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SECTION 1. INTRODUCTION

Carbon-carbon composite with its superior mechanical properties at elevated temper-
atures is utilized in structures subjected to high temperatures and severe thermal gradients
such as rocket nozzles and reentry space vehicles. Though the material retains most of its
strength and stiffness when heated, it is brittle and as all composites is afflicted by statistically
distributed imperfections: matrix poor regions, broken fibers and voids. Such imperfections
are more prevalent in large components than in small, laboratory specimens hence structural
reliability analysis must account for a probability based size effect.

In Part | {1] of this report, experimental results on mechanical properties and on size ef-
fect in carbon-carbon have been presented while Part Il [2] reports the development of a
structural reliability analysis based on the "weakest link” principle. The present, Part Ili, ap-
plies the data and the reliability analysis to a cylindrical structure of this matarial subjected
to thermal shock combined with internal pressure.

Sudden changes in temperature may produce severe thermal stresses in these struc-
tures. in such situations, the velocity of the strain induced by temperature should be consid-
ered. For some materials, the effect of thermo-mechanical coupling is ‘important when
subjected to a thermal shock. Earlier studies on coupled thermoelasticity can be found in
references [3-5]. It is observed that when temperature changes at a very high rate, the effect
of volume change cannot be neglected. A coupling term, defined as the contribution of energy
resulting from the volume change, is to be added to the classical Fourier heat conduction
equation [3]. As a resuit, in addition tc the temperature function, there is also the volume
strain function in the corrected relation. Under this circumstance, the temperature distribution
in the structure cannot be independently obtained by considering only the heat conduction
problem. The coupled heat conduction equation and the equilibrium equation must be solved
simuitaneously.

A coupled thermal stress problem of an infinite axisymmetric solid cylinder is analyzed
by Takeuti and Tanigawa [6,7]. To obtain the solution, a harmonic function is introduced to
constitute the relation between the volume strain and temperature functions. The technique
of Laplace transform is used in these papers.

The complex frequency response functions for temperatures, displacements, and
stresses for the general uncoupled thermoelasticity problem in a long multilayered cylinder
can be found in Thangjitham, Heller, and Singh [8]. The applications of these functions to
stress analysis under steady harmonic thermal loadings are found in references [9,10].

In 1978, Kalam and Tauchert [11] obtained the solution of stresses in a hollow orthotropic
single layer cylinder subjected to an asymmetric steady-state plane temperature distribution
by the method of Airy’s stress functions in Fourier series form. In 1986, Hyer and Cooper [12]
analyzed stresses and deformations in single layer and multiple layer cross-ply composite
cylinders due to a circumferential temperature gradient by an elastic approach. In that paper,
the temperature does not vary along the axis and the radius of the cylinders, but is in the form
of AT, + AT, cos 6.

Parida and Das [13] investigated the transient plane thermal stresses in a thin circular
disc of orthotropic material due to an instantaneous point heat source. The method of sepa-
ration of variables was applied in solving the heat conduction equation for temperature dis-
tribution, and the stress function was applied in the stress and strain analysis.
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In recent years, more work was reported on transient thermal stresses in composite
material structures. In 1989, Tauchert [14] studied the effects of thermal shock on simply
supported, thin orthotropic rectangular plates. The displacements contain the quasistatic part
which is an exact Levy-type solution and the dynamic part which was obtained by Galerkin’s
method and Laplace transformation. Tanigawa, Murakami and Ootao {15] analyzed on tran-
sient thermal stresses in a laminated composite beam made of different materials in muliti-
layers. The temperature of the beam was assumed to vary in the direction of the thickness,
and the heat conduction equation was solved by Laplace transform. The thermal stresses
were obtained by elementary beam theory and Airy’s thermal stress functions. Wang and
Chou [16) worked on transient interlaminar thermal stresses in symmetric angle ply composite
laminates with infinite length and finite width. The temperature varies in the width direction.
The heat conduction equation was solved by the separation of variables method and the
equilibrium equation was analyzed by zeroth-order perturbation technique.

In Section 2 of this report, thermal stresses in a long hollow multilayered cylinder sub-
jected to sudden axisymmetric external and internal temperature are analyzed. Coupling re-
sulting from the mutual influence of material thermal and mechanical parameters will be
examined while the inertial effect will be neglected. The method of complex frequency re-
sponse functions together with the Fourier transform technique is utilized here. Due to the
linear nature of the problem, the time response functions for temperatures, displacements,
and stresses are obtained by applying inverse Fourier transforms to the product of the com-
plex frequency response functions and the Fourier transform of the input temperature. The
integral of the inverse Fourier transform in this problem is found to involve only those of real
functions. As a resuit, standard numerical techniques can be implemented in the inversion
procedure. The reliability of the cylinder is analyzed based on the “weakest link” principle
and the two parameter Weibull distribution.

For carbon-carbon composite, the coupling parameters are very small, and the coupling
effect can be neglected. In Section 3 of this report, uncoupled thermal stresses and reliability
are investigated in a long hollow layered orthotropic cylinder subjected to asymmaetric thermal
shock and internal pressure. The method of Laplace transform and Fourier series with the
elasticity approach are applied in this problem. The "weakest link” principle which takes into
consideration both the applied stresses and the effected volume of material is used again in
the reliability analysis, but a three parameter Weibull distribution is applied.




SECTION 2. COUPLED THERMAL SHOCK
PROBLEM

Governing Equations

The heat conduction equation for a plane axisymmetric coupled thermoelasticity problem
expressed in terms of cylindrical coordinates is given as [17-19]

14T *ETp  ge )
Y at ypC,(1 —2v) at

where T(r,t) and e(r.t) are the temperature and volume strain functions, r and t are the radial
coordinate and time, V* is the Laplacian operator, £ and v are the modulus of elasticity and
Poisson's ratio, and a, y, p, and c, are the coefficients of thermal expansion and of thermal
diffusivity, mass density, and specific heat, respectively.

The thermo-mechanical coupling parameter, §, is expressed in terms of the material
mechanical and thermal properties as [17-19]

V3T =

14+v azETR

S= Ty U= 200c,

@

where Tz is the reference temperature.
in terms of the thermo-mechanical coupling parameter, 5, Eq. 1 can be rewritten as

Vr=—2 2 v 08 @3)

where the second term on the right-hand side of the above equation represents the coupling
effect of volume strain to the temperature field.

