are undisplayed tuples~n \
Please use conditions to limit your query.
"M 15-Result file is not found.
"M 16-Condition has been cleared .n Select or type table and attribute\
names
"M17-Subquery is beeng built.\n Start a query with a nesting keyword.\n\

then select a table.
"M18-Build Condition Window is not active.\n Please use Build Condition\

button first.
"M 19-There is no selected attribute.\n Please select an attribute\
to continue. ",
"El-Syntax error in attribute name.\n Please use Clear Query and\
try again.
"E2-Incomplete condition•n Please use Clear Query and try again. \

"E3-Missing condition input'n Please use Clear Query and try again.\

"E4-Missing natural language description \n Please use Clear Query\
and try again.

"-E5-Invalid condition tool \n Please use Clear Query and try again.\

//This function displays the message for given index.

void _Dialog_9::DisplayMessage(int index)(
messageeditor->SelectAllO;
messageeditor->DeleteSelectionO;
messageeditor->InsertText(messages[indexJ,strlen(messages[index]));

//This function clears the buffer to store the selected table anid its attributes

100

void _Dialog-9::ClearBufferO (
buffertable.tablename_buffer[OI = `V;
for (int k = 0; k < MAXAT'TRIB; k++)

buffertable.attribnarray-bufferkI.attribute-name[O] = I'0';
I

//This function reads the query summary editor and writes into a string and
//a text file. This string or file can be used to be passed to the database program
//The created filename is : sqlfile * string is : sqlstring

void Dialog_9::CreateSqlFile0)
FILE* fp;
iat length = querydisplayeditor->Doto;
stmcpy(sqlstring, querydisplaybuffer->Text(0,length), length);
H/for test purposes print the contents

cout << "\nsqlstring is.\n" << sqlstring << "\n";

cout.flushO;
I/open and write into a file
fp = fopen("sqlf'de"-"w");
fprintf(fp, "%sW". sqlstring);
fclose(fp);

//This function sets the proces query button when resultdialog->Returnretrieval
//button is pressed

void _Dialog_9::SetProcessQueryButton(int value) I
processqueryBS->SetValue(value);

//*********************** LOCAL FUNCTIONS *

//This function reads the results from the q-rec and displays them in the
I/result window. It reads until the first empty record.
//It writes a message if the first record is empty.

void DisplayResultsO(
int i = 0;
if (qrec.q-resultfiJ.rjformatteddatafOI == "0') {

resultdialog->resultbrowser->Append("No record is found");
)else (

while (q.rec.qresult~il.r-formatteddata[Ol != "\D')
resultdialog->resultbrowser->Append(q.rec.qresult[iI.r..formatteddata);
i++;

//This function is implementation dependent.
/[For this particular program, this function reads the query results from
//a file into the result fields of the q-rec.
//Also, the picture ids (filenames) are read from a file (pictureids).

void ReadResultFileO(

FILE *rf, *pf;

101

int Max.Buf = 20000;
char buf(200001; flit should have enough size to hold the retrieved results
char linebuf[lOOOJ;
char picbuf[3000I; I/for picture id file
char piclinebuf[30j; I/or one picture file name
int rien =0, plen = 0; I/some index variables
int rlime =0, pline = 0;
int ri =0, pi= 0.
intrn=0, pn=0;

1/read result file
rf = fopen('7n/aquarius/worklrowe/cap/demo/sqloutput", "r");
if (rf = nil) I I/if the result file is not found

retrievedialog->DisplayMessage(15).
goto end;

else
char rch = getc(rf);
while ((rch != EOF) && (rien < MaxBuf))f

buffrlenj = rch;
rch = getc(rf);
rlen++;

fcosefrf);
if (rlen = MaxBuf)
retrievedialog->DisplayMessage(14); I/message for limiting query
goto end;

I/display the contents of the result file for test purposes
cout «<"resultfile buf=\,n"«<buf«"'\n";
cout.flusho;

I/read the results into the q-rec fields
while(ri < rien)

linebufirni =bufirij;

if (buffril ='\n') I
linebufirni = V
strcpy(q__ec.qjresult[rlinej.rjormatteddata, linebuf);
rline++; I/skip new tine
rn = 0;

I/read picture file
pf = fopen("lnlaquariuslworklrowe/capldemolpictureids", "r");
if (pf = nil) I //the picturefile is not found
retrievedialog->DisplayMessage(15);
goto end;

elseI
char pch = getc(pf);
while (pch != EOF)
picbuflplenj = pch;

102

pch = getc(rf);
plen++;

fclose(pf);
//display the pictureids file for test

cout <<"pictureids picbuf=\n"<< picbuf <<"Wn;
cout.flushO;

I
while(pi < plen)
piclinebuf[pnl = picbuflpi];
pn++;
pi++;
if (picbuflpil = '\'

piclinebuflpnl = V';
//handle only one picture per tuple for this application

strcpy(q_rec.q_result[plinel.r4picture[O], piclinebuf);
pline++;
pi++; //skip the line
pn = 0;

end:
nil;

M. _Dialog 10.h

H Module Name :_Dialog10.h AGGREGATE DIALOG
// Authors - Metin Balci - Erhan Saridogan
H Date : August 1992
/This module has the declarations for the functions of the Aggregate Dialog.

