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1.0 Introduction

In conventional processing systems, such as that shown

in Fig. la, intensity data recorded by an IR sensor is fed

into a signal processor. This processor outputs a high

value (one) or a low value (zero) for each pixel based upon

some oreset decision logic. Generally, a high-valued output

occurs at a pixel location when the intensity level at that

pixel exceeds a predetermined threshold. As each frame of

data is received from the sensor, threshold crossings are

determined. This information is then passed to a track

processor where data association is performed and target

state estimates (i.e., tracks) are computed. Threshold

crossings (or observations) determined by the signal

processor can be the result of thermal emissions from true

targets such as cruise missiles, cruise missile carrying

aircraft or from clouds, earth radiance, solar illumination,

or other sources. Observations that cannot b. associated

with emissions emanating from actual targets are called

false alarms.

One commonly used scheme to determine observations from

sensor intensity data is to form a ratio of conditional

probabilities and compare it to a threshold

hl
P(r/ho) >i1(r) -- -~/i b (1)
F(r/hi) <

where the quantity on the left is called the likelihood

ratio denoted by lr(r)l, r is an intensity value located in

the sample space (or frame of data), b is the threshold, and
hl and ho are hypotheses that correspond to the presence and

absence of a target, respectively. The likelihood ratio of

(1) is simply the ratio of the conditional probability of an

1 In this and subsequent sections, lower case type will be
used to indicate scalars and lower case bold to indicate
vectors.
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intensity being recorded by a pixel given the presence of an

actual target to the intensity being recoirded given the

absence of a target. These conditional probabilities are

defined as the probability of detection (Pd) and probability

of false alarm (Pf). The threshold, b, in (1) can be

computed from the a priori probabilities and costs

aseociated with the decision logic. Typically, the costs are

set so as to maximize Pd (or minimize Pf) (1).

Targets in a high clutter environment are difficult to

detect using single frame processing methods such as that

described above. Low threshold settings increase the

likelihood of detection (i.e., of obtaining observations

resulting from true targets), but also have the adverse

affect of generating a large number of false observations as

well. Several temporal processing techniques have been

described for improving the signal-to-clutter ratio (SCR).

These techniquea range in complexity from simple ftrame

differencing to more elaborate methods for background

suppression. Many of these methods are based on radar

processing techniques. The frame differencing method, for

example, is similar to the Moving Target Indicator (MTI)

approach used in radar in which delayed doppler returns are

subtracted from undelayed returns for moving target

detection [2].

Processing of only a few frames of data, however, even

with optimal filtering, can be inadequate for detecting dim

maneuvering targets [3]. A long term integration approach

is required to achieve SCRs such that thresholds can be set

that maximize the probability of detection without

generating a large the number of false alarms. Multi-

dimensional processing methods of this type, known as track-

before-declare (TBD), and sometimes by the misleading term

track-before-detect, have been employed in systems as

diverse as doppler radar [4) and infrared surveillance

systems (5].

Unlike conventional processing schemes the TBD method



starts with a target trajectory model (track) and trlec to
find a set of measurements that fit the trajectory. 'I'llis

method cv'eates a thrt'e dimensional search space in azimuth,

elevation, and time. If such a set can be found in the

sample space the prevsence of a target can be declared;

hence, the term "track-before-declare". A ratio of a

posteriori probabilities of the form

hk
P(hk/zk) <

ho

can be computed to decide whether or not a set of
measurements can be declared a target track. Here, hk is

the target track hypothesis in terms of a specified sequence
of target staLes, ho is the null (no track) hypothesis. and

Zk is the set of measurements over which the likelihood test

is performed. When the ratio of (2) exceeds the threshold.
bt, hypothesis hk is chosen and a target is declared.

A block diagram of the TBD processing approach is shown

in Fig. lb. Sensor intensity data is fed into a

preprocessor for data preselection and/or clutter

suppression. Most TBD algorithms are computationally

intensive due to the large search volumes over which target

tracks are identified. In practice, this large sample

volume needs to be restricted to achieve real-time

processing. Information from the preprocessor is sent to the

TBD processor for target track detection. The TBD processor

associates measurements that lia along hypothesized target

tracks. This can be performed either sequentially or in a

batch processing mode. In sequential methods, a score is

assigned to each measurement as it is received. When the

score exceeds a threshold a target detection is declared.

In batch processing, a sequence of IR images is stored and

each set of measurements in the data is scored. Measurement

sets that exceed a threshold indicate the presence of a

3



target track and a target detection is declared.

