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ABSTRACT

Signal analysts have traditionally relied on the Discrete

Fourier Transform and various data windowing schemes for

signal detection and classification. Some signals, notably

those of a transient nature, are inherently difficult to

analyze with these traditional tools. The Discrete Wavelet

Transform has recently generated considerable interest in

several areas of digital signal processing and a determination

of its suitability as a signal analysis tool is necessary.

Associated with wavelet theory is the concept of

multiresolutional analyses which allow examination of a signal

at different scales.

This thesis investigates dyadic discrete wavelet

decompositions of signals. A new multiphase wavelet transform

is proposed and investigated. The- multiphase transform

technique is shown to be useful in transient signal analysis.

Several MATLABTM programs that perform multiresolutional

analyses with various supporting features are provided.
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I. INTRODUCTION

The Discrete Fourier Transform has traditionally been the

dominant tool in digital signal processing for extracting

waveform features required in the analyses of signals.

Characteristic of the Fourier transform is the global manner

in which it operates on the input signal, thereby rendering

this technique incapable of providing time localization of

frequency components. The analyses of signals that are

transitory in nature will particularly suffer the deleterious

effects of this limitation and the utility of the discrete

Fourier transform for transient signal analyses may therefore

be diminished. Various data windows have been used in the

past in an attempt to improve performance, but all involve

tradeoffs in resolution and sidelobe levels that may

unacceptably affect the analysis. [Ref. 1:pp. 63-82]

Recent appearance in the literature of several articles

describing wavelet transforms and the related multiresolution

analyses have created interest in determining their

suitability for signal analysis applications; specifically, to

overcome the time localization limitation of the Fourier

transform. This thesis examines the potential of the wavelet

transform for signal analysis purposes.



II. REVIEW OF WAVELET THEORY

A. DISCRETE WAVELET TRANSFORM

Wavelets are families of functions,

h..b(x)= a _I/2h(xab) a,bEO (2.1)

generated by the dilations and translations of a single

function. For digital signal processing applications it is

necessary to discretize the parameter values and fix the

initial dilation step a0 and the translation step b, such that

ao>l, b 0*0

Equation 2.1 becomes,

hm., (x)=a"/2h(agx-nbo) m,nEZ (2.2)

with a=aom and b=nboaom

The translation parameter is therefore dependent on the

dilation parameter. A large, positive m will contract the

function h., and cause the translation step to shorten while

a large negative m dilates the function hm.0 and lengthens the

translation step size. The inverse relationship ensures

coverage of the entire range. [Ref. 2: pp. 909-910]
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Associated with the discrete wavelet is the discrete

wavelet transform, T, which maps the function f to a sequence

indexed by (22.3

If

f It 1-1i19 [h (g)11 dt < -,(2.4)

and h has sufficient decay, and if T has a bounded inverse on

its range, the set <h.> forms a frame for all square-

integrable, one-dimensional functions f,

f(x) GL2 (0) (2.5)

The significance of a frame is that numerically stable

algorithms exist which allow f to be reconstructed from the

wavelet coefficients <hm,f>. [Ref. 2: p. 911]

Selection of appropriate h,ao, and b_0 is influenced by

various factors. The desire to take advantage of previously

published work and to minimize redundancy in the wavelet

representation resulted in choices of a0 = 2, b0 = 1, and

several h (discussec below) such that the hm constitute an

orthonormal basis of compact support.
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B. MULTIRESOLUTION ANALYSIS

Multiresolution analysis, as the name implies, describes

the L2 function f as a series of approximations of the

function at different levels of resolution and consists of a

family of embedded closed subspaces

Vm c L2(a) ... CV_2cVICVoCV1 CV 2 ... (2.6)

such that

flVm ={0}, 1 = L2(0) (2.7)

and

f(') EV,, - f (2") EV,.1 (2.8)

Also, there is a scaling function *(x) EVo such that the

*,n (where •m(X) =2m/ 2 o(2mx-n)) constitute a basis for V,

VAm = span(4o) (2.9)

Let Pf be the orthogonal projection of f onto Vn.. From the

preceding, it can be seen that limf..Pmf = f, for all fEL 2 (R) .

[Ref. 3:pp. 967-968]

4



considering our parameter choices and the decision to use

orthonormal bases, if we define

c.(f) (2.10)

then

PM' ~CnM(f) 40 E V, (2.11)

Now define QJr = Pmlf - Pmf and W. as the orthogonal complement

Of TiM (WM LVm') so that V,,, = Vm@(Wm. Then Qm is the

orthogonal projection of any f EL 2 (R) onto Wm, the

orthogonal complement of TiM in Vm1 . The W. are scaled

versions of W. ,

f () E Wm .f(2m ) WO (2.12)

and the Wm are orthogonal spaces which sum to L-(R)

L2 (R) =@9W, (2.13)

Similar to the V., there exists in W.~ a wavelet function 4

such that

5



Wm span (2.14)

where 4(x) = 2 /2 * (2rnx-n) . If we define

d= (f) = (*JI1 (2.15)

then

Qmf= dmn(f) *, E Wm (2.16)

Naturally, the function may be reconstructed from its

projections onto the bases vector spaces. [Ref. 2:pp. 916-918]

1. Properties of the Wavelet-Scaling Function Pair

Following is a brief summary of the relationship

between the O and* families. Since 40o (x) EVoCV1 , it can

be written as

•o0(x) (10 (o , ),(X(-•-•))4 1 ( X-2 (2.17)

6



Let

h (n) = o (xo (2x-n) dx

- (2.18)
= 2 -(40 (x) 4 1 (x---) (2.)18

2

so that

n--rn4ý0,(x) ,F•2• h (n) C (x- -E)

(2.19)
= 2 h(n) 40 (2x-n)

n--r

The Fourier transform of this equation is

S(2c.) = H (w )4 (w ) (2 .20 )

where we have defined

H(CL)) = (n) e-in, (2.21)
n--m

To satisfy the above relationships, the following properties

must hold:

VI(o)I = I
(2.22)

IH(w0)1 2 + I(j+C)I2 = 1

7



From Equation 2.20 it can be seen that the 0 can thus be

derived if H(co) is known since

O(W) -filH(2-P~o) (2.23)

p-1

Knowledge of 0 can subsequently be used to find ' Since

4r(x) E WO c V1 , it can be written as

*0 (X) (*0 (X) 4ý1(X- i1))41 ,(X--.2 (2.24)

n n (22 2

Let

g(n) = f*0 (x) 0 0 (2x-n)

-i (2.25)= 2-2 40 Wx) 01 (x-2
=22

and by a similar approach to that used previously we can find

*oX) W , g(n),O,(x-2P)
n-- 2 (2.26)

f 2j g(n) 4o (2x-n)

8



The Fourier transform of Equation 2.26 is

W(2 () = G( )M(w) (2.27)

The following properties result:

IG(0)1 =0

I(W)12 + ((O+,C ) 2 = 1 (2.28)

H()MG--•(W + H(w +7)G(o+ir) = 0

Equations 2.22 and 2.28 are recognized as characteristic of

"conjugate" filters and are necessary to ensure orthogonality

among the * and * families of functions. Equation 2.28

ensures that each function of the * (commonly referred to

as the scaling function) is orthogonal to each function of the *

family. This last condition results from the fact that

Vmi Wm. [Ref. 4: pp. 16-23]

An example of a function that fulfills the stated

conditions is

G(o) = eJIwH(ca+-) (2.29)

9



from which we can find

g(n) = (-1)'1"h(1-n) (2.30)

Equation 2.30 is the defining relationship for describing

wavelet-scaling function dependency in the application

algorithms. [Ref. 3: p. 679]

2. Decomposition and Reconstruction Algorithms

Recalling that c.f(n) = (41, P , we can derive the

decomposition recursion algorithm:

c,,-,(n) (m1 ,t

: ( (x-2-(-1)n) ,P)

= fom-, (x-2-(m-1)n) f(x) dx

= fb/[y h(k)4 (x-2-(m-l)ln-2-mk)] f(x) dx
k (2.31)

=2 f~h W om (x-2- -(2fl+k) ) .f W dx
k

= J•h (k) c.(2n+k)
k

Likewise we find

din_1 (n) = vrf, g(k) c1(2n+k) (2.32)
k

10I



To determine the reconstruction recursion algorithm recall

PMf = Pl-if+01-if (2.33)

Pan-2 •+QM-If = ti cm.-(k)ý(m.l1)k+j dm...(k)41(m.l),k (2.34)
k --- k.-m

and substitute terms to get

cm=M (€O, P~f (2.35)

=E ,-, (k) (ion, (,-f, 1 ) E di._ 1 (k) (4,)-l)
k k

Using a change of variables the following can be found

(4mn, (,-vUc = v'-h(n-2k) (2.36)

(1mn,*((m--)J) = V2g(n-2k) (2.37)

so that

Cm(q) = (n) c,_ (k)h(n-2k) +÷ d (k) g(n-2k)] (2.38)
k k

The equations of this section demonstrate the pyramidal

structure of multiresolution analysis and readily lend

themselves to digital signal processing applications. [Ref 4:

pp. 2 5 -28]

The important conclusion is that, assuming knowledge

of the g and h vectors, the c and d coefficients at any level

can be completely determined from the c coefficients at the

next higher level; also, the c coefficients at any level can

11



be determined from the c and d coefficients at the adjacent

lower level. Notice that calculations within this pyramidal

algorithm do not require explicit use of the * and

functions since interlevel relationships are defined entirely

by the g and h vectors. Obviously, the same results would be

reached if dilations and translations of the orthogonal basis

functions were used directly at each level in the

decomposition and reconstruction, but would be found at great

computational cost because of the requirement to calculate

inner products.

