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ABSTRACT

The problem of path keeping of marine vehicles along

curved paths is considered. In particular, we are concerned

with circular arcs that join two consecutive straight line

segments. This provides smooth path changes between one

segment and the next utilizing a purely geometric reference

path construction. Pure pursuit guidance is coupled with

orientation angle control law to ensure stability and

accuracy. Sensitivity analysis with respect to inaccuracies in

the knowledge of the vehicle hydrodynamic characteristics is

performed. The results demonstrate the validity of this

approach and offer a way to achieve accurate path keeping in

confined spaces.
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I. INTRODUCTION

One of the most important functions of a marine vehicle is

accurate path keeping through prescribed routes. Path accuracy

is particularly important when the vehicle has to operate in

confined waters. In the case of an unmanned vehicle, the

commanded path is usually approximated by straight line

segments between consecutive way points. This assumption works

well if the desired route is a smooth path and can be

approximated by a series of straight line segments. This has

been studied extensively in the past. Lienard [1] designed a

steering sliding mode control autopilot based on the line of

sight, while Chism [2] studied a cross track error based

control law. Hawkinson [3] extended the results to the

multiple input case when bow and stern planes are

independently controlled. Instead of using the cross track

error directly in the control law, similar path keeping

characteristics can be achieved by using a line of sight

pursuit guidance scheme. This is accomplished by moving the

vehicle in the direction of a moving way point which is

located on the commanded straight line path [4]. Stability of

this scheme depends on the control law gains and the look

ahead distance between the vehicle and the moving way point

[5]. The technique can be applied to combined steering and
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diving response [6] . In this work, we extend the previous

studies of pursuit guidance in the case of curved reference

paths with piecewise constant curvature. This means that we

adopt a purely geometrical construction of the reference path

which is composed of a series of straight line segments and

circular arcs. In Chapter II we present an overview of the

equations of motion in the horizontal plane, the control and

the guidance laws. We use the full set of maneuvering

equations for simulation and a reduced model, Nomoto's first

order model, for steering control design. This is because the

vehicle parameters in the reduced order model can be estimated

relatively accurately from first principles and experimental

data [7] . In Chapter III the focus is on stability. We present

two stability conditions, one based on the reduced model, and

one based on the complete vehicle dynamics model. The

sensitivity of the stability curves with respect to the

vehicle hydrodynamic coefficients and control parameters is

also studied in this chapter. In Chapter IV we present the

development and simulation results of the guidance scheme for

circular reference paths. All computations in this work are

performed for the NPS AUV II vehicle for which a complete set

of hydrodynamic coefficients and geometric properties is

available [8]. Finally, we summarize the conclusions of this

work and some recommendations for further research.
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II. MATHEMATICAL FORMULATION

In this section the vehicle equations of motion for the

horizontal plane (x,y), the control law and the guidance

scheme are presented.

A. EQUATIONS OF MOTION

For the horizontal plane the mathematical model consists

of the following simplified expressions for the nonlinear sway

and yaw differential equations shown below

m('ý+ur+xGt)=Y (2.1)

iZt +mxG(v+ur)=N (2.2)

Equations (2.1), (2.2) were derived from the general six

degrees of freedom equations for a vehicle by setting all

terms related to the vertical plane motion to be zero,

assuming port/starboard symmetry. The equations for the sway

force Y and yaw moment N are :

Y=Y•t+ (YZV'0+YZur) +Y'uv+ 6u25

N=Nztt+ (N,+Nrur) +Nvuv+N~u2 8
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Finally the three kinematic equations of the inertial position

rates and yaw rate are

(2.3)

-=ucos4r-vsin* (2.4)

jY=usin* +vcosiJ (2.5)

B. CONTROL LAW

The coupled equations (2.1) and (2.2) after some algebra

appear as shown :

TY=a 11uv+a12ur+biu 28 (2.6)

.t=a2luv+a2 2ur+b2u 28 (2.7)

where the coefficients a11 , a 12 , a 21 , a 22, b, and b 2 are

D= (I 2 -Nt) (m-Ye) - (mxG-Yd) (mXG-NO)

a1 =:1 [ (I,-N 1 ) Yv- (mxG-YV) N-]
D D

a12 - [(Iz-N1 ) (-m+Y 1) - (mxG-YY) (-mxG+NI)I
D

a I M k N, - (Mx-NG 'V) Vv]

1
a 22 -• [(m-Yv) (-mxG+N,) - (mxG-N,.) (-m+Y,) ]

D

4



b1=1 [ (I.-Nt) Y6,-(mxG-Yt)N6o- (Iz-Nt) Yab+ (mxG-Yt)N6b]

b 2=-! [ (m-Y) N6- (mxG-NV) 4°- (m-ZY) NV+ (mxG-NO) Y~b]

Nondimensionilizing the above equations in terms of the water

density p the vehicle length L and the nominal forward speed

U of the vehicle, results in the following

,ý=a 11v+a 12r+b.8 (2.8)

2=a21 v+a22 r +b28 (2.9)

From equations (2.8) and (2.9), the relationship of the

vehicle turning rate r and the rudder angle 8 appears through

a second order transfer function :

r- b 2s+a 21bj-ajjb 2  (2.10)

s2- (a 22 +all) s+alla22-a 1 2a21

Performing a Taylor series expansion in the inverse of

equation (2.10) and keeping the first two terms we arrive at

a simplified first order transfer function

r_ C3  (2.11)8 c1 +c 2s

where

5



c,=- (ajja 2,-a 21a12 ) (a21b1 -allb2)

c2= (a11+a22) (a21bj-a11 b 2) +b2 (aj 1a22-a 21 a12)

c3=_ (a21b1 _-ajb 2) 2

Equation (2.11) can be also written as

2=ar+b8

where
C. C3

a=---, and b=c

C 2  C2

In this way, the vehicle turning dynamics reduce to the

approximate system of the following two equations

(2.12)

L=ar +b8 (2.13)

The control law then will be based on x' and r and this is

going to be in the form

8=k1l+k 2r (2.14)

Solving for V1 from equations (2.12), (2.13) and (2.14) we end

up with a second order differential equation as below

6



4 - (a +bk2) * -bkl* =0

In terms of the desired natural frequency W, and the damping

ratio C the gains k, and k2 are given by the following

relations

•2

k1  b__ (2.15)

k2= a+2 n (2.16)
b

Therefore, the feedback gains for the control law can be

determined based on the desired values of (On and 4-

C. GUIDANCE

The heading autopilot that was designed through the

control law in the previous section is called upon now to

provide vehicle path keeping through a series of way points in

the horizontal plane and as we will see later accurate path

keeping along circular paths. In order to achieve it and at

the same time to keep the same heading autopilot design we

have to use a suitable navigation scheme such as the line of

sight guidance scheme (or the look ahead distance scheme) . In

the above scheme the autopilot attempts to position the

7



longitudinal axis of the vehicle towards a point D which is

located ahead of the vehicle's nominal path at a fixed

distance d as shown in Figure 1. This fixed distance d is the

look ahead distance and the line of sight angle Y is defined

as

tang=--Y (2.17)
d

For pure pursuit navigation the corresponding control law by

modifying equation (2.14) becomes :

8 =kl ( - 0.) +k2r (2.18)

where

By introducing equation (2.17) in the control law equation,

the commanded vehicle heading angle is not constant any more

but a function of the vehicle's position y as it can be seen

from equation (2.5) . Since the control law was based on

equations (2.3), (2.6) and (2.7) without including equation

(2.5) for lateral displacement, the selected gains kj, k2 do

not guarantee stability any more and therefore conditions must

be developed to guarantee stability and ensure satisfactory

path keeping.

