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INTRODUCTION
Objectives

One of the most important areas in research on composite matenials is the area of failure
analysis. Unfortunately, most of this research is deterministic and does not account for the
variability inherent in material properties and in environmental loading conditions. It is a well-
known fact that there is a wide scatter in strength data for composite materials. While for some
materials the deterministic stress/failure analysis may suffice, for others such as brittle composites,
the deterministic stress analysis alone is not enough and must be supplemented by some
statistical theory of failure.

Most brittle materials are afflicted by the so-called “size effect” in some way or another. To
establish this effect, it is necessary to test components of widely varying sizes, obtain properties
and to infer from these the necessary information about the size effect. It is, however, often very
costly and impractical or even impossible to conduct experiments on full scale structures. lItis,
therefore, necessary to scale lab specimen resulits to the real, larger size structural component as
the lab test results are not directly applicable to such full scale structures. One of the objectives of
this research is to investigate the size effect of composite materiais both analyticaily and
experimentally and to establish a methodology of assessing the probability of failure (or reliability)
of structures made of brittle composite materials. The procedure is applied to 2-D woven carbon-
carbon composites. Detailed experimental data are available on tension and compression tests,
off-angle tension tests, in-plane and interlaminar shear tests, 4-point bending on isotropic and
composite beams with and without stress concentrations, and bending tests on composite plates
of various shapes, aspect rauos and stress concentrations [Heller et al, 1991).

Another objective is to perform the failure analysis in non-probabilistic sense because the
reliability analysis does not give information about failure modes and failure locations. New failure
criteria are developed and proposed. These criteria are compared with existing ones found in the
literature.

Literature Review
Reliabikity Analysis

A statistical theory of strength of materials was developed by Weibull (1938, 1939, 1951}
based on the "Waeakest Link” hypothesis. The starting point of the theory was the notion that the
strength of a material may be represented as the weakest strength of a large number of
components. Assuming that the components have independent random strengths, a consistent
tamily of probability distributions was derived. Since Weibull proposed a probability function tor
brittle materiais in 1939, it has been found to adequately describe their behavior.

In the 1970's, several researchers studied the probabilistic failure analysis of brittle
structures using Weibull's distribution function [Staniey, Sivill and Fessler, 1974; Margetson,
1976; Stanley and Margetson, 1977; Margetson, 1980]. However, all work was performed for
isotropic, orthotropic or anisotropic materials and none was devoted to structures made of
composites. Statistical theory of size effect was reviewed and some deterministic strength
theories on orthotropic and composite matesials were proposed by several authors [Hahn, 1975;
Yamada and Sun, 1978].




In 1981, an attempt was made by Wetherhold [1984] to obtain statistical information tor
failure of composite materials by the use of a closed-form expansion of the maximum distortion
energy failure criterion and aiso by the use of a Monte Carlo simulation method on the same failure
criterion [1985]. Only one orthotropic layer was considered, and not a composite structure. Heller
et al. [Heller, Schmidt and Deninghotf, 1984; Heller, Thangjitham and Wall, 1986] apglied the
weakest link theory to a proof-loaded isotropic material and to a composite plate with a hole.
Recently, Thangjitham and Heller [1987] worked on the reliability analysis of an infinite composite
plate with a hole under a randomly oriented load, and Heller et al. {Heller, Thangijitham and Yeo,
1990] investigated size effects of brittle composites and worked on the reliability analysis of
composite beams with stress concentrations. The reliability of composite beams and plates with
and without stress concentrations based on these considerations is discussed in detail by Yeo
[Yeo, 1991).

Failure Analysis

Failure theories existed since the time of Galileo. In his famous experiment, he subjected
rock specimens to tension and observed that the strength depends on cross-sectional area but is
independent of length. He concluded that failure would occur when the "absolute resistance to
fracture,” i.e. critical stress, was reached. This appears to be the first suggestion of the maximum
normal stress theory for predicting fracture of brittle matenals [Rowlands, 1985].

Since then numerous failure criteria were developed for isotropic materials. Though it is
informative to review these in more detail, this review is concermed with those applicable to
anisotropic composite materials.

In 1948, Hill (1948, 1950] introduced a strength criterion for an orthotropic material based
on the observation that under large deformation, the micro-mechanical structure of isotropic
materials becomes anisotropic. He assumed that the yield stresses are the same in both tension
and compression. While it is not common to use Hill's criterion in its original form for composite
materials, it nontheless forms the basis of several composite strength criteria. For an isotropic
material, Hill's criterion has the same form as the von Mises' distortion energy yield criterion.

Hill's criterion was further generalized by Hoffman in 1967 [Hoffman, 1967). Based on
the features of the Mises’ isotropic yield condition and Hill's orthotropic yield condition, Hoffman
proposed a fracture condition for orthotropic brittle materials which contains nine material
parameters that can account for widely differing tensile and compressive strengths in various
directions by intreduction of linear s'ress terms.

Tsai [1968] modified Hill's criterion in 1968 with the assumption that the transverse
strengths in the y- and z-directions are the same for fiber reinforced composites. This modification
is called the Hill-Tsai failure criterion.

In 1971, influenced by the work of Goldenblat and Kovnop [Goldenblat and Kovnop,
1965], Tsai and Wu [1971] presented a general lamina failure criterion. By taking 1st and 2nd
terms (i.e. up to 4th order strength tensors) proposed by Goidenbiat and Kovnop and assuming
that the powers of them are equal to 1, they proposed a quadratic tensor polynomial failure
criterion. Recognizing that the strength theory should be independent of coordinate systems,
they assumed that there exists a certain failure surtace in stress space. The linear terms in stress
are included for possible differences in tensile and compressive strengths, which is similar to
Hoffman's work. Even though there is a disadvantage in this criterion in that the determination of
the interaction coefficients is impractical and difficult, it is the most general failure criterion which
includes most of the other criteria as special cases. The advantages are that (1) it is invariant under
rotation of coordinates, (2) it transtorms via the established tensor transformation laws, (3)




symmetric strength properties are similar to those of stiffnesses and compliances. Therefore, the
mathematical operations with this tensorial failure criterion are relatively easy and straightforward.

In 1973, Hashin and Rotem {1973] proposed a fatigue failure criterion for fiber reinforced
materials under static and oscillatory states of comhined plane stress. They observed that there
are two basically different failure modes - fiber failure and matrix failure. By assuming that the two
are independent (which is not unreasonable), they proposed separate criteria for fiber and matrix
failure.

In 1980, Hashin [1980] extended his previous work and proposed a three dimensional
tailure criterion for unidirectional fiber composites. Based on the idea that most of the
unidirectional fiber composites are transversely isotropic with respect to fiber direction and the
failure criterion must be invarant under any rotation of the axes around the fiber direct'~n, so that
the failure criterion can be at most a function of the stress invariant under such rotation, he
introduced the most general form for transversely isotropic materials. As ne did in his previous
paper, he treated the two planar failure modes ~ fiber mode and matrix mode - separately, and
through some physical argument, derived two failure criteria for the two modes. The plane stress
version of the criterion showed a good agreement with experiments. Nothing was said about
delamination as a failure mode, however.

In 1981, Lee [1981] developed a finite element scheme in which the damaged zone and
modes of failure can be identified. Damage accumulation and the uitimate strength of the
composite laminate can aiso be analyzed. He treated fiber failure and matrix failure separately and
proposed a simple criterion for each mode.

in 1988, Christensen [1988] developed a three-dimensional failure criterion. He first
derived three-dimensional lamination theory in which two restrictions that reduce the five
independent properties of a transversely isotropic material to a form involving three independent
constants are involved. From the resulting three-dimensional tensor transformation equation, he
derived two separate faiiure criteria: one for direct fiber failure and the other for fibermatrix
interface failure. The basic variable used was strain. The direct fiber mode is the same as one of
the maximum strain failure criterion. These criteria were also presented in terms of stresses
through the stress-strain relation. He maintained that longitudinal stress in the fiber direction,

G414, cannot be neglected in a failure criterion involving matrix action.

Brewer and Lagace [1988] proposed a criterion for delamination initiation based on the
quadratic tensor criterion. They extended the failure criterion proposed by Kim and Soni
[1984,1986), with a reasoning that the predicted initiation stresses should be independent of the
sign of the interlaminar shear stresses and by taking only a quadratic term for the interlaminar
normal stress component, they came up with a quadratic delamination criterion.

In 1989, Hwang and Sun [1989] proposed three separate failure criteria for fiber
breakage, matrix cracking and delamination. The failure criteria for fiber and matrix failures are very
close to those of Hashin’s but an additional deiamination criterion was presented.

It was reported, recently [Tolson and Zabaras, 1991] that for T300/5208 graphite-epoxy
laminates with [84/04/-64ls layup under uni-axial tension, Hashin's criterion seems to give results
which are slightly less accurate than Lee's and maximum stress criteria, but more accurate than
Hoffman's and Tsai-Wu's for this particular laminate.

A first-ply-failure analysis applicable to bi-directional orthotropic laminates was developed
by Yeo {Yeo, 1991].




SIZE EFFECT ANALYSIS
Analytical Study of Size Effect

As in the case with other composite materials, the quality of larger components can not be
controlled as carefully as that of small laboratory specimens. Larger components have more
imperfections and volume distributed flaws such as porosity, discontinuous fibers, holes, matrix
poor regions, and so on. As a consequence, most brittle materals such as carbon-carbon have
size effects. This effect usually resuits in strength reduction for larger components and therefore
the probability of failure for such components increases not only with the magnitude of the
applied stresses but with the size of the components. Hence, to accurately assess the reliability
of such components, the size effect has to be somehow incorporated in the analysis.

There are various ways to assess the reliability of structural components. The approach
based on the strength-stress interference is one example. It considers, however, maximum
stress only at a single location, relates it to maximum strength and bases all failures on that one
element. It does not take into account any kind of size effect present in the material.

In this work, reliability analysis based on the “weakest link” principle is applied to caiculate
the reliability of brittle structural components. One disadvantage of this approach is, however, that
it essentially uses deterministic stresses.

" Weakest Link” Analysis
Weibull Statistics for Uni-axial Loading

The probability that a material with unit volume survives under the
application of uniform stress, S, is given as (Weibuli, 1938]

M)

Li(S) = exp [— S—Ro )m ]

Re—Ro

where Li(S) is the probability of survival of a material with unit volume, v, Rc is the "characteristic™
ultimate strength of the unit volume, v, Rq IS its minimum strength and m is its Weibull shape

parameter. These three constants define the three parameter Weibull distribution. The
relationships between the mean, uR, standard deviation, ¢, and the above-mentioned parameters
are as follows:

uR = (Re—Ro) [(1+ 1) + Ro (@)

an= Fero[FT1+ BT 3]

where I'(.) is the tabulated gamma function.




The “characteristic strength” has a probability of survival of Li(R¢) = € ~1= 0.3679. In this
work, the reliability is derived in terms of the characteristic strength rather than the mean strength
in contrast to some authors, [Staniey, Sivill and Fessler, 1976; Stanley and Margetson, 1977;
Margetson, 1980] because the mean value is not associated with any specific probability ievel.

A structural component with volume, V, may be regarded as being made up of N
elementary volume elements. It is assumed that failure in any one element leads to the failure of
the component, or, that the survival of the component requires the survival of every element
(weakest link hypothesis). It is further assumed that the refiability of a particular element is
independent of that of any other element in the component, hence the reliability of the
component is obtained as the product of reliabilities of individual volume elements:

N
L=iI:1[Li (@)

where N = V/v is the number of elementary volume elements in the structural component of
volume, V, and L; is defined in (1). Therefore, the reliability under uniform uni-axial stress, S
becomes

L= exp[——

==

For a material of volume, V, under non-uniform stress, the reliability is obtained by
integrating the stresses over the volume:

S-R
L =exp -—I(Rc Rt:')’ dVi=e— (6)

(5)

where the risk of failure, A, the exponent of e, is called the stressed-volume integral. If Smax is the
maximum value of the applied stress throughout the component and V is the total volume, Eq. 6
may be written in terms of dimensionless ratios as (Staniey, Sivill and Fessler, 1976; Stanley and
Margetson, 1977; Margetson, 1980]

In 1—=k=( 1 )m¥f S—S—- (7)
L Vc(1 - 1/vmax) S>Ro max Vmax

with the introduction of the two safety factors

R
and Vmax = ﬁ: (8)

Vc =
max

Integration is carried out only over the volume where stresses exceed Ry.

v b




Weibull Statistics for Multi-axial Stress States

To analyse the failure of brittle materials subjected to muiti-axial stress states, the Weibull
statistics can be modified with the aid of the so-cailed "Principle of Independent Actior [Staniey,
Sivill and Fessler, 1974]. It states that the reliability of a given material under a multi-axial stress
state is equal to the product of reliabilities of the material subjected to each of the principal
stresses in tum. Therefore, Eq. 5 is modified as

& (S—Ro, ™ .
L=exp [-E (RQ——R_% ¥] 9

where S; are the principal stresses. The Rc.. Ro, terms are the characteristic and minimum

strengths rotated into the principal stress directions. For a matenal of volume, V, under non-
uniform multi-axial stress state, the reliability becomes

L= oxp g 1 (Si—Roi )’"i Iy "
i=1 Y y Re; - Ro;

Experimental Study of Size Effect

All experimental results, repeated in this study were originally reported in Part | of this report by
Heller et al, 1991.

Tension and Compression Tests

Tension tests were performed on dog-bone shaped specimens to measure the material
properties E1, E2, ... etc., and Weibuil parameters Rq, R¢, and m. The specimens were cut from
10 " x 6.5 " x 0.5 " panels. The detailed arrangement and dimensions of the specimens are
shown in Part | of this report.

Average values and standard deviations for modulus, maximum strength and strain
measured in the warp(W) and fill (F) directions are presented in Table A.1.