12



III. COMPUTER IMPLEMENTATION OF MULTIRESOLUTION ANALYSIS

A. INTRODUCTION

Our goal is to investigate the use of multiresolution

analyses to extract information from an input signal. In this

case, a one-dimensional data sequence will represent the

input. To avoid having to numerically evaluate any inner

products we will equate the c 0 (n) coefficients with the data

sequence, thereby constructing an auxiliary function f, with

f=ECo(n)40 (n), which clearly resides in V0 . Since c 0 (n)

entirely describes the input, it represents the highest

resolution level possible and the apex of the pyramidal

algorithm. The multiresolution framework previously described

can now be used to decompose f (thus the data sequence C0 (n))

into lower resolution, i.e. m < 0, approximation coefficients

c,(n), and detail coefficients dm(n). The reconstruction

recursive equations can be used to recover the original f (and

therefore the data sequence). A different multiresolution

analysis exists for each scaling function/wavelet set. This

thesis is limited to the Haar wavelet and to Daubechies' group

of compactly supported wavelets. The h vectors for these

wavelets were published in Reference 1 and are listed in

Appendix H for convenience. Describing the h vectors is the

common method of defining scaling function/wavelet sets

because all other desired information can subsequently be

derived from them.

13



Several computer programs were written to implement

various multiresolution analyses. The programs were written

in MATLABTM to take advantage of the transportability of m-

files between various operating systems. The capabilities of

these programs, listed in Appendices B-H, will be described in

general. Specific information can be obtained by referring to

program comments in the appropriate appendix.

The normal entry point into the collection of programs is

the calling program wavelet.m (Appendix B). A brief

description of the various possible options is presented upon

entry and the user can make a decision based on the choices

provided. Specifically, the user may decide to use the Haar

wavelet, his own wavelet, or one from the Daubechies group of

nine compactly supported wavelets and analyze with either a

single phase or multiphase approach.

The single phase approach implies the decomposition start

point is the data start point, i.e. a "snapshot" of the entire

data sequence is processed. The term multiphase refers to

starting a decomposition at every possible data

sequence/wavelet phase relationship, i.e. a "sliding window"

approach, to maximize the signal analysis capability. As

desired, wavelets are phase sensitive but feature extraction

may be hindered if the "best" input phase relationship is not

used. The multiphase analysis therefore contains multiple

sets of coefficients, with each set containing all the

information necessary for reconstruction.

14



B. SINGLE PHASE NULTIRESOLUTION ANALYSIS

The second program, haarwave.m (Appendix C), does the

"snapshot" analysis of an input data sequence using the Haar

basis. Because of the simple nature of the Haar, it is easy

to generate the actual approximation and detail function at

each resolution level. The input data is viewed as a

piecewise constant function (equating to the sample and hold

operation) to allow easy inner product calculation.

Representations of the properly weighted scaling function and

wavelet at each level are provided to clearly indicate the

dyadic relationship between levels. Additionally, the

reconstruction of the original sequence can be viewed as well

as a plot of the reconstruction error. Finally, distribution

of the energy of each approximation and detail coefficient and

the total energy of each resolution level are displayed.

These energy distributions are the foundation for signal

analysis.

The third program, daubwave.m (Appendix D), allows the

user to pick one of the wavelets from Daubechies group or to

enter a valid user-defined h vector to define the basis set.

Basically, the same output plots that were generated for

wvhaar.m can be seen. Because of the complexity and

irregularity of the basis functions, however, only the value

of the coefficients which are generated for specific points

will be plotted instead of the inner product representation.

15



C. MULTIPHASE WAVELET ANALYSIS

The last analytical program, multiphs.m (Appendix E),

allows the use of any of the previously defined wavelets with

the multiphase algorithms. The different coefficient sets are

displayed simultaneously, which is possible because their

coefficient indices interleave without interference. Clearly,

redundant information is provided in the sense that there are

more coefficients than would be necessary for reconstruction

of the data sequence over its interval of support. However,

because of the different zero padding necessary for each set

of coefficients a different Pmf in V. is defined for each set.

The user will therefore be able to see the Pmf with the most

distinctive set of coefficients to ease analysis.

D. SUPPORTING PROGRAMS

The program basisplt.m (Appendix F) supports the

daubwave.m and multiphs.m programs by generating iterative

plots of the scaling function and wavelet bases. It can also

be called up directly and will use the vector "hcoeff" as the

h coefficients to determine the * and 4r based on a

graphical recursion method.

The functions wvinput.m (Appendix G) and daubdata.m

(Appendix H) are called as necessary by any of the

multiresolution analysis programs to provide selected input

data signals or the h vectors from Daubechies' group,

respectively. The input signal options consist of a sinusoid,

16



a pseudo-noise (PN) sequence, a sinusoid modulated with a PN

sequence, and any of the above corrupted by noise. Various

parameters can be modified to satisfy the user's needs.

17



IV. SIGNAL ANALYSIS

All plots associated with this section can be found in

Appendix A.

A. SINGLE PHASE ANALYSIS OF A SINUSOIDAL WAVEFORM

The first signal to be analyzed will be the sinusoid shown

in Figure 1, along with its level 0 approximation. Figures 2-

5 show the Haar multiresolution analysis, stopping at level -4

since there is no energy at any lower level for this

decomposition. The reconstruction plots (not shown) are

indistinguishable from the decomposition plots because the

maximum reconstruction error is 15 orders of magnitude below

signal levels. The energy contained at each resolution level

for both approximation and detail coefficients can be seen in

Figure 6. Clearly, the maximum energy change occurs in the

detail coefficients at level -4 and the energy in the

approximation coefficients at every level is the sum of the

energy of the detail and approximation coefficients from the

level below, as expected. Figures 7 and 8 provide a clear

summary of exactly where the signal and filter best match with

respect to sample number and resolution level. In this

example, the Haar decomposition highlights the phase changes

associated with the switching between positive and negative

half-cycles because of the signal/wavelet phase coherence.

18



The decomposition is repeated with a different

multiresolution analysis based on the 6-coefficient (third

order) Daubechies wavelet. Only the coefficient energy plots

are shown in Figures 9-11 for comparison with the Haar plots.

It can be shown that the time index of coefficients goes

beyond the original support length of the data (potentially

out to sample 257 in this example, although the plots were

truncated at sample 90 for display purposes and because very

little energy is associated with samples beyond 90). Although

the coefficients outside the signal support range are

generally very small, they are necessary for completeness.

Computing these coefficients requires affixing zeros to the

sequence, most significantly at the trailing edge. These

"edge effects" are minimized at the leading edge (no

coefficients are generated for negative time indices) by

shifting the h vector so that nonzero values may initially

exist only over [-(m-2),...,0,1] and then assigning the

coefficient value to the index of the second term from the

right (initially 0). This is intuitively satisfying from a

causality viewpoint and also aids interpretation by only

having coefficients outside the data sequence on one side.

Leading edge effects consist of the influence of leading zeros

necessary for filter coefficients with negative time indices.

Note that edge effects increase as the resolution level

decreases because lower resolution coefficients are influenced

by a larger number of data points. The extent of edge effects

19



is also dictated by the number of h coefficients.

Coefficients beyond the data sequence support will not have

time indices greater than [(2"'-1)(number of h coefficients -

1)) for any of the decomposition programs and often

significantly fewer (e.g., if the data sequence length is a

power of 2 the Haar decomposition will not generate any terms

beyond the data length, as can be seen in the previous plots).

The next set of plots (Figs. 12-18) show the phase

sensitivity of the decomposition when the input sinusoid phase

is shifted from 0 to 45 degrees. The energy distribution is

no longer as concentrated as in the previous set of plots and

interpretation is consequently more difficult. Changing the

sampling frequency relative to the sinusoid frequency will

have a similar effect.

B. SINGLE PHASE ANALYSIS OF A BINARY PHASE SHIFT KEYED SIGNAL

The Binary Phase Shift Keyed signal shown in Figure 19

will serve to highlight a deficiency in the single phase

approach. Notice with the Haar wavelet in Figures 20-22 that

the decomposition is exactly the same as the pure sinusoid,

i.e., because of the phase alignment we cannot discriminate

between the two signals' coefficient energy plots. The

Daubechies 6-coefficient wavelet decomposition (Figs. 23-25)

does appear significantly different than the sinusoid

decomposition but there is no clear indication of every phase

reversal. Thus, the results are ambiguous.