8
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Figure 1. Geometry and Definitions of Symbols
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III. STABILITY

A. APPROXIMATE CONDITION FOR STABILITY

So far the complete system is given by the approximate

equations (2.12), (2.13), and the inertial position rate

equation (2.5). In its linearized and dimensionless form for

a very small lateral velocity v this becomes

y-sý (3.1)

The control law including the guidance scheme is

8 =k, (* +tan-1 -Z) +k2rd

which in its linearized form is given by

8=kl (W•+-) +k2r (3.2)
d

Solving equations (2.12), (2.13), (3.1) and (3.2) for y we end

up to with a third order differential equation as follows :

• ~bkI
j7- (a +bk2) _P-bk ,----a- d =0 (3.3)

10



Writing the above equation in the s-domain and substituting k,

and k2 from equations (2.15) and (2.16), equation (3.3) takes

the following form

2

S3+2 CCS2+CS+_-=O (3.4)

The Routh criterion for stability, BC-AD > 0, where A, B, C

and D are the coefficients of equation (3.4), applied to the

above equation gives the following condition that must be

satisfied

d> (3.5)2( on

If we have selected a natural frequency wn and a damping ratio

ý for the controller, it is possible from the above relation

to have a quick estimate for the minimum look ahead distance

d such that the system will be stable. In Figure 2 the

approximate stability curve (dotted line) was plotted, the

look ahead distance d versus the natural frequency of the

controller 4n, based on equation (3.5) and for damping ratio

C=0.8. This is in general considered to be good for a system,

neither too sluggish, nor too stiff. As is discussed in the

next section these values for the natural frequency and the

damping ratio give also reasonable values for the gains k, and

k2.

11
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B. EXACT CONDITION FOR STABILITY

For an exact calculation we use equations (2.3), (2.8),

(2.9) and equation (2.5) which in linearized form appears as:

.)ý=*+V(3.6)

This set completes the control law while the guidance scheme

is given equation (3.2) . Substituting the control law into the

equations (2.8), (2.9) and rearranging the terms the system

becomes as shown

(3.7)

T.=kbl+ll (l2kb, r yb (3.8)
dY

z'~klb 2*+a2l V+ (a2 2+ k2.b2 )r+ kLb2 (3.9)

3ý=* + V(3.10)

Local stability properties are established by the eigenvalues

of the stiffness matrix. The characteristic equation of this

system is a fourth order polynomial in the form

AM +BL3 + CX 2 +DX +E=O (3.11)

where

13



c~c +c2
CC1 + 2

D=D,+D 2

with A, B, C1, C 2 , DI, D2 and E defined as in the following

A=I. 0

B=- (all +a22 ) -k 2b2

C11= (alla22 -a 1 2a 21 ) + (allb2 -a 21bl) k2 -klb 2

C2-d

Dl= (alb.-a21 bl) k,

D2_ (a 22bl-a 12 b2 ) k_ klb 2d d

E= (a,1b,-a 21 61 ) k,
d

Routh's criterion for stability determines that loss of

stability occurs when the following relation is satisfied

BCD-B 2E-AD2 =0

After some algebra a quadratic equation for d occurs as below:

aid 2 +a 2d+a 3=0 (3.12)

14



where the coefficients al, a2, a3 are defined as follows

a2 =BC1D2d+BC2 dD1 -B 2Ed-2 . OD1D2d

a 3 BC 2dD 2d-D 2d2

The positive root of equation (3.12) determines the critical

value of the look ahead distance d for stability. For every d

> dcritical the system is stable and the vehicle will follow the

desired path. In the other case when d < dcritic.i the system

becomes unstable and the vehicle moves with an oscillatory

motion as a result of a complex conjugate pair of eigenvalues

with positive real parts that appears in this case. In Figure

2 the continuous line represents the exact stability curve for

various values of the 4n versus the look ahead distance d and

for a damping coefficient ý=0.8. As can be seen the

approximate stability curve (dotted line) is very close to the

exact and therefore it can be used as a good first

approximation in order to provide adequate stability values to

the system. In Figure 3 a family of curves was plotted for

damping ratios with values of 1.2 to 0.4 with step 0.1 (left

to right) for various values of Con versus the look ahead

distance d. As can be seen the stability area is increasing

for higher values of the natural frequency 4on and for higher

values of the damping ratio C. When the natural frequency

15
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though reaches a value of 3.0 or higher, it is observed that

the stability curves for the various damping ratios are

approaching each other giving almost the same stability area.

From Figure 4 it is also observed that for a natural frequency

of 3.0 the gains kj, k2 are about 3.2 and 1.2 respectively

while higher values of 4 give higher gains without much

increase in the stability area. Therefore the above selection

of o4n and ý to be 3.0 and 0.8 respectively, is considered

good. An other way to look at the gains is that for 1 degree

of heading error a rudder of 3.2 degrees is required while for

1 degree/sec turning rate a 1.2 rudder angle is required.

C. SENSITIVITY OF STABILITY CURVES

The hydrodynamic coefficients of the vehicle on which all

the calculations were based have been determined

experimentally. Therefore it is realistic to assume that a

degree of error (uncertainty) that enters the calculations and

may influence the results. In order to see how much this

uncertainty for each coefficient changes the stability curves,

a variation of 50% of the nominal value for each hydrodynamic

coefficient was assumed and plotted versus the normalized

look ahead distance dn (dnew/dnom) . The coefficients that found

to affect stability were: Y,, Y,, N. and Nr while the rest of

the coefficients had no effect. In Figure 5 the variation of

the coefficient Y, was plotted versus the normalized look

ahead distance dn, and as it can be observed a variation of a

17
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50% of the nominal value gives a total change of about 0.40

for dn. In Figure 6 the variation of Y, versus dn was plotted

and for a variation 50% of Y, a total change of about 0.37 of

dn occurred. In Figure 7 the variation for N, gives a total

change of 0.14 for d, while in Figure 8 the variation for Nr

gives a total change of 0.102 for d,. As can be seen the

variation of Y, and Yv gives values for d, of about four (4)

times larger than N, and Nr, therefore these two coefficients

affect the look ahead distance the most. For all the above

plots above the values for natural frequency and damping ratio

were 3.0 and 0.8 respectively. In an attempt to see how much

a variation of ý and on affects the previous results for Y, and

Y, the following Figures 9, 10, 11 and 12 are plotted. It can•

be seen that the maximum deviation in the critical value of d

for stability is 40% of its nominal value, while for most of

the cases this deviation is well below 20%.