#ifndef _Dialog_10_h
#define Dialog_10_h

#include "_Dialog- I0-core.h"

class DialoglO : public Dialog._10_core
public:

-Dialog_I0(const char*).

virtual void allpressedo;
virtual void minpressedo;
virtual void maxpressedo;
virtual void averagepressedo;
virtual void countpressedO;
virtual void sumpressedO;

#endif

N. _Dialog_1O.c

//Module Name : _Dialog..O.c AGGREGATE DIALOG
//Authors : Metin Balci - Erhan Saridogan

103

II Date :August 1992
IIThis module has the definitions for the functions of the Aggregate Dialog.
11When a button is pressed its keyword is copied into a buffer wruch is to be
1/used later in retrieve dialog, when selections are entered.

#*include <InterViews/button.h>
#include <lnterViewsf2.6L~enter.h>
#include <InterViewsfstrbrowser.h>
#include <string.h>
#include "_Dialog_9.h"
#include "_DialogjIONh

#define TRUE 1

-Dialog- I0::..Dialog_ IO(co nst char* name): -DialogO I0core(name) (
extern char aggregatebuffer[61; //defined in retrievedialog
extern _Dialog_9* retrievedialog;
extern attributeselectionOK;

void _Dialog- O::allpressed()
int value =0;
alIBS->GetValue(value);
if (value!~= 0) j

strcpy(aggregatebuffer,"*");
attributeselectionOK.= TRUE;
alhIBS->SetValue(0);

void ...Dialog_10::minpressed()
int value =0;
minBS->GerValue(value);
if (value! =0) 1
strcpy(aggregatebuffer,'MIN");,
minBS->SetValue(0);

void _Dialog_10::maxpressed() I
int value = 0;
maxRS->GetValue(value);
if (value != 0) j
strcpy(aggregatebuffer,"MAX");
maxBS.>SetValue(0);

void _Dialog_10:: averagepressed()J
int value= 0;
averageBS->OetValue(value);
if (value!= 0)1
strepy(aggregalebuffer." AVG")-.
averageBS->SetValue(0);

104

void -Dialog-lO::countpressedO {
int value = 0;
countBS->GetValue(value);
if (value != 0) (
strcpy(aggregtebuffer,"COUNT");
countBS->SetValue(0);

void .Dialog_10::sumpressed0 I
int value = 0;
sumBS->GetValue(value);
if (value != 0) (
strcpy(aggregatebuffer,"SUM");
sumBS->SetValue(0);

0. _Dialog_l l.h

H/Module Name : _Dialog_l 1.h BUILDCONDITION DIALOG
//Authors : Metin Balci - Erhan Saridogan
H Date : August 1992
H Explanation : This module has the declarations for the functions of
H BuildCondition Dialog.

#ifndef _Dialog-j l-h
#define _Dialog-j L1h

#include "Dialog- 1-core.h"
#include <InterViews/event.h>

class _Dialog-l 1 : public _Dialogl l.core I
public:

_Dialogl 1 (const char*);
// Functions that are created by the Interviews due to the core
virtual void conditionexitpressedo;
virtual void conditionclearpressedo;
virtual void conditionenterpressedo;
virtual void joinselectedo;
virtual void toolboxpressedo;
virtual void containspressedo;

H Functions that are created later on to support the other functions.
virtual void Displayioinso;
virtual void ConditionParsero;
virtual void Handle(Event& e); //There is a detailed

//example in the refence manual
virtual void CondlnputEditorlnsertChar (char);

},

#endif

105

P. _Dialogl l.c

//Module Name: _Dialog I .c BUILDCONDITION DIALOG
//Authors : Metin Balci - Erhan Saridogan
//Date : August 1992
//Explanation : This module has the definations for the functions of
lithe BuildCondition Dialog. DialogI 1 .sav in -mdbmsirowedb includes also
lithe codes which was added for debugging.

// header files added by Interviews
#include <interViews/button.h>
#include <InterViews/strbrowser.h>
#include <InterViews/texteditor.h>
#include <InterViews/textbuffer.h>
#include <InterViews/glue.h>
#include <InterViews/scene.h>
#include <InterViews/2.6/_enter.h>
#include <InterViews/world.h>

llapplication dependent header files
#include <ctype.h>
#include <string.h>
#include <iostream.h>
#include <stdio.h>
#include <stdlib.h>

#include "MainMenu.h"
#include " Dialog_8.h"
#include "_Dialog_9.h"
#include "_Dialog.. l.h"
#include "_Dialog_12.h"
#include "Result.h"
#include "common.h"

#define TRUE 1
#define FALSE 0

extern _Dialog_9* retrievedialog;
extern TextBuffer* conditioninputbuffer;// defined in the core file.

// used to get the text part
H of the conditon input editor

extern char* PredefmedJoins[MAXJOINNUM];
extem _Dialog..ll* buildconditiondialog;
exter int Nested;
extem int buildconditionactive; //declared in retrieve dialog

_Dialog_8* naturallanguagedialog; // used for entering the natural
// language description

.Dialog_12* toolboxdialog; H tools which are used in query build
boolean Whereinserted = FALSE; H variable used to determine if Where

fl statement is inserted to the SQL Query Summary
char searchtypebuf; // to get the search type from the caption editor

