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ABSTRACT

The IPS (Instantaneous Power Spectrum) spectral analysis technique has been the

subject of study for many years. This thesis implemented the IPS algorithm using

MATLAB. In addition, two additional programs were written to deal with progressively

larger data sets. Based on a third order cumulant, the 1 1/2 D spectral analysis technique,

thought to perform well in low signal to noise environments, is also explored.
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I. STATIONARY SPECTRAL TECHNIQUES

A. INTRODUCTION

In the disparate fields of geology, communications, astronomy, oceanography,

chemistry and biomedicine, observations of physical processes are typically collected and

then analyzed to extract as much information as possible. These observations are

primarily analog and continuous in time. Spectral analysis is one of the initial analysis

tools available; it is used to determine what frequency components are present in the

observation. This analysis includes information about the spectral magnitude of the

frequency components. Many spectral analysis techniques have been developed to

investigate this problem. The first scientific application of spectral analysis, was in

chemistry and astronomy. Light, whether from an astral object or from the combustion of

a chemical sample was split into its component parts by prisms and the resulting spectra

were photographed for later analysis [Ref 1]. With the development of instruments which

could record electromagnetic, seismic or acoustic information, additional spectral analysis

techniques were developed to analyze these recorded observations.

Classical spectral analysis techniques are based on Fourier methods and include the

Periodogram [Ref. 2] and its time-frequency analog, the Spectrogram [Ref 4], both of

which will be discussed further in this chapter. The Fourier based methods are particularly

well suited as computer-based analysis tools. The continuous-time data sequence is

appropriately filtered and sampled to produce discrete data elements which can then be

easily processed with the Fast Fourier Transform (FFT), a fast version of the Discrete

Fourier Transform (DFT).



Spectral analysis techniques based on linear filter models were also developed

[Ref. 3]. The goal of these methods is to design a linear filter, H(eJCO), which when driven

by stationary white noise can produce the data in a statistical sense. As an example, the

Autoregressive (AR) model will return an all-pole filter with a resultant spectrum defined

as

S, (e l'k) 1b .• 
( 1 . 1 )

IA(ei )12 '

where A(ejw) is the Fourier transform of the pole coefficients and bo represents the DC

gain of the filter. The AR model is well-suited to the detection of discrete sinusoidal

signals or other narrow band signals. Other model-based spectral estimation techniques

include both the Moving Average (MA) and the Autoregressive-Moving-Average

(ARMA) models [Ref. 3]. Each of these has advantages and disadvantages depending on

assumptions that can be made concerning the data sequence. All of these model-based

methods, however, assume that the data sequence is Wide Sense Stationary (WSS). Many

data sequences, however, are not WSS that is, the signals of interest are transient in a time

domain sense or have dynamic spectral features. In these cases, the AR, ARMA and MA

spectral techniques will not be adequate.

Other spectral estimation techniques are based on eigenvalue decomposition or

subspace methods [Ref. 7]. These methods presuppose that the data can be separated into

a noise subspace aad a signal subspace. The object, then, is to correctly identify which

eigenvalues belong to the noise subspace and which belong to the signal subspace.

Spectral techniques based on subspaces include Pisarenko, MUSIC and ESPRIT

techniques [Ref. 3]. These techniques do not actually provide a classical spectral display,

their spectra consists of delta functions representing the sinusoidal components. One
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major weakness of these methods is the fact that they were designed to isolate narrow

band signals and are less suited for wide band signals.

This thesis will explore two other spectral estimation techniques which are based on

instantaneous estimates of the second and third moments. The first of these techniques to

be explored is the Instantaneous Power Spectrum (IPS) [Ref. 4] which is based on an

estimate of the second moment. It differs from the Periodogram, which is also based on

an estimate of the second moment, by using an instantaneous estimate of the

autocorrelation sequence. IPS belongs to a class of distributions called "Cohen's class"

[Ref 3]. The other technique to be explored is the 1 1/2 D Instantaneous Power Spectrum

(1 1/2D) [Ref 6], which is based on third moment properties of the data.

B. CLASSICAL SPECTRAL ESTIMATION TECHNIQUES

All spectral estimation techniques are concerned with determining the spectral

content of a finite set of observations. The formal definition of the Power spectral density

(PSD) [Ref 3] of a Wide Sense Stationary (WSS) discrete time random process is

P.(e() = ]•r.(k)e]' -it <w~r (1_.2)

where r,, (k) is the autocorrelation function of the observation, x(n), defined as

r, (k) = E[x'(n)x(n + k)] (1.3)

and where E denotes the expectation operator. To obtain the expected value, time

averaging is usually used requiring essentially the observation of an ergodic process over

an infinite period. The PSD displays the frequency components of any WSS random

process of infinite duration. However, data observations are always of finite duration and

wide-sense-stationary only in a local sense. The challenge then, is to approximate the true

3



PSD with as much fidelity as possible. Classical spectral estimation techniques include the

Periodogram and its time-frequency analog, the Spectrogram.

1. Periodogram

The Periodogram is defined as

P. (e"w) = jX(e"w)j 2  (1.4)

where •k (eiw) is the estimated PSD and X(eia ) is the Fourier transform of the

observation x(n) of length Nx. One of the inherent weaknesses of the Periodogram is the

fact that it deals with a finite set of observations. A finite set of observations can be

obtained from an infinite set by applying a rectangular window of the form

Wk)=1; 1l<_k :5Nx (1.5)
W 1k=0; otherwise

This time domain operation appears as a periodic convolution in the frequency domain.

That is, the Fourier transform of the rectangular window is convolved with the Fourier

transform of the observation set. The Fourier transform of the rectangular window is the

digital sinc function which tends to smear the true PSD. To illustrate this point we can

create an analytic sinusoid at some arbitrary frequency whose true Fourier transform

would be an impulse function at the appropriate frequency location. For Figures 1.1

through 1.3, an analytic signal in additive white Gaussian noise with a signal to noise ratio

(SNR) of-10 dB was created. The signal to noise ratio is defined as

SNR10*l C (Powerg..,a (1.6)

S 0og Powero,,s
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Periodograms were then taken with the following parameters:

e Figure 1.1, 64 point observation sequence using a 64 point Fourier Transform

* Figure 1.2, 64 point observation sequence using a 128 point Fourier Transform

* Figure 1.3, 64 point observation sequence using a 512 point Fourier Transform

Each Periodogram was plotted with a discrete plot function to enhance the display of the

sinc function. In each figure the true frequency location of 15.78 is indicated by a straight

line at the appropriate location.

7000

6000

5000-

4000

3000

2000

0,TT _T ; Is T,111,D ,
100 5 10 15 20 25 30 35

FrF1 oericy erm

Figure 1.1. 64 point Periodogramn
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Figure 1.2. 128 point Periodogram
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Figure 1.3. 512 point Periodogram
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A comparison of Figures 1.1, 1.2 and 1.3 shows that as the transform length is

increased, hence the number of frequency bins is increased, the position of the dominant

spectral peak approaches more closely the true location of the frequency of the analytic

signal. It can also be noted from these figures that although the apparent resolution

improved as the transform length increased, the variance of the additive Gaussian white

noise stayed at the same level. For the results in Figures 1.2 and 1.3, zeros were padded

to the data sequence to obtain the transform lengths of 128 and 512, respectively. The

variance of the spectral estimate is independent of the length of the data sequence.