20
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IV. SHIP PATH KEEPING

After satisfying the requirements for stability by

selecting proper values for the gains k1, k2 and the look ahead

distance d as was discussed in the previous section, the ship

path keeping problem along straight line segments and circular

trajectories is examined in this section.

A. STRAIGHT LINE SEGMENTS PATH KEEPING

So far the control law with the guidance scheme is given

by equation (2.18) which in steady state gives a heading angle

of zero (0). In order for the vehicle to follow a straight

line path between two given points (x,, yl) and (x 2, Y2) the

control law must be modified. If a, is the angle between the

straight line (P) and the x axis; the distance y that enters

the control law becomes y', as can be seen from Figure 13. The

modified control law is shown below :

8=k 1sin (i-a-a) +k2r (4.1)

where 0 and y' are given by

a=•W•=-arctan (d2)

y= (y-yl) cosa- (x-x 1 ) sina

28
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At steady state now the heading angle becomes a and the

vehicle follows the straight line (P) . The simulation program

takes into account all the possible different orientations of

(P) by modifying the angle a properly for each case. In Figure

14 we can see the simulated path of the vehicle (continuous

line) and the reference path (dotted) for a two way point

path. The reference line is a quarter of a circle while the

two points have coordinates (0,0) and (10, 10) respectively. In

Figure 15 the rudder time history for the above two way point

path keeping for a straight line is presented. The maximum

value is about -23 degrees, which is a saturation point since

the rudder is not allowed to exceed this value (exact 0.4

radian or 22.923 degrees) . In the following Figures 16

through 23 the number of points was increased to 3, 5, 7 and

13, in an effort to approach the reference path, by dividing

the reference path in equally spaced arcs and following the

straight line segments defined by these points. As can be

seen, by increasing the number of points the vehicle can

follow the reference path with increased accuracy. The

drawbacks of simply increasing the number of discretization

points are two. First, we are placing increased demands on

storage and memory for the on-board processor. Second, even

when satisfactory path accuracy is achieved by using a large

number of way points the rudder activity is very excessive and

erratic. Therefore if the vehicle must follow a circular arc

30
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path, doing so by following small straight line segments is

not the best way since a large number of points is needed and

the rudder is doing a considerable amount of effort. This

means that a different way must be developed such that the

vehicle at any time t is following the circular arc instead of

a straight line.

B. CIRCULAR ARC PATH KEEPING

By demanding the vehicle to follow a certain circular path

in a certain way, clockwise or counterclockwise, the angle a

that enters the control law is going to vary depending on the

orientation of the vehicle relative to the center of the path.

It needs to change values from positive to negative in a

consistent way with the control law requirements, in order for

the vehicle to negotiate the assigned path. For this reason we

need, to properly modify the control law for each case of the

vehicle motion (cw, ccw) and for each quarter of the circle

separately. Defining by A the distance from point V to point

0, Figure 24, A is given by the following expression

1
A=[I(X _X,)2I+(y y") 2] (4.2)
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The radius of the circular path R can also be expressed as

1

R= [ (x1 -x) 2 +(Y1 -Y) 2 ] 2 (4.3)

From similar triangles the following relations yield the

coordinate values of point 3 :

X3=XR+l (X-Xo) (4.4)

y3=yO+- (y-yo) (4.5)

Equations (4.2), (4.3), (4.4) and (4.5) are valid for CW or

CCW motion and for any possible orientation of the vehicle.

The equations that are valid for each separate case are

presented below.

1. CLOCKWISE MOTION

a) For the fourth quarter of the circle and from Figure 24

the angle 03 can be written as :

03=arcsin( XO X3) (4.6)
R

The angle 02 also appears as follows
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62=n -e -e3 (4.7)

where 01 can be written as

o1 =- J (4.8)
122 R

For this case d is the length of the arc from point 3 to point

4, while d34 is the distance between points 3 and 4 and can be

written as follows :

d

d3 4=2Rsin (-A-) (4.9)2R

The coordinates of point 4 now since d34, x 3 and Y3 are known

can be evaluated from trigonometry as follows

x4 =x3 +d3 ,4sine2  (4.10)

Y4 =y3+d34cOs0 2  (4.11)

The distance B from point V to point 4 is

44



1

B= [ (x-x4 ) 2+ (y-y 4 )2 ] 2 (4.12)

Defining the angle y as following

Y=o+0 1  (4.13)

and performing the law of sines in the triangle (OV4), y is

given by

y=arcsin[sin (J)] (4.14)
R B

Substituting angle y, equation (4.13) gives angle CY. For the

control law the angle (X (the angle that d 34 makes with the

horizontal) is also needed and this is given by

a=- -( O2 (4.15)
2

Finally the control law takes the following form

8=k1 sin (*-a+a) +k2r (4.16)

Taking the sine of the total heading angle accounts for the

approximations of linearization that were made in selecting
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the gains k,, k 2 . The above form of the control law is valid

for all of the quarters of the clockwise motion, while for the

counterclockwise motion, angle a is reversing sign as we will

see later. The equations (4.7), (4.8), (4.9), (4.12), (4.13)

and (4.14) are also valid for all the cases.

b) For the third quarter, the angle 03 is given by the

following equation :

e3=arcsin( YO-Y3)R

The coordinates of point 4 are now given by the following

expressions

x 4 =x 3 - 4cose 2

Y4 =Y3 +d3 4sinO2

Finally, the angle a that enters the control law appears as

below

a=7c-e2

c) For the second quarter, 03 is given by the following

equation

46



03=arcsin ( X )
R

while x4, Y4 are given as

x4 =x3 -d 34sine2

Y4 =Y3 -d 34 cose2

For this case, the angle x appear as

a=:I-02
2

d) Similarly, for the case of the first quarter

e3=arcsin( Y3-Yo)
R

x4 =x3 +d34 cose 2

Y4 =Y3 -d 34sine2
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2. COUNTERCLOCKWISE MOTION

From Figure 25 it can be seen that the equations

(4.2), (4.3), (4.4), (4.5), (4.7), (4.8), (4.9), (4.12),

(4.13), (4.14) continues to hold.

a) For the fourth quarter, Figure 25, angle 03, X4 , Y4 and

(x appear as follows :

e3=arcsin( Y3R-O)R

x4 =x 3 -d 34 cose2

y4 =y3 -d3 4sine2

The control law for this and also for the other three cases of

the counterclockwise motion appears as below

8 =k1sin (*-a -a) +k2r

b) For the third quarter the following relations hold

03=arcsin ( x 0 -x 3 )
R

x4 =x3 +d34sine2
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y4 =y 3 -d 3,cos0 2

3

C) For the second quarter similarly we have

03=arcsin( RYOY3)
R

x4 =x3 +d34 cose2

Y4 =y3 +d34sine2

a=O2

d) Finally for the first quarter the following equations hold:

e3=arcsin ( x 3 -x)
R

x4 =x3 -d 34sinO2

Y4 =Y 3 -d 34 cose2

2 2
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C. SIMULATION RESULTS

By introducing the modifications of the previous chapter

into the simulation program, the necessity of providing the

simulation program with a set data, in order for the vehicle

to perform the desired commands, occu'rred. The table below

summarizes the required data, for the simulation program, for

a test case of a figure - eight manoeuvre shown in Figure 28.

