
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A257 454llE~H~llhi$Iflhlll •

THESIS

Genetic Algorithms for the Development of Real-Time
Multi-Heuristic Search Strategies

by
Gary B. Parker
September 1992

Thesis Advisor. Dr. Man-Tak Shing

92-29921

UNCLASSIFIED
SECURITY CLASSFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
Ia. REPORT SECURITY CLASFICATION UNCLASSIFIED lb. RESTRICTIVE MARKINGS

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DELASSIFICATI1OUNINNGRAOING SCHEDULE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

ft NAME OF JiFORMWO ORGANIZAkTION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Ckimputer •ene Vpt. #A(O O) Naval Postgraduate School
Naval Postgraduate School CS
6&. ADDRESS (Ciy, Sta, and2P Code) 7b. ADDRESS (Cit, Stat, andVZP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

a N F INNGfSPONSORING 8b. OFFIGE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER(if AVIGSW)

Sc. ADDRESS (Cioy StaW and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TiTnE (botude secwiT Camaicawin)

Genetic Algorithms for the Development of Real-Time Multi-Heuristic Search Strategies

,.P, eRS, ATHOS)ya~r, foay ruce

TYP! EP.FIT 1.TIME COVERED 14. DATE OF REPORT (Year, MonM, Day) 15. PAGE COUNT
a s 1992, Sept, 24 131

16. SUPPLEMENTARY NOTATIoIwhe VieWs expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Contnue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP 'Artificial Intelligence, Genetic Algorithms, Search, Path Planning

19. ABSTRACT (Continue on revrse i necessary and identify by bkxk number)
Search of an unknown space by a physical agent (such as an autonomous vehicle) is unique in search as the custom-
arily most important goal (to reduce the computation time required to obtain the shortest distance) is not as important
as minimal movement. There is a real-time aspect since the agent is actually moving; using energy each step of the
way. Having limited energy resources and knowledge of the terrain (only adjacent nodes), the key factor for the phys-
ical agent's search algorithm is reduction of steps. Hence, any heuristic that can help keep step count to a minimum
must be considered. Korf and Shing addressed this issue in separate works. Both made use of known information
about the frontier node's distance from the current node in addition to a heuristic estimating the distance from goal.
In this thesis, we present a simple genetics-based method to produce adaptive, efficient multi-heuristic search strate-
gies for the real-time problem. Extensive empirical study shows that this approach produced search strategies with
much better performance over existing search algorithms for most terrain types. The methodologies used to develope
these improved strategies for our specific case, are also applicable to a multitude of real-time search/optimization
problems in the general case.
20. DISTRIBUTIONIAVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

[UNCLASSIFIED/UNLIMITED Q SAME AS RPT. [] DTIC USERS UNCLASSIFIED

_fVSIBLE INDIVIDUAL 22b LuEPHO Eti ode)r I2~c~
DO FORM 1473, 64 MR 83 APR eddion may be used un: exhausted SECURITY CLASSIFICATION OF THIS PAGE

All odw edtons we obsolet UNCLASSIFIED
j

Approved for public release; distribution is unlimited

Geteic Algorihms for the Development of Real-Tine
Muldi-Heuristic Search Strategies

by
Gary B. Parker

Lieutenant Commander, United States Navy
B. A. Zoology, University of Washington, 1976

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL

24 September 1992

Author:
Gd# B. Parker

Approved By:

YA-Jeng LA, Second Reader

Robert B. McGhee, Chairman,
Department of Computer Science

ii

ABSTRACT

Search of an unknown space by a physical agent (such as an autonomous vehicle) is

unique in search as the customarily most important goal (to reduce the computation time

required to obtain the shortest distance) is not as important as minimal movement. There is

a real-time aspect since the agent is actually moving; using energy each step of the way.

Having limited energy resources and knowledge of the terrain (only adjacent nodes), the

key factor for the physical agent's search algorithm is reduction of steps. Hence, any

heuristic that can help keep step count to a minimum must be considered. Korf and Shing

addressed this issue in separate works. Both made use of known information about the

frontier node's distance from the current node in addition to a heuristic estimating the

distance from goal.

In this thesis, we present a simple genetics-based method to produce adaptive, efficient

multi-heuristic search strategies for the real-time problem. Extensive empirical study

shows that this approach produced search strategies with much better performance over

existing search algorithms for most terrain types. The methodologies used to develope

these improved strategies for our specific case, are also applicable to a multitude of real-

time search/optimization problems in the general case.

7jDrie QtTALTI'Y MTSpBOM ~E4

A4o69uoun 10?
* NfTIS oRA&[

DTtC TAB Q
Uiannoun•oed 0
Just ificatlon

By

Di stiribut i on/
Availability Codes

Avail and/or
WDist spool&&

TABLE OF CONTENTS

1. INTRODUCTIO N .. I
II. PROBLEM M ODEL ... 3

A. TERRAIN M ATRIX ... 3
B. DENSITY M ATRIX .. 3
C. TERRAINS U SED ... 4

1. Central m ountain .. 4
2. Single Left Ridge .. 5
3. Single Right Ridge ... 5
4. Double Ridge ... 6
5. Single Left Plateau ... 7
6. Single Left Plateau with Ridges .. 7
7. Random Terrains .. 8

mI. BACKGROUND WITH DISCUSSION PERTINENT TO MODEL 9
A. KNOWN TERRAIN SEARCH .. 9

1. A * Search .. 9
B. UNKNOWN TERRAIN SEARCH BY A PHYSICAL AGENT 9

1. Hill-clim b Search .. 10
2. Real-tim e-A* Search ... 10
3. Best-first Search .. 10
4. Persistence Search ... 11

C. GENETIC ALGORriH M S .. 11
IV. FACTORS RELEVANT TO SEARCH ... 14

A. DISTANCE FROM START .. 14
B. DISTANCE FROM CURRENT ... 14
C. DISTANCE FROM GO AL .. 14
D . CROW DING .. 14

1. Crowding sides ... 15
2. Crowding diagonals ... 15

E. M O VE AW AY FACTO R ... 15
F. M O M ENTUM .. 15

V. PROG RAM DEVELOPM ENT .. 16
A. DATA STRUCTURES .. 16

1. Node structure ... 16
2. Population structure ... 16
3. Frontier Heap .. 17
4. M ate Heap .. 17

B. SEARCH ALGORITHM S .. 17
1. A* Se arch .. 17
2. Hill-Clim b Search ... 17
3. Real-Tim e-A * Search .. 20
4. Best-First Search .. 20

iv

5. Persistence Search ... 20
6. Multiheuristic Search .. 24

C. GENETIC ALGORITHM .. 26
VI. TRAINING ... 28
VII. TESTING ... 30
VIII. EXPERIMENTAL RESULTS ... 31

A. NATURAL TERRAINS .. 31
1. Central Mountain ... 31
2. Single Left Ridge ... 31
3. Single Right Ridge ... 33
4. Double Ridge ... 34
5. Single Left Plateau ... 35
6. Single Left Plateau With Ridges ... 36
7. General Comment ... 36

B. RANDOM TERRAINS .. 37
1. Random One / Random Two / Random Three 37
2. Random Four ... 39
3. General Comments ... 40

C. GENERAL COMMENTS ... 40
IX. CONCLUSIONS ... 41

LIST OF REFERENCES .. 42

APPENDIX A
TERRAIN DEVELOPMENT FROM A SAMPLE DENSITY MATRIX 43

APPENDIX B
RANDOM TERRAIN DENSITY MATICES .. 45

APPENDIX C
SEARCH STRATEGY COMPUTATIONAL TIME 47

APPENDIX D
PROGRAM C CODE ... 48

INITIAL DISTRIBUTION LIST .. 124

4,

LIST OF FIGURES

Figure 1 Central M ountain Terrain .. 4
Figure 2 Single Left Ridge Terrain .. 5
Figure 3 Single Right Ridge .. 6
Figure 4 Double Ridge Terrain ... 6
Figure 5 Single Left-Plateau Terrain ... 7
Figure 6 Single Left Plateau with Ridges Terrain .. 8
Figure 7 Individual Chromosome Structure ... 16
Figure 8 A* Search Algorithm ... 18
Figure 9 Hill Climb Search Algorithm .. 19
Figure 10 Real Tune A* Search Algorithm 21
Figure 11 Best First Search .. 22
Figure 12 Persistence Search Algorithm .. 23
Figure 13 M ulti Heuristic Search Algorithm ... 25
Figure 14 Allele Crossover Example ... 26
Figure 15 Bit Crossover Example .. 26
Figure 16 Genetic Algorithm ... 27
Figure 17 Training Algorithm ... 29
Figure 18 Central M ountain Results ... 32
Figure 19 Single Left Ridge Results ... 32
Figure 20 Single Right Ridge Results ... 33
Figure 21 Double Right Left Ridge Results ... 3...... 4
Figure 22 Single Left Plateau Results ... 35
Figure 23 Single Left Plateau W ith Ridges Results ... 36
Figure 24 Random One Results .. 37
Figure 25 Random Two Results ... 38
Figure 26 Random Three Results .. 38
Figure 27 Random Four Results ... 39
Figure 28 Sample Density M atrix .. 43
Figure 29 One of Many Possible Resultant Terrains .. 44
Figure 30 Random Terrain One .. 45
Figure 31 Random Terrain Two ... 45
Figure 32 Random Terrain Three .. 46
Figure 33 Random Terrain Four ... 46

vi

L INTRODUCTION

Search of an unknown space by a physical agent (such as an autonomous vehicle) is

unique in search as the customarily most important goal (to reduce the computation time

required to obtain the shortest distance) is not as important as minimal movement. There is

a real-time aspect since the agent is actually moving; having limited time to determine its

next move and using energy each step of the way. This is in contrast to the traditional

problem of search of known space for the shortest path which can be efficiently

accomplished by A* search with a good heuristic estimating the distance to goal. The path

is found without any movement. Although factors other than the actual distance from start

and estimated distance from goal could reduce the number of nodes examined in the

traditional problem, these factors usually increase the computational cost per node

examined and produce paths that are longer than the shortest path which makes additional

heuristics undesirable. Such is not the case for the real-time problem.

The physical agent traversing a terrain in the real-time problem knows only its current

position, the goal's position, and whether adjacent and previously adjacent nodes are

passable or not. It learns about the terrain only as it moves from node to node examining

all nodes adjacent. Information about past nodes, visited or adjacent, can be stored to build

up its knowledge base. Computational time to determine the next move is important, as

stopping to compute before each move is undesirable. On the other hand, insufficient

computations can result in unnecessary steps and wasted energy.

Having limited energy resources and knowledge of the terrain the key factor in the

physical agent's search is the reduction of physical steps. In [Pa89], Papadimitrion and

Yannakakis showed that the computational problem of deriving optimal search strategies

for the real-time problem is PSPACE-complete. Hence, any heuristic that can help keep

step count to a minimum must be considered. Korf [Ko90] studied this problem and

developed the real-time-A* search, which uses the physical agent's distance from the node

(g (n)) in addition to the distance from goal heuristic (h (n)) to determine the best next

1

move by minimizing the objective function f(n) = g (n) + h (n) for every adjacent node

n. Shing and Mayer [Sh9l] developed persistence search which included a persistence

factor (pf = 0 to 1) to bias the distance from current. The next move is determined by

minimizing the objective function f(n) = pfx g (n) + h (n) for every frontier node n.

Experimental results led to the conclusion that the pf could be adjusted to optimize search

depending on terrain type and the density of obstacles. Details of these search strategies are

in Chapter III.

Extending on these works, we believe a combination of additional heuristics can be

beneficial in minimizing physical agent steps. As the number of heuristics increases, it is

essential to have some efficient means of assigning bias adjustments to various heuristics

to optimize f(n) for different terrain types and densities of obstacles. If the combinatorial

explosion required to produce all possible combinations of heuristics is not intractable, the

required testing of each to select a best makes this means computationally prohibitive.

Since enumeration is probably not possible, some random means of attaining the best

combination seems to be the most plausible. DeJong [De75] made clear the advantages of

genetic algorithms over purely random selection.

In this thesis, we present a simple genetic algorithm based method to produce adaptive,

efficient multi-heuristic search strategies for the real-time problem. Extensive empirical

study showed that this approach produced search strategies with much better performance

(reduced number of steps without prohibitive computation time) over existing search

algorithms for most terrain types. The methodologies used to develope these improved

strategies for ow specific case, are also applicable to a multitude of real-time search/

optimization problems in the general case.

2

H. PROBLEM MODEL

A. TERRAIN MATRIX

To best demonstrate the effectiveness of the multi-heuristic search strategies produced

by a genetic algorithm, we chose to apply the strategies to random obstacle distributions in

the form of a two-dimensional 64x64 grid of squares (nodes). Nodes can be either free or

obstacles, movement can be in eight directions through free spaces only. A perimeter

surrounding this grid is a solid row/column of obstacles. The distance from a node to its

horizontal/vertical neighbor is 1.0; to its diagonal neighbor is J2. The total distance

traveled from start to goal according to any search scheme is the sum of each of these

individual steps. The effectiveness (fitness) of a specific search scheme is the ratio of the

shortest path length from start to goal divided by the distance traveled. Given as. a

percentage, 100 is the best possible; meaning the distance traveled is equivalent to the

shortest path. Specific nodes of the grid are be identified by Cartesian coordinates with the

left border column being the y axis and the bottom border row being the x axis. The lowest

left node is (1,1); the top right is (64,64).

B. DENSITY MATRIX

The 64 by 64 search space grid is divided into 16x16 density blocks, each containing

4x4 nodes and having a specified block density. Block densities range from 0-15. A block

density of 9 means that, on average, nine of the block's 16 nodes will be an obstacle (chosen

at random). These density blocks are numbered from (0,0) to (15,15) where (0,0) is the

bottom left and (15,15) is the top right. Start and Goal positions are specified by density

blocks. Most of the block density distributions used will have a start block of (2,2) and a

goal block of (13,13). The specific start/goal node is located randomly in that block. See

Appendix A.

3

C. TERRAINS USED

There are ten different density distributions that were used for training and testing. The

block densities, once set, remain unchanged from the start of training through testing.

Although the block densities remain constant, actual obstacle placement is determined

stochastically and changes from-run to run. The point is to investigate the adaptability of

genetic algorithm to produce the best strategy to direct the search through terrains where

the general density distribution is known but actual obstacle placement is not. The first six

terrains are considered natural terrains since they closely resemble actual topological

conditions. The start density block is always (2,2) unless otherwise stated. The goal density

block is always (13,13) unless otherwise stated.

1. Central mountain

The highest density, 15 (denoted as f in Figure 1), is in the center with a gradual

decrease towards the lowest density, 1, on the outer edge. Figure 1 shows the density

distribution of the terrain in hexadecimal. Transit from start to goal requires a search

scheme to find the most efficient way around the mountain.