Typically, sequential periodograms are taken and then averaged to reduce the undesirable

effects of the variance of the estimate [Ref 2]. Figure 1.4 is a 512 point Fourier transform

Periodogram of a noise-free data sequence created with two analytic sinusoids separated

by just - th of the sampling frequency. As in the other figures, the true frequency
128

locations are indicated by straight lines. It can be seen that the Periodogram correctly

resolves the two narrow-band components, but even in this ideal, noise-free environment,

the position of each spectral peak is slightly off the true frequency bin locations.

5000,

4500

4000

3500

3000

2'500g

2000

500.

'000

50o ,

0 5 10 15 20 25 30 35

SB;

Figure 1.4. 512 point Fourier Transform Periodogram of Two Analytic Sinusoids in additive
Gaussian White Noise at a SNR of-10 dB
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Another weakness of the Periodogram is its inability to provide any

information on the occurrence in time of an observation. To illustrate this an FSK data set

composed of an analytic sinusoid which is switched from one frequency to another

frequency at time 64 was created and is shown in Figure 1.5.

~1 ,

0.8

0.6

0.4

0.2

0

-0.2

-0.4

-0.6

-08

0 20 40 o0 80 100 120 140

Obmervotaon Tirms

Figure 1.5. Time plot of Frequency Shift Key (FSK) signal

When the Periodogram (shown in Figure 1.6) is calculated for this FSK observation, the

presence of both sinusoids is evident but the fact that they existed during different times in

the observation set cannot be seen.

8



1400

1200

1000

800-

S600
400

200

0
0 5 10 15 20 25 30 35

Frequency Bir

Figure 1.6. 128 point Fourier Transform Periodogram of a FSK Signal

The time-frequency representation of the Periodogram, the Spectrogram, can show that

these signals were separated in time.

2. Spectrogram

The Spectrogram operates by applying a window to a subset of the data

set and computing and saving the Periodogram of that subset. Then the window is

stepped through the data by some fixed numbers of points and a Periodogram is

recomputed. This process of stepping through the data and sequential computation of

periodograms is repeated until the desired number of spectrogram lines is obtained.

Figure 1.7 is a mesh and contour plot of the spectrogram of the FSK data set of Figure

1.5.

9



30 0 15

(a) (b)

Figure 1.7. Mesh and Contour plots of the Spectrogramn of a FSK Signal

It can be seen that the frequency location is most concentrated at the

beginning and end of the surface. At these points, the window includes a data segment

which contains only one of the signals. As the window is stepped through the data set, the

number of data points that include one frequency or the other changed. The Spectrogram

surface seems to indicate that the first frequency at frequency location 5 is present from

time 0 to time 41 when in fact it was only present from time 0 to 32. On the other hand,

the second signal at frequency location 20 begins at time 32 not at time 26 which seems to

be indicated.

An additional test signal whose frequency changes linearly with time,

such as the linear FM Chirp, was created. Figure 1.8 is the Periodogram of a linear FM

Chirp.
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Figure 1.8. Periodogram of a Linear FM Chirp

The Periodogram of Figure 1.8 indicates the presence of several sinusoidal components

rather than the presence of a linear FM chirp. The Spectrogram in Figure 1.9, however,

clearly shows that the data is a linear FM chirp.

20

'o

(a) (b)

Figure 1.9. Spectrogram of a Linear FM Chirp
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Using the linear FM chirp as an example of a dynamic signal, it can be seen that the width

of the spectral lobe is wider than the spectral lobes for the FSK signal in Figure 1.7. To

further illustrate this phenomenon a data set composed of a signal whose frequency

changes as a quadratic function of time, a quadratic FM chirp, from frequency location I

to location 30 was created. Figure 1.10 is the spectrogram of this signal.

0 5 '0 'S 20 25 30

(a) (b)

Figure 1.10. Spectrogram of a Quadratic FM Chirp

The true position of the instantaneous frequency can be seen as a hyperbolic curve on the

contour subplot of Figure 1.10(b). The quadratic FM Chirp is an even more dynamic

signal than the linear FM chirp. The spectral lobe broadens, best seen in Figure 1.10 (b),

as the signal's frequency change accelerates.

We want, therefore, to look at other spectral techniques which may

moderate some of the inherent weaknesses of the Spectrogram.
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H. INSTANTANEOUS POWER SPECTRUM

A. INTRODUCTION

The Instantaneous Power Spectrum (IPS) is based on a class of time-frequency

distributions called "Cohen's class" [Ref 3]. Cohen's class is defined for a continuous

signal by

C.(1,f) = fj ff(V, r)X(4+ r )x' (4- T ejXV--Tddd (2.1)
- =2 2

Many different power spectral techniques can be derived from this class of distributions

including Wigner-Ville, IPS and Rihaczek time-frequency representations [Ref 4]. Each

of these techniques can be obtained from the generalized expression by the selection of an

appropriate kernel, 0,(v,,r). In the case of IPS, the kernel used is eJ". Originally the

estimate of the instantaneous frequency content utilizing Page's definition of the

instantaneous power spectrum as the derivative of a running spectrum [Ref 8]:

p-(t,f)=_ IS-(f)I, (2.2)

where

S,- (f) = js(T)e-j2**dr. (2.3)

The concept of the instantaneous power spectrum was further expanded by Levin [Ref. 9]

with the addition of a backward running spectrum defined as:

p+(,f) = -_iS (f )I (2.4)

where

S,+ (f) = Js(r)e -2?dr. (2.5)

13



Using both the forward and backward running spectrums we can define IPS as the average

of these two spectra given by

IPS(t,f)= -[p-(f)+p*(tf)] 
(2.6)

2 L '

The discrete form of the IPS algorithm utilized in this thesis is [Ref 5]

iPSx(n,Wo)!= x(n)x'(n-k)+x'(n)x(fl +k)}W (O)w(k)e-J•. (2.7)

2k~

where w(k) is a window function, x(n) is the data sequence and N" is the length of the

data sequence. The discrete IPS expression is actually the Discrete Fourier Transform

(DFT) of

{x(n)x'(n - k) + x (n)(n+ k)}w(O)w(k) (2.8)

In order to exploit the efficiency of the FFT the length of the data sequence is constrained

to be a power of 2, such as 64, 256, or 512.

This chapter will explore three types of IPS programs which are given in the

Appendix. The [PS program is designed for the analysis of relatively short data

sequences, i.e., 64 to 1024 points. The IPSSURF program should be selected when data

lengths are between 1024 and 213 to 215 points. The IPSLOFAR program should be

selected to process data sets larger than 215 points.

