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1.0 Introduction

In conventional processing systems, such as that gshown
in Fig. la, intengsity data recorded by an IR sensor 1s fed
into a signal processor. This processor outputs a high
value (one) or a low value (zero) for each pixel based upon
some presget decigion logic. Generally. a high-valued output
occuryg at a pixel location when the intensity level at that
pixel exceeds a predetermined threshold. As each frame of
data is received from the sensor, threshold ¢rossings are
determined. This information is then passed to a track
processor where data agssociation is performed and target
state estimates (i.e., tracks) are computed. Threshold
crosgsings (or observations) determined by the signal
processor can be the result of thermal emisgions from true
targets such as ¢ruise migsiles, cruige missile carrying
aircraft or from clouds, earth radiance, solar illumination,
or other sources. Obgervations that cannot be agsociated
with emigsions emanating from actual targets are called
falge alarms.

One commonly used scheme to determine observations from
sensor intengity data is to form a ratio of conditional
probabilities and compare it to a threshold

h}
P(r/ho)

1(p) = FT;7FTT < b (1)

ho

where the quantity on the left ig called the likelihood
ratio denoted by Ir(r)!, r i3 an intengity value located 1n
the gample space (or frame of data), b is the threshold, and
hy and h, are hypotheses that correspond to the presence and
abgsence of a target, respectively. The likelihood ratio of

(l) is simply the ratio of the conditional probability of an

l 1n this and subsequent sections, lower case type will be
used to indicate scalarsg and lower cage bold to indicate
vectors.




intensity being recorded by a pixel given the preaence of an
actual target to the intensity being recorded given the

abhsence of a target. Thege conditional probabilities are
detined as the probability of detection (Py) and probability

of false alarm (P¢). The threshold, b, in (1) can be

computed from the a priori probabilities and costs
asgtsociated with the decision logic. Typically, the costs are
set 30 as to maximize Pyq (or minimize Pg) [(11].

Targets in a high clutter environment are difficult to
detect using single frame processing methods such as that
described above. Low threshold settings increase the
likelihocod of detection (i.e., of obtaining obgervations
resulting from true targets), but also have the advenrse
affect of generating a large number of false obgervations as
well., Several temporal processing techniques have been
described for improving the signal-to-clutter ratic (SCR).
Thege technigues range in complexity from simple {rame
differencing to more elaborate methods for background
suppresgion. Many of these methods are based on radar
processing techniques. The frame differencing method, for
example, is similar to the Moving Target Indicator (MTI)
approach used in radar in which delayed doppler returns are
subtracted from undelayed returns for moving target
detection [2].

Processing of only a few frames of data, however, even
with optimal filtering, can be inadequate for detecting dim
maneuvering targets [3]. A long term integration approach
ts required to achieve SCRs such that thresholds can be set
that maximize the probability of detection without
generating a large the number of falsgse alarms. Multi-
dimensional processing methods of this type, known as track-
before-declare (TBD), and sometimes by the misleading term
track-before~-detect, have been employed in systems as
diverse as doppler radar (4] and infrared surveillance
systems [(5].

Unlike conventional processing schemes the TBD method




starts with a target trajectory model (track) and triec to
find a set of measurements that fit the trajectory. This
method c¢reates a three dimensional search gpace ih azimuth,
elevation, and time. If such a get ¢an Le found in the
sample space the pregence of a target can be declared;
hence, the term "“track-before-declare™. A ratio of a
posteriori probabilities of the form

hi
P(hk/§£1_>

" P(hy/zk) < bt
ho

1ry (h) (2)

can be computed to decide whether or not a set of
measurements can be declared a target track. Here, hy is

the target track hypothesis in terms of a specified sequence
of target states, hy is the null (no track) hypothesis, and
2K is the set of measurements over which the likelihood test
is performed. When the ratio of (2) exceeds the threshold,
bt., hypothesis hy is chosen and a target is declared.