1333333333333331
1355555555555531
1357777777777531
13579999999975311 357 3 bbbbbb 9 53 3 1
1357 9b ddddb 97531
1 35S7 9 b d d d d b 9 753 11 3 5 7 9 b d f f d b9 7 5 3 1

1357 9b dtf db 97531
13579 b d d ddb 97531
1357 9bbbbbb 975311357999999997531
1357777777777531
1355555555555531
1333333333333331

Figure 1 : Central Mountain Terrain

4

2. Single Left Ridge

This terrain has a high density (15) ridge starting from left center moving

horizontally out past the grid's midpoint. There is a gradual decrease in density down to 2

as the distance increases from ridge center (Figure 2). Transit through the ridge is not

possible.

2222222222222222
2222222222222222
4444444444422222
666666666 6642222
8888888888864222
a a a a a a a a a a a 8 S 4 2 2

0c0c 0cc0c0c aS 642
fff f f f f tfffc a8 64
f f fff ft ft f c a8 64
0000c 00000 0 a8 642
aaaaaaaaaaa86422
8888888888864222
6666666666642222
4444444444422222
2222222222222222
2222222222222222

Figure 2: Single Left Ridge Terrain

3. Single Right Ridge

This terrain is similar to the Single Left Ridge but in the opposite direction

(Figure 3). This is a much more difficult situation since the physical agent must move away

from the goal to find its best route.

5

2222222222222222
2222222222222222
2222244444444444
2222466666666G666
2224688888888888
22468 aaaaaaaasaaa
2468 £0 000000000
468 actift itt itt
468 actftft t f fit£
246 Sac 00000 € €00000
22468aaaaaaaa~aA
2224688888888888
2222466666666666
2222244444444444
2222222222222222
2222222222222222

Figure 3 : Single Right Ridge

4. Double Ridge

This terrain has density ara proucing a right ridge on top of a lef ridge. Rig

densitis ar 15 wit a valey of2 in beteen (Fgure 4). An s-shape pat to get from start

to goal is required to transit this tean.

2222222222222222
22224666666666662 2 4 8.a a a a a a a a a a a
668 act ft itttiff
4668 ac0000000000446 8 aa8aaaaaaaa
4446688888888888
2222222222222222
8888888888866444
aaaaaaaaaaa86644
0000000¢000¢aS 664tiff tiff fffff af 6

aaaaaaaaaaa8 6422
6665666666642222
2222222222222222
2222222222222222

Figure 4: Double Ridge Terrain

6

5. Single Left Plateau

This terrain is characterized by a large area of high density (10) (dense but

passable) starting from left center moving horizontally out past the grids midpoint (Figure

5). The start/goal density blocks are (4,0)/(11,15). A successful transit can consist of either

direct passage through the plateau or circumnavigate.

2222222222222222
8888888888898882
aa aaaaa aaaaaa 2
aaaaaaaaaaaaaa8 2
aaaaaaaaaaaaaa82
aaaaaaaaaaaaaa82
aaaaaaaaaaaaaa82
aaaaaaaaaaaaaa82
aaaaaaa a aaaaa 2
aaaaaaaaaaaaaa82
aaaaaaaaaaaaaa8 2
aaaaaaaaaaaaaa$ 2
aaaaaaaaaaaaaa8 2
aaaaaaaaaaaaaa8 2
888 58-8588888888 2
2222222222222222

Figure 5: Single Left Plateau Terrain

6. Single Left Plateau with Ridges

The same as single left plateau, except it has a ridge of higher density (12) (hard

to pass) along the plateaus perimeter (Figure 6). The start/goal density areas are (4,0)/

(11,15). Circumnavigation will usually be the only viable option.

7

2222222222222222

0000000000000a a aSa 2
aaaaaaaaaaaao a 9 2
aaaaaaaaaaaa&o aS82a a a a a a a a 82

a &a && & & & a aaaaca8 2

aaaaaaaaaaaaO a8 2

000C CC C 000C C 000 aS 2
2 2 2 2 22 22 2 2 22
2222222222222222

Figure 6: Single Left Plateau with Ridges Terrain

7. Random Terrains

Four different terrains were generated with random block densities set anywhere

from 0 to 15 with equal probability. Shown in Appendix B (Figures 30, 31, 32 & 33), these

grids were used to test the effectiveness of the different search strategies through unnatural

terrains.

8

IM. BACKGROUND WITH DISCUSSION PERTINENT TO MODEL

A. KNOWN TERRAIN SEARCH

A guarantee of optimal path from start to goal is usually the main concern in known

terrain search.

I. A* Search

[Ha68] - Widely accepted as the best algorithm for finding the shortest path in a

known search space, it uses the actual distance from start and a heuristic estimating the

distance from goal. The object of any frontier node is given by the following equation:

f(n) = s (n) + h (n) (Eq 3.1)

where s (n) = the actual distance from start to n, the frontier node, and h (n) = the

heuristic estimated distance from n to goal. Although guaranteed to find the optimal path,

assuming that the heuristic estimate is always less than the actual, it is not required to

minimize the number of nodes examined. Using Euclidean distance as the distance to goal

heuristic, A* search provided the shortest path for each terrain used in our experiment to

compare the effectiveness of each search scheme.

B. UNKNOWN TERRAIN SEARCH BY A PHYSICAL AGENT

Assuming limited sensory range, the physical agent cannot find the shortest path

without excessive moves. Although the shortest path would be nice, more important to the

search schemes success is the energy expended/time spent finding a satisfactory path.

Distance traveled is of major concern as is time to determine next move (related to this is

the computational limitations of the physical agent). The following algorithms have been

considered in an attempt to find the best. In all equations, n represents one of the frontier

nodes on the frontier list unless otherwise stated.

9

1. Hil-climb Search

[Wi92] - Depth first search with each move determined by the best (least distance

from goal) adjacent frontier node; n In the following equation:

f(n) = h(n) (Eq 3.2)

When no frontier nodes are adjacent to the current, the algorithm backtracks until adjacent

frontier nodes are encountered. This search scheme minimizes jumps in search of the best

frontier node, but pays the price in extra steps due to unchecked persistence on initially

good but eventually poor tracks and the often resultant steps required to backtrack.

2. Real-time-A* Search

[Ko90] - Uses distance from current (actual) and distance from goal (heuristic) to

determine best next move. This search only looks at adjacent nodes (frontier and visited).

In the following equation n stands for adjacent non obstacle nodes.

f(n) = g (n) + h (n) (Eq 3.3)

g (n) is the actual distance from the current to the adjacent node n. The h (n) is a heuristic

predicting the distance from n to the goal. Initially, h (n) is calculated by using Euclidean

distance in our example. The algorithm picks the adjacent node with the best f(n) . Before

moving, the value of the f(n) of the second best adjacent node is stored in the current node.

This stored value will, in future computations, be the node's h (n). This value remains

constant until the node is visited again. This well conceived search scheme requires

minimal computations and memory,-but is subject to wasted moves when drawn into local

traps.

3. Best-first Search

[Wi92] (modified for physical agent) - Uses only the distance from goal heuristic

(Euclidean distance) to select the next move.

f(n) = h (n) (Eq 3.4)

10

Once selected, it uses the shortest path through visited nodes (known search space) to

travel the distance from the current node to the selected frontier node. Although, after each

move it is at the best known location, the cost of getting there can be expensive. In worst

case situations it can end up jumping large distances back and forth while zeroing in on the

goal.

4. Persistence Search

[Sh9l] - Similar in concept to Real-time-A*, it uses the distance from goal

heuristic and a weighted distance from current to determine its next move. Unlike Real-

time-A*, it makes more use of known information; resulting in better moves, but decreased

computational efficiency. The distance from goal is Euclidean. The distance from current

to frontier is the shortest path through visited nodes as in Best-first, but this distance is

weighted and used in determining the next move. The object of a frontier node n is given by
f(n) = pfx g (n) + h (n) (Eq 3.5)

where g (n) = shortest distance from current position to n through visited nodes, h (n) =

Euclidean distance from n to goal. A persistence factor (pf = 0.0 to 1.0) is added to vary

the relative contribution of each of the heuristics to the determination of next move.

Distance from current, assumed to be always less pertinent, can be reduced in importance

in comparison to distance from goal.

C. GENETIC ALGORITHMS

Genetic algorithms, developed by John Holland [Go89] and his associates, ame based

on the laws of natural selection and survival of the fittest. Subjecting a population (animals,

search schemes, etc.) to environments where fitness for survival is required, individuals

best suited for survival will flourish and reproduce while individuals lacking the diversity

required to continue in all possible environments will discontinue.

The key to the success of a population is its robustness [Go89J. An individual, and

therefore a population, is made up of traits which are derived from specific genes in the

individuals chromosome [St77]. Applicable traits in the animal world are weight, height,

1I

leg length, neck length, etc. A combination of these traits describe an individual. Extremes

in any one trait usually means more specification and added survivability in a limited range

of environments, whereas moderation in traits means added adaptability for diverse

environments. The key is to find the balance of these two in a population to give it proper

robustness. Example: the giraffe can afford to be specifically designed for reaching (long

neck and legs) because it doesn't face diversities in environment that would require escape

through low canopy jungles. It is perfectly adapted for life on the plains with occasional

trees.

Similarly, search strategies can be very specialized in simple environments. Search

through a low density (of obstacles) terrain can be successfully accomplished with

efficiency and consistency by a simple hill climb algorithm (only one trait, distance to goal

of adjacent nodes, is important). Search problems involving more complicated and

diversified solutions require the proper balance of traits (heuristics) to solve. Simple direct

"hill climbing" approaches can often result in searching locally optimal blind alleys.

One possible means of developing the balance of traits required to avoid getting stuck

in the local minimum is to enumerate all possible combinations. This would most assuredly

find the optimum, but in many problems the combinatorial explosion of possibilities make

this method prohibitive. Purely random combination of trials is a possibility that seems to

avoid both the local minima and the combinatorial explosion problems. But on further

examination, it suffers the same drawbacks as enumeration, in that there are only a limited

number of trials possible whether you look at them in order or at random. Genetic

algorithms use randomness as a tool in a direct search for the optima. Promising potential

solutions can be searched in parallel while feedback information is used to select the next

partially random strategy. The results, as evaluated by DeJong [De75], show the superiority

of genetic algorithms over purely random.

The basic genetic algorithm makes use of a population of individuals (usually binary

strings of fixed length) that are made up of the traits pertinent to the problem (traits are

usually represented by a fixed number of the bits in specific locations). Three genetic

12

operators are used to transform the original (randomly generated) population into an

optimal one: selection, crossover, and mutation.

The Fitness of an individual of the population is established by some form of

evaluation function. One scheme is to compare each to a known optimum, assigning higher

fitness to ones approaching the optima. This evaluation can also be averaged over some set

number of trials (cycles) for each individual and then assigned as the fitness before forming

the next generation.

Each new generation of the population is formed by stochastically selecting

individuals from the prior population. Higher fitness individuals have a higher chance of

being selected. Reproduction is performed by randomly pairing selected individuals for

crossover and mutation.

Crossover is performed at a random point in the binary string. The two selected strings

interchange their tail sections at the crossover point to from two new individuals. The

crossover point can be anywhere from 0 to the last bit. For example, let the two selected

strings be 00000000 and 11111111, and let 5 be the crossover point. Then the crossover

operation will produce the new strings 00000111 and 11111000. In general, crossover

forms two new individuals with one hopefully having all the best from its two parents.

Mutation is a bit by bit operator that takes each individual and randomly (with a

specified probability) decides if each bit will be changed? For example, changing the

second bit of the string 00000111 by mutation will result in the new string 01000111. This

genetic operator, as in nature, ensures that populations maintain adaptability even when

specialization is the rule. An extremely high mutation probability regresses the genetic

algorithms to a uniform randomly distributed population, a very low one reduces the

populations adaptability. A happy medium seems to be in the 0.01 to 0.001 range for

probability of individual bit mutation.

A myriad of variations are possible to improve the performance and robustness of the

genetic algorithms. For the purpose of our research, these were found to be unnecessary,

and will not be covered in this discussion.

13

IV. FACTORS RELEVANT TO SEARCH

A. DISTANCE FROM START

This is usually the actual shortest path from the start node to the considered frontier.

Currently believed to be useless in a real-time environment, it should be selectively

eliminated by natural selection as the genetic algorithm trains. For our implementation, it

is approximated by computing the Euclidean distance from start to frontier. It may be

significant in some of the more complex terrains that require a switch bacL

B. DISTANCE FROM CURRENT

The distance from the current node to the frontier node; important in Real-Tune-A*

and Persistence Search to determine if backtracking is worth the steps required. It is the

actual distance computed as the actual steps required to move from the current node to the

frontier.

C. DISTANCE FROM GOAL

The Euclidean distance from the current node to the goal node. This heuristic is usually

considered important in any search. It is used in combination with "distance from current"

for Persistence Search, and by itself for Best-first Search.

D. CROWDING

The crowding parameters, crowding sides and crowding diagonals, are an attempt to

assist the physical object in avoiding areas of increased obstacle density. This reduces

exploration of paths through high density areas, favoring the safer path of increased options

available in the open space. The parameters are separated in case one is more appropriate

than the other. Both would be much more effective without the self imposed constraint of

physical object perception only being adjacent nodes. If all nodes adjacent to the frontier

node could be seen, these factors importance would increase significantly.

14

1. Crowding sides

This heuristic examines the frontier node's known horizontal/vertical neighbors

to count the number of obstacles. Nodes with more known obstacle neighbors are less

desirable. The minimum value is 0 and 4 is the maximum.

2. Crowding diagonals

This is similar to the previous parameter with the count being made of the frontier

node's diagonal neighbors.

E. MOVE AWAY FACTOR

It attempts to continually reduce the search space by reducing desirability of nodes

that increase the x and/or y difference between the current and goal nodes. Increasing the x

or y distance counts as 2, increasing both counts as 4, and no increase results in the heuristic

having a value of 0.

F. MOMENTUM

This heuristic attempts to avoid zigzag by making forward (in relation to last move)

nodes the most desirable. It should be useful in valley/ridge terrains where the best path is

straight through the valley. By maintaining momentum, the physical object avoids steps

wasted in popping in and out of each crevice which has nodes closer to the goal. Straight

ahead movement results in a value of 0, a 450 shift makes it 1, a 900 shift is 2, and a 135*

shift or non-adjacent move results in a value of 3 (making only the adjacent nodes subject

to change after a move).

15

V. PROGRAM DEVELOPMENT

A. DATA STRUCTURES

1. Node structure

The 64x64-grid is internally represented as a 66x66 two dimensional array (the

perimeter nodes are all marked as obstacles) made up of pointers to node records. The

records store information pertinent to terrain, search (heuristics), graphic display, and

pointers to other node records (used in the program for various dynamic structures). The

heuristic values stored include distance from start, distance from goal, distance from

current, crowding sides, crowding diagonals and subtotal. No other node records are used

in the program; other structures requiring nodes are set up using pointers to these records.