.Dialog 1::-Dialog._l l(const char* name): _Dialogl l_core(name) {

106

H/Join selected: if there are more than one table in the data base
H/then, there will be predefined joins displayed in this dialog box.
I/This procedure explains the things that are to be done when one of
I/these joins is selected.
H Gets the join conditon and put it into the SQL Summary Window
void -Dialog-_ 1.::joinselected0)

int index;
int value = 0;
joinsBS->GetValue(value);
if (value!= 0) 1

joins BS->SetValue(0);
index = joinsbrowser->Selection(0);
char j[MAXJOIN1;
int jlen;
strcpy(j. PredefinedJoinslindex]);
jlen = strlen(j);
strcpy(q.rec.q-predef.join[0], j);
// handles only one
if (!Whereinserted)(

retrievedialog->querydisplayeditor->InsertText('"nWHERE ".8);
Whereinserted = TRUE;
retrievedialog->querydisplayeditor->InsertText("(", 2);
retrievedialog->querydisplayeditor->InsertText(j, jlen);
retrievedialog->querydisplayeditor->InsertText(")". 2);

I/contains pressed : If there is a media data that you want to have a
//condion by using caption method, you will press contains button,
I/after you specify the attribute. Another editor will pop up and
//you can enter the caption in this editorand specify the type of the
//search in this editor. Appropriate additions are to be made to your
I/query by the system when you exit the editor.
void _Dialog-l 1::containspressed0)

int value = 0;
containsBS->GetValue(value);
if (value !=-0) 1
World* nlw = GetWorldo;
naturallanguagedialog = new _Dialog.8("NaturalLanguageDialog");
Coord xy;
AIign(Center,0,0,x,y);
GetRelative(x,y,nlw);
nlw->InsertTransient(naturallanguagedialog.this.x.y,Center);
boolean accept = naturallanguagedialog->Accept();

//conditionentered: The condition on the screen will be passed
// to the SQL Summary Window and to the condition part of the query
I/record.
void -Dialog- I 1::conditionenterpressedO(
int value = 0;

107

int i = 0;
int len = 0;
conditionenterBS->GetValue(value);
if (value != 0) (

conditionenterBS->SetValue(O);
H/if a join condition already selected there is no need to
//insert another extra WHERE
if (!Whereinserted) I
retrievedialog->querydisplayeditor->InsertText("CnWHERE ",8);
Whereinserted = TRUE;

/if there is any predef join skip WHERE part put an AND
if (NextTableSelected) (I/if there is a next table selected, then

// it means that there is a join selection
retrievedialog->querydisplayeditor->[nsertText ("n AND 12);
retrievedialog->querydisplayeditor->InsertText("\n (".9);

H gets the conditon and puts into the SQL Summary Window
len = conditioninputeditor->DotO;
I/clipboard will have the text portion of the condition input
I/in this way we have the chance of going through condition
I/input and check it.
strncpy(clipboard, conditioninputbuffer->Text(O.len), len);
clipboard[len] = 'NO';
while (clipboard[i] != 'V') {

retrievedialog->querydisplayeditor->InsertText(&clipboard[iI, 1);
if (clipboardti] = '\')

retrievedialog->querydisplayeditor->InsertText(" ",6);

if (NextTableSelected)
retrievedialog->quetydisplayeditor->InsertText(")".2);

//THIS FUNCTION (ConditionParserO)IS NOT CALLED FOR VERSION 3
/H(PROF. ROWE'S DATABASE APPLICATION)
H In version 3 the checks are made by the application program.

I/This function gets the conditon input and parses it and puts
H the appropriate parts into the query record.
I/It will display some error messages in case an incorrect condi
H tion has been entered.
H ConditionParsero;

1**/

retrievedialog->DisplayMessage(4); //condition is entered
Ifor this version only

I/if nested is pressed then we need to close the paranthesis
if (Nested) retrievedialog->querydisplayeditor->InsertText(")",2);

BuildCondition = FALSE;
ConditionReady = TRUE; //to enable process query button

//clear condition input editor

108

conditioninputeditor->SelectAlIO.;
condifioninputeditor->DeleteSelectiono;
HI Ready to enter another conditon

HI Condition Clear: In case of a mistake in building the condition
Iyou can clear the condition.This function will clear the editor and
/the record.

void -Dialog)I 1 ::conditionclearpressed()
int value = 0;
conditionclearBS->GetValue(value);
if (value! =0) (
conditionclearBS->SetValue(0);
ConditionReady =FALSE,
I/cear condition input editor

retrievedialog->DisplayMessage(7);,
conditioninputeditor->SelectAllO);
conditioninputeditor->DeleteSelectiono;
I/a message

retrievedialog->DisplayMessage(16);,
I/reset condition record in q...ec

ClearConditionRecordo;,

IICondition Exit : If you decide to exit the dialog box.
void -.Dialog- I1: :conditionexitpressed()I

int value = 0;
conditionexitBS->GetValue(value);
if (value != 0)

//clear condition input editor
conditioninputeditor->SelectAllO);
conditioninputeditor->DeleteSelectiono;
I/reset condition record in q-rec
ClearConditionRecordo;
//clear message editor

retrievedialog->messageeditor->SelectAll();
retrievedialog->messageeditor->DeleteSelectiono;

BuildCondition = FALSE; llto, be able to use the button again
buildconditionactive = FALSE;
conditionexitBS->SetValue(0);
retrievedialog->buildconditionBS->SetValue(0); I/enable the button
toolboxBS->SetValue(0); I/if toolbox button is active
_BS_37->SetValuc(1); llthis number is in -.DialogIlI-core-b
GetWorldo->Remove(buildconditiondialog);