A block diagram of the TBD processing approach is shown
in Fig. 1b., Sensor intensity data is fed into a
preprocessor for data pregelection and/or clutter
suppression. Most 1TBD algorithms are computationally
intensive due to the large search volumes over which target
trackg are identified. In practice, this large sample
volume needs to be restricted to achieve real-time
processing. Information from the preprocegsor is gent to the
TBD processor for target track detection. The TBD processor
agsociates measurements that lie along hypothesized target
tracks. This can be performed either sequentially or in a
batch processing mode. In gequential methods, a score is
assigned to each measurement as it ig received. When the
score exceeds a threshold a target detection is declared.
In batch processing, a sequence of IR images is stored and
each set of measurements in the data is scored. Measurement

sets that exceed a threshold indicate the presence of a
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target track and a target detection ls declared.

Ag early as 1964, Sittler (6] bad described an apptroach
to parform data association for track processing and to
determine the quality of the computed tracks. The data was
sampled at random intervals and congigted of target gignal
and background noise. Ag each observation was detarmined it
wag given a gcore according to a probabilistic model of the
gurveillance gvstem, possible target motions, and its
correlation to previous observationg. If the score exceeded
a certain level the observation was used to initiate a
track. Other levels could be defined to decide whether the
track should be maintained or terminated. In 1975, Stein
and Blackman (7] extended the work of Sittler and others.
They developed a batch processing algorithm that sampled the
surveillance data at digscrete time intervals and made use of

state space models to degcribe target maneuvers, In 1985,

Corbeil [A) implemented a TRD algerithm for ground-baszed
radar. His approach utilized asgociation windows and M-out-
of-N coincidence logic to detect targets with a low radar
crogs section (RCS). More recently, Arnold (9] has applied
a dynamic programming approach to weak target detection for
a staring IR gensor, Thisgs paper will discuss several
methods used in TBD processing.

2.0 Surveillance Model
Derivation and discussgion of the TBD processing
aldorithmg presented in this paper will focus on

apprlicationg to long range IR suprveillance. The sensor

system‘can be either scanning or staring and be located on a

variety of platformg (ground-based, airborne, or sgpace-
bagad) . Each type of system and platform has unique
operating characterigtics that can impact algorithm
implementation. The specific constraints of each will not
be addressed in this paper, however. Rather, the TBD method
will be presented ag a golution to the more general problem

of detecting dim moving targets. In discussion of the




varioug approaches the following agsumptions will be made:
1) The surveillance area (s sampléed at digcrete time

intervalsg.
2) Targdets are unresgolved peint sources.

3) Target maneuversg <oan be modeled as finite state
processes.

4) Many targets of varying intensities and velocities
can exist within the search area at any time. These targets
can enter and exit tha search area randomly and trajectories
of geveral targets can cross.

5) When a target exigts in the surveillance area sensor
intengity measurements contain target and clutter intensity
components of the form

z(u,k) = s(u, k) + viu.k) (3)

where u = (1,J)) indicates the intensity meagurement located
at the ijth pixel and k is the discrete time index of the
measurement. Otheorwise, measurements contain only

background clutter intensity.

6) Targets are dim compared to the background clutter
(SCR ¢ 1) and cannot be easgily detected in single frame
processing methods.

2.0 Approaches

3.1 Exhaustive Search

One approach for finding target tracks in a set of IR
image sequences ig to perform an exhaustive search through
all posgible target paths in the search volume. A score 1s

assigned to each path according to how likely it is that the




path corregponds# to a track. The scoring function might
tnclude the use of intensity measuremants aleng the vath,
recognizing consigtencies th the obgervation set, and path
smoothnegs. If the ¢lements of the score can be correctly
characterized (such as the target maneuver mode¢l, noise
characterigtias, ete.) then the exhausztive gearch 1ig
optimal. That is, the begt solution ¢an be found from the
specified criterion,

The number of paths that need to be searched can be
computed from

np = (np)"t (4)

where np i8 the number of paths to be gsearched, np is the

rumber of resolution cells (or pixeld) of the sensor gystem,
and ng i8 the number of time in%tervalyg (or frames) over

which the search {g pertformed. It can be sean from (3) that
the number of paths to be checked increases exponentially
with the number of time intervals. As the number of
intervals (or integration time) increagesd it is obvious that
the number of paths to he gearched can becomé énormous. For
example, a saarch through ju-t five frames of data from a
starinyg sensor with o &4 x 128 pixel array would require
checking over 1019 paths.