2. Population structure

A 32 member array of individual records makes up the population. Each stores

the individual's fitness and its chromosome which contains biases for each search

parameter. The chromosome is a 32 bit unsigned integer, subdivided into eight four-bit

unsigned integers, it holds up to eight heuristic bias factors with a range from 0 to 15.

xxxxxxxx

place holder

start distance factor

goal distance factor

current distance factor

crowd sides factor

crowd diagonals factor
move away factor

momentum factor

Figure 7: Individual Chromosome Structure

16

3. Frontier Heap

Implemented as an array of pointers to node records. Functions to manipulate this

min-heap are in theap.c.

4. Mate Heap

An array of 31 integers. The first is a count of the heaps members, the other 30

are chosen at random in the range of 0 to the sum of all individual fitnesses. They are used

to randomly select individuals for reproduction. Functions to manipulate this heap are in

eheap.c.

B. SEARCH ALGORITHMS

Algorithms used for this analysis, with appropriate modifications, are covered in this

section. Each node, represented as a record, has a number of fields that are used to store

needed information. When a function operating on a specific node v is used, a read or write

to the appropriate field takes place. For example: in the A* algorithm the following

calculation takes place; f(v) = s(v) + h(v). The value s(v) calculated earlier was stored in

v.s (the nodes dist_from_start field), h(v) is calculated and stored in v.h (the nodes

dist_fromgoal field), and f(v) is stored in v.f (the nodes subtotal field).

1. A* Search

This search (Figure 8) will find the shortest path from start to goal if a path exists.

The heuristic estimating distance to goal (h(v)) is a lower bound of the actual cost of the

optimal path from v to the goal.

2. Hill-Climb Search

This search (Figure 9) always moves forward until there is no where to go. It then

back-tracks the way it came until a move is possible. It is a depth-first search with a

heuristic to determine the best move to advance it to the goal.

17

a star search

(1) current := start

(2) while current != goal do

(3) for all nodes, v, adjacent to current do

(4) if UNTOUCHED

(5) s(v) = current.s + distance(current, v) /* Euclidean */

(6) f(v) = s(v) + h(v) /* h(v) is the Euclidean dist to goal */

(7) add to frontier heap

(8) elsif FRONTIER

(9) if s(v) > current.s + distance(current, v)

(10) update s(v) and f(v)

(11) update position in frontier heap

(12) endif

(13) endif

(14) if frontier-heap is empty

(15) return BIGNUMBER /* there is no path from start to goal */

(16) endif

(17) end for loop

(18) current:= top(frontierheap)

(19) end while loop

(20) return goal.s

Figure 8: A*. Search Algorithm

18

hill climb searh

(1) current := start

(2) while current != goal do

(3) best:= dummy-node /* f(dummy.node) = BIGNUMBER */

(4) for all nodes, v, adjacent to current do

(5) if UNTOUCHED

(6) f(v) := distance(v, goal) /* the Euclidean dist to goal */

(7) mark v as FRONTIER

(8) endif

(9) if FRONTIER and f(best) > f(v)

(10) best := v

(11) endif

(12) end for loop

(13) previousscurrent := current

(14) if best != dummy-node

(15) current := best

(16) current.predicessor := previous_current

(17) elsif current != start

(18) current := current.predicessor

(19) else

(20) return BIG_NUMBER

(21) endif

(22) current.dist_traveled

previous_current.dist_traveled + distance(current, previouscurrent)

(23) end while loop

(24) return goal.dist_traveled

Figure 9: Hill Climb Search Algorithm

19

3. Real-Time-A* Search

This algorithm (Figure 10) is in accordance with Korf's description [Ko90]. For

our implementation, the node array was used to store the h value since it was already in

place, negating the necessity for a hash table.

4. Best-First Search

This search (Figure 11) always goes to the best (minimum h(v)) node regardless

of its distance from the current node. It is possible to implement as a specific case of the

multi-heuristic search (Figure 13).

5. Persistence Search

Shown in Figure 12, gf + hf are intended to effectively replace/descretize/expand

the persistence factor, pf, in the original work ([Sh9l] equation 3.5). pf can have any value

between 0.0 and 1.0. We found that an infinite range of possibilities for this factor was not

required. A descrete, yet sufficient, span can be ootained by setting gf and hf to any

number of possibilities where gf<_ hf. Setting hf to 15 and incrementing gf from 0 to 15

gives us the equivalent of a 0.0 to 1.0 range incriminated by 0.067.

f(v) = gfx g (v) + hfx h (v) (Eq 5.1)

There is also now the expanded capability of having the g(v) be the more

important factor in the search (gf> hf). This search can also be implemented as a specife

case of the multi-heuristic search.

20

real time astar.search

(1) current := start

(2) best:= dummy-node

(3) second-best:= dummyjnode /* f(dummyjnode) = BIGNUMBER */

(4) while current != goal do

(5) for all nodes, v, adjacent to current do

(6) if UNTOUCHED

(7) h(v) := distance(v, goal) /* Euclidean */

/* else h(v) is already set */

(8) endif

(9) g(v) := distance(current, v)

(10) f(v) g(v) + h(v)

(11) if best.f > f(v)

(12) second_best := best

(13) best:= v

(14) elsif secondbest.f > f(v)

(15) secondbest := v

(16) endif

(17) end for loop

(18) previous_current:= current

(19) current:= best

(20) previouscurrent.h := secondbest.f

(21) current.dist_traveled :=

previous_current.disLtraveled + distance(current, previous current)

(22) end while loop

(23) return goal.dist-traveled

Figure 10: Real Time A* Search Algorithm

21

best first serh

(1) current := start

(2) while current!= goal do

(3) for all nodes adjacent to current do

(4) if UNTOUCHED

(5) h(v) := distance(node, goal) /* Euclidean */

(6) add to frontier..heap

(7) endif

(8) end for loop

(9) if empty(frontier_heap)

(10) return BIG_NUMBER /* no solution */

(11) endif

(12) v.dist_traveled:= current.disLtraveled + g(v)

where g(v) is the shortest distance through known paths from

current to frontier node.

(13) previouscurrent := current

(14) current:= top(frontierheap) /* minimum h(v) */

(15) end while loop

(16) return goal.disttraveled

Figure 11: Best First Search

22

persistence searh

(1) current := start

(2) while current != goal do

(3) for all nodes adjacent to current do

(4) if UNTOUCHED

(5) h(v) := distance(node, goal) /* Euclidean *1

(6) add to frontierxheap

(7) endif

(8) end for loop

(9) if empty(frontierjheap)

(10) return BIGNUMBER /* no solution */

(11) endif

(12) find the frontier node, v, that minimizes the equation:

f(v) := gf * g(v) + hf * h(v) where g(v) is the shortest distance through

known paths from current to frontier node. gf and hf, set before search,

are bias factors used to vary the relative importance of g(v) and h(v).

They can have a value from 0 to 15.

(13) v.dist_traveled := current.disttraveled + g(v)

(14) current:= v

(15) remove current from frontier-heap and update

(16) end while loop

(17) return goal.disttraveled

Figure 12: Persistence Search Algorithm

23

6. Multi heuristic Search

This is the general algorithm (Figure 13) enstantiated in our case to handle five

stable_heuristics and two unstableheuristics. Stable_heuristics being ones that have

values that will not change if more than two steps away from the current node. They include

Euclidean distance from goal (hg), Euclidean distance from start (hs), crowd sides (hcs),

crowd diagonals (hcd), and momentum (hm). The subtotal fs (v) is calculated using these

functions multiplied by their respective bias factor and stored in v.subtotal.

fs (v) = hgfx hg (v) + hsfx hs (v) + hcsfx hcs (v) + hcdfx hcd (v) + 4hmfx hm (v) (Eq 5.2)

Unstableheuristics have values that are liable to change as the current node

changes. Examples in our case: distance from current (hdc) and move away (hma). The

algorithm minimizes equation 5.3 using the efficient "branch-and-bound" search through

known (visited) nodes described in section 4.3 of [Sh9l].

f(v) = fs (v) + hdcf x hdc (v) + hmaf x hma (v) (Eq 5.3)

The hsf, hgf, hdcf, hcsf, hcdf, hmaf, and hmf are bias factors that correspond with the

individual chromosome's lower 28 bits which are set during training. The highest four bits

are, in our implementation, a place holder for future additional heuristics since only seven

applicable heuristics were identified. Note that the Best-first and Persistence Search could

be implemented as special cases of the multi-heuristic search algorithm. Best-first uses an

individual chromosome input of 00100000 (the third factor being hgf). Persistence Search

uses an individual chromosome input of O0xyOOOO with x and y varying from 0 to 15

(fourth factor being hdcf).

24

multi heuristic search

(1) current := start

(2) while current != goal do

(3) for all nodes v within 2 moves of current do

(4) if adjacent and UNTOUCHED

(5) v.subtotal := innertproduct(stable-heuristics * respectivebiases)

(6) add v to frontier_heap /* min subtotal node on top */

(7) elsif FRONTIER

(8) if any stableheuristics of v have changed

(9) v.subtotal := v.subtotal + adjustment

(10) update position in frontieriheap

(11) endif

(12) end if

(13) end for loop

(14) if empty (frontieTrheap)

(15) return BIGNUMBER /* no solution */

(16) endif

(17) find frontier node, v, that minimizes

f(v) = v.subtotal + inner_product(unstable_heuristics * respective.biases)

(18) v.disttraveled := current~disttraveled + g(v)

where g(v) is the shortest distance through known paths from current to

frontier node.

(19) current := v /* and remove v from heap */

(20) end while loop

(21) return goal.dist_traveled

Figure 13 : Multi Heuristic Search Algorithm

25

C. GENETIC ALGORITHM

The task of the genetic algorithm is to find the combination of the seven bias factors

that will result in the optimum search scheme. The values of these seven bias factors are

stored in a single individuals chromosome. Application of genetic operators to a population

(32 in our case) of these individuals will, after numerous iterations, produce our desired

optimal individual.

The genetic algorithm, described in this section, is invoked during training after some

predetermined number of cycles (making up one generation). The input population will

have a fitness value (ability to get through the terrain) assigned to each of it's 32 individuals

(details of this process are described in the next chapter). This fitness value and the

individual's chromosomal make-up are required by the genetic algorithm.

Our algorithm (Figure 16) makes use of the three genetic operators: selection,

crossover, and mutation. The implementation is similar to the algorithm presented in

chapter one of the text by Goldberg, [Go89], with the additions of allowing the best two

individuals to go unchanged and an average of one out of seven of the remaining not going

through crossover. The result is similar to De Jong's R3 elitist model [De75]. Examples of

our crossover implementation are detailed in Figures 14 & 15.

Alleles are represented in hexidecimal
Before allele crossover: 55555555 / 88888888
Randomly picked crossover allele position is 3 (4th allele)
After allele crossover. 55558888 / 88885555

Figure 14: Allele Crossover Example

The 4th allele is expanded out into binary representation
Before bit crossover: 555 0101 8888 / 888 1000 5555
Randomly picked crossover position between bits is 2
After bit crossover. 555 1001 8888 / 888 0100 5555

Figure 15 : Bit Crossover Example

26

geneic algorithm
(input is a population of individuals)

(1) total_fitness := all individual fitnesses added together

(2) select 32 individuals as follows /* selection */

(3) best:= individual with the highest fitness

(4) secondbest := individual with the second highest fitness

Psecondbest must be distinct from best */

(5) stochastically select 30 individuals with higher fitness individuals having

the greatest chance of selection

(6) end selection

(7) create new-population with these 32 individuals

pair individuals in such a way that it is unlikely that an individual is paired

with itself; pair best with second_best

(8) for each individual pair, except best and second best, do

(9) randomly pick crossover allele position /* crossover */

(10) if not 0 /* 0 means no crossover */

(1) exchange all alleles after the crossover allele

(12) randomly pick crossover position between bits of selected allele

(13) if not 0 or 4 /* 0 or 4 means crossover does not breakup the allele*/

(14) exchange bits after the crossover position between bits

(15) endif

(16) endif

(17) for each gene of the individual /* mutation 'I
(18) invert bit if random < prob of mutate

(19) end for loop

(20) end for loop

(21) add best + secondbest to newpopulation as individuals 0 & I respectively.

(22) return newpopulation

Figure 16: Genetic Algorithm

27

VI. TRAINING

Training of the population is analogous to selectively breeding a random group of

asexual organisms to obtain superior capability in a specific area. The capability you wish

to optimize is transit from start to goal in the least number of steps. The specific area is a

specific terrain layout where you have an idea about general areas of density, but have no

information about the location of specific obstacles.

The first step is to generate a series of specific terrains from your general idea of the

densities. This can be done by placing obstacles in each area if a randomly generated

number is less than the specified density. In our implementation, we simply loop through

the 64x64 node army assigning each nodes state to OBSTACLE if the random number is

less than the density value of the corresponding density block. The second step is to

generate a population of 32 individuals giving them randomly generated chromosomes.

Now the training begins (Figure 17). In all our work, we used 1000 generations with five

cycles (trials) per generation.

The returned population evolves through the trials of 5000 terrains. One of the

individuals of this population is likely to have a chromosome that approximates the

optimum combination of bias factors. Identification of this individual is accomplished

during testing.

28

training

(1) for the number of generations do

(2) for the number of cycles do

(3) loop until a successful A* search

(4) create a terrain from the density-array

(5) shortest-path := A* search

(6) end until loop

(7) run each individual through the terrain accumulating its fitnesssum by

comparing its actual path to the shortest path

(8) end for loop

(9) compute each individual's average fitness from fitness_sum and

number of cycles

(10) apply the genetic algorithm to the population

(11) end for loop

(12) return a trained population.

Figure 17: Training Algorithm

29

VIL TESTING

Testing of the trained populations was performed by comparing the search conducted

by the best individual in each population to searches accomplished using Hill-climbing,

Best-first, Real-time-A*, and Persistence search. The following equation was used to

compute fitness for all search schemes:

fitness = integer(((shortestpath) + (actualpath)) x 100) (Eq 7.1)

Each search scheme was tested on 500 distinct terrains produced using the corresponding

density matrix.

Before testing, the best of each population was chosen by running the population

through 50 distinct terrains. The individual with the highest fitness was chosen to represent

the GA-trained population. The best values for distance from goal and distance from

current bias factors f,- t!., Persistence search were determined by running 32 combinations

(chromosomes of lOflJOOO to OOffUOOO and 00=000 to 000O00) through 50 distinct

terrains. From this, the best combinations of the two factors was used to represent

Persistence search.

The GA-produced best individual, Persistence best, Hill-climb, Real-time A*, and

Best-first schemes were then all used to find a path in the 500 separate terrains. Average

fitnesses over the 500 were assigned and a comparison of these fitnesses is presented in the

results.

30

VIII. EXPERIMENTAL RESULTS

The fitness of each search scheme in these results is the number of its required steps

divided by the minimum steps possible, averaged over the 500 terrains used for testing.

Fitness is presented as a percentage, with a 100% search scheme being one that can, on the

average, search a terrain type in the minimum steps possible. In general, the easier the

density layout of the terrain, the higher the fitness will be.

A. NATURAL TERRAINS

A graph comparing the fitness of applicable search schemes is presented for each

natural terrain density layout (Figures 18 - 23). The following discussion is pertinent to

each of these comparisons.