IIToolbox Pressed :In order to see the tools that are available in
Y/the system. you press this button.
void -Dialog-)1::toolboxpressed() I

int value = 0;
toolboxBS->GetValue(value);
if (value != 0)1

109

World* tbw = GetWorldo;
toolboxdialog = new -Dialog_ l 2("ToolBoxDialog");
Coord x.y;
Align(Center,0,0,x,y);
GetRelative(x.y,tbw);
tbw->InsertTransient(toolboxdialog,thisx.y-280.Center);

H/ toolboxBS->SetValue(0);
boolean accept = toolboxdialog->AcceptO;

H Display Joins : This function is to display the predefined
H/joins if there are any. Predefine Joins are defined in common.c
void _Dialog. 1:::DisplayJoins0 {

int i = 0;
joinsbrowser->Clearo;
while (PredefinedJoinsfil != nil)
joinsbrowser->Append(PredefinedJoins [iJ);
i++;

//Condition Parser : Gets the condition Input and by parsing it
I/puts the appropriate parts into the query record.
H/If there is any mistake in the condition displays the appropriate
//error messages. The debugging codes are left in the program
/so that future changes can be done easily.
void _Dialog-l 1::ConditionParserO(

int parserstopped = FALSE;
char cbhCONDEDITLEN];
int parnum = 0;
int len = 0;
int c =0; //condition array counter
int i=0;
int j = 0; I/counter, index, indexmarker

len = conditioninputeditor->Dot0;
strncpy(cb.conditioninputbuffer->Text(0,1en), len);
cb[len] = V';

//loop till the end of buffer array
while (i < len) {

H go till the first character to find beginning
while (((cb~iJ =' ') II (cbfi] = '\n')) && (i < len)) i++;

if ((c > 0) && (i = len)) I
retrievedialog->DisplayMessage(21); //Nothing after AND or OR etc.
parserstopped = TRUE; I/Incomplete condition
goto final;

// if the first char is"(" skip it/them
while (cb[i] = '(') H /when a group begins

parnum++;
i++;

110

HI skip blanks if there is any
while (cblil = ' 1i+
//Check if there is any other paranthesis
while (cb(i] C
paurnui++;

I/find beginning of tablename and read until dot
while (cbf ii !=.')I
q rec.q conditionfcl.cond-tableUI = cblil;

q...rec.q~condition[cJ.cond-tableUjJ = N';0 // last char of tablename
i= 0. H/to be used later again
i++: // now attribname started
if (cb[ij=' ')I
retnievedialog->DisplayMessage(20), // Syntax error in attr.name
parserstopped =TRUE;

goto final;

while (cbf il /=) /read attribname until blank
q- rec.q conditionlcl.cond-attributeU I = cb[i 1;

q-rec.q..cnditionlcl.cond-attributeUI = 'NO'; I/last char of attname
j = 0,

char opr...buffer[I111; I/to temporarily hold the cond. tool

for (mt m=0;, m<I 1, m++) opr -bufferim I = NI'W

while ((cblil D&& (i< len)) i++; I/find beginning of operator
if (i==len)j
retrievedialog->DisplayMessage(21); /Incomplete condition No operator
parserstopped =TRUE;

goto final;

while ((cbjiJ = && (cbiji != '\,n')) (llfind end of operator
oprýbufferUj cb(iI;

opr.,buffer~l NI); Ilast char oftool

I/test for the appropriate tool
if ((strcmp(opr buffer."MATCHES") = 0) 11

(strcmp(oprjbuffer,"LIKE") = 0) 11
(strcmp(opr..buffer,"=-") = 0) 11
(strcmp(oprjbuffer."-'c) = 0) 11
(strcmp(opr-buffer,">") = 0) 11
(strcmp(opr.,,uffer,"<=") 0) 11
(strcmp(oprjbuffer."=>") 0))

Icout << "in the first part of the operator clause" <<'W';
cout.flusho;

elseI
retrievedialog->DisplayMessage(24); I/invalid Condition Tool

III

parserstopped = TRUE;
goto final;
I
if ((strcmp(opr buffer,'MATCHES")) != 0)
//copy operator to tool
strcpy(q..rec.q condition[cl.cond_tool.oprbuffer);
j = 0;
while ((cb[ij - ')&& (i < len)) i++; I/find beginning of condition input
if (i = len))

retrievedialog-> DisplayMessage(22); // Missing conditon input
parserstopped = TRUE;
goto final;

if (cbij== ."') I
i++;

while (cb[i] !=
q-rec.qcondition[c].condn putU] = cb[i];
i++;
j++;

i++;

else {
//read cond input until blank ,null or quote

while ((cb[i] != 32) && (cb[i] != 0) && (cb[i] != "")) {
qjrec.qicondition(cl.cond inputfj] = cb[i],

i++;
j++;

qjrec.qscondition[cl.condinputfi] = `V;

I last char of cond input, here all input is copied !!!
while ((cb(i] =) && (i < len)) i++; /find end of group
while (cblii ==)') {

i++;

parnum--;

while ((cb[iJ ==) && (i < len)) i++; //find end of group
while (cbtiJ = ')") {

i++;,

parnum--;

I/this is for CONTAINS or MATCHES
/Iindicating that the condition contains natural language description

else (
strcpy(q-rec.q.condition[cl .condtool,'M ATCHES");

while ((cbfiJ != '"") && (i < len)) i++;
I/find the beginning of the natural language description

if(i = len)(
retrievedialog->DisplayMessage(23); //Missing Natural Language Description