While tension specimens failed in most cases at 90 degrees to the longitudinai axis,
compression tests produced diagonal shear failures. Poisson's ratios were determined in some of
the tension tests and are also presented in Table A.1.

In-plane Shear Tests

For the shear moduli GWF, GFW, GWT and GFT as well as the shear strengths RwF, RFw,
RwT and RFT, tests were performed in a modified losipescu type fixture. Specimen dimensions
and geometry are available in Part |. Test sampiles were cut from a panel with their longitudinal
dimensions parallel to the warp (W) and fill (F) directions, while their width dimensions were along
each of the three directions: warp (W), fill (F), and through-the-thickness (T). Loads were applied
in an Instron machine. Shear strains were obtained from strain gauges at 45 ° to the load direction
while shear stresses were calculated as the load divided by the cross-sectional area, A,

Y=2€45 (11)

(]




Txy = P/A (12)

The results are tabulated in Table A.2.

Interlaminar Shear Tests

In order to determine the interlaminar shear moduti, GTw, GTF as well as the interlaminar
shear strengths RTw, RTF. specially designed specimens were prepared (Part [). Test results are
presented in Table A.3.

Why notched beams and plates with holes?

In order to experimentally demonstrate significant strength reduction due to size effect,
specimens of widely differing sizes would have to be tested. Because size variations of the order
of 1 to 100 woulid be required, such tests are impractical and can seldom be performed in the
laboratory. To circumvent this problem and to simulate specimens of widely varying sizes,
structural components containing sharp stress gradients such as notched beams or plates with
holes are considered [Heller, Thangjitham and Yeo, 1990). In this case, high stresses are
concentrated over a "small” volume of material while specimens without stress concentrations act
as the "large” volume.

Beam Bending Tests

In order to. demonstrate the concept of size effect, four point bending tests were
performed on carbon-carbon beams with and without notches. The detailed arrangement of the
specimens is shown in Fig. 1. Notched specimens have the same geometry as the unnotched
specimens with 60 ° V notches with a depth, d=0.22h, where h is the depth of an unnotched
specimen. The specimens whose length is in the warp direction are denoted as W (warp)
specimens and those whose length is in the fill direction are denoted by F. N indicates notched
specimens. The specimens (1-W, 1-F, 1-WN and 1-FN) with the loading direction perpendicular to
the layers are designated as Type |, and those (2-W, 2-F, 2-WN and 2-FN) with the loading
direction paraliel to the layers as Type Ii.

The two types of specimens are examined in order to model composite beams and
isotropic beams, respectively. Type Il specimens were placed into the testing machine with their
laminae parallel to the loading direction in order to eliminate interlaminar shear effects of short
beams and therefore to model them as isotropic beams. Type | specimens were placed with their
laminae perpendicular to the loading direction in order to model them as laminated composite
beams. The loading configuration and test fixture are shown in Fig. 2 and Fig. 3. Three
specimens were tested in each of the eight configurations shown in Fig. 4. Failure modes were
observed and the failure loads were measured. Type | beams generally showed the influence of
interlaminar stresses and failed by a combination of through-the-thickness fracture and
delamination. This type of failure was observed in both unnotched and notched beams. Type li
beams fractured more or less as isotropic materials. This failure mode is most pronounced in
notched specimens with a straight line fracture through their depth. Their results are presented in
Table 1. The figures of the failure modes for the notched and unnotched specimens are shown in
Figs. 5-6. These data will be compared to analytical values in the section on reliability analysis of
composite beams to, demonstrate the size effect.

" h




Plate Bending Tests

As another means of verifying the size effect concept, plate bending tests were
performed on square and rectangular plates with and without a hole. As presented in Fig. 7,
plates were instrumented with strain gages placed in the warp (longitudinal) and fill (transverse)
directions at the edges of 0.64 in. diameter holes and with 0-90 ° strain rosettes on their
diagonals. Similar gauge arrangements were used on a plate without a central hole; a 0-90° strain
rosette was placed at the center of the plate. The transverse deflection was measured by a
displacement transducer. In some of the tests acoustic emissions were aiso monitored.

Experiments were carried out on a plate bending fixture illustrated in Part |. (Fig. 8) Plates
were simply supported on all four sides and a uniform load was applied through a sand box. Unilike
the usual simple-support boundary condition used in the literature, here the plates were simply
sitting on top of supports all around the edges, thus allowing in-plane movements in the x- and y-
directions. The boundary conditions used in the stress analysis to simulate the support condition
are shown in Fig. 9 Plate bending test results are tabulated in Table 2. Attempts were made to
detect “first-ply-failures” by monitoring acoustic emissions with a transducer placed under the
plates. The transducer, however, picked up a great deal of noise produced by grinding of sand
particles and by machine vibrations. As a consequence, the detection of “first-ply-failure” was not
successtul.

Plate failures originated near the longitudinal diameters of the holes and propagated tirst
along the warp direction, and eventually along the diagonais of the rectanguiar plates. in the case
of the square plate with a hole, after originating near the warp diameter of the hole, cracks
propagated radially outward. All plates failed essentially in a brittle manner.and no evidence of
delamination was observed.

Load-deflection curves are presented in Figs. 10 and 11.

NI
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Figure 2

Loading Contfiguration for Four Point Bending Specimens

\J \Z

L " L)

™

Figure 3

LVDT

Test Fixture for Four Point Bending Tests
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Figure 4
The Four Point Bending Test Configuration
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Table 1. Four Point Bending Test Results
3
3 3 -
E: e é - x =]
s - - x
'E' "EG o @ - e .S
3 & 3 3 & iy
g_ 2] -1 = - - =
@3 = ? = a
'-O‘ 4 » ! 'g : -
S S = o> = o" = S = ®
9 w 5059 366 15238 549 2468  .1303  6.467  .306
9 2W 4932 449 19708 662 2395  .190  10.079  1.784
9 1F 335.0 5.0 9.198  .190 1370 .07l  9.547  .180
9 2F 288.2 231 -11.363 .700 1307  .067  13.759  3.805
9 IWN  288.7  28.2 1.353 2551 .001  7.516  .462
12 JWN 2503 119 975 2367  .0TT 9938  .174
10 IFN 1775 9.0 532 1620 217 11325 4.649
10 2FN 1754 39 510  1.655 250 13.509  3.002
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Failure Modes of Unnotched Four Point Bending Specimens
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Figure 6

Failure Modes of Notched Four Point Bending Specimens
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Figure 8

Plate Bending Test Fixture
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vx0
y w=¢x=0

u=0
¢, =0

(a) Simply Supported Boundary Condition Used in Analysis for a Quarter Plate

Figure 9

Definition of Simply Supported Boundary Condition Used
in Experiment and Analysis
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Table 2. Plate Bending Test Data

Plate No. Type Max Load Max. Deflection
g - psi in
1 *R.H 383 725
2 R.H 362 .399
3 R.N 360 .286
4 S.H 574 .507

"
o

ZxXTWw;

Rectangular Plate
Square Plate

Plate with Hole
Plate without Hole
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Determination of Weibull Distribution Parameters

The basic test results: tension, compression and shear were used to determine the
Weibull parameters necessary for the reliability analysis. A three parameter Weibull distribution
was fitted to tension strength data. Warp and fill data were combined in order to increase the size
of the population. This was accomplished by the introduction of a normalized variable, r, defined
as follows:

r=8B (13)
KR

where R is the sample strength and HR is the mean strength in the appropriate direction.

For the three parameter Weibull distribution, the probability of exceedance, LR(r), is
written as

La(S) = exp [- (rsc—f% m] (14)

where rg is the normalized minimum strength below which no failure is expected, rc is the

normalized characteristic strength with a probability of exceedance of L(rc) = e =1, and m is the
shape parameter which is a measure of dispersion.
The following parameters were caiculated based on Egs. 2- 3:

m=6.17, = 0.61, fc= 1.03 (15)

From these, the distribution parameters for the warp and fill directions become:

warp direction
m=6.17, Row = 8110 (psi), Rew = 13820 (psi) (16)
fil drection -
m = 6.17, Row = 3440 (psi), Rcw = 5800 (psi) (17

The combined data are listed in Table 3.
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Table 3. Normalized Tension Strength Data and Three Weibull Parameters

]
Rank Da Reliabiity Rank Data Reliability
i r. L. i r. L.
[ ] ] 1

1 0.7699 0.9825 29 1.0048 0.4912
2 0.8126 0.9649 30 1.0063 0.4737
3 0.8915 0.9474 3l 1.0140 0.4561
4 0.9091 0.9298 32 1.0143 0.4386
5 0.9186 0.9123 33 1.0166 0.4211
6 0.9319 0.8947 34 1.0184 0.4035
7 0.9330 0.8772 35 1.0211 0.3860
8 0.9330 0.8596 36 1.0225 0.3684
9 0.9330 0.8421 37 1.0280 0.3509
10 0.9377 0.8246 38 1.0287 0.3333
11 0.9379 0.8070 39 1.0327 0.3158
12 0.9396 0.7895 40 1.0336 0.2982
13 0.9425 0.7719 41 1.0373 0.2807
14 0.9435 0.7544 42 1.0478 0.2632
15 0.9455 0.7368 43 1.0478 0.2456
16 0.9494 0.7193 44 1.0524 0.2281
17 0.9572 0.7018 45 1.0526 0.2015
18 0.9657 0.6842 46 1.0585 0.1930
19 0.9669 0.6667 47 1.0670 0.1754
20 0.9762 0.6491 48 1.0717 0.1079
21 0.9803 0.6316 49 1.0717 0.1404
22 0.9814 0.6140 S0 1.0861 0.1228
23 0.9850 0.5965 51 1.1002 0.1083
24 0.9856 0.5789 52 1.1040 0.0877
25 0.9925 0.5614 53 1.1042 0.0702
26 0.9980 0.5439 54 1.1203 0.0526
27 0.9998 0.5263 55 1.1508 0.0351
28 1.0048 0.5088 56 1.1646 0.0175

Shape parameter, m=6.17

Characteristic value, fe = 1.03

Minimum value, fo = 0.61
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STRESS ANALYSIS OF COMPOSITE BEAMS AND PLATES

Isotropic Beams under Four Point Bending

The 2-W, 2-WN samples presented in Fig. 4 are treated as isotropic beams. Notched
beams can not be analyzed in closed form because of their geometric irreqularity and
consequently should be examined numerically. The finite element method is used as an
approximate numerical analysis of stresses. For this purpose, a finite element code E2DELAST
was written and verified [Yeo, 1991]. A detailed explanation is given later. The beam is modeled
by a two dimensional plane elasticity element (piane strain assumption is used). The finite
element meshes for both notched and unnotched isotropic beams are presented in Figs. 12 and
13. The number of nodes and elements are 228 and 396 for a beam without a notch and 218 and
380 for a notched beam . The notch depth considered is 0.22h, where h is a depth of the
unnotched beam.

Composite Beams under Four Point Bending

The 1-W, 1-WN samples presented in Fig. 4 are modeled as composite beams. The
waviness ot the fiber is neglected and the beam is treated as a l{aminated composite with
alternating fiber and matrix layers. The fiber layer is considered to be composed of an orthotropic
material and the matrix layer of an isotropic material. The fiber volume fraction, v¢, and matrix

volume fraction, v, were determined from a microphotograph of the specimen and are 0.6 and
0.4, respectively. Hence the thickness ratio between fiber and matrix layers is 6 t0 4 . Utilizing the
rule of mixtures lamina properties were derived from experemintal resuits on laminates in Part |.
The mechanical parameters so obtained are listed in the appendix, Table A4. The number of
layers in the beam was also determined from a microphotograph of the specimen, and was 41
layers (21 matrix layers and 20 fiber layers). The matrix layers cover the beam on top and bottom
surfaces. The thickness of the matrix layers used in the stress analysis is 0.00951 (in) and that of
fiber layers is 0.014265 (in).

As was expected and demonstrated in the experiments [Part 1], the interlaminar shear
stresses are an important mechanism in the failure of composite beams. The stress analysis of the
composite beam was treated as a two dimensionat plane elasticity problem with an assumption that
there is no variation in stresses in the width direction. The coordinate system of the composite
beam and the finite element meshes for the unnotched and notched beams are shown in Figs. 14
and 15. For stress analysis purposes, the finite element code ABAQUS is used. Both the
constant stress triangle element CPS3 and 4-node linear rectangular element CPS4 are used in
the mesh and the stresses are computed at Gauss points in each element. As the stress gradient
in the vicinity of the notch tip is very steep and the stresses in that region are very important in the
analysis, the mesh has been refined until there is no appreciable change in the stress field near
the notch tip region. The finite element mesh has 2050 elements and 1092 nodes for an
unnotched beam and 2001 elements and 1067 nodes for a notched beam. The finite element
mesh for composite beams is a lot more refined than that for isotropic beams. This was due to the
presence of the thin layers in the composite beam. To obtain reasonably accurate stresses at
Gauss points, it is desirable that the elements not be distorted too much. Yet, as one eiement
cannot cover more than one layer because material properties are different for two adjacent layers,
finer mesh was dictated. :
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Figure 15
Finite Element Mesh of a Notched Composite Beam




Composite Plates under in-plane Loading

In order to verity the computer codes written for compasite plates as well as to compare
proposed tailure theories presented in the section on 3D failure criteria with published results,
graphite-epoxy square laminated plates without and with a hole are analyzed. For a square
laminate with a hole, the hole-diameter-to-width ratio, d'w, varies from 0.05 to 0.2. The length-to-
thickness ratio, a’h, is 10. The laminate considered is cross-ply symmetric whose stacking
sequence is [05/905]s. The dimension and the geometry of the laminate considered are shown
in Fig. 10. In all cases, only a quadrant of the laminate is modeled and analyzed because of
symmetry. The typical finite element mesh for d/'w = 0.05 is presented in Fig. 17.