The equation of equilibrium for the case of plane strain under axisymmetric heating is
given, in terms of cylindrical coordinates, as [18]

_Q_e_=1+v or
or 1—v “or “)

The volume strain function, e, and radial displacement, u(rt), are connected through the
relationship

du
o= + (5)
In terms of the volume strain, radial displacement, and temperature, the nontrivial stress
components are obtained as [18]

vE E_ou__
= (-2 T Tey or T-2v

T (6)




. E u_
“A+wi=-29 T4V 7

aE
1—2v

0’9 T (7)
where o,(r.t) and g4(r.t) are the radial and tangential stress components, respectively.

The variables in Egs. 3 through 7 are written in terms of dimensionless variables with the
following transformations:

t
r— —rr— . v’-»r,§v2, t~ RLE
R r2
R
T e o o9
[ Te' 5 apTg O agTrEr © "9 aglpEr @
E 14 x
E- Er’ AT T

where rz, Ea, ar, and yg are the characteristic radius, reference modulus of elasticity, and ref-
erence coefficients of thermal expansion and of thermal diffusivity, respectively.
Integrating Eq. 4, the volume strain function is obtained as
o=ttt u(T+®) )

-V

where @(t) is an unknown function of time.
Substituting Eq. 9 into Eq. 3, the coupled heat conduction equation becomes

A+8 0T 5 90
4 ot Y ot

where the heat conduction equation is now decoupled. The coupling effect is represented by
the coupling parameter, 4, and the unknown function of time, ®. Because the volume strain
function does not appear in the heat conduction equation, the equation involves only the
temperature and ® function.

vir = (10)

Method of Complex Frequency Response Functions

When a sinusoidal temperature input of some amplitude and frequency, w, is applied to
the structure, the responses, such as temperatures, strains, displacements and stresses in the
structure, will become sinusoidal with the same frequency as the input but will have different
amplitudes and will undergo phase shifts [8-10,18,19]. To analyze the problem under this type
of temperature input, the method of complex frequency response functions is expedient. The
complex frequency response function is defined as the output response resulting from a
sinusoidal temperature input of unit ampiitude and frequency, w. To utilize the method of
complex frequency response functions, the following solutions are assumed.

e =¢ exp(iot) , T=T exp(iot), ® =  expliot) (11a, b, c)
_ u=uexp(iot), o, = o, exp(iot) , 09 = ag expliwt) (11d. e, )
where é(r, ), T(r, w), 6(w). u(r, w), ar, o), and G(r, ) are the corresponding complex fre-

quency response functions for e, T, ®, u, o,, and o, respectively, and i=,/-1.
Substituting Egs. 11(b) and 11(c) into Eq. 10, the coupled heat conduction equation, ex-

pressed in terms of the complex frequency response functions, Tand @ is given as
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(1+9)
Y

X

Y

where the above equation is a complex differential equation with  as a parameter.
The general solution of Eq. 12 is obtained as

V3T = ioT + io® 12)

~

0] (13)

-t 0
T = CyBr(ar) + C,Kr(ar) — T+ 5
where Ci(w), k=1,2, are the complex con‘s}ams_QLi_ulegration to be evaluated by applying the
appropriate boundary conditions, a(w) = /(1 + d)w/y , and Br(x) and Kr(x) are defined as

Br(x) = ber(x) + ibei(x) , Kr(x) = ker(x) + ikei(x) (14)
where ber(x), bei(x), ker(x), and kei(x) are the Kelvin functions of order zero [20].

Substituting Eq. 13 into 9 and in conjunction with Egs. 11(a), (b), and (c), the frequency
response function for the volume strain, e, is given as

(+v) 13
(1—v) 1+6 ‘D] (%)

Upon substituting the_above expression into Eq. 5, the complex frequency response
function for displacement, u, is obtained by direct integration as

e =

« [C1Br(ar) + CoKr(ar) +

14+ v —1 ! -1 r -1 1+ v)a ~
1= Cyr I EBr(ag)dé + Cyr J $Kr(a§)dg | + Car +2(1_—er¢ (16)

Ny
i

Similarly, upon substituting T in Eq. 13, € in Eq. 15 and 4 in Eq. 16 into Eqs. 6 and 7, the
complex frequency response functions for stress components o, and o, are obtained as

E
14+v

~ xE

g, =—

-2
Cqyr
—v 3

r r
Iic,F2 _[ EBr(ad)d¢ + Cor ™2 _[ {Kr(a{)d{] -

aE[1+26(1 —v)]  ~

201 — v)(1 = 29)(1 + 6) (7
r r
g = 10_‘_5 . C, [,-2 f ¢Br(a&)dé — Br(ar)] + 1“_5 " C2[r' f §{Kr(aé)dé — Kr(ar)]
E . o aE[1+26(1~v)] ~
T O =2+ 9) (18)

where C,, k=1,2,3, are the integration constants.

Boundary Conditions

For each layer of a multilayered cylinder, there are a total of four unknown constants,

namely, C;, C;, C,, and @, to be simultaneously evaluated by a set of proper boundary condi-
tions. Consequently, for a J-layered cylinder, there are 4J unknown constants to be evaluated.
This is accomplished by applying the temperature, heat flux, displacement, and traction
boundary conditions at the bounding surfaces and at the interfaces of any two adjacent layers.

In this study, a hollow J-layer cylinder (Fig. 1) is considered. Because there exist no in-
duced stresses in the air core (layer 1), only uncoupled temperature analysis is required for
this layer. The remaining (J — 1) layers are stressed layers for which the solutions of coupled
thermoelasticity are sought. Depending on the location of the applied input temperature, there

5




are two boundary value problems to be considered, i.e., the input temperature is uniformly
applied (a) on the outer surface of the outermost (Jth) layer and (b) on the inner surface of the
innermost stressed (2nd) layer.

Case a: For the case where the input temperature is uniformly applied on the outermost
surface of a hoillow J-layer cylinder, the following boundary and interface conditions are ap-
plied.

At r = 0 (center of the bore)

8CA T1(r,t) is finite
At r=r, (on the innermost surface)

Bc2 TrH=Trp

aT'(r.p) . aT(r.t)
a2 o

BC3 K

BC4 X (rt)=0

Atr=r;, j=23..4J—1 (on the interfaces between layers)
Bcs Tr=T*"(.0

LIE () ar' .0

“ar U+ e

Be.r i n=d*' 0

BCE K

BC8 or.ty=ot'(r. )

At r = r; (on the outermost surface)
BCY TUr.H-Tyt)=0
BCA0  &)(r,t)=0

where k; is the thermal conductivity of the jth layer and T,(f) is the input temperature.