As early as 1964. Sittler (6] had described an appi'oach

to perform data association for track processing and to

determine the quality of the computed tracks. The data was

sampled at random intervals and consisted of target signal

and background noise. As each observation was determined it

was given a score according to a probabilistic model of the

surveillance system, possible target motions, and its

correlation to previous observations. If the score exceeded

A certain level the observation was used to initiate a

track. Other levels could be defined to decide whether the

track should be maintained or terminated, In 1975, Stein

and Blackman (7) extended the work of Sittler and others,

They developed a batch processing algorithm that sampled the

surveillance data at discrete time intervals and made use of

state space models to describe target maneuvers. In 1985,

Corbeil (83 implemented a TSD algorithm for -'crund-based

radar. Hiv approach utilized association windows and M-out-

of-N coinciJence logic to detect targets with a low radar

cross section (RCS). More recently, Arnold (9) has applied

a dynamic programming approach to weak target detection for

a staring IR sensor. This paper will discuss several

methods used in TBD processing.

2.0 Surveillance Model

Derivation and discussion of the TBD processing

algorithms presented in this paper will focus on

applications to long range IR surveillance. The sensor

system can be either scanning or staring and be located on a

variety of platforms (ground-based, airborne, or space-

based) . Each type of system and platform has unique

operating characteristics that can impact algorithm

implementation. The specific constraints of each will not

be addressed in this paper, however. Rather, the TBD method

will be presented as a solution to the more general problem

of detecting dim moving targets. In discussion of the
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varioug approache9 the follownrg asauumptiovis will be made:

1) The survei I lance area is -iampled at dicrete time

.1 nt eva ls.

2) rargets Are Unlesolved point soturces.

3) Target maneuvers can be modeled as finite state

processes.

4) Many targets of varying intensities and velocities

can exist within the search area at any time. These targets

can enter and exit thq search area randomly and trajeotories

of several targets can cross.

5) When a target exists in tho surveillance area sensor

intensity measurements contain target and clutter intensity

components of the form

z(u.k) -. s(u,k) + v(u.k) (3)

where u = (i,j) indicates the intensity measurement located

at the ijth pixel and k is the discrete time index of the

measurement, Otherwise. measurements contain only

background clutter intensity.

6) Targets are dim compared to the background clutter

(SOR < 1) and cannot be easily detected in single frame

processing methods.

3.0 Approaches

3.1 Exhaustive Search

One approach for finding target tracks in a set of III

image sequences is to perform an exhaustive search through

all possible target paths in the search volume. A score i•

assigned to each path according to how likely it is that the



path co respondia to a track. The -corinr. function mtight

IniCu tide the u13- of i ntens , ty measurements aI ng the oath

recogn i z ing consiatelickes In th| obze'vation svt , i.od po>th

smoot, hn0ss. If thu elements of the score can be uorrectly

characterized (auch as the target maneuver model, noise

characteristics. etc.) then the exhaustive search is

optimal. That in, the best solution can be found from the

specifled criterion,

The number of paths that need to be searched can be

computed from

np - (np)nt (4)

where np is the number of paths to be searched, nrp is the

number of resolution cells (or pixels) of the sensor system,
and nt is the number of time intervals (or frames) over

which the search is ner•itonied. It can bo seen from (3) that

the number of pathst to be checked increases exponentially

with the number of time intervals. As the number of

intervals (or intogration time) increases it is obvious that

the number of paths to be searched can become enormous. For

example. a se;troh through ji.-t five f ramos of data from a

staring seniisor with 1. 64 x 128 pixel array would require

checking over 1019 paths.

3.2 Dynamic ProgramminS

An alternative to the exhaustive search is a method

known as dynamic programming (DM) . The DF approach is a

sequential technique that tries to maintain the optimality

of the exhaustive search, but without searching through

every possible path. At each time interval it selects only

those path segments that have the highest probability of

being assoc ated with U t.a-x-get transition. Path se-8luents

that form consistent liril:•3 ov•-ýc thc .earch interval would be

doclared aa target t,,acks-

As an i.lu.st',ationi, cousnider the oxampie in Fig. 2 wit|i



target transition costs as shown. Suppose that it is

desired to find the lowest cost path from the first to the

third interval. An exhaustive search would require checking
eight paths: ala 2 a 3 , ala 2 b 3 , alb 2 a 3 , alb 2 b3 , blb 2 b 3 , blb 2 a3 ,

bla 2 b3 , and bla 2 a3. The cost of each path would be

calculated and the path with the lowest score would be
selected. In this case, path ala 2 b3 would be chosen. In

the DF approach, the lowest cost path segment is determined

at each interval for each pixel. In the first interval,
segments ala 2 and bý.b 2 would be selected and at the second

interval segments a 2 b3 and b 2 b 3 would be selected. Costs

would then be calculated only for paths ala 2 b 3 and blb 2 b3 -

all other possible path hypotheses being rejected at each
in|terval. The correct path, ala 2 b3 , would again be chosen.