1. Central Mountain

This graph (Figure 18) shows that this terrain is only moderately hard for all the

search schemes. Persistence search with a distance to current factor (gf) of 15 and a distance

to goal factor (hf) of 11 (gf/hf = 15/11) was the best of the conventional search methods.

The genetic algorithm produced an individual with chromosomal make-up of f00732b9

(see figure 7, page 16 for breakdown) which performed 1.20 times better than the best

conventional. Driven more to the goal by the move-away heuristic than distance to goal,

this scheme was better equipped to avoid the congestion of the central mass.

2. Single Left Ridge

Overall this terrain was a little harder than the Central Mountain but was still

handled moderately well by all search strategies (Figure 19). The best conventional was

again persistence search using a gf/hf ratio of 15/6. The genetic algorithm scheme

(f00828ff) had a fitness 1.16 times as good as the best Persistence and 1.28 times better than

the next competitor (Hill-climbing).

31

Best First

Persistence

Hill Climb

Real-time-A*

GA-produced

0 10 20 30 40 50 60 70 80 90 100

FITNESS (percent)

Figure 18: Central Mountain Results

Best First

Persistence

Hill Climb

Real-time-A*

GA-produced

0 10 20 30 40 50 60 70 80 90 100

FITNESS (percent)

Figure 19: Single Left Ridge Results

32

3. Single Right Ridge

As could be predicted, this was a hard problem (Figure 20). The normal search

schemes tend to spend a lot of time searching every possible route that was most direct to

the goal. They would get stuck under the ridge with no way around, except back the same

way they came. The best of these was Hill-climbing since it probably doesn't waste a lot of

steps backtracking. The best Persistence search had a gf/hf ratio of 2/15 showing it's

favoritism for a no backtrack approach. The search scheme produced by the genetic

algorithm was superior to all by a multiplication factor of 1.26. Its chromosomal make-up

was fO~c2ca8. This scheme considers distance to goal to be not significant. It instead uses

move away factor as the drive toward the goal. As the Persistence search with its gf/hf ratio

of 2/15 the genetic algorithm produced scheme considered the amount of backtracking a

major factor.

Best First

Persistence

Hill Climb

Real-time-A*

GA-produced

0 10 20 30 40 50 60 70 80 90 100

FITNESS (percent)

Figure 20: Single Right Ridge Results

33

4. Double Ridge

This terrain was a very difficult problem (Figure 21). Requiring negotiation

around two ridges which involved a switch-back away from the goal, none of the search

schemes were over 20% fitness. The average of the five schemes was 10%. The best

Persistence, with a gh/hf ratio of 6/15, was roughly equivalent to Hill-climbing. The genetic

algorithm generated scheme with a chromosomal make-up of f83bl9bc was the best

strategy with a fitness 1.21 times better than Persistence. Here is an example where distance

to start was of significance; probably helpful in influencing the search to make the switch-

back away from the goal. Move away factor was a major influence in striving toward the

goal, backtracking was determined to be non-productive, but maintaining momentum was

found to be important. It's interesting to note that diagonal crowding was considered more

important than side crowding (no explanation). The complexity of this scheme with the

subtle interaction between these differing bias factors helps to confirm the necessity of a

genetic algorithm to sort them out.

Best First

Persistence

Hill Climb

Real-time-A*

GA-produced

0 10 20 30 40 50 60 70 80 90 100

FITNESS (percent)

Figure 21: Double Right Left Ridge Results

34

5. Single Left Plateau

This terrain was slightly easier for all the search strategies (Figure 22) although it

presented a unique problem. The through the plateau route is possible but requires

numerous explorations. Circumnavigating the plateau saves exploration steps but costs in

the distance required. Since each of the 500 terrains had varying obstacle placement, we

suspect sometimes it was best to transit through and other times better to go around. Since

no general path was consistently optimal, the genetic algorithm had to develope a scheme

that was equally effective for both routes or concentrate on perfecting one. In either case,

its performance was again superior by a significant margin (multiplicative factor of 1.19).

The resultant chromosomal make-up was f05e884f. The next best was Persistence with a

gf/hf ratio of 11/15.

Best First

Persistence -
Hill Climb

Real-time-A*

GA-produced

0 10 20 30 40 50 60 70 80 90 100

FITNESS (percent)

Figure 22: Single Left Plateau Results

35

6. Single Left Plateau With Ridges

This terrain adds topological characteristics that favor circumnavigation as a

search strategy. The genetic algorithm produced scheme, with a chromosomal make-up of

fD7c033d, was the best by a multiplication factor of 1.17 over the next best competitor

(Figure 23). Momentum being the most important factor, it probably helped keep the search

moving horizontally until clear of the plateau. Persistence was again the second best with

a gh/hf ratio of 11/15.

Best First

Persistence

Hill Climb

Real-time-A*

GA-produced

0 10 20 30 40 50 60 70 80 90 100

FITNESS (percent)

Figure 23: Single Left Plateau With Ridges Results

7. General Comment

The genetic algorithm was extremely successful in producing the best search

strategies for all natural terrains.

36

B. RANDOM TERRAINS

Although the genetic algorithm produced search schemes where clearly superior for

the natural terrains, we wanted to test their viability on randomly generated terrains.

1. Random One / Random Two / Random Three

The results from these three terrains showed that the search heuristics produced

by genetic algorithms was of minimal value (Figures 24 to 24). These were all simple

problems with the average fitness for all the search schemes being 64%. Fitness varied little

between search strategies with a maximum of a 8% difference between the best and the

worst. The genetic algorithm produced scheme was 1.02 (Random One), 1.01 (Random

Two), and 1.03 (Random Three) times as good as the best conventional search strategy. The

Random One persistence gf/hf ratio was 15/11; the genetic algorithm produced

chromosome was fie90234. The Random Two gf/hf = 15/4; GA-produced chromosome =

f0b947c1. The Random Three gh/hf = 15/5; GA-produced chromosome = flf73351.

Best First

Persistence

Hill Climb

Real-time-A*

GA-produced

0 10 20 30 40 50 60 70 80 90 100

FITNESS (percent)

Figure 24: Random One Results

37

Best First

Persistence

Hill Climb

Real-time-A*

GA-produced

0 10 20 30 40 50 60 70 80 90 100

FITNESS (percent)

Figure 25 : Random TWo Results

Best First

Persistence

Hill Climb

Real-time-A*

GA-produced

0 10 20 30 40 50 60 70 80 90 100

FITNESS (percent)

Figure 26: Random Three Results

38

2. Random Four

This terrain was significantly harder than the other three randomly generated

terrains which can be observed by the low performance of the search strategies. The

average fitness of all strategies was 36% (Figure 24). The difficulty probably comes from

the encapsulation of the goal. Examining figure 33, page 46, we can see that the goal is

blocked by mostly high density blocks from (11,15) down to (11,10) across to (15,10). The

only passible blocks are (15,10) and (11,12). Neither of which are a direct route,

necessitating significant exploration. The genetic algorithm produced (fMb51535) scheme

was 1.10 times better than the next best which was a persistence strategy with a gf/hf ratio

of 14/15. This again seems to suggest that the genetic algorithm is only required when the

problem is hard.

Best First

Persistence

Hill Climb

Real-time-A*

GA-produced

0 10 20 30 40 50 60 70 80 90 100

FITNESS (percent)

Figure 27: Random Four Results

39

3. General Comments

It is difficult to improve on the simple search strategies when the terrain is of low

complexity. As suggested by DeJong [De92] the genetic algorithm can only optimize to a

certain point (dependent on implementation) before reaching a state of dynamic

equilibrium. The first three random terrains were of insufficient complexity to allow the

genetic algorithm to convincingly surpass all conventional search schemes. It was however,

in all cases, better than the best conventional ones.

C. GENERAL COMMENTS

In all cases, although the genetic algorithm produced strategy was always as least as

good as the next best, it was not a substantial improvement over Persistence search unless

the terrain was natural. Only in the most complex of the four random terrains did the genetic

algorithm produced scheme really excel. This seems to suggest that the additional

heuristics are only essential in natural terrains where some pattern in obstacle density exists

or in random terrains of high complexity.

Actual natural terrains, although usually best modeled by our natural terrains, could

possibly be more similar to the random. Since the genetic algorithm produced search

strategies are substantially better for our natural terrains and as least as good as standard

search schemes for random terrains, they should be advantageous to use on any actual

natural terrain. This is of course contingent on the physical agent's dependence on minimal

steps and its computational speed. If it's computational speed is sufficient to avoid delays

before each step and/or minimal steps are essential, the genetic algorithm produced scheme

should always be used.

Appendix C shows a comparison of the average time required for each strategy to

search from start to goal for each of the terrains. As expected, the nmere complicated

strategies require additional computation time, but are not considered slow enough to

prohibit their use except in cases of high speed agents with slow computational speed.

40

IX. CONCLUSIONS

Heuristics previously used for search of an unknown space by a physical agent are

distance from goal and distance from current. These are insufficient to minimize energy

expenditure (steps taken) when some general knowledge of the area is known. The

additional heuristics found to be pertinent are distance from start, crowding factors which

account for obstacle node density around the considered frontier node, move-away factor

which encourages reduction of the search space, and momentum which avoids wasted steps

in course variations. These seven heuristics with their properindividual biases were found

to be superior to standard search schemes. In this thesis we showed that genetic algorithms

can be effectively used to develop optimal heuristic biases that are adaptable to unknown

search spaces if some general knowledge of the search space is available. Training done

with randomly generated search spaces having common characteristics lead to robust

search schemes which are, on the average, more fit than previously used strategies.

We believe that this methodology of identifying all possible heuristics, fitting them

into a binary representation, and applying genetics-based training is also applicable to a

multitude of real-time search/optimization problems. Tests in other specific areas are

needed to prove our conjecture. In addition, further research could be done in the

application of more advanced genetic algorithms. Our results showed significant

improvement using only basic genetics-based concepts, advanced techniques should

continue to improve the effectiveness of resultant strategies.

41

LIST OF REFERENCES

[De75] Delong, Kenneth A., "An Analysis of tie Behavior of a Class of Genetic Adaptive
Systems." Doctoral Dissertation, Depatment of Computer and Communication Sciences,
University of Michigan. 1975.

]De92J DeJong, Kenneth A., "Geneic Algorithms Are NOT Functional Optimiwzs." Comp,,e
Science Deprment, Ger Mason University. 1992.

[Go89] Goldberg, David E., Genetic AhJ 2bithmn in Search. Optimization and Machine• LArning
Reading, Ma: Addison-Wesley. 1989.

[H]8J Hat, PE., Nilsson, NJ., and Raphael B., "A Formal Basis for ite Heuristic Deamiuton

of Minimum Cost Pauhs," IEEE Trans. Syst. Sci. Cybern., 4.1968.

[Ko90] Korf, Richard E., "Real-Tune Heuristic Search." Artificial Intelligence 42.1990.

[Pa89] Papadimitrion, C.H. and Yannakakis, M., "Shortest Paths Without a Map," Proc. of the 1989
ICALP Conference. 1989.

[Sh91] Shing, Man-Tak and Mayer, Michael M., "Persistn Search - A New Search Straegy for
the Dynamic Shortest Path Problem," Technical report NPSCS-91-011, Computer Science
Dept., Naval Postgraduate School. 1991.

(St77] Stansfield, William D., The Science of Evolution. New York, NY: Macmillan. 1977.

[Wi92] Winston, Patrick H., &djficial Intlligeic. Reading, Ma: Addison-Wesley. 1992.

42

APPENDIX A

TERRAIN DEVELOPMENT FROM A SAMPLE DENSITY MATRIX

Terrains are randomly produced using a density matrix as a guide. Figure 28 shows a density

matrix that was used to develope the terrain is shown in figure 29. This density matrix was not used

for our analysis, but helps to make clear the relationship between the density matrix and the actual

terrain.

The density matrix is stored as a text file as shown in the figure. At each cycle for training or

iteration for testing the density information is used to form a new terrain. Each hexadecimal number

represents the desired density for a 4x4 area. The actual obstacle placement is random. Compare

figures 28 and 29. The top left 4x4 area was filled in by checking if a random number (between 0

and 15) is less than 4 at each node. This should on the average happen 4 out of 16 times making the

obstacle count of each 4x4 area equal 4. The top left 4x4 is the average case with 4 out of the 16

nodes being obstacles.

The remaining 4x4 areas are filled out in a similar fashion. The start and goal nodes are chosen

at random in the (2,2) and (13,13) areas as also demonstrated in figure 29.

4444444444444444
4444444444444444
4444444444444444
4444444444444444
4444444444444444
4444444444444444
4444444444444444
4444444444444444
4444444444444444
4444444444444444
4444444444444444
0000000000000000
0010203040506070
0000000000000000
8090 aOb 0c0 dOe 0 f 0
0000000000000000

Figure 28: Sample Density Matrix

43

Terrain has a density of 4 in the top 11/16 Goal

I I I I W A I I t I I I
I I t-
I t

I LLA-U
I tj m

I I t

m I L

I I NEEL-1-1
m I LAEL"

I I t LL I m I I t OIL
L I I I

W L
Ll
L-M

t t

t L I--

LL-
I A I I
I L t L

I NONE[_
I t

I I I In I I I I I I I
m t I t t L--111 I I I I I

Start The lower 5/16 shows increasing density areas 0 to 15
surrounded by areas of 0 density.