3.2 Dynami¢ Programming

An alternative to the exbhaustive scarch is a method
known ag dynamic programming (DP). The DF approach is a
sequantial technique that tries to maintain the optimality
of the exhaugtive search, but without sgearching through
every pos3gible path. At each time interval it aelects only
thoge path segments that have the highest probability of
being associated with a target transition. Path gegments
that form consistent linkg over the deareh interval would be
declared ag target tracks.

Ag an illustiration, couzider the exampie in Fig. 2 with




target transition costs as shown. Suppose that it is
desired to find the lowest cost path from the first to the
third interval. An exhaustive search woculd require checking
eight paths: ajajsas, ajagbz, a)bjsas, ajbgba, b;boba, bjbraz,
bjagsbz, and bjagasz. The cost of each path would be
calculated and the path with the lowest score would be
selected. In this case, path ajaszbz would be chosen. In
the DF approach, the lowest cost path segment is determined

at each interval for each pixel. In the firgt interval,
segments aj an and b;bz would be selected and at the second

interval segments agbz and bbbz would be selected. Costs
would then be calculated only for paths ajagbz and bjbgdbz -
all other possible path hypotheses being rejected at each
interval. The correct path, ajagbz, would again be chosen.
Note that, at least in this example, the number of paths
over which costs need to be computed is reduce by a factor

of four over the exhaustive gearch approach.

3.21 DP Algorithm Implementation

In general., the DP approach is based on a maximum a
posteriori (MAP) vechnique for estimating the state sequence
of a {inite state process. The procesgs (or target) state
can be defined at each time interval in terms of the target
position, velocity, acceleration, etc. The state sequence
is the set of target states from the first through the kb'h
interval. The mosgst probable target hvpothesis, hopt- is

gelected according to

P(hx/zk)
hopt = max ( P(ho/Zx) (%)
where the hy hypothesis is the set of target states
hy = (@1, €2, .... &K (6)

through the k'h interval.




Derivation of a recursive algorithm for computer
implementation can be determined by applying Baye's Rule to

the numerator and denominator of (95)

Plhi/z) | Plzg/0k) P (hy)

maX i P (ho/2K) . " 'Plzk/ho) P (ho)

where
P(hk) = P(e’kv ek‘ln LI LI | 91)
= P(ek/ek-lv « o 0y O’I)P(e‘k-l. ¢ ey 9'1). (e)

If the target gstate trangitions are aggumed to form a Markov
process then

P(hyx) = P(Ox/Ok-1)P(Ox-1,

and (7) becomes

P (hy/zk)

max {5 e/ 2K)

P2y /9x) P(6Kx/Ok-1)Plhy~-1/2k~1)
= MK Pz /he) P(ho/Zk~1) ’e

For computational convenience the log ig taken of both sidaesz
and the DP sgcoring function is given by

P(2)/0y)

max(Sp) = log(;T;§7§;7

)

* maxy _  (P(O/0k-1) < max(ay.y)) (n

The total cumuiative score, Sp, at the k%% (ntarval for

240h maagurement wef congigty of the log likwliacod ravio of

intengities from new measurements al the k" interval, tha




target state transition cost from the (k-1)3% ;nterval tec
the k%P, and the cumulative score up through the (k-1;3%
interval. The optimal path 13 the set of measurements
agsgociated with the maximum score at the kth jnterval. MNote
that only the optimal target transition links are
propagated.