B. TRADITIONAL IPS TIME-FREQUENCY DISPLAY

For short data records, the traditional time-frequency display of the IPS algorithm is

well-suited. Input parameters of the program define the dimensions of the returned

time-frequency surface. The parameters include the window type (Rectangular or

Hamming), the window length (normally half of the data sequence length) and the step

14



(the distance through which the window is stepped through the data sequence). As an

example, if the data sequence is 512 points long with a window length of 256 points and a

step of 1, the resulting surface contains 512 rows in the time direction having a frequency

range of--x to +nr divided into 256 frequency bins. The program assumes the data

sequence to be of fixed duration. Since the IPS algorithm looks both backward and

forward in time, the data sequence is padded with zeros at the beginning and end equal to

the width of the selected window. The program returns only the positive frequency half of

the resulting time-frequency surface to limit the size of the final display. In Figures 2.1

through 2.6, test data stis are used as signals of length 128. The window length is chosen

to be 64 points with a Hamming window and the step is chosen to be 1.

1. Single Analytic Sinusoid

A single analytic sinusoid was created whose frequency location is exactly 19,

19i.e., the digital frequency was --. This implies that for a window length of 64, the

64

spectral peak should occur at bin 19. Had the window length been 128 points, the

frequency location would have been 38. The IPS surface, both mesh and contour

subplots, are shown in Figure 2.1.

20 5 '0'5 0 5

so.

(a) (b)

Figure 2. 1. Single Analytic Sinusoid via IPS
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It can be seen that the frequency location is symmetrically centered at the proper location

of 19. The width of the spectral ridge in Figure 2. 1(a), measured at the point where the

magnitude has dropped by 3 dB, is approximately three frequency bins wide. For this

single analytic sinusoid data set, the sensitivity of the IPS algorithm is comparable to the

Spectrogram. The IPS builds more quickly to a constant amplitude and trails off less

quickly at the end of the data set than the Spectrogram would for the same data set. The

sidelobes, evident on the mesh subplot, are never of such amplitude that they obscure the

position of the spectral ridge and have dampened completely as the window moves well

into the data set.

2. Multiple Analytic Sinusoids

A data set consisting of two analytic sinusoids was created with frequency

locations of 19 and 25, respectively. The IPS surface, both mesh and contour subplots is

shown in Figure 2.2.

100

.o

(a) (b)

Figure 2.2. Multiple Analytic Sinusoid via IPS

It can be seen that the spectral ridges are symmetrically centered at the proper locations of

19 and 25 and their 3 dB widths are, as in Figure 2. 1, still approximately three frequency

16



bins wide. The sidelobes, evident on the mesh surface, dampen as the window moves into

the data set. The modulation, evident along the spectral ridges, is a consequence of

cross-spectral terms which ride on the autocorrelation terms. One significant advantage of

the IPS algorithm, compared to the Wigner-Ville algorithm, is that it does not experience

spurious cross-spectral terms between the strong spectral peaks. The intra-ridge

modulation of the IPS affects the display of the time-frequency surface but does not

degrade or obscure the determination of the spectral locations.

3. Frequency Shift Key (FSK)

A Frequency Shift Key (FSK) data set was created composed of an analytic

sinusoid whose frequency was shifted from 10 to 20 midway through the data set of 128
64 64

points. The resultant IPS surface, both mesh and contour subplots is shown in Figure 2.3,

the corresponding Spectrogram is shown in Figure 2.4.

80 2. 2

(a) (b)

Figure 2.3. IPS of FSK data set
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20

3O

'0 •II
0 5 '0 '5 20 25 Z.

(a) (b)

Figure 2.4. Spectrogram of FSK data set

Both the IPS surface and the Spectrogram correctly locate the respective frequency

locations, however the IPS surface accurately discerns the time of the signals. The IPS

surface clearly shows that the frequency shifted at time 64 to a higher frequency. The

Spectrogram incorrectly shows an overlap in the time of the two signals. The IPS surface

does experience sidelobes which never completely disappear through its extent, however it

can be argued that the correct spectral location in frequency is of more significance.

18



4. Linear FM Chirp

A data set consisting of a signal whose frequency changes linearly with iime,

i.e. linear FM chirp, was made to transition from a frequency of I to -. The resultant64 64

IPS surface, both mesh and contour subplots, is shown in Figure 2.5.

0° D D

0 , .z0 0

000 

0

0.

01- - a.

0o

20A'o • 0

(a) (b)

Figure 2.5. IPS of Linear FM Chirp

The true position of the instantaneous frequency can be seen as a straight line on the

contour subplot of Figure 2.5(b). The width of the spectral ridge is broader than the

previous figures, however, drawing a line along the centerline of the structure would

clearly correctly locate the instantaneous frequency at the correct time in the data set.

5. Quadratic FM Chirp

A data set consisting of a signal whose frequency changes as a quadratic

function of time, i.e. over the length of the data the quadratic FM chirp, was made to

transition from a frequency of I to 30. The resultant IPS surface, both mesh and
64 64

contour subplots is shown in Figure 2.6.
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so

20 D

o0 2. 0 3.

(a) (b)

Figure 2.6. IPS of a Quadratic FM Chirp

The true position of the instantaneous frequency is indicated by a hyperbolic line on the

contour plot of Figure 2.6(b). The width of the spectral ridge is quite broad when

compared to the stationary signal [PS surfaces, however, drawing a line along the

centerline of the structure clearly locates the instantaneous frequency at the correct time in

the data set. By comparing this IPS surface with Figure I1 *1• Chapter I, the

Spectrogram of this quadratic FM chirp dat1 set, it can be seen that IPS maintains an

almost constant spectral ridge width through the data set while the Spectrogram's spectral

ridge broadens significantly and the apparent signal's frequency content changes rapidly.

6. Analytic Linearly Increasing FM Chirp, Quadratically Decreasing FM

Chirp and stationary Sinusoid (Multiple Component Data Set)

A data set composed of three different signals was created. One of the signals

is a linearly increasing FM chirp made to transition from frequency location 2 to 20; a

quadratically decreasing FM chirp made to transition from frequency location 20 to 2 and

an analytic sinusoid at frequency location 30. The resultant [PS surface, both mesh and

contour babplots is shown in Figure 2.7.

20



'20 *0

'0 10 0

20

0 S ' '5 20 25 30

(a) (b)

Figure 2.7. IPS of Multiple Component Signal

The correct locations of the instantaneous frequency for both the linear FM chirp and

quadratic FM chirps are indicated by lines traced through the center of those structures,

respectively. The presence and correct frequency locations of all three component signals

of the data set is clearly shown. The area of intersection between the linear and quadratic

chirps is broadened by the summing of the magnitudes of each signal. The width of each

spectral lobe limits the resolving power of the IPS algorithm, however after comparison

with Figures 2.1, 2.5 and 2.6, it can be seen that the width of the respective spectral lobes

has not been affected by the presence of the other signal components. Also, cross terms

between the true spectral locations are not observable.