In the above boundary conditions, BC.2 and BC.5 and BC.3 and BC.6 are the temperature
and heat flux continuity conditions across the interfaces of any two adjacent layers, respec--
tively, BC.4 and BC.10 imply the traction free conditions at the innermost and outermost sur-
faces, while BC.7 and BC.8 indicate the continuity of displacements and tractions at the layer
interfaces, respectively.

Case b: For the case where the input temperature is uniformly applied to the inner sur-
face (bore) of the cylinder, that is at r = ry, the boundary condition BC.1 is not required and
BC.2 is replaced by

BC2a T r.—T,t)=0
while the outermost surface is assumed to be insulated such that BC. 9 is replaced by

arl(r Wt

Bcoa LWb _,

ar

The other interface boundary conditions are identical to those for the case of extarnal input
temperature.




Figure 1
Configuration of the Cylinder




Reliability Analysis

The structural reliability analysis of the cylinder is based on the “weakest link” principle
which takes into consideration both the applied stress and the effected volume of material.
The probability that a unit volume of material survives under the application of a stress, S, is
given as [21]

m
L(s)=exp [_(_s_) ] (19)
RC

where L(s) is the reliability, R. and m are the “characteristic” ultimate strength of the refer-
ence volume, and the Weibull shape parameter respectively. These two constants define the
two-parameter Weibull distribution. The “characteristic strength” has a probability of survival
of L(R;) = e~' = 0.3679. Survival of structural components requires that all volume elements
survive. When the elements are independent of each other, the reliability of the component
L is equal to the product of the individual reliabilities of volume elements (weakest link hy-
pothesis) [22].

L Sy m V1 Sp m V2
(81,80, ... Sp)=¢exp | — R. v, x exp | — R. v,
m
s v
X...X exp [—(R—") V—:’] (20)
[

where n is the total number of all the volume elements and v, is the reference volume whose
strength parameters are R. and m. Using the common base, e

D7 s V,
L=exp [-Z(Fjg) V—::| (21)
j=

For small volume elements the summation is replaced by integration

m
L =exp [—J(Ric “’,—‘r’] 22)
v

where the risk of failure, A, the exponent of e, is called the stress-volume integral [23]. |If
Snax IS the maximum value of the applied stress through the component and V is its total
stressed volume, Eq. 20 may be written in terms of dimensioniess ratios as

v

The integration is carried out only over the volume where stresses exist. A safety factor is
introduced as follows

Re

smax

Ve =

Reliability function such as Eqg. 23 can be written for each layer of the carbon-carbon cylinder.
After the stress distribution is calculated the reliability of each concentric cylindrical layer is
determined.

In cylindrical coordinates, dv is equal to 2zrdr and hence Eq. 23 is transformed to

8




In(1jL) = 1 = 21:(7,‘5-)'",,1’ Jv (—st)m%ﬁ (24)

Tension tests have been performed on dog bone shaped carbon-carbon composite
specimens in both the warp and fill directions [1]. The specimen size (reference volume) is
2 x 1/4 x 3/8 in, or 0.1875 in’. An average strength of us = 15,000 psi was measured in the
warp direction while the fill strength was 6000 psi. The coefficient of variation (COV) in both
cases was 6.67%.

From these observations the shape parameter, m and the characteristic strength R, of the
reference volume is caiculated as

1.2
m=Tov (25)
Re=—"0-— (26)
r+—4)
where I'(.) is the gamma function. The observed values for m
1.2
m=Go67 8
and for the characteristic strength in the warp direction, R.., and fill direction R.,
_ 15,000 . _ 6000 _ .
Rew= 09711 = 15400psi and R, = 09711 = 6,180 psi

are obtained.
The probability of failure, Py, of a jth layer is calculated from Eq. 24 as

The reliability of the complete structure is again based on the weakest link principle and is
calculated as the product of layer reliabilities. The probability of failure of the complete
structure becomes

P=1-] ]y D

j=1

When all the tangential stresses in the cylinder are smaller than the characteristic strength
R. and the A values are very small, then the foilowing equation is quite accurate:

n ny
j=1 j=1

where n is the total number of layers.

lllustrative Examples

When the input temperature is a harmonic function with an amplitude A and frequency
w, such that

To(f) = Ae™! (30)




the response X(r.t), such as temperature, dispiacement, and stresses, can be expressed in
terms of the complex frequency response function as follows:

= | X| expli(wt + ¢)] @31

where | X(r, w)| and ¢(r, w) are the frequency dependent amplitude and phase angle of the
response, respectively, and are defined as

X=AH , ¢ =tan""(HplHge) (32)

with H(r, o) =Hgre(r, @) + iHu(r. ) the corresponding complex frequency response function for
the input temperature with a unit amplitude and frequency w.

If the input temperature is a general function of time, then the responses (temperature,
displacement, and stresses) are also some functions of time. In this case, the time response
functions for temperature, displacement, and stresses are obtained via the method of Fourier
transforms. The Fourier transform pair is defined as [24-25]

X(r, @) = f X(r.e™ “tat X(r.t)=2—1n_-J‘ X(r, w)e™'do (33)

where )?, in this case, is the complex function representing the product of the frequency re-
sponse function and the Fourier transform of the input temperature such that

X =HT, (34)
for which T.(w) is the Fourier transform of the input temperature.

For the current problem of coupled thermoelasticity, the response function Hisa complex
conjugate function with respect to w, that is

Hgelr, o) = Hrelr, o) and Hi(r, =) = = (T, ©) (35)

Furthermore, if the Fourier transform of the input temperature f.(w) is also_a conjugate func-
tion with respect to the input frequency w, then X, as the product of H and T,, is also a conju-
gate function with respect to the frequency, o

Xpe(r, ) = Xelr, @) . Xpy(r, =) = = Xpy(r, ) (36)

In this situation, the inverse Fourier transform of )?. Eq. 22, can be rewritten as

X(r, ty= % J [ERE(r. ) cos(wt) — )?:,M(r. ) sin(wt) [de (37)
0

where the above integral involves only real functions and can be integrated using standard
numerical methods. After performing the inverse Fourier transformation, the responses, such
as temperature, displacement, and stresses at any given point in the cylinder are obtained
as functions of time. The advantage of using the Fourier transform technique is that it can
directly utilize the existing complex frequency response functions. Furthermore, the integral
for the inverse Fourier transform is simpler to obtain than that for the Laplace inverse trans-
form.

