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ABSTRACT

V

The problem of roll, sway and yaw motions of surface ships is considered. A

mathematical model is developed which consists of the nonlinear maneuvering equations

and incorporates cross coupling between sway force, yaw moment and the roll angle induced

during a steady turn. The hydrodynamic derivatives and coefficients of a typical container

ship were used as the base-line study model. The coupled system of nonlinear algebraic

equations is formulated and solved to predict the steady state roll angle, sway velocity and

turning rate as a function of the rudder angle. The results are then compared to that of the

decoupled systems currently employed. A local perturbation is implemented in the vicinity

of the above steady states to investigate dynamic stability of motion. Sensitivity analysis with

respect to important design parameters such as speed loss during turning, approach speed,

transverse metacentric height and trim is performed. Results demonstrate the significance

of the coupling between roll, sway and yaw and the need to incorporate similar studies in

the ship design and analysis process.
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I. INTRODUCTION

A. GENERAL

Any study of the motion of a ship through water requires the use of models.

The model could be a mathematical representation which attempts to describe the

situation symbolically, searching for a quantitative solution, or a physical model

which strives to replicate or simulate the actual conditions for the purpose of

collecting empirical data. The two can be combined such that they complement each

other, or most often, physical models are used to test the validity and accuracy of

mathematical models. However, both models fail to completely describe the physical

phenomenon. The physical model falls short by the inability to simultaneously satisfy

all the parameters describing the problem. The mathematical model suffers by

departures from the true state through assumptions made during the development

of the equations [Ref. 1]. Notwithstanding these shortcomings, the use of

models in predicting a ships response to its environment, i.e., wind and waves, and

its own propulsive and control systems is essential in the design process to ensure

safety of the ship, performance of its mission, its survivability in extreme conditions

and its efficiency during normal operating conditions. [Ref. 1]

In general, the examination of ship motions is separated into: 1) steering and

maneuverability (calm water), and 2) seakeeping (waves, current), with motion

1



stability (absence of external excitation) and control (external excitation) some of the

primary concerns. [Ref. 1]

The basis of the mathematical model is rigid body dynamics, hence Newton's

laws of motion: [Ref. 2]

p x djx (linear momentum'*)
dIt (1.1)

A x (angular momentum)
dt

The ship is free to rotate (roll, pitch, yaw) and translate (surge, sway, heave) in all

six degrees of freedom and the forces and moments acting on the vehicle are

comprised of: [Ref. 2]

1. Hydrodynamic forces and moments on the bare hull, appendages, rudder and

propeller.

?. Inertial reaction forces and moments.

3. Wind, waves and currents.

4. External forces.

Moreover, these forces and moments are dependent upon properties of the rigid

body (e.g., geometry, mass, center of gravity), its orientation (i.e., to inertial frame

of reference and to the body fixed frame of reference), its dynamics (velocities,

accelerations, propeller speed, rudder deflection and deflection rate), and the fluid

properties (e.g., density, viscosity, pressure, energy). [Ref. 1]
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At this point, the mathematical model has rapidly developed into a very

complex and cumbersome system and requires simplification in order to be of

practical use. Choice of the body fixed coordinate system to take advantage of any

symmetries is one simplification used almost exclusively. Eda, et al, [Ref. 3]

found in one study of bulbous bow type ships that the slight asymmetry of the

underwater hull form increased significantly in roll such that this simplification was

not valid. Another reduction in complexity often used is to separate the lateral

motions (sway, yaw, roll) from the longitudinal motions (surge, pitch, heave)

[Refs. 4, 5, 6]. Later studies [Refs. 3, 7, 8, 9, 10] account for the loss

of speed during a turn by including the surge equation with the lateral motions for

maneuvering studies. Seakeeping studies [Refs. 8, 11, 12, 13] heretofore have

separated out the roll equations using a one degree of freedom system only, coupling

effects were neglected as very small or incorporated as forcing terms. Rutgersson and

Ottosson [Ref. 8] superimposed the maneuvering model motions with the seakeeping

motions.

As can be ascertained from this discussion, the forces, moments, velocities and

accelerations acting upon the vessel are highly nonlinear, involving complex coupling

of terms. Linear theory has been successful in predicting and analyzing directionally

stable ships with controls fixed for small perturbations [Ref. 14]. In addition, the

linear hydrodynamic forces and moments have been reduced to semi-empirical

equations based on ship design characteristics such as block coefficient, length,

3



breadth and draft [Refs. 2, 15]. However, there has been no completely analytical

procedure which predicts the nonlinear hydrodynamic forces and moments [Ref. 2].

It is necessary therefore, to combine the mathematical model with the physical

model such that the physical model is used to measure these nonlinear forces and

moments and incorporate the results in the mathematical model. "The functions that

may approximate the hydrodynamic forces and moments can be expressed formally

by Taylor expansion around the state of equilibrium with respect to ýhe quantities

affecting the different motions, such as the axial speed u, turning rate r, rudder angle

8, etc. The polynomial coefficients thus describing the hydrodynamic forces and

motions can be determined from captive model tests at different kinds of basic

motions [Ref. 8]. "A complete treatment of the captive model test procedure can be

found in Principals of Naval Architecture, Vol. III [Ref. 2], and will not be discussed

here. The Taylor expansion and subsequent model development is elaborated in the

following Chapters.

Captive model tests for the lateral motions are more difficult than for the

longitudinal motions due to the large sizes required to adequately represent the

physical model. Consequently, there exists little data for the third order coefficients

necessary to produce semi-empirical equations for the nonlinear hydrodynamic forces

and moments arising from these lateral motions similar to those which exist for the

first order terms. One study by Inoue, et al, [Ref. 15] has produced formulations for

limited nonlinear terms in yaw and sway based on drift angle and turning rate. The

yaw moment coefficients so produced are not in good agreement with the model test

4



data under all conditions of loading and motions induced. Another study done by

Son and Nomoto [Ref. 9], utilizes model test data for the third order hydrodynamic

coefficients of a SR-108 container ship. In the absence of such semi-empirical

formulations for the forces and moments in the equations of motion and access to

model test facilities, the aforementioned data, together with vehicle design

characteristics, can be used in a mathematical model to ascertain particular

information about the coupling of yaw, sway and roll motions.

B. SCOPE OF THIS THESIS

This research is intended as a bridge between the static roll restoring moment,

controls fixed analysis of the coupled lateral motion problem and a fully coupled

treatment of a ships roll response to maneuvering in a seaway. As discussed

previously, current studies in the area of maneuvering and steering range from three

degree of freedom models, to four degree of freedom models which account for the

speed loss during a turn. These studies, however, use the equilibrium point in the

Taylor expansion of the representative hydrodynamic forces and moments, as straight

upright, zero rudder deflection, such that v0=r0=4 0 -80=f0 and all perturbations and

nonlinearity effects are evaluated based on this single nominal point. This research

has as its basic premise that the nominal point for the Taylor expansion changes

significantly with rudder angle. As a result of this change, the stability characteristics

of the ship may also change appreciably, a fact which needs to be established for

successful prediction of ship maneuvering response in a seaway.
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Therefore, the objective is to determine the significance of the coupling of roll

into sway and yaw motions as a function of rudder angle. In analyzing this coupled

problem, the effects of roll intc sway/yaw and conversely, sway/yaw into roll were

investigated.

Development of the mathematical model for the coupled yaw, sway, and roll

equations of motion along with models for the rudder forces and moments, the

righting moment, and the hydrodynamic forces and moments is presented in Chapter

II. The final form of the model being reduced to a set of four nonlinear, coupled,

first order differential equations. The additional equation is derived from kinematics

to relate the roll angle and the roll rate.

In order to utilize Taylor expansion for formulation of the functions which

approximate the hydrodynamic forces and moments, the state of equilibrium for the

motion parameters, v, r, and 0, is established. This is accomplished through steady

state analysis. In Chapter III, this analysis is first done for the linear case to obtain

an initial approximation for the case of near zero rudder deflection (S=O). This

linear steady state solution is incorporated into the nonlinear steady state analysis

in an iterative process which produced the equilibrium values for yaw rate, sway

velocity, and roll angle as a function of the rudder deflection in a steady turn. As the

rudder angle is incrementally increased, the steady state values from the previous

rudder angle are used as the initial approximations to initiate the iterations for the

current rudder deflection.

6



Once the steady state solutions have been computed, their stability properties

are established by local perturbation of the coupled equations of motion in the

neighborhood of each nominal point. This procedure, described in Chapter IV, yields

a generalized eigenvalue problem. The solutions to the eigenvalue problem provide

information as to the stability properties of the nominal points and thus characterizes

the stability of the coupled sway, yaw and roll motions. Demonstration of the

coupling effect on the lateral motions, is shown utilizing comparison to two

independent systems:

1. A sway/yaw model represented by two nonlinear equations decoupled from
roll in that the hydrodynamic forces and moments are functions of sway
velocity (v) and yaw rate (r) only.

2. A roll model represented by the nonlinear roll equation and the kinematic
roll rate equation decoupled from sway and yaw in that the hydrodynamic
forces and moments are functions of roll angle (46) and roll rate (p) only.

The directional and roll stability characteristics in a steady turn are established

by the degree to which the real part of the complex eigenvalues is negative and the

magnitude of the roll damping ratio.

Chapter V relates the sensitivity and stability of design parameters such as

metacentric height and trim to the coupling between the lateral motions. Results are

presented in terms of rudder angle with a qualitative summary at the end of this

chapter.

Finally, Chapter VI summarizes the conclusions and presents recommendations

for further research and utilization of the mathematical model herein developed.

7



II. MATHEMATICAL MODEL

A. EQUATIONS OF MOTION

For ship motions, the full nonlinear equations of motion in a body fixed axis

system are shown in Equations (2.1). These equations reflect an assumption of

symmetry along the longitudinal axis (i.e., yo=O). The orthogonal, right-hand axes for

the body fixed system is shown in Figure 2.1. The parameters are defined in Table

I.

Surge: m[tg-xoq 2 +r2)+zG(4+pr)-rv+wq] = X (2.1a)

Sway: m[0+xG(pq+f)+zG(qr-P)+ur-wp] = Y (2.1b)

Heave: m[i,+xj(rp-4)-z0 (p 2+q2)+pv-qu] = Z (2.1c)

Roll: l. +(Il-J)qr-I(pq+r) -mzj(i)+ur-wp) (2.1d)
= -K-AGZ(*)

Iq -(1 -1r-1 (pr Z,&+qW-rV)-

Pitch: (2.1e)

xG(*+pv-qu)J =M

Yaw. I/'+(I,-l)pq+Il(qr-l))mxG(i+ur-wp) = N (2.10

8



X.

aV

xz

Z

Figure 2.1: Coordinate System [Ref. 11]

B. SIMPLIFYING ASSUMPTIONS

For the purpose of this investigation, a mathematical model having three

degrees of freedom vice the six degrees of freedom depicted in Equations (2.1) was

used. The following simplifying assumptions were made:

1. The rotational velocity and acceleration about the y-axis are zero. ( q = 0
and 4 = 0 )

2. The translational velocity and acceleration in the z direction are zero. (w
=0 and *=0)

3. The vertical heave and pitch motions are decoupled from the horizontal plane
motions.

4. The product of inertia I= is very small and can be neglected.

5. The surge equation is substituted by an algebraic equation which is a function
of u, V, and 8.

6. The longitudinal center of gravity, (LCG) and the longitudinal center of
buoyancy, (LCB) are at midship.

9



7. The vertical center of gravity, (VCG) is on the centerline.

8. The only important forces and moments acting on the ship induced by the
rudder are those due to rudder deflection. Forces and moments due to I and
8 are negligible. [Ref. 21

TABLE I. EQUATIONS OF MOTION PARAMETERS

Parameter Description

x,y,z Distance along the principal axes

u,v,w Translational velocity components of ship relative to fluid
along body axes
Rotational velocity components of ship relative to inertial

p,q,r reference system along body axes

X,Y,Z Hydrodynamic force components along body axes

K,M,N Hydrodynamic moment components along body axes

ip yaw angle: bow to starboard positive
V,0,4 0 pitch angle: bow up positive

4 roll angle: starboard down positive

m Mass of ship

X0,yGZG Coordinates of the center of gravity in the body axis
system

Ix, YPIrz Moments of inertia about the body axis system
IxzIIyzlxy Products of inertia about the body axis system

V Displacement volume of ship

A Displacement weight of ship

GZ(46) Righting moment as a function of roll angle

8 Rudder angle in radians

V Initial velocity of ship

p Mass density of sea water

L Ship length between perpendiculars (LBP)

10
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Applying these assumptions to Equations (2.1), the three degree of freedom

equations of motion for the model used are given in Equations (2.2).