C. LINKED IIPS SURFACES

For larger data sets, i.e., more than 1024 points, the linked IPS time-frequency

surface is a reasonable alternative to the IPS surface. As an example, if the data set were

2048 points long and the IPS program were invoked with a window length of 1024 points

and a step of 1, the surface would be 2048 x 512. Such a surface would have 1,048,576

elements and with 8 bytes required to store an element, would require 8.4 Mbytes of

computer storage! The IPSSURF program, in the Appendix, allows a larger data set to be

more conveniently examined by dividing it into smaller segments, calculating a surface for

21



each of the smaller segments and then concatenating the surfaces together into a larger

surface. Recall that the IPS program pads the data sequence with zeros to allow the

algorithm to move backward and forward in time. The IPSSURF program does pad the

first and last smaller data segments with zeros but the other data segments are padded

with true past and future data points from the full data sequence. The IPSSUJRF

parameters include the window type (Rectangular or Hamming), siglen (the desired length

of the smaller data segments), the window length (normally half of the smaller data

segment length) and the step (the distance through which the window is moved through

the smaller data segments). As an example, if the original data sequence is 2048 points

long and smaller data segments of 512 were selected with a window length of 256 points

and a step of 8, the resulting surface contains 256 rows in the time direction having a

frequency range of -i to +-x divided into 256 frequency bins. The IPSSURF program, if

invoked with a step size of 1, would concatenate full IPS surfaces into a very large

surface. For this reason, the IPSSURF program is designed to be used as a broader

analysis tool for an overall look of a large data sequence by invoking it with a step size

larger than 1. Once an area of interest has been isolated with the IPSSURF program, finer

analysis would be done using the IPS program. The test signals created for Figures 2.8 to

2.11, were 1,024 points long, the smaller data segment length (the siglen parameter) was

selected as 128 points, the window length was selected as 64 points and the step was

selected as 8. The IPSSURF subplots for FSK signal (Figure 2.8); Linear FM chirp

(Figure 2.9); Quadratic FM chirp (Figure 2. 10) and the Multiple Comporent Signal

(Figure 2.11) follow. Each of the data sets were created as defined in sections B.3

through B.6.
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Figure 2.11. Multi-component Signal with IPSSURF

Comparison of Figures 2.8 through 2. 11 with the corresponding EPS Figures 2.3,

2.5 through 2.7 seem to indicate that the IPSSURF program shows finer spectral ridge

details than the IPS surfaces. It can also be seen that the sidelobes on the IPSSURF

surfaces seem to dampen more quickly than the IPS surfaces. These effects, however, are

a result of time compression, determined by the selection of the step size parameter. As

the step size is increased, finer details of the spectral surface would be progressively

obscured. For this reason, the IPSSURF program should be used as a coarse analysis tool

to locate and define areas of a large data set which could be further analyzed with the IPS

program.

D. IPSLOFAR

The /PSLOFAR program (Appendix) is for very large data sets. IPSLOFAR is

based on a "waterfall" display routinely used in the display of sonar data, called the

LOFARGRAM. The IPSLOFAR program, like the IPSSURF program, divides a large

data set into smaller segments and calculates IPS surfaces for each of the smaller

segments. Unlike the IPSSURF program, the average over time is then calculated and
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placed as a row in a larger surface for display. The IPSLOFAR program can be seen as a

part of the continuum of'IPS' programs where the IPS program is the finest analysis tool

and the IPSLOFAR program is the coarsest analysis tool. The IPSLOFAR program

parameters include the window type (Rectangular or Hamming), siglen (the desired length

of the smaller data segments), the window length (normally half of the smaller data

segment length) and the step (the distance through which the window is stepped through

the smaller data segment).

A data set was created of length 16,384 points. The signal is composed of a linearly

decreasing FM chirp made to transition from frequency location 30 to 1, a two component

FSK signal which switched from frequency location 10 to 20 midway through the data

sequence and an analytic sinusoid at frequency location 30. The IPSLOFAR parameters

used were a siglen of 128 points, a window length of 64 points, a Hamming window and a

step of 8. The IPSLOFAR contour plot is shown in Figure 2.12(a) and a plot of the

average over time of the surface is shown in Figure 2.12(b).

The IPSLOFAR display clearly shows all signal components. The width of the

spectral ridges is comparable to both the [PS and IPSSURF programs. The Lofargram,

used in sonar displays, is actually an intensity plot, vice a contour plot. Because we can

only use contour plots for IPSLOFAR in Matlab, the display is somewhat different from a

traditional Lofargram.
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Figure 2.12. IPSLOFAR surface for a Multi-component Signal
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MI. 1 V2 D INSTANTANEOUS POWER SPECTRUM

A. INTRODUCTION

Both the Spectrogram and IPS techniques are second moment spectral analysis

techniques. They and other related techniques are well-suited to extract spectral

information, however when additive Gaussian noise perturbs signals, the application of

higher order moments is thought to improve the signal to noise performance of the

spectral algorithm. For zero mean Gaussian random processes, the third moment and

third order cumulant are equal to zero. The 1 ½/2 D instantaneous power spectrum

[Ref. 6] is based on a third order cumulant. Cumulants are related to ordinary moments,

as a matter of fact, for a zero mean random process the first and second order cumulants

are equal to the first and second moments. For higher order spectral techniques, the use

of cumulants is often preferred to higher order moments because cumulants can measure

the departure of a random process from a Gaussian random proces:i [Ref 3]. The 1 / 2 D

instantaneous power spectrum implemented in this thesis is derived from the bispectrum.

The bispectrum is a third order spectrum defined as [Ref. 3]

Sx3 (ei" ,eJ(02 i ic [~~~I., ,1jei(-~~wI (3.1)
II=-- I,=--

where C'(3 ) [1, ,12] is the third order cumulant. If we assume that we have a zero-mean

random process the third order cumulant is

C'3)[11,i2]= E{x'(n)x(n+1,)x(n+1 2)}. (3.2)

We can derive a degenerate estimate of this cumulant by setting 11 to zero, therefore

C'(3)[ 0,12= E{x (n)x(2n)x(n + 12)) (3.3)
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and

C.(3) [0,12 E{Ix(n)12 x(n + 12)1. (3.4)

Furthermore, when we replace the expectation with the instantaneous value the third order

spectrum becomes

Sxjel') =Yix(n) 2 x(n + k~J2 (3.5)

As in the derivation of the IPS technique of Chapter II, we will utilize both Page's

definition of the instantaneous power spectrum and Levin's addition of a backward running

spectrum to finally derive the discrete form of the 1 '/2 D instantaneous power spectrum

used in this thesis as

1 '/2D(nw)= I { x(n x(n-k)+Ix(n x(n+k)}(O)w(k)eJ&; (3.6)
2 k.I

where w(k) is a window function, x(n) is the data sequence and N, is the length of the

data sequence. As in the IPS technique, the length of the data sequence is constrained to

be a power of 2, such as 64, 256, or 512.