Figure 29: One of Many Possible Resultant Terrains

44

APPENDIX B

RANDOM TERRAIN DENSITY MATICES

d 2 b a f 1 6 b f e b 1 0 f f
b a868124 f 9b 6 bo 3
d92498 896337327 f
of 54088f 1 2b 7 d7bb
f488501044377a63
9a8 a409524400 Sbb
534 a35679 af 04 54 a
1 0 85 0 lb f 6;8 f 20 a45
41 f 06 6 800 7 04 o4 2 a
0a3 d o so 2 6b4 65 lb 2
3b 291 a9 11 aS t e 8 £ f
2 f c t 804 34b 9 6 6 a9
10 22 7 0 3869 641233
2 f 20724 a7 f 24d6 6 7
98a04d.a6 f f 71 2b 3
2439 f 8467 6 34395 c

Figure 30: Random Terrain One

646c dc 89 adac46 e S
4 f7b590455a2949e
10b fc386022480ad
f 184a98 f e326 0b 52
b 01 7 39 t4 0841210
3.5 e3 dd 10 f 8 lb d36
44 t0 do4S9 de 4ff e 3
93 1 o 0 e 1 e 62935 f 0
9d0695062 t 31d147
45354 627 Sb adaa6
Sb 010072 ab 38o8 fI
42614 0 3b4 a 619071
b 3 2b 0ada51219126
488 84b 39 a993 a045
46140ttS f 17829 f6
27 a6 22f ob Sf59 S b d

Figure 31 : Random Terrain Two

45

2 a450 0 1 u 1 a 88m 24
Obb 7198445660552
1077078. 866048 a 5
3904258£ a f 6 a4 b 46b4dbbSa4o040S2So
b21m7gA183cA4£93a
406850010129376£f974d005 a249.0 4 974

94oc 4d 0e a2 749 dd 3
493545 a 2344 f 4•L 6 6
4 b44 144f 6 7b 04839
165e c o 7 06 add8 31
372702529124956 a
o40 80770e1db a 0c4
8e540 a6 Sb9?4 edf a
2 f226 34b Of 5 lb 39

Figure 32: Random Terrain Three

be523b2 f 9049b4"1 3
90 ac e1643174272d
59093280255d9613
6b f4c68 f 70497 f 7d
776 a 9e7 c4 0943 a0 9
50.26614d7e ee eb 5
5 1T0 f 7 a3 3 4 16 6 104
1t 67475 b 6c94 a49 f
594d40884 0 9 a a a a ea
84 3dc8824 1 6e S f da
9bt9364ff89a286b
c98820 a6 10560209
4d 2050 f489 a14 54

d6 04d06 e lb 4 1 t4 ab
3c c 8a b c44b f 5 f43d
29df 94eaf 2b d 7 a

Figure 33: Random Terrain Four

46

APPENDIX C

SEARCH STRATEGY COMPUTATIONAL TIME

TABLE 1: AVERAGE SECONDS REQUIRED TO SEARCH EACH TERRAIN

Real-Time- GA-
Best First Persistence Hill Climb

A* Produced

Central
Mountain 0.0239 0.0274 0.0065 0.0163 0.0615

Single Left
Ridge 0.0232 0.0264 0.0075 0.0176 0.0694

Singe Right
Ridge 1.3051 0.1496 0.0199 0.1405 0.2718

Double
Ridge 3.2553 1.3562 0.0420 0.4131 2.3420

Single Left
Plateau 0.1071 0.0982 0.0167 0.0626 0.1481

Single Left
Plateau 0.0769 0.0856 0.0146 0.0487 0.1310

With Ridges

Random
One 0.0177 0.0265 0.0064 0.0114 0.0478

Random
Two 0.0313 0.0267 0.0056 0.0150 0.0644

Random
Three 0.0294 0.0258 0.0065 0.0151 0.0521

Random
Four 0.1629 0.2255 0.0165 0.0481 0.1563

47

APPENDIX D

PROGRAM C CODE

1. ga search.h .. 50
2. main.c ... 55

main

3. train.c .. 58
train
put-gen
putrs

4. test.c ... 61
test

5. tsetup.c ... 65
get seed
getperschrom
read_densityfile
makearray
makenode
find-node

6. tpopulation.c .. 70
create population
new individual
getypopulation
put_population

7. astar.c .. 73
a star
update astarfrontier

8. hill climb..c ... 76
hill climb
moveadjacent
find-best

9. rt astarc... 79
rta star
update rtastaradjacent
insert

10. bfsearch.c ... 83
bfsearch
bf updatefrontier list
bfDpick_bestfrontier

11. psearch.c .. 87
psearch
p update frontier list
pypick_ bstfrontier

12. tsearch.c .. 91
search

48

13. tfrontier.c 94
update frontier list
update--adjacent obstacles
pickbestfrontier
reset back track-state
updatelis•t
diff int
adjacent
update crowd sides
update-crowd-diag
calc_move away
calcmomentum
computesubtotal

14. theap. c ... 102
insertheap
deleteheap
moveheap
swap

15. evolve.c .. 104
evolve
createmateheap
allelecrossover
bit crossover
crossover
get mask
mutate
one if mutate
get-odd
set-equal

16. eheap.c ... 112
insert mateheap
popmateheap
movemate-heap
swap_num

17. tmisc.c 114
gen xi
genyi
equalf
showleast nodes

18. tdisplay.c .. 117
initialize
draw terrain
show-mouse
draw nodes
drawgrid
squaref
square

19. tprintc.. 122
print density
print-populat ion
printnode

49

pgsearch.h

File: ga-search.h
Programmer: g.b. parker
Environment: any
Language: C
Date: 9 july 92
Revised:
Comments: This file holds all the header information needed for all

gasearch files.
*/

#include <stdio.h>

#define F 0
#define T 1

#define UNTOUCHED 0
#define OBSTACLE 1
#define VISITED 2
#define FRONTIER 3
#define START 4
#define GOAL 5
#define CURRENT 6
#define SHORTEST 7
#define X 8

#define NUM 0

#define N 1
#define E 2
#define S 3
#define W 4

Mdefine NE 1
#define SE 2
#define SW 3
#define NW 4

#define MASKO 0 /* 0000 *1
#define MASK1 8 /* 1000 *1
#define MASK2 12 /* 1100 */
#define MASK3 14 /* 1110 */
#define MASK4 15 /* 1111 */

so

#define NA -1 /* not applicable; for frontierin-
dex */
#define BIG NUMBER 10000
#define STANDARDDENSITY 4
#define PROBBITMUTATE 50 /* x/10000 prob of mutate *I

#define SQRT2 1.414213562

#define rand16() ((randomo/13) % 16) /* return rand int from 0 to 15 */
#define rand8() ((randomo/13) % 8) /* return rand int from 0 to 7 */
#define rand5() ((randomo/13) % 5) /* return rand int from 0 to 4 */
#define randl0000() (random() % 10000) /* return rand int from 0 to 9999 */

/* Graphics definitions */
#define SLEEPTIME 2

#define ASTITLE "A* Search
#define GATITLE "Genetic Algorithm Produced Search"
#define PERSTITLE "Persistence Search
#define BFTITLE "Best First Search
#define HCTITLE "Hill Climb Search
#define RTASTITLE "Real Time A* Search

/* Node record for terrain */

struct node rec

int xi;
int yi;
float x; /* for graphics */
float y; /* for graphics */
int state; /* UNTOUCHED, OBSTACLE, VISITED, or FRONTIER */
int back track state; /* UNTOUCHED, VISITED, or OBSTACLE */
float subtotal; /* includes all but dist from current & move away *[
float dist from start;
float distfromgoal;
float distfromcurrent;
struct noderec *predecessor; /* points to predecessor for a-star search */
int frontierindex; /* position in frontier heap */
struct noderec *qnext; /* next in q for dist from current DFS *1
struct noderec *qreset; /* reset link list after back DFS */

51

Ii

/* Individual record for population */

struct factor-struct {
unsigned int placeholder : 4;
unsigned int start_dist : 4;
unsigned int goaldist : 4;
unsigned int current_dist : 4;
unsigned int crowdsides : 4;
unsigned int crowd diag : 4;
unsigned int moveaway : 4;
unsigned int momentum : 4;

I;

union chrom union {
struct factorstruct factor;
unsigned int alleles;

I;
struct individual struct I

union chromunion chrom;
int fitness;
float fit sum;
int previous_index;

I;

/* global variables *1
extern int heapsize;

/* Functions listed under file *1

/* astar.c *1
float astaro;
int update astarfrontiero;

/* rt astar.c */
float rta staro;
int update rtastaradjacento;
int inserto;

/* hill climb.c */
float hill climb(o;
struct noderec *moveadjacent();
struct node rec *find best 0;

/* test.c */
int testo;

52

/* train.c *
int train();

/* tsearch.c *
float searcho;

/* psearch.c */
float psearcho:
int p__update-frontier -list 0;
struct node-rec *p~pick best frontier 0;

/* bfsearch.c *
float bfsearcho;
int bf-supdate-frontier-list 0;
struct node-rec *bf~pick best_frontiero;

/* tsetup.c */
int get seed 0;
unsigned mnt get~pers Tchromo;
mnt read -density fileo;
mnt make_arrayo;
mnt make-nodeo;
struct node-rec *find-nodeo;

/* tpopulation */
mnt createjpopulationo;
struct individual -struct *new-individual();
mnt get~populationo;

/* tprint.c *
mnt print -density 0;
mnt print -nodeo;
nt, printypopulationo;

1* tfrontier.c */
mnt update frontier -listo;
struct nod~e rec *pick best-frontiero;
mnt update adjacent -o-bstacles 0;
float update-disto;
mnt update -crowd sideso;
int update-crovd~diag 0;
mnt calc-move-avayo;
mnt calc-momentumo;
float compute-subtotalO);

53

/* theap.c *
int insert-heapo;
irit delete-heapo:
int move-heapo;
mnt svap();

/* tmisc.c *
float compute-shortesto:
mnt equalf 0;
/* update dist-starto; *
mnt gen-xio;
mnt gen~yio;
int ahoy-least-riodesO);

1* evolve.c */
mnt evolveo;
int create-mate-heap 0;
int crossovero;
int allele-crossovero;
irit bit-crossovero;
int get mask 0;

/* eheap.c *
mnt insert-mate-heapo;
irit pop_ mate -heap 0;
irit move-mate-heapo;
int swap_ num 0

/*tdisplay'c *
irit initializeo;
mnt draw-terraino;
int show-mouse 0;
mnt draw-nodesO);
int draw _grid 0;
void squaref 0;
void squareo;

S4

File: main.c
Programmer: g.b. parker
Environment: any
Language: C
Date: 9 july 92
Revised:
Convents: This is the control for user input and call of train or test.

Ten command live arguments are optional. The syntax for a call is as follows
(the 0 argument is the program call): (0) t; (1) 0 for train, 1 for test;
(2) randomseed; (3) input population file name; (4) input terrain density file

name; (5) start region on X axis; (6) start region on Y axis; (7) goal region
on X axis; (8) goal region on Y axis; (9) number of generations if training,
iterations if testing; (10) cycles per generation if training, array position
of best individual in the GA_produced population for testing; (11) file name
for out population if training, hexadecimal representation of best Persistence
search scheme.
*/

#include "gasearch.h"

/* ***************** main *** */

main(argc, argv
int argc;
char *argv[];

struct individual struct *individual[32];
int argseed - 0;
char argpopulation[32];
char arg_populationout[32];
char argdensity(32];
int choice - 0;
int sx - 2;
int sy - 2;
int gx - 4;
int gy - 2;
int iterations - 25;
int generations - 3;
int cycles pergeneration 2;
int best_individual - -1;
unsigned int perschrom;
char hname(64];
int hnlength;

55

gethostnarne(hname, hnlength)

strcpy(argjpopulation,
strcpy(argjpopulation-out, "popx.out
strcpy(arg density,U

switch (argc

case 12:
sscanf(argv(11], "%3", argjpopulation -out)
sscanf(argv(11], "%x", &pers-chrom)

case 11:
sscanf(argv(1O], "Wd", &cyclesjper_generation)
sscanf(argv(10], "Wd", fibest_individual)

case 10:
sscanf(argv(9J, "Wd", &generations)
sscanf(argv[9], "Wd", &iterations)

case 9:
sscanf(argv[8], "Wd", &gy)

case 8:
sscanf(argv[7, "Wd", &gx)

case 7:
sscanf(argjv[6], "Wd", &sy)

case 6:
sscanf(argv[5], "W", &sx)

case 5:
sscanf(argv[4], "%3", arg_density)

case 4:
sscanf(argv(3], "I%3", argjpopulation)

case 3:
sscanf(argv(2], "Wd", &arg_seed)

56

case 2:
3scanf(argv[1J, "%d", &choice)
svitch (choice)

case 0:
train (individual, arg seed, argjpopulation, arg_ density,sx, sy, gx, gy,

generations, cyclesj.per _generation, argypopulation-out, hnarne
put~population(individual, argypopulation-out)
break;

case 1:
individuall 0] - NULL;
test (individual, argseed, argjpopulation, arg__density, sx, sy, gx, gy,

iterations,best-individual,pers-chrom);
break;

case 2:
train (individual, argseed, argjpopulation, arg density,aX, sy,gx, gy,

generations, cyclesjper _generation, argjpopulation-out, hname);

test (individual, arg seed, arg~population, arg density, sx, sy, gx, gy,
iterations,best_individual,pers chrom);

putypopulation(individual, argypopul~ation-out)
break;

break;
case 1:

train (individual, arg-seed, argypopulation, arg__density, ax,sy, gX,gy,
generations, cyclesyperý_generation, argjpopulation-out, hname);

put~populat ion (individual, argypopulation out)

S7

train.c

File: train.c
Programmer: g.b. parker
Environment: any
Language: C
Date: 9 july 92
Revised:
Coxmmepts: Called by main to train a population of 32 individuals. If no

input population, a random one is generated.

#include "ga_search.h"

/********** train***********************

train(individual, arg seed, arg~population, arg_dOensity, sx, sy, gx, gy, gen-
erations, cycles~per ýgeneration, argypopulation-out, hname
struct individual-struct *individual[32];
mnt arg seed;
char arg~population[32];
char arg~density[32];
mnt sx, sy, gx, gy;
mnt generations, cyclesjper generation;
char argypopulation-out (32];
char hname[64];

mnt density[161 (16];
struct node -rec *node[66] [66];
irit gen, cycle, i, rs, short-count;
float shortest~path;
mnt dummy;

rs - arg_seed ? arg__seed :get seedo;

srandom(rs).? /* seed the random generator *

printf("\nRandom seed is %d", ra)

get~population (individual, argqyopulation)

read-density_file(density, arg_density)

58

for(gen - 1; gen <- generations; gen++
printf("\n gen - %d (cycle,rs) - ", gen);
for(cycle - 1; cycle <- cyclesj.er generation; cycle++

rs - rs + 1;
short count - 0;
while((shortestypath - a-star(sx,syogx,,gy~rs,density,node)

> (BIGNUMBER - 1.0)) {
if(short-count > 1000000000)I
printf("\nPROGRAM ABORTED - iteration %d - no shortest path\n",i);
return (F);

else
rs - rs + 1;

printf(w (%d,+%d)", cycle, rs)
for(i-0; i<32; i++

if(cycle -- 1)
individual (i]->f it sum - shortest~path / search(sx,sy,gx,gy,

individual Eu ->chrom. factor, rs, density, node, &dummy
else
individualfiJ->fit-sum - individual~i]->fit-sum + shortest-yath/

search (sx, sy, gx, gy, individual [iJ ->chrom. factor, rs, density,
node,&dummy);

if(cycle -- cyclesjper generation
individual~i]->fitness - (int) ((individual~i]->fit-sum/

cyclesyper generation) * 100.0);

if (gen -- generations -1
cyclesjper generation =cyclesyper generation + 10;

evolve(individual, rs)
put-rs (rs);
if (((gen %10) -- 0 I(gen<l10))
put gen (gen, argjpopulation-out, hname, rs);

/* put gen to a standard update file *
if ((gen % 50) -- 0) (
put~population (individual, arg~population-out)

59

/********** put geri**********************
/* Called by train to continually store status information to a file in the
directory of execution */

put gen(gen, argypopulation-out, hname, r3
mnt gen;
char arg~population-out (32];
char hname[64];
mnt rs;

FILE *gen_file, *fopeno;

gen-file - fopen("running.upd~ate", "a");

fprintf(gen-file," %s %s gen - %d rs - %d\n", hname, arg~population-out,
gen, rs);-

fclose(gen-file);

/* put~rs **********************

/* Puts ran'dom seed info to a file in the directory of execution *

put-rs(rs
mnt rs;