In this section, thermal shocks are applied to a hollow thirty two layer cylinder, with two
alternating layers of fiber. The geometric, thermal and mechanical parameters used are listed
in Table 1 while the cylinder configuration is shown in Fig. 1. The input shock temperature is
modeled as

0 for t<0
Ta(t)={2700/3te1 PR for t>0 (38)
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Table 1. Geometric, Thermal and Mechanical Parameters for Isotropic Materials.

Fiber Layers
Material, j Air Fill Direction (2) Warp Direction (8)
Thickness (in) =452 0.015 0.015
Conductivity, k,

(Btu/hr ft°F) 0.0142 125 12.5
Diffusivity, y, (in¥/hr) 106.28 96.107 86.107
Elastic Modulus, E; (psi) - 1.6x10° 2.55x10°
Poisson’s Ratio, v, - 0.05 0.08
Strength, R, (psi) - 1.6x10° 1.5x10*
Coefficient of Thermal Expansion, a;

(in./in.-°F) - 1.75x10-8 1.75x107%
Coupling Coefficient, 4, —— 0.0 0.0

01 0.1
0.3 03
0.5 0.5

where f is a constant that regulates the rise time and decay of the shock. The rise time, {m,
is defined as the time required for the input temperature to reach the maximum value. In
terms of the constant 8, t,=1/8. Thermal shock with rise time, t» = 1 second, is investigated
(Fig. 2).

The Fourier transform of the input temperature function, Eq. 38, is obtained as

ﬁ2 —w? —i 28w
(p2 + w2)2 (ﬁZ + w2)2

T,(w) = 2700Be [ (39)

where it is obvious that T, is a complex conjugate function with respect to w.

Cylinder subjected to an internal shock

For the temperature time history (Fig. 2) applied to the innermost surface, the tangential
stresses on the innermost and outermost surface are shown in Figs. 3 and 4 for different
coupling coefficients 6. The tangential stresses on the innermost surface reach the highest
compressive values first, eventually stress inversion takes place; finally stresses tend to zero
while the shock decays. The tangential stresses on the outermost surface reach the highest
tensile values first, then they change sign and reach the highest compressive values; they also
tend to zero while the shock decays. The maximum compressive stress in the cylinder occurs
at the innermost surface while the maximum tensile stress occurs at the outermost surface.

The probabilities of failure of the structure, the innermost and outermost layers have
been calculated as indicated in Section 2 with a coupling coefficient, 4, of 0.1 and are pre-
sented in Fig. 5. These probabilities are influenced most by the stresses on the innermost
surface. The effect of the coupling coefficient on the failure probabilities of the cylinder is
shown in Fig. 6.
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Cylinder subjected to an external shock

For the same temperature time history applied to the outermost surface, the tangential
stresses are presented in Figs. 7 and 8. The tangential stresses on the innermost surface
reach the highest tensile values first, then they change sign and subsequently reach the
highest compressive values, finally tending to zero while the shock decays. The tangential
stresses on the outermost surface reach the highest compressive values first, then they
change sign and reach the highest tensile values, again tending to zero while the shock de-
cays. As with the internal shock, the maximum compressive stresses are greater than the
tensile ones, but, on the contrary, the maximum compressive stresses occur at the outermost
surface while the maximum tensile stresses occur at the innermost surface.

The probabilities of failure of the structure, the innermost and outermost layers have
been calculated and plotted in Fig. 9 for a coupling coefficient, , of 0.1. These probabilities
are influenced most by the stresses on the outermost surfaces. It is seen that the two highly
stressed layers on the two surfaces of the cylinder contribute most to the probability of failure.
The effect of the coupling coefficient on the failure probabilities of the cylinder is shown in Fig.
10.

Figs. 3, 4, 7 and 8 show the evident differences of tangential stresses for different coupling
coefficients. When the coupling coefficients are larger, the maximum tangential stresses are
larger. The coupling coefficients have similar effects on the probabilities of failure, hence it
is very important to study these effects when the coupling coefficient, é, is large. Some typical
coupling coefficients are presented in Table 2 for various materials.

17




Inner Surface Tangential Stress (ksi)

aoa i g 2 2 2 4 3

10 15

Figure 7
Tangential Stress on the Innermost Surface under External Thermal Shock

18




10

Ty oeey  TyYyrTrvrTund LRI L LI

y—

Outer Surface Tangential Stress (ksi)

Figure 8
Tangential Stress on the Qutermost Surface under External Thermal Shock

19




0 LI IR TV s s s TVl T 9 9T F P T T Y7

> inngr layer )
% 4 - ..... &R cyﬁnder. .......................... -
Q
A
co o -
S ~. -
s -8 -V
g L\ '
& i I \ |
S 12 i \ g
> X . \.//
= . \ ’
g N, \ . .
E el WAL

-16 \ /‘ -
- . \° . -
s ! ¢ outér layer ' !
l . ‘
L v, ] 4
_20 _|_|_|_|_L:|_|hl RJESEESTEAEEEE. NEN
0 5 10 15
t (sec.)
Figure 9
Probability of Failure of the Cylinder, Innermost and Outermost Layer, under External Thermal
Shock

20




0 TIreryrysrvygy Uf"llllll:l'll'llr'

. 5=00
---- §=0.1

--=- 5=03
—--+ =05

Probability of Failure

_20 2 2 2 2 2 2 2 4 2 s 2 5 2 3 2 4 8 1

0 5
t (sec.)
Figure 10
Probability of Failure of the Cylinder, for Different Coupling Coefficients, under External Ther-
mal Shock

21




Alaesg auytdads xQ'000b = (Ww/0B)) d Ausuap ssew

1BI6EC0 =1 =WN

%.0'00€ = YL

22000 "88¢ 191 ‘€61 6v'0 s-0bXS'S aueyainfjod
g0’} 114 580 o'vs S€0 g1} 1aqig Je|Ad)Y
2910 0L} 960 89l €0 ‘ere 12qi4 anydes
p0E0'0 08¢ 0S5’k S'ie 800 A1} uoqed
. 2Je1ady APLIOIYIJAUIA

oo "002 9’} ‘08t oro v’y pue apuoydjAuirijod
S1'0 ‘0ce vo'l 008 Sv'0 1434 auashishiod
81100 "801 98°L (4! 0£0 ‘208 19318
9000 0'Le Vil 8'82 Sv0 6'Sk pea
8r20°0 06 96'8 9'9i 280 Ve Jaddo)
v.£0°0 ‘G128 oLe ese S€0 069 wnulwngy
‘Jo0) Buidno) _maw_m\m““ﬁuw AlAaeso oyoadg Ewwvn_voﬁ_ﬁ_.“.ﬂﬁ%vuu._%_wwm: 1 oley s,uossiod m:.:umnwv_.mw_w jeuajeyy