For rectanguiar plates under in-plane loading, the material properties and stacking
sequence considered are the same as those for the square plates. Only uni-axial loading in the x-
direction is considered. The typical finite element mesh is shown in Fig.18.

Computer program E2DELAST was written for stress analysis of composite plates under
in-plane loading based on two dimensionai elasticity theory [Yeo, 1991]. The typical domain and a
9-node element considered for the finite element formulation is shown in Figs. 19 and 20 . The
formulation of the program is explained in the Appendix .

Composite Plates under Transverse Loading

The carbon-carbon plate is modeled as a laminated composite with aiternating orthotropic
fiber layers and isotropic matrix layers. A noniinear finite element analysis program ENCOMPLT
was developed and verified for the stress/failure analysis of laminated composite plates under
transverse loading. The program is based on the first order shear deformable plate theory which
accounts for the transverse shear deformation, and it also accounts for the geometrical
nonilinearity in the von Karman sense. The displacement finite element model uses iso-parametric
Lagrange elements with 5 independent degrees of freedom per node. Reduced integration is
used for shear terms to avoid shear locking phenomenon. The Newton-Raphson iterative
method is employed for the solution of the nonlinear aigebraic equations. The dimension,
geometry and coordinate system of the laminate are shown in Fig. 21, laminate resultant forces
and moments are shown in Fig. 22 and the geometry and layer number of a multi-layered laminate
are presented in Fig. 23. The formulation of the program is presented in detail in the Appendix .

26

vl




it

Ptetet

byt

~. F =
:: X p — Nx
— b\ —
——p > ’X
| - QO QO QO
L=a= unity
Full Plate Quarter Plate
(@)
Ny Y h Ny
trtt ttrttt
— Nx —
— © — N
— — X
— o —
- oo o
P
Full Plate Quarter Plate

(b)

Figure 16

Geometry and Dimension of a Square Plate Under In-plane
Loading (a) Uni-axial Loading (b) Bi-axial loading

27

el




§$

- — -

-t

e ]

Figure 17
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Figure 19
Typical 2-D Finite Element Domain
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Element ( o: Nodes, 0: Gauss Points)

30

vl




- X
z
S Alga
z
undeformed configuration deformed configuration
Figure 21

Geometry and Coordinate System of a Laminate

31

Y




(o) f ————
/5 o T
/7 |
/7 v Xy
// z Nx
//
//
//

Figure 22

Diagram of Resultant Forces and Moments in a Laminate
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RELIABILITY ANALYSIS OF COMPOSITE BEAMS AND PLATES

Reliability of Beams under Four Point Bending
Isotropic Beams
Unnotched Beams
As indicated in Fig. 24, only parts of the top and bottom portions of a beam experience
stresses greater than the minimum strength Roc or RgT. Oniy those regions where the absolute
values of the stresses are greater than the minimum strengths need be considered.

To include the contribution from the compressive stresses, the stressed-volume integral
A previously defined in Eq. 6 is written as

A=AT+Ac (18)

where A1 denotes the stressed-volume integral due to tensile stresses defined by

S = Ror )""QM
Ar= 2 ror
f vy ReT=Ror |V (19)

where Rct and Rot are characteristic, and minimum tensile strengths, and MT is the Weibuil

shape parameter for tensile strength. Ac denotes the stressed-volume-integral due to
compressive stresses defined by

] ‘S Roc \™gv
v (20)

where Rcc and Roc are characteristic, and minimum compressive strengths, and Mg is the
Weibull shape parameter for compessive strength. in general, tensile strength and compressive
strength ot materials are different and so are the Weibull shape parameters. This is considered in
the above equations.

Recognizing that

M
Sx=3 @1
and
Px x<L4
PixLy)  xe<xelo (22)
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with oL
s... =PLkih
max I (23)

the upper compressed region, where the absolute value of stresses is greater than the minimum
compressive strength RogC., is limited to values of x > xgc and y > ygc defined as

XoC = &9_ |_1 (24)
Smax
Yoot = - ——h:'(“ x <Ly (25)
max
yoc--'k-h xy<x<lbo (26)
Smax .

where h is the haif depth of the beam. (i.e. h=d/2) and Smax is the maximum stress in the beam.

For the lower tensile regions where stresses are greater than the minimum tensile
strength RqT,

Xor = 2L L, @0
Smax
yor =eL by oy (28)
Smax X
YoT = Hor 1, Li <x<lp (29)
Smax

VoT and VoC are introduced for convenience, and they are defined as

vor= 0T - _VeT | (30)
or Smax VTmax

with v¢ and vmay defined in Eq. 8.
Then, tor the upper portions of the beam, substituting Egs. 24 - 26 into Eq. 20 yields:

L1 ph
=—232b 1 Xy _ Ve¢ |™
he (vec = voc)™ v ] L“hL: voma) &
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L2 h
Y _ V¢ ™
*{[ L(h Vome, dyd"} (32)

Denoting the first integral of Eq. 4.1.15 as Ic1 and the second as IC2 and integrating for
integer values of m¢

=Nl ’""(-1)" C(mc+1,k) v§ d-vg (=1t v Inv
(me+1) ‘Z e+ Yoo me+i=k oc
k=0
(33)
and
(mc (1 voc)mC*! (34)
resut. C(mMc+1,K) denotes the binomial coetticients defined by
(mg+1)!
me+1 . K) =
Clmert k) = T meri=k)1 (39)
- Substituting Eqs. 33and 34 into Eq. 32
Ac= ("\;;'2'8—-),—%-\1, (e + lc2) (36)

is obtained.

Similarly for the lower portions of the beam where the stresses are greater than the
_minimum tensile strength Rgr,

=—20 1., It2)

~{ver = vor/™ V 37
where
o= EL ‘ (=1)* C(mc+1.k) v§ -1———\’5‘1"—‘:: =(=1yr+t vyt gy \
(m-r 1) \2 Yot my+1-K 0 or
(38)

and
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__hta 1
It2 (mﬂ_”ﬁ vor/™ (39)

Thus, the total stressed-volume integral, A. , becomes

2b 1 _ (i +ip)+

A=
Vo ver = vorf™ (Vec = voc)™

(Ic1 +lc2) (40)

where Iy, I12, Ic1 and Ic2 are defined by the above equations. The foregoing refiability analysis
for isotropic beams will, in the next section, be compared to one based on finite element
methods.

Notched Beams
Finite Element Reliability Analysis for Notched Beams

To compare the results of unnotched and notched beam bending, both beams are
analyzed with the aid of a finite element program that caiculates the maximum principal stresses in
each element. The stresses and the corresponding surface areas are stored. Once this has been
accomplished, the largest maximum stress, Smax, in the beam is searched out; each stress is

R Rec
divided by Smax; the safety factors: vc-r--5—s L for tensile stresses, and VcC = S for

max max
compressive stresses are calculated and these are substituted into the finite efement version of
Eq. 7. )

™ DA,

\'

n
S
nlade— 1V ( Ty

n
S ) mc .

¥ (Vec = voc)™ v iwl Smax

Itis assumed ihat mC=mT=m.

The material properties used for the isotropic beam analysis are:

E=214(msi) v=02

These were measured for the material in the warp direction [Part I]. The finite element results are
compared to the closed form analysis in Fig. 25, where reliability is plotted as function of load
carrying capacity. It is seen that the two methods produce very similar information.

To compare finite element results for unnotched and notched beams, they are analyzed
with an identical mesh. The reliability of a solid (unnotched) beam due to tensile principal stresses

alone and that due to tensile and compressive stresses combined as a function of load carrying
capacity are aiso presented in Fig. 25while those of a notched beam are shown in Fig.26. In the
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figures, T denotes the reliability due to tensile stresses only, T+C the reliability due to tensile and
compressive stresses combined and CF the reliability based on the closed-formn solution.

For an unnotched beam, the compressive stresses have a significant effect on the total
failure while for a notched beam, the contribution from these stresses is smail. This may be
interpreted as follows: Carbon-carbon has different mean strengths in tension (13.4 ksi) and in
compression (8.3 ksi). In other words, the beam as a whole is much stronger in tension than in
compression. As a result, for an unnotched beam, the elements in the top portion fail in
compression before elements at the bottom start to fail in tension at higher a load. Thus,
compressive stresses contribute much to the totai failure. On the other hand, for a notched
beam, tensile stresses near the notch tip are very high compared with those for an unnotched
beam. (Maximum stress for an unnotched beam is about 33 (psi) and that for a notched beam is
about 78 (psi) for 1 pound load.) Yet, stress distributions of both notched and unnotched beams
away from the notch are quite similar. Hence; elements above the neutral surface in both beams
undergo failure in compression at pretty much the same levels of load, while elements around the
notch tip start to fail in tension at lower load levels than in the unnotched beam, thereby shifting
the reliability graph to the left (to the lower side of ioad).

The comparison between the reliability of an unnotched beam and that of a notched
beam due to tensile stresses alone as functions of load carrying capacity is presented in Fig. 27
and that due to tensile and compressive stresses combined in Fig. 28. The reliabilities of a solid
(unnotched) beam due to tensile principal stresses only and those due to tensile and
compressive stresses combined as functions of maximum principal stress are plotted in Fig. 29
and those of a notched beam are presented in Fig.30. Unnotched and notched beam reliabilities
due to tensile stresses only as functions of maximum principal stress are compared in Fig. 31
while the effects of tensile and compressive stresses combined are presented in Fig. 32.

Specimen geometry and strength parameters used in the calculation are shown in Table 4
and load carrying capagcities of unnotched and notched beams at 0.5 reliability level are compared
with experimental failure loads in Table 5. Unnotched beams obviously carry more load (about
twice as much) than notched beams. The analytical load carrying capacity of an unnotched beam
(0.562 kip) is very close to that obtained by experiment (0.493 kip) when only tensile stresses are
considered in the analysis. When both tensile & compressive strecses are included, the load
carrying capacity predicted by analysis (0.313 kip) is a lot less than tnat obtained by experiment
(0.493 kip). For a notched beam, both the analytical failure ioad due to tensile stresses alone
(0.270 kip) and that due to tensile & compressive stresses combined (0.253 kip) coincide very
well with experimental failure loads (0.250 kip).

itis also observed from Table 5 that the maximum principal stress at failure is greater for a
notched beam than for an unnotched beam. The maximum principal stresses at failure for an
unnotched beam are 19.944 (ksi) when only tensile stresses are considered and 10.437 (ksi)
when both tensile & compressive stresses are involved. Those for a notched beam are 27.375
(ksi) for tensile stresses alone and 25.000 (ksi) when both tensile & compressive stresses are
considered. The ratios of notched to unnotched theoretical strength are 1.41 for tensile stresses
alone and 2.40 for both tensile & compressive stresses considered. These numbers can be
applied in calculating the experimental failure strength for the notched beam. Because the
experemintal failure loads match the caiculated loads (tension only) very well, it may be assumed
that the calculated tailure strength ratio of 1/0.710 = 1.41 indicates the increased strength of the
small volume of material at the notch tip. This increase in strength is an indication of the size
effect.

The reliability contours for an unnotched beam due to tensile stresses only and those
due to tensile and compressive stresses combined are presented in Figs. 33 and 34 at the 0.5 kip
load level. Similar contours are plotted in Figs. 35 and 36 at the 0.25 kip load level for a notched
beam.
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Composite Beams

To preserve the effect of interlaminar shear stresses in the reliability analysis of laminated
composite beams, Eq. 2.1.8 is modified so that the reliability is expressed in terms of cartesian
stress components rather than principal stresses [Sun and Yamada, 1978]. Then the total
refiability L becomes

L=l xLlo, X Le, (42)

where Ox, Oz are longitudinal stress and transverse normal stress, Tzx is the interlaminar shear

stress, Lo. Loy Lt are the reliabilities due to Ox, Oz and Tzx. respectively, defined by the
following :

r 1
r Ox ..Ro1 )ml ﬂ__
\'}

=exp|-
L. p- J, \Ret ~Roy ]
Ly [ 52-Ra )""gjlT
. =exp|-| (=2—28
ANAE T
~Ros |™ gv
L+, = €xp [-j 3"——) (43)
| \Res —Ros/ VY

where Rg1 and Rg3 are minimum strengths in the x, z directions, respectively, Rc1 and Rc3 are
characteristic strengths in the x, z directions, respectively, and R05 and Rc5 are minimum and
characteristic shear strengths in the xz plane, respectively,

The dimensions of composite beams are as follows:
L1 =0.8125 (in), Lo = 1.0 (in), b = 0.485 (in), d = 0.38 (in)

In all computations, a Weibull shape parameter of m=6 will be used. Material properties and
strength parameters used in the analysis are presented in Table 6 and comparison between
analysis and experiments is shown in Table 7.

The reliability of an unnotched composite beam due to tensile longitudinai stress alone,
that due to tensile & compressive components combined and that due to all stresses, inciuding
interlaminar normal and shear stresses, as functions of load carrying capacity are plotted in Fig. 37.
Those of a notched composite beam are shown in Fig. 38. In the figures, the designations: XT
stands for the reliability due to tensile stress alone, XT + XC that due to tensile & compressive
stress components combined, and XT + XC + Sl that due to the interlaminar normal & shear
stressas combined in addition to the longitudinal stress components.

As seen in the case of an isotropic beam, the compressive stresses contribute
significantly to the total failure for an unnotched composite beam also while for a notched
composite beam the contribution is small. Similar arguments can be applied to interpret this
phenomenon: Fibers are the major load carrying mechanism, and therefore can resist a larger load
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(Mean tiber strengths are 24.8 (ksi) in tension and 14.0 (ksi) in compression whereas mean matrix
strength is 2 (ksi) in both tension and compression). At an early stage of loading, most of the
tailures occur in matrix elements followed by failure of fibers. For an unnotched composite beam,
as the fiber strength in compression is only about half as high as that in tension, the fibers fail first
in compression and final failure takes place when fibers fail in tension at higher load. Thus the
compressive stresses play a significant role in the total failure.