x y TURN D PATH ICCW x0 Yo

15.0 0.0 0 1.0 0 0 0.0 0.0

15.0 10.0 0 0.1 0 0 0.0 0.0

10.0 15.0 0 0.1 1 1 10.0 10.0

8.0 15.0 0 0.1 0 0 0.0 0.0

3.0 20.0 0 0.1 1 0 8.0 20.0

8.0 25.0 0 0.1 1 0 8.0 20.0

13.0 20.0 0 0.1 1 0 8.0 20.0

8.0 15.0 0 0.1 1 0 8.0 20.0

6.0 15.0 0 0.1 0 0 0.0 0.0

1.0 10.0 0 0.1 1 1 6.0 10.0

6.0 5.0 0 0.1 1 1 6.0 10.0

51



In the first two columns the coordinates x, y of the next way

point are given. In the third column, the variable TURN

selects how the vehicle is going to change its direction for

the next way point in order to have a smooth change in course

with less overshoot. There are two ways, 1 for circle, 0 for

distance. When 1 is selected the vehicle must enter a circle

with a preselected target radius centered at the way point

before it starts heading for the next one. When 0 is selected

the vehicle turns when it reaches a preselected target

distance from the heading point. The fourth column, D,

determines this preselected radius or distance that the

vehicle has to approach the way point before it starts turning

for the next one. The fifth column determines if the desired

path is a circular arc (1) or a straight line segment (0). In

the sixth column, the (ICCW) index determines if the desired

path is in the counterclockwise direction CCW for 1, or

clockwise CW for 0. This is the case, of course, when the

fifth column is 1 (circular path) . Finally, the two last

columns give the coordinates of the center of the circular arc

if this is the case. In an effort to make a comparison with

the previous case of Figures 22 and 23, the vehicle path was

plotted for a two way circular path. From Figure 26 can be

seen that the reference path was achieved with the use of only

two points instead of 13. From Figure 27 we can also see that

the rudder steers the vehicle in a smooth way achieving much

smaller values than any other case of straight line segments.
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After introducing the previous table of data into the

simulation program, a figure eight manoeuvre was performed by

the vehicle, Figure 28. The rudder time history of the above

manoeuvre was also plotted, Figure 29, The small values of the

rudder angle even for a complicated manoeuvre like this prove

the advantage of the method, over the use of line segments

only.

55



30

25 .-. ...

15

10 r

0 2 4 6 8 10 12 14 16 18

Figure 28. Figure -Eight (8) Manoeuvre.

56



20

15 .

" -20........ -. .-

tkt

• -5 -

-25 lii••,'
0 10 20 30 4.0 50 60 70 80 90

Figure 29. Rudder Time History for the Manoeuvre of Figure

28.

57



CONCLUSIONS AND RECOMMENDATIONS

The main conclusions and contributions of this work can be

summarized as follows :

1. The use of Nomoto's model allows for a very efficient

steering control design with excellent stability properties

when coupled to a pursuit guidance scheme.

2. An approximate stability condition was developed which

is easy to compute and provides a very good estimate of the

exact stability condition.

3. Sensitivity analysis of the stability curves revealed

the most critical hydrodynamic coefficients for stability.

4. The use of circular reference paths achieves smooth

path response along curved segments with very reasonable

rudder activity.

Finally, some recommendations for future research include

the analysis of path accuracy and disturbance rejection

properties of the scheme, as well as the impact of sensor bias

and noise.
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APPENDIX A

C PROGRAM NOMO.FOR
C
C
C FOTIS A. PAPOULIAS - DIMITRIOS A. SIMAKIS
C NAVAL POSTGRADUATE SCHOOL
C MONTEREY CALIFORNIA
C JUNE 1992
C
C CRITICAL STABILITY PROGRAM
C
C

REAL K1,K2,K3,L,NR,NV,NDRS,NDRB, IZ,MASS,
& NRDOT,NVDOT

C
OPEN (1O,FILE='NOMO.RES' ,STATUS='NEW')

C
WEIGHT=435 .0
IZ =45.0
L =7.3
RHO =1.94
G =32.2
XG =0.0104
MASS =WEIGHT/G
MASS =MASS/(0.5*RHO*L**3)
IZ =IZ/(0.5*RHO*L**5)
XG =XG/L

C
YRDOT =-0.00000
YVDOT =-0.03430
YR =+0.00000
YV =-0.10700
YDRS =+0.01241
YDRB =+0.01241
NRDOT =-0.00047
NVDOT =-0.00000
NR =-0.00390
NV =-0.00000
NDRS =-0.337*0.01241
NDRB =+0.283*0.01241

C
DH = (IZ-NRDOT) *(MASS-YVDOT) -

& (MASS*XG-YRDOT) *(MASS*XG-NVDOT)
AA11= ((IZ-NRDOT) *YV- (MASS*XG-YRDOT) *NV) /DH
AA12= ((IZ-NRDOT) *(-MASS+YR) -

& (MASS*XG-YRDOT) * (MASS*XG+NR) )/DH
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AA21= ((MASS-YVDOT) *NV- (MASS*XG-NVDOT) *YV) /DH
AA22= ((MASS-YVDOT) * (MASS*XG+NR) -

& (MASS*XG-NVDOT) *(-MASS+YR) )/DH
BB11= ((IZ-NRDOT) *YDRS-(MASS *XG-YRDOT) *NDRS) /DH
BB12= ((IZ-NRDOT) *YDPRB(MASS*XG-YRDOT) *NDRB) /DH
BB21= ((MASS-YVDOT) *NDRS- (MASS*XG-NVDOT) *YDRS) /DH-
BB22= ((MASS-YVDOT) *NDRB- (MASS*XG-NVDOT) *YDRB) /DH

C
WRITE (*,1006)
READ (*) RATIO

C
BB1=BB11+RATIO*BB12
BB2=BB21+RATIO*BB22

C
WRITE (*,1001)
READ (*,*) ICON
GO TO (100,200), ICON

100 WRITE (*,1002)
READ (*,*) ZMIN,ZMAX,IZETA
WRITE (*,1003)
READ (*,*) WN
INCR=IZETA
GO TO 50

200 WRITE (*,1004)
READ (*,*) WNMIN,WNMAX,IWN
WRITE (*,1005)
READ (*,*) ZETA
INCR=IWN

C
50 C1=(AA11*AA22-AA21*AA12)*(AA21*BB1-AAJ.1*BB2)

C2=(AA11+AA22) *(AA21*BB1-AA11*BB2)
&+BB2* (AA11*AA22-AA21*AA12)
C3=- (AA21*BB1-AA11*BB2) **2
A=C1 /C2
B=C3/C2

C
DO 1 I=1,INCR

C
IF (ICON.EQ.1) ZETA=ZMIN+(ZMAX-ZMIN)*(I-1)/(INCR-~1)
IF (ICON.EQ.2) WN =WNMINf(WNMAX-WNMIN)*(I-1)/(INCR-1)