The three I 1/ D programs are given in the Appendix. The ONEHALF program is

used for relatively short data sequences, i.e., 64 to 1024 points. The ONESURE program

is used for data sequences typically between 1024 and 213 and 215 points. The

ONELOFAR program should be used for data sets larger than 215 points. The

philosophy of the 1 '/2 D programs is analogous to the corresponding IPS programs of

Chapter II.

B. TRADITIONAL I Y½ D TIME-FREQUENCY DISPLAY

The parameters for the ONEHALF program include the window type (Rectangular

or Hamming), the window length (normally half of the data sequence length) and the step
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(the distance through which the window is stepped through the data sequence). The

program returns only the positive frequency half of the resulting time-frequency surface to

limit the size of the final display. For Figures 3.1 through 3.6, test data sets of length 128

were created. The window length is chosen to be 64 points with a Hamming window and

the step is chosen to be 1. Figures 3.1 through 3.6 utilize the same data sets as were used

in Figures 2.1 through 2.3 and 2.5 through 2.7 of Chapter II, respectively.

1. Single Analytic Sinusoid

i iij

so

(a) (b)

Figure 3.1. Single Analytic Sinusoid via I ½/ D

When compared to Figure 2.1, the appearance of the spectral ridge on the

mesh subplot of Figure 3.1, is not as smooth in appearance. The width of the spectral

ridge measured at the point where the magnitude has dropped by 3 dB is comparable to

the lIPS technique. The sidelobes on the time-frequency surface are less defined but the

extent of their effect is again comparable to the IPS technique. It can also be seen that the

1 '/ D technique quickly reaches a constant amplitude and falls off'in times comparable to

the corresponding IPS case. Also during the central region of the surface, along the time

axis, the noise background seems to be smaller in Figure 3.1 than the corresponding

Figure 2.1.
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2. Multiple Analytic Sinusoids
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Figure 3.2. Multiple Analytic Sinusoid via 1 'AD

When compared to the corresponding IPS surface, Figure 2.2, the I /2 D

time-frequency peak' :, Lhe true frequency locations having comparable spectral ridge

widths. The enveiope of the spectral ridges fluctuates more than on the corresponding

IPS surfaxe.

3. Frequency Shift Key (FSK)
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Figure 3.3. FSK signal via ONEHALF
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For the FSK signal data set, areas in the I / D surface where the frequency

shift occurs differs from the corresponding EPS surface of Figure 2.3. The 1 /2 D

technique does not delineate the time of the signals as accurately as the IPS technique.

The time of the frequency shift is obscured by the appearance of cross terms.

4. Linear FM Chirp

120

(a) (b)

Figure 3.4. IPS of Linear FM Chirp

The true position of the instantaneous frequency can be seen as a straight line

on the contour subplot of Figure 3.4(b). The width of the I 1/ D spectral ridge is wider

than the corresponding IPS surface in Figure 2.5. The surface has a coarser appearance,

showing less detail, than the corresponding [PS surface. The envelope of the spectral

ridge shows more variability with slower intra-ridge modulation (i.e., fluctuations along

the ridge top are at a lower frequency) than the corresponding [PS surface.
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5. Quadratic FM Chirp
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Figure 3.5. IPS of a Quadratic FM Chirp

The true position of the instantaneous frequency is indicated by a hyperbolic

line on the subplot of Figure 3.5(b). Once again, when compared with the IPS surface in

Figure 2.6, it can be seen that the width of the spectral ridge is broader than in the IPS

case, however the true instantaneous frequency can be obtained as an average along the

spectral ridge. It can also be seen that the amplitude of the spectral ridge decreases

towards the end of the data set and also broadens. This example shows that the I /2 D is

less suited for a dynamic signal than IPS but better suited than the spectrogram, if one

disregards issues such as noise.
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6. Analytic Linearly Increasing FM Chirp, Quadratically Decreasing FM

Chirp and stationary Sinusoid (Multiple Component Data Set)
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Figure 3.6. IPS of Multiple Component Signal

When compared with the IPS surface in Figure 2.7, the width of the spectral

ridges indicating the dynamic signal components, i.e., the linear FM chirp and the

quadratic FM chirp is wider than IPS. The width of the spectral ridge which indicates the

stationary sinusoid is comparable to the IPS surface, although there is more modulation

apparent on the spectral ridge.

C. LINKED 1 V D SURFACES

The parameters for the ONESURF program include the window type (Rectangular

or Hamming), siglen (the desired length of the smaller data segments), the window length

(normally half of the smaller data segment length) and the step (the distance through

which the window is moved through the smaller data segments). The ONESURF program

is designed to be used as a broader analysis tool for an overall look of a large data

sequence by invoking it with a step size larger than 1. The ONESURF program is used to

plot the 1 /2 D surface of an FSK signal (Figure 3.7); a linear FM chirp (Figure 3.8); a
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quadratic FM chirp (Figure 3.9) and a multiple component signal. Each of the data sets

were created as defined in Chapter II, sections B.3 through B.6.
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Figure 3.7. FSK via ONESURF
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Figure 3.8. Linear Chirp via ONESURF
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Figure 3.9. Quadratic FM Chirp via :PSSURF
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Figure 3.10. Multi-component Signal with EPSSURF

Comparison of Figures 3.7 through 3.10 with the corresponding IPSSURF surfaces

in Chapter II, Figures 2.8 through 2.11 :,mows very few differences. The ONESURF

program, as the IPSSURF program, is best suited as a coarse analysis tool to locate and

define areas of a large data set which could be further analyzed with the ONE-HALF

program.
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D. ONELOFAR

The ONELOFAR program parameters include the window type (Rectangular or

Hamming), siglen (the desired length of the smaller data segments), the window length

(normally half of the smaller data segment length) and the step (the distance through

which the window is stepped through the smaller data segment).

The experimental test signal used is the same as used in the IPS chapter, section D.

The ONELOFAR parameters used are a siglen of 128 points, a window length of 64

points, a hamming window and a step of 8. The ONELOFAR contour plot and

corresponding plot of the average over time of the surface is shown in Figure 3.1 (a) and

(b), respectively. The ONELOFAR display clearly shows all signal components. The plot

of the average over time also helps to locate the spectral components of the signal,

especially in low SNR environments. That is, it can be used to extract information at very

low SNR's, provided the spectral components are stationary.
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Figure 3.11. ONELOFAR surface for a Multi-component Signal
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IV. PERFORMANCE AND COMPARISON OF SPECTROGRAM,
INSTANTANEOUS POWER SPECTRUM AND 1 % D TECHNIQUES

A. INTRODUCTION

Chapters 1, 11 and II1 discussed, respectively, the Spectrogram, IPS and 1 1/2 D

techniques. Several test data sets were created and subsequently analyzed. Now we

investigate the strengths and the weaknesses of each of these techniques in relation to one

another with signals embedded in Gaussian white noise. A typical ocean acoustic data set

is also processed.