For a notched composite beam, however, the stresses at the notch tip are much higher
than those of an unnotched composite beam whereas the stress distribution away from the notch
is pretty much alike for both beams. Therefore, while the fibers fail in compression in the same
fashion as they do in the unnotched beam, tensile stresses participate in the failure process
earlier in a notched beam and fibers start to break in tension at a relatively low load level. Hence,
the contribution of compressive stresses to the total failure is not as significant for notched beams
as in the case of unnotched beams. This is the reason why compressive stresses contribute
much to unnotched beam failures but not to those of notched beams. In contrast to isotropic
beams interiaminar stresses are present in composite beams and as the interlaminar strengths are
low (mean strength of 1.5 ksi), the failure due to interlaminar stresses starts at the very low load
level followed by compressive and eventually tensile fiber failures.

The comparison between the refiability of an unnotched composite beam and that of a
notched composite beam due to tensile stresses only as functions of load carrying capacity is
presented in Fig. 39 while the effects of all stress components combined are shown in Fig. 40. At
a reliability level of 0.5, the load carrying capacity of an unnotched beam and a notched beam are
0.345 (kips) and 0.167 (kips), respectively, whereas the experimental ultimate failure loads are
0.505 (kips) and 0.288 (kips), respectively. In view of the tact that ultimate failure occurs when all
the fiber layers {ail, the 0.345 kips ioad may be interpreted as first-fiber-ply-failure load for an
unnotched composite beam, and the 0.167 kips for a notched beam. For an isotropic beam,
there is no such thing as first-ply-failure. When an element breaks, the crack propagates very
rapidly and this makes the reliability analysis for isotropic beams agree very well with experiments.
On the other hand, tor composite beams, there exists a so-called first-ply-failure, and the
composite beam can sustain more load after first-ply-tailure occurs. The experimental uitimate
failure load is obtained after all the plies fail, and it is for this reason that progressive failure analysis
is necessary.

The reliabilities of an unnotched composite beam due to tensiie components of
longitudinal stress alone, due to tensile & compressive components combined and due to
interlaminar normal and shear stresses included as functions of maximum longitudinal stress are
plotted in Fig. 41 and those of a notched beam are presented in Fig.42. The comparison
between the reliability of an unnotched beam and that of a notched beam due to tensile stresses
only as a function of maximum longitudinal stress is shown in Fig. 43 and effects of all stress
components combined are presented in Fig. 44.

It is interesting to note from Fig. 40 that the load carrying capacities for both beams when
all the stress components are considered are close to each other (0.122 kips for unnotched beam
and 0.117 kips for notched beam). The reason for this is that the stress distributions for both
unnotched and notched beams are nearly identical away from the notched region. Furthermore,
the fiber strength is so high that only a few elements near the notch tip region contribute to failure
and that by the time fibers start to break in tension, other stress components have already
reduced the total reliability to nearly zero. It is to be noted that as more stress components are
considered in the analysis, the load carrying capacity at 0.5 reliability level approaches the first-ply-
failure load. To demonstrate this, first-ply-failure analysis was performed on the composite beam
using Brewer-Lagace's delamination criterion and the delamination part of the proposed criteria.
Only three stress components, namely, 6x, 62, and ozy, enter the calculation. The load camrying
capacity of both beams at 0.5 reliability level when all the stress
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components are considered is compared with first-ply-failure loads based on the two delamination
criteria and also with experiment in Table 14.

To compare the reliability of unnotched and notched composite beams at the same load
level, reliability contours are created for both unnotched and notched beams at 0.2 kips load level.
The contours are shown in Fig. 45 and 46.

Reliability of Composite Plates under Transverse Loading

Reliability of square and rectangular plates with and without a hole is investigated in this
section. The dimensions of the square plate are 6.5 x 6.5 (in) and the net loaded area is 6 x 6 (in).
Those of the rectangular plates are 9.75 x 6.5 (in) and the net loaded area is 9.25 x 6.0 (in). The
thickness of these plates is 0.485 (in) and the diameter of the hole is 0.64 (in). The aspect ratios
(i.e. side-length-to-thickness ratio w/h) are 12.4 for both plates. Material properties and strength
parameters used in the analysis are presented in Table 8.

Extension of "Weakest Link" Reliability to Account for Interlaminar Shear Stresses
tzx and tzy

For laminated plates under transverse loading, the stress field is no longer in a plane

stress state. To account for the effect of interlaminar shear stresses to the total refiability, £q. 42
should be extended to the foliowing:

L=LopxLapp=(Ls xLz xLe)x(Ls x Ls) (44)

where Lop = L1 X Lo X Lg and L3D = L4 X L5 are the reliabilities due to a 2-D stress field and
additional interlaminar stress field, respectively, defined by

- 1
—Rp1 |™

Ly = exp _f &‘__0_) dv

\Ret —Rot/

[ ]
(o] —Rog me dv

L2 = exp _j Y e
Rz —Re2] V|

[ Tx —ROG Ms V-
Ls = exp —I _.Y_____ L
, \Res =Ros!  V

_oxo| [ {7 —Roe )™ av ]
LA—expovRM-RM v

r 9

—Ros|™ gv

Ls =exp -j Zo TR (45)
| J,\Res—Ros] Y
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in this equation the transverse normal stress Oz is neglected. By separating the total reliability into
two parts, it is anticipated that the contribution from the interiaminar shear stresses to the total
reliability can be clarified. It is assumed that mq=m2=m3=m4g=ms=m=6 in the analysis.

Square Plates under Transverse Loading
Square Plate without a Hole

The reliabilities of square plates without a hole as functions of uniform pressure, load, and
maximum stress are presented in Figs. 47, 49, and 50. The contributions from tensile stress,
compressive stress, in-plane shear stress 12, interlaminar shear stresses c32 and ¢31 are
separated in the figures. The designations: T, C, 2-D stresses, 2-D + §23, 2-D stresses + $23 +
$13 in the figures, denote tensile stress, compressive stress, 2-D stress field which includes in-
plane shear stress G612, interlaminar shear stress 632 added to 2-D stress field, and interlaminar
shear stresses 031 and 032 added to 2-D stress field, respectively.

Square Plate with a Hole

The reliabilities of square plates with a hole as functions of uniform pressure, load, and
maximum stress are plotted in Figs. 48, 50, and 52.

4.2.3 Rectangular Plates under Transverse Loading
4.2.3.1. Rectangular Plate without a Hole

The reliabilities of rectangular plates without a hole as functions of uniform pressure, load,
and maximum stress are presented in Figs. 53, 55, and 57.

4.2.3.2. Rectangular Plate with a Hole

The reliabilities of rectangular plates with a hole as functions of uniform pressure, load,
and maximum stress are presented in Figs. 54, 56, and 58.

As presented in Figs. 47 - 48, analysis shows that for this particular type of woven carbon-
carbon composite plate where the interlaminar shear moduli are low but strengths are relatively
high, the contribution from the intertaminar shear stresses is littie. This conclusion is supported by
experimental results [Part []. The comparison of reliabilities of both square and rectangular plates
with and without a hole as functions of pressure is shown in Fig. 59, and as functions of total load
in Fig. 60. In these figures, the designations: S,NH stand for a square plate without a hole, S,H a
square plate with a hole, R,NH a rectangular plate without a hole, and R,H a rectangular plate with a
hole.

From Fig. 59, it is seen that the intensities of uniform load at 0.5 reliability level are 0.15
(ksi) for a square plate without a hole and 0.125 (ksi) for a square plate with a hole while they are
0.09 (ksi) and 0.07 (ksi) for rectangular plates without a hole and with a hole, respectively. The
failure loads at 0.5 reliability level are 5.6 (kips) for a square plate without a hole, 4.42 (kips) for a
square plate with a hole, 4.90 (kips) for a rectangular plate without a hole, and 3.85 (kips) for a
rectangular plate with a hole.
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The failure loads at 0.5 reliability level are compared with those predicted by first-ply-
failure analysis and also with those obtained by experiment. As no experiment was performed on
the square plate without a hole, the comparison is made with those 3 plates tested, namely square
plate with a hole, rectangular plate without a hole, and with a hole. The comparison of reliabilities
of square plates without a hole and with a hole as functions of ox, max is shown in Fig. 61. The
effects are presented in Fig. 62 for rectangular plates. As maximum stress occurs in different
direction for square plate and rectangular plate, the reliability-maximum stress curves are
separated for both cases.

The reliability contours at the top matrix layer and at the fiber layer second from the bottom
are plotted in Figs. 63 - 67 at 100 psi pressure level for all plates considered. For this level of load
intensity, no layer of the square plate without a hole shows failure. The fiber layers of the square
plate with a hole do not show failure either. Only the matrix layers fail at that load level and the
contour is presented in Fig. 63. .The reliability contours of the rectangular plate without a hole at
top matrix layer and at bottom fiber layer (above the bottom matrix layer) at 100 psi pressure are
shown in Fig. 64 and 65, respectively. The reliability contours of the rectangular plate with a hole
at top matrix layer and at bottom fiber layer at 100 psi pressure are shown in Fig. 66 and 67 ,
respectively. As the reliability contours due to 2-D stress field and 3-D stress field are nearly
identical, only the contours due to 3-D stress field are shown.

62




ainsseud Jo uojoun} 8 se Bujpeol
9S19ASUBS} JOpUN 80y B yym ajeid
aienbs uoqed-uoqied e Jo Aynqeley

gb einbiy

(1s¥) peo ainssaiy

020 G100 00 SO0 000

M ; y I M 0 d °.°
‘M ﬂ..oﬂN‘oQ.N|o+-|
m , €502 - H—
l. o sossons gz --0--]1 €0
B | e
L ——
i a e A
- m “ ; ]
i 1 90
f -
i 4 80
L e °~P

sseid's| A

Ky1jigeriey -

einssauid Jo uojioun; e se Bujpeoy

9S19ASUB1) JOpUN 8joy 8 Jnoyym ojejd
asenbs uoqied-uoqied e jo Ajlqeiiey

Ly einbiy

(1s)) peo ainssaid

020 G100 O0LO0 SO0 000

Y - v 00
’ gis+ezsgZ -+ - 4
N wwraz- %—| 1 20
’ sossens -2 - @ - -
I * o= 8 —| ]
o\ I
d
H ; ~<
L r {0
, P P o'l

2'sseid sga)

63




peoj jo uojoun; 8 se Bujpeo)
@sJoAsuUR))} Jopun ajoy e yym ejeid
aienbs uoqied-uoqied e Jo Ajjjiqeliod

06 einBi4

(dm) peo
08 0’9 ov 0¢ 00

v v . L] 11 v °-°
‘( cis+cmeQz—-+- -

E

/ @s¢Qz— H—
sessenas gz --9-- -1 2°0

o¢1- 8 —
1——
: -1 v0

-t

Aivjigerjay

peoj jo uopoun} 8 se Bujpeo|
@siaAsuel) Jopun 8j0y B8 Jnoyym ejeid
asenbs uoqgied-uoqse e jo A)jiqejiey

61 e4nBy4

(dny) peon
08 09 ov 0¢ 00
!‘ Y T v T L4 °.°
m cis+ezmrQz—-+-~
€S+aqZ - H—
sessons Q-2 - -@- -1 - 20

2¢1 - 8 —
| R ]
D
- 4 ¢0 °©
. J m
I A I R 4 90 Hlo
-
~ 41 80
. A 8- 0ot

64




$8084]S Wnwxew Jo uopoun) 8 se Buypeo|
osJoAsuel) Jepun ajoy 8 yym ajeid
aienbs uoqied-uoqied e jo Aljjiqelioy

ZS aInby4
(s Vs
00t 0'0¢c 001 00
B J" L4 1_‘ v d v m v L v °n°
] ’ cis e+ a2--v--| |
€28+ a2 - -X-
[~ ’ sessans gz- 9 —|1 €O
X 9¢1- 8|
1—e—
= . ; 4 v0
[~ 1 90
[~ 1 80
f -y
- 1 2 [ A O.P
Xews's|A}

Aitjiqer|ey

§S04}8 Wnwyxew jo uopoun} e se Buypeo|
@SJoASURI) J8pun 8|0y e Inoyyum eyeyd
aienbs uoqieo-uoqed B Jo Ayiqeliod

1S eunbiy

xew

s) S
0'SL 0¢2L 06 09 0t 00
¥ L _ v _ L § _ R ) o.o

€IS+ €25+ Q2--V-— _
€S+ Q2 - -X--
_ .

sassens Q-2 — @ — ¢o

X 0+1- B—] .