112

parserstopped = TRUE;
goto final;

if (cbfiJ= ."') I
i++;
j =0;
while (cb[i=
qjrec.q.condition[cJ.cond nat description.captionU] = cbfi];
i++;
j++;

qjec.qocondition(cl.condnatdescription.caption{] = "'';
qjec.q.condition[cl.cond natdescrnption.searchtype = searchtypebuf;;

i++;H//for the end of the string (last quote)

j = 0;

//find beginning of logical operator or find the end
while (((cb[i] ')II (cb[il = '\n')) && (i < len)) i++;

if (i < len) I /we found s.t. in 5 step
j=O;
//start reading the condition log operator until blank or EOL
while ((cb[il) && (cb[i] != '\n')) (//read logical oper until blank

if (i < len)
q.rec.qcondition[cl.cond logoprijI = cbli);
i++;
j++;

/last char of cond log opr
qjrec.q_conditionici.cond-log-oprU] = "0';
j =0;
c++; I/increment condition array counter for grouping
I //if (i < len)

final:
if (parserstopped){
i = len+l;) / in order to get out of the first loop
else retrievedialog->DisplayMessage(4);

H Handle : This function is used to handle the editor functions
H of the conditioninputeditor. The mouse should be inside the editor.
Hand this function will look for the keyboard inputs and when they
H are detected, will act accordingly.

void -Dialog-.l l::Handle (Event& e) j
if (e.eventType = KeyEvent)
if (e.len != 0) 1
char c = e.keystring(O];

switch (c) {
case "'01O':
case '177':

if (conditioninputeditor->DotO != conditioninputeditor->MarkO) I

113

conditioninputeditor->DeleteSelectionQ;
I else conditioninputeditor->DeleteText(- 1);
break;

case V015':
Cond~nputEditorlnsertCharC\,n');
break;

default:
if (!iscntrl(c)) CondlnputEditorlnsertChar(c);
break;

Ielse if (e.eventType DownEvent)
GetRelative(e.x, e.y. conditioninputeditor);
conditioninputeditor->Select(conditioninputeditor->Locate(e.x, e.y));
do 1.

conditioninputeditor->ScrollToView(e.x. e.y);
conditioninputeditor->SelectMore(conditioninputeditor->
Locate(e.x. e.y));
Poll(e);
GetRelative(e.x. e.y, conditioninputeditor);
Iwhile (e.leftmouse);

H/if a character is keyed from the keyboard then this function will
H/insert it into the conditioninputeditor.

void -Dialog-j 1::CondlnputEditorlnsertChar (char c)
conditioninputeditor->DeleteSelectiono;
conditioninputeditor->AnsertText(&c, 1);
cond it ioninputeditor->ScrollToSelect iono;

Q. _Dialog 12.c

/Module Name: _Dialogj12.h TOOL BOX DIALOG
IfAuthor :Erhan SARIDOGAN. Metin BALCI
IIDate August 1992

HI Header file for tool box dialog.

#ifndef Dialog_12_h
#define -Dialog-12..h

#include "-Dialog- I2-core.h"

class -Dialog12 : public -Dialog_ I2_core
public:

-Dialog_12(const char*)-.

virtual void andpressedo;
virtual void orpressedo;
virtual void openparanpressedo;
virtual void closeparanpressedo;
virtual void subquerypressedo;
virtual void lessthan pressedo;

114

virtual void lessorequalpressedO;
virtual void equalpressedO;
virtual void greaterorequalpressedo;
virtual void greaterthanpressedO;
virtual void unionpressedO;
virtual void intersectionpressedO;
virtual void minusenteredO;
virtual void inpressedO;
virtual void notinpressedO;
virtual void existspressedO;
virtual void notexistspressed0;
virtual void toolexitpressed(;

#endif

R. _Dialog 12.c

H Module Name: _Dialog_12.c TOOLBOX DIALOG
//Author : Erhan SARIDOGAN, Metin BALCI
H Date August 1992
H This module contains the implementation of tool buttons. When a button
//is pressed its keyword or symbol appears in the condition editor.
I/The Nested and Subquery buttons are implementation dependent. For this version
I/they create a nested query only in the query summary display, thereby only
H as a SQL string (and file).

#include <InterViews/button.h>
#include <InterViews/scene.h>
#include <interViews/2.6/_enter.h>
#include <InterViews/texteditor.h>
#include <InterViews/textbuffer.h>
#include <interViews/world.h>
#include _Dialog_9.h"
#include "_Dialog.l I .h"
#include "_Dialog 12.h"
#include "common.h"

#define TRUE 1
#define FALSE 0

extern .Dialog_9* retrievedialog;
extern -Dialog-l I* buildconditiondialog;
extern int Whereinserted;
extern _Dialog_12* toolboxdialog;

_Dialog-l2::_DialogI2(const char* name) -Dialog_ 12.core(name) {

void -Dialog_12::andpressed0 I
int value = 0;
and BS->GetValue(value);
if (value!= 0) {
buildconditiondialog->conditioninputeditor-> lnsertText(" \nAND \n". 7);
andBS->SetValue(O);