B. SPECTRAL SENSITIVITY WITH SINUSOIDS IN ADDITIVE GAUSSIAN

WHITE NOISE

A data set was created, composed of sinusoids at frequency locations 5, 10, 15, 20,

25 and 30 which were embedded, respectively, in additive Gaussian white noise at -6, -3,

0, 3, 6 and 9 dB SNR. Figures 4.1 through 4.3 show the respective Spectrogram, IPS and

ONEHALF (1 ½ D) time-frequency surfaces in subplots using

"* (a) mesh surface

"* (b) contour plot with the true frequency locations shown by a line at each location

"* (c) plot of the average over time of the corresponding time-frequency surface.

The integration time for the spectrogram was 64 while the window length for the

IPS and 1 ½ D programs was also 64. The mesh subplots for both the IPS and I ½ D

techniques show their characteristic modulation along the spectral ridges due to the

cross-spectral terms. The Spectrogram mesh surface has no modulation along its spectral

ridge, which is also characteristic for this technique. The respective contour plots of the

three techniques offer more information. It can be seen that the width of the spectral ridge
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is narrower in the Spectrogram compared to the other two techniques. However, it can

also be seen that where the Spectrogram can locate the sinusoid in the Gaussian white

noise to down to 3 dB SNR, the IPS techniques can locate down to -3 dB SNR and the

I 1/ D technique even locates to -6 dB SNR.
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Figure 4.1. Spectrogram of Sinusoids embedded in Gaussian White Noise
at -6, -3, 0, 3, 6 and 9 dB SNR respectively at frequency locations

5, 10, 15, 20, 25 and 30
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Figure 4.2. IFS of Sinusoids embedded in Gaussian White Noise
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Figure 4.3. 1 ½/ D of Sinusoids embedded in Gaussian White Noise
at -6, -3, 0, 3, 6 and 9 dB SNR respectively at frequency locations

5, 10, 15, 20, 25 and 30
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C. SPECTRAL SENSITIVITY WITH AN OCEAN ACOUSTIC DATA SET

Figures 4.4 through 4.6 show the respective Spectrogram, IPS and ONEHALF

(1 12 D) time-frequency surfaces in subplots using

"* (a) contour plot with the true frequency locations shown by a line at each location

"* (b) plot of the average over time of the corresponding time-frequency surface.

The data set seems to be composed of several stationary signals embedded in a noisy

background. As in the previous section, the Spectrogram does have narrower spectral

ridges than both the IPSLOFAR and ONELOFAR time-frequency surfaces. On closer

examination of the surfaces, note the spectral ridge at approximately frequency location 35

in Figure 4.6. The ridge is also seen in the IPSLOFAR surface but is missing altogether in

Figure 4.4, the Spectrogram surface. The I 1/ D surface does clearly locate a frequency

component at location 35, but apparently at the expense of obscuring stronger signals in a

very 'busy' surface.
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Figure 4.4 Spectrogram of Acoustic Data
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Figure 4.5. Acoustic Data via IPSLOFAR
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Figure 4.6. Acoustic Data via ONELOFAR
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D. CONCLUSIONS AND SUMMARY

The Spectrogram is well-suited to quickly and clearly resolve statiorY si~aals in

moderately noisy environments. The IPS technique is superior to the Spectrogram both in

the detection of stationary signals in noise and particularly in the detectirn of dynamic

signals i.e., the Quadratic FM Chirp. Both the IPS and 1 ½/2 D techniques cannot resolve

stationary spectral components as finely as the Spectrogram, but it could be argued that

their superior ability to locate spectral components in noisier environments is more

valuable in many cases. Potentially, one could also increase the integration time of the IPS

based techniques to obtain better resolution. The judicious combination of these

techniques can optimize the process of spectral analysis. The Spectrogram can be used as

an efficient, first look at a particular data set. Areas of interest, which may indicate

dynamic signals could be further analyzed by the IPS technique and finally the 1 1/2 D

technique can offer superior location of spectral components in noisier environments.

E. AREAS FOR FURTHER RESEARCH

The derivation for the 1 1/2 D spectral technique used in this thesis may be further

explored to extend its sensitivity to spectral components embedded in a noisy background.

The bispectrum surface could be exploited by other than the 1 /2 D technique, which uses

a degenerate form of the tricorrelation function. Applications of the Radon transform

might shed new insights into the detection and classification of stationary and transient

spectral components. Interpretation of each of these techniques depends on the display

techniques which are available. The lofar-type displays for the IPSLOFAR and

ONELOFAR programs could be enhanced if a true intensity plot could be obtained.
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APPENDIX
PROGRAM LISTINGS
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IPS.M

%function [P,freqindextimeindex]=ips(datawintype,winlen, step);
%This function will calculate an Instantaneous Power Spectral (IPS) surface.
%The IPS surface (output matrix P) characteristics are determined by the selection
%of window type (wintype), window length (winlen) and the distance that the
%window is moved through the data sequence (step).
%The program plots only the positive half of the spectral plane. The
%outputs timeindex and freqindex are the appropriate plot indices for the
%/ooutput time-frequency surface.

%The inputs are:
%data: The input data string
%wintype: '0' Rectangular Window
% '' Hamming Window
%winlen: The desired width of the window, normally half of the siglen
%step: Time step desired, normally 'V or a multiple of '2'

%The outputs are:
%P The IPS time-frequency surface
%timeindex The y axis index
%freqindex The x axis index
%See also IPSSURF, IPSLOFAR

%Karen A. Hagerman

%06 May 1992

function [P,freqindextimeindex]=ips(datawintype,winlenstep)

[m,n]=size(data);

ifm-I
data=data.';

end

siglen=length(data);
if winype=O

win=ones(winlen- 1,1);
elseifwintype= 1
win=hamming(winlen- 1);

end
W=[win(winlen/2: - 1: 1)];

x=[zeros(1,winlen) data zeros(1 :winlen)];
p=zeros(siglen/step,winlen);
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index-- 1;
for n=winlen+ 1: step: siglen+wAinlen-step+ I

Xni=[conj((x(n:- I:n-(winlen/2-1I)))).' (x(n:n+(winlenl2-1I))).'];ý
Xn=[x(n);conj(x(n))];
product-=((Xmn*Xn). *W1).;
product=[product 0 conj(product(winlen/2:-1 :2))I;
p(index, :Y)ffsbift(real(.5*ffl(product)));
index=index+ 1;

end

p~p(:,winleri/2+ 1 winlen);
[prow~pcolumn]=size(p);

%Smoothing

p~temp(2, :)=mean(p(L14,:));
ptemp(prow- 1, :)=taean(p(prow-3: prow,:));
ptýemp(prow, :)=mean(p(prow-2:prow,:));
for m=3:prow-2

ptýemp(m,:)=mean(p(m-2:m+2,:));
end

P--flipud(ptemp);

freqindex=-[O:pcolumn- 1];

timeindex--[ 1: :prow];
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IPSSURF.M

%function [Q,xindexyindex]=ipssurf(sig,siglenwintypewinlenstep);
%This function will calculate an Instantaneous Power Spectral (EPS) surface made of
%smaller IPS surfaces. The smaller IPS surfaces are calculated for data sequence pieces
%/of length (siglen) of the total input data (sig). Characteristics of the smaller surfaces
%are determined by the selection of window type (wintype), window length (winlen) and
%the distance that the window is moved through the data sequence (step). The surfaces
%are then appended edge to edge to form the output Q surface.