1 —0—
- : 4 vo
[ 41 90
SNV ¥ (SO SRS SRRSO SEUE - Q.O

T S A

2 Xews'sgA

Aijiqerjey

65




einssaid jo uoploun; 8 se Bujpeo) ainssaid jo uopoun; e se Bujpeo]

esleasuel) Jepun ejoy e yym ayeid @sieAsuBI) Jopun 8joy 8 noyim 8yeid
JginBuejoes uoqied-uoqied B jo ANqe|iey JeinbBus)ses uoqued-uoqied e Jo Ayjiqejiey
S eanbi4 £s eanBy4
(1s)) peo einssaid (1s%) peo einssaid
¢l’'0 600 900 €00 000 2’0 600 900 €00 000
- v _ 00 - - v r 00
\\,  csccmraz--4-- . I !
/ €25+02 - H— 1 k ) cisrczmegz--+--| |
sessans 9z - ~@ - - ) €@Z+Q2 - H— .
— / ov) - .ml. c0 = sessons Q-2 — @ - - 0
| —e— | i ot1- 8 — )
: 1 —6— ©
. B : D ©
41 ¥v0e - i q{v0e
| |°Iu i H nplv.
ol il
190z - 90 =
~ -
4 g0 - 80
. ol A 0l
sseid 11A) sseud 1gA)




peoj jo uopoun; e se Bujpeo)
@sl1oAsUBY) Jepun 8joy B yym ayeid
lginBue}del uoqieds-uoqsed e jo Ajjjiqejey

96 aunbi4

(dw) peoq
08 09 Oy o0¢ 00

——— 00
120
.
1 ¢v0
41 90
[ n.-.naa.“usl.-—-.l 4
I oz H— ' 1 -1 80
oz - -@ - - /
! sq1—- 8 — 7
1 ——
— 2 o'l
PeOI LA

Ayij1qeryesy

peoj jo uopoun; 8 se Bujpeo|
9S10ASURS) J8PpUN 8]0y B Jnoyym ejeid
JejnBue)oel uoqieo-uoqie e jo Ayliqeley

66 ainBy4y

(dix) peo

08 0’9 oy 0¢ 00
_’ Lo _l v °-°
IS+ +QC~-+-~
€s+Qe—~ H—
sessens g2 ~ -9 - -
: 2¢1~- 8 —
I 1 —6— |

Kyijiqerjey

peoy JoN)

67




$60.41S WnwWixew o uopoun; e se Bujpeo]
@s19ASUBY) J9pun ejoy B yym ayeid
JenBuejses uoqied-uoqsed e jo Ajlqeliey

g6 eanby4

vlg

W) s

0'G¢ 00 0SI 00 0S 00

| N A T

cis+ges1Q2--V-—-
€28 ¢Q2 - -X- -
sossoils Q-2 - @ —

9¢1- B—

1—6—

Xews'J{A}

00

c0

o

9'0

80

o't

Ayrjigqerjay

$604]s WnwWjxew jo uopoun; e se Bujpeo)
@SJoASURI) J9pUN Bj0Y B Jnoyym ejeid
1enBueloes uoqied-uoqied 8 Jo Aylqeliey

2G einBiy
osw) **V's
0SL 02L 06 09 0€ 00
~—r———7——T1—— 00
J cis+ 28+ Q2—--9-- |
. €28+ G2 - M - -
. i / sessens 2- 0 —H 2°0
241- B—
- 1—e—|
]
- 1 v0 e
- - m-
d
- o490z
<
- <1 80
. o d— 01

Xews 10A}

68



peoj jo

UO[IOUN} B S8 8]0Y JNOYYMPUB YHM
sejeid Jejnbuejoe. pue esenbsuoqied
-uoq4ed jo sefijjiqelies jo uosyiedwod

09 oinbi4
(dm) peon
08 09 ot 0¢c 00
—~ T 00
i J
- 4 ¢2¢0
- 4 ¥0
ﬁ -
2 4 90
. I QQ
: 0t

dwod'peoy i/s™ 1 /0A)

Kirjiqerjay

ainsseuid jo

UOIduUN} B SB 8|0y BINOYUIIMPUB YIM
seje|d sejnbueloes pue esenbsuoqied
-uoq4ed o sapjigelies jo uospedwod

6S ainBy4

(1s%) ainssaid

020 S0 0L0 SO0 000

dwoossesd s~ 1 /0N

00

A

<
o

Air1qerjey

©
o

80

0t

69




uopoalp-A U} SS841S WNWIXBW JO

uojduN} B SB 8|0y BINOYHM
pue yisseieid sejnbueioaiuoqied
-uoqJea Jo sejliiqelies jo uospeduwiod

29 aunby4
T ™
0°0¢ 002 00t 00
v v J— v ) m v _ v °.°
: : 4 2o
ﬁ ' l
' oo
L .. ..g V.O .W.
| ._. | s
' o
- 190z
=<
HY - ---~ .. -
HN'Y P
T m b | N c.—.

dwod xews 1| /0A)

UOJI084IP-X Uj $S01)S WnWiXsw 40
UoOIouUN} B SB 8|0y BINOYIM

pue yymseleid esenbsuoqied
-u0q4e2 J0 saiIqe}ies jo uospeduio)

19 8inByd
[ ™
0°'0€ 002 00t 00
L N v v 1_ v - 4L|~ o.c
. HS =c=o=-
L 4 2o
| ' 4
S {vo ,
] o
I \ ] =
\ o
- P T R 4 90 .Ml.
o 4'. -
- i 4 80
L _.. )
2 - 2 h/# _ 2 2 o.F

dwod xews's | /oA

70




Buipeo esieAsueiy wuojjun (sd Q0L 18 SessSaIlS (- O enp

ejje
8|0H B yum 8jeid esenbg uoqien-uoqied e Jo Jeke xjen doy je oo Ayjqeriey

)
i
u

Awnqeney

5,
x....."q. :

A

chl
Yl
HEF

! f‘d‘l- ’

W

={th’
Bt

=FEF,

€9 ainbi4

71




Bujpeo esieasusil uuojun isd 00l 18 sessesS G-E Ol on
P O|OH © InoYyyMm
ol8ld ieinbueloey uoqie)-uoqien B jo 10ABT X|BW Wwonog e nouo) a..__ac.___.o_m

0 =0.¢°
N =€1F°
W =487
1 =008
A =pbS”
£ =/8§"
I =0€9°
H =b49°
9 =12
4 =192
3 =p08"
0 =8v8"
J =168"
g =CE6°
Y =86°
Awmqeney

v9 @inbi4

>
~N

—
o]

“fbH

72




Bujpeo esieasues) wioyun |sd Q0L 18 S8sSANS (- O} 8NP 8|OH B JNoyyM
ele|d seinbusloey uoqied-uoqied B jo iakeT ieqid wollog 18 inojuo) Alqeliey

=786 "
=£86"
=p86 "
586"
=/86"
=886 "
=686 °
=066 "
=¢66 "
=£66 °
=$66 "
=966 °
=/66"°
=866 "
U =666 "
Aunqeney

A C 0O W L O I - M 9 E Z O

69 aunBiy

g

=

/

0

< f

73



Buipeo esieAsusil wiojun |sd 001 18 Sessais G-€ Ol onp 8|0H B YiIm

e18|d JeinBueloey UOQlIED-UOQIe) B Jo 1aken xulew wonog e inojuod Aujiqejiey

=8€€0°
=001 "
=917
=bEC”
=00¢ "
=98
=bEF’
=00S°
=987
=E€9”
=002
=49¢°
=ge8”
=006 "
=£96"

T @2 OO0 W O I o H D Y dE 20

Awiqensy

99 aunbyd4

(R

N7
) e 4

F/nmll\lhl\'

74




o W O WL W T oo X 0 EE Z O
n
-—
N
w

y =826"

Ageliey

Bujpeo esieasuesi wiojun Isd Q0L le sessens Q- O) enp OjoH ©
yum aleld JejnBueloed uoqied-uoqied e jo Jekeq seqid wonog le nojuod Aiiiqe|iey

29 @inbi4

.

75




FAILURE ANALYSIS

The reliability analysis does provide probability of failure on a certain layer of a composite
structure, at some elements on a layer, but does not provide the mode of failure, the failure load or
the location of failure, unless a probability level is pre-assigned. This information on the failure of
composite structures is very important in design considerations. It is therefore necessary to
supplement the reliability analysis with failure analysis.

Modeling of Fallure in a Laminated Composite Plate

Although there are numerous failure criteria in the fiterature for a uni-directionally
reinforced lamina, none are universally agreed upon and different criteria predict greatly different
results [Soni, 1983]. Most of the criteria in the literature are of tensor polynomial type. The major
shortcoming of the polynomial-type tailure criteria is, however, that even though they can predict
the initiation of failure, they do not say anything about the failure modes, failure locations, and so
on. These are very important in the design and analysis of composite structures. Moreover, it is
not evident that all of the distinct failure modes can be represented by a single failure criterion
[Hashin, 1980).

There are various difterent tailure modes that occur in the fiber, matrix and fiber-matrix
interface as indicated by experimental observations [Pipes and Cole, 1973; Kim, 1981]). The
various different failure modes may have their own failure criteria and further, these criteria may be
of different form for tensile and compressive stresses. Failure criteria based on this notion have
been proposed by Hashin [1980] and other authors [Lee, 1981; Brewer and Lagace, 1988;
Hwang and Sun, 1989]. In these, the general three-dimensional stresses are considered, and
each of the failure modes is modeled separately by a quadratic tensor polynomial containing the
appropriate stress compor ents.

Review of Failure Criteria
In this work, various failure criteria are grouped into two categories, namely, Category |,
failure criteria that do not give information about the failure modes and Category I, those that do.
Theretore, Tsai-Wu's and Hoffman's criteria belong to Category |, and maximum stress failure
criteria, Hashin's criteria, Lee’s criteria, Brewer and Lagace's criterion, and so on, belong to
Category 1l. In the review that follows, the authors’ symbols and nomenclatures are used, in
general.
Category | Failure Criteria
Tsai-Wu's Failure Criterion

The most general failure criterion for composite materials is the quadratic tensor
polynomial criterion of Tsai-Wu [1971]

Fioj+Fjjojoj=1, ij=12, .., 6 (summation convention applies)
(46)

Here, o; are the stress tensor components in the material coordinate system (01 = 011, 02 = 022,
03 = 033, O4 = 123, 05 = 131, 06 = 112) and F; and Fij are the components of the strength
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tensors of the second and fourth order, respectively. All the tailure criteria examined here are the
degenerate cases of this tensor polynomial criterion. The Tsai-Wu failure criterion can be written

in a long-hand form as

F10y +F202 +Faos +Fy10 +F220'§+F330§+ F4403 + Fs502 + Fgg02

+ 2F120162 + 2F 136103 + 2F 230203 = 1 (47)
where
"TXr Xe Y1 Yo Tz
Fii=—1— Fop= —1— Fag=—l—
T XXe 2 V1Yo 2578
Fag=—1— 55 = —— 66 = —1
S23® 13° S122

Fpo=-t—1_  Fp=-l__1 _ Fpp=-1__1_
2 YX1XcY71Ye, 2 YX1XcZ1Ze, 2 \Y1YcZ1Zc

(48)

where XT.,YT and ZT are the uniaxial tensile strengths in the 1-, 2- and 3-directions, X¢,Yc and Z¢
are the uniaxial compressive strengths in the 1-, 2- and 3-directions, respectively and S23, S13,
and S12 are the shearing strengths in the 23-, 13-, and 12-planes, respectively.

Hoffman's Failure Criterion

Hoftman's failure criterion [1967] has the same form as Tsai-Wu's.
The coefficients Fq, Fo, F3, F14, F22, F33, F44, F55,Fgg are also the same as those for the Tsai-

Wu failure criterion while

F12 =—.1— _J_....J__—_.l__
2\ XtXe Yi¥eo ZvZc
Fiq=—1(1 1 __1
7 T2 IxeXe * ZiZe Y1Ye
Fa=-l{cl-+Ll -1
2\Y1Yc ZyZc XiXc

(49)

Category |l Failure Criteria

Maximum Stress Failure Critena

In the maximum stress failure criteria the failure is said to occur if the stresses in the
material coordinate system are larger than the respective strengths, that is, for tensile stresses,
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G1 > XT
o2> YT
O3> Zy
It12l > S12
Ita5l > S23
It31 > S13 (50)

where XT1,YT and Z are the uni-axial tensile strengths in the 1-, 2- and 3-directions, respectively,
and S23. S13. and Sq2 are the shearing strengths in the 23-, 13-, and 12-planes, respectively.
When the stresses 61, 62, and o3 are negative, they should be compared with corresponding
compressive strengths (XC, YC. ZC). i any one of the toregoing inequalities is satisfied, then it is
assumed that the material has failed by the failure mechanism associated with the stress
component. There is no interaction between modes of failure in these criteria.

Hashin's Failure Criteria

Hashin [1980] proposed the following three-dimensional failure criteria of unidirectional
fiber composites:

i) Tensile Fiber Mode, 011 > 0

O11 1 =
(—r’z*'*(ﬁz +Tg) =1 (51)
Ca t?i\
where GK is the tensile failure strength in the fiber direction and TA is the axial failure shear, or
O11 =04 (52)
ii) Compressive Fiber Mode, 011 <0
O11==0a (53)

where ©OA is an absolute value of compressive failure strength in the fiber direction.

iii) Tensile Matrix Mode, 022 + 033 >0

%5 (0’22 + 0'33)2 + 1 (1223 - 022 033)2 + 1 (ﬁZ +t%3) =,1 (54)
of % g

where 0‘7’ OT are the tensile and compressive failure strength in the transverse fiber direction, and
TT is the transverse failure shear.

iv) Compressive Matrix Mode, 022 + 033 < 0
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-\2
{(&) '11(022“,33)*;_2(022+033)2+—1—(1223-°22033)+-1-(T%2+ﬁ3)=1

2ty G5 % A

L l“

(55)

Lee’s Failure Criteria

Lee [1981] proposed two failure criteria for two failure modes, i.e., fiber mode and matrix mode as
follows:

i} Fiber Failure;

'32; ("32 + t%3) =1 (56)

where 14 is the axial shear strength associated with 1-2 and 1-3 planes, or

C11= Xt (57)
where X is the tensile failure strength in the fiber direction.
ii) Matrix Failure;

;12; (o + Ba) = 1 (58)

where TT is the transverse shear strength in the 2-3 plane, or

O2o = YT (59)
where YT is the tensile strength in the 2 - direction.

Brewer and Lagace's Failure Criterion for Delamination

Brewer and Lagace [1988) proposed the following failure criterion for delamination:

‘;_:%)2 * ‘g{%)z ¥ 9%1,2 * “—’Cz-g-z-)z =1 (60)

where 2!, ZC are tensile and compressive interlaminar normal strength, Z5% and 2% are
interlaminar shear strength for oxz and oyz, respectively. “The superscript ' and ‘c’ on 6zz
indicate that tensile values of interlaminar normal stress should be compared to the tensile
interlaminar normal strength and compressive values of interlaminar normal stress shouid be
compared to the compressive interlaminar normal strength.”
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Development of Three-Dimensional Failure Criteria for a Bi-Directional Composite Lamina
Proposed Failure Criteria for an Orthotropic Composite Lamina

Starting from the general three-dimensional tensor polynomial failure criterion, it is
proposed that the following three separate criteria be used for identifying the failure in bi-
directional orthotropic composite laminae. These separate failure modes have different criteria for
tensile and compressive stresses.