C
IF (ICON.EQ.1) OUT=ZETA
IF (ICON.EQ.2) OUT=WN

C
Kl1= -WN *WN /B
K2=- (A+2.0*ZETA*WN) /B

C
B1P=- (A-Al1+AA22) -BB2*K2
ClP=(AA11*AA22-AA12*AA21)+ (BB2*AA11-BB1*AA21)

& *K2-BB2*K1
C2P=-BB1 *K1
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D1P= (AA11*BB2-~AA21*BB1)*1(1
D2P= (BB1*AA22-BB2*AA12) *K1-BB2*K1
E2P= (AA11*BB2-AA21*BB1)*1(1

C
AQ=B1P*ClP*D1P-DIP*DlP
BQ=B1P*ClP*D2P+BlP*C2P*DlP-BlP*B1P*E2P-2.*lD2
CQ=B1P*C2P*D2P-D2P*D2P
DET=BQ*BQ-4 . 0AQ*CQ
IF (DET.LT.0.0) GO TO 1
XD1= (-BQ+SQRT (DET) ) /(2. 0*AQ)
XD2= (-BQ-SQRT (DET) )/ (2 .0*AQ)

C
COEF1=BB1 *AA.22-BB2 *A12-BB2
COEF2=BB2 *AA1 1-BB1 *AA2 1

C
VAL1=1.0+COEF1/ (XD1*COEF2)
VAL2=1 .0+COEF1/ (XD2*COEF2)
IF ((VAL1.LT.0.0).OR.(XD1.LT.0.0)) XD1=0.0
IF ((VAL2.LT.0.0).OR.(XD2.LT.0.0)) XD2=0.O
XD3=1 .0/ (2. 0*ZETA*WN)
WRITE f,10,2001) XD1,XD2,XD3,OUT,K1,K2

1 CONTINUE
C
1001 FORMAT ('ENTER 1 :ZETA VARIATION',!,

2 : WN VARIATION')
1002 FORMAT ('ENTER MIN,MAX, AND INCREMENTS OF ZETA')
1003 FORMAT ('ENTER WN')
1004 FORMAT ('ENTER MIN,MAX, AND INCREMENTS OF WN')
1005 FORMAT ('ENTER ZETA')
1006 FORMAT ('ENTER BOW/STERN RUDDER RATIO')
2001 FORMAT (6E15.5)

END
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APPENDIX B

C PROGRAM NOMOV.FOR
C
C
C FOTIS A. PAPOULIAS - DIMITRIOS A. SIMAKIS
C NAVAL POSTGRADUATE SCHOOL
C MONTEREY CALIFORNIA
C JUNE 1992
C
C
C SENSITIVITY OF HYDRODYNAMIC COEFFICIENTS PROGRAM
C
C

REAL Kl,K2,K3,L,NR,NV,NDRS,NDRB, IZ,MASS,
&NRDOT,NVDOT

C
OPEN (10,FILE='NOMOV.RES' ,STATUS='NEW')

C
WEIGHT=435. 0
IZ =45.0

-~ 7.3
RHO =1.94
G =32.2
XG =0.0104
MASS =WEIGHT/G
MASS =MASSI(0.5*RHO*L**3)
IZ =IZ/(0.5*RHO*L**5)
XG =XG/L

YRDOT =-0.00000
YVDOT =-0.03430
YR =+0.00000
YV =-0.10700
YDRS =+0.01241
YDRB =+0.01241
NRDOT =-0.00047
NVDOT =-0.00000
NR --0.00390
NV =-0.00000
NDRS =-0.337*0.01241
NDRB =+0.283*0.01241

C
DH = (IZ-NRDOT) *(MASS-YVDOT) -

& (MASS*XG-YRDOT) *(MASS *XG-~NVDOT)
AA11= ((IZ-NRDOT) *YV- (MASS*XG-YRDOT) *NV) /DH
AA12= ((IZ-NRDOT) *(-MASS+YR) -
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& (MASS *XG-YRDOT) * (-rASS*XG+NR)) /DH
AA21= ((MASS-YVDOT) *NV- (MASS*ýXG-NVDOT) *YV) /DH
AA22= ((MASS-YVDOT) * (MASS*XG+NR) -

& (MASS *XG-NVDOT) *(-MASS+YR) )/DH
BB11= ((IZ-NRDOT) *YDRS- (MASS*XG-YRDOT) *NDRS) /DH
BB12= ((IZ-NRDOT)*YDRB(MASS*XG-YRDOT) *NDRB) /DH
BB21= ((MASS-YVDOT) *NDRS- (MASS*XG-NVDOT) *YDRS) /DH
BB22= ((MASS-YVDOT) *NDRB- (MASS *XG-NVDOT) *YDB) /DH

C
RATIO=-1 .0

C
BB1=BB11+RATIO*BB12
BB2=BB21+RATIO*BB22

C
ZETA=0 .8
WN=3 .0

C
01= (AA11*AA22-AA21*AA12) *(AA21*BBl-AA11*BB2)
C2= (AAll+AA22) *(AA21*BBl-AA1l*BB2) +BB2
& * (AA11*AA22-AA21*AA12)
C3=- (AA21*BB1-AA11*BB2) **2
A=C1 /02
B=C3/C2

C
K1=-WN*WN/B
K2=- (A+2 .0*ZETA*WN) lB

C
B1P=- (AA11+AA22) -BB2*K2
C1P=(AA11*AA22-AA12*AA21)+(BB2*AAll-BB1*AA21)

& *K2-BB2*K1
C2P=-BB1 *Kl
D1P= (AA11*BB2-AA21*BB1) *K1
D2P= (BB1*AA22-BB2*AA12) *K1-BB2*K1
E2P= (AAll*BB2-AA21*BB1) *Kl

C
AQ=BlP*ClP*DlP-DlP*DlP
BQ=B1P*C1P*D2P+BlP*C2P*DlP-BlP*B1P*E2P-2 . 0D1P*D2P
CQ=BlP*C2P*D2P-D2P*D2P
DET=BQ*BQ-4.Q*AQ*CQ
IF (DET.LT.0.0) GO TO 1
XDNOM= (-BQ+SQRT (DET) )/ (2. 0*AQ)

C
HOLD =YVDOT

C
DO 1 I=1,101

C
VARY=0.5+ (I-i) /100.0
YVDOT=0.5*HOLD+HOLD* (I1) /100.0

r
DH = (IZ-NRDOT) *(MASS-YVDOT) -

& (MASS *XG..YRDOT) *(MASS *XG-NVDOT)
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AA11= ((IZ-NRDOT) *YV-..(MASS*XG-YRDOT) *NV) /DH
AA12= ((IZ-NRDOT) *(-MASS+YR) -

& (MASS*XG-YRDOT) * (MASS*XG+NR) )/DH
AA21= ((MASS-YVDOT) *NV- (MASS*XG-NVDOT) *YV) /DH
AA22= ((MASS-YVDOT) * (MASS*XG+NR) -