20



C. MULTIPHASE ANALYSIS OF A BINARY PHASE SHIFT KEYED SIGNAL

Since these responses would be unsuitable for signal

analysis purposes the multiphase approach (described

previously) was developed. It can be viewed as starting

decompositions at each of the 2"m phases of each level so that

the most distinctive representation can be used for analysis

regardless of initial signal phase. The multiphase plots are

shown in Figures 26 and 27 for the Haar and in Figures 28 and

29 for the Daubechies 6-coefficient filter. There is clear

indication in both sets of plots of the signal's phase

inversions.

D. MULTIPHASE ANALYSIS OF A TRANSIENT SIGNAL

Finally, the transient signp' of Figure 30 was

investigated. Use of the "zoom" feature in the programs was

necessary to clearly serý the response. Figures 31-34 show the

responses associated with the Haar and Daubechies 6-

coefficient wavelets that have been the standard throughout

this thesis. Higher order Daubechies (more regular) wavelets

were also experimented with in an attempt to best fit the

signal and it can be seen that the 18-coefficient (ninth

order) wavelet used for Figures 35 and 36 does a good job of

clearly indicating the presence of the signal and of

maximizing the concentration of energy into only a few points

in a singln resolution level. This good "match" of the signal

with the wavelet filter could be used for signal

classification purposes as well as detection if an a priori

21



selection of the wavelet filter based on a similar known

signal had occurred.
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V. CONCLUSIONS

Wavelet-based multiresolution analysis is another tool for

the signal analyst and great potential exists for its use in

various applications. Signals that can only be represented in

the frequency domain with large numbers of significant terms

provide special motivation for wavelet-based decomposition, as

can be seen in the transient signal example above. Signal

detection and pattern recognition through the use of "matched"

wavelets may also prove useful, especially in areas where

analysis at different resolution levels (i.e., possible signal

dilation/contraction) is required. The extent of the ultimate

usefulness and popularity of wavelets will become known as

others gain knowledge of basic wavelet characteristics and

incorporate multiresolution analyses into their research.

23



APPENDIX A

SIGNAL ANALYSIS PLOTS

24



S0

00

E E

<) . i Ii
E,, b -

CE

UI

III

Fiur 1. Inu iuodan prxmto

25

•- ---- n

t 4"* - = C,

I-

t i • I I

Figue i.Inpt Siusoi an Appoximtio



I'

EUcc E

I.0
.E

E cc

.I L TfE

W-i m %n. r" I" % %

.2E2E t E

22



I I I| tI

L•

-~ II

N[

0 

::

62

E E~

0o

EaE
E 

C4

0E

It-

0 2- E

27



I I r r

E E

'0 EEU

00

C E

I- I I 1 I

Figure 4. Haar Response at Resolution Level -3

28



I 0

E0
Cc2

E
E u

E E

.29



I I I I I -I I I i i

0 0

E S
C

CE

0

E

00

C--

Figure 6. Haar Resolution Level Energy Distribution

30



±31

UO

.2A

0z
cc

00

0

Figure 7. Haar Approximation Coefficient Distribution

31



C.)

Aa0

0

Figure 8. Haar Detail Coefficient Distribution

32



i I I I I I ! I I-

o
C-

o U

U o

o

I.0

E

I I I I I I• S

00

0z

Figure 9. Daubechies Resolution Level Energy Distribution

33



AL-

o V

rA

0-0
0-0

vj

00

Figure 10. Daubechies Approximation Coefficient Distribution

34



- 0

U U

CoA

Figure 11. Daubechies Detail Coefficient Distribution

35



e4 0

r-± E

00

So

.0

0 E

E -

0 - 0--

C,) II

C) EE.

o n x on

36

-- -'

0
,,0

Figue 12 Inpt Siusoi Shftedby 40 an Appoximtio

36--



I I I I I I I I

o 0•

o

-S - . _ _ _ _ _

N0

o

I I I i i I I I I

Fiur 3.HarReo 0to Lee neg 0trbto

37 *



00
Uz

Figure 14. Haar Approximation Coefficient Distribution

38



4))

d

Figure 15. Haar Detail Coefficient Distribution

39



I I I I I I I I -

0

to

I-c

0

1..
U

Go ._0 14 N , .

40



E

Figure 17. Daubechies Approximation Coefficient Distribution

41



I-E

00

U 0

SCO

8C

Figure 18. Daubechies Detail Coefficient Distribution

42



E E

e, C

__

< 777

Figre 9.BinryPhae hif KyedSinalan Aproimaio

- II.~43



I I I I ! I I |

0 0

.4.

o e c
U

Figure 20. Haar Resolution Level Energy Distribution

44



I-

E
0

r-

00

0-r
4F

Figure 21. Haar Approximation Coefficient Distribution

45



WD

1456

II-I zP
-J0

10-I

Figure 22. Haar Detail Coefficient Distribution

46



-I II I I I I

o 0

E -. zE
0

zz

0.. CD 00 No
d d 5CSCo 0I I I I I I I0

Figure 23. Daubechies Resolution Level Energy Distribution

47



0

0\

I-

0cc

0bo

00

484



U

'449



0--r

Figure 26. Multiphase Haar Approximation Coefficients

50



-sA

C.A

Figure 27. Multiphase Haar Detail Coefficients

51



4..).
0

0 U

.2.

Figure 28. Multiphase Daubechies Approximation Coefficients

52

i i i i m ii i



a-

0P0

I-I

Figure 29. Multiphase Daubechies Detail Coefficients

53



cn0

I-E

00NoC
Fiue3.TasetSga

- 54



U$

(%A

E

00
I-'I

Figure 31. Multiphase Haar Approximation Coefficients

55



l

I.E

Figure 32. Multiphase Haar Detail Coefficients

56



o 0o

A-4

00P

9 0

o 
1

Figure 33. Multiphase Daubechies Approximation Coefficients

57



e-

00-

Ja

0

I- 
0

oj

^ 
-t

Figure 34. Multiphase Daubechies Detail Coefficients

58



0.
cc

00

oA

oo

Figure 35. Multiphase Daubechies (Order 9) Approx. Coefficients

59



0~
42-

o 0

U#

Figure 36. Multiphase Daubechies (Order 9) Detail Coefficients

60



APPENDIX B

CALLING PROGRAM FOR ACCESSING MULTIRESOLUTION ANALYSES

PROGRA48 AND FUNCTIONS
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% calling program for wavelet multiresolution analysis. The capabilities
% and options of the entire set of programs are presented, in general terms,
% in the comments below.

b=[' ');
N1 - [' This program will perform multiresolution analysis on input data'

through the use of various orthonormal bases of compact support.
It is interactive in nature and will allow you the opportunity
to select among several different options to best support your
specific needs. Use the Return key to control movement through
the program (after prompts and questions, to view next plot, etc.)'

Program options include:

1. Selection of Basis Functions
a. Haar wavelet
b. Daubechies group of compactly supported wavelets
c. User-input wavelet ("h" coefficients)

2. Generation of Scaling Function/Wavelet plots

3. Selection of Input Data
a. User-defined data vector (with optional noise background):

1) Sine wave
2) Pseudo-noise (PN) sequence
3) Sine wave modulated by PN sequence

b. User-input data vector
<Return> for more ... '];

N2 = [' 4. Decomposition algorithm based on:
a. Data "snapshot" - Fixed start point; one decomposition;

single phase approach
b. "Sliding" Data window - Floating start point; decomposition

for each start point; multiphase
approach; discrete approximation to'
continuous wavelet transform

Do you want to see:

1. Haar wavelet data "snapshot" decomposition,
(input data treated as a piecewise constant function,

allowing inner products to be calculated and displayed)

2. Daubechies or user wavelet data "snapshot" decomposition, or

3. "Sliding" data window wavelet (any type) decomposition?

clc
disp(b)
disp(Nl)
pause
clc
disp(b)
disp(N2)
disp(b)
desire = input('Answer 1, 2, or 3. ');
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if desire -- 1,
haarwave

elseif desire -= 2,
daubwave

else
multiphs

end
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APPENDIX C

PROGRAM FOR SINGLE PHASE ANALYSIS USING HAAR WAVELET
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% This program performs single-phase Haar wavelet decomposition on a
% user-supplied or program-generated input waveform. Representation is
% made with bar graphs to show actual inner product calculation (input
% data is taken as a piecewise constant function). The input data sequence
% will be zero-padded to accomodate the calculation of all possible non-
% zero coefficients and approximation ("c") and detail ("d") coefficients
% may be computed for sample numbers beyond the data endpoint. The user
% should consider these "edge effects" in his analysis.

-------------------------------------------------------------------
% Determine if user wants to input an external data vector or desires to
% build one through the program.

clc

b=[' ');
Q1 = ['Do you wish to use:

1 1. your own MATLAB formatted row vector, or
2. a program generated vector from the following menu?'