%The inputs are:
%sig: The input data string
%siglen: The desired length of the discrete pieces of sig
%wintype: '0' Rectangular Window
% '1'Hamming Window
%winlen: The desired width of the window, normally half of the siglen
%step: Time step desired, normally '1' or a multiple of'2'

%The outputs are:
%P The IPSSURF time-frequency surface
%yindex The y axis index
%xindex The x axis index

%See also IPS, IPSLOFAR

%Karen A. Hagerman
%06 May 1992

function [Q,xindexyindex]=ipssurf(datasiglenwintype,winlen, step)

if nargin---I
siglen=input(Enter the desired length of the sequence ');
wintype=input('ENTER "0" for RECT. WINDOW or "1" for HAMMING WINDOW');
winlen--input('ENTER length of the window (must be an even number):');
step=input('Input desired step in time ');

end

[m,n]=size(data);

if m-1
data-data.';

end

rows--floor(length(data)/siglen);
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data-[zeros(lI,winlen) data zeros(lI,winlen)];
Ien~length(data);
finish I =winlen/2- 1;
flnish2-finishl+l;

if wintype-0
win--ones(winlen- 1, 1);
elseif wintypel-
win--hamming(winlen- 1);

end

W=[win(winlen/2: -1:1)]';
Q=zeros(rows*(siglen/step),winlen/2);
qindex- 1: siglen/step: (rows* siglenlstep);
1=1;
for k=1 :siglen:1en-sigIen-2*winlen+I

x-data(1 ,k:k+siglen+2*winlen-1);
index--I;
for n~winlen+I 1:step: siglen+winlen-step+ I

Xm=[conj((x(n:- 1:n-flnish 1))); (x(n:n+finish 1))];
Xn=I[x(n) conj(x(n))];
product=((Xn*Xm). *W);
product-[product 0 conj(product(finish:- 1:2))];
P(index, :)={ffishift(reaI(. 5*ffl(product))));
index-index+ 1;

end
Q(qindex(l):qindex(I)+(siglen/step)-1, :)=P(:,winlen/2+1I:winlen);
1=1+1;

end

Q=flipud(Q);
[qrow,qcolumn]=size(Q);
xindex-(O:qcolumn- 1];
yindex- I :qrow];
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IPSLOFAR.M

%function[Q,freqindextimeindex]=ipslofar(data, siglenwintypewinlen, step);
%This function will calculate a 'Lofar' display for a selected data sequence.
%The total data sequence is first divided into equal length pieces of
%length (siglen). An IPS surface is then calculated for each piece. The
%IPS surface characteristics are determined by the selection of window
%type (wintype), window length (winlen) and the distance that the window
%is moved through the data sequence pieces (step). The mean is then taken
%of the IPS surface and is placed sequentially in the Q matrix for display.
%The Q matrix plots only the positive half of the spectral plane. The
%outputs timeindex and freqindex can be used in plots to interpret the
%results.

%The inputs are:
%data: The input data string
%siglen: The desired length of the discrete parts of the sequence
%wintype: '0' Rectangular Window
% 'l'Hamming Window
%winlen: The desired width of the window, normally half of the siglen
%step: Time step desired, normally 'F' or a multiple of '2'

%The outputs are:
%P The IPSLOFAR time-frequency surface
%timeindex The y axis index
%freqindex The x axis index
%

%See also IPS, IPSSURF

%Karen A. Hagerman
%06 May 1992

function [Q,freqindextimeindex]=ipslofar(datasiglenwintype,winlenstep)

if nargin- 1
siglen-input(Enter the desired length of the sequence ');
wintype=input(ENTER "0" for RECT. WINDOW or "I" for HAMMING WINDOW:');
winlen=input('ENTER length of the window (must be an even number): ');
step=input('Input desired step in time ');

end
[m,n]=size(data);
ifnM-1

datafdata.';
end
rows--floor(length(data)/siglen);

53



Q=zeros(rows,winlenl2);
data--zeros( I winlen) data zeros(l1,winlen)];
len--length(data);
finish 1 wimnlen/2- 1;
finisb2-flnishl+1;
if wintypeO0

win--ones(winlen- 1, 1);
elseif wintype== 1
winwbamming(winlen- 1);

end
W=[win(winlen/2:-1: :1)]';

qindex--1;
for k=-1 :sigien:Ien-sigIen-2*winien+1

x=idata(I ,k:k+siglen+2*wirden-I);
indev= 1;
for n--Winen+1: :step: siglen+winlen-step+ I

Xm-=[conj((x(n:- I n-finish 1))); (x(n:n+flnish 1))];
Xn=[x(n) conj(x(n))];
product=((Xn*Xm). *W);
product--[product 0 conj(product(finish2:-I :2))];
P(index, :)-=(ffshift(real(. 5*ffl(product))));
index--ndex+ 1;

end
if index -2

Q(qindex, :)=mean(P(: ,winlen/2+1I:winlen));
qindex=qindex+l;

else
Q(qindex, :)-P(l1,winlen/2+ 1:winlen);
qindex--qindex+ 1;

end
end
Q=flipud(Q);

[qrow,qcolumn]=size(Q);
fteqindex--[O:qcolumn- 1];
timeindex-=[1:qrow];
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ONEHALF

%fiunction [P,freqindextimeindex]fone-half(datawintype,winlenstep);
%This function will calculate the 1 1/2 D Spectral surface. The 1 1/2
%D surface characteristics are determined by the selection of window
%type (wintype), window length (winlen) and the distance that the window
%is moved through the data sequence (step).
%The I 1/ D surface (output matrix P) characteristics are determined by the selection
%of window type (wintype), window length (winlen) and the distance that the
%window is moved through the data sequence (step).
%The program plots only the positive half of the spectral plane. The
%/outputs timeindex and freqindex are the appropriate plot indices for the
%output time-frequency surface.