FILE *rs-file, *fopenoi;

rs-file - fopen("rs.update", "a");

fprintf(rs file," %d ", rs);

fclose(rs-file);

60

tes.c
/*

File: test.c
Programmer: g.b. parker
Environment: any
Language: C
Date: 9 july 92
Revised:
Coimments: Called by main to perform a comparative test of search

strategies. The default is for all individuals of the population to be
tested, unless a specific individual is specified.
*/

#include "ga_search.h"
#include <sys/time.h>

/* ***************** test *** *1

test(individual, argseed, arg_population, argdensity, sx, sy, gx, gy,
iterations, bestindividual, pers chrom)

struct individualstruct *individual[32];
int arg_seed;
char argpopulation[32];
char argdensity[32];
int sx, sy, gx, gy;
int iterations;
int best individual;
unsigned int pers-chrom;
{

struct individualstruct *bestfirst;
struct individualstruct *persistencesearch;
int density(16][16];
struct node rec *node(66] (66];

int i, rs, k, shortcount;

float shortestPath;
float realtimeastarfitsum;
int realtime astar fitness;
float hillclimb fitsum;
int hill climbfitness;

61

float temp;
float ga-t - 0.0;
float ga_ticks - 0.0;
fl'at bf-t = 0.0;
float bf-ticks - 0.0;
float pers-t - 0.0;
float pers -ticks - 0.0;
float hc-t - 0.0;
float hc-ticks - 0.0;
float rta t - 0.0;
float rta-ticks- 0.0;

long sec, usec;
struct timeval *tvP - (struct timeval *)malloc(sizeof(struct timeval));

struct timezone *tzp = (struct timezone *) mlloc (sizeof (struct timezone))

best-first -
(struct individual-struct *) malloc (sizeof (struct individual-struct));

persistence -search=
(struCt individual -struct *)malloc(sizeof(struct individual-struct));

best first->chrom.alleles - OxeOlOOOOO;
persistence-search->chrom.alleles = pers-chrom;
best Ifirst->fit-sum = 0.0;
persistence-search->f it-sum = 0.0;

rs - arg_seed ? arg_seed :get_seedo;
srandom(rs); /* seed the random generator ~

printf("\nRandom seed is %d", rs);
if (individual(0] -- NULL)
getypopulation(individual, argypopulation)

for (k-0;k<32;k++)
individual(k]->fit-sum - 0.0;

read-density file(density, arg__density)

printf('\n(iteration,rs))

62

for(i - 1; i <- iterations; i++
rs - rs + 1;
short-count - 0;
while ((shortest~path a- astar(sx, sy, gx, gy, rs, density, node)

> (BIGNUMBER -1.0))

if(short count > 1000000000)
printf("\n PROGRAM ABORTED - iteration %d - no shortest path\n", i)
return (F) ;

else
printf(" (%d,%d)",i,rs)
rs - rs + 1;

printf(" (%d,%d)",i,rs I
if (best individual -= -1)

for(k-0;k<32;k++)I
temp - search(sx,sy,gx,gy, individual (k]->chrom.factor, rs,density,

node,&gat)
individual~k]->fit sum =

individual EkJ->f it-sum + shortest~yath / temp;
if (temp < shortestypath)

printf("\nSHORTEST PATH > ACTUAL PATH)

elseI
k - best-individual;
temp = search(sx, sy,gx,gy, individual [ki ->chrom.factor, rs,density,

node,&ga -t);
individual[k]->f it_sum = individual~k]->fit sum + shortest~path / temp;
if (temp < shortest-Path)
printf("\nSHORTEST PATH > ACTUAL PATH")

ga -ticks - ga -ticks + ga -t;

best-first->fit-sum = best-first->fit-sum + shortestjpath/
bfsearch (sx, sy,gx,gy,best_first->chrom.factor,

rs,density,node,&bf-t)
bf -ticks - bf-ticks + bf-t;
persistence-search->f it -sum - persistence-search->f it-sum +

shortestypath / psearch(sx,sy,gx,gy,
persistence -search->chrom.factor, rs,density,node,&pers-t)

pers -ticks - pers ticks + pers-t;
hill climb-fit-sum = hill-climb fit-sum + shortestypath/

hill Tclimb(sx, sy, gx, gy, rs, density, node, &hc-t)

hc -ticks - hc -ticks + hc-t;
realtime-astar_fit-sum - realtime-astar-fit-sum + shortestypathI

rta -star(sx, sy, gx, gy, rs, density, node, &rta-t I
rta-ticks - rta-ticks + rta-t;

63

if (best -individual -- -1) /* no best individual input *
for (k-0;k(<32;k++)

individual RI ->fitness -

(int)(individual[k]->fit sum / iterations) *100.0);

else
individual RI ->fitne~ss

(int) (individual~k]->fit-sum / iterations) * 100.0);

best Ifirst->fitness - (int) ((best-first->fit-sum / iterations) * 100.0);
persistence-search->fitness -

(int) ((persistence-search->fit sum / iterations) * 100.0);
realtime-astar-fitness -

(int)((realtime-astar-fit-sum / iterations) *100.0);

hill-climb-f itness - (int) ((hill-climbf fit-sum / iterations) *100. 0);

if (best-individual -= -1)
print~population(individual)

else
printf("\n ga-produced %2d %7.3f %7.3f %x", individual~k]->fitness,

individual [k] ->f it_sum, ga _ticks, individual [k] ->chrom. alleles);
printf("\n best -first %2d %7.3f %7.3f %x", best-first->fitness,

best -first->f it-sum, bf ticks, best-first->chrom.alleles);
printf("\n persistence %2d %7.3f %7.3f %x",

persistence-search->fitness, persistence-search->fit-sum,
pers -ticks, persistence search->chrom.alleles);

printf("\n hill climb %2d %7.3f %7.3f", hill-climb-fitness,
hill-climb-fit-sum, hc-ticks);.

printf("\n RTA star %2d %7.3f %7.3f", realtime-astar-fitness,
realtime-astar-fit sum, rta-ticks)

printf("\n");

64

tsetup.c
/.

File: tsetup.c
Programmier: g.b. parker
Environment: any
Language: C
Date: 9 july 92
Revised:
Comments: Setup functions

*/

#include "ga_search.h"

/* ***************** get seed *************************************** */
/* Interfaces with user to get random seed */

get_seed()
{

char ni11]; /* absorbs newline after seed entry */
int randseed;
printf("\nEnter random seed or 0 (system assign seed): ")
scanf("%d",&randseed);
gets (nl);
if (randseed != 0)

return randseed;
else

return getpid();
I

/* * get_perschrom ********************************* *1
/* Interfaces with user to get Persistence chromosome */

unsigned int get pers_chrom()

char nl[l]; /* absorbs new-line after seed entry *!
unsigned int perschrom;
printf("\nEnter Persistence chromosome (8 hex digits) or 0 (eW110000): U);

scanf("%x",&perschrom);
gets (nl);
if (perschrom !- 0)

return(perschrom);
else

return(OxeO110000);

65

/* * readdensityfile ************ */
/* Reads density file from execution directory k/

readdensityfile(density, file-name
int density[16][16];
char file name[32];

int i, j;
FILE *density file, *fopeno;
int not-end - T;
int nodedensity - STANDARDDENSITY;

if(filename[O] -- ')

printf("\nEnter density file name: ");

gets(filename);
I

if ((density file = fopen(filename,"r")) == NULL
printf("\nThe file does not exist, standard densities being used.");
not-end - F;

I

for (j-15 ; j>-O ; j--
for (i=O i<-15 ; i++

if (notend && (fscanf(density file,"%x",&nodedensity) ! EOF
density[i][j) = node-density;

else (
density[i][j] = STANDARDDENSITY;
not end - F;

if(density file !- NULL)

fclose(densityfile);

66

/* ***************** make-array ************************************* */
/* Creates the node array on initial use, then resets records after that */

make array(density, node
int density[16] [163;
struct noderec *node[66] [66];

static int first - T; /* indicates if first time to make array *1

int i, j;

for(i-O;i<-65;i++) j

make_node(node, i, 0, first);
makenode(node, i, 65, first);
node(i] [0]->state = OBSTACLE;
node[i] [65] ->state = OBSTACLE;

I

for(j-l;j<-64;j++)
makenode(node, 0, j, first);
makenode(node, 65, j, first);
node [0] [j]->state - OBSTACLE;
node[65] [j]->state = OBSTACLE;

for (j-l; j<-64; j++)
for (i-1; i<=64 ;i++){

makenode(node, i, j, first);
if (randl6() < density[(i-1)/4] [(j-1)/4])

node[i] [jl->state = OBSTACLE;
I

first = F;

67

/********** make node******************* *
/* Resets single node information *

make-node(node, xi, yi, first
struct node-rec *node[66] (66]:
int xi;
int yi;
mnt first; /* T of F *

int k,

if(first){
node~xi](yi] - (struct node-rec *)zmwlloc(sizeof(struct node-rec));
node~xi](yi]->xi - xi;
nodelxi](yi]->yi - yi;
node~xi](yi]->x - (float)xi;
node~xi](yi]->y - (float)yi;

node (xi] (yi]->state - UNTOUCHED; /* OBSTACLE, VISITED, or FRONTIER *
node (xi] (yi]->back-track-state - UNTOUCHED; /* VISITED, or FRONTIER *
node(xi]lyiJ->subtotal - BIG_-NUMBER;
node~xi1[yi]->dist_from-start -BIGNUMBER;

node (xi] (yiJ ->dist fromý gol BIGNUMBER;
nodefxi](yi]->dist -from -current - 0.0:
node (xi] [yi]->predecessor -node [xi] (yi];

/* points to predecessor for a-star search *
node~xij[yi]->frontier -index - NA: /* not have index to frontier-heap *
node [xi] (yi]->qnext -NULL;

1* points to next in q for dist from current DFS ~
node(xi](yij->qreset -NULL; /* reset link list after back DFS ~

/* ***************** find node ************************************** */

/* Picks a random node in the designated density area. Used to identify
start and goal nodes. */

struct node rec *findnode(node, dens_col, dens_row)
struct node rec *node(66] 66J;
int dens col;
int dens row;

int k, xi, yi, base_x, base y;

base x - (dens_col * 4) + 1;
base-y = (densrow * 4) + 1;

for (k-O;k<100;k++)
xi - basex + (randl6() % 4);
yi - basey + (randl6() % 4);

if (node(xi] (yi]->state == UNTOUCHED)
return node[xi] (yi];

return node[xi] [yi];

69

tpopulationxc

File: tpopulation
Prograzunr: g.b. parker
Environment: any
Language: C
Date: 9 July 92
Revised:
Conmments: Functions dealing with population creation/storage

#include "ga_search.h"

/ * create-Population ************** 1
/* Generates a population of random individuals *

create~population(individual)
struct individual-struct *individual (32];

mnt k;

for (k-O;k<32;k++)
individual~k]

(3truct individual -struct *)malloc(sizeof(3truct individual-struct));
new-individual (individual [ki

/* new individual ********** *
/* Sets initial values of individual records fields *

struct individual struct *new individual(ind
struct individual-struct *ind;

ind->chrom.factor.place -holder -Oxf;
ind->chrom.factor.start dist - randl60;
ind->chrom.factor.goal -dist - randl60;
ind->chrom.factor.current dist - randl6O);
ind->chrom. factor .crowd sides - rand16 0;
ind->chrom. factor .crowd -diag - randl6 0;
ind->chrom.factor.move_away = rarld160;
ind->chrom.factor.momentum - randl60;
ind->fitness =0;
ind->f it sum - 0.0;
ind->previous-index - 99;

70

/ * getjpopulation*****************

/* Reads population from a file */

getjpopulation(individual, file -name
struct individual struct *individual (32];
char file-name[32J;

* int i;
FILE *population -file, *fopeno;
mnt not-end-To
unsigned mnt alleles;

if (file name[0J -- I'

printf(;\nEnter population file name:)

gets(file-name);

if ((population Ifile - fopen(file-name,"r")) -- NULL)
printf("\nThe file does not exist, random population being used.");
create~population(individual)

else

for (iin0 ; i<32 ;i++

individual(i]
(struct individual -struct *) malloc (sizeof (struct individual-struct));

individual(i]->fitness - 0;
individual(i]->f it_sum - 0.0;
individual~i]->previous-index - 99;

if (not-end &&(fscanf (population-file,"%x",&alleles) !-EOF

individual (i] ->chrom.alleles - alleles;

elseI
new-individual (individual [i])
not-end - F;

fclose (population-file);

71

/* putypopulation ~*
1* Puts the population to a designated file *

putypopulation(individual, file -name
struct individual struct *individual (32];

char file name[32];

irit i;
FILE *population-file, *fopeno;

if(file -name[O]
printf("\nEriter output population file name:)

gets(file-name);

population-file =fopen(file-name,"w");

for (1-0 ; i<32 ;i++)
fprintf (population-file, "%x\n", individual (iJ->chrom.alleleR);

fclose (population-file);

72

astarxc
1*

File: astar.c
Prograimner: g.b. parker
Environment: any
Language: C
Date: 9 july 92
Revised:
Comments: A-star search - Finds the shortest path

*/

#include "ga_search.h"

int heapsize;

/* *******a ******* a star *** *1
float a_star(sx, sy, gx, gy, randomseed, density, node)
int sx, sy, gx, gy; /* position in density array for start & goal */
int randomseed;
int density[161 [16];
struct noderec *node[66] [661;

struct noderec *current, *start, *goal;
struct noderec *frontier-heap[4096];
int k;

#ifdef IRIS
union chromunion dummy_ cu;
dunmy_cu.alleles - 0;

#endif

heapsize - 0;

srandom(randomseed); /* seed the random generator *1
makearray(density, node);
start - find_node(node, sx, sy);
start->state - START;
start->distfrom start - 0.0;
goal - findnode(node, gx, gy);
goal->state - GOAL;

for (k-O;k<4096;k++)
frontier heapfk] - NULL;

current - start;

73

#ifdef IRIS
/* initialize the IRIS system ~

draw terrain(node,start,goal,current,goal-)dist from start,
dummuy_cqu.factor);

#endif

while (current !- goal)I
update-astar-frontier(node,current,frontier-heap,start,goal)
if(heap-size -- 0) break;
current - frontier -heap[0];
delete-heap(frontier heap, frontier-heapLO))

#ifdef IRIS
draw terrain(node,start,goal,current,goal->dist from start,

dunumy_qu. factor);
sleep(SLEEPTI4E)

#endif

goal->state = GOAL;
start->state - START;

return(goal->dist-from start)

74

1********** update -astar -frontier ~*
update-astar-frontier(node, c, frontier-heap, start, goal
struct node rec *node(66]f66];
struct node rec *C; /* current *
struct node rec *frontier-heap(4096];
struct node rec *start,
struct node-rec *goal;

int xi, yi, base-xi, basejyi, top__xi, top..yi;

base-xi - c->xi -- 1 ? 1 :c->xi - 1;
base-ji - c->yi 1 ? 1 :c->yi - 1;
top_..xi - c->xi =64 ? 64 :c->xi + 1;
top~yi - c->yi -- 64 ? 64 :c->yi + 1;

for (xi-base -xi;xi<-top__xi;xi++)
for (yi=base~yi; yi<-top~yi ;yi++)

if ((node~xi][yi]->state ==UNTOUCHED) 11
(node[xi][yi]->state ==GOAL)

node [xi] [yi]->state -FRONTIER;
node (xi] (yi]->predecessor = c;
node~xi] Eyi]->dist_from _goal =update-dist(node~xi] (yi],goal);
node (xi] (yi]->dist_from start

c->dist -from -start + update dist(node~xiJ[yi],c);
node Exi] (yi]->subtotal Znode (xi] (yi]-->dist from goal +

node (xi] (yi]->dist-from-start;
insert-heap(frontier-heap, node~xi]tyi))

else if (node~xi] (yi]->state -= FRONTIER)I
if (node (xi] yi]->dist-from-start >

(c->dist from start + update dist(node~xi][yi],c))){
node (xi] [yi]->dist-from-start

c->dist-from-start + update dist(nodetxi] (yi],c);
nodefxi](yi]->subtotal = node~xi][yi]->dist fromi_goal +

node (xi] (yi]->dist from start;

move-heap(frontier-heap, nodetxi]Eyi]->frontier-index)

75

hill climb.c
/,

File: hill climb.c
Programmer: g.b. parker
Environment: any
Language: C
Date: 9 july 92
Revised:
Comments: Hill climb search - Finds best adjacent frontier node or back-

tracks
*!