- Sine wave
- Pseudo-noise (PN) sequence
- Sine wave modulated by PN sequence

disp(b)
disp(Ql)
Pick = input('Answer 1 or 2: ');

if Pick - 1,
% Read in user's input vector
NI = P Note: If the number of data points is a power of 2, the'

results are easier to interpret because there are not
any "edge effects".

disp(b)
disp(Nl)
Wavedata = input('What is the name of your input vector? ');
sampfreq = input('What was the sampling frequency (Hz)? ');
Tsample - l/sampfreq;

else
[Wavedata,Tsample) = wvinput(Pick);

end

-------------------------------------------------------------------
% Decomposition algorithm h(O)=0.5, h(l)=0.5, g(0)=0.5, g(l)=-0.5

datlngth = length(Wavedata);
numrows ceil(log(datlngth)/log(2)); % find number of resolution levels
numpts = 2^numrows; Newdata - zeros(l,numpts);
Newdata(l:datlngth) - Wavedata;
d = zeros(numrows,numpts); c = zeros(numrows+l,numpts);
detail = zeros(numrows,numpts); approx - zeros(numrows,numpts);
c(numrows+l,:) = Newdata;
top - numpts;
const = i/sqrt(2); % normalization constant * coefficient magnitude
ctr - numrows;
while ctr >- 1,

n = numrows-ctr+l;
shift = 2^n;
shiftl = shift/2;
top = ceil(top/2); % number of points at this level
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for k - l:top %get I"cI and "'din' coefficients
jump =shift*k;
indexi - jump-(shift-l);
index2 - jump-(shiftl-l);
firsttrm - c(ctr+l,indexl);
if index2 <c- numpts,

secndtrm - c(ctr+l,index2);
else

secndtru - 0; % zero padding
end
d(ctr,indexl) - firsttrm - secndtrm;
c(ctr,indexl) - firsttrm + secndtrm;
for j - 0:(shift-1) Ibuild matrices for display purposes

if j < shiftl,
detail(ctr,indexl+j) - d(ctr,indexl);

else
detail(ctr,indexl+j) -- d(ctr,indexl);

end
approx (ctr, indexl+j) - c(ctr,indexl);

end
end
d(ctr,:) = const*d(ctr,:);
c(ctr,:) = const*c(ctr,:);
normnhize - sqrt(2*shift); % normalization constant for this level
detail (ctr,:) = detail (ctr,:)/normlize;
approx(ctr,:) = approx(ctr, :)/normlize;
ctr = ctr-l;

end

% Plot "c" and I'd" coefficients by resolution level

indxtoO= (0.5:numpts-0.5J;
plotmin = l.2*xnin(Wavedata); plotmax = 1.2*max(Wavedata);
if ((plotmin-==)&(plotmax==0)), plotmax -0.5; end
if plotmin > 0, plotxnin = 0; end
if plotmax < 0, plotmax - 0; end
v=tO, numpts,plotmin,plotmax);
axis (v);
bar(indxtoo,c(numrows+l,:))
title('Approximation function to Input Signal at resolution level 0')
xlabel(E'Sample number 'In" (Time = n * ',num2str(Tsample),' sec)']))
pause
c ig

outptdet =zcros(l,l); outptapp = zeros(l,l);
for k = numrows:-l:l

level - k-numrows-l;
step = (2A(-lcvel))/2;
for j = 1:numpts/step

outptdet(j) = detail (k, (j-l)*step+l);
end
stepa - 2*step;
indxtooa - (stepa/2:stepa:numpts-stepa/2J;
for j = 1:numpts/stepa

outptapp(j) = approx(k, (j-l)*stepa+l);
end
axis (v);
if k > 1,

subplot(211) ,bar(indxtooa, outptapp)
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else
indxto~a - [O:numpts];
approxI - approx (1,:) ;approxl (numpts+l) - approx(l,numpts);
subplot (211) ,plot(indxto~a, approxi)

end
title(('Approximation function at resolution level ',num2str(level)])
xlabelU['Sample number 'In" (Number of samples - ',num2str(numpts),')'1)
axis Cv);
subplot (212) ,bar(indxtoO, outptdet)
title(('Detail function at resolution level ',num2str(level)])
xlabel(['Sample number "n" (Time - n * ',num2str(Tsample),' sec)']))
pause
clg
clear outptapp outptdet indxtoO
indxtoO - indxto~a;
clear indxtooa

end
subplot

%----- ---------------------------------------------------------------------
% Reconstruction algorithm

dcl
recmpout - zeros(l,l);
disp(b)
N2 = 'Level-by-level Recomposition can be observed if desired.I

The Re~omposition algorithm starts with the lowest levelI
Approximation Function and successively adds in the Detail'
Function to obtain the next higher level Approximation. ');

disp(N2)
disp (b)
ckalgthm = input('Do you want to see the Recomposition (Y or N)? ',Is');
if ckalgthm == 1I

level = -numrows;
axis (v);
plot (indxtoO, approxl)
title([ 'Level ',num2str(level),' Recomposition'))
xlabel ('Sample number')
pause
cig.
recomp = approx(l,:);
for k = l:numrows

level =level+l;

recomp =recomp+detail(Jc,:);

step = 2'-(-level);
indxtoO - [step/2:step:numpts-step/2);
for j = l:numpts/step;

recmpout(j) = recomp((j-l)*step+l);
end
axis (v);
bar (indxtoO, recmpout)
title(( Level ',num2str(level),' Recomposition'))
xlabel ('Sample number')
pause
clg

end
bar (indxtoO ,Newdata-recmpout)
title( 'Recomposition Error')
xlabel ('Sample number')
pause
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clg
end

% Coefficient energies are used as a measure of response

c = c.^2;
d = d.^2;

Enrgytot - sum(c(numrows+l,:));
Enrgycro - zeros(l,numrows+l); Enrgydro - zeros(l,numrows+l);
for j - l:numrows % find energy in each resolution level

Enrgycro(j) - (sum(c(j,:)))/Enrgytot;
Enrgydro(j) = (sum(d(j,:)))/Enrgytot;

end
if Enrgytot == 0,

Enrgycro(numrows+l) - 0;
else

Enrgycro(numrows+l) = 1;
end
Enrgydro(numrows+l) = 0;
lvl = [-(numrows):1:0];
v - [-(numrows+l),l,0,l.2);
axis(v);
subplot(211),bar(lvl,Enrgycro)
title('Normalized Energy of Approximation Function vs. Resolution Level')
xlabel('Resolution Level')
axis(v);
subplot(212),bar(lvl,Enrgydro)
title('Normalized Energy of Detail Function vs. Resolution level')
xlabel('Resolution Level')
pause
subplot
clc

% Display mesh and contour plots of coefficient energy with optional "zoom"
% capability to aid analysis

strts.amp = 1; endsamp = numpts; strtrow - 1; endrow - numrows; zoom = 1;
highres - -1; lowres - -numrows;
while zoom == 1,

rangea = [-highres-l:-lowres]; ranged - (-highres:-lowres];
indxto0 = (strtsamp-l:endsamp-l];
mesh(c(strtrow:endrow+l,strtsamp:endsamp))
title('Energy in Approximation Coefficients using Haar basis')
pause
contour(c(strtrow:endrow+l,strtsamp:endsamp),10,indxtoO,rangea)
title('Contour Map of Approximation Coefficient Energy Distribution')
xlabel(['Sample number "n" (Time - n * ',num2str(Tsample),' sec)'])
ylabel('Decomposition Number (= -Resolution Level)')
pause
mesh(d(strtrow:endrow,strtsamp:endsamp))
title('Energy in Difference Coefficients using Haar basis')
pause
contour(d(strtrow:endrow,strtsamp:endsamp),10,indxtoo,ranged)
title('Contour Map of Difference Coefficient Energy Distribution')
xlabel(['Sample number "n" (Time = n * ',num2str(Tsample),' sec)'])
ylabel('Decomposition Number (- -Resolution Level)')
pause
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clc
showmore = input('Would you like to "zoom" in on a section (Y or N)? ','s');
if showmore -- ,y=,

disp(b)
disp(' You will set the display sample number and resolution level limits.')
disp (b)
disp([' Sample range 0:',num2str(numpts-l)))
disp([" Resolution range -l:',num2str(-numrows)])
revu - input('Need to see the original contour plots again (Y or N)? ','s');
if revu "- ¥',

contour(c,10,[0:numpts-l],[0:numrows])
title('Contour Map of Approximation Coefficient Energy Distribution')
xlabel(['Sample number "n" (Time - n * ',num2str(Tsample)," sec)'])
ylabel('Decomposition Number (= -Resolution Level)')
pause
contour(d,10,[O:numpts-l],[l:numrows])
title('Contour Map of Difference Coefficient Energy Distribution')
xlabel(['Sample number "n" (Time - n * ',num2str(Tsample),' sec)'])
ylabel('Decomposition Number (- -Resolution Level)')
pause

end
strtsamp - input('Sample start point? ')+l;
endsamp = input('Sample endpoint? ')+l;
highres = input('Highest resolution level (least negative)? ');
lowres = input('Lowest resolution level (most negative)? ');
endrow = numrows+l+highres;
strtrow - numrows+l+lowres;

else
zoom = 0;

end
clg

end
clc
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APPENDIX D

PROGRAM FOR SINGLE PHASE ANALYSIS USING

DAUBECHIES OR USER WAVELET
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% This program performs single phase decomposition of the input waveform
% with either a Daubechies wavelet of user-defined order or with a wavelet
% provided by the user. The input data sequence will be zero-padded to
% accomodate the calculation of all possible non-zero coefficients and
% approximation ("c") and detail ("d") coefficients may be computed for
% sample numbers beyond the data endpoint. The user should consider these
% "edge effects" in his analysis.