1) fiber failure mode in 1-direction

i) tensile failure:

Experimental observation indicates that tensile failures are perpendicular to the
longitudinal (fiber) direction and there is no evidence of shearing. Hence, fiber breakage in warp

(1) direction is assumed to occur due to tensile stress in the fiber direction when the following
inequality is satisfied:

RIS B PO S (61)
Xr Xe

where XT and Xc are the uni-axial tensile and compressive strengths in the 1-direction,
respectively.

ii) compression/shear combined tailure:

Compressive specimens fail along diagona! surfaces indicating influence of shear
stresses, therefore, fiber micro-buckling/rupture in the warp direction is assumed to occur due to

compressive stress in the fiber direction and interlaminar shear stress 731 when the following
inequality is satisfied:

(-l o,+_°21_+(331_221 (62)
Xt Xc X1Xc \Say
where S31 is the interlaminar shear strength in the 1-3 plane.

2) fiber failure mode in 2-direction

i) tensile failure:

fiber breakage in the fill (2) direction is assumed to occur when the following inequality is satisfied:

1 _1 _2._62 1 63
(YT Yo 0‘2+YTYC 2 (63)

where Y1 and Y¢ are the uni-axial tensile and compressive strengths in the 2-direction,
respectively.

ii) compression/shear combined tailure:
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fiber micro-buckling/rupture in the fill direction is assumed to occur as a result of compressive
stress in the 2- direction and interlaminar shear stress in the 2-3 plane when the following
inequality is satisfied:

112+

2>
Yr Yo 21 (64)

YtYc (832

where Y1 and Y are tensile and compressive strengths in the fill direction, and S35 is interlaminar
shear strength in the 2-3 plane.

3) delamination failure mode:
i) interlaminar normal failure:

it is assumed that fiber-matrix interface debonding occurs by positive interlaminar normal
stress, O3 , when the following inequality is satisfied:

(1 + °3)> 1 (65)

where Z, is interlaminar normal strength.
ii) interlaminar planar failure:

it is assumed that delamination occurs by interlaminar shear stresses 731 3nd 132 when
the following inequality is satisfied:

’2 ‘_32_ << B (66)
831 S32/  Say Sa2

where S31 and S3, are interlaminar shear strengths in the 1-3 plane and 2-3 plane, respectively.
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Fallure Analysis

In order to supplement the reliabiiity analysis, failure analysis is carried out by making use
of the above failure criteria. This provides the tailure load, its mode and location from the various
failure criteria's viewpoint.

First-Ply-Failure Analysis of Carbon-Carbon Composite Plates

First-ply-failure (abbreviated FPF) analysis is performed on carbon-carbon composite
plates under uniform transverse load. The failure criteria used are those introduced previously
and the failure criteria proposed in this work. The proposed failure criteria for an orthotropic lamina
are applied to the carbon-carbon composite plates with varying aspect ratios to compute the FPF
load, its mode and location. The results are compared with failure loads obtained by reliability
analysis 0.5 reliability level and also with the ultimate failure loads obtained by experiments in Fig.
68. In the figure, S denotes a square plate, R a rectangular plate, H a plate with a hole and N a
plate without a hole. The plates considered are a square plate with a hole, rectangular plates with
and without holes. The geometry and the dimensions are the same as those considered ealier.
The aspect ratios, b/h, applied are 5, 12.4, 20, 50 and 100 and to keep the layup of each plate the
same, the thickness of the fiber and matrix layers is kept constant so that the corresponding
numbers of layers are 101, 41, 25, 11 and 5, respectively. All plates considered are simply
supported and subjected to uniform transverse load. The simply supported boundary condition
used in the experiments and in the stress analysis is explained in the section on plate bending
tests.

The matrix and fiber layers are alternating from the top of each plate so that the matrix
layers cover the plate on top and bottom. As only plates with an aspect ratio of 12.4 were tested
[Part 1), there is une experimental ultimate failure load datum for each plate. The failure load, its
mode and location predicted by the proposed criteria are tabulated in Table 9 for a square plate
with a hole, in Table 10 and Table 11 for a rectangular plate without a hole and with a hole,
respectively. For the particular plates considered, the predicted FPF loads are 3.033, 5.605 and
2.828 (kips) for a square plate with a hole, for a rectangular plate without a hole and with a hole,
respectively, while the experimental ultimate failure loads are 20.479, 19.98 and 19.974 (kips),
respectively. The ratios of the experimental ultimate failure loads to the FPF loads predicted by
the proposed failure criteria are 6.75, 3.565 and 7.063. !t is reported [Hwang and Sun, 1989] that
for a graphite-epoxy plate with a hole under in-plane loading, the ratio of experimental failure load
to the FPF load is 6.6. The layup considered there is [+_0]s where 6 equals 0.

To compare predicted FPF loads further with experimental failure loads as a function of
aspect ratio, relatively small (6.5" x 5") rectanguiar plates without a hole were chosen. in order to
produce several aspect ratios, one thick plate was sliced into 3 thin pieces. The thickness of the
plates thus machined are 0.1825 (in), 0.059 (in), and 0.0445 (in) and, therefore, the aspect ratios
are 24.66, 76.27, and 101.12, respectively. The plates were simply supported on all 4 edges (for
simple-support boundary condition used in the analysis, see Fig. 8) and a uniform transverse load
was applied. The actual loaded area was 6" x 4.5". The FPF analysis was performed on the same
rectangular plates with 6 different aspect ratios ranging from about 20 to 135. Again, matrix layers
and fiber layers are alternating from the top of each plate and the plates considered have 21, 15,
11, 7, 5, and 3 layers. Their thicknesses are 0.247, 0.200, 0.128, 0.081, 0.057, and 0.033 (in),
respectively, with corresponding aspect ratios: 18.20, 22.53, 35.05, 55.67, 78.86 and 135.20.
The same 5 by 4 finite element mesh with 9 - node elements that was used for rectangular plates
without a hole was adopted to compute stresses. Only a quarter plate was modeled in the
analysis.
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The Tsai-Wu criterion, maximum stress criteria and the proposed criteria are chosen for
comparison with experimental failure loads. The proposed criteria give nearly identical failure
loads with maximum stress criteria whereas Tsai-Wu's criterion gives slightly higher failure loads.
The comparison of failure loads produced by FPF analysis and by experiments is shown in Fig. 69.
The 3 plates failed at 3.66 (kips), 0.95 (kip) and 0.81 (kip) and the predicted FPF ioads on those
plates are about 0.8 (kip), 0.14 (kip) and 0.11 (kip), respectively. The ratios of the experimental
ultimate failure loads to the FPF loads predicted by the proposed criteria are 4.58 for a rectangular
plate with aspect ratio 24.66, 6.79 with aspect ratio 76.27 and 7.36 with aspect ratio 101.12,
respectively.

Reliability analysis was also performed on those carbon-carbon rectangular plates with
various aspect ratios and the failure loads are plotted in the same figure. It is seen in the Fig. 69
that the FPF loads are very close to those predicted by reliability analysis.

When the FPF occurs, the ply is considered to have effectively no stittness (very low
value for computation purposes) and the load is re-distributed among other load carying members
so that the plate can sustain more loads. As the experimental failure loads are obtained after all
major load carrying mechanisms (i.e. fiber layers) break, they are naturally much higher than the
FPF loads. To properly address this problem, a progresive failure analysis would have to be
performed. Such an analysis is beyond the scope of the present work.

Comparison of the Proposed Criteria with Other Criteria

The proposed tailure criteria are compared with other criteria. Even though the proposed
failure criteria are for bi-directional orthotropic lamina, they are applied to uni-directional graphite-
epoxy lamina to compare with the existing criteria. In such a case, the fiber failure in the 2-direction
is considered as matrix failure in 2-direction, and all other failure modes remain unchanged.

To compare the FPF loads (pressures) uredicted by the proposed criteria with those
predicted by various other failure criteria, typical laminated composite plates made of graphite-
epoxy under transverse loading are considered. The material properties of graphite-epoxy plates
used are as follows [Reddy, 1984]:

E1=25.0msi, E2 = 1.0 msi, vi2 = 0.25, G12 = G13 = 0.5 msi, G23 = 0.2 msi
XT=210,XC=250,YT=7,YC=25,512=513=9, S23 =4 (ksi)
thickness of each layer = 0.005 inch

The laminates considered have a stacking sequence of [0/90]s. The length of the square

plates, a, is 2 inches and the aspect ratios are 5, 10, 20, 50 and 100. The laminates are simply
supported and subjected to a sinusoidally distributed transverse load of the following form:

. .. T
p = po Sin Ea’i sin ?y (67)

where pg is the maximum pressure and a is the dimension of the plates.
As the experimental data are not available, the first-ply-tailure pressures are compared

with each other. The FPF pressures predicted by various failure criteria are plotted in Fig. 70. The
FPF pressures are normalized as

FPF = ____FP1F0>(<) s2 (68)
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where FPF is the normalized pressure and s is the aspect ratio, a/h, and are plotted in Fig. 71. For
plates with aspect ratios equal to 10 and 100, the FPF pressures, modes and the iocations in
terms of layer number, element number and Gauss point number are tabulated in Table12 and
Table13, respectively.

For a moderately thick plate ( i.e. aspect ratio equal to 10), different failure modes are
predicted even though the failure loads are similar. For instance, the failure mode based on
Hashin's criteria is matrix cracking and that based on Lee’s is fiber breakage, while maximum stress
criteria, Brewer and Lagace's criterion and the proposed criteria predict failure due to interlaminar
shear stresses.

For a very thin plate with aspect ratio equal to 100, FPF loads are almost the same except
for Lee's criteria and the failure is due to matrix cracking.

Brewer and Lagace's criterion is a delamination criterion and as can be seenin Fig. 70 and
Fig. 72, it is suitable for the moderately thick to thick plate whose aspect ratio is less than 10
suggesting that delamination is aiso an impgortant failure mechanism to moderately thick plates.

Lee’s criteria gave the most conservative failure loads for plates with aspect ratios greater

than 10. The proposed criteria showed good agreement with Hashin’s criteria and maximum
stress criteria.
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Comparison of Reliability Analysis with First-ply-failure Analysis_and
Experiments

As the reliability analysis based on the weakest link theory assumes that the whole
component faiis if one element fails, it is aiso a first-ply-tailure type analysis. it is for this reason that
the reliability analysis is compared with FPF analysis in this section. As the median value is close to
the mean value, failure loads at 0.5 reliability level are compared with those obtained by FPF
analysis, which uses mean properties.

Composite Beams

In an attempt to relate the probabilistic failure analysis (i.e. reliability analysis) to the FPF
analysis, the failure loads for carbon-carbon composite beams predicted by reliability analysis at
0.5 reliability level are compared with those predicted by FPF analysis which employs the Brewer-
Lagace's delamination criteria and the proposed criteria. Comparison is also made with
experimental ultimate failure loads. The comparison is presented in Table 14.

For an unnotched composite beam, the failure foad at 0.5 reliability level is about 70 % of
the expenmental value (0.506 kip tfrom expernment and 0.345 from analysis) while for a notched
composite beam, it 1s about 60 % (0.289 kip from experiment and 0.167 from analysis)when only
tensile stresses are considered. However, the ratio of unnotched to notched failure loads
obtained by reliability analysis (2.066) is close to the expenmental ratio of 1.752. When all stress
components including nterlaminar stresses are considered. the failure loads predicted by
reliability analysis are much more conservative. The ratios of experimental failure load to that
predicted by reliability analysis at 0.5 reliability level are about 4 for an unnotched composite beam
{0.506 kip trom expenment and 0.122 from analysis) and 2.5 tor a notched composite beam
(0.289 kip from experiment and 0.117 from analysis).

Composite Plates

The tailure loads tfor carbon-carbon composite ptates under transverse load predicted by
reliabiity analysis at 0.5 rehability level are compared with those predicted by FPF analysis which
employs the proposed critena. The comparson is made aiso with the expenmental uitimate failure
loads. The comparison is presented in Table 15.

The ratios of experimental failure load to that predicted by reliability analysis at 0.5
reliability level are about 4.6 for a square laminate with a hole (20.479 kip from experiment and
4.42 from analysis), 4.1 for a rectangular laminate without a hole {19.980 kip trom experiment and
4 30 trom analysis) and 5.2 for a rectangular laminate with a hole (19.974 kip from experiment and
3.85 from analysis)

It is also shown in Fig. 69 that the failure loads predicted by reliability analysis are very
close to FPF loads.
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CLOSURE

Discussions

One of the main objectives of this work is to verify size effects present in a brittle matenial.
To verity size etfect experimentally, specimens with widely differing volumes would have to be
tested. Such tests are, however, impractical both from a material cost point of view and due to the
unavailability of large capacity test equipment. To avoid this difficulty and to simulate specimens of
widely varying sizes, an approach was devised: Specimens with and without stress
concentrations were tested. Specimens with stress raisers have only a “small” volume highly
stressed while specimens without such concentrations have a “larger” volume stressed, thereby
simulating specimens with small and large size, respectively. In this manner stressed volume
ratios ot the order of 1:1000 may be achieved in the laboratory. Extensive experiments have
been performed on carbon-carbon composite beams and plates with and without stress
concentrations and size eftect was confirmed on smait notched and unnotched beam specimens,
which validates the approach Reliability analysis based on Weibull's weakest link hypothesis has
also been applied to composite structural components such as compasite beams with and without
notches and composite plates with and without a hole using the experimental data to validate the
analysis.