Sway. m[f,+xat-z••+urJ = Y (2.2a)

RoU: lj-mi(i,+ur) - K-AGZ(40) (2.2b)

Yaw. l+mxG(O+ur) = N (2.2c)

Equations (2.2) are nondimensionalized for ease of working between model test

data and actual ship test data using the relationships shown in Table II.

To demonstrate the use of these nondimensionalizing terms, substitution of the

appropriate values from Table II into Equation (2.2a) yields:

(~~~PL3)mL~ V2 + - (Y )(Vu'(r') = (.!pL2V2)yl
(2 L L L -2



TABLE II. NONDIMENSIONAL PARAMETER RELATIONSHIPS

/ 1' *, Y , I_ _

r4~ N'N 41J

{jPLS)) K {1AZ*' =

lpL2 I AGZ(

VV2) {.~v)
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simplifying by factoring out (VA/L):

(!pL2V2) m' 1[,0+4/-413+U'rj ! (pL 2V2) y/

and Equation (2.2a) becomes Equation (2.3) in nondimensional form.

M' / + X•,'t - zG'P + u'r' Y/ r (2.3)

Since Equation (2.3) and Equation (2.2a) are of the same form, the prime notation

will be dropped and all equations will be considered as represented in

nondimensional form unless otherwise indicated.

C. FORCE AND MOMENT REPRESENTATION

Using the method of Abkowitz and Strom-Tejsen [Ref. 2], the sway force, roll

moment and yaw moment can be expressed as Equations (2.4).

Sway Force: Y f-(uV,r•,,•,','t,8) (2.4a)

Roll Moment: K = f2(u,vr,,,t,,4,4,,8) (2.4b)

Yaw Moment: N - f3(u,v~rii,,,4,8) (2.4c)

A third order Taylor expansion of f,, f2, and f3 can be expressed as Equations

(2.5).

f, = Yv+Y,•+Y vs +Y rv 2+Yrj+Y,,r 3 + Y,,v 2r+ (2.5a)
r,,÷r,0#y v424+y~v,2÷V~rorle2rr•,2*÷y(a)+y0

13



S= K v+K-v 3 ÷K~v 2r++K÷r 3  (2.5b)

Kv42 *+vvi +Krr42 +K(8)+Ko-A GZ(4)

f, = Nv+Nv+N.,v 3 +N~wr 2 +N,r+Nj.Nr2 +Nw,v2 r+ (2.5c)
N,• +NI44 +Nv 2#+N4v 2 +NWr24+NFWrV+N(8)+N0

The coefficients in Equations (2.5) are the hydrodynamic coefficients and

represent the partial derivative with respect to the subscripted variable. For example,

YV means -• and Y,, means 1 !-. The terms Y0, Y0, and No are the sway force,

roll moment and yaw moment induced by the propeller respectively. In a similar

manner Y(8), K(8) and N(S) represent the force and moments induced by the

rudder. The righting moment due to the static stability of the ship is represented by

the AGZ(O) term.

D. RUDDER FORCE AND MOMENT REPRESENTATION

The expressions used to determine the rudder force and moments were taken

from Son and Nomoto [Ref. 9] and are presented in Equations (2.6) and (2.7). The

parameters are defined in Table IlI.

Y(b) = - (1 + a,)FNcos(b) (2.6a)

K(8) - (1 + a,)zjFNcos(a) (2.6b)

N(8) - - (x, + ajx.)FN cos(8 ) (2.6c)

14



TABLE III. RUDDER FORCE AND MOMENT PARAMETERS

Parameter Description

aH Rudder to hull interaction coefficient

FN Normal force action on the rudder

ZR Z coordinate of point on which rudder force Y. acts

XR x coordinate of point on which rudder force Y8 acts

x14 x coordinate of point on which normal force FN acts

A Rudder aspect ratio

AR Rudder area

VR Effective rudder inflow velocity

aR Effective rudder inflow angle

URVR Components of rudder effective inflow velocity

E constant in Equation (2.7c)

UP Effective propeller inflow velocity

k constant in Equation (2.7c)

KT Thrust coefficient

J Advance coefficient

n Number of propeller revolutions per second

D Propeller diameter

WP Effective propeller wake fraction

I" constant in Equation (2.7e)

X x coordinate of propeller position

cp,cp,, propeller flow rectification coefficients

y flow rectification coefficients

cs"Camcs.m rudder wake coefficients
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N ( 6.13A A±)V 2 sin() (2.7a)
FsV ýI (A+2.25) L'2

VR = U PC + BU (2.7c)

U 81+ kKT (2.7c)

F uV (2.7d)
nD

Up = u[(1-w)+T{(v+xpr)2+cp.y+cp/r}] (2.7e)

VR = yv+c ,,rcr+c 6,l.3 1* 2v (2.70

CC = 8 + Un'l(LA) (2.7g)

E. RIGHTING MOMENT REPRESENTATION

For the initial part of the righting arm curve and for wall sided ships, Equation

(2.8) gives a good approximation for the function GZ(O). [Ref. 16]

GZ(4) = G"Msin(ý) + AM tan2()sin(4) (2.8)

2

GM = Mie transverse metacentric height

where BM = the transverse metacentric radius

* = the roll angle

Equation (2.8) expresses the fact that for most ships of fairly rectangular

midship section, the GZ(O) curve exhibits the typical characteristics of a hardening

16



spring restoring moment. The spring constant is an increasing function of the roll

angle 0. To see this, we use the Taylor series expansion up to third order for the

trigonometric functions:

sin%4) (0

+

3

Therefore, if terms higher than third order are neglected:

tan2(+))sin(40) = (-1.) = .2(+ - -lo) i 3

and substituting into Equation (2.8) yields:

GZ(,)) = GM-(4) - _403) + _!ffM4)' = GM--1 + (_IM- I M)3

Now for most ships,3BM> M, which means that the leading cubic coefficient

the GZ(O) curve is positive and the curve concaves up as would a hardening

spring.

F. STATE-SPACE REPRESENTATION

Combining Equations (2.2) and (2.4) and rearranging the terms, the equations

of motion can be expressed in vector form:
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±=F~z, 8)

(2.9)

where z is thestatewvctor [v rp *]T.

Equation (2.9) is more conveniently expressed in matrix notation as is shown in

Equations (2.10). The last matrix equation is derived from the kinematic, roll rate.

(G- N) (Is- N, 0 -N4  0~ ýy

(M-Y) (MXG-Y,) -MG - 4 t _ S (2.10a)

-MZG 0 (Ix- Kg -K4  ' f R
0 0 0 1 P4

fY = N~V+Nv,,,V 3 +NmW, 2 +(,m~~+N,.r3 +N~V2 r+N,+ (2l)

= Yv+~,, 3+~w+(Y7-mx u)r+Y,# 3+4pr+,O (2.10bc)

Y~v2 +Yv42+,~r~ +,,rO2+Y(8) +Y
N 2ld

K4V 24 +KV4j 2 +KW 240+KN 2 +()+ 0  Z~

180



II!. STEADY STATE REPRESENTATION

A. LINEAR STEADY STATE SOLUTIONS

With the above third order Taylor expansion, the equations of motion

represented by Equations (2.10) are highly nonlinear, the solution of which depends

upon the initial and equilibrium conditions. The steady state condition requires the

acceleration terms f, t, p, $ to be equal to zero. Thus Equation (2.10a) reduces to

Equation (3.1) for steady state:

fy

s = [01 (3.1)

AR

where fy, fs, and fR are defined in Equations (2.10).

The numerical solution to Equation (3.1) is an iterative process which depends

upon a fairly accurate initial estimate of the root for convergence. This starting point

can be determined by assuming an equilibrium state of v0 =r0 =p0 =• 0=0 and a very

small initial rudder deflection (80:51). Application of these assumptions to Equation

(3.1) yields the linear, steady-state, yaw-sway-roll equations of motion in Equation

(3.2).
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N, NrMXU) N+ 'Vi -(8)-No]

YV (Ye-MU) (K+- GM I- Y=-Y (3.2)

.Kv (K,+MZGU) [4)]G .- K8 -O

Equation (3.2) is in the familiar matrix form Az = B, where z is the state vector

with p=O.

Various computer subroutines are commercially available which solve this

simple system of equations for the state vector values, given the other parameters.

The values for the state vector obtained in this manner are then used as the initial

estimate in solving the nonlinear system of equations.

B. NONLINEAR STEADY STATE SOLUTION

Once the initial estimate for equilibrium is obtained, the system of nonlinear

equations in Equation (3.1) can be solved numerically for the state vector nominal

points for each rudder angle, 8. Here again, commercial computer subroutines are

available. The Levenberg-Marquardt algorithm with analytic Jacobian was chosen as

the solution method [Ref. 17]. Since p=O in Equation (3.1), the system of

nonlinear equations is reduced to three and the Jacobian was determined by

Equations (3.3).
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afy afy a

cifscifsafs(1.3a)

aw Or 84

ar Or 4

=if N ,v +2, + N3N i~ ON(8) (.

vvY(8) (3.3b)

= Y*+Y~ .r2YNv4,+,, 2+2Y 3.g
044; ,ir

-v - 2 y (3.3e)

ýKR -2Kwrv+(Y,+mZu) +3K,1 +KW2 +2KY,,r4 +KFOV2+ OK(&5) (3.3f)
Oir Or

-K +Kvv.2+2Kv+2+2Kr+
5 A (G$)(3)
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aN(8) _ 0

N(8) - F,(vr)

where Y(8) = F2(vr) -0 (3.3k)

K(8) = F3(vr) aK(8) _ 0

and

a(AGZ)) = A[GMco(+4JM0tan2(4)( co(,) .4cos())] (3.31)

Since F,, F2, and F3 are complicated functions of v and r (Equations (2.6) and

(2.7)), the following approximation method was used for evaluation:

a1F F(x,) - F(O.99x,) (3.4)
& XO- 0.99X0

Each term in the Jacobian is determined by evaluation at the previous nominal

point with the initial nominal point determined from linear solutions as described in

Section A above.

The result of the numerical solution to the nonlinear equations (Equations

(3.1)) is the steady state values for v, r, and 0 for each rudder angle under steady

turning conditions and for a given GM and propeller speed.