#include "gasearch.h"
#include <sys/time.h>

/* ***************** hill climb ************************************* */
float hill climb(sx, sy, gx, gy, randomseed, density, node, ticks
int sx,sy,gx,gy; /* position in density array for start & goal */
int randomseed;
int density[16] [16];
struct node rec *node[66][66];
float *ticks;

struct noderec *current, *next, *start, *goal;
int k = 1;

long sec, usec;
static struct timeval *tvp;
static struct timezone *tzp;
static int first = T;

#ifdef IRIS
union chromunion dummycu;
dummy-cu.alleles - 0;

#endif

if(first)
tvp - (struct timeval *)malloc(sizeof(struct timeval));
tzp - (struct timezone *)malloc(sizeof(struct timezone));
first - F;

srandom(randomseed); /* seed the random generator *!
makearray(density, node);
start - findnode(node, sx, sy);
start->state - START;
start->dist from start - 0.0;

76

goal - find-node(node, gx, gy);
goal->state - GOAL;
current - start;
current->state - CURRENT;

#ifdef IRIS
/* initialize the IRIS system *
initialize (HCTITLE);

#endif

gettimeofday(tvp, tzp);
sec -tvp->tv-sec;
usec -tvp->tv-usec;

while (current !- goal)I
next - move-adjacent(node, current, start, goal)

if (next !- NULL)
next->predecessor = current;

else if (current->predecessor != NULL
next =current->predecessor;

else
printf("\nNO SOLUTION - hill climb search");

next->dist-from-start =

current->dist-from start + update-dist(current, next)
current->state = VISITED;
current = next;
current->state - CURRENT;

#ifdef IRIS
draw-terrain (node, start,goal,current,next->dist from start,

dunmy~cu.factor);
#endif

gettimeofday(tvp, tzp);
*ticks = (float) (tvp->tv-sec -sec) + (tvp->tv-usec -usec)/1000000.O;

#ifdef IRIS
sleep(SLEEPTIME)

#endif

goal->state = GOAL;
start->state = START;

return(goal->dist-from-start)

77

/* ***************** moveadjacent ********************************** */
struct noderec *moveadjacent(node, c, start, goal
struct node rec *node[66] [66];
struct node rec *c; /* current */
struct node rec *start;
struct node_rec *goal;

struct node rec *best;
int xi, yi, basexi, baseyi, topxi, top_yi;

best - NULL;
base xi - c->xi -. 1 ? 1 : c->xi - 1;
baseyi - c->yi =- 1 ? 1 : c->yi - 1;
topxi - c->xi .2 64 ? 64 : c->xi + 1;
topyi - c->yi .2 64 ? 64 : c->yi + 1;

for (xi=basexi;xi<=topxi;xi++)
for (yi-base_yi; yi<=topyi; yi++)

switch (node[xi] (yi]->state
{

case UNTOUCHED:
case GOAL:

node[xi] [yi]->state = FRONTIER;
node [xi] [yi] ->distfromgoal - update dist (node (xi] (yi], goal);
best = findbest(best, node[xi](yi]);
break;

case ERONTIER:
best = findbest(best, node[xi'J[yi]);
break;

return(best);

/* ***************** find best ************************************** */
/* Assigns the input node to best if appropriate *1

struct node rec *find best(best, n
struct node rec *best;
struct node rec *n;

if (best -. NULL
best - n;

else if (n->dist_fromgoal < best->dist_from_goal
best - n;

return(best);

78

rtastarte
/.

File: rt astar.c
Programmer: g.b. parker
Environment: any
Language: C
Date: 20 feb 92
Revised: 2 apr 92
Comments: RTA-star search - Finds best adjacent node visited or frontier

*/

#include "ga_search.h"
#include <sys/time.h>

int heapsize;

/* ***************** rta star *************************************** *1

float rtastar(sx, sy, gx, gy, random seed, density, node, ticks
int sx,sy,gx, gy; /* position in density array for start & goal */
int randomseed;
int density[16][16);
struct node rec *node[66] (66];
float *ticks;
{

struct noderec *current, *start, *goal;
struct node rec *best two[2];
int k = 1;

long sec, usec;
static struct timeval *tvp;
static struct timezone *tzp;
static int first - T;

#ifdef IRIS
union chromunion dummy_cu;
dummycu.alleles - 0;

#endif

if(first) {
tvp - (struct timeval *)malloc(sizeof(struct timeval));
tzp - (struct timezone *)malloc(sizeof(struct timezone));
first - F;

heap-size - 0;
srandom(randomseed); /* seed the random generator */
make-array(density, node);

79

start - find-node(node, ax, sy);
start->state - START;

start->dist-from start - 0.0;
goal - find-node(node, gx, gy);
goal->state - GOAL;
current - start;
current->state - CURRENT;

#ifdef IRIS
/* i~nitialize the IRIS system *
initialize (RTASTITLE);

#endif

gettimeofday(tvp, tzp);

sec =tvp->tVs3ec;

usec -tvp->tV-usec;

while (current !- goal)

best-two(0] - NULL;
best-two~i] - NULL;
update-rtastar-adjacent(node, current, best-two, start, goal)

if(best-two(0] -= NULL) break;
if(best-two~l] -- NULL)

current->dist from goal = BIGNUMBER;
else

current->dist-from-goal = best-two(l]->subtotal;

current->state = VISITED;
best-two(0]->dist-from start

current->dist-from start + update-dist(current,best-tWO(O]);
current = best-two(0];
current->state = CURRENT;

#ifdef IRIS
draw-terrain(node,start'goal,current,best-two(0]->dist-from start,

dummy__cu.factor);
#endif

gettimeofday(tvp, tzp);
*ticks - (float) (tvp->tv sec - sec) + (tvp->tv-usec - usec)/1000000.O;

#ifdef IRIS
sleep(SLEEPTIME I

#endif

goal->state - GOAL;
start->state - START;
return(goal->dist-from-start)

so

/* update rtastar adjacent ~*

update-rtastar-adjacent(node, c, best-two, start, goal
struct node rec *node(66] (66];
struct node rec *C; /* current *
struct node rec *best two(2];
struct node rec *Start;
struct node-rec *goal;

int xi, yi, base-xi, base~yi, top xi, top~yi;

base-xi - c->xi ==1 ? 1 :c->xi - 1
base.Ji - c->yi -- 1 ? 1 : c->yi - 1
top -.xi - c->xi 64 ? 64 :c->xi + 1;
top-yi - c->yi -- 64 ? 64 :c->yi + 1;

for (xi-base -xi;xi<-top~xi;xi++)
for (yi-basejyi ;yi<-top~yi; yi++)

switch (node~xi] (yi]->state

case UNTOUCHED:
case GOAL :

node (xi] (yi]->state = FRONTIER;
node (xi] [yi]->predecessor = c;
node [xi] (yi] ->dist_fromr_goal = update dist (node [xi] [yi], goal)
node (xi] (yi]->subtotal =

node~xi] (yi]->dist from _goal + update-dist(nodelxi](yi], c
insert(best-two, node~xi)[yi])
break;

case FRONTIER:
case VISITED:
node (xi] (yi]->subtotal=

node~xi][yi]->dist from .goal + update-dist(node~xi](yi], c)
insert(best-two, nodefxi][yi])
break;

case CURRENT:
break;

81

/* * insert ***
/* Assigns the input node to best or second-best as appropriate *1

insert(best_two, n
struct node rec *best two[21;
struct node rec *n;

if (besttwo[O] -- NULL
best two[O] - n;

else if (n->subtotal < besttwo[O]->subtotal
best two(l] - best two[O];
besttwo[0] - n;

else if (besttwo[l] -= NULL
best two(l] - n;

else if (n->subtotal < best two(1]->subtotal
best two[l] - n;

8

82

bfsemrch.c
/*

File: bfsearch.c
Progranmer: g.b. parker
Environment: any
Language: C
Date: 9 july 92
Revised:
Comments: Best First Search - modified standard bfs for use with real-

time search
*/

#include "ga_search.h"
#include <sys/time.h>

/* ***************** bfsearch *************************************** *1

float bfsearch(sx, sy, gx, gy, ind_chromfactor, randomseed, density, node,
ticks)
int sx,sy,gx,gy; /* position in density array for start & goal */
struct factor struct ind chrom factor;
int random seed;
int density[16] (16];
struct node rec *node[66] [66];
float *ticks;

struct node rec *current, *previous, *start, *goal;
struct node rec *frontierheap[4096];

long sec, usec;
static struct timeval *tvp;
static struct timezone *tzp;
static int first - T;

float dist traveled - 0.0;
int k;

#ifdef IRIS
union chromunion dummy cu;
dummy_cu.alleles - 0;

#endif

if(first)
tvp - (struct timeval *)malloc(sizeof(struct timeval));
tzp - (struct timezone *)malloc(sizeof(struct timezone));
first - F;

3

83

srandom(random seed); /* seed the random generator *
heap size - 0;-
make-array(densityp node);

start - find riode(node, sx, sy);
start->state - START;
start->dist from start - 0.0;
goal - find -node(node, gx, gy);
goal->state - GOAL;

for (k-0;k<4096;k++)
frontier -heap(k] - NULL;

current start;
previous -start;

#ifdef IRIS
/* initialize the IRIS system ~
initialize (BFTITLE);

#endif
gettirneofday(tvp, tzp);
sec -tvp->tv-sec;
usec -tvp->tv-usec;

while Ccurrent !- goal)I
bf-update frontier list (node, current, previous, frontier heap, start, goal);

if(heap-size -- 0)
printf("\nENDING SEARCH BEFORE GOAL -no more frontier");
break;

previous = current;
current - bf~pick best-frontier(node,current,frontier-heap,goal);
dist -traveled - d1st-traveled + current->dist-from current;

#ifdef IRIS
draw-terrain(node,start,goal,current,dist-traveled,dunuycqu.factor);

#endif

gettimeofday(tvp, tzp);
*ticks - (float) (tvp->tv-sec - 3ec) + (tvp->tv-Usec - usec)/1000000.O;

#ifdef IRIS
sleep(SLEEPTIME)

#endif

goal->state -GOAL;
start->state - START;

return(dist-traveled)

84

/* bf-update-frontier-list ~*

bf-update-frontier-list(node, c, p, frontier-heap, start, goal
struct node rec *node(661 (66];
struct node rec *C; /* current ~
struct node-rec *p; /* previous ~
3truct node-rec *frontier-heap(4096];
struct node-rec *start;
struct node-rec *goal;

int xi, yi, base -xi, base~yi, top_xi, top~yi;
float old-subtotal;

base-xi - c->xi - 1;
basejyi - c->yi - 1;
top__xi - c->xi + 1;
top-yi = c->yi + 1;

for (xi=base -xi;xi<=top__xi;xi++)
for (yi-basejyi; yi<-top~yi;yi++)

if ((node~xi] Cyi]->state == UNTOUCHED) 11 (node~xi] (yiJ->state -- GOAL)

node (xi] (yi]->state - FRONTIER;
node (xi] (yij->predecessor - c;
node~xi1[yi]->dist_from _goal = update -dist(node~xi](yiJ, goal)

node (xi] (yi]->subtotal = node (xi] (yi]->dist_fromk_goal;
insert-heap C frontier-heap, node~xi] (yi])

/* bfypick -best -frontier**************1

/* Finds best frontier node# returns it ~

struct node -rec *bfypick best_frontier(node, current, frontier-heap, goal

struct node rec *node[66] (66];

struct node rec *current;
struct node rec *frontier-heap(4096];
struct node_rec *goal;

struct node -rec *bestjptr, *q, *qend, *qreset;
float node cost - BIGNUMBER;
float norm - 1.0; /* (current->di3t-fromr_goal /16.0); normalize factor *

mnt xi, yi, kc;
float steps;
mnt done - F;

8S

bestJptr -frontier-heaptO];
q - current;
qend - current;
qreset - current;
current->back -track-state -VISITED;

current->dist from current - 0.0;

while (!done && (q !- NULL)

steps - q->dist-from current + 1.0;
for(ka0;k<8;k++)I

if (k--4)
steps - q->dist_from-current + SQRT2;

xi - gen -xi(k, q->xi)
yi - gen-yi(k, q->yi)

if(((node xi] (yij->state ==VISITED) 11

(node (xi] (yi]->state ==FRONTIER) I 1

(node~xi1[yi]->state ==START)) &&
node [xi] (yiJ->back-track-state -= UNTOUCHED

node (xi] [yi]->dist_from_current -steps:
node (xi] (yiJ->back-track-state =VISITED;

nodefxi][yi]->qreset = qreset;
qreset - node~xiJ[yi];
if ((node~xi] (yi]->state ==VISITED) 11

(node (xiJ (yi]->state ==START)
qend->qnext - node [xi] fyi];

qend - node~xi]lyi];

else / * node~xiJ[yi]->state FRONTIER ~
if (node[xi] fyi] -- bestyptr

done - T;

q =q->qnext;

reset-back-track-state(qreset)

bestJPtr->state - VISITED;
delete-heap(frontier-heap, bestyptr)

return(best~ptr)

86

pmercb.c
/*

File: psearch.c
Programmer: g.b. parker
Environment: any
Language: C
Date: 9 july 92
Revised:
Comments: Persistence Search - uses distance to goal and distance to cur-

rent
to determine best frontier.
*!