The tailure loads obtained from reliability analysis at 0.5 reliability level for notched and
unnotched isotropic beams under 4-point bending agree very well with those obtained by
experiments. This essentially proves the applicability of reliability analysis 1o brittle structural
components. For an unnotched isotropic beam agreement with experimental data is better when
tensile stresses alone are considered. On the other hand, for a notched isotropic beam, the
agreement was excelient tor both cases (i.e. when tensile stresses alone are considered and
when both tensile and compressive stresses combined are considered). The ratios ot notched to
unnotched failure stresses range from 1.4 tor the case when only tensile stresses are considered
to 2.4 for the case when both tensile and compressive stresses are includeded. These numbers
represent the degree of size ettect present in the material and can be used for the caiculation of
experimental failure stresses.

For composite beams under 4-point bending, the agreement is not as good as that for the
isotropic case. For an unnotched composite beam, the failure load at 0.5 reliability level is about
70 % of the experimental value while for a notched composite beam, it is about 60 % when only
lensile stresses are considered. However, the ratio of unnotched to notched failure loads
obtained by reliability analysis (2.066) is close to the experimental ratio of 1.752. When all stress
components including interlaminar stresses are considered, the failure loads predicted by
reliability analysis are much more conservative. The ratios of experimental failure load to that
predicted by reliability analysis at 0.5 reliability level are about 4 tor an unnotched composite beam
and 2.5 tor 3 notched composite beam

For composite plates under transverse loading, the reliability formulation was extended to
account tor 3-D stress fields including interlaminar stresses. The reliability analysis showed that for
this particuiar type o!f matenal the contribution from interlaminar stresses to total failure was smail
and this was contirmed by experiment [Helier et al, 1991). The ratios ot experimental tailure load
to that predicted by reliability analysis at 0.5 reliability level are about 4.6 tor a square laminate with
a hole . 4.1 for a rectangular laminate without a hole and 5.2 for a rectangular laminate with a hole.
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In general, the reliability analysis predicted tailure loads very well for 1sotropic beams. For
composite beams and plates, however, the failure loads predicted were very conservative (25 %
to 40 % for composite heams undgr 4-point bending and 20 % to 25 % tor composite plates with
and/or without a hoie under transverse loading). The difference is attributed to the progressive
tailure mechamsms, stress redistribution after tailure at the most sensitive region and with gradual
stiffness reduction inherent in the composite structures.

Through careful examination of experimental results on carbon-carbon materials, new
failure criteria were proposed. The criteria are intended for bi-directional composite laminae,
however, as there are no failure criteria tor bi-directional composite laminae appearing in the
literature, the proposed criteria were applied to uni-directiona! composite laminae and the first-ply-
failure loads were compared with those predicted by other cniteria. Very good agreement
between proposed and existing criternia was observed.

In an effort to relate the reliability analysis to FPF analysis , FPF analysis has been
performed on the same composite beams and plates considered in the reliability analysis. The
FPF analysis is based on the proposed critena and Brewer-Lagace's criteria for composite beams
and on the proposed criteria for composite plates. The agreement between the faiiure loads
obtained by the two approaches was tairly good.

Future Work

By detinition, first-ply-tailure critena are point stress criteria. In other words, FPF only
detects the tirst element where a certain failure condition is met. Consequently, the FPF loads are
on the conservative side and FPF does not necessanly mean the structure will fail. As explained

-earlier, when FPF takes place, the load is re-distributed among other remaining layers and the
stiftness of the structure i1s reduced. This process is repeated each time a layer fails and the whole
structure fails in a gradual manner layer after layer. The analysis based on this gradual stiffness
reduction mechanmsm of composite structures is known as a progressive failure analysis and is
recommended as a future research work
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Appendix-A

Table A.1 Average Tension and Compression Data
—
S
g -
: s § - 3 PR
$ 8 2 = 7 3 < <
s 3 . 3 = : S 0¥
° = @ 2 - : .‘.n E . = = ~ -
o X = w = A S N
=
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F T 1.:38 277 5538 219 9.000  2.959 .048 203
w C 2125 247 8.298 628 4.366  1.152
14 F C 1531 250 5652 686 6.399  3.212
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In-plane Shear Data

Table A.2
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Table A.3 Interlaminar Shear Data

Tent Shear Modulus Shear St;ugth
Oirection G=10* pn R« 107 ks
w GCW =25 RCW = 2.00
£ Gep =13 Rep =158
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Formulation of Finite Element Program F2DELAST

Equilibrium Equati thout body {

The equilibrium equations are:

do,  dtyy

X i X _0

ox * oy (69)
dtyy JO,

Xy =0

x Jy (70)

where oy, Oy and txy are normal stresses in the x- and y- directions and in-plane shear stress,
respectively

Strain-Displacement Equations

The strain-displacement equations for two-dimensional elasticity are

du
ex"'a_x (71)
- .
Y_ay (72)
Y Ty ax (73)

where ey, ey, and xy are normal strains in the x-, y-directions and in-plane shear strain,
respectively.

Constitutive Equali

The constitutive equations that represent the behavior of two-dimensional elastic
matenals are:

%1 [CyCypp O , x \

O'y = C12 C22 0 Ey (74)
0 o C

wl oo el

where Cii are the elastic constants. For an isotropic elastic body, these can be written in terms of
Young's modulus E and Poisson's ratio v.

8 Sondit
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Natural Boundary Conditions:

tx=cx nx+txyny=tx
and

Essential Boundary conditions:

c
[
(@)

and
V= V on l“2 (76)

where Al = (Nx.Ny) denotes the unit normal vector to the boundary ", [y and Iz are disjoint

portions of the boundary, t, and ty are the specitied boundary traction forces in x- and y-
directions, and U and V are the specitied displacements in x- and y- directions.

Di Finite E Formulati

In deriving displacement-based algebraic equations for a typical finite element, the stress
components are expressed in terms of displacements by substituting strain-displacement
equations (Egs. 71-73) into the equilibrium equations as follows:

Ju ov

=C,, = N

c)( 11 aX+C12ay

Ju ov
O'y=C125-)-(—+C225y— (77)

Ju ov

-C “___ N

Fy 3 ()y+()x

Vanational Formulation

The onginai differential equilibrium equations are recast in the equivalent integral
equation form (weak tormulation). Then the following varational equations for a typical element
can be obtained by muiltiplying the equilibrium equations by weighting functions w; (i=1,2) and

integrating over the domain of the element Q°. The typical element is shown in Fig.19. The

variational form of equilibrium equations (Eqs.69— 70) over a typical element Q%is given by the
following:

Weak Statements:
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(1) 0= °w1 a;(" +aat;y)dxdy
=L{aa_":’(1_(c1,%%+c,2g_;)+ Cxa %l(%%+g—:—)}dxdy —Lwﬂx ds (78)
(2) : 0= ’Wz(a—;?—*%)d"dy
=J {033%’_13 ‘())_‘;4.3_; +a()—‘~y2-(c12(()7u;+C2%)}dXdy—I‘W2ty ds (79)

Finite Ei M

The two pnmary degrees of freedom u and v are approximated by the following scheme in
terms of nodal displacements U and interpolation functions Wi as follows:

n
1
u=2 uf wj(xy)
=1

n
2
o= 3 vt vty o0
‘:

. gt
where U}, V} are the nodal values of the primary degrees of freedomu and v at node j. ¥j . \lﬁz are
the interpolation functions for u and v at node |, and n is the number of nodes in the element. For

1
simplicity, the same interpolation function is used for both u and v, i.e. Y = ‘Vi2 =W

Using the above interpolation scheme for u and v, and substituting Eq. 80 into Egs.
B178-79, the following are obtain:

(1) wi =y =y

n
2 (K] up + K2 ve) =t (81)
o

(2) wa = \y‘? =\,
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2}("5‘ up + K2 ve) = £ (82)
l:

I
where [K®) is the element stittness matrix, {A°} is the nodal displacement vector {U®.V®}" and {1°)
is the boundary 'force' vector defined as foliows:

1 r‘ a\Vl a\Vl a‘l’l a‘V]
Ky = ). (C ax ax T By ay | T (83)

Ki}z = ‘01 an a\l.', +Caa a‘lh a‘vl dxdy

Je X dy ay X (84)
t = f t v ds (85)
Kﬁ1 = (C AL aa\:l +C %%) dxdy (86)
Joe
[ dy; 9 i 9
22 _ Jyi oy ‘l’l ‘I’]
K —J 9(03 X IX +Caz )d xdy (87)
1 = f t, w; ds (88)

Combining the system of equations above resuits in the following matrix equation for a
typical element:

; ; | (89)

1
| (k2] (k2] 2
orin a compact form
e e
[Ke(A | {a%) = () (90)
Note that tx and ty are boundary traction terms defined by
tx = Oy nx + Txy ny
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Finite Element Formulation for Nonlinear Bending of a tLaminated Composite
Plate with Shear Deformation

Equilibrium Equati

The equations for the first order shear-detormable plate theory used in the formulation of
the finite element program FNCOMPLT are

N, | Ny _
x oy (92)
MNyy Ny
x  ay (83)
9Qx | 9Qy y =
P + 3 +dw,N;)) =-Qqz a4)
My +aMXy -Q, =0
ox dy X . (95)
My , My o - (96)
X ay Y
J [0 J 0 d
where ®(w,N;) = a‘—x‘é—v:—Nx + %ny) + 5y %% Nyy+ %Ny) {Nx, Ny, Nxy} denote e in
’ I -

plane stress resultants, {My, My, Myy} are the moment resultants, {Qx, Qy} are the transverse
shear stress resultants, respectively, defined by

h
v R P
DN o
2
h
FANGEIS
= G 20z
\Mey | J ) 2y | (8)
2
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(99)

and qz is the transverse distributed load .
) - itutive E .

The constitutive equations for a shear-deformable anisotropic laminated compaosite plate

are
lL_’\J [A] (8] |/{e"}] (100)
ttmif L (B] (D] J|{x}|
|Qy| | Asa Ass |[Yyz)
‘Qz‘z{ Ass Ags } 'Yiz’ ton

where [A] is the extensional stiffness, [B] is the coupling stittness, [D] is the bending stiffness,
respectively, defined by

n

Ay =Y, Q) (2k - 2i1)

k=1 (102)
n
Bi=1 3 T (-
ket (103)
n
Dij= ;— kz 6‘.} (28— 2Z5.q). torij=1.26 (104)
=1

_/—\ 11s the transverse shear stiffness defined by

n
Aij=18 Y Qj(zk=2x1) torij=45, (109)
kst

[Q] is the transtormed reduced stitiness matrix, and k3 is the transverse shear correction

tactor(5/6 used here).

Stcain-Di Equal
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itis assumed that for tirst order shear-deformable plate theory, the displacement field is of
the form

u(x,y,z) = u0(x,y) + Z dx(x,y) (106)
u(x,y.z) = ud(x,y) + z gy(x.y) (107)
w(x,y,Z) = wo(x,y) (108)

where u(x.y,z), v(x,y.z), w(x,y,z) are the displacements in the x,y, and z directions, respectively,

u®, v0, wO the mid-plane displacements, Ox, Oy are the rotations of the transverse normals about
the y- and x-axis, respectively.

Then the nonlinear strain-displacement retations for the shear-deformable piate theory
with geometrical nonlinearity in the sense of von Karman are

0
Ex =€y + ZKy (109)
. 0
Ey = €, + ZK, (110)
. .0
Ixy = Ixy + LKy (111)
T L L (112)
yz yz ay Y
0 ow
Tzx {zx=5'x_ Oy (113)

0 0 . . ) )
where €5, €9, Yy are mid-plane strains, Yix, ¥}z are transverse shear strains, respectively,
defined by

Eo ()u (()wz (114)
X 2 X

83 (g/y 2()8‘;’ e

ng=%%o“+aavo ?)‘:’aa‘;’ e

‘{yz='fgz=%!;—+¢v 17
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ow

'a‘;(‘*'q’x

0
Yzx = Yzx =

and Kx, Ky, Kxy are bending curvatures defined by

0,
dy

_%0x 99,
Sy = X

- £ :

(118)

(119)

(120)

(121)

Foliowing the same weak formulation used for two-dimensional elasticity probiems, the
foilowing vanational equations for a typical element can be obtained. The typical element is shown
in Fig. 19. It should be noted that w; (i=1.2,...,5) are weighting functions, while w is a transverse

displacement of the plate.

Weak statements:

JW
1) = am
() 0 L(ax

Ny + ()W1 ny)dxdy—f

wi(Nyny + Nyyny)ds (122)
_ c)wz ()w2 (
() =f ( —()7 Ny,dx dy —J“ijxynx +Nyn,)ds (123)
(3):
oW W dw3 [ow Iw w3 [dw ow |
0=| /Mg W _3{ Ny —N)Tl—— ~N)—
[ ox &+ ay QT ax ay T oy \ox ay Y| TV %
dxdy
ow ow ow ow)| |
f \Q n, +Q n+ Nxs;"i' ny5-y—)nx+‘ny$'+ Nya—y“ ny’ds
(124)
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ow ow
4: 0= ] {—a—f— M, +~5-Y—‘1 M,y + w4 Qy }dxdy —Le w4 (M n, + My, ny)ds
(125)
[ |ows ows
(5):0 =Ju- {—a—x— M,y +—a—§—-My +wsQ, } dxdy - . ws (M, Ny + My ny)ds
(126)

where w;j are the weighting functions, and from Eqgs. 3.4.6 ~ 3.4.7, Ny, Ny, Nyy. My, My, Myy are

defined as follows:

+ B %?}+B12%§l+815 {(2(%5+%(;l} (127)

o2 220 .