[gzZ-9Z]sienoiepy BupeauiBuz swos jo sjusaPjeo) Bujdno) “Z ejqey

22



SECTION 3. ORTHOTROPIC CYLINDER PROBLEM

Temperature Analysis

it has been illustrated in Section 2 that for small coupling coefficients the uncoupled
thermal stress analysis is sufficiently accurate. The carbon-carbon composite has a coupling
coefficient of 5§ = 0.0304 (Table 2), hence in the following, uncoupled analysis is used. The
heat conduction equation for an orthotropic material is given as follows:

2 2

Ir 11 18T _ or
Y +—ZL ) oy — =2 (40)
"( o T oor ) 2257 ot

where T(r, 8.,t) is the temperature function, r and 8 are the radial and tangential coordinates,
and t is time, y«1 and yz are the coefficients of radial and tangential thermal diffusivities, re-
spectively.

Expanding the temperature in the jth layer into Fourier series:

00

T(r. 0, ) = z T (r.He'™ (41)
nN= —o0o

Assuming zero initial condition for the temperature is T{(r, 8, 0) = 0, substituting Eq. 41 into
Eq. 40, and applying the Laplace transform to it, the heat conduction equation becomes:

62?,, + 1 57:" ( n? +s )T =0 (42)
1 af! r or 22 r2 n

where 'f,, is the Laplace transform of T, in Eq. 41. Solving Eq. 42, the temperature in Laplace
transform domain can be obtained in terms of the modified Bessel functions /,(x) and K,(x) as
follows:

?,, =T.ql, (ar) + ?,,QK,"(ar) (43)

R - = J22
a ‘/Y11 and v n,/},11
where f,1 and ff,z are constants to be determined by the following temperature boundary
conditions.
Case a: The input temperature is uniformly applied on the outermost surface of a hollow
J-layered cylinder:
At r = 0 (center of the bore)

BCA  T'(r.6.1 is finite
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Atr=r;, j=123,....J—1(on the interfaces between layers)
BC2 T(re.y=T*r0.1
aTr.6.0 o T80

or T+ or

At r = r, (on the outermost surface)

BC3 K,

BCA TUr0.6-Ty0.4)=0
Case b: The input temperature is uniformly applied on the innermost surface of a hollow

J-layered cylinder:
At r=r, (on the innermost surface)

BCA T'r.6.0=T,0.0

Atr=r.,, j=123..J =1 (on the interfaces between layers)
Bc2 Tire.n=T"Yr0.8

aTr. 6.0 v i 8.9

or I+ or

At r = r,; (on the outermost surface)

BC3 Ky

arl(r.0.t) —o
or

where r".(o. t) is the Laplace transform of the input temperature on the outermost surface.
The temperature can be obtained as the inverse Laplace transform of Eq. 43.

BC4

Stress Analysis

Equilibrium equations for a plane strain problem in cylindrical coordinates are given as:

1 O
—+—(a,—0'9)+-r——5-é—=0
Otg 1 099 2
ar +7.'—a-5—+-,—.-r,9=0 (44)

where a/r, 0,t), o,(r, 8,t) and z,4(r, 0.,t) are the radial , tangential and shear stress components,
respectively.
The stress-strain relationships for an orthotropic plane strain problem are:

o, =Cyqe,+ Cipe9 =BT
Gp = c12 € + C22 &y — ﬁzT (45)

79 = Cegrrg

where ef{r, 0. t), eo(r, 8,t) and y,, are radial, circumference, and shear strain, respectively.
C, i.j=1235 are Hook’s constants; 8, and p, are defined in terms of Hook’s constants and
coefficients of thermal expansion a, , 2y and a, in the radial, tangential and axial directions
respectively, as:
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B1=Csya,+Cipag+Ciaa,
Ba=Cipa,+Crag+Cpaa,

The strain-displacement relations for a plane strain problem in cylindrical coordinates
are:

ou 1,0v
= =7t
A, 0u v
Yrﬂar(aa +r ar) (46)

where u(r, 8, t) is radial displacement and v(r, 8, t) is circumferential displacement. Substitut-
ing Eqs. 45 and 46 into 44, the equilibrium equations for a plane strain probiem in cylindrical
coordinates can be rewritten in terms of displacements in the following form:

2 2 2
du , 1 du 1. 0u u 1 0v
c,,( T >+c6, T gt ~ Szt Cra+ Cod T o5
1 ov
—(Cyp+Ceg) -2 ~1.=0
22 686, I'2 FY) r
62v 1 ov 1 62v v 1 62u
Cee(?*‘?'b?)‘*'szj"a_‘r'ceo?"*(cu*'cse)-; 56
1 du
+(Cag+Cog) =2 -1, =0 @an
22 ee)rz 0

where
T T
=By 2L+ (81— B F

10T
fo=F2r 55

Because of f, and £, radial displacement, u, and tangential displacement, v, contain ho-
mogeneous and particular parts of the solutions of Eq. 47. Expanding them into Fourier series:

oo o0
U= Z (up + Upn) e'"o , v= z (vp + vp,,) e"’o (48)

N =—o0o N m=00

The homogeneous solutions are as follows
forn=0 u°=u°1r"°‘+u°2r"°‘ . vo=0 (49)
where 1y is defined as
dor =/ ‘g%

forn=1 Uy = Uy + UggInr + u13r‘"+u“ kel

Vi =Vaq + Vaa INF 4 Ve P v i M (50)

where
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loe= C11C22 —_— 2C12C53 - (C12)2 + (c11 + c22)C35
"= C11Ces

and

C12 + Cgg
V14 "’(Un +E;;_C—68”12)

Vig =iUyy

2
vomj S22t Cos=Cralh)”
B0 Cpp+Ceg—(Cra+Colhys 2

 Cpp+ Ceg— Cqy (A4)°
Va=1 ¢ T, U4
22 + Ceg + (C42 + Cegldyq
4 4

forn>1 u, = zunmr"'"" V= zvnmr‘"’"