& (MASS *XG..NVDOT) *(-MASS+YR) )/DH
BB11= ((IZ-NRDOT) *YDRS- (MASS*XG-YRDOT) *NDRS) /DH
BB12= ((IZ-NRDOT) *YDRB- (MASS *XG-YRDOT) *NDRB) /DH
BB21= ((MASS-YVDOT) *NDRS- (MASS*XG-NVDOT) *YDRS) /DH
BB22= ((MASS-YVDOT) *NDPRB (MASS*XG-NVDOT) *YDRB) /DH
BB1=BB1 1+RATIO*BB12
BB2=BB2 1+RATIO*BB22

C
B1P~=- (AA11+AA22) -BB2*K2
C1P=(AA11*AA22-AA12*AA21)+ (BB2*AA11-BB1*AA21)

& *K2-BB2*K1
C2P=-BB1 *K1
D1P= (AA11*BB2-AA21*BB1) *K1
D22= (BB1*AA22-BB2*AA12) *K1-BB2*K1
E2P= (AA11*BB2-AA21*BB1) *11

C
AQ=B1P*ClP*D1P-D1P*DlP
BQ=B1P*C1P*D2P+B1P*C2P*DlP-BlP*B1P*E2P-2 . 0*DlPD2P
CQ=B1P*C2P*D2P-D2P*D2P
DET=BQ*BQ-4.Q*AQ*CQ
IF (DET.LT..0.) GO TO 1
XDl= (-BQ+SQRT (DET) ) /(2. 0*AQ)
XD2= (-BQ-SQRT (DET) )/ (2. 0*AQ)

C
COEFl=BB1 *A22-.BB2 *AA1l2BB2
COEF2=BB2 *AAll1-BBl *AJ2 1

C
VAL1=l . +COEF1/ (XDl*COEF2)
VAL2=l O+COEF1/ (XD2*COEF2)
IF ((VAL1.LT.O.O).OR.(XD1.LT.O.O)) XD1=0.O
IF ((VAL2.LT.O.O).OR.(XD2.LT.O.O)) XD2=O.O
XD3=1 .0/(2. O*ZETA*WN)
WRITE (10,2001) XD1/XDNOM,VARY

1 CONTINUE
C

1001 FORMAT ('ENTER 1 :ZETA VARIATION';/,
& '2 :WN VARIATION')

1002 FORMAT (7 ENTER MIN,MAX, AND INCREMENTS OF ZETA')
1003 FORMAIT ('ENTER WN')
1004 FORMAAT ('ENTER MIN,MAX, AND INCREMENTS OF WN')
1005 FORMAT ('ENTER ZETA')
1006 FORMAT (' ENTER BOW/STERN RUDDER RATIO')
2001 FORMAT (2E15.5)

END
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APPENDIX C

C PROGRAM SIMU.FOR
C
C
C FOTIS A. PAPOULIAS - DIMITRIOS A. SIMAKIS
C NAVAL POSTGRADUATE SCHOOL
C MONTEREY CALIFORNIA
C JUNE 1992
C
C SIMULATION PROGRAM FOR CONTROL AND GUIDANCE
C ALONG STRAIGHT LINES AND
C CIRCULAR TRAJECTORIES
C
C

REAL KI,K2,L,NR,NV,NDRS,NDRB,IZ,MASS,
& NRDOT,NVDOT

C
OPEN (10,FILE='SIMU.RES',STATUS='NEW')
OPEN (11,FILE='SIMU.DAT',STATUS='OLD')

C
C GEOMETRIC PROPERTIES
C

WEIGHT=435.0
IZ =45.0
L =7.3
RHO =1.94
G =32.2
XG =0.0104
MASS =WEIGHT/G
MASS =MASS/(0.5*RHO*L**3)
IZ =IZ/(0.5*RHO*L**5)
XG =XG/L
PI =3.1415926536

C
C HYDRODYNAMIC COEFFICIENTS
C

YRDOT =-0.00000
YVDOT =-0.03430
YR =+0.00000
YV =-0.10700
YDRS =+0.01241
YDRB =+0.01241
NRDOT =-0.00047
NVDOT =-0.00000
NR =-0.00390
NV =-0.00000
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NDRS =-O.337*O.01241
NDRB =+0.283*0.01241

C
DH = (IZ-NRDOT) *(MASS-YVDOT) -

& (MASS*XG-YRDOT) *(MASS*XG-NVDOT)
AA11= ((IZ-NRDOT) *YV-..(MASS *XG-YRD0T) *NV) /DR
AA12= ((IZ-NRDOT) *(-MASS+YR) -

& (MASS *XG-YRDOT) * (MASS*XG+NR) )/DH
AA21= ((MASS-YVDOT) *NV- (MASS*XG-NVDOT) *YV) /DH
AA22 ( (MASS-YVDOT) * (MASS*XG+NR) -

& (MASS *XG-NVDOT) *(-MASS+YR) )/DH
BB11= ((IZ-NRDOT) *YDRS- (MASS*XG-~YRDOT) *NDRS) /DH
BB12= ((IZ-NRDOT) *YDPSB-(MASS*XG-YRDOT) *NDRB) /DH
BB21= ((MASS-YVDOT) *NDRS- (MASS *XG-NVDOT) *YDRS) /DH
BB22= ((MASS-YVDOT) *NDPB- (MASS *XG-NVDOT) *YDP3) /DH

C
RATIO=-1

C
BB1=BB1 1+RATIO*BB12
BB2=BB21+RATIO*BB22

C
ZETA=0 .8
WN=3 .0
DIST=1 .0

C
C1=(AA11*AA22-AA21*AA12) *(AA21*BB1-AA11*BB2)
C2:=(AA11+AA22) *(AA21*BB1-AA11*BB2) +BB2

& * (AA11*AA22-AA21*AA12)
C3=- (AA21*b~l-AA11*BB2) **2
A=C1 /C2
B=C31C2

C
Kl=-~WN*WN/B
K2=- (A+2.0*ZETA*WN) lB

C
STIME=150 .0
DELTAT=0 .1
ITIME=STIME/DELTAT

C
C INITIAL CONDITIONS
C

PS 1=0.0
V=0 .0
R=0 .0
Y=0 .0
X=0.0
X1=0 .0
Y1=0 .0
J= 0

C
PRINT*1'ENTER NUMBER OF POINTS'
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READ*,NUM
C
C THE SIMULATION STARTS FROM THE POINT (0.0,0.0) AND THE NEXT
C
C POINT (X2,Y2) IS PROVIDED BY THE DATA FILE.
C
C
C ITURN DETERMINES THE WAY THE VEHICLE IS
C TO TURN TO PROCEED FOR THE NEXT POINT.
C
C ITURN 1 FOR CIRCLE
C
C ITURN 0 FOR DISTANCE
C
C DD DETERMINES THE DISTANCE OF THE VEHICLE
C FROM XZ,Y2 WHEN THE TURN STARTS.
c
C IPATH DETERMINES IF THE DESIRE PATH TO X2,Y2
C IS A CIRCULAR ONE OR A STRAIGHT LINE.
C
C IPATH 1 FOR CIRCULAR
C
C IPATH 0 FOR STRAIGHT LINE
C
C ICCW 0 FOR CW
C 1 FOR CCW
C
C X0,Y0 IS THE DESIRED CENTER OF THE CIRCULAR PATH
C AND XO,YO ARE PROVIDED FROM THE DATA FILE
C AND IF NOT THE DATA
C FILE PROVIDES ZERO VALUES.
C