% Input the 'h" coefficients

clc
b = [' '3;
disp(b)
D1 = (' Would you like to use:

1. your own decomposition coefficients (use wvhaar.m if you desire'
to use the Haar basis set)'

2. those associated with Daubechies compactly supported wavelets? '];
disp(Dl)
hpick = input('Answer 1 or 2: ');
disp(b)

if hpick == 1,
disp(' Input as a row vector with sum of coefficients normalized to "l".')
hcoeff - input('What is the name of your decomposition coefficient vector? ');
choice = 1;

else
choice = input('What is the desired wavelet order (2-10 are available)? ');
[hcoeff] = daubdata(choice);

end

hlength = length(hcoeff);

if hlength == 0
disp(b)
disp('ERROR: Wavelet order selected is outside allc,;able range.')
break

end

% Determine if user wants to see plots of basis functions

ckplt = input('Do you want to see the Scaling Function/Wavelet (Y or N)? ','s');
if ckplt -= 'y

basisplt
end

% Get the input data vector

clc
disp(b)
Q0 - ['Do you wish to use:

1. your own MATLAB formatted row vector, or
2. a program generated vector from the following menu?'

- Sine wave
- Pseudo-noise (PN) sequence
- Sine wave modulated by PN sequence '3;
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disp (Qi)
Pick - input('Answer 1 or 2:')

if Pick -- 1,
% Read in user's input vector
Wavedata - input ('What is the name of your input vector? ');
sampt req - input('What was the sampling frequency (Hz)? 1);
Tsample - l/sampfreq;

else
(Wavedata,Tsample] - wvinput(Pick);

end

% "g" coefficients are derived from the "~hI coefficients

hcoeff - sqrt(2)*hcoeff;
gcoeff = fliplr(hcoeff);
for j = 2:2:hlength

gcoeff(j) - -gcoeff(j);
end

%Decomposition algorithm

datlngth =length(Wavedata);
numrows =ceil(log(datlngth)/log(2)); %find number of resolution levels

Lastpts =zeros(l,numrows+l); Shift - ones(1,nunrows+l);
Lastpts(numrows+l) = datlngth; lastpt = datlngth;
for k - numrows:-l:l, % find number of points required at each level

evnorodd -rem(lastpt,2);
if evnorodd -= 0,

lastpt. lastpt/2+ceil( (hlength-2)/2);
else

lastpt =(lastpt-l)/2+fix(hlength/2);
end
Lastpts(k) = lastpt;
Shift(k) -2^'(nunrows-k+l);

end.

hhalf =ceil(hlength/2);
dprimne =zeros (numrows, Lastpts (numrows) +hhalf);
cprime =zeros (numrows, Lastpts (numrows) +hhalf);

clastvct - zeros(l,datlngth-i2*hlength-3);
clastvct (hlength-l :datlngth+hlength-2) - Wavedata;
ctr - numrows;
while ctr >0,

lastpt -Lastpts(ctr);
nwcvctr =zeros(l,lastpt);
nwdvctr =zeros(l,lastpt);
for k = l:lastpt % coefficients calculated, by resolution level,

startpt - 2*k-l; % using convolution operation with shifts of 2
endpt. 2*k+hlength-2; %(downsampling)
nwcvctr(k) - hcoeff*clastvct (startpt: endpt)';
nwdvctr(k) - gcoeff*clastvct(startpt:endpt)';

end
clastvct - fzeros(l,hlength-2) nwcvctr zeros(l,hlength-l)];
cprime(ctr,l:lastpt) - nwcvctr;
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dprime(ctr,l:lastpt) - nwdvctr;
ctr - ctr-l;

end

% Coefficient energies are used as a measure of response

cenergy - cprime.^2;
denergy = dprime.^2;

Ni - [' The next plot will show the normalized energy distributions of the'
approximation and detail coefficients as a function of resolution
level. Based on this information, you will select the minimum
resolution level to be displayed on all future plots.

I S

"Edge effects" can cause coefficients to be generated for sample
numbers beyond the endpoints of your data sequence (the lower the
resolution level, the greater the sample number required; therefore,
zero padding of the original data sequence is required).

This program translates the indices of the "h" and "g" vectors to
-(length of vector-2),l ]. As a result, coefficients will exist

for sample numbers beyond the last data point (n-N), but will not
exist for sample numbers prior to the first data point (n=O).
These coefficients are necessary for completeness, but may be
difficult to interpret because the number of original data points
used in their calculation can be a small percentage of the total
considered (the rest are "0"). Similarly, coefficients calculated
for sample numbers near the beginning of the sequence will also be
affected by leading zeros affixed to the data sequence.

Limiting the sample numbers required for display may assist inter-'
pretation; select the lowest resolution level containing significant
energy for this effect. <Return>

clc
disp(b)
disp(Nl)
pause

originlE = zeros(l,datlngth); originlE = Wavedata.^2;
Enrgytot - sum(originlE);
Enrgycro = zeros(l,numrows+l); Enrgydro = zeros(l,numrows+l);
ckerr = zeros(l,numrows);
for k - l:numrows % find energy in each resolution level

Enrgycro(k) = sum(cenergy(k,:));
Enrgydro(k) = sum(denergy(k,:));

end
if Enrgytot == 0,

Enrgycro(numrows+l) = 0;
else

Enrgycro(numrows+l) = Enrgytot;
Enrgycro - Enrgycro/Enrgytot; Enrgydro - Enrgydro/Enrgytot; % normalize

end
Enrgydro(numrows+l) - 0;

ckenergy - Enrgycro(l:numrows)+Enrgydro(l:numrows);
% Energy balance check. The total energy at any level should equal the
% energy in the "c" coefficients in the next higher level.
for k - l:numrows
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ckerr(k) - abs(Enrgycro(k+l)-ckenergy(k));
if ckenergy(k) > 10^(-6)*Enrgytot,
errenrgy - ckerr(k)/max(Enrgycro(k+l),ckenergy(k));
if errenrgy > 10^(-6),
clc
disp(b)
disp(" ERROR: Energy check between levels does not balance.')
disp(' If you entered your own "h" vector, recheck its validity.')
break

end
end

end

lvl = [-(numrows):l:0];
V = [-(numrows+l),l,0,l.2];
axis(v);
subplot(211),bar(lvl,Enrgycro)
title('Normalized Energy of Approximation Coefficients')
xlabel('Resolution Level')
axis(v);
subplot(212),bar(lvl,Enrgydro)
title('Normalized Energy of Detail Coefficients')
xlabel('Resolution Level')
subplot
pause

% Output the number of points required to properly display coefficients at
% each resolution level (determined by "edge effects")

clc
disp (b)
N2 = [' Listed below are the number of samples required to properly display'

each Resolution Level.
disp(N2)
disp(b)
disp(' Resolution Level Number of samples')
for k = l:numrows

vctrindx = numrows-k+l;
numsamps - (Lastpts(vctrindx)-l)*Shift(vctrindx)+l;
disp([' ',num2str(-k),' ',num2str(numsamps)))

end
nmbrlvl = -input('What is the lowest Resolution Level you desire to see? ');

% Plot "c" and "d" coefficients by resolution level

indxtoO = [0:datlngth-l);
plotmin = 1.2*min(Wavedata); plotmax - 1.2*max(Wavedata);
if ((plotmin=-0)&(plotmax==0)), plotmax - 0.5; end
if plotmin > 0, plotmin - 0; end
if plotmax < 0, plotmax - 0; end
v - [O,datlngth-l,plotmin,plotmax];
axis(v);
p:ot(indxto0,Wavedata,'*')
title('Approxiri.ation Coefficients at resolution 0')
xlabel(['Sample number "n" (Time - n * ',num2str(Tsample),' sec)'])
pause

lastrow - numrows-nmbrlvl+l;
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clmnsize - (Lastpts(lastrow)-i)*Shift(lastrow)+l;
c- zeros(nmbrlvl+l,clmnsize);
c(nmbrlvl+l, l:datlngth) - originlE;
d - zeros(nmbrlvl,clmnsize);
ctr - nunrows; ctrl - nmbrlvl;
while ctr >- lastrow,

sampval = zeros(l,Lastpts(ctr));
for k - l:Lastpts(ctr)

index - Shift(ctr)*(k-l)+l;
c(ctrl,index) - cenergjy(ctr,k);
d(ctrl,index) - denergy(ctr,k);
sampval(k) - index-i;

end

plotmin - l.2*min(min(cprime(ctr,:)),min~dprime(ctr,:)));
plotmax = l.2*max(max(cprime(ctr, :)) ,max(dprime(ctr,:)));
if ((plotmin==0)&(plotmax==0)), plotmax = 0.5; end
if plotmin > 0, plotmin = 0; end
if plotmax < 0, plotmax - 0; end
v = [0,max(sampval) ,plotmin,plotmax];
n - numrows-ctr+l;
axis (v);
subplot(21l) ,plot(sampval,cprime(ctr,l:Lastpts(ctr)) ,'*')
title(('Approximation Coefficients at resolution level ',nUm2str(-n)])
xlabel(['Sample number 'In" (Last sample = ',nuinzstr(max(sampval)),')'J)
subplot(212) ,plot(sampval,dprime(ctr,i:Lastpts(ctr)) ,'*')
title(('Detail Coefficients at resolution level ',nuin2str(-n)])
xlabel(['Sample number 'In" (Time = n * ',num2str(Tsample),' sec)'])
pause
clg
ctr = ctr-l; ctrl - ctrl-l;

end
subplot

%Reconstruction algorithm

N3 = 'Recomposition of the original data sequence can be checked if I
desired. The recomposition algorithm starts with the approximation'