+B16%“;—*+st?£¥_+366 {3_51.’5.+%‘_"Y)(_} 129)
MX=B11{%‘;+;%¥2}+ 12{%’}*-;%\—;—2\4— 15{%4—%’54—%—\:%‘3}

+ D1 %%+D12%D%+D15{%+%’;1} (130)
My = B2 %L:_(ﬂ_'_;%%)2}*-822{%\;21;;%%)2}+826{%y_u_°+¥+%¥%}

+D1za—§f+022%+025 {a(%‘+(%%’-} (131)
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B )8u° ow 2\ ;avo ow 2\ fou® av® ow ow|
MxY_B16\ax ‘( \ay ‘{ \8y+ T X oyl
[o0x 20
+Die 5+ +0268¢y + Des \a; ax"} (132)
ow ow
Qx=ASS(§;+¢x’+A45(W+¢Y’ (133)
oW ow
Qy=A45‘$(—+¢x)+A44(-a—y-+¢y’ (134)

Fiite El Model

The 5 primary degrees of freedom are approximated by the following scheme in terms of
nodal displacements and interpolation functions:

m
I

j=1

m
vo=2 vo ) (135)

-

W=i‘”i""im

=1

0, _251“,(3)

j=1

p
0,=2, 52y (136)

=1

where ul, v0, w;, s/, s;" denote the nodal values of the primary degrees of freedom at node j, Wi

is the interpolation tunction at node j, and m,n, and p are the number of nodes in a typical tinite
element, respectively. For simplicity, the same interpolation function and the same number of
nodes are used for each of the 5 primary degrees of treedom, i.e.

W =y 2 ¥ 2y, and m=n=p.

Using the definitions above and replacing the weighting functions w; (i=1,2,3,4,5) by the

interpolation tunctions Wi, the variational statements (Eqs.122 - 126) can be rewritten in terms of
the element stiffness matrices, nodal displacements, and force vectors as
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mwr =y =y

[K17] () + [€72] w0} + (K75 fw) + (K14 51} + [19] (52} = (F']
@wz=y" =y

(2] {uo) + [k} v} + (k2] tw) + (K] {51} + [K?5] {2} = {F?]
@ws=vi2 =y

(k3] fuoy + (k%] fvo) [k jw) + [K3*] {51} +[K9] {s2) = {F°)
@ Wa = ¥ =

(K41} 1uo) + [k42] 1vo) + [k fw) + (K] 51} + (K% [52) = {F)
G ws =i =y

[K51] {uo} + [K52] vo) + (K] (w) + [K54] st} + [K58] {52} = {F®)

(137)

(138)

(139)

(140)

(141)

Combining the system of equations above results in the following matrix equation for a

typical element:

-[K”][K'z][K”][K”][K’s]1 F{u"';’ —:F'!-
S (50t . N I % F
(KPR | twt | = [P
(K41 [ 1s 1P

sym. [K”]J L!sz'«i 165,

or in a compact form

(k{a)l{a®) = {F?)

(14 2)

(143)

where [Ka(A)] is the element stiftness matrix, {Ae} is the nodal displacement vector

<A°, = {{u9}, {vo, (w}, (s}, {SZHT and (Flis the 'force’ vector containing boundary and the

transverse force terms. The element stifftness matrix [Ke(A)] is a function of nodal displacements
and the nodal disptacements contain geometrically nonlinear terms which indicates that the

nonlinear algebraic equations have to be solved iteratively.
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. . Kkl
The element stiffness matrix Kii and force vector l'-'i are presented later.

Assembly of Element Stiffness Matrix

The element stiffness matrices are assembled for all elements in the finite element mesh
to give the following set of global aigebraic equations:

(kla)l{a} = (F) (144)

where [K(A)] is the assembled global stiffness matrix, {A} is the 'solution’ vector and {F}is the
assembled 'force’ vector.

0- !

In the Newton-Raphson iteration method, the algebraic equation is rewritten in the form

{Ha)} =(kla)l{a}-1F) (145)

where the residual {F‘A” is defined as the vector of unbalanced nodal forces at 3ny given

[A\r
deformed state \A} . The nonlinear solution procedure consists of searching for a vector {A} that

renders the residual as small as possible. The deformed state {A) is an exact solution of the
discretized equations if, and only if, the unbalanced nodal forces vanish.

Assuming that the solution is known at the r-th iteration for any given load step, the

[
residual vector lHA» is expanded in Taylor series about ‘A }r:

{
(R} = (Ra). tar + [a{—ﬂ—'} (lal' =1a))+... (146)
{a) LAY

aa)
If the higher order terms are neglected, the equation above can be writteri as

(R, +[KMa)) l5a") = {0} (147)

where [Kq{A }r)] is the tangent stitfness matrix defined by

T A _[3tR]
Kaf) -[a{AJ{A}-{A"

(148)

or
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aK(l‘{

£ ; Ap (149)
PT 2a
and {SAr} is the incremental solution defined by
(5a"}={a)*" - {a) (150)
From Eq. 3.4.56
laa') = = [KThal " R
= KUal tF - (Ka)) (151)

| (AT .
The residual vector or imbalance torce \F“Al )} is gradually reduced to zero if the procedure
converges. The iteration continues until the following convergence criterion is satisfied:

z ,Am 1

1=1

< €

n
z ‘A:)z (152)

=1

where n is the total number ot degrees of freedom and Etol is the convergence tolerance.

Td

KT11 = K11 KT12 = K12 KT13 = 2K|‘13, KT14 = K|114, KT15 = K15

K12 _ K?' Krzz - Kﬁz, Krza - 2Kﬁ3, KT24 -k, Krzs _ Kzs

KT51 = KT. KT52 = Kﬁz' 1’53 ZK?, KT54 = Ki‘, KTSS K?is
K??a = . ’CT3318W' a__\ﬂ +CT332 a_“i'_ a_‘!_’l + a_\ﬂ a_!l. + CTS@% .a_w_’ \dxdy (154)

\ ox ox ox dy dJdy ox dy dy |

ﬂ'
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where

Ju d d v aw IW O
CT331—A11§—+A16 u V)+A12—+3A”‘.—_) + A15(av:(a\;’

0 0 0
(A_12. AGSN_) + Ass + Bq4 :X+B15(3-¢y-!-+ ;(y)+812-a% (155)

A _‘l”' Iw Jw
+A 5ay+2A15( o +(Aq12+2 Ags) X Iy

3 py (AW 20 (a_¢x_ a_¢v_) a0y
+ > Age‘ay) + Ass + Big =— Ix + Begs 3y + X + Bog 3y (156)

Ju av
EM T ox

a3 _p 90U u N N (A2 w2 oW Iw
C = A2 x+A23 ay+ax)+Aggay+( 2 +A55)(ax) + 3 Az 3% dy

3 Ap|2%) 20 (a«vx a%) 20y
+ Azz(y +Asa + Br2 ax+Bze 2y o Bzza (157)
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Table A.4

Average Mechanical Parameters (W= 1= Wrap,

F= 2= Fill, A= 3= Across-ply Direction,

f= Fiber, m= Matrix)

Composite

Layer

Modulus = 106 psi

Madulus = 109 psi

E,y = 2.140 E¢y = 3.780

Tension EF = 1.190 Ef2 = 2.790
.-EA = 855 .-E3 - 855

'Em = 0.500 ‘Em = 0.500

Compression Ee = 1.500 Ef2 = 3.500
“EA = .820 "E3 = .820

'Em = 0.500 ‘Em = 0.500

GWF = 0.355 612 = 0.670

GFW = 0.246 G21 = 0.290

GWA = 0.357 613 = 0.357

GFW = 0.025 G31 = 0.025

GAF = 0.018 G32 = 0.013

.Gsm = 0.200 .Gsm = 0.200

Strength psi Strength psi

RW = 13.400 Rfl = 24,800

Tension RF = 5600 sz = 12.000
“RA = 8800 "R3 = 8800

‘Rm = 2000 ‘Rm = 2000

Compression RF = 5700 sz = 13.000
“"RA = 24,000 “R3 = 24,000

‘Rm = 2000 ‘Rm = 2000
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Table A.4 Continued

Composite Layer
Ry = 4300 an = 9900
Rew = 4000 R21 = 6.400
RW A = 4000 R13 = 4000
Shear RFA = 4100 R23 = 4100
R aw = 2000 R31 = 2000
RAF = 1600 R32 = 1600
‘Rsm = 1500 .Rsm = 1500

Poisson’s ratio

Vig = 048
Vo1 = .093
“Uzl = 200
vy, = 426
vyp = 203
"U23 = .210
Vg = 250

Volume fraction

Yol = .500
iy = 333
Yma = 667

* Estimated values
*% From Rickman et al. 1984
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Element Stiffness Matrix and Force Vector for Nonlinear Plate
Bending Formulation

[ i d 3 3 P
1 _ i oV avyli a‘Vl a‘lh ‘I’|) \Vl a‘V} \
=) A Ak By Ty o + Res j Oxdy
( L2 a‘l’ N, a‘V . OV ‘
12 _ il __1
=) Pead 3% T Ai23x 3y TPesay ax tPesgy oy [P
a_[1awl, vidy (aw. dyj i aw,’ dy; vy |
K"‘Jza\”axax*A x 3y tay ax) TRy gy O
[ 1 w[ IV dy; r)\|l| ] Wi Iy a\u. ;|
+Jn‘,§§—l 639 ax '%ox ay AGSWWJ'A y Iy ldXdy
K” ]B aww dy, 9V, awaw B———"dxd
A" o "Bieax 3y "Iy ox! ey ay | Y
s_[lg M, g W g MW g WY |
K —f‘,\ 163x 3% D129x dy +866r')y ax | 269y oy ’dxdy
F: =f.{\yi(N n foy y Ids
k2! = K'?
] I
22 _ fo OWi r)\u, a\y. o r)\|li I dyi 9y |
Ki LlA 53¢ o T A%\ oy T3y ax AR ay oy | Y

23 1_@_"!' Vi a‘l’] a‘l’t a‘I’| oV a\l’y ‘l’n a‘l’x \
Ky~ = Lz \ 19x ox + Aes ax Jy Azgs 2y ox + Az 53y dy ’dxdy
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BE
Ju"é-
[ |
A

[
\B

a\Vu I,

6((7\;1. A
&x ox

oW | A
‘a—\ ox ay

Kz

3x ox | o%%x By 20y ox

a‘l’l a‘l’]

a‘Vn a‘l’]
+
OX X

ay ox

a‘l’l a‘l’l
ox oy

Kg®

| S—

n

J{Wu(ny x+ Nyny)}ds

a‘l’l a‘l’] ’
ay X i

B1san a\vl + B a\VI aWI B awl a\Vl + B

a\u, ‘)WI‘
225y y |

2nw |
oy 9y |

) + Boa— a\v, 8\11, ‘dxdy

dxdy

dxdy

( J My, dy, |
s | owl, dwiay s(dw. v, v, Q‘ﬂ) A iy |
Ki —J X \A”ax 5Me Sy oy ax ) T T3y ay | y
[ w(, QWA a OVidW W, WOV g,
+J,5—\ Ix ax T hes 63x oy T 23y ox T %%y dy | Y
32 _ ( aW‘ a‘l’i a‘Vl a‘l’l a‘V] an d‘l’] aia—w—i\dxd
K" =] 3o ax T M2ax gy TRy ax T %0y dy | Y
.
aw | oY OV ()\y‘ r)\y, a\u. a\u,) oA Vi a\y, \ dxd
‘“J,Ey‘)AssWT*A? xay oy ox) ey ey [V
[¢)
(g WV, o (V2% QW DV)) D1 Y, |
33 _ [ d | ik 4 S Ak 4} B WP - 9xd
Ki ‘J,\A X Ix As‘ax B ax)+ “Syay [
Wi2[a QWY [0V Y OV aw,) i ¥ | g
+J ) "ox ax T7%\9x 9y T dy ox %63y oy | y
19w ow lgA a‘V' NMi 4 (Ao + Ag )a‘V' Y a‘Vl awl’ 2Azsg\ﬂ?—‘ﬂ \
¥ ,2 ox dy | X oX 12 ox oy * 3y ox oy dy |
)
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w2 ’ a\y. a\u, Vi Ay i a\i Vi _a\_u, \
f ) + A (ax D An G S axy

|| —f (Ass X \V;+A45 i Vi )dXdY

K35 = Jra(A‘,s %% Wi+ Aaa % y; | dxdy

+jr %V:{B1saa\v@;g+81z%\—?%\$+ 66%%“3 %‘;"%WI }dXdY

[ 2 e eafn i 5 ) sy B
F?:nyiqzdxdy IW"(Q +N aa‘” NXYQ_) (o +nyaa“’ Ny%—‘;’}ny}ds
Ki' =K}
K42_K24

oy 0
Ki?’ (Ass‘lha +A45\V.aw' xdy

o

1ow |, Owi oy, B(O\V. v , v, aw,) oy, ay; |
hd d
2 Ix \B”ax ax T 2195 dy Ay ox +BE"()y ay | xdy

]
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ij = {ASS‘Vl\V] +Dy1=——

(
Kf = {Aas\lh‘lf; + D6

Ju®

oy,
X

oV,
ox

a\y]
ax

oV, N .
ax

Fi:j {‘Vi(Mxnx +M,yny ) \ds

51 15

52 _ 1025
Kjj =Kji

K53 - g

o

( A45W| X +A aaV¥i

dy

8\v. W |

a‘l»’l a\l’l
+ Bog
ay X

& ax oy

ViV,

oy, a‘Vj) .\

ay ox

oV 8\4/,

Iy ;)
Sy dy |

GG’W

dxdy
a\jli d

ay; |
3y dedy
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29x ay
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dy; dy;

69y ox

Vi Y

aw; o, |
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2Gay ay’ y

]

r1aw’B

+

r 18W’B a‘Vld‘Vl
2ax| '®ax ox

VY, 8\v,

9
{Q

KS“ = Kf

Kisjs = {AMWI\VI + DGS

ﬂ‘

J 29y | ®ax ox

ox

+
66 )x Jy

oV, aw,

ax
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ox dy
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Ay X
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vi 3y |
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