C. TYPICAL RESULTS

Utilizing the solution method depicted in Sections A and B above, PROGRAM

COUPLED listed in Appendix A, was developed to predict the steady state roll
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angle, sway velocity and turning rate of a high speed container ship as a function of

rudder angle.

The design characteristics of a SR-108 container ship are presented in Table

IV. The hydrodynamic derivatives and coefficients used in the computer simulation

are listed in Table V.

For a base-line model, the hydrodynamic derivatives and coefficients were held

constant in addition to the Froude number (hence the propeller revolutions), the

transverse metacentric height, and speed loss ratio. Therefore, for the figures

presented in this section:

Froude number Fn = 0.3
Metacentric height GM = 0.3 m
Speed loss ratio a = 0.6

Figures 3.1 through 3.3 show the variation of sway velocity, yaw rate, and roll

angle as a function of rudder angle during a steady turn. It can be seen that all

steady state variables v, r and 0 are highly nonlinear functions in S which is

attributed to both the effect of the nonlinear terms in our equations of motion and

the fact that the ship speed is reduced during the turn. Had a constant speed, linear

model been utilized, v, r and 4 would appear as straight lines versus 8.
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TABLE IV. PRINCIPAL DIMENSIONS OF SR-108 CONTAINER SHIP [Ref. 9]

Items Ship Mode

Hull Length B. P. L (i) 175.00 3.000000
Breadth B (i) 25.40 0.435000
Draft Fore 12F (m) 8.00 0.137100

Aft TA (in) 9.00 0.154300
Mean T (M 3) 8.50 0.145700

Displacement Volume (m3) 21,222 0.106860
Height from keel to
transverse metacenter KM (m) 103900 0.17810

Height from keel to
center of buoyancy BM (m) 4.6154 0.07912

Block coefficient Cz 0.55900
Prismatic coefficient C, 0.58000
Waterplane area 0.68600
coefficient Cw 0.518 L

Midship section CU 0.240 L
coefficient

LCB from forward
Perpendicular

Bilge keel
Length Ld (m) 43.75 0.7500
Depth (cm) 45.00 0.7714

Rudder Area AR (m2) 33.0376 0.009709
Height H (in) 7.7583 0.133000
Aspect Ratio A 1.821900
Area Ratio AR/Ld (i) 1/45.0

Propeller

Diameter D (m) 6.533 0.112
Pitch Ratio p 1.009
Expanded Area Ratio 0.670
Boss Ratio 0.180
Number of blades 5
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TABLE V. HYDRODYNAMIC DERIVATIVES AND COEFFICIENTS [Ref. 9]

A.) Hull Only

Y, -0.0116000 N, -0.0038545 K,, 0.00030260

Y,__ oo22o N-0.00242000N K7  -00006300

Yo -0.0000630 N# -0.0001424 K# -0.00002100

Y,_ -0.1090000 N., 0.0014920 K. 0.00284300

y.,. -0.0405000 N,, 0.0015600 K, 0.00105650

Y,,r 0.0017700 Nf7  -0.0022900 K., -0.00004620

Y,,:,, 0.0214000 N,, -0.0424000 K, -0.00055800

Y,_ _ 0.0460500 N,4 -0.0190580 K* -0.00120120

Y,## 0.0030400 N,,O -0.0053766 K, -0.00007930

L 0.0093250 Nf, -0.0038592 K1 -0.00024300

Y,0 -0.0013560 No 0.0024195 Y,. 0.00003569

B.) Propeller and Rudder

aH 0.237 _ " 1.090 (1-wp) 0.816

XH -0.480 c 0.921 XR -0.500

CRX 0.710 k 0.631 XP -0.526

ZR 0.033 car -0.156 KT 0.527-0.455J

1 , 0.000 -0.275 , 0.088 v>0
0.193 v<0

79.10 Fn=0.2
Cpr 0.000 c&, 1.960 NP 118.64 Fn=0.3

158.19 Fn=0.4
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IV. STABILITY ANALYSIS

A. COUPLED STEERING AND ROLL EQUATIONS OF MOTION

Once the nominal points are determined for each rudder angle, Equation

(2.10a) can be reduced to state-space representation (Equations (3.4)) for stability

analysis.

Bi =Az

1' V

t (4.1a)
where i = p ; z f

mxoG-N) (4z-N) 0 -N4

B = (m-Y (m) G-Y) -MZG -Y'4 (4.1b)

-M0 (1,-K 4) -K4

0 0 0 1

V ar ap 4
t Cf3 Ofs cfs

A = ly CI' (4.1c)

Sar apao

apap ap
av ar ipa5
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Matrix B can be thought of as the generalized mass matrix for the problem

while matrix A is the Jacobian matrix of f(z,8) evaluated at each nominal point. For

stability analysis purposes, the variables v, r, p, and P are understood to represent

small deviations of the actual variables from their respective steady state values as

computed in the previous chapter. The rationale behind Equations (4.1) is the

introduction of small local perturbations in v, r, p, and 4 superimposed on their

steady turning values. Lyapunov's linearization theorem establishes that stability

properties of a nominal point for a nonlinear system can, in general, be deduced

from the stability properties of the corresponding linearized system.

The terms in the matrix A are as defined in Equations (3.3) with the following

additions:

afy OYS afita 0s 0/
O- - O- O- 0

&v ar

Stability can be determined from the solution to the eigenvalue problem:

IBz = Az

or (4.2)

IA - .BI = 0
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If all eigenvalues, A, have negative real parts, the nominal point is asymptotically

stable. If at least one eigenvalue is positive, the nominal point is unstable. The

degree of stability of the nominal point is therefore related to the real part of the

eigenvalues. The more negative they are, the faster the exponential convergence of

solutions in time to the nominal point. The imaginary part of the eigenvalues

characterizes the frequency content of the oscillatory behavior of the system

response.

A subroutine was included in the computer model to solve this eigenvalue

problem as a function of rudder angle.

B. DECOUPLED STEERING EQUATIONS

In order to distinguish the characteristic contributions of the sway and yaw

motions from those of roll, the steering equations (Equations (4.3)) were decoupled

from the maneuvering equations (Equations (4.1)), resulting in Equations (4.3).

[( :xU $ [;] - (4.3a)
(M-Y). (taXi-Y) It = S

f= Yvv+ Yvv 3 +Yw 2 +(Y,-mu)r+ Y,,r 3 +Ywv2r+Y(8) (4.3b)

f = N.v+NVv 3 +NWvr2 +(N-mxau)r+N'r 3 +Nvv 2r+N(8) (4.3c)

This decoupling is based on the assumption that all cross coupling coefficients

between roll and sway/yaw are zero, which is the usual approximation made for
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surface ships where roll is studied independently from sway/yaw. One of the

motivations for this study is to evaluate the degree of accuracy of such an

approximation.

The additional subscript, S, distinguishes the decoupled steering forces and

moments from those of the fully coupled system. Following the same format as

before, the state-space formulation for stability analysis is ,ien in Equations (4.4).

BsL Aszj

w e ~ [;] (4.4a)
where is =; zs = ,

"(mx,-Nd) (Qz-Ný)](.b

Bs = I (mxG-Y4]

As (4.4c)

af5S ,•f
av 8ir

S- , NV+3N vv2 +NW r2 +2N,,, ,+aN(6) (4.4d)

_V Wa

O' =2N.vr+(N.-m u)+3N,,r 2 +N1 VV2+ -N() (4.4e)
ar &
C•fS y ],r+¥,w Y8 (4.4f)

a - Y, + 3Yy 2  -- +2Yw+ Y(

ss. - 2Ywvr(y,-mu)+3y,, ',rW+Y y 2 + aY(.K (4.4g)

Or Or
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The approximation method of Equation (3.4) was used to determine rudder

force and moment contributions in the Jacobian matrix A.

The stability attributable to yaw and sway as a function of rudder angle is thus

determined by the solution of the decoupled steering eigenvalue problem in

Equations (4.5).

IsBsz = Asz

or (4.5)

IAs-•.sBs I = 0

C. DECOUPLED ROLL EQUATIONS

By decoupling the steering equations, the roll equations become uncoupled

producing the following relationship:

[(Ix-K,) -l] [:1 = [fp] (4.6a)

fm = Kt4 + K(B) - AGZ(4o) (4.6b)

The additional subscript, R, refers to the decoupled roll forces and moments

and GZ(O) is as given in Equation (2.8). Equations (4.7) are the state-space stability

analysis formulations.
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B =~ ARz.

where z] 
(4.7a)

S(Ix -Ks -K4 ]BR01 (4.7b)

afRR afRR (4.7c)

AR- ap a'p

±R t! 0 K# - (AGZ(4)) (4.7d)

_ - ; -o
ap

(4.7e)

The expression 0(3 GZ(1)) is given in Equation (3.3).

Therefore, the stability attributable to roll as a function of rudder angle is

attained by solution of the decoupled roll eigenvalue problem of Equations (4.8).

)XRBRtz, = AR-Z

or (4.8)

IAR -XRBI = 0
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D. TYPICAL RESULTS

Continuing with the base-line model described in Chapter III Section C, the

roots of Equations (4.2), (4.5) and (4.8) were obtained using PROGRAM

COUPLED (Appendix A). Figure 4.1 is a plot of the real roots of the fully coupled

maneuvering equations as a function of rudder angle. As can be seen, there are three

distinct components which were classified as due to roll or due to steering (sway/yaw)

by decoupling the steering and roll equations as discussed in Sections B and C above.

Figures 4.2 through 4.4 show the three components of the fully coupled system

matched with their respective decoupled solutions of Equations (4.5) for steering and

Equations (4.8) for roll.

In Figure 4.2, the decoupled roll real roots are constant for each rudder angle,

whereas the coupled roots vary with an increasing stability to about five degrees of

rudder. The upper steering component shown in Figure 4.3 indicates very little

deviation in the coupled and decoupled roots, however, the lower steering

component in Figure 4.4 shows a deviation in the two roots as the rudder angle is

increased. The steering eigenvalues become increasingly more negative as the rudder

angle is increased. This indicates that the steering system is dynamically more stable

for a non-zero rudder angle, and as a result, a steering system that is designed to be

stable for straight line motions will be even more stable for motions along curved

reference paths.

The imaginary roots for the decoupled equations are zero, indicating that all

imaginary roots obtained in the solution of the coupled equations are due to roll
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only. Figure 4.5 shows that for rudder angles less than 150, the coupled model

produces larger values than the decoupled model and for rudder angles greater than

150, the reverse is true. Comparing Figures 4.2 and 4.5, we can see that the imaginary

part of roll response, or the roll frequency of oscillation, can be predicted fairly

accurately from the decoupled roll equations. This is not the case for the real part

where decoupling the equations results in a severe underestimation.

Figure 4.6 is a root locus plot of the roll eigenvalues for both coupled and

uncoupled models. As can be seen, the fully coupled model is more stable than the

decoupled model.

The roll damping caused by roll is shown in Figure 4.7. The decoupled roll

analysis shows less damping for each rudder angle than does the fully coupled model.