%The inputs are:
/odata: The input observations vector, for maximum effectiveness should
% be of a length which is a power of 2, e.g. 64,128,512
%wintype: '0' Rectangular Window
% '1'Hamming Window
%winlen: The desired width of the window, normally half of the input
% length
%step: Time step desired, can be '1 or a multiple of'2'

%The outputs are:
%P The 1 ½ D time-frequency surface
%timeindex The y axis index
%freqindex The x axis index

%See also ONESURF, ONELOFAR

%Karen A. Hagerman
%06 May 1992

function [P,freqindextimeindex]=one-half(datawintype,winlen, step)

[datarows,datacolumns]=size(data);
if datarows -I1

data=data.';
end

siglen=length(data);

if wintypefO
winfones(winlen- 1,1);
elseif wintype I
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win-hammidng(winlen- I);
end

W=win(winlen/2:-1: :1);
x--[zeros(lI,winlen) data zeros(l1:winlen)].';
p=zeros(siglen/step~winien);

index--1;
for n=winlen+ 1: step: siglen+winlen-step+ I

Xn=[abs(x(n))A2; abs(x(n))A2];
Xm=[conj(x(n:- I:n-(winlenl2- 1))) x(n:n+(winlen/2- 1))];
product=((Xm*Xn). *W).;
product-[product 0 conj(product(winlen/2:-1 :2))];
p(index, :)-fflsbift(abs(. 5*fft(product)));
index--index+I;

end
p=p(:,winlen/2+1 winlen);
[prow~peolumn]=size(p);

%Smoothing
p_tenip(1,:)=mean(p(1:3,:));
ptýemp(2, :)=mean(p(1:4,:));
ptýemp(prow-1, :)=mean(pXprow-3 :prow,:));
ptýemp(prow,:)=mean(p(prow-2:prow,:));
for m=-3 :prow-2

ptýemp(m, :)=mean(p(m-2:m+2,:));
end

P--flipud(pý_temp);

freqindex-[0: pcolumn- I;

tinieindex-[ I:prow];
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ONESURF.M

%fIunction [Q,xindexyindex]=onesurf(sig,siglenwintype,winlenstep);
%This function will calculate an 1 1/2 D spectral surface made of
%smaller 1 1/2 D surfaces. The smaller IPS surfaces are calculated for
%data sequence pieces of length (siglen) of the total input data (sig).
%Characteristics of the smaller surfaces are determined by the selection of
%window type (wintype), window length (winlen) and the distance that the
%window is moved through the data sequence (step). The surfaces are then
%appended edge to edge to form the output Q surface.

%The inputs are:
%sig: The input observation sequence vector
%siglen: The desired length of the discrete pieces of the input vector
%wintype: '0' Rectangular Window
% 'I' Hamming Window
%winlen: The desired width of the window, normally half of the input
01 vector length
%step: Time step desired, normally 'I' or a multiple of '2'

%The outputs are:
%P The ONESURF time-frequency surface
%yindex The y axis index
%xindex The x axis index

%See also ONEHALF, ONELOFAR

%Karen A. Hagerman
%06 May 1992

function [Q,xindexyindex]=onesurf(datasiglenwintype,winlenstep)

if nargin--I
siglen=input('Enter the desired length of the sequence ');
wintype=input('ENTER "0" for RECT. WINDO" )r "1" for HAMMING WINDOW:');
winlen=input('ENTER length of the window (must be an even number): ');
step=input('Input desired step in time ');

end
[m,n]=size(data);
ifm-1

data=data.';
end
rows--floor(length(data)/siglen);
data=[zeros(l,winlen) data zeros(1,winlen)];
len=length(data);
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finish lwinlen/2- 1;
finish2--finishl+1;

if wintypeO0
win~ones(winlen- 1,1);
elseif wintypel=
win7hanining(winlen- 1);

end
W=[win(winlen/2:-1: :1)]';
Q=zeros(rows*(siglen/step),winlefl/2);
qmndex 1 :siglen/step:(rows*siglen/step);
1=1;
for k-1 :siglen:1en-siglen-2*winIen+l

x-data(lI,k:k+sigien+2*winlen- 1);
mndexl-;
for nwimnlen+ 1: step: siglen+winlen-step+ I

Xn=[abs(x(n))^2 abs(x(n))A2];
Xm=[conj(x(n:- 1:n-(winlen/2- 1))); x(n:n+(winlenl2- 1))];
product=((Xn*Xm). *W);
product--[product 0 conj(product(winlen/2:-1 :2))];
P(index, :)=fflshift(real(. 5*ffl(product)));
index-index+ 1;

end
Q(qindex(1):qindex(I)+(siglen/step)-1, :)=P(: ,winlen/2+ 1:winlen);
1=1+1;

end
Q=flipud(abs(Q));
[qrow,qcolumn]=size(Q);
xindex--[0:qcolumn- 1];
yindex-[1 :qrow];
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ONELOFAR.M

%function [Q,freqindextimeindex]=onelofar(sig,siglenwintype,winlen, step);
%This function will calculate a 'Lofar' display for a selected data sequence.
%The total data sequence is first divided into equal length pieces of
%length (siglen). An 1 1/2 D surface is then calculated for each piece. The
%1 1/2 D surface characteristics are determined by the selection of window
%type (wintype), window length (winlen) and the distance that the window
%is moved through the data sequence pieces (step). The mean is then taken
%of the 1 1/2 D surface and is placed sequentially in the Q matrix for display.
%The Q matrix plots only the positive half of the spectral plane. The
%outputs timeindex and freqindex can be used in plots to interpret the
%results.

%The inputs are:
/odata: The input data string
%siglen: The desired length of the discrete parts of the sequence
%wintype: '0' Rectangular Window
% '1' Hamming Window
%winlen: The desired width of the window, normally half of the siglen
%step: Time step desired, normally 'I' or a multiple of '2'
%See also ONEHALF, ONESURF

%The outputs are:
%OP The ONELOFAR time-frequency surface
%timeindex The y axis index
%freqindex The x axis index

%Karen A. Hagerman

%06 May 1992

function [Qfreqindex'timeindex]=onelofar(sig'siglen'wintypewinlenstep)

if nargin-l
siglen=input('Enter the desired length of the sequence ');
wintype=input(E'NTER "0" for RECT. WINDOW or "1" for HAMMING WINDOW:');
winlen=input(ENTER length of the window (must be an even number): ');
step=input('Input desired step in time ');

end

[mn]=size(sig);
ifm-1

sig=sig.';
end
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rows--floor(Iength(sig)/siglen);
Q=zeros(rows,winlen/2);
sig=[zeros(l1,winlen) sig zeros(l1,winlen)];
len7-length(sig);

if wintype=O
win--ones(winlen- 1,1);
elseif wintypeý 1
win--hamming(winlen- 1);

end
W~win(winlen/2:-1 :1).';

qindex--1;
for k-1 :siglen:len-siglen-2*winien+I

x--sig(l,k:k+siglen+(2*winien)-I);,
indexl-;
for h~winlen+ 1: step: siglen+winlen-step+ 1

Xn=[abs(x(l))A2 abs(x(l))A2];
Xmn=[conj(xQl:- 1:I-(winlen/2- 1))); x(l:1+(winlen/2-1I))];
product=((Xn*XnI). *IW);

produ~ct-[product 0 conj(product(winlen/2:- 1:))];
p(inciex, :)=fflshift(abs(. 5*fFt(product)));
ind?%x='-dex+ 1;

end
if index -2

Q(qindex, :)=inean(p(:,winlen/2+1I:winlen));
qindex=qindex+ 1;

else
Q(qindex,:>-p(1 ,winlen/2+1 :winlen);
qindex=qindex+ 1;

end
end
Q--flipud(Q);

[qrow,qcolumn]=size(Q);
freqindex--O:qcolunin- 1];
timeindex-[ 1:qrow];
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