M= mm=1

where 1., are the roots of the following equation
Cy1Ces(An) * = [(C11C22 = 2C1,Ce8 = (€12)* ) n? + (€11 + C25)Ceg J(2n)?
+ Cchee(nz - 1)2 =0

and

4
V. = i Cp + Cee"2 = C11('1nm)2 U o
e Ca2+Cog— (Cr2+Cog)dom
mm=1

(81

The particular solutions can be obtained by the method of variation of parameters. Sub-
stituting the solutions for displacements back into the strain-displacement relationship Eq. 46

and stress-strain relationship Eq. 45, the stresses can be obtained as follows

0r0= (C1z + C14dg))r™™ ~ Tugy + (Crg = Cradon)r™ 0~ Tugg

du c c
0 . L2 12
+C11 or +in T Vm"" T Upo—p1ro

090 = (Ca2 + C12don)™ ™ gy + (Cgg = Cradon)r™ "~ Tugy

Qupo Caz Ca2

+C12 ar +in 3 Vm+ r Um—pzro
1,0030
Ciz + Cop \ Us2
0r1'(¢11 C2 C22+Cw) r
26
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C12(C12 + Cog) = C11(Cap + Cop) + C11Cegh1s 4, - 1,

-2
B C22 + Cgg — (Cy2 + Cep)dy .
+1 C12(C12 + Cog) — C11(Cap + Cos) — C11Cash1 -~ 4,y - "ure
" C2 + Cgg + (Cya + Ceg)dyy
dup, Vo1
+C11 +InC12-—+C12-—-—-ﬁ1T1

Con — o, C12+Ces | Una
COr=\M2T 22 e )T

Cos(Caz = Cra) + (€2 + C12Ce8 — C11Caa)A1q

- r u
" C22 + Ceg — (C12 + Coplday "
2
Ces(Ca2 — C12) — (Ciz + C12Ceg — C44C3) A4 =1,
n Cop + Ceg + (c12 + Ceg)dy 14
dup Vo1

+C12 d +lnC22 r +CQ2 r —ﬁ2T1

i 1 Cia +Ceg | Ur2
o1 = ee\ 1T T+ Ces ) T

C12(C1z + Cog) — C14(Cap + Cog) + C11Ceshn1 4y, - 1,

+il
" Ca2 + Ceg — (Cy2 + Ceg)dq4 "
—i C12(Cy2 + Cgg) — C44(Ca2 + Ceg) — C14Cg41 =1y,
" Caz + Cog + (Crz + Cog)lny "
u Vv dv
p1 p1 p1
+css(i,-,+dr)
forn>1
4
con v oy Cot Caan® = Cillam®_\ | 41,
%= 114nm + Cag| 1 - Ca2 + Ceg — (C12 + Cog)Anm nm
mm1
d
+C11 df +IHC12 f +C12 Tn
4
CigAnm + Caol 1 Caz + Cogn” ~ Crsldnm)” rhom =1y
%on = 124am + C22| 1— C22 + Cog — (C12 + Cea)nm nm
mm1

du, v u
on on on
+Cy2 —Ef— + fHC22 wa + sz - = B,Tn

27

(83)
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. 1+4m Cop+ C63"2 _ C11(lnm)2 Apen — 1
ron = e MT TR Cp+ Ces = (Caz + Conlom tom
mm=1
u Vv av
+ Cegg (in f" - fn + df" )

The constants u,, can be defined by the following boundary conditions
At r = r, (on the innermost surface)

BCA  oXr.0t)=0
BC2  1%(ry, 0.)=0
Atr=r;, j=23,....J—1 (on the interfaces between layers)
BC3 W on=u*"(r.00
BC4  V(r,8.=v*"(r.0.
BC.5  or.0.0=0,""(r; 0.0)
BCB  ty(r, 0.)=17"(r. 0.0
At r=r, (on the outermost surface)
BC.7  o)(r,0.)=0
BC8  thy(r, 0.0)=0

Reliability Analysis

The structural reliability analysis of the cylinder is again based on the “weakest link"
principle which takes into consideration both the applied stress and the effected volume of
material. The probability that a reference volume v, of material survives under the application
of a stress, s, is given as [21]

m
L(s) = ex - =R (55)
( p Ro—Ro
where L(s) is the probability, R., Ry and m are the characteristic ultimate strength of the ref-
erence volume, v,, the minimum strength established by quality control and the Weibull shape
parameter, respectively. These three constants define the three-parameter Weibull distrib-
ution. The characteristic strength has a probability of survival of L(R.) = e~! = 0.3679. Sur-
vival of structural components requires that all volume elements survive. When the elements

are independent of each other, the reliability, L, of the component is equal to the product of
the individual reliabilities of volume elements (weakest link hypothesis) {22).

m m
sy —R "2 -R V.
e =3 A N =
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m
Sp _RO Vn
X .o X €XP [—( R.— R, ) v, (56)

or using the common base e
n m
s, —R Vv,
) 0 ]
L=exp [-;;( R.—Rq ) vr :l (57)

For small volume elements the summation is replaced by integration

s—Ry \" d
= - J({=—"0) v
L=exp ‘: ( R.—Ro ) v, :’ (58)
v
where the risk of failure, 1, the exponent of e, is called the stress-volume integral [23]. If

Smax is the maximum value of the applied stress through the component and V is its total vol-
ume, Eq. 58 may be written in terms of dimensionless ratios as

m m
Y S B v s ___Y dv
In(ijL) = 1 = ( V(1 = 1/Vmax ) Vr ( Smax  Vmax ) 4 59)

s> Ro
The integration is carried out only over the volume where stresses exceed R, [29]. Two safety
factors are introduced as follow

RC
and Ve = Fo-

V. =
¢ smax
Reliability functions such as Eq. 59 can be written for each layer of the carbon-carbon cylinder.
After the stress distribution is calculated the reliability of each concentric cylindrical layers is
determined.

In cylindrical coordinates, dv is equal to 2rrdr and hence Eq. 59 is transformed to

m m
o —1 ) ¥ S__ ) o
In(ljL) = 4 = 2"( V(1 = 1Vimax) ) v, ( Smax  Ymax ) 14 ©0)
>R,

Tension tests have been performed on dog bone shaped specimens in both the warp and
fill directions [1]. The specimen size (reference volume) is 2 x 1/4 x 3/8 in, or 0.1875 in3. Itis
assumed here that the tensile strength and the compressive strength of the carbon-carbon
composite are the same. An average strength of R = 15,000 psi was measured in the warp
direction (circumferential) while the fill strength was 6000 psi (longitudinal) for carbon-carbon
composite. The strength of the fiber layers in circumferential direction, R, = 24,800 psi, is
calculated based on the strengths of the composite [1], while the strength of the matrix layers,
Rn is estimated as 2,000 psi. The characteristic strength R. and the minimum strength R, are
calculated as follows

R.=r,R and Ry=rR

where r. = 1.03 and r, = 0.61. The Weibull shape parameter, m, for both fiber layers and
matrix layers is estimated as 6.17 [1]. The characteristic strength for the fiber and the matrix
layers are R, = 25,544 psi, and R.n, = 2,060 psi. The minimum strength for the fiber and the
matrix layers are Ry = 15,128 psi and Ren = 1,220 psi.