Furthermore, the damping increases significantly for large rudder angles. It can be

seen that the actual roll damping is significantly larger than what is predicted from

the decoupled model, which may underestimate the actual damping ratio by a factor

of two to three.
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V. SENSITIVTY OF MATHEMATICAL MODEL
TO VARIATION IN DESIGN PARAMETERS

A. BACKGROUND

Since actual ships rarely operate under the precise conditions assumed in the

development of this mathematical model, changes in certain variables to measure the

response sensitivity is prudent, as for any design study. The following sensitivity

analysis has this aim in mind as well as to identify any inexplicable response as an

area for further study. It must be remembered that certain assumptions were made

at the outset which might need refinement as the design spiral continues. For

instance, the roll damping term, K., is assumed to be constant throughout the

simulation, although experimental evidence [Ref. 18] suggests that roll damping

coefficients are forward speed and motion amplitude dependent. By isolating a

parameter, problem areas are enhanced so that a particular parameter can be the

focus for analysis of the validity of the assumptions made or the modelling method

used.

If, on the other hand, one or more of the dependent variables do not show

appreciable sensitivity, further simplifying assumptions could possibly be made when

analyzing the more difficult problems of maneuvering in regular and irregular seas.

In the following sections, sensitivity to speed loss during a turn, Froude number

of approach spped, metacentric height, operating turn, and righting moment is
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evaluated. For brevity, a limited number of plots are presented in each case.

Appendix B contains additional plots for metacentric height, Froude number, and

speed loss.

B. SPEED LOSS DURING A TURN AS THE DESIGN PARAMETER

The sensitivity of the model to changes in speed loss during the turn was

investigated by holding transverse metacentric height (GM) and Froude number

constant:

GM = 0.3m

Fn = 0.3

In determining the speed loss under steady turning conditions, it was assumed

that the water depth was sufficient, i.e. > 110 meters, to neglect this effect [Refs. 2,

3]. However, it has been determined by several sources: Davidson (1944), Shiba

(1960), Strom-Tejsen (1965), Eda and Crane (1965), among others [Ref. 2], that

speed loss in steady turning is a function of the hull configuration (including rudder)

and the turning diameter. Various other sources, [Refs. 3, 9, 10] consider rudder

angle as an additional parameter in determining speed loss. In an effort to combine

these effects, Figures 25 and 178 and Tables 29(a) and 29(b) from Principles of Naval

Architecture [Ref. 2], Figure 11 of Eda and Falls [Ref. 3], and Figure 10 of Son and

Nomoto [Ref. 9] were used to develop the following simple relationship to represent

speed loss:
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V- I -a *8,
Vo

V = steady turning speed

Vo = approach speedwhere
= speed loss ratio

8, = rudder angle in radians

Variation of the speed loss parameter ranges from no speed loss (a=O) to maximum

speed loss (a=0.73) during a turn with fixed controls. Results of these effects on

sway velocity, yaw rate and roll angle may be viewed in Figures 5.1 through 5.3. The

influence of speed loss on r is negligible, indicating that in all cases considered, the

ship steady turning rate performance is not affected. On the contrary, v and 0 show

a relatively significant modification due to speed loss. The sign reversal of the roll

angle plot (Figure 5.3) for large rudder angles is rather uncommon, but it is,

nevertheless, possible as a result of the nonlinearities that are present in the

equations of motion for this model.

The characteristic roots as a function of rudder angle were determined to

establish stability trends. The real roots indicate three distinct components as

previously discussed in Chapter IV, Section C. Both the upper and lower steering

components demonstrate a significant increase in stability with rudder angle but little

variance in stability due to speed loss. The roll component, however, indicates

greater stability as speed loss decreases. We discovered ee.rlier, that the non-zero

values in the root locus were due solely to the roll contribution owing to the

imaginary parts of the steering elements. The damping ratio of the roll contribution
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imaginary parts of the steering elements. The damping ratio of the roll contribution

is related to both real and imaginary parts of the eigenvalues. Figures 5.4 and 5.5,

for the fully coupled and uncoupled models respectively, show this as a function of

rudder angle. Both models exhibit qualitatively the same trend, with the uncoupled

model showing a significant underestimation of the true damping ratio value.

C. FROUDE NUMBER AS THE DESIGN PARAMETER

In testing the model sensitivity to Froude number changes, the transverse

metacentric height and speed loss ratio were kept constant:

GM - 0.3m

a 0.6
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Froude numbers used to calculate the forward velocity prior to initiating the turn

aswell as propeller revolutions were assumed to remain constant during the turn. For

each Froude number and rudder angle, the sway velocity, yaw rate and roll angle

were determined using the model program. Figures 5.6 through 5.8 at the end of this

section depict graphic results. Note that v and r are not readily affected by change

in Froude number, whereas 40 is greatly changed, increasing dramatically with Froude

number.

Using these values, the stability of the coupled response was determined. The

real roots of the coupled maneuvering equations for the three Froude numbers are

indistinguishable when plotted as in Figure 4.1, as are the roots for the lower

steering components (Figure 4.2). The upper steering component exhibits nonlinear

behavior through five degrees of rudder for all Froude numbers with increasing

stability as both Froude number and rudder angle increase. The roll component was

nonlinear throughout the range of rudder angles tried. Furthermore, as the Froude

number increased, so did the range of rudder angles for which stability increased.

The coupled model roll damping ratio remains relatively insensitive to Froude

number (Figure 5.9), while the uncoupled model suggests a wide variation (Figure

5.10). This demonstrates the incorrect conclusions which can be reached when using

linear/uncoupled models that neglect the actual coupling of the lateral sway/yaw

motions back into roll.
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D. TRANSVERSE METACENTRIC HEIGHT AS THE DESIGN PARAMETER

For transverse metacentric height as the design parameter in the model, Froude

number and speed loss ratio were held constant:

Fn = 0.3

a = 0.6

Here again, the sway velocity, yaw rate and roll angle for each GM and rudder

angle were computed using the model program. The results are represented in

Figures 5.11 through 5.13. As indicated for the case of Froude number being the

design parameter, v and r are affected very little by even an order of magnitude
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change in GM. On the other hand, the increase in GM not only causes a large

decrease in the magnitude of the roll angle, but in the range as well.

In determining the influence of GM on the stability characteristics, it was found

that the real roots plotted as a function of rudder angle showed no distinction

between GM's. When the components were separated out, only the upper steering

and roll constituents exhibited significant variation. The upper steering response

reflected a somewhat incongruous reaction, that is, as the GM increases, the stability

due to steering decreases slightly. The roll component demonstrated a marked

increase in stability with increase in GM. This result is evident in the root locus

diagram of Figure 5.14.

Conversely, the damping ratio did not change significantly, as shown in Figure

5.15. Computation of the damping ratio from the decoupled model showed a much

wider deviation among different GM's.

E. TRIM AS THE DESIGN PARAMETER

For the investigation of a vessel in the trimmed condition, the transverse

metacentric height, Froude number and speed loss ratio were held constant:

GM = 0.3m

Fn = 0.3

= - 0.6
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The base-line model chosen for this study, and therefore the hydrodynamic

derivatives and coefficients derived from model tests, were for a design trim of 0.5

meters by the stern and a mean draft of 8.5 meters for the actual ship (refer to Table

IV for model parameters). It has been shown [Ref. 11] through linear theory that

these derivatives and coefficients change for the trimmed condition by the following

semi-empirical relations: [Ref. 15]

Y,(•) = Y (0) 1 + 2

() N(0)1 - 0.27?r

1v dn

N, (r) ,(O) 1 + d.

1v.Nv (0)

where + for trim by stern

- for trim by bow

d. i design mean draft

Yv(O) = Yv at design condition

The application of these relationships are somewhat questionable, but in the

absence of model tests, they will suffice to indicate trends for further study.

A further modification in the model was made to the ZR parameter (Table III)

or the z coordinate of the point on which the rudder force acts:
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Z.R(r) = Z.ft(0) +
2 . L

Figures 5.17 through 5.19 depict the effects of - _ ±0.2 which equates to ad,
significant change in operating condition. The sensitivity of v and r to the previous

parameters was practically negligible with the exception of the speed loss ratio. This

is not the case for trim where turning rate is improved for trim by the bow and

decreased for trim by the stern. It should be noted that this is contrary to linear

theory results. For sway velocity at small angles of rudder the variation is small, but

for large rudder angles the trim by stern curve deviates considerably from the other

two conditions. The difference is more pronounced in the roll angle curves (Figure

5.19) where trim by the bow generates higher angles during the turn. On the other

hand, trim by the stern results in smaller roll angles with a roll angle sign reversal

beyond a certain rudder angle. This is due to the fact that for large rudder angles,

the hydrodynamic moment exerted by the rudder force dominates over the fluid

forces on the hull.

The root locus diagram (Figure 5.20) for the roll stability analysis is revealing

in that very different trends can be observed. Trim by the stern is considerably more

stable than by the bow for the entire range of heel angle, although at larger rudder

angles, the stability is less than at the design condition. This is possibly qualitatively

explained by noticing in Figures 5.21 and 5.22, that the damping ratio for trim by the

stern increases sharply precisely at the inflection point of the roll angle as shown in
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Figure 5.19. Here again, it must be pointed out that the damping ratio's variance

between the coupled model and the decoupled model is at least a factor of two. It

can be seen from both coupled and decoupled models that at the inflection point of

the roll angle, the damping ratio reaches its peak value. This maximum value of the

damping ratio exists for the other trim conditions as well, but its actual location is

shifted outside the range of rudder angle variations considered here.

F. RIGHTING ARM CURVE AS THE DESIGN PARAMETER

The sensitivity of the model to changes in the righting arm as a function of the

roll angle was tested by holding the transverse metacentric height, Froude number

and speed loss constant:

GM = lOM
Fn = 0.3

a = 0.6

In general, the righting arm curve, GZ(O), is taken to be a very simplified

version of Equation (2.8), namely GZ(4I)=GM*4O. This linear righting arm gives

good approximations for small angles of heel and is derived much the same as was

done for Equation (2.8) in Chapter II, Section E. For the purpose of this

investigation, the simplified GZ(O) was left in its nonlinear form,

GZ(O)=GM*sin(O). Figure 5.23 illustrates the two GZ(46) curves used. Note that

GZ1 (representing Equation (2.8)) develops a much larger righting arm at increased

angles of heel than does GZ2 (representing GM*sin(O)).
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The effects of these different righting arm curves on the model for v, r, and 46,

are shown in Figures 5.24 through 5.26. Sway velocity and yaw rate appear to be

unaffected by this parameter change in contrast to roll angle, which shows relatively

high sensitivity, as expected.

Figures 5.27 (coupled model) and 5.28 (decoupled model) indicate the same

trend in damping ratio sensitivity as the previous parameters, specifically, the

decoupled model underestimates r by a factor of two.

G. SUMMARY OF RESULTS

A qualitative summary of results is presented in Table VI below. All

comparisons are to the base-line configuration of:'

GM = 0.3m

Fn = 0.3

a 0.6

For GZ sensitivity GM = 1.0 m.
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Notation in the table refers to the largest noted deviations from the model

according to the following subjective scale:

Sensitivity Symbol Standard

Negligible N < 1%

Low L 1%_-_5%

Moderate M 5% - 20%

High H > 20%

Mixed X = large change
over the range

Additionally, A, B and C refer to rudder angle range for the noted deviations such

that:

< A 1 0"

I0" < B 20"

20" < C • 30"
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TABLE VI. QUALITATIVE SENSITIVITY SUMMARY

Parameter 8 a Fn GM Trim GZ(O)

v A M N N L N
B M N N M N
C H N N H N

r A N L N L N
B N L N L N
C L L N L N

A M H H X H
B M H H H H
C H H M H M

coupled A M M X X X
damping B L M H X H

C X X X X H

uncoupled A L H X X X
damping B M H H X H

C H H H X H

This reference table shows clearly that the sway velocity and turning rate are

relatively insensitive to Froude number, metacentric height and righting moment,

while being quite sensitive to the speed loss and trim parameters. Roll and damping

ratio show the greatest response for all the parameters considered.
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VI. CONCLUSIONS AND RECOMMENDATIONS

A. CONCLUSIONS

This thesis developed a mathematical model for the coupled sway, yaw and roll

equations of motion with rudder deflection as the independent variable. Additionally,

various components of the hydrodynamic forces and moments, e.g., rudder to hull

interaction, were modelled using existing research formulation. Deviation of this

study from current solution methods was in the manner of evaluating the Taylor

expansion for the steady state Jacobian matrix. The equilibrium position for each

rudder angle was found to deviate significantly from the commonly used zero state,

even for rudder angles of less than 100. In fact, the roll angle and sway velocity

nominal points are nearly maximum at 100 of rudder.