READ(11,*) X2,Y2,ITURN,DD,IPATH,ICCW,X0,YO
C
C SIMULATION STARTS
C

DO I I=1,ITIME
TIME=I*DELTAT

C
X21=X2-Xl
Y21=Y2-YI
IF ((X21.EQ.0.).AND.(Y21.GT.0.)) ANA=+0.5*PI
IF ((X21.EQ.0.).AND.(Y21.LT.0.)) ANA=-0.5*PI
IF (X21.EQ.0.) GO TO 93
ANA=ATAN (ABS (Y21) /ABS (X21))
IF ((X21.GE.0.).AND.(Y21.GE.0.)) ANA= ANA
IF ((X21.GE.0.).AND.(Y21.LT.0.)) ANA= -ANA
IF ((X21.LT.0.).AND.(Y21.GE.0.)) ANA= PI-ANA
IF ((X21.LT.0.).AND.(Y21.LT.0.)) ANA=-PI+ANA

93 CONTINUE
C
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C EQUATIONS OF MOTION
C

PSIDOT=R
VDOT=AA1 1 *VA1 2 *R+BB1 *DR
RDOT=AA21 *V+A1AJ22 *R+BB2 *DR
YDOT=SIN (PSI) +V*COS (PSI)
XDOT=COS (PSI) -V*SIN (PSI)

C
C FIRST ORDER INTEGRATION
C

PSI=PSI+DELTAT*PSIDOT
V=V+DELTAT *VOT
R=R+DELTAT*RDOT
Y=Y+DELTAT*YDOT
X=X+DELTAT *XDOT

C
IF (PSI.GT.(2.O*PI)) PSI=PSI-2.O*PI

C
YPR= (Y-Y1) *CJ5(ANA) -(X-Xl) *SIN (ANA)
PSIC=-ATAN (YPR/DIST)
IF (IPATH.EQ.O) DR=K1*SIN((PSI-PSIC-ANA))+K2*R

C
C

IF (IPATH.EQ.1) THEN
DALF1= ((X-XO) *(X-XO) +(Y-YO) *(Y-YO) )**O .5
RADIUS= ((X1-XO) *(X1-XO) +(Y1-YO) *(Yl-YO) )**O .5
X3=XO+RADIUS/DALF1* (X-XO)
Y3=YO,+RADIUS/DALF1* (Y-YO)
THONE=PI/2.-DIST/ (2.*RADIUS)

C WRITE (*,*) X,Y,X3,Y3,XO,YO,RADIUS
C

IF (ICCW.EQ.O) THEN
C

IF ((X21.GT.O.O).AND.(Y21.GT.O.O)) THEN
THTHR=ASIN (ABS (XO-X3) /RADIUS)
THTWO=P I-THONE-THTHR
DISTF=2. O*RADIUS*SIN (DIST/ (2. O*RADIUS))
X4=X3+DISTF*SIN (THTWO)
Y4=Y3+DISTF*COS (THTWO)
DALF2= ((X-X4) *(X-X4) +(Y-Y4) *(Y-Y4) )**O .5
BALFA=SIN (DIST/RADIUS) *DALFl/DALF2
IF (BALFA.GT.1.O) BALFA=1.O
IF (BALFA.LE.1.0) AALFA=ASIN (BALFA)
S IGMA=AALFA-THONE
THTWO=O 5*PI-THTWO
END IF

C
IF ((X21.GT.O.O).AND.(Y21.LT.O.O)) THEN
THTHR~=ASIN (ABS (YO-Y3) /RADIUS)
THTWO=P I-THONE-THTHR
DISTF=2 . *RADIUS*SIN (DIST! (2. O*PADIUS))
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X4=X3+DISTF*COS (THTWO)
Y4=Y3-DISTF*SIN (THTWO)
DALF2= ((X-X4) *(X-X4) +(Y-Y4) *(Y-Y4) )**0J.5
BALFA=SIN (DIST/RADIUS) *DALFl/DALF2
IF (BALFA.GT.1.0) BALFA=1.O
IF (BALFA.LE. 1.0) AALFA=ASIN (BALFA)
S IGMA=AALFA-THONE
THTWO=-THTWO
END IF

C
IF ((X21.LT.0.0).AND.(Y21.LT.0.0)) THEN
THTHR=ASIN (ABS (XO-X3) /RADIUS)
THTWO=P I-THONE-THTHR
DISTF=2.0*RADIUS*SIN(DIST/ (2.0*RADIUS))
X4=X3-DISTF* SIN (THTWO)
Y4=Y3-DISTF*COS (THTWO)
DALF2= ((X-X4) *(X-X4) +(Y-Y4) * (Y..Y4) )**Q 5
BALFA=SIN (DIST/RADIUS) *DALF1/DALF2
IF (BALFA.GT.1.0) BALFA=1.O
IF (BALFA. LE.1 .0) AALFA=ASIN (BALFA)
SI GMA=AALFA- THONE
THTWO=1.5*PI-THTWO
END IF

C
IF ((X21.LT.0.0).AND.(Y21.GT..0.)) THEN
THTHR=ASIN (ABS (YO-Y3) /RADIUS)
THTWO=P I-THONE-THTHR
DISTF=2 .0*RADIUS*SIN (DIST! (2. 0*RADIUS))
X4=X3-DISTF*COS (THTWO)
Y4=Y3+DISTF*SIN (THTWO)
DALF2= ((X-X4) *(X-X4) +(Y-Y4) *(Y-Y4) )**0 .5
BALFA=SIN (DIST/RADIUS) *DALF1/DALF2
IF (BALFA.GT.1.0) BALFA=1.0
IF (BALFA.LE.1 .0) AALFA=ASIN(BALFA)
S IGMA=AALFA-THONE
THTWO=P I-THTWO
END IF

C
C

END IF
C

IF (ICCW.EQ.1) THEN
C

IF ((X21.GT.0.0).AND.(Y21.GT.0.0)) THEN
THTHR=ASIN (ABS (YO-Y3) /RADIUS)
THTWO=PI -THONE-THTHR
DISTF=2.0*RADIUS*SIN(DIST/ (2.0*RADIUS))
X4=X3+DISTF*COS (THTWO)
Y4=Y3+DISTF* SIN (THTWO)
DALF2=( (X-X4) *(X-X4) +(Y-Y4) *(Y-Y4) )**0Q5
BALFA=SIN (DIST/RADIUS) *DALF1/DALF2
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IF (BALFA.GT.1.0) BALFA=1.0
IF (BALFA.LE. 1.0) AALFA=ASIN (BALFA)
SI GMA=AALFA-THONE
THTWO=THTWO
END IF