Note that, at least in this example, the number of paths

over which costs need to be computed is reduce by a factor

of four over the exhaustive search approach.

3.21 DP Algorithm Implementation

In general. the DP approach is based on a maximum a

posteriori (MAP) Lechnique for estimating the state sequence

of a Linite state process. The process (or target) state

can be defined at each time interval in terms of the target

position, velocity, acceleration, etc. The state sequence

is the set of target.states from the first through the kth

interval. The most probable target hypothesis, hopt, is

selected according to

P(hk/:k).
hopt = max P(h/zk) (5)

where the hk hypothesis is the set of target states

hk t (th , 92t ...n Oke (v)

through the kth interval.



Derivation of a recursive algorithm for computer

implementation can be determined by applying Baye's Rule to

the numerator and denominator of (5)

P(hk/zk) P(zk/0k) P(hk)
max( I = max( -i)(7)P(ho/Zk) P(Zk/ho) P(ho)

where

P (hk) = P (e'k, - k-1 . . . 01i)

= P(Ok/Ok-1, ... -l)P(Ok-l. . (8)

If the target state transitions are assumed to form a Markov

process then

P(hk) = P(k/Ok-)P(1) -l ... 1 G1) (9)

and (7) becomes

P (hk/zk)
max( 7--)P (ho/Zk)

ma(P(zk/&~k) P (G'k/Ok.-i) P (hk- 1/zk- ) ()0
" P(zk/bo) P(ho/sk- l)

For computational convenience the log is ta)ken of both sidag

and the DP scoring function is given by

max(Sn) 101Pk/V.P (zk/h,)

Sma~k_!(P(Ok/0k-1) ý max~lk..1 1) (

The total cumulative Score, Sn, at the ktI tlnte•val for

aach measurement sel: consists of the log 11kml.hood roaro of

i,ntensitie3 from new meo.suremento at th,., ktt b intorval, thn



target state transition cost from the (k-l)st interval to
the kth, and the cumulative score up through the (;,-1)3t

interval. The optimal path is the set of measurements

associated with the maximum score at the kth interval. Note

that only the optimal target transition links are

propagated.

An example of the DP scoring function is shown in Fig.

3. Initially, the cumulative score is simply the value of

the log likelihood ratio of the intensities at each pixel.

At the second interval, the likelihood ratio at each pixel

is calculated, optimal transition links from the first

interval to the second are found, and the new cumulative

score is computed. This process is repeated at each

succeeding interval. At the kth interval, target detections

are declared at pixels that have scores which exceed a

predetermined threshold.

IR sensor intensity measurements and the output of a DP

algorithm at four different time intervals are shown in Fig.

4a and 4b 2 . The raw IR sensor scenes are grey-scale

representations of the recorded thermal intensities. Hot

objects are bright and cold objects aro dark. The DP output

scenes are grey-scale representations of the cumulative

score at each pixel for a given track hypothesis. High

score areas are bright and low score areas are dark. In the

scenes, a target is moving slowly from right to left

starting at the right of the camera's field- of-view. As

can be seen in the raw sensor data the target is difficult

to detect in any single frame. However, by combining

information over many frames the DP algorithm is able to

detect the target which is located near the center of the

bright spot in the last three frames.

3.3 Matched Filter

2 The DP algorithm was developed for RADC/OCSA under
contract by SRI International, see [9]. The data was
collected from the OCSA/Infrared Surveillance Lab at GAFB.
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The matched filter method is a batch processing

technique that integrates the target signal in order to

maximize the SCR in the presence of additive uncorrelated

clutter. For target track detection, the maximum SCR can be

obtained by choosing an optimum filter based on target

maneuver characteristics. In the case of one dimensional

filtering the optimum filter is derived from a single domain

(such as time). The application of matched filter theory to

moving target detection (th'ree dimensional filtering) can be

directly extended from the one dimensional case. The three

dimensional filter is based on target position (spatial

location) and velocity (spatial progression through time).