Comparison of stability results for the coupled lateral notion model to those

of models representing the steering equations of motion decoupled from the roll

equations of motion showed:

1. The directional stability characteristics signified by the real part of the
complex eigenvalues are not affected significantly by the coupling of roll into
sway and yaw. This indicates that sway and yaw can be treated separately
from roll when studying directional stability.

2. Roll stability represented by the magnitude of the damping ratio is
considerably affected by the coupling of sway and yaw into roll. The fact that
the damping ratio is underestimated by a factor of two by the uncoupled
treatment of sway and yaw, indicates ship design by this means is a significant
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over-design that bears more attention, especially with the economic
constraints of today's Navy.

3. The natural frequency is not significantly affected by coupling. This indicates
that while maneuvering in a seaway studies require the coupling of the lateral
motions, the induced roll from the static righting moment can be studied from
decoupled systems.

4. Steering stability increases with increasing rudder deflection. This may
indicate that if a ship is directionally unstable for straight line motion, it
becomes directionally stable during a turn through the coupling of the lateral
motions.

The sensitivity of certain design parameters to the coupled system was

investigated with the following determinations:

1. The parameters tested were speed loss during a turn, transverse metacentric
height, Froude number of initial forward speed, trim and righting moment. Of
these parameters, trim proved to be the most affected. This indicates that
during all phases of design, operating trim must be considered in addition to
the design trim.

2. Sway velocity and turning rate were relatively insensitive for all parameters

except for trim and speed loss.

3. Roll angle and damping ratio of all the parameters were significantly affected.

4. The coupled model damping ratio showed significantly lower sensitivity than
the decoupled model for small rudder angles in all parameters.

B. RECOMMENDATIONS

The results produced in this thesis were as a consequence of experimentally

reported nonlinear hydrodynamic coefficients and design parameters of a SR-108

container ship [Ref. 10]. Additional studies using similar data are required.
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Utilizing the method of determining equilibrium points for each rudder

position, design a control law for an autopilot and determine the effects of the

coupled lateral motions on antopilot dynamics.

The sharp change in roll angle (0) for small values of rudder angle (8) suggests

that this ship would be an excellent candidate for rudder roll stabilizing techniques.

Finally, as indicated in Chapter I, Section B, use the coupled sway, yaw and roll

equations of motion and build a mathematical model which treats wave effects in

regular and irregular seas. Once this model is developed, analyze maneuvering in

waves from the standpoint of biased roll oscillations. Biased roll oscillations are

meant as roll about non-zero heel angle.
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APPENDIX A

* *

* PROGRAM COUPLED *
* *

* This program solves the coupled yaw-sway-roll ship maneuvering *
* equations. In addition, the yaw-sway steering equations are de- *
* coupled from the roll equations and solved in order to compare *
* results with the fully coupled results. The program is broken *
* into several subroutines, both original and standard commercial *
* programs. *
* *

* The INCLUDE statement is used to pass all the variables between *

* the many subroutines. *

INCLUDE 'HYDCOMN.for'
COMMON/WORKSP/RWKSP
REAL RWKSP(5000)
REAL*8 VDEL(300),V(300),R(300),RPHI(300)
EXTERNAL FCN,LSJAC,DNEONJ

* Open the input and output files

OPEN(1O, FILE ='COEF.INP',status='old')
OPEN(15, FILE ='VAR.OUT'.status='new')
OPEN(20, FILE ='NLIN.DAT ,status='new')
OPEN(25, FILE ='EIGVAL1.DAT',status='new')
OPEN(30, FILE ='EIGVAL2.DAT',status='new')
OPEN(26, FILE ='EIGVALL.DAT',status='new')
OPEN(27, FILE ='EIGVALp.DAT',status='new')
OPEN(35, FILE ='ZETA.DAT',status='new')
OPEN(36, FILE ='OMEGA.DAT',status='new')
OPEN(37, FILE ='ZROLL.DAT',status='new')
OPEN(38, FILE ='RUDDER.DAT',status='new')
PI=4.ODO*DATAN(1.ODO)
ERRREL=O.OO01
ITMAX=200

* This subroutine reads the hydrodynamic derivative and coefficient
* values from COEF.INP and writes pertinent values in VAR.OUT.

CALL INPUT
DEL=DEL*(PI/180.ODO)

* This subroutine sets up the linear EOM's in matrix form:
* Ax = B

CALL LINEAR

* This is an IMSL MATH/LIBRARY Subroutine [Ref. 191
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* Purpose: Solve a real general system of linear equations with
* iterative refinement

* Arguments:

* N -Number of equations. (Input)
* A -N by N matrix containing the coefficients of the linear
* system. (Input)
* LDA -Leading dimension of A. (Input)
* B -Vector of length N containing the right-hand side of the
* linear system. (Input)
* IPATH -Path indicator, if = 1 the system A*x=B is solved
* X -Vector of length N containing the solution to the linear
* system. (Output)

CALL DLSARG(NA,3 B,1 XGUESS)
WRITE(15,*)'THE S6LUTION TO THE LINEAR SYSTEM OF EQUATIONS IS'
WRITE(15 *)I I
WRITE(15,*)'VO=',XGUESS(1)
WRITE(15,*)'RO=' ,XGUESS(2)
WRITE(15,*)'PHIO=',XGUESS(3)
WRITE(15,*)' '
PHIO=XGUESS(3)*(180.DO/PI)
WRITE(15,*)IPHIO IN DEGREES =',PHIO
WRITE(15 )

* Set the rudder limits for steady turning

DELMIN=O.O1DO
DELMAX=30.ODO

* This Do-Loop calculates the values of sway velocity, yaw rate and
* roll angle for each rudder angle.

DO 100 IDEL=1,IMAX
WRITE (*,*) IDEL,IMAX
RDEL=DELMIN+(DELMAX-DELMIN)*REAL((IDEL-1)/(IMAX-1))
DEL=RDEL*(PI/180.ODO)
UND=1.ODO-SLR*(DABS(DEL))

* This is an IMSL MATH/LIBRARY Subroutine [Ref. 17]

* Purpose: Solve a system of nonlinear equations using the
* Levenberg-Marquardt algorithm with a user-supplied
* Jacobian.
* Arguments:

* FCN - User-supplied SUBROUTINE to evaluate the system of
* equations to be solved. The usage is
* CALL FCN (X, F, N), where
* X -The point at which the functions are
* evaluated. (Input)
* X should not be changed by FCN.
* F - The computed function values at the point X.
* (Output)
* N - Length of X, F. (Input)
* FCN must be declared EXTERNAL in the calling program.
* LSJAC - User-supplied SUBROUTINE to evaluate the Jacobian at a
* point X. The usage is
* CALL LSJAC (N, X, FJAC), where
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* N Length of X. (Input)
* X The point at which the function is evaluated.
* (Input)
* X should not be changed by LSJAC.
* FJAC - The computed N by N Jacobian at the point X.
* (Output)
* LSJAC must be declared EXTERNAL in the calling program.
* ERRREL - Stopping criterion. (Input)
* The root is accepted if the relative error between two
* successive approximations to this root is less than
* ERRREL.
* N - The number of equations to be solved and the number
* of unknowns. (Input)
* ITMAX - The maximum allowable number of iterations. (Input)
* The maximum number of calls to FCN is ITMAX*(N+1).
* Suggested value = 200.
* XGUESS - A vector of length N. (In put)
* XGUESS contains the initial estimate of the root.
* X - A vector of length N. (Output)
* X contains the best estimate of the root found by
* DNEQNJ.
* FNORM - A scalar which has the following value
* F(1)**24...+F(N)**2 at the point X. (6utput)

CALL DNEQNJ(FCN LSJAC,ERRREL,N,ITMAX,XGUESS,X,FNORM)
PHI=X(3)*180.OD6 /PI
WRITE(20,50)RDEL,X(1),X(2),PHI

50 FORMAT(4E15.5)

* Calculate the rudder forces and moments: Equations 2.6 and 2.7

UP=UND*(WP+TAU*((X(1)+XP*X(2))**2+CPV*X(1)+CPR*X(2)))
JP=(U*UP)/(NP*D)
KT=KTA+(KTB*JP)
UR=UP*EPSILON*((1.ODO+8.ODO*K*KT)/(PI*(JP**2)))**0.5
VR=GAMMA*X(1)+CDR*X(2)+CDRRR*(X(2)**3)+CDRRV*X(1)*(X(2)**2)
VD=(UR**2+VR**2)**0.5
ALPHAR=DEL+DATAN(VR/UR)
FLAM=(6.13DO*LAMBDA)/(LAMBDA+2.25DO)
FNN=FLAM*(AR/(L**2))*((VD)**2)*DSIN(ALPHAR)

YD=-(1.ODO+AH)*FNN*DCOS(DEL)
ND=-(XR+AH*XH)*FNN*DCOS(DEL)
KD=(1.ODO+AH)*ZR*FNN*DCOS(DEL)
WRITE(38,*)ND,YD,KD

* Rudder angle in degrees

VDEL(IDEL)=DEL
V(IDEL)=X(1)
R(IDEL)=X(2)

t

* Rudder angle in radians

RPHI(IDEL)=X(3)
XGUESS(1)=X(1)
XGUESS(2)=X(2)
XGUESS(3)=X(3)

100 CONTINUE
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* This subroutine solves the eigenvalue problem IA - lambda*BJ= 0
* for the fully coupled yaw-sway-roll equations, using the values
* for v, r, and phi obtained above.

CALL EIGTH1(VDEL,V,R,RPHI)

* This subroutine solves the eigenvalue problem JAs - lambda*Bsl= 0
* for the steering yaw-sway equations.

CALL EIGTH2(VDEL,V,R)

* This subroutine solves the eigenvalue problem lAr - lambda*Brl= 0
* for the roll equations.