C
IF ((X21.GT.0.0).AND.(Y21.LT.0.0)) THEN
THTHR=ASIN (ABS (X0-X3) /RADItJS)
THTWO=P I-THONE-THTHR
DISTF=2.0*RADIUS*SIN (DIST! (2. 0*RADIUS))
X4=X3+DISTF*SIN (THTWO)
Y4=Y3-DISTF*COS (THTWO)
DALF2= ((X-X4) *(X-X4) +(Y-Y4) * (Y-.Y4) )**0 .5
BALFA=SIN (DIST/RADIUS) *DALF1/DALF2
IF (BALFA.GT.1.0) BALFA=1.0
IF (BALFA.LE.1 .0) AALFA=ASIN (BALFA)
S IGMA=AALFA-THQNE
THTWQ=1 .5*PI+THTWO
END IF

C
IF ((X21.LT.0.0).AND.(Y21.LT.0.0)) THEN
THTHR=ASIN (ABS (YO-Y3) /RADIUS)
THTWO=P I-THONE-THTHR
DISTF=2.0*RADIUS*SIN(DIST/ (2.0*RADIUS))
X4=X3-DISTF*COS (THTWO)
Y4==Y3-DISTF* SIN (THTWO)
DALF2= ((X-X4) *(X-X4) +(Y-Y4) *(Y-Y4) )**Q 5
BALFA=SIN (DIST/RADIUS) *DALF1/DALF2
IF (BALFA.GT.1.0) BALFA=1.0
IF (BALFA. LE.1.0) AALFA=ASIN (BALFA)
S IGMA=AALFA-THONE
THTWO=P I+THTWO
END IF

C
IF ((X21.LT..0.).AND.(Y21.GT.0.0)) THEN
THTHR=ASIN (ABS (XO-X3) /RADIUS)
THTWO=P I-THONE-THTHR
DISTF=2.0*RADIUS*SIN(DIST/(2.0*RADIUS))
X4=X3-DISTF*SIN (THTWO)
Y4=Y3+DISTF*COS (THTWO)
DALF2=( (X-X4) *(X-X4)+(Y-Y4) *(Y-Y4) )**0.5
BALFA=SIN(DIST/RADIUS) *DALFi/DALF2
IF (BALFA.GT.1.0) BALFA=1.0
IF (BALFA.LE.1.0) AALFA=ASIN ýBALFA)
S IGMA=AALFA-THONE
THTWO=0 .5*PI+THTWO
END IF

C
C

END IF
C
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IF (ICCW.EQ.0) DR=Kl*SIN(PSI-THTWO+SIGMA)+K2*R
IF (ICCW.EQ.1) DR=K1*SIN(PSI-THTWO-SIGMA)+K2*R

C
41 END IF

C
IF (DR.GT.0.4) DR=0.4
IF (DR.LT.-0.4) DR=-0.4

C
WRITE(10,2001) TIME,X,Y,PSI,PSIC,DR,YPR

C
TURN= (X-X2) *(X-X2) +(Y-Y2) *(Y-Y2)

TURNC=SQRT (TURN)
TURNL=SQRT (TURN-~YPR*YPR)
IF (ITUR.N.EQ.1) TD=TURNL
IF (ITURN.EQ.0) TD=TURNC
IF (TD.LT.DD) THEN

8 J=J+1
IF (J.EQ.NUM) GO TO 2002

IF (J.NE.NUM) THEN
X1=X2
Yl1=Y2
READ(11,*) X2,Y2,ITURN,DD,IPATH,ICCW,XO,YO
GO TO 1

END IF
END IF

C
1 CONTINUE

2001 FORMAT (7E15.5)
2002 STOP

END

C PROGRAM REFERENCE PATH
C
C DIMITRIOS SIMAKIS
C NAVAL POSTGRADUATE SCHOOL
C MONTEREY, CALIFORNIA
C JUNE 1992
C

OPEN (11,FILE='SIMUR.REF',STATUS='OLD')
OPEN (1O,FILE='SIMUR.RES',STATUS='NEW')
X1=0 .0
Y1=0 .0
PI=3. 141
PRINT*,IENTER NUMBER OF POINTS'
READ *,NUM

C
DO 1 I=1,NUM+1
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IF (I.EQ.1) THEN
XR=X1
YR=Y1
WRITE (10,100) XR,YR
GO TO 1
END IF
READ (11,*) X2,Y2,ITURN,DD,IPATH,ICCW,XO,YO
THETA=0 .0
RADIUS= ((X1-XO) *(X1-XO) +(Y1-YO) *(Y1-YO) )**Q .5
X2 1=X2-X1
Y21=Y2-Y1
DO 2 J=1,200

THETA= THETA+O.01745
IF (IPATH.EQ.1) THEN
IF (ICCW.EQ.O) THEN

IF (X21 .GT.O.0.AND.Y21.GT.O.0) THEN
XR=X0-RADIUS*COS (THETA)
YR=YO+RADIUS*SIN (THETA)

END IF
C

IF (X21 .GT.0.O.AND.Y21 .LT.0.0) THEN
XR=XO+RADIUS*SIN (THETA)
YR=YO+RADIUS*COS (THETA)

END IF
C

IF (X21.LT.0.O.AND.Y21 .GT..0.) THEN
XR=X0-RADIUS*SIN (THETA)
YR=Y0-RADIUS*COS (THETA)

END IF
C

IF (X21 .LT.0.O.AND.Y21 .LT.0. 0) THEN
XR=XO+RADIUS*COS (THETA)
YR=Y0-RADIUS*SIN (THETA)

END IF
END IF

C
IF (ICCW.EQ.1) THEN

IF (X21.GT.0.0.AND.Y21 .GT.0.0) THEN

XR=X0+RADIUS*SIN (THETA)
YR=Y0-RADIUS*COS (THETA)
END IF

C
IF (X21.GT.0.O.AND.Y21 .LT.0.0) THEN

XR=XO-RADIUS*COS (THETA)
YR=YO-RADIUS*SIN (THETA)

END IF
C

IF (X21 .LT.0.0 .AI'D .Y21 .GT .0.0) THEN
XR=XO+RADItJS*COS (THETA)
YR=YO+RADIUS*SIN (THETA)

END IF
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C
IF (X21 .LT.0 .0.AND .Y21 .LT. 0.0) THEN

XR=X0-RADIUS*SIN (THETA)
* ~YR=YO+RADIUS*COS (THETA)

END IF
END IF

* END IF
C

IF (IPATH.EQ.0) THEN
XR=X2
YR=Y2

END IF
C

WRITE (10,100) XR,YR
DIS ( (XR-X2) *(XR-X2) +(YR-Y2) *(YR-Y2) )**Q 5
IF (DIS.LT.0.1) THEN

X1=X2
Y1=Y2
GO TO 1

END IF
2 CONTINUE
100 FORMAT (2E15.5)
1 CONTINUE

STOP
END
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