Selection of an optimal three dimensional filter is similar

to the one dimensional case. The steps are summarized below

and follow that found in (103.

3.31 One Dimenelon&a Derivation
Conzider the discrete time linear system shown in Fig.

5. The output is

k
y(k) * • z(p)h(k-p) (12)

p=0

where z(k) is the input and h~k) is the impulse response of

'the system. If z(k) consists of target signal and an

additive clutter component the system output becomes

k
Y(k) = Z [s(p)h(k-p) +* w(p)hk-p) ]

p-o

= yo(k) + wo(k) (13)

and the output SCR can be defined as

S'(Ro 1...k)1 2  (14)

E(Vo 2 (k))

10



Let S(m) and H(m) denote the Discrete Fourier Transform

(DFT) of the target signal and filter impulse response,
respectively. The inverse DFT of the output signal, yo(k),

can be written as

yo(k) = 1i/K S(m) H(m)e i• 2 F/K (15)
Mao

where K is the number of samples over which the transform is

taken. If wO(k) is assumed white with constant power

spectral density then

W(m) = nolH(m)1 2  (16)

and the average clutter power at the output is

E(wo (k)) no IH(m) 2 (17)

m o

Substituting (15) and (16) into (14) . the SCRO becomes

I/K t S(m)H(m)ej mk2)f/K, 2m =0

SCRo = M" 1 (18)

no/K. Im)2

maO

From Schwarz's inequality the numerator in (18) can be

written as

K-I

I/KI T S(m)H(m)e Uk2Jr/K 2 VKI IS(m) 2 L2 1Him) 2 . (19)

m=O Mao m=O

If H(m) is chosen to be S*(m)e-jmk2 7 /K ( denotes complex

11



conjugate) then the equality in (19) holds and the maximum

SCR becomes

SCRo.max = 1/noyj IS(m) I2 (20)

m-0

The optimum filter is then

Hopt(m) = S(m)*e-jmk27'/K (21)

Taking the inverse DFT yields

hopt(k) = s(p-k). (22)

This means that the output SCR can be maximized if the

impulse response of the filter is set (or matched) to a

time-reversed delayed version of the target signal.

3.32 Moving Target Implementation

The above results can be extended to the moving target

case. as shown by Reed [11]. If the target starts at some

initial position u' and moves at a velocity v the

measurements are of the form

s(u-u'-vk) = a(u-u'-vk) + noise (23)

The DFT of the target signal component is

U-1 K-i
DFT(s(u-u'-vk,k)e -= k2 ! *-jnu27P/U

u&O k=O

= S(n.m)e-jn 2 r(u + vk) (24)

and the optimum filter is chosen (in frequency domain) as

12



Hopt(m) = S*(nm)eJn 2 (u' + vk)e-jmk2 /K e-jnu2 /U. (25)

The block diagram for 3-D matched filtering is shown in

Fig.6. The DFT is taken of the input signal over K frames

and filtering is performed in the frequency domain. The

output of the system produces "matched filter peaks' which

are then thresholded. Peaks that exceed the threshold are

declared as targets.

3.4 Multiple Hypothesia Tooting

Multiple hypothesis testing (MHT) is a sequential

technique that recognizes target characteristics in a

sequence of intensity threshold crossings. Data association

hypotheses are generated based on possible alternatives for

the observations. Hypotheses are formulated, and their

likelihoods computed, based on whether or not an observation

was the result of a false alarm, a new target, or an

existing target. If n targets exist the total number of

hypotheses that can be generated by an observation is n + 2.

Threshold detection statistics such as probability of
detection (Pd), expected false alarm and target densities

(denoted bft and bnt) , and the accuracy of target state

estimates are used to derive the hypotheses probabilities.

For each possible association hypothesis, H, the

probability, P(H), at the current interval can be computed

from past hypotheses probabilities, P(H'), and are given by

P(H) bft(l-Pd) 2 (26)= P(H' ) (C

for the hypothesis that the observation was not generated by

a target (where C is the total cumulative probability from

the previous interval),

(l-Pd )n-I Pd 9 i ( )( )
P(H) = (H' (27)C

13



for the hypothesis that the jth observation is associated
with the ith track (where gij is the likelihood function for

the :-ssociation) , and

P(H) bnt(l-Pd)n P(H) (28)C

for the hypothesis that the observation is a new target.

These probabilities can be used in a scoring function and

serve as updates to determine the mostly likely association

at the current interval.