An example of the DP scoring function 18 shown in Fig.
3. Initially, the cumulative score is simply the value of
the log likelihood ratio of the Lnténsities at each pixel.
At the second interval, the likelihood ratio at each pixel
1s calculated, optimal transition links from the first
interval to the second are found, and the new cumulative
score is computed. This process is repeated at each
succeeding interval. At the kth interval, target detections
are declared at pixe]s‘that have scores which exceed a
predetermined threshold.

IR gsensor intensity measurements and the output of a DP
algorithm at four different time intervals are shown 1n Fig.
4a and 4b2. The raw IR sensor scenes are grey-scale
representations of the recorded thermal intensities. Hot
objectg are bright and cold objects aroc dark. The DP output
scenes are grey-scale representations of the cumulative
scoré at each pixel for a given track hypothesis. High
score areasg are bright and low score areag are dark. In the
sceneg, a target ig moving slowly from right to left
starting at the right of the camera’'s field- of-view. As
can be seen in the raw sensor data the target is difficult
to detect in any single frame. However, by combining
1nformaiion over many frames the DP algorithm is able to
detect the target which ig located near the center of the
bright gpot in the last three frames.

3.3 Matched Filter

2 The DP algorithm was developed for RADC/OCSA under
contract by SRI International, see (9]. The data was
collected from the OCSA/Infrared Surveillance Ladb at GAFB.



The matched filter method iz a batch processing
technique that integrates the target signal in order to
maximize the SCR in the presence of additive uncorrelated
clutter, For target track detection, the maximum SCR can be
obtained by choosing an optimum filter based on target
maneuve?r characterigtice. In the case of one dimensional
filtering the optimum filter is derived from a gingle domain
{such as time). The application of matched filter theory to
moving target detection (three dimensional filtering) can be
directly extended from the one dimensional case. The three
dimengional filter ig based on target position (spatial
location) and velocity (spatial progression through time).
Selection of an optimal three dimensional filter is similar
to the one dimensional case. The sSteps are summarized below
and follow that found in [101].

3.3]1 One Dimengional Derivation

Conrider the discrete time linear system shown in Fig.
S. The cutput is _

k

v(k) = I z(p)h(k-p) (12)
p=0

where z(k) is the input and h{k) is the impulse response of
the system. If z(k) consists of targot signal and an
additive clutter component the system output becomes

k
vik) = ¥ [sip)h(k-p) ¢+ wi(p)h{k-p))
p=0

= yo(k) + wo(k) (13)

and the output SCR can be defined as

Iyo (k)12
E{we*(k)}




Let S(m) and H(m) denote the Discrete Fourier Transform

(DFT) of the target signal and filter impulse response,
respectively. The inverse DFT of the output signal, yo(k),

can be written as

]..
vo(k) = 1/K Zf S (m) H(m) e MK277XK (15)
m=0

where K is the number of samples over which the transform is
taken. If wy(k) is assumed white with constant power

spectral density then

W(m) = notH(m) 12 (16)

and the average clutter power at the output is

E{wo2(K)) = no Lo IH(m) 2. (17)
me=0

Substituting (15) and (16) into (14), the SCR, becomes

uxn.zl S (m)H (m) e MK27/K 2

SCRy = m=0 (18)

wx&f VH(m) 1 2

m=0

From Schwarz’'s inequality the numerator in (18) can be

written asg

K-1 -
1/KI Z S(m) H(m) e WK27/K 2 ux)}:‘ lsm)l;z IHm 12, (19)
m=0 m=0 m=0

If H(m) 18 chosen to be S*(m)e~imk27 /K ( % denotes complex

11




conjugate) then the equality in (19) holds and the maximum

SCR becomes

SCRy ., max = l/nonj Is(m) 12, (20
m=0

The optimum filter is then

Hopt(m) = S (m)*e IMk27/K (21)

Taking the inverse DFT yields

hopt (k) = s(p~k). (22)

This means that the output SCR can be maximized if the
impulse regponse of the filter iz get (or matched) to a

time-reversed delayed version of the target signal.