115

void -Dialog- I2::orpressed()
int value = 0;
orBS->GetValue(value),
if (value != 0)(

buildconditiondialog->conditioninputeditor->lnsertText(" \nOR Nn", 6);
orBS->SetValue(0);

void -Dialog- I2::openparanpressed()
int value = 0;
openparanBS->GetValue(value);
if (value !=0)

buildcondiliondialog->conditioninputeditor->1nsertTextV(". 3);
openparanBS->SetValue(O);

void _Dialog- 12:: closeparanpressed()f
int value = 0;
closeparanBS->GetValue(value);
if (value! 0)
buildconditiondialog->conditiominputeditor->LnsertText(' 3);
closeparanBS->SetValue(0);

IThis function is implementation dependent.

void -Dialog- I2::subquerypressed()
int value = 0;
subqueryBS->GetValue(value);
if (value !=0)1
Subquery = TRUE;
retrieved ialog ->querydispl ayeditor->lnsertTex t(")", 2); I/last one
retrieved ialog ->querydisplayeditor->Beginnin gOfTexto;
retrieved ialog->querydispl ayeditor->lnsertText('ýn ", 1);
retrieved ialog->querydisplayeditor->BeginningOt~exto;
Whereinserted = FALSE;
BuildCondition = FALSE; lluse the selection tables
subqueryBS->SetValue(0);
retrievedialog->DisplayMessage(17);

void -Dialog- 12:: lessthanpressed()I
int value = 0;
lessthanBS->GetValue(value);
if (value !=0)
buildconditiondialog->conditioninputeditor->1nsertText(" <X 3);
lessthanBS->SetValue(0);

116

void _Dialog-jI2::lessorequalpressed()I
int value = 0;
lessorequalBS->GetValue(value);,
if (value !=0)1
buildconditiondialog->conditioninputeditor->InsertText(C <= 4);
lessorequalBS->SetValue(O);

void -..Dialog-..I12::equalpressed()
int value = 0;
equa[BS->'GetValue(value);
if (value != 0) (

buildconditiondialog->conditioninputeditor->InsertText(= 3).
equalBS->SetValue(0);

void _Dialog- I2::greaterorequalpressed()
int value = 0;
greaterorequalflS->GetValue(value);
if (value !=0) 1
buildconditiondialog->conditiontinputeditor->lnsertText(" >= 4);
greaterorequalBS->SetValue(O);

void ...Di alo g-12:: greaterthan pressed()
int value = 0;
greaterthanBS->GetValue(value);,
if (value! =0)1(
buildconditiondialog->vonditioninputeditor->lnsertText(" >. 3);-
greaterthanBS->SetValue(0);

void -Dialog- I2::unionpressed() I
int value =0;
unionBS->GetValue(value);
if (value!=O0) 1

if (Subquery)
retrieved ialog->quei-ydisplayeditor->InsertText(' \n UNION (\n",. 10);
retfievedialog->querydisplayeditor->BeginningOffexto;

lelse I
retrievedialog.>querydisplayeditor.>lnsertText(" NnUNION C\n", 10);

Nested = TRUE;
BuildCondition = FALSE; H/use the selection tables
Whereinserted = FALSE;
unionBS->SetValue(0);

void -..Dialog- I2::intersectionpressed()

117

int value = 0;
intersectionBS->GetValue(value);
if (value ! =0)
if (Subquery)
retrievedialog->querydisplayeditor->AnsertTextC \,nUINTERSECTION (\n". 17);
retrieved ialog->querydisplayeditor->BeginningOfTexto;

else
retrievedialog->querydisplayeditor->lnsertText(\nI1fJTERSECTION (\n", 17);

Nested = TRUE;
BuildCondition = FALSE; IHuse the selection tables
Whereinserted = FALSE;
intersection.BS ->Set Value(O);

void -.Dialog- I2::minusentered()
int value = 0;
min usB S->GetValue(value);
if (value! 0)
if (Subquery)
retrieved ialog ->querydisplayeditor-> In sertTe xt(" \nMMNS (\n". 10);
retrievedialog->querydisplayeditor->BeginningOfTexto;

I else(
retrievedialog->querydisplayeditor->InsertTextC \nMINS (\n", 10);

Nested = TRUE;
BuildCondition = FALSE; Hluse the selection tables
Whereinserted = FALSE;
min usBS ->SetVal ue(0);

I//This function is implementation dependent

void -Dialog- 12:: inpressed()
int value = 0;
inBS->GetValue(value);
if (value != 0)1
if (Subquery)I
retrievedialog->querydisplayeditor->lnsertText(" \alN (*\sf. 7);
retrievedialog->querydisplayeditor->BeginningOfText();
else I
retrievedialog->querydisplayeditor->InsertText(" \41N (\n", 7);

Nested = TRUE;
BuildCondition = FALSE; IHuse the selection tables
Whereinserted = FALSE;
inBS->SetValue(0);

II This function is implementation dependent

118

void -Dialog_ 12:: not inpressed()
int value = 0;
notinBS->GetValue(value);
if (value !=O0)1
if (Subquery)I
retrievedialog->querydisplayeditor->flsertText(" \jiNOT IN C'W', 11);
retrieved ialog ->querydisplayeditor-> Beginni ngOfTexto;
Ielse
retrievedialog->querydisplayeditor->LnsertText(' \.nNOT IN (\", 11);