Since data association hypotheses can grow rapidly, it

may become necessary to reduce the number of associations.

One hypothesis reduction technique that combines hypotheses

with similar characteristics is described in [12]. Standard

Kalman filtering techniques can also be used to update track

state estimates and compute cuvariances to create data

association windows, as shown in Fig. 7. Observations that

fall outside the window would not generate new hypotheses.

The multiple hypothesis filter for data association and

hypotheses generation are described in more detail in (13

and 14].

3.5 Other Methods

Other methods include morphological filtering, Hough

transform techniques, and artificial neural network (ANN)

applications. Morphological filtering is largely an ad hoc

method that uses arithmetic logic to recognize patterns in

noisy data sets (15]. In two dimensional spatial filtering

applications, a geometrical figure called the filter kernel

is chosen based on a priori knowledge of the target shape.

A series of unions and intersections of the figure with the

image set is performed and the result is a reconstruction of
the target image. An example of this is shown in Fig. 8.

Several Ifl images can be stored and three dimensional

filtering of sensor intensity data over time can be

14



accomplished. A three dimensional kernel can be selected

based on hypothesized target track patterns. The filtered

outputs could be thresholded to determine target

declarations.

The Hough transform has been used as a technique in

computer image processing to find straight lines, circles,

and parabolas in noisy two dimensional [16 and 17] data

sets. The procedure is to select an appropriate coordinate

transformation to map sensor data from measurement space to

parameter space and then perform detection. For example, to

detect straight lines in (x,y) image space the transform

p a x cos(8) + y sin(O) 0 (29)

can be chosen. Image space coordinates (x,y) are mapped

into the parameter space coordinates (p,e) , where p is the

perpendicular distance from the origin to the line in the

(x,y) coordinate system and Q is the angle of inclination of

the perpendicular from the positive x-axis. Notii that each

point in image space corresponds to a sinusoidal *Hough

curve' in parameter space as shown in Fig. 9. Likewise.

each point (p.@,) in parameter space corresponds to a line in

image space. As each point a. b. c, etc. is found on line A

in image space a corresponding curve is constructed in

parameter space that intersects the point (p.6') . When the

number of curves that intersect this point exceed a

threshold the presence of line A can be declared.

Appropriate transformations could also be selected for

detecting curved lines. Three dimensional sequential

processing of data in (x,y,t) space can be used to find

target tracks through a set of IR images.

Neural networks are processing architectures that

attempt to model the functions of the brain. Applications

include pattern recognition, pattern completion, and

adaptive control. A neural network may consist of several

layers of interconnected processing nodes. Each node

15



receives a set of weighted inputs from the sensor or from

previous layers as shown in Fig. 1O. The inputs are summed

and a nonlinear function, such as the sigmoid function shown

in Fig. ii. is applied to produce an output [181. Node

processing functions and the network structure itself are

determined based on the intended application. Several

networks have been developed for spatial pattern recognition

[19]. Temporal processing architectures suitable for target

track detection, known as time delayed neural networks

(TDNN) , have been studied for speech recognition [20]. Time

delayed portions of the input signal are used as inputs to a

neural network as shown in Fig. 12. Pixel intensity data

can be stored from frame to frame and track detection can be

performed in a batch processing mode.

4.0 Summary

Several approaches to track-before-declare applicable

to long range IR surveillance have been discussed. The TBD

method detects weak targets by recognizing track-like

consistencies in the surveillance data. In IR signal

processing the search volume is over a sequence of sensor

intensity data frames. The exhaustive search approach

considers all possible data sets in the search area to

identify target tracks. This approach is optimal in the

sense that every data set in the sample volume is

considered. Data sets that conform to target track-like

characteristics, including nonlinear type trajectories, are

declared as target tracks. This method, however, can be

very computationally intensive. A dynamic programming

approach to the target track search can be implemented that

preserves the optimality of the exhaustive search, but with

far fewer computations. Moving target detection can also be

extended to the matched filtering technique which can be

shown to provide maximum SCR gain for constant velocity

targets. When target trajectories are ambiguous, or are not

well known, intensity thresholds can be set for each data

16



frame and associations can be formed to determine the

origins of threshold crossings. This method generates

multiple hypotheses for each observation and computes the

likelihood for each association. Other approaches such as

morphological filtering, Hough transform techniques,

artificial neural networks, etc. can also be implemented to

detect target tracks. In general, the approach is selected

based on target maneuver characteristics, how well the

characteristics are known, and processing resources.
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