CALL EIGTH3(VDEL,Rphi)
STOP
END

SUBROUTINE INPUT
INCLUDE 'HYDCOMN.for'

* The numbers in the variables such as N122 stand for:
* 1 implies v
* 2 implies r
* 3 implies phi
* 4 implies delta

READ(10,*)NON1,N2,N3,N111,N122 N222,N112,N113,N133,N223,
& N233,KO,K1 K2,K3,K111,K122,K222,K112,K113,K133,K223,K233,
& YO,Y1,Y2,Y6,Y111,Y122,Y222,Y112,Y113 Y133 Y223 Y233,L,WXG,
& AH,A2,LAMBDAXRXH ZR,BM,WP,TAUXP,CPV,CPAEPSILONK,KTA,KTB,
& D,CDR,CDRRR,CDRRV,&AMMA

* Calculate the nondimensional mass

M=W/(O.5DO*(L**3))
WRITE(*,*)'ENTER THE GM AND THE SPEED LOSS RATIO'
READ(*,*)GM,SLR
WRITE(15,*)'GM=',GM
WRITE(15,*)' I
WRITE(15,*)'THE SPEED LOSS RATIO IS=',SLR

* Adjusts the z coordinate of CG based on the GM

ZGM=DABS(O.3DO-GM)/L
ZG=O.00078-ZGM
WRITE(15,*)'THE SHIP DISPLACEMENT (IN CUBIC METERS) IS W=',W
WRITE(15,*)' '
WRITE(15,*)'THE SHIP NONDIMENSIONAL MASS IS M=',M
WRITE(15,*)'
XG=XG/L
WRITE(15,*): L' 1 L
WRITE(15,*) XG=,XG
WRITE(15,*) 'ZG=' ,ZG
WRITE(15,*)' I
WRITE(*,*)-ENTER THE INITIAL RUDDER ANGLE IN DEGREES'
READ(*,*)DEL
WRITE(15,*)'THE INITIAL RUDDER ANGLE DEL=',DEL
WRITE(*,*)IENTER THE FROUDE NUMBER AND THE IMAX'
READ(*,*)FN,IMAX
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WRITE(15,-)ITHE FROUDE NUMBER IS FN=',FN

* Calculate the initial forward speed

U=FN*((9.8D0*L)**O.5D0)
WRITE(15,*)ITHE FORWARD VELOCITY IS U=',U
WRITE(15,*)'
WRITE(-,*)'ENTER THE PROPELLER SPEED IN RPMS FOR THE FN'
READ( *,* )NP
WRITE(15,*)ITHE PROPELLER SPEED IN RPMS IS NP=',NP

* Change rpm's to radians per sec

NP=NP* (P1130.ODO)

* The weight component is nondimensionalized such that WG*GM is
* dimensionless

WG=(W*9.81D0)I(O.5D0*(L**3)*(U**2))
WRITE(15,*)ITHE NONDIM COMPONENT OF DISPLACEMENT IS WG'I,WG
RETURN
END

SUBROUTINE LINEAR

INCLUDE 'HYDCOMN.for'
INTEGER IROW, ICOL
DO 100 IROW=1,N
B( IROW)=O.ODO

DO 90 ICOL=1,IN
A(IROW ICOL)=O.ODO

90 CONTINUA
100 CONTINUE

* Equation 3.2

A(1 ,1)=N1
A(1 ,2)=N2- (M*XG*UND)
A(1 ,3)=N3
A(2,1)=Y1
A(2,2)=Y2- (M*UND)
A(2,3)=Y3
A(3,1 )=K1
A(3,2)=K2+ (M*ZG*UND)
A(3,3)=K3- (WG*GM)

FNL=((6.13D0*LAL4BDA)I(LAMBDA+2.25D0))*(ARIL**2)
N4=- (XR+(AH*XH) )*FNL
Y4=- (1.ODO+AH)*FNL
K4=(1 .ODO+AH)*ZR*FNL

B(1 )=- (N4*DEL) -NO
B(2)=- (Y4*DEL) -VO
B(3)=- (K4*DEL) -KO
RETURN
END

SUBROUTINE FCN(Z,O,NDIM)
INCLUDE 'HYDCOMN .for'
INTEGER NDIM
DIMENSION Z(NDIM) ,Q(NDIM)

73



*Equation 2.7

UP=UND' (WP+TAU* ((Z(1 )+XP*Z(2) )**2+CPV*Z(1 )+CPR*Z(2)))
JP=(U*UP) /(NP*D)
KT=KTA+ (KTB*JP)
UR=UP*EPSILON*((1.ODO+8.ODO*K KT)/(PI*(JP**2)))**O.5
VR=GAMMAA'Z(1 )+CDR*Z(2)+CDRRR*(Z(2)**3)+CDRRV*Z(1 )*(Z(2)**2)
VD=(UR**2+VR**2) **0.5
ALPHAR=DEL+DATAN (VR/UR)
FLAM=(6.13D0*LAMBDA) /(LAMBDA+2.25D0)
FNN=FLAM*(ARI(L**2) )*((VD)**2)*DSIN(ALPHAR)

*Equation 2.6

Y4=- (1.ODO+AH)*FNN*DCOS(DEL)
N4=- (XR+AH*XH) *FNN*DCOS(DEL)
K4=(1 .ODO+AH) *ZR*FNN*DCOS(DEL)

*Equation 2.10b

C1=N1*Z(1)+N111*(Z(1)**3)+Nl22*Z(1 )*(Z(2)**2)
C2=N222*(Z(2)**3)+Nl12*(Z(1 )**2)*Z(2)+N3*Z(3)
C3=N113*(Z(1)**2)*Z(3)+N133*Z(1)*(Z(3)**2)+(N2-(M*XG*UND))*Z(2)
C4=N233*Z(2)*(Z(3)**2)+N4+NO+N223*(Z(2)**2)*Z(3)

0(1 )=C1+C2+C3+C4

*Equation 2.10c

D1=Yl*Z(1 )+Y111*(Z(1 )**3)+Y122*Z(1 )*(Z(2)**2)+(Y2-(M*UND) )*Z(2)
D2=Y222*(Z(2)**3)+Y112*(Z(1 )**2)*Z(2)+Y3*Z(3)
D3=Y113*(Z(1)**2)*Z(3)+Y133*Z(1)*(Z(3)**2)+Y223*(Z(2)**2)*Z(3)
D4=Y233*Z(2) *(Z(3)**2)+Y4+YO

0(2)=D1+02+D3+D4

*Equation 2.9

c GZ=GM*DSIN(Z(3))+O.5*BM*(DTAN(Z(3)))**2*DSIN(Z(3))
GZ=GM*DSIN(Z(3))

*Equation 2.10d

E1=K1*Z(1)+K111*(Z(1)**3)+K122*Z(1)*(Z(2)**2)+(K2+M*ZG*UND)*Z(2)
E2=K222*(Z(2)**3)+K112*(Z(1 )**2)*Z(2)+K3*Z(3)
E3=K113*(Z(1)**2)*Z(3)+K133*Z(1)*(Z(3)**2)+K223*(Z(2)**2)*Z(3)
E4=K233*Z(2)*(Z(3)**2)+K4+KO- (WG*GZ)

Q(3)=E1+E2+E3+E4

RETURN
END

SUBROUTINE LSJAC(NDIM,Z,OJAC)
INCLUDE 'HYDCOMN.for'
INTEGER NDIM
DIMENSION Z(NDIM) ,OJAC(NDIM,NDIM)

*Equation 2.7
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UP=UND*(WP+TAU*( (Z(1 )+XP*Z(2) )**2+CPV*Z(1 )+CPR*Z(2)))
V9=Z(1 )*0.99D0
R9=Z(2)*O.99D0
UPV9=UND*(WP+TAU*( (V9+XP*Z(2) )**2+CPV*V9+CPR*Z(2)))
UPR9=UND*(WP+TAU*((Z(1)+XP*R9)**2+CPV*Z(1)+CPR*R9))
JP=(U*UP)/I(NP*D)
JPV9=(U*UPV9)/I(NP*D)
JPR9=(U*UPR9)/I(NP*D)
KT=KTA+ (KTB*JP)
KTV9=KTA+ (KTB*JPV9)
KTR9=KTA+ (KTB*JPR9)
UR=UP*EPSILON*((1.ODO+8.ODO*K*KT)/(PI*(JP**2)))**O.5
URV9=UPV9*EPSILON*((1 .ODO+8.ODO*K*KTV9)/(PI*(JPV9**2) ))**0.5
URR9=UPR9*EPSILON*((1 .ODO+8.ODO*K*KTR9)I(PI*(JPR9**2)))**O.5
VR=GAIJMA*Z(1 )+CDR*Z(2)+CDRRR*(Z(2)**3)+CDRRV*Z(1 )*(Z(2)**2)
VRV9=GAMMA*V9+CDR*Z(2)+CDRRR*(Z(2)**3)+CDRRV*V9*(Z(2)**2)
VRR9=GAMMA*Z(1 )+CDR*R9+CDRRR*(R9**3)+CDRRV*Z(1 )*(R9**2)
VD=(UR**2+VR**2) *O0.5
VDV9= (URV9**2+VRV9**2) **O.5
VDR9=(URR9**2+VRR9**2) **0.5
ALPHAR=DEL+DATAN (VR/IUR)
ALPHARV=DEL+DATAN (VRV9IURV9)
ALPHARR=DEL+DATAN (VRR9 /URR9)
FLAM=(6.13D0*LAMBDA) /(LAMBDA+2.25D0)
FNN=FLAU* (ARI (L**2) ) *((VD) **2) *DSIN(ALPIJAR~
FNNV9=FLAM*(AR/(L**2))*((VDV9)**2)*DSIN(ALPHARV)
FNNR9=FLAM*(AR/(L**2))*((VDR9)**2)*DSIN(ALPHARR)
Y4*lOOA)*N*CSDL

Y4V=- (1.ODO+AH)*FNNV*DCOS(DEL)
Y4R9=- (1.ODO+AH)*FNNR9*DCOS(DEL)

*Equation 3.4

PY4V=(Y4-Y4V9)/I(Z(1 )-V9)
PY4R=(Y4-Y4R9)/I(Z(2) .R9)
N4=- (XR+AH*XH) *FNN*DCOS(DEL)
N4V9=- (XR+AH*XH) *FNNV9*DCOS(DEL)
N4R9=- (XR+AH*XH) *FNNR9*DCOS(DEL)
PN4V=(N4-N4V9)/I(Z(1 )-V9)
PY4R=(Y4-Y4R9)/I(Z(2) -R9)
N4=. (XR+AH*XH)*FNN*DCOS(DEL)

*Equation 3.4
N49-X*HX)*NV*CSDL

N4V9=- (XR+AH*XH) *FNNV9*DCOS(DEL)
PN4V=(N4-N4V9)/I(Z(1 ) V9)
PN4R=(N4-N4R9) /(Z(2) -R9)
K4= (1.ODO+AH) .ZR*FNN*DCOS(DEL)
K4V9= (1 .ODO+AH) *ZR*FNNV9*DCOS (DEL)
K4R9= (1 ODO+AH) *ZR*FNNR9*DCOS (DEL)

*Equation 3.4

PK4V=(K4-K4V9)/I(Z(1 )-V9)
PK4R=(K4-K4R9)/I(Z(2) -R9)

*Equation 3.3b

C11=Nl+3*N111*(Z(1)**2)+N122*(Z(2)**2)+2.ODO*N112*Z(1)*Z(2)

75



C12=2.ODO*N113*Z(1 )*Z(3)+N133*(Z(3)**2)

OJAC(1 ,1 )=C11+C12+PN4V

*Equation 3.3c

C21=2.ODO*N122*Z(1)*Z(2)+(N2-M*XG*UND)+3.ODO*N222*(Z(2)**2)
C22=N112* (Z(1)**2)+2.ODO*N223*Z(2)*Z(3)+N233*(Z(3)**2)

QJAC(1 ,2)=C21+C22+PN4R

*Equation 3.3d

C31=N3+N113*(Z(1)**2)+2.ODO*N133*Z(1)*Z(3)+N223*(Z(2)**2)
C32=2 .ODO*N233*Z(2) *Z(3)