Nested =TRUE;
BuildCondition = FALSE; H/use the selection tables
Whereinserted = FALSE;
notinBS->SetValue(0);

void -Dialog_ I2::existspressed()
int value = 0;
existsBS->GetValue(value);
if (value != 0)
if (Subquery)
retrieved ialog->querydisplayeditor->AnsertText(' \inEXISTS (\ni", 11);
retrieved ialog ->querydisplayeditor-> Be ginningOfTexto;

I else
retrievedialog->querydisplayeditor->InsertText(" \.nEXISTS (\n". I I);

Nested = TRUE;
BuildCondition = FALSE; H/use the selection tables
Whereinserted = FALSE;
existsBS->SetValue(0);

void -Dialog) 2::noteXiStSpressed()
int value = 0;
notexistsBS->GetValue(value);
if (value != 0)

if (Subquery)
retnievedialog->querydisplayeditor->InsertText(' \nNOT EXISTS (\n", 15);
retrievedialog->querydisplayeditor->BeginmingOtTexto,
Ielsef
retrievedialog->querydisplayeditor->InsertText(" \nNOT EXISTS CW',' 15);

Nested = TRUE;
BuildCondition = FALSE; I/use the selection tables
Whereinserted = FALSE;
note xists BS ->SetV alue(0);

void -.Dialog_ 2:: too lexitpressed()J
int value = 0;

119

toolexitBS->GetValue(value);
if (value != 0) (

toolexitBS->SetValue(O);
buildconditiondialog->toolboxBS->SetValue(O); I/enable button
GetWorld0->Remove(toolboxdialog);

S. Result.h

H Module Name: r•esult.h RESULT DIALOG
H Author : Erhan SARIDOGAN, Metin BALCI
H Date : August 1992
/This module contains the implementations of buttons, string browser
//and media display functions.

#ifndef Result_h
#define Result_h

#include "Result-core.h"

class Result: public Result_core
public:

Result(const char*);

virtual void resultpressed(;
virtual void showpicturepressedo;
virtual void clearpicturepressedo;
virtual void playsoundpressedo;

virtual void returnretrievalpressedo;
I;

#endif

T. Result.c

H Module Name: Result.c RESULT DIALOG
/ Author : Erhan SARIDOGAN, Metin BALCI

H Date : August 1992
/This module contains the implementations of buttons. string browser and
//media display functions for the query results.
//The function xloadimage(char*) belongs to Gene Guglielmo.
H The implementation of tif-file display class is in InterViews Ref.Manual

#include <lnterViews/strbrowser.h>
#include <InterViews/button.h>
#include <InterViews/2.6/_enter.h>
#include <InterViews/texteditor.h>
#include <InterViews/textbuffer.h>
#include <InterViews/world.h>
#include <Unidraw/catalog.h>
#include <Unidraw/unidraw.h>

120

#include <Unidraw/creator.h>
#include <InterViews/canvas.h>
#include <InterViews/painter.h>
#include <InterViews/sensor.h>
#include <InterViews/display.h>
#include <InterViews/image.h>
#include <InterViews/monoglyph.h>
#include <interV iews/raster.h>
#include <InterViews/tiff.h>
#include <InterViews/session.h>
#include <interViews/style.h>
#include <InterViews/transformer.h>
#include <InterViews/window.h>
#include <InterViews/event.h>
#include <stdio.h>
#include <stdlib.h>
#include <stream.h>
#include <string.h>
#include "Result.h"
#include "common.h"
#include "_Dialog_9.h"

#define TRUE I
#define FALSE 0

Result::Result(const char* name): Resultcore(name)

extern Result* resultdialog;
extern _Dialog_9* retrievedialog;
extern char aggregatebuffer[Il1;
extern int Whereinserted;

Window* picturewindow[10]. I/for multiple picture display
int selectedresult; //index for browser
int picindex - 0; //to display more than one picture at the same time

extern "C"
forko;
chdir(char*),

I/local function
void qpjxloadimage(char*);

// This class is local and used for displaying tiff files
class ScaleToFit: public MonoGlyph
public:

ScaleToFit(Glyph*);
virtual void request(Requisition&)const;
virtual void allocate(Canvas*, const Allocation&. Extension&);
virtual void draw(Canvas*, const Allocation&)const;

private:
Allocation allocation-;
Transformer matrix;
Glyph* body-;

121

H/These functions are public

void Result:: resultpressed()
int value = 0;
resultBS->GetValue(value);
if (value ! =0) (

resultBS->SetValue(O);
selectedresult = resultbrowser->Selection(0);

void Result:: showpicturepressed()I
int value = 0;
showpictureBS->GetValue(value);
if (value != 0) (
char picfdenamel 1001;
strcpy(picfilename,"/nlaquarius/work/rowe/marie/media/data/image/");
strcat(picfilename~q-rec.q result[selectedresultl.r..picture[Ol);
qp..xioadimage(picfilename);

**~this part is used when InterViews display function is used
The necessary declarations must be made.

Creator creator;
Raster* raster[10);
if (picfilelOl != V'Y) I
raster[picindex I = TIFFR aster:: load(pic file);
picturewindowlpicindexl = new ApplicationWindow(

new ScaleToFit(new Image(raster[picindexi)));
picturewindowlpicindexl ->mapo;
picindex++;

showpictureBS->SetValue(0);

HI This function deletes the displayed pictures only if the InterViews
HI picture displaying functions are used.

void Result:: clearpicturepressed()
int value = 0;
clearpictureBS->GetValue(value);,
if(value !=0)

mntm = 0;
while (picturewindowimi !=nil)

picturewindow~m I->unmapo;
picturewindowimi = nil;.

picindex = 0;
clearpictureBS->SetValue(0);

122

void Result:: playsoundpressed()
int value = 0;.
char filenamel 201;
playsoundBS->GetValue(value);
if (value !=0)1
if (a rec.q..resultqselectedresultj.r..sound[lI ! 'No)
strcpy(filename.q...rec.qjresult[selectedresultl .r..soundfOj).