*'coefficients at the lowest resolution level previously selectedI
and successively "adds" in the detail coefficients of each level I
until the original resolution of the input sequence is obtained. ');

dcl
disp (b)
disp(N3)
ckalgthm - input(IDo you want to see the Recomposition (Y or N)? ',Is');
if ckalgthm -= 'I,
hrecomp =fliplr(hcoeff); grecomp = fliplr(gcoeff); %invert in time
cstart -cprime(lastrow,:);
ctr - lastrow;
while ctr <- numrows;

lastpt = Lastpts(ctr);
ckvctr - zeros(2,lastpt);
for k - l:fix(hlength/2) %compute higher level "c" coefficients

ckvctr(l,:) = ckvctr(l, :)+hrecomp(2*k)*cstart(k:lastpt+k-.l)+..
grecomp(2*k) *dprime (ctr,k: lastpt+k-l);

ckvctr(2,:) - ckvctr(2, :)+hrecomp(2*k-l)*cstart(k:lastpt+k-l)+..
grecomp(2*k-l) *dprime(ctr,k:lastpt+k-l);

end
if rem(hlength,2) -- 0,
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ckvctr(2,:)=ckvctr(2, :)+hrecomp(hlength)*cstart(hhalf:lastpt+hhalf-l)+..
grecomp(hlength) *dprime(hhalf:lastpt+hhalf-l);

end
ckvctr - reshape(ckvctr, 1, 2*Lastpts(ctr));
cstart - ckvctr;
lastsamp =(Lastpts(ctr+l)-l)*Shift(ctr+l):
jndxtoO = O:Shift(ctr+l) :lastsamp);
plotmin 1 .2*min(ckvctr): plotmax - 1.2*max(ckvctr):
if ((plotmin==0)&(plotmax==0)), plotmax -0.5; end
if plotmin >0, plotmin = 0; end
if plotmax < 0, plotmax = 0; end
v = [0,lastsamp,plotmin,plotmax);
axis (v);
plot(indxtoo,ckvctr(l:Lastpts(ctr+l)) ,I*');
title(f 'Level ',num2str(ctr-numrows),' Recomposition'))
xlabel(('Sample number 'In" (Last sample = ',num2str(lastsamp),')'])
pause
clg
ctr = ctr4-l;

end
axis;
plot (indxtoO, ckvctr(l datlngth) -Wavedata, '*1)
title ( Recomposition Error')
xlabel(['Sample number 'In" (Last sample = ',num2str(lastsamp),')]))
pause
clg

else
axis;

end

1 Display mesh and contour plots of coefficient energy with optional "zoom"
% capability to aid analysis

strtsamp =1; endsamp =clmnsize; strtrow = 1; endrow = nmbrlvl; zoom =1;

highres =-1; lowres =-nmbrlvl;
while zoom == 1,

rangea = -highres-l:-lowresJ; ranged = (-highres:-lowres];
indxtoO= (strtsamp-l:endsamp-1J;
mes~h(c (strtrow: endrow+l, strtsamp: endsamp))
title('Energy in Approximation Coefficients')
if choice -= 1,
xlabel(['using Daubechies Wavelet of order ',num2str(choice)J)

end
pause
contour(c (strtrow: endrow+l, strtsanp: endsamp) ,l0, indxto0, rangea)
title('Contour M!ap of Approximation Coefficient Energy Distribution')
xlabel(('Sample number 'In" (Time = n * ',num2str(Tsample),' sec)'3)
ylabel('Decomposition Number (= -Resolution Level)')
pause
mesh (d (strtrow: endrow, strtsamp:endsamp))
title('Energy in Detail Coefficients')
if choice -= 1,
xlabel(('using Daubechies Wavelet of order ',num2str(choice)J)

end
pause
contour(d (strtrow:endrow, strtsamp: endsamp) ,10, indxtoo, ranged)
title('Contour Map of Detail Coefficient Energy Distribution')
xlabel(['Sample number 'In" (Time = n * ',numzstr(Tsample),' sec)'))
ylabel('Decomposition Number (- -Resolution Level)')
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pause
clc
showmore = input('Would you like to "zoom" in on a section (Y or N)? ','s');
if showmore == ,y,

disp (b)
disp(' You will set the display sample number and resolution level limits.')
disp(b)
disp([' Sample range 0:',num2str(clmnsize-l)])
disp([' Resolution range -1:',num2str(-nmbrlvl)])
revu = input('Need to see the original contour plots again (Y or N)? ','s');
if revu == '¥',

contour(c,10,[O:clmnsize-l],[O:nmbrlvl])
title('Contour Map of Approximation Coefficient Energy Distribution')
xlabel(['Sample number 'n" (Time = n * ',num2str(Tsample),' sec)'])
ylabel('Decomposition Number (= -Resolution Level)')
pause
contour(d,lo,[O:clmnsize-1),[l:nmbrlvl])
title('Contour Map of Detail Coefficient Energy Distribution')
xlabel(['Sample number "n" (Time = n * ',num2str(Tsample)," sec)'])
ylabel('Decomposition Number (= -Resolution Level)')
pause

end
strtsamp = input('Sample start point? ')+l;
endsamp = input('Sample endpoint? ')+I;
highres = input('Highest resolution level (least negative)? ');
lowres = input('Lowest resolution level (most negative)? ');
endrow = nmbrlvl+l+highres;
strtrow = nmbrlvl+l+lowres;

telse
zoom = 0;

end
clg

end
clo
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APPENDIX B

PROGRAM FOR MULTIPHASE ANALYSIS WITH ANY WAVELET
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% This program will decompose the input waveform with a Haar wavelet, a
% Daubechies compactly supported wavelet of user-defined order, or with a
% wavelet provided by the user.
% A "sliding" data window is used to maximize signal analysis features
% of the decomposition by negating the effects of random signal time of
% arrival. Approximation and detail coefficients may therefore be
% computed at all resolution levels for every "n" (sample number).
% Because of finite input data length, however, some of the coefficients
% will suffer from "edge effects", i.e., the sample values beyond the
% end of the data sequence are treated as "0"s.
% Output graphs consist of "3-D" MATLAB mesh plots and "waterfall"
% contour maps of the approximation and detail coefficients, in addition
% to plots of the coefficients at each level (if desired).

% Input the "h" coefficients

clc
b = [' "];
disp(b)
D1 = [' Would you like to use:

1. your own set of decomposition coefficients, or
2. those associated with the Haar wavelet, or
3. those derived from Daubechies group of wavelets?'];

disp(Dl)
hpick = input('Answer 1, 2, or 3: ');
disp(b)
disp(b)

if hpick == 1,
disp(' Note: Sum of coefficients must be normalized to equal 1.')
disp(b)
hcoeff=input('What is the name of your decomposition coefficient vector? ');
choice = 1;

elseif hpick =- 2,
hcoeff = [0.5 0.5);
choice = 1;

else
choice = input('What is the desired wavelet order (2-10 are available)? ');
[hcoeff] = daubdata(choice);

end

hlength = length(hcoeff);

if hlength -= 0
disp(b)
disp('ERROR: Wavelet order selected is outside allowable range.')
break

end

--------------------------------------------------------------------
% Determine if user wants to see plots of the basis functions

picture=input('Do you want to see the Scaling Function/Wavelet (Y or N)? ','s');
if picture == 'Y'

basisplt
end
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% Get the input data vector

clc
disp(b)
QI = ['Do you wish to use:

1. your own MATLAB formatted row vector, or
2. a program generated vector from the following menu?'