The probability of failure, Py, of an individual layer is calculated from Eq. 60 as
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Pyp=1-1, (61)

The reliability of the complete structure is again based on the “weakest link"” principie and is
calculated as the product of layer reliabilities. Again the probability of failure of the complete
structure becomes

=1- ﬁt., (62)

j=i

lllustrative Examples

The effect of the material properties on thermal stress distributions and reliabilities

For orthotropic materials, there are nine independent mechanical constants, and three coeffi-
cients of thermal expansion compared to two mechanical constants and one coefficient of
thermal expansion for isotropic materials. The following example shows how the material
properties effect stress and reliability distributions of a hollow cylinder subjected to thermal
loading. The cylinder consists of thirty three layers with matrix and fiber layers aiternating.
The thicknesses of layers 1 and 33 are half of the thickness of the rest of the jayers. The ge-
ometric, mechanical and thermal parameters are listed in Table 3 while the cylinder config-
uration is shown in Fig. 11. The input temperature is applied at the innermost surface of the
cylinder and is modeled as

{0 for t<0
Ta(‘)"{sooopte‘ “Ptop  for t>0 (83)

where the rise time ¢, =1/f = 1 second in this example.

To save computing time, it is assumed that the temperature is the same as the input
temperature everywhere in the cylinder. The radial stresses are very small compared with
the tangential stresses in the problem, and will not contribute to the failure of the structure.
Fig. 12 shows the tangential stresses in layers 1 and 2 at the inner surface and in layers 32
and 33 at ine outer surface (Case 1), when both the fiber and matrix materials of the cylinder
are isotropic and have the same Possion’s ratios and coefficients of thermal expansion
(Vir = Ver = vog = vy = 0.33, ty = agy = ay = apm = 2.30 x 10°% in/in -°F). The only dlfference be-
tween ﬁber and matrix materials is their elastic moduli (E;,=Ey=Ey=25x 10° psi,
E, =05 x 10° psi). The tangential stresses in this case are very small and the stresses in the
fiber layers are about five times larger than the stresses in the matrix layers, just as the
elastic modulus in the fiber layers is about five times larger than the modulus in the matrix
layers.

As a parametric study. the moduli of the fiber layers are changed to those of carbon-
carbon (E, = 0.86 x 10° psi, Egr=3.78 x 10°® psi, and E, = 2.79 x 10° psi) and the rest of the ma-
terial properties are kept as in Case 1 above (Case 2). Fig. 13 shows that the tangential
stresses in the same locations as above are increased a little and the tangential stresses in
the fiber layers are still much larger than the stresses in the matrix layers.

Next, the Possion’s ratios of the fiber layers are changed to that of carbon-carbon
(vier=0.2, vy =04, vy, =005), keeping the elastic moduli in the fiber layers as those of
carbon-carbon, and the rest of the material properties as in Case 1. iIn this Case 3, Fig. 14
shows that the tangential stresses in the cylinder are much larger than in the above two
cases, and the tangential stresses in the matrix layers are aimost as large as the tangential
stresses in the fiber layers even though the elastic moduli in the fiber layers are still much
larger than the modulus in the matrix layers.

Finally, all the material properties including coefficients of thermai expansion in the fiber
layers are chosen as those of carbon-carbon (Table 3), and the material properties in the
matrix layers are kept as in Case 1. Fig. 15 shows that the tangential stress distributions are
similar in this Case 4 to Case 3 presented in Fig. 14, but the tangential stresses are even
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Figure 11
Configuration of the Cylinder
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Table 3. Geometric, Thermal and Mechanical Parameters for Carbon-Carbon.
Material Air Core Layer 1 & 33 Odd Layers Even Layers
Thickness

(in) ry=>518 0.005 0.01 0.01
Conductivity in r direction

(Btu/hr ft°F) 0.0142 12,5 12.5 12.5
Diffusivity in r direction

(in¥/sec) 0.040 0.267 0.267 0.267
Elastic Modulus, (psi)

E - 0.5x10° 0.5x10° 0.86x10°

& - 0.5x10° 0.5x10° 3.78x10°

E - 0.5x10° 0.5x10° 2.79x10°
Poisson's Ratio

Ve — 0.33 0.33 0.2

Vi — 0.33 0.33 0.4

Vor — 0.33 0.33 0.05
Coefficient of Thermal
Expansion (in./in.-°F)

&g 230 x 10°® 2.30 x 10~ 2.22 x 107

%2 -— 2.30 x 10°° 2.30 x 10°® 1.67 x 10°°

dag 2.30x 107 2.30x 10°* 167 x10°®

larger and the difference between the tangential stresses in the fiber layers and the matrix
layers are even smaller.

Assuming that the strengths of the matrix and fiber layers take on those of the carbon-
carbon composite (see Section 3) in the parametric study, for the first three cases, the
tangential stresses both in the matrix and the fiber layers are smaller than their minimum
strength R,, hence the reliability of the cylinder is always one. In the last case, the tangential
stresses in the fiber layers are much smailer than the minimum fiber strength, R, and do not
cause failure, but the tangential stresses in the matrix layers in the time range between 0.4
to 2.0 seconds are larger than the minimum matrix strength, Ren. The reliabilities of those
matrix layers are almost 0 and the reliability of the cylinder is also almost O (Fig. 16).

To improve the reliability of the structure, internal pressure was applied at the innermost
surface of the cylinder while subjected to the thermal loading. The internal pressure, P,(?), is
molded similarly to the temperature loading:

0
Palt) = {—-Aﬂte1 =Pt psi

where the rise time ¢, is chosen as 1 second similarly to that of the thermal loading and A is
the maximum value of the internal pressure at t=t,=1/8. When A =500 psi, there is no
failure in the matrix fayers. The maximum probability of the fiber layers is plotted in Fig. 17.
In the time range of 0.0 - 0.5 second and for t > 1.5 seconds, the failure probability of the cyi-

for t<0
for t>0 (64)
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Tangential Stress in Parameter Study (Case 1)
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Tangential Stress in Parameter Study (Case 2)
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Tangential Stress in Parameter Study (Case 3)
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Tangential Stress in Parameter Study (Case 4)
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inder is very small and is neglected. The failure probability of the cylinder as a function of
time is plotted in Fig. 18.