3.32 Moving Target Implementation

The above reguylts can be extended to the moving targe:
case, as shown by Reed [11). 1If the target starts at some
initial position u' and moves at a velocity v the
measurements are of the form

£(u-u'-vk) = g(u-u'-vk) + noige (23)

The DFT of the target signal component is

U-1 K-1 .
DFT(S(U"U.-\'k,k)} = 2 z s(u-u'-vk,k)e-jmlw”/x e'JhUZ”/U
u=0 k=0
= S(n.me-IN2T(u’ + vk) (24)

and the optimum filter is chosen (in frequency domain) as




Hopt(m) = S*(n,m)eln2(u’ + vK)o-jmk2 /K e-jnuz /U, (25)
The block diagram for 3-D matched filtering is shown in
Fig.6. The DFT is taken of the input signal over K frames
and filtering is performed in the frequency domain. The
output of the system produces "matched filter peaks”™ which

are then thresholded. Peaks that exceed the threshold are
declared as targets.

3.4 Multiple Hypothesis Testing

Multiple hypothesis testing (MHT) is a sequential
technique that recognizes target characteristics in a
sequence of intensgity threshold c¢rossings. Data association
hypotheses are generated based on possible alternatives for
the obgervations. Hypotheses are formulated, and their
likelihoods computed, based on whether or not an observation
was the result of a false alarm, a new target, or an
existing target. If n targets exist the total number of
hypotheses that can be generated by an observation is n + 2.

Threshold detection étatistics such as probability of
detection (P4q), expected false alarm and target densities

(denoted bgy and bpy), and the accuracy »f target state

estimates are used to derive the hypotheses probabilities.
For each possible association hypothesis, H, the
probability, P(H), at the current interval can be computed
from past hypotheses probabilities, P(H'), and are given by

bft(l-Pd)2

P(H) C

P(H') (26)

for the hypothesis that the observation was not generated by
a target (where C is the total cumulative probability from

the previous interval),

(1-P)™ ! Py g4 ,
d < d 8ij P(H')




for the hypothegis that the jtB observation is associated
with the i®R track (where g;; is the likelihood function for

the association), and

bnt (1-Pg) 7

P(H) = = PH") (28)

for the hypothegis that the observation ig a new target.
These probabilitieg can be used in a gcoring function and
serve as updates to determine the mostly likely association
at the current interval.

Since data aggociation hypotheses can grow rapidly, it
may become necessary to reduce the number of associations.
One hypothesis reduction technique that combineg hypotheses
with similar characteristics is described in (12). Standard
Kalman filtering techniques can also be used to update track:
3tate estimates and compute cuvariances to ¢reate data
association windows, as gshown in Fig. 7. Observations that
fall outside the window would not generate new hypotheses.
The multiple hypothesis filter for data asgociation and
hypctheses generation are described in more detail in [13
and 141].

3.8 Other Methods

Other methods include morphological filtering, Hough
trangform techniques, and artificial neural network (ANN)
applications. Morphological filtering is largely an ad hoc
method that uses arithmetic logic to recognize patternsg in
noisy data sets (15]., In two dimensional spatial filtering
abplications. a geometrical figure called the filter kernel
ia chosen based on a priori knowledge of the target shape.
A series of unions and intersecﬁions of the figure with the
image set is performed and the result is a reconstruction of
the target image. An example of this is shown in Fig. 8.
Several Il images can be stored and three dimensional

filtering of sensor intensity data over time can be




accomplished. A three dimensional kernel can be selected
bagsed on hypothesized target track patterns. The filtered
outputs could be thresholded to determine target
declarations.