- Sine wave
- Pseudo-noise (PN) sequence

J. - Sine wave modulated by PN sequence

disp(Q1)
Pick - input('Answer 1 or 2: ');

if Pick == 1,
% Read in user's input vector
Wavedata = input('What is the name of your input vector? ');
sampfreq = input('What was the sampling frequency (Hz)? ");
Tsample = 1/sampfreq;

else
(Wavedata,Tsample] - wvinput(Pick);

end

% "g" coefficients are derived from the "h" coefficients

hcoeff = sqrt(2)*hcoeff;
gcoeff = fliplr(hcoeff);
for j = 2:2:hlength

gcoeff(j) = -gcoeff(j);
end

% Decomposition algorithm

datlngth = length(Wavedata);
numrows = ceil(log(datlngth)/log(2)); % determine number of resolution levels
Lastpts = zeros(l,numrows+l);
for k = l:numrows % determine number of points required for each level

Lastpts(numrows-k+l) = datlngth+(2^(k)-l)*(hlength-l);
end
Lastpts(numrows+l) - datlngth; numpts = Lastpts(1);
d - zeros(numrows,numpts); c = zeros(numrows+l,numpts);
c(numrows+l,l:datlngth) = Wavedata; cworkvct - Wavedata;
ctr = numrows;
while ctr >= 1,

n = numrows-ctr;
shift = 2-n; oldendpt = Lastpts(ctr+l); newendpt - Lastpts(ctr);
dnewrow - zeros(1,newendpt); cnewrow = zeros(l,newendpt);
for k = O:hlength-1 % coefficient vectors are calculated for each

% resolution level by adding shifted, weighted
% versions of the next higher level "c" vector
% (same effect as direct convolution)

shifti = k*shift;
cnewrow(l+shiftl:oldendpt+shiftl) - cnewrow(l+shiftl:oldendpt+shiftl)+..

hcoeff(hlength-k)*cworkvct;
dnewrow(l+shiftl:oldendpt+shiftl) = dnewrow(l+shiftl:oldendpt+shiftl)+..

gcoeff(hlength-k)*cworkvct;
end
d(ctr,l:newendpt) = dnewrow;
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c(ctr,l:newendpt) - cnewrow;
cworkvct = cnewrow;
ctr - ctr-1;

end

% User determines output format

clc
disp(b)
D3 = ['Do you want to see:

1. separate plots of the coefficients at each Resolution Level'
in addition to the "3-D" and contour plots, or

2. only the "3-D" and contour plots? '];
disp(D3)
pickplot = input('Answer 1 or 2: ');

% Plot "c" and "d" coefficients by resolution level, if desired.

if pickplot == 1,
indxtoo = [0:datlngth-1];
plotmin = 1.2*min(Wavedata); plotmax = 1.2*max(Wavedata);
if ((plotmin=-0)&(plotmax-=0)), plotmax = 0.5; end
if plotmin > 0, plotmin = 0; end
if plotmax < 0, plotmax = 0; end
v = [0,datlngth-l,plotmin,plotmax];
axis (v);
plot(indxtoO,Wavedata,'*')
title('Approximation Coefficients at resolution 0')
xlabel(['Sample number "n" (Time = n * ',num2str(Tsample),' sec)'])
pause

for k = numrows:-2:2
n = numrows-k+l;
endpt = Lastpts(k);
indxtoO = [0:endpt-l);
plotmin = l.2*min(min(c(k,:)) min(d(k,:)));
plotmax = l.2*max(max(c(k,:)),rr x(d(k,:)));
if ((plotmin==0)&(plotmax==0)). plotmax = 0.5; end
if plotmin > 0, plotmin - 0; enr.
if plotmax < 0, plotmax = 0; end
v = [0,endpt-l,plotmin,plotmax);
axis(v);
subplot(211),plot(indxtoo,c(k,l:endpt),'*')
title(['Approximation Coefficients at resolution level ',num2str(-n)])
xlabel(['Sample number "n" (Number of points - ',num2str(endpt),')'))
subplot(212),plot(indxtoo,d(k,l:endpt),'*')
title(['Detail Coefficients at resolution level ',num2str(-n)])
xlabel(['Sample number "n" (Time - n * ',num2str(Tsample)," sec)'])
pause
clg

end
subplot
axis;

end

% Coefficient energies are used as a measure of response. Display mesh and
% contou•c plots of coefficient energy with optimal "zoom" capability to aid
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%signal analysis

c -c.2

d - .2

strtsamp - 1; endsamp - numpts; strtrow - 1; endrow - num~rovs; zoom =1;
highres = -1; lowres - -nuisrows;
while zoom -= 1,

rangea - -highres-1:-lowres]; ranged - [-highres:-lowresj;
indxtoO (strtsamp-l:endsamp-l);
maesh(c(strtrow:endrow+l, strtsamp:endsamp))
title('Energy in Approximation Coefficients')
if choice -- 1,
xlabel(C'using Daubechies Wavelet of order ',num2str(choice)])

end
pause
contour (c (strirow: endrov+l, strtsamp: endsamp) .10. indxtoo,rangea)
title('Contour Map of Approximation Coefficient Energy Distribution')
xlabel(C'Sample number 'In" (Time - n * ',num2str(Tsample),' sec)'))
ylabel('Decomposition Number (=-Resolution Level)')
pause
mesh(d(strtrow:endrow, strtsamp: endsamnp))
title('Energy in Detail Coefficients')
if choice -= 1,
xlabelU'Iusing Daubechies Wavelet of order ',num2str(choice)])
end
pause
contour (d(strtrow: endrow, strtsa~mp: endsamp) ,l0,indxto0 ,ranged)
title('Contour Map of Detail Coefficient Energy Distribution')
xlabel(['Sample number 'In" (Time - n * ',num2str(Tsample),' sec)'.J)
ylabel('Decomposition Number (=-Resolution Level)')
pause
cl c
showmore - input('Would you like to "zoom" in on a section (Y or N)? ','s');
if shownore -- Y=
disp (b)
disp(' You will set the display sample number and resolution level limits.')
disp (b)
disp([' Sample range 0: ',num2str(numpts-l)J)
disp( I Resolution range -2.: ,num2str(-numrows) 3
revu = input('Need to see the original contour plots again (Y or N)? ',Is');
if revu -== I
contour(c,10,EO:numpts-1),E0:numrows])
title('Contour Map of Approximation Coefficient Energy Distribution')
xlabel(C'Sample number 'In" (Time - n II ',num2str(Tsample),' sec)'])
ylabel('Decomposition Number (=-Resolution Level)')
pause
contour(d, 10, (O:numpts-l), [l:numrowsJ)
title('Contour Map of Detail Coefficient Energy Distribution')
xlabel(f'Sample number 'In" (Time - n * ',num2str(Tsample),' sec)'))
ylabel('Decomposition Number (=-Resolution Level)')
pause

end
strtsamp =input('Sample start point? ')+I;
endsamp -input('Sample endpoint? ')+I;
highres =input('Highest resolution level (least negative)? ');
lowres - input('Lowest resolution level (most negative)? ');
endrow - numrows+l+highres;
strtrow - numrows+l+1owres;

else
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zoom = 0;
end
clg

end
clc
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APPENDIX F

PROGRAM FOR GENERATING ITERATIVE PLOTS OF WAVELETS
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% This program creates and plots the desired iterative approximation
% to the scaling function and the associated wavelet as determined by
% the input "h" vector. The construction is based on the "graphical"
% recursion method.

hcoefnew = 2*hcoeff;
m = length(hcoefnew);

% The "g" vector is determined from the "h" vector.

gcoefnew = fliplr(hcoefnew);
for j - 2:2:m

gcoefnew(j) = -gcoefnew(j);
end

% Recursively build basis functions

numbrits = input('.How many iterations shall we run for the approximation? ');

size = 1;
hpast = ones(l,m);
newsize = m;

for i = l:numbrits

% Build scaling function approximation

hnew = zeros(l,newsize);
for k = O:size-l

hnew(2*k+l:2*k+m)=hnew(2*k+l:2*k+m)+hpast(k+l)*hcoefnew;
end

% Get wavelet from scaling function approximation and also build time vector

wv = zeros(1,2*newsize);wvlet = zeros(l,newsize);timevctr = zeros(l,newsize);
shift = newsize/(m-1);
for k = O:m-1

shiftl = round(k*shift+l);
shift2 = round(newsize+k*shift);
wv(shiftl:shift2) = wv(shiftl:shift2)+gcoefnew(k+l)*hnew;

end
for k = l:newsize

wvlet(k) = wv(2*k-l);
timevctr(k) = k-l;

end

interval - (1/2)^i;
timevctr - interval*timevctr; % scale time axis
s = interval*newsize;

% Plot basis functions and check calculations with areas and inner products

if i <- 5,
plot(timevctr,hnew,'+',timevctr,wvlet,'*')
xlabel(['Support = ',num2str(s),' (Scaling Function: ++++, Wavelet: ****)'])

else
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plot(timevctr,hnew,'-',timevctr,wvlet,'--')
xlabel(C'Support - ',num2str(s),' (Scaling Function: line, Wavelet: dash)'))

end
title(['Approximations for Iteration number ',num2str(i)))
pause

hpast - hnew;
size - newsize;
newsize - 2*size+m-2;

phisum sum(hpast);
wvsum - sum(wvlet);
sp(i) - phisum*interval; % find area under scaling function
sw(i) - wvsum*interval; % find area under wavelet
ip(i)- hpast*wvlet'; % find scaling function/wavelet inner product

end

% Output calculation checks

disp(' ')
disp(' Area under Area under Inner')
disp('Scaling Function Wavelet Product')
disp(' ')
for i = l:numbrits
disp([' ',num2str(sp(i)),' ',num2str(sw(i)),' ',num2str(ip(i))])
end
disp(' ')
disp('<Return>')
pause

clear hcoefnew gcoefnew hpast timevctr wv
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APPENDIX G

FUNCTION FOR CONSTRUCTION OF INPUT DATA
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function [Data,Tsample] = wvinput(x)

% This function supports the various multiresolution programs by building
% the input test vector desired by the user from the following choices:
% Sine wave, Pseudo-noise sequence, and Sine wave modulated by Pseudo-
% noise sequence with optional additive Gaussian noise.