//display the file name for test purposes
cout«<" sound filename: «< filename;
cout.flusho;

playsoundBS->SetValue(0);

void Result::returnretrievalpressed()
int value = 0;,
returnetrievalBS->GetValue(value);
if (value != 0)1
resulItbrowser->C learo; I/clear the result browser before quitting

/**** if there is any picture kill them before leaving
when InterViews display functions are used

int i= 0;
while (picturewindowlil !=nil)
picturewindow[i]->unmapo;
picturewindow~il = nil;

picindex =0;

resultBS->SetValue(1); /This BS name is in Result-core.h

H/to allow another query, reset the appropriate variables
Tableindex = 0;
AttributeIndex = 0;
TotalAttributelndex = 0;
BuildCondition = FALSE;
Contains =FALSE;
Whereinserted = FALSE;
Nested = FALSE;
Subquery = FALSE;
ConditionReady = FALSE; I/disable process query button
NextTableSelected = FALSE;
ClearRecordo;
for (mnt n = 0:n < MAXSQL; n++) sqlstningln] =V;
aggregatebuffer[0J = "'
retrievedialog->ClearBuffero;
retrievedialog->DisplayMessage(l 1),
ClearConditionRecordo;
I/clear query display
retrievedialog->queryd ispi ayed itor->Se lect All(;

123

retrievedialog->querydisplayeditor->DeleteSelectiono;
returnretrievalBS->SetValue(O);
retrievedialog->SetProcessQueryButton(O); i/reset the button
GetWorldo->Remove(resultdialog);

II~~ These are used to display picture files of tif format
ScaleToFit::ScaleToFit(Glyph* g): MonoGlyph(g) (I

void ScaleToFit::request(Requisition& r) const(
MonoGlyph: :request(r);
ScaleToFit* s = (ScaleToFit*)this;
Requirement& rx = r.requiement(DimensionX);
rx.stretch(fil);
rx.shrink(fil);
Coord xsize =(int)rx. natural();
float xalign =rx.alignmento;

Allotment ax(xalign* xsize, xsize.xalign);
s->allocation_.allot(Dimension-X, ax);
Requirement& ry =r.requirement(Dimension..Y);
ty.stretch(fil);
ry.sbrink(fiI);
Coord ysize =(int)ry. natural();
float yalign =ry.alignmento;

Allotment ay(yalign* ysize,ysize.yalign);
s->allocation_.allot(DimensionY,ay);

void ScaleTo Fit:: allocate(Canv as* c, const Allocation& a. Extension& ext)
matrix- = Transformero;
matrix....scale(
a~allotment(Dimension..X).spano/
allocation-..allotment(Dimension-X).spano,
a.allotment(DimensionY).spano/
allocation_.allotment(Dimension-Y).span()

c->pushjtransformo;
c->transformn(matrix-);
MonoGlyph: :allocate(c,allocation_,ext);
c->pop-.transformnO;

void ScaleToFit::draw(Canvas* c, const A]llocation &)constj
c->pushjtransfonnO;,
c->transforrm(matrixj;
MonoGlyph: :draw(c,allocation_);
c->pop-transformo;

HI Another picture file display routine written by Gene Guglielmo

124

#define NARGS 10
#define FAIL 1

char *malloco;
void qp-xloadimage(char *jfile)

char *argv[NARGSI;
char *pgm = "xloadimage";
int i;

int pid;
char buf[100l;
/* separate path from file name ~
strcpy(buf, ifile);

/* set up argv for executing xloadimage ~
argv[01 = pgm;
// argv[ii = "-display- no need this
argv[II= "-ganmma7;
argv[21 = "."
argv[31 = buf;

for (i =4; i < NARGS; i++) argvlil = NULL;
pid = forko;
if (pid = -1)

fprintf(stderr, "SYSERR - Could not fork %s process~n", pgm);
exit(FAIL);

else if (pid = 0)1
if (execvp(pgm, argv)=-)

fprintf(stderr. "SYSERR - Could not exec %s process~n". pgm);
exit(FAIL);

return;

125

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

Chairman, Code CS 2
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5100

Professor Neil C. Rowe
Code CsRp
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5100

Professor C. Thomas Wu
Code CsWq
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5100

Deniz Kuvvetleri Komutanligi
Personel Daire Baskanligi
Bakanlildar, Ankara / TURKEY

Golcuk Tersanesi Komutanligi 2
Golcuk, Kocaeli / TURKEY

Deniz Harp Okulu Komutanligi 2
81704 Tuzla, Istanbul / TURKEY

Taskizak Tersanesi Komutanligi 2
Kasimpasa, Istanbul / TURKEY

126

Erhan Saridogan
Florya Asfalti No: 42/5
Senlikkoy 34810
Istanbul / TURKEY

Metin Balci
Toprakyol, Beyaz Villa Cikmaz Sok.
Yavuz Apt. No: 18 / 8
Kartal, Istanbul / TURKEY

127