QJAC(1 ,3)=C31+C32

*Equation 3.3e

D11=Y1+3.ODO*Y111*(Z(1)**2)+Y122*(Z(2)**2)+2.ODO*Y112*Z(1)*Z(2)
D12=2.ODO*Y113*Z(1 )*Z(3)+Y133*(Z(3)**2)

OJAC(2,1 )=D11+D12+PY4V

*Equation 3.3f

D21=2.ODO*Y122*Z(1 )*Z(2)+(Y2-M*UND)+3.ODO*Y222*(Z(2)**2)
D22=2.ODO*Y223*Z(2)*Z(3)+Y233*(Z(3)**2)+Y112*(Z(1 )**2)

OJAC(2, 2) =D21+D22+PY4R

*Equation 3.3g

D31=Y3+Y113*(Z(1)**2)+2.ODO*Y133*Z(1)*Z(3)+Y223*(Z(2)**2)
D32=2.ODO*Y233*Z(2) *Z(3)

QJAC(2,3)=D31+D32

*Equation 3.3h

El1=K1+3.ODO*K111*(Z(1)**2)+K122*(Z(2)**2)+2.ODO*K112*Z(1)*Z(2)
E12=2.ODO*K113*Z(1 )Z(3)+K133*(Z(3)**2)

OJAC(3,1 )=E11+E12+PK4V

*Equation 3.3i

E21=2.ODO*K122*Z(1 )*Z(2)+(K2+M*ZG*UND)+3.ODO*K222*(Z(2)**2)
E22=2.ODO*K223*Z(2)*Z(3)+K233*(Z(3)**2)+K112*(Z(1 )**2)

OJAC (3,2) =E21 +E22+PK4R

*Equation 3.3k

c DGZ1=GM*DCOS(Z(3))+O.5D0*BM*(DTAN(Z(3)))**2*DCOS(Z(3))
c DGZ2=BM*(DTAN(Z(3))*((1.ODO/DCOS(Z(3)))**2)*DSIN(Z(3)))

c DGZ=DGZ1+DGZ2
DGZ=GM*DCOS(Z(3))

*Equation 3.3j
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E31 =K3+K113* (Z(1) **2) +2.ODO*K133*Z (1)*Z (3) +K223* (Z (2) **2)
E32=2.ODO*K233*Z(2)*Z(3) -WG*DGZ

* OJAC(3,3)=E31+E32

RETURN
END

SUBROUTINE EIGTH1 (VDEL,V,R,RPHI)

INCLUDE 'HYDCOMN.for'
INTEGER I,J,IERR
REAL*8 AE(4,4) BE(4,4),BETA(4),VDEL(300),V(300) R(300),RPHI(300)
REAL*8 P(3OO),iVALR(4),EVALI(4),EVAL(4),ALFR(4),ALFI(4),Z(4,4)
EXTERNAL DMACH ,RGG
DO 500 I=1,IMAX
P(I)0O.ODO

*SET UP THE B MATRIX AND RESET EACH I
UP=UND*(WP+TAU*((V(I)+XP*R(I))**2+CPV*V(I)+CPR*R(I)))
V9=V(I)*0.99D0
R9=R(I)*0.99D0
UPV9=UND*(WP+TAU*( (V9+XP*R(I) )**2+CPV*V9+CPR*R(I)))
UPR9=UND*(WP+TAU*( (V(I)+XP*R9)**2+CPV*V(I)+CPR*R9))
JP=(U*UP)/ (NP*D)
JPV9=(U*UPV9)/I(NP*D)
JPR9=(U*UPR9) /(NP*D)
KT=KTA+ (KTB*J P)
KTV9=KTA+ (KTB*JPV9)
KTR9=KTA+ (KTB*JPR9)
UR=UP*EPSILON*( (1.ODO+8.ODO*K*KT)/(PI*(JP**2)))**O.5
URV9=UPV9*EPSILON*((1 .ODO+8.ODO*K*KTV9)I(PI*(JPV9**2)))**O.5
URR9=UPR9*EPSILON*((1 .ODO+8.ODO*K*KTR9)/(PI*(JPR9**2)))**O.5
VR=GAMMA*V(I)+CDR*R(I)+CDRRR*(R(I)**3)+CDRRV*V(I)*(R(I)**2)
VRV9=GAMMA*V9+CDR*R(I)+CDRRR*(R(I)**3)+CDRRV*V9*(R(I)**2)
VRR9=GAMMA*V(I)+CDR*R9+CDRRR*(R9**3)+CDRRV*V(I)*(R9**2)
VD=(UR**2+VR**2)**005
VDV9=(URV9**2+VRV9**2) 0*0.5
VDR9=(URR9**2+VRR9**2) **0.5
ALPKAR=VDEL( I)+DATAN(VR/UR)
ALPHARV=VDEL( I)+DATAN(VRV9/URV9)
ALPHARR=VDEL (I) +DATAN (VRR9/URR9)
FLAM=(6.13D0*LAMBDA) /(LAMBDA+2.25D0)
FNN=FLAM*(AR/(100 2) )*((VD)**2)*DSIN(ALPHAR)
FNNV9=FLAM*(AR/(L**2))*((VDV9)00 2)*DSIN(ALPHARV)
FNNR9=FLAM*(AR/(L**2))*((VDR9)00 2)*DSIN(ALPHARR)
Y4*IOOA)FN*CSVE~)

Y4V=- (1.ODO+AH)*FNNV9DCOS(VDEL(I))

Y4R9=-(1 .ODO+AH)*FNNR9*DCOS(VDEL(I))
PV4V=(Y4-Y4V9) /(V(I) -V9)
PY4R=(Y4-Y4R9)/(R(I) -R9)
N4=(XR.AH*XH)*FNN*DCOS(VDEL(l))
N4V9=-(XR+AH*XH)*FNNV9*DCOS(VDEL(I))
*4R9=- (XR+AH*XH)*FNNR9*DCOS(VDEL(I))
.44V=(N4-N4V9) /(V(I) .V9)

PN4R=(N4-N4R9)I(R(I).9
K4=(1.ODO+AII)*ZR*FNN;DC9S(VDEL(II)
K4V9=(1 .ODO+AkI)*ZR*FNNV9*DCOS(VDEL(I))

* K4R9=(1 .ODO+AH)*ZR*FNNR9*DCOS(VDEL(l))
PK4V=(K4-K4V9) /(V( I) -V9)
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PK4R=(K4-K4R9)/(R(I) -R9)

* Calculate the fundamental circular frequency

WN=( (WG*GM)/(0.00002100) )**0.5
IF(FN.LE.0. 1)THEN
KAPPA=0.1DO
ELSE IF(FN.GE.0.2)THEN
KAPPA=0.2D0
ELSE
KAPPA=FN
ENDIF
KPHIDOT= -0.000021 DO*KAPPA*WN

*Equation 4.1b

BE(1 ,1)=0.00035245D0
BE(1 ,2)=0.00087500
BE(1 ,3)=0.ODO
BE(1 ,4)=-0.000213D0
BE(2,1 )=0.014969D0
BE (2,2) =0.00035245D0
BE (2,3) =-0 .000221D0
BE (2,4) =0 000
BE(3 1 )=-0.000221D0
BE (3 2) =0.ODO
BE (3 3) =0 .000021D0
BE(3,4)=-KPHIDOT
BE(4,1 )=0.ODO
BE (4 2) =0.ODO
BE (4 3) =0.000
BE(4,4)=1 .000

*Equation 4.1c SET UP THE A MATRIX

C11=N1+3*N111*(V(I)**2)+N122*(R(I)**2)+2.ODO*N112*V(I)*R(I)
C12=2.ODO*N113*V(I)*RPHI(I)+N133*(RPHI(I)**2)

AE(1 ,1 )=C11+C12+PN4V

C21=2.0D0*N122*V(I)*R(I)+(N2-M*XG*UND)+3.0D0*N222*(R(I)**2)
C22=N112*(V(I)**2)+2.ODO*N223*R(I)*RPHI(I)+N233*(RPHI(I)**2)

AE( 1,2)=C21+C22+PN4R
AE(1 ,3)=0.ODO

C41=N3+N113*(V(I)**2)+2.000*N133*V(I)*RPHI(I)+N223*(R(I)**2)
C42=2 .ODO*N233*R () *RPHI (I)

AE(1 ,4)=C41+C42

D11=Y1+3.ODO*Y111*(V(I)**2)+Y122*(R(I)**2)42.ODO*Yl12*V(I)*R(I)
D12=2.ODO*Y113*V(I)*RPHI(I)+Y133*(RPHI(I)**2)

AE(2,1 )=D11+D12+PY4V

D21=2.ODO*Y122:V(I)*R(I)+(Y2-M*UND)+3.ODO*Y222*(R(l)-*2)
D22=2.ODO Y223 R(I)*RPHI(I)+Y233*(RPHI(I)**2)+Y112*(V(I)**2)

AE(2,2)=D21+D22+PY4R
AE (2 ,3) =0.000
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D41=Y3+Y113*(V(I)**2)+2.ODO*Y133*V(I)*RPHI(I)+Y223*(R(I)**2)
D42=2.ODO*Y233*R(I) *RPHI (I)

AE(2,4)=D41+D42

E11=K1+3.ODO*K111*(V(I)**2)+K122*(R(I)**2)+2.ODO*K112*V(I)*R(I)
E12=2 .ODO*K113*V( I) *RPHI( I)+K133* (RPHI( I) **2)

AE(3,1 )=E11+E12+PK4V

E21=2.ODO*K122*V(I)*R(I)+(K2+M*ZG*UND)+3.ODO*K222*(R(I)**2)
E22=2.ODO*K223*R(I)*RPHI(I)+K233*(RPHI(I)**2)+K112*(V(I)**2)

AE(3,2)=E21+E22+PK4R
AE(3,3)=O.ODO

c DGZ1=GM*DCOS(RPHI(I))+O.5D0*BM*(DTAN(RPHI(I)))**2*DCOS(RPHI(I))
c DGZ2=BM*(DTAN(RPHI(I))*((1.ODO/DCOS(RPHI(I)))**2)*DSIN(RPHI(I)))
c DGZ=DGZ1+DGZ2

DGZ=GM*DCOS(RPHI(I))
E41=K3+K113*(V(I)**2)+2.ODO*K133*V(I)*RPHI(I)+K223*(R(I)**2)
E42=2 .ODO*K233*R (I) *RPHI (I) WG*DGZ

AE(3,4)=E41+E42
AE(4,1 )=O.ODO
AE(4,2)=O.ODO
AE(4,3)=1 .ODO
AE(4,4)=O.ODO

* This is a subroutine that utilizes the EISPACK LIBRARY [Ref. 201

* Purpose: Calls the recommended sequence of subroutines from the
* Eigensyste. subroutine package,(EISPACK) to find the
* ~eigenvalues of the real generalized eigenproblem:

* AX = (LAMBDA)*BX

* Arguments:

* NM -Row dimension of the two-dimensional array parameters as
* declared in the calling program Dimension statement
* (Input)

* N -The order of the matrices A and B. (Input)
* A -Contains a real general matrix (Input)
* B -Contains a real general matrix (Input)
* MATZ -Path indicator. If= 0, elgenvalues are found. (Input)
* ALFR -Real parts of the numerators of the eigenvalues. (Output)
* ALFI -Imaginary parts of the numerators of the eigenvalues.