% Determine desired input signal type.

b = [' '];
Q2 = f' Select the desired type of waveform: J

1. Sine wave
2. Pseudo-noise (PN) sequence
3. Sine wave modulated by PN sequence');

disp(b)
disp(Q2)
Make = input('Answer 1, 2 or 3: ');

% Generate the desired sinusoidal signal.

if Make -= 2,
clc
% Determine desired sine wave characteristics.
N2 - (' You will determine the following Sine wave parameters:'

- frequency
- phase
- amplitude
- number of samples
- sampling frequency or data length

disp(b)
disp(N2)
fc = input('Sinewave frequency ("fc") in Hertz? ');
theta - input('Phase (degrees)? ');
A = input('Amplitude? ');
N = input('Number of Samples ("N", with N = a power of 2)? ');
Q3 - [ Do you wish to set:

1. the s'mpling frequency, or'
2. the data length?

disp(b)
disp(Q3)
S5 = input('Answer 1 or 2. ');

if S5 == 1,
N3 = [' Note: Sampling frequency (fs) must be selected so that I

I fs/fc >- 2; Data length will be set to allow "N" samples.'];
disp(b)
disp(N3)
fs2fc - input('Desired sampling-to-signal frequency ratio? ');
const = 2*pi/fs2fc;
fs = fs2fc*fc;

else
N4 = (' Note: Sampling frequency will be chosen to give "N" samples'

I so observation time must be <= "N"/(2*"fc"). ');
disp(b)
disp(N4)
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Tobserv = input('Desired observation time (seconds)? ');
fs - N/Tobserv;
const - 2*pi*fc/fs;
Tsample = 1/fs;

end
Tsample - 1/fs;

% Construct sine wave
theta - theta*pi/180;
for k - l:N

Data(k) - sin(const*(k-l)+theta);
end
Data - A*Data;

if Make == 3, % used if PN modulation is desired
Sinedata = Data;
disp(b)
disp(b)
N4pt5 = [' You will now determine the PN sequence characteristics.');
disp(N4pt5)

end
end

---------------------------------------------------------------------

% This section generates the desired pseudo-noise signal by building the
% appropriate feedback shift register (FSR).

if Make -= 1,
clc
% Determine desired PN sequence characteristics.
N5 = [' Note: PN sequence = (+1 or -l,...,2^m - 1)

Feedback shift register initial state is (ll,...,1)');
disp(b)
disp(N5)
N6 = [' You will determine the following parameters:'

- number of stages
- number and position of taps
- chip rate
- time delay
- number of samples
- sampling frequency or data length

disp(b)
disp(N6)
mstages - input('Desired number (m) of stages (2-10)? ');
numbrtap - input('Number of taps? ');
for k - l:numbrtap

Tap(k)=input(['What is the position of Tap number ',num2str(k),'? ']);
end
chiprate = input('Chip rate (chips/sec)? ');
delay = input('Sequence delay in chips (positive real number)? ');
if Make == 2,

% If the PN signal alone is desired the user must input the number
% of samples and sampling rate: otherwise, they are dictated by
% the choices made for the sinusoid.

A = sqrt(2);
N = input('Number of samples? ');
Q4 = ['Do you wish to set:
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1. the sampling frequency, or'
2. the data length? '];

disp(b)
disp(Q4)
P6 = input('Answer I or 2. ');

if P6 -= 1,
N7 = [' Note: Sampling frequency ("fs") must be selected so that

fs/chiprate >- 2; data length will be set for "N" samples.'];
disp(b)
disp(N7)
fs2cr - input('Desired sampling frequency to chip rate ratio? ');
Tsample = l/(chiprate*fs2cr);

else
N8 = [' Note: Sampling frequency will be chosen to give "N" samples'

so observation time must be <- "N"/(2*Chip rate).
disp(b)
disp(NS)
Tobserv = input('Desired observation time (seconds)? ');
fs = N/Tobserv;
fs2cr = fs/chiprate;
Tsample = I/fs;

end
else

disp(b)
N9 = V' Same number of samples (',num2str(N),') and sampling '];
N10 = 1' frequency (',num2str(fs),' Hz) that were selected for');
Nil = U' the sine wave will be used. <Retura>'];
disp(N9)
disp(NlO)
disp(Nll)
pause
fs2cr = fs/chiprate;

end

% Generate base PN sequence
FSR = ones(l,mstages);
L = 2^mstages - 1;
cklength = N/(fs2cr*L);
repeat = ceil(cklength); % Determine how many periods are necessary
V = zeros(l,(repeat+l)*L);
for k = 1:L % build one period of the sequence

V(k) = FSR(mstages);
sigma = 0;
for m = l:numbrtap % modulo-2 tap adder

sigma = sigma+FSR(Tap(m));
end
FSR(2:mstages) = FSR(l:mstages-l);
FSR(l) = rem(sigma,2);

end

% Ensure enough periods are available for the desired number of samples
for n - l:repeat

V(n*L+l:(n+l)*L) - V(I:L);
end

delay = rem(delayL);
for n = 1:N

Data(n) - V(fix((n-l)/fs2cr + delay)+l);
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if Data(n) -- 0, Data(n) = -1; end % make sequence bipolar
end

end

% If selected, modulate the sine wave with the PN sequence.

if Make -= 3
Data = Sinedata.*Data;

end

% Plot the constructed signal and add noise, if desired.

indxto0 - [0:N-1];
v = [0,N-l,-1.2*max(Data),l.2*max(Data));
axis (v);
plot(indxto0,Data),title('MATLAB Plot of Input Signal Vector')
xlabel('Sample number'),ylabel('Volts')
pause
axis;

clc
disp(b)
disp(' White Gaussian Noise is generated by the MATLAB "random" function.')
noise = input('Do you want noise added to your signal (Y or N)? ','s');
if noise == 'Y',

% SNR based on "continous" signal energy and the Gaussian noise variance

SNRdB = input('What is the desired Signal-to-Noise Ratio (dB)? ');
SNR = 1O^(SNRdB/10);
Noisepwr = ((A^2)/2)/SNR;
rand('seed',O); rand('normal');
noisvctr = Noisepwr*rand(l,N);
Data = Data+noisvctr;
v = [0,N-l,-l.2*max(Data),l.2*max(Data)]:
axis(v);
plot(indxtoO,Data),title('MATLAB Plot of Input Data Vector')
xlabel('Sample number'),ylabel('Volts')
pause
axis;

end

return
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APPENDIX H

FUNCTION FOR DAUBECHIES1 H-COEFFICIENTS
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function~hcoeff) = daubdata(x)

% This function returns the proper "h" coefficients for the specified order
% Daubechies wavelet. The input value of "x" is the specified order.

if x - 2
hcoeff = [0.482962913145;0.836516303738;0.224143868042;-0.129409522551);

elseif x -- 3
hcoeff - [0.332670552950;0.806891509311;0.459877502118;-0.135011020010;

-0.085441273882;0.035226291882];
elseif x == 4

hcoeff [f0.230377813309;0.714846570553;0.630880767930;-0.027983769417;
-0.187034811719;0.030841381836:0.032883011667;-0.010597401785);

elseif x == 5
hcoeff = [0.160102397974;0.603829269797;0.724308528438;0.138428145901;

-0.242294887066;-0.032244869585;0.077571493840;-0.006241490213;
-0.012580751999;0.003335725285];

elseif x == 6
hcoeff = [0.111540743350;0.494623890398;0.751133908021;0.315250351709;

-0.226264693965;-0.129766867567;0.097501605587;0.027522865530;
-0.031582039318;0.000553842201;0.004777257511;-0.001077301085);

elseif x == 7
hcoeff = [0.077852054085;0.396539319482;0.729132090846;0.469782287405;

-0.143906003929;-0.224036184994;0.071309219267;0.080612609151;
-0.038029936935;-0.016574541631;0.012550998556;0.000429577973;
-0.001801640704;0.000353713800];

elseif x == 8
hcoeff = [0.054415842243;0.312871590914;0.675630736297;0.585354683654;

-0.015829105256;-0.284015542962;0.000472484574;0.128747426620;
-0.017369301002;-0.044088253931;0.013981027917;0.008746094047;
-0.004870352993;-0.000391740373;0.000675449406;-0.000117476784);

elseif x == 9
hcoeff = [0.038077947364;0.243834674613;0.604823123690;0.657288078051;

0.133197385825:-0.293273783279;-0.096840783223;0.148540749338;
0.030725681479;-0.067632829061;0.000250947115;0.022361662124;
-0.004723204758;-0.004281503682;0.001847646883;0.000230385764;
-0.000251963189;0.000039347320];

elseif x == 10
hcoeff = [0.026670057901;0.188176800078;0.527201188932;0.688459039454;

0.281172343661;-0.249846424327;-0.195946274377;0.127369340336;
0.093057364604;-0.071394147166;-0.029457536822;0.033212674059;
0.003606553567;-0.010733175483;0.001395351747;0.001992405295;
-0.000685856695;-0.000116466855;0.000093588670;-0.000013264203);

else
hcoeff =
break

end

hcoeff = hcoeff'/sqrt(2); % normalize the "h" vector

return
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