The Hough transform has been used as a teéhnique in
computer image processing to find gtraight lines, circles,
and parabolas in noisy two dimensional (16 and 17] data
sete. The procedure is to selact an appropriate coordinate
transformation to map sensor data from measurement space to
parameter space and then perform detection. For example, to

detect straight lines in (x,y) image space the transform
P = X cog(®) + y gin(e®) . (29)

can be chosen. Image space coordinates (x,y) ére mapped
into the parameter space coordinates. (p,8), where p ig the
perpendicular distance from the origin to the line in the
(x,y) coordinate system and @ is the angle of inclination of
the perpendicular from the positive x-axis., Not~ that each
point {n image space corresponds to a sinusocidal ‘Hough
curve® in parameter space as shown in Fig. 9. Likewise,
each point (p,®) in parameter space corresponds to a line in
image space. A= each point a, b, c, ete., is found on line A
in image gspace a corregponding curve ig8 constructed in
parameter space that intersects the point (p,®'). When the
number of curves that intersect this point exceed a
threshold the presence of line A can be declared.
Appropriate transformations could also be selected for
detecting curved lines. Three dimensional sequential
processing of data in (x,y,t) space can be used to find
target tracks through a set of IR images.

Neural networks are processing architectures that
attempt to model the functions of the brain. Applications
include pattern recognition, pattern completion, and
adaptive control. A neural network may consiat of several

layers of interconnected processing nodes. Each node

15




receives a set of weighted inputs from the gensor or from
previous layers as shown in Fig. 10. The inputs are summed
and a nonlinear function, such as the sigmoid function shown
in Fig. 11, is applied to produce an output [18]. Node
processing functiong and the network structure itself are
determined based on the intended application. Several
networks have been developed for gpatial pattern recognition
(19). Temporal processing architeciures sui table for target
track detection, known ag time delayed neural networks
(TDNN) , have been studied for speech recognition [20]. Time
delayed portions of the input signal are used as inputs to a
neural network as shown in Fig. 12. Pixel intensity data
can be stored from frame to frame and track detection can be

Performed in a batch processing mode.

4.0 Summary

Several approaches to track-before-declare applicabie
to long range IR surveillance have been discussed. The TBD
method detects weak targets by recognizing track-1like
congigtencies in the surveillance data. In IR sgignal
processing the gearch volume igs over a sequence o0f gensor
intensity data frames. The exhaustive search approach
considers all possible data sets in the search area to
identify target tracks. This approach is optimal in the
senge that every data set in the sample volume is
congjidered. Data set=s that conform to target track-like
characteristics, including nonlinear type trajectories, are
declared as target tracks. This method, however, can be
very computationally intengive. A dynamic¢ programming
approach to the target track search can be implemented that
preserves the optimality of the exhaustive search, but with
far fewer computations. Moving target detection can also be
extended to the matched filtering technique which can be
shown %to provide maximum SCR gain for constanb.velocity
targets. When target trajectories are ambiguous, or are not

wall known, intensity thregsholds can be get for each data

16




frame and agsociations can be formed to determine the
origins of threshold crossings. This method generates
multiple hypotheses for each observation and computes the
likelihood for each assoc¢iation. Other approaches such as
morphological filtering, Hough transform techniques,
artificial neural networks, etc. can also be implemented to
detect target tracks. 1In general, the approach is selected
based on target maneuver characteristicg, how well the

characteristics are known, and processing resources.
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Figure 4a
Raw Sensor Intensity Data

Figure 4b
DP Algorithm Output
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| - Figure §
Linear Filler

Figure 6
3~D Matched Filter Processing
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Rome Laboratory plans and executes an interdisciplinary program in re-
search, development, test, and technology transition in support of Air
Force Command, Control, Communications and Intelligence (C3I) activities
for all Air Force platforms. It also executes selected acquisition programs
in several areas of expertise. Technical and engineering support within
areas of competence is provided to ESD ngm,m Officesl('POs) and other
ESD olements to perform effective acquisition of C3I systems, [n addition,
Rome Laboratorys technology supports other AFSC Product Divisions, the

Air Force user community, and other DOD and non-DOD agencies. Rome

Laboratory maintains technical compétencé and research programs in areas
including, but not limited to, communicatians, command and control, battle
management, intelligence iriformation processing, computational sciences
and sof tware producibility, wide area surveillance/sensors, signal proces-
sing, solid state sciences, photonics, electromagnetic technology, super-
conductivity, and electronic reliability/maintainability and testability.