* BETA -S ounltans the denominators of the eigenvalues which are
* given by the ratios: (ALFR4I*ALFI)/BETA. (6utput)
* Z - or sigenvector usage if MATZ not equal to zero. (Output)
* IERR -Error completion code. (Output)

CALL RGG(4,4,AE,BE,ALFR,ALFI,BETA,OZ,IERR)
DO 600 J-1,4
IF(BETA(J) .NE.O.ODO)THEN
EVALR(J)=ALFR(J) /BETA(J)
EVALI(J)=ALFI(J) /BETA(J)
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ELSE
EVALR(J)=DMACH(2)
EVALI (J)=DMACH(2)

ENDIF
600 CONTINUE

WRITE(25,25)EVALR(1) EVALI(1),EVALR(2),EVALI(2)
WRITE(30,25)EVALR(3),EVALI(3),EVALR(4),EVALI(4)

* Calculate the damping ratio and the natural frequency
*l-VL()(SR(VL()*+VL()*)

Z1=-EVALR(1 )/I(DSORT(EVALI(1 )**2+EVALR(1 )**2))
Z3=-EVALR(3)I (DSQRT(EVALI(2)**2+EVALR(2)**2))
Z3=-EVALR(4)/(DS0RT(EVALI(3)**2+EVALR(4)**2))
Z41=DEVART(EV)/(DSQRTEVALI(1)**2+EAR4)*)

WN1=DSQRT(EVALI(1 )**2+EVALR(2)**2)
WN2=DSQRT(EVALI (2)**2+EVALR(2) **2)
WN3=DSORT(EVALI (3)**2+EVALR(4) **2)

WRITE(35,25)Z1 Z2,Z3,Z4
WRITE(36,25)WN1 ,WN2,WN3,WN4

25 FORMAT(4E15.5)
500 CONTINUE

RETURN
END

SUBROUTINE EIGTH2(VDEL,V,R)

INCLUDE 'HYDCOMN .for'
INTEGER I,J,IERR
REAL*8 AE(2 2),BE(2,2) BETA(2) VDEL(300),V(300),R(300)
REAL*8 EVALI! (2) EVALI(k),EVAL(i),ALFR(2),ALFI(2 ), Z(2,2)
EXTERNAL DMACH,AGG
DO 500 I=1,imax

*SET UP THE B MATRIX AND RESET EACH I
UP=UND*(WP+TAU*((V(I)+XP*R(I))**2+CPV*V(I)+CPR*R(I)))
V9=V(I)*0.9900
R9=R(I)*0.99D0
UPV9=UND* (WP+TAU* ((V9+XP*R (I)) **2+CPV*V9+CPR*R (I)))
UPR9=UND*(WP+TAU*( (V(I)+XP*R9)**2+CPV*V(I)+CPR*R9))
JP=(U*UP) /(NP*D)
JPV9=(U*UPV9) /(NP*D)
JPR9=(U*UPR9)/I(NP*D)
KT=KTA+ (KTB*JP)
KTV9=KTA+ (KTB*JPV9)
KTR9=KTA+ (KTB*JPR9)
UR=UP*EPSILON*( (1.ODO+8.ODO*K*KT)/(Pl*(JP**2)))**0.5
URV9=UPV9*EPSILON*((1 .ODO+8.ODO*K*KTV9)/(PI*(JPV9**2)) )**0.5
URR9=UPR9*EPSILON*((1 .ODO+8.ODO*K*KTR9)/(PI*(JPR9**2)) )**O.5
VR=GAMMA*V(I)+CDR*R(I)+CDRRR*(R(I)**3)+CDRRV*V(I)*(R(I)**2)
VRV9=GAUMA*V9+CDR*R(I)+CDRRR*(R(l)* 3) +CDRRV*V9*(R(I)**2)
VRR9=GAMMA*V(I)+CDR*R9+CDRRR*(R9**3 )+CDRRV*V(I)*(R9**2)
VD=(UR**24VR**2)**0.5
VDV9= (URV9* *2+VR V9* *2) **0.5
VDR9= (URR9**2+VRR9* *2) **0.5
ALPHAR=VDEL( I)+DATAN(VR/UR)
ALPHARV=VDEL (I) +DATAN (VRV9 /URV9)
ALPHARR=VDEL( I)+DATAN(VRR9/URR9)
FLAM=(6.13D0*LAMBDA)/ (LAMBDA+2.25D0)
FNN=FLAU* (AR/ (L**2) ) *((VO) **2) *DSIN(ALPHAR)
FNNV9=FLAM*(AR/(L**2))*((VDV9)**2)*DSIN(ALPHARV)
FNNRO=FLAM* (AR1 (L**2) )*( (VDR9)**2)*DSIN(ALPHARR)
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Y4=. (1.ODO+AH)*FNN*DCOS(VDEL(I))
Y4V9=- (1.ODO+AH)-FNNV9*DCOS(VDEL(I))
Y4R9=- (1.ODO+AH)*FNNR9*DCOS(VDEL(I))
PY4V=(Y4-Y4V9) /(V(I) -V9)
PY4R=(Y4-.Y4R9) /(R( I) -R9)
N4=- (XR+AH*XH) *FNN*DCOS(VDEL (I))
N4V9=- (XR+AH*XH) *FNNV9*DCOS(VDEL (I))
N4R9=- (XR+AH*XH)*FNNR9*DCOS(VDEL(I))
PN4V= (N4 -N4V9)/I(V (I) -V9)
PN4R=(N4-N4R9)/ (R(I) -R9)

Wt4=( (WG*GM)I (0.000021D0) )**05

* Equation 4.4b

BE(1 ,1 )=0.00035245D0
BE(1 ,2)=0.000875D0
BE(2,1 )=0.014969D0
BE (2,2) =0.00035245D0

* Equation 4.4c-g

C11=N1+3*N11I*(V(I)**2)+N122*(R(I)**2)+2.ODO*N112*V(I)*R(I)

AE(1 ,1)=C11+PN4V

C21=2.0D0*N122*V(I)*R(I)+(N2-M*XG*UND)+3.0D0*N222*(R(I)**2)
C22=N1 12* (V( I)**2)+PN4R

AE(1 ,2)=C21+C22

D11=Y1+3.ODO*Y111*(V(I)**2)+Y122*(R(I)**2)+2.ODO*Yl12*V(I)*R(I)

AE(2,1 )=D11+PY4V

D21=2.0D0*Y122*V(I)*R(I)+(Y2-M*UND)+3.0DO*Y222*(R(I)**2)
D22=Y1 12*(V(I)**2)+PY4R

AE(2,2)=D21+D22

GALL RGG(2,2,AEBE,ALFR,ALFI,BETA,O,Z,IERR)
DO 600 J=1 2
IF(BETA(J;.NE.O.ODO)THEN

EVALR (J)=ALFR (J) /BETA(J)
EVALI (J)=ALFI (J) /BETA(J)

ELSE
EVALR(J)=DMACH(2)
EVALI (J)=DMACH(2)

ENDIF
600 CONTINUE

WRITE(26,25)EVALR(1) ,EVALI(1) ,EVALH(2) ,EVALI(2)
25 FORMAT(4E15.5)

500 CONTINUE
RETURN
END

SUBROUTINE EIGTH3(VDEL,RPHI)

* INCLUDE 'HYDCOMN.for'
INTEGER I,J,IERR
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REAL*8 AE(2 2) BE(2,2),BETA(2),VDEL(300),RPHI(300)
REAL*8 P(306),iVALR(2),EVALI(2),EVAL(2),ALFR(2),ALFI(2),Z(2,2)
EXTERNAL DMACH,RGG
DO 500 I=1,imax

* EP(I)=O.ODO
STUP THE B MATRIX AND RESET EACH I
WN=( (WG*GM)/I(0.000021D0) )**0.5
IF(FN.LE.0.1 )THEN
KAPPA=O. IDO
ELSE IF(FN.GE.O.2)THEN
KAPPA=0.2D0
ELSE
KAPPA=FN
ENDIF
KPHIDOT=-0 .000021D0*KAPPA*WN

* Equation 4.7b

BE(1 ,1)=0.000021D0
BE(1 ,2)=-KPHIDOT
BE(2,1 )=0.OdO
BE(2:2)=1 .ODO

* Equation 4.7c-e

AE(1 ,1)=O.OdO
c DGZ1=GM*DCOS(RPHI(I))+0.5D0*BM*(DTAN(RPHI(I)))**2*DCOS(RPHI(I))

c DGZ2=BM*(DTAN(RPHI(I))*((1.0D0/DCOS(RPHI(l)))**2)*DSIN(RPHI(I)))
c DGZ=DGZ1+DGZ2

DGZ=GM*DCOS(RPHI(I))
AE(1 ,2)=K3-WG*DGZ
AE(2,1)=1 .0D0
AE (2,2) =0.ODO
CALL RGG(2,2,AE,BE,ALFR,ALFI,BETA,0,Z,IERR)
DO 600 J=1,2
IF(BETA(J) .NE.O.ODO)THEN

EVALR(J)=ALFR(~J) /BETA(J)
EVALI (J)=ALFI (J) IBETA(J)

ELSE
EVALR(J)=DMACH(2)
EVALI (J)=DMACH(2)

ENDIF
600 CONTINUE

WRITE(27,25)EVALR(1),EVALI(l),EVALR(2),EVALI(2)
Z1=.EVALR(1)/(DSORT(EVALI(1)**2+EVALR(1)**2))
Z2=-EVALR(2)/I(DSQRT(EVALI(2)**2+EVALR(2)**2))
WN1=DSQRT(EVALI(1 )**2+EVALR(1 )**2)
WN2=DSORT(EVALI (2) **2+EVALR (2) **2)

WRITE(37 25)Z1,Z2,WN1,WN2
25 FORMAT(415.5)'

500 CONTINUE
RETURN
END
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APPENDIX B
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B.1: Effect of GM on Coupled Model Roll Eigenvalues; Real Part
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B.2: Effect of GM on Coupled Model Roll Eigenvalues; Imaginary Part
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B.3: Effect of GM on Coupled Model Upper Steering Eigenvalues
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B.4: Effect of GM on Coupled Model Lower Steering Eigenvalues
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GM=0.3m and a =0.6
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B.5: Effect of Fn on Decoupled Model Damping Ratio
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GM=0.3m and Fn=0.6
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B.6: Effect of Fn on Coupled Model Roll Eigenvalues
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B.7: Effect of Fn on Coupled Model Upper Steering Eigenvalues
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B.8: Effect of Fn on Coupled Model Lower Steering Eigenvalues
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B.9: Effect of Fn on Coupled Model Roll Eigenvalues
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B. 10: Effect of Fn on Coupled Model Root Locus
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B.11: Effect of Speed Loss on Coupled Model Roll Eigenvalues
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B.13: Effect of Speed Loss on Coupled Model Upper Steering
Eigenvalues

95



GM = 0.3 m and Fn 0.3

0 9

-0 0 A0 -% _ 0

C)

II I I I I

B.14: Effect of Speed Loss on Coupled Model Lower Steering
Eigenvalues
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B. 15: Effect of Speed Loss on Coupled Model Sway Velocity with GM = 1.0 m
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B.17: Effect of Speed Loss on Coupled Model Roll Angle with GM = 1.0 m
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B.18: Effect of Speed Loss on Coupled Model Roll Angle with GM =3.0 m
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B.19: Effect of Speed Loss on Coupled Model Root Locus with GM = 1.0 m
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B.20: Effect of Speed Loss on Coupled Model Root Locus with GM = 3.0 m
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