The above example shows that thermal stress and reliability distributions in a multilay-
ered orthotropic cylinder are sometimes much more complicated than thermal stress and re-
liability distributions in a multilayered isotropic cylinder. In the above four cases, the
materials of the matrix are exactly the same, the elastic moduli are almost the same, and the
cylinders are subjected to the same thermal loading, but the first three are safe, the last one
fails.

The effect of rise time, ¢,, on stress distributions
Figs. 19-22 show the maximum tangential stresses at the inner surface of layers 1 and 2, and
at the outer surface of layers 32 and 33 of the same cylinder as in the last example above, for
different rise times, t,, from 1 second to 4 seconds with internal pressure of 400 psi. The rise
time, t, has little effect on the maximum tangential stresses at the outer surface of layer 33
when t, changes from 1 second to 4 seconds. There are obvious differences on maximum
tangential stresses at the rest of the locations mentioned above when rise times are between
tn = 1 second and 2 seconds. The differences are small when t, is larger than 2 seconds.
This suggests that when rise time, t,, is smaller than 1 second, the maximum tangential stress
in the cylinder could be very large, and should be calculated very carefully. But when t, is
larger than 4 seconds, rise time has little effect on the maximum stress.

The effect of various internal pressure amplitudes and thermal shock
In this example, the cylinder is subjected to internal thermal shock together with internal
pressure, P,(f) both with rise times ¢, = 1 second. First, A =500 psi is applied. The tangential
stresses plotted in solid lines in Figs. 23-26 are induced by internal pressure alone, while the
tangential stresses plotted in dashed lines are induced by both the combined internal thermal
shock and pressure. Figs. 27 and 28 show the tangential stresses at different locations in the
fiber and matrix layers, while Figs. 29 and 30 show the maximum tangential stress variations
through the thickness.

Because the radial stresses in the cylinder are very small, they are neglected in the re-
liability analysis. It is seen from Fig. 29 that all the tangential stresses in the matrix layers
are lower than the minimum strength Ren, and have no contribution to the probability of failure.
Failures are due to the tangentiai stresses in the fiber layers. The maximum tangential
stresses in the fiber layers are between 15,893 psi and 16,400 psi, this means that the risk of
failure, 4, is very smail, and the following equation is quite accurate.

n ny
Pr=1-]]u= >4 (85)

j=1 /=1

where ny is the total number of fiber layers.
The maximum probability failure of the jth fiber layer, Pymax, OCCurs when the tangential
stress of the layer reaches the maximum value. When Py, is small, it is defined as

m
p =2 Smax—FRo \ Ft
fimax = * RC —Ro V,-

where F is the mean radius of the layer and ¢ is the thickness of the layer while P,y is defined
as :

(66)

Wi

Ptmax = ZP fimax (67)
j=1

These maxima occur at different times in different layers and do not coincide. Hence
Pmex represents a worst case and is a conservative estimate. Pm,, is larger than the maximum
probability of failure of the cylinder. The failure probabilities, Pma, in fiber layers through the
thickness are plotted in Fig. 31, P for the cylinder in this case is 2.4136 x 10-3. The proba-
bility of failure for fiber layers across the wall thickness are shown in Fig. 32 for various rise
times.
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Probability of Failure of the Cylinder under Combined Thermal and Pressure Loading
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Tangential Stresses on the innermost Surface (Matrix Layer); Thermal and Pressure Loading
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Tangential Stresses on the Innermost Surface (Matrix Layer) Subjected to Internal Thermal
Shock and Internal Pressure
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Tangential Stresses on the Inner Surface of Layer 2 (Fiber Layer) Subjected to Internal Thermal
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Tangential Stresses on the Outermost Surface (Matrix Layer) Subjected to Internal Thermal
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Tangential Stresses In Different Matrix Layers Subjected to Internal Thermal Shock
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Tangential Stresses in Different Fiber Layers Subjected to Internal Thermal Shock
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Maximum Tangential Stresses in Matrix Layers through the Thickness of the Cylinder
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Maximum Tangential Stresses in Fiber Layers through the Thickness of the Cylinder
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Maximum Probability of Fallure of Fiber Layers through the Thickness of the Cylinder
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Now, the maximum internal pressure A is varied from 0 to 1.0 ksi. The reliabilities of the
matrix and fiber layers and of the cylinder under different internal pressures are plotted in Figs
33-35. These Figs show that when A is between 0.3 - 0.55 ksi, the cylinder is safe, when
A < 0.3 ksi, the cylinder fails because the matrix layers fail, and when A > 0.55 ksi, the cylinder
fails because the fiber layers fail first.
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SECTION 4. CONCLUSIONS

Thermal shocks have been applied to the internal and external surfaces of a carbon-
carbon muitilayered hollow cylinder. It has been seen that a large coupling parameter has a
significant influence on structural response. Values of the parameter have considerable var-
jations for engineering materials as indicated in Table 2. Because mechanical and thermal
properties vary with temperature, the coupling parameter also undergoes thermai changes.
Unfortunately inforination on this temperature dependence is largely unavailable, hence a
range of values between zero and 0.5 have been arbitrarily chosen. Coupling affects the re-
sults to a lesser extert when the rise time of the input function is longer, that is, when the input
temperature varies sicwly. In this study, temperature changes rapidly, (rise from room tem-
perature to 3000 °K witnin only several seconds). For high rates of temperature rise, the
coupling effects of thermal and mechanical parameters are important but inertial coupling can
be neglected as long as rates are significantly lower than the speed of dilatational waves in
the material. X

The “weakest fink” principle together with the Weibull distribution has been used to cal-
culate the probability of failure for the structure. This method is applicable to brittle materials
and is useful for structural components in the present problem. Once the stresses in each
element are evaluated, the reliability calculations may be carried out on an element by ele-
ment basis. The reliability of the structure is then obtained from the product rule.

The illustrations presented indicate that for the particular geometry and thermal shock
applied, the structure would fail but the application of an appropriate internal pressure would
reduce the induced stresses and the probability of failure as well.
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