#include "ga_search.h"
#include <sys/time.h>

/* ***************** psearch ** *!
float psearch(sx, sy, gx, gy, ind-chromfactor, randomseed, density, node,
ticks)
int sx, sy, gx, gy; /* position in density array for start & goal */
struct factorstruct ind chromfactor;
int randomseed;
int density[16] [16];
struct node rec *node[66] [66];
float *ticks;

struct noderec *current, *previous, *start, *goal;
struct noderec *frontier-heap[4096];

long sec, usec;
static struct timeval *tvp;
static struct timezone *tzp;
static int first - T;
float dist traveled - 0.0;
int k;

if(first) 4
tvp - (struct timeval *)malloc(sizeof(struct timeval));
tzp - (struct timezone *)malloc(sizeof(struct timezone));
first - F;

srandom(random_seed); /* seed the random generator *1
heapsize - 0;
makearray(density, node);
start - find node(node, sx, sy);
start->state - START;

87

start->dist from start - 0.0;
goal - find node(node, gx, gy);
goal->state - GOAL;

for (k-0;k<4096;k++)
frontier-heap(kJ - NULL;

current -start;
previous -start;

#ifdef IRIS
/* initialize the IRIS system ~
initialize (PERSTITLE);

#endif
gettimeofday(tvp, tzp);
sec -tvp->tvs3ec;
usec -tvp->tv-usec;

while (current !- goal)
if(adjacent(current, goal)
dist-traveled - dist-traveled + update-dist(current, goal)
current - goal;

else
p__update frontier_list(node, current, previous, frontier-heap, start,

goal, ind-chrom factor)

if(heap-size 0) 0)

printf("\nENDING SEARCH BEFORE GOAL Id Wd - no more frontier",
current->xi, current->yi);

break;

previous -current;
current -p~pick best_frontier(node, current, frontier-heap,

goal, ind -chrom. factor);
dist traveled - dist traveled + current->dist from current;

#ifdef IRIS
draw-terrain (node, start, goal, current, dist traveled,ind-chrom-factor);

#endif

gettimeofday(tvp, tzp);

*ticks - (float) (tip->tv sec - sec) + (tvp->tv-usec - usec)/l000000.0;

#ifdef IRIS
sleep(SLEEPTIME)

#endif
goal->state -GOAL;
start->state -START;

return(dist-traveled)

88

/* p_ update_frontier list ~*

p_ update frontier -list(node, c, p, frontier-heap, start, goal, factor
struct n-ode rec *node[66J [66];
struct node rec *c; /* current ~
struct node rec *p; /* previous *
struct node -rec *frontier-heap[4096];
struct node-rec *start,
struct node -rec *goal;
struct factor-struct factor;

int xi, yi, base -xi, base~yi, top__.xi, top~yi;
float old-subtotal;

base xi -c->xi - 1;

base-yi -c->yi - 1;
top xýi -c->xi + 1;
top~yi -c->yi + 1;

for (xi-base -xi;xi<=topx-i;xi++)
for (yi-basejyi; yi<=topjyi ;yi++)

if((node~xi][yi]->state == UNTOUCHED) 11 (node[xil.(yij->state ==GOAL))

node (xi) (yi]->state = FRONTIER;

nodefxi]tyi]->predecessor =-c;
node~xiJ[yi]->dist_from goal = update-dist(node[xij[yi], goal)
node [xi] (yi]->subtotal =

node (xi] (yi)->dist_fromý_goal * factor.goal-dist;
insert-heap(frontier-heap, node~xi] [yi])

1*/ ******** pjpick -best -frontier ~*
/* Finds best frontier node, returns it */

struct node rec *pypick best_frontier(node, current, frontier-heap, goal, fac-
tor)
struct node rec *node(66]f66];
struct node rec *current;
struct node-rec *frontier-heap(4096);
struct node rec *goal;
struct factor-struct factor;

struct node-rec *best~ptr, *q, *qend, *qreset;
float node-cost - BIG-NUMBER;
float norm - 1.0; /* (current->dist -fromý_goal /16.0); normalize factor *
float lower -bound - frontier heap[O]->subtotal;
float upper -bound - BIGNUMBER;
int xi, yi, k;
float steps;

89

bestyptr - current;
q - current;
qend - current;
qreset - current;
current->back track state - VISITED;

current->dist-from current - 0.0;

while ((lower Ibound < upper-bound) && (q !-NULL)){

steps - q->dist -from current + 1.0;
for(k=0;k<8;k++)

if (k--4)
steps - q->dist-from current + SQRT2;

xi - gený_xi (k, q->xi)
yi - gen~yi(k, q->yi)

if (((node~xi](yi]->state -VISITED) 11

(node~xij[yi]->state -FRONTIER) 11
(node~xijtyi]->state -- START)) &&

node[xi][yi]->back-track-state -- UNTOUCHED)
node (xi] (yi]->dist from_current -steps;
nodelxi](yi]->back-track-state -VISITED;
node~xi] [yi]->qreset - qreset;
qreset - nodelxi](yi];

if ((node~xi] (yiJ->state -=VISITED) 11
(node~xi](yi]->state -- START)

qend->qnext - node (xi] [yi];
qend - node [xil yi];

else { /* node[xi](yi]->state -- FRONTIER *

node-cost - node (xi] (yi]->subtotal +
node~xi][yi]->dist_from_current *factor.current-dist;

if (node-cost < upper-bound)
upper bound - node-cost;

best~ptr - node [xi] (yi];

q -q->qnext;
lower-bound - frontier-heap(0J->subtotal + steps *factor.current-dist;

reset-back-track-state(qreset)
best-ptr->state - VISITED;
delete-heap(frontier-heap, best~ptr)

return(bestyptr)

90

tsearch.c

File: tsearch.c
Programmer: g.b. parker
Environment: any
Language: C
Date: 9 july 92
Revised:
Comments: This is a multi-heuristic search that takes in the bias

factors in the form of an eight digit hexadecimal number.
*!

#include "ga_search.h"
#include <sys/time.h>

int heapsize;

/* ***************** search *** *!

float search(sx, sy, gx, gy, ind_chrom factor, randomseed, density, node,
ticks)
int sx, sy,gx, gy; /* position in density array for start & goal */
struct factorstruct ind chromfactor;
int randomseed;
int density[16][16];
struct node rec *node[66] [66];
float *ticks;

struct noderec *current, *previous, *start, *goal;
struct noderec *frontier heap(4096];

long sec, usec;
static struct timeval *tvp;
static struct timezone *tzp;
static int first - T;

float dist traveled - 0.0:
int k;

if(first) {
tvp - (struct timeval *)malloc(sizeof(struct timeval));
tzp - (struct timezone *)malloc(sizeof(struct timezone));
first - F;

91

srandom(randomse66d); /* seed the random generator *
heap__size - 0;
make array(density, node);

start - find -node(node, 3x, sy):
start->state -START;
start->dist-from start - 0.0;
goal - find rxode(node, gx, gy);
goal->state - GOAL;

for (k-0;k<4096;k++)
frontier heap~kJ - NULL;

current - tart;
previous 3 tart;

#ifdef IRIS
/* initialize the IRIS system *
initialize (GATITLE);

#endif

gettimieofday (tvp, tzp);
sec -tvp->tv sec;
usec -tvp->tv-usec;

while (current !- goal)I
if(adjacent(current, goal))
dist-traveled - dist-traveled + update-dist(current, goal)
current - goal;

I
else{

update-frontier-list(node, current, previous, frontier-heap, start,
goal, ind chrom factor)

if(heap-size -- 0)1

printf("\nENDING SEARCH BEFORE GOAL - no more frontier");
break;

previous current;
current =pick-best-frontier(node, current, frontier-heap, goal,

ind-chrom factor);
dist-traveled - dist-traveled + current->dist-from current;

#ifdef IRIS
draw-terrain (node, start, goal, current, dist-traveled,ind-chrom factor);

#endif
I /* end while loop *

gettimeofday(tvp, tzp);
*ticks - (float) (tvp->tý_sec - ec) + (tvp->tv-usec - usec)/lOOOOOO.0;

92

#ifdef IRIS
sleep(SLEEPTIME);

#endif

goal->state GOAL;
start->state - START;

#ifdef SUN
/* Print to standard output *1
/* not normally used, but optional for sun

/*
printf ("\n");
printnode (node)
printf("\n");
printf("\nDIST - %f", disttraveled);

*/

#endif

return(dist traveled)

93

tfrontierx
/*

File: tfrontier.c
Programmer: g.b. parker
Environment: any
Language: C
Date: 9 july 92
Revised:
Comments: Maintenance of frontier list

*/

#include "ga search.h"
#include "math.h"

/* * update frontierlist *************************** */
/* Looks two away from the current node to update stable search
characteristics */

updatefrontierlist(node, c, p, frontierheap, start, goal, factor
struct node rec *node[66][66);
struct node rec *c; /* current */
struct noderec *p; /* previous */
struct noderec *frontier-heap[4096];
struct node rec *start;
struct noderec *goal;
struct factor struct factor;
{

int xi, yi, basexi, baseyi, top xi, top_yi;
float old_subtotal;

basexi - c->xi -- 1 ? 1 : c->xi - 2;
base-yi - c->yi -- 1 ? 1 : c->yi - 2;
top_xi - c->xi -- 64 ? 64 : c->xi + 2;
topyi - c->yi -- 64 ? 64 : c->yi + 2;

updateadjacentobstacles(node, c);

94

for (xi-base-Xi;Xi<'top--xi;Xi++)I

for (yi-bas..yi;yi<"topRyi;yi++)I

if (((node~xi](yi]->state -- UNTOUCHED) 11

(node~xi]Cyi]->state -=GOAL)) &adjacent(node~xi](yi],c))
node~xi](yi]->state - FRONTIER;
node[xi][yi]->predece3Sor - c;

node(xi](yi]->dist_from goal update -dist(node[xi][yi], goal)
node[xi][yi]->dist_from -start -update-dist(node~xi](yi], start)
node [xi] (yi]->subtotal Z

compute-subtotal(node[xi][yi], factor,
caic-momentum(node~xi] [yi],c,p),

update-crowd-sides (node,node[xi] fyi]),
update -crowd -diag(node,node~xi](yi]))

insert-heap(frontier-heap, nodelxi](yi])

else if (node~xi][Yi]->state -- FRONTIER
old -subtotal - node [xi] (yi]->subtotal;
node (xi] [yi]->subtotal =

compute-subtotal(node(xi] [yi], factor,
calc momentum(nodejxi] (yi],c,p),
update -crowd -sides (node,node~xi] fyi]),
update -crowd -diag(node,node[xi]fyi]))

if (!equalf(old-subtotal,node [xi] [yi]->subtotal)) (

move-beap(frontier-heap, node[xi)(yi]->frontier-index)

95

/* * ** update -adjacent-obstacles *
/* Records for future Use which adjacent nodes are obstacles *

update adjacent-obstacles(node, c
struct node rec *node(661 [66];
struct node_rec *c; /* current ~

int xi, yi, base-xi, basejii, top_ xi, top~yi;

base-xi - c->xi - 1;
basejyi - c->yi - 1;
top__xi - c->Xi + 1;
top-yi - c->yi + 1;

for (xi-base -xi;xi<-top--.xi;xi++)
for (yi-base~yi; yi<-top~yi; yi++)

if C node (xi) [yi]->state -= OBSTACLE
nodelxi](yi]->back-track-state - OBSTACLE;

/* * ** pick -best -frontier ~*
/* finds best frontier node, returns it *

.struct node-rec *pick-best-frontier(node,current,frontier-heap,goal,factor)
struct node -rec *node(66] (66];
struct node-rec *current;
struct node -rec *frontier-heap[4096);
struct node-rec *goal;
struct factor-struct factor;

struct node -rec *best~ptr, *q, *qend, *qreset;
float node-cost = BIGNUMBER;
float norm = 1.0; /* (current->dist -from goal / 16.0); normalize factor '
float lover -bound = frontier-heap[0]-:*subtotal;
float upper-bound - BIG-NUMBER;
mnt xi, yi, k;
float steps;

best~ptr - current;
q = current;
qend = current;
qreset = current;
current->back track state -VISITED;
current->dist-from current -0.0;

while ((lover-bound < upper-bound) &&(q !- NULL))

steps - q->dist-from-current + 1.0:
for (k-O;k<S;k++)

if (k--4)

steps - q->dist-from current + SQRT2;
xi - gen-xi(k, q->xi)
yi - gen~yi(k, q->yi)

if k (riode[xi] (Yil->state -=VISITED) I
(node[xi](yi]->state -=FRONTIER) 11
(node~xi](yi]->state -- START)) &&

node (xi) (yiJ->back-track-state -- UNTOUCHED
node (xi] (yi]->dist-from current -steps:
node (xi] (yij->back-track-state -VISITED;
node [xi] (yiJ->qreset - qreset;
qreset - node~xi][yi];

if ((node[xi][Yi]->state -VISITED) 11
(node[xi][yi]->state -- START)

qend->qnext - node (xi] (yi];
qend - node [xi] (yij;

else 4 * node~xi][yi]->state -- FRONTIER *
node-Cost - node (xi] (yiJ->subtotal +

node (xi] (yi]->dist_from current * factor.current-dist +

caic-move-away(node~xi](yi],current,goal) * factor.move away;
if (node--cost < upper-bound)

upperý_bound - node-Cost;

best-ptr - node[xi](yi];

1/* end if *
/* end else *

/* end if */
/* end for ioop *

q - q->qnext;
lower -bound - frontier-heap(0]->subtotal + steps factor.current-dist;
1/* end while loop */

reset-back-track--state(qreset)
best~ptr->state - VISITED;
delete-heap(frontier-heap, bestjptr I

return(bestjptr)

97

/* ***************** reset back-track state * */
/* Resets node record fields used to perform the backtrack search *1

resetbacktrack_state(qreset
struct noderec *qreset;

struct noderec *temp;

while (qreset !- NULL)
temp - qreset->qreset;
qreset->back__trackstate - UNTOUCHED;
qreset->qreset - NULL;
qreset->qnext - NULL;
qreset - temp;

I

/* ***************** updatelist ************************************ */
/* Euclidean distance between input nodes */

float update dist(nl, n2
struct node rec *nl;
struct noderec *n2;
f x
float x - nl->x - n2->x;
float y - nl->y - n2->y;

return(sqrt(x*x + y*y));
I

/* ***************** diff int ************************************** *1
/* Absolute difference between two integers */

diff int(a, b)
int a, b;

int c - a - b;

if (c < 0
return(-c I;

else
return(c

98

1********** adjacent *********************

/* Returns T if the input nodes are adjacent *

adjacent (nl,n2)
struct node rec *nl;
struct node-rec *n2;

return ((diff-int(nl->xi,n2->xi) < 2) &G (diff-int(nl->yi,n2->yi) < 2))

/* update-crowd-sides *
/* Counts the known adjacent horizontal/vertical obstacles to the frontier
node *

update-crowd-sides(node, f)
struct node rec *node(66] (661;

struct node-rec *f; /* frontier *

mnt s-count - 0;

/* N */
if (node~f->xi] (f->yi + 1]->back-track-state ==OBSTACLE)

s -count - 3count+l1;
/* E */
if (nodetf->xi + l1tf->yi]->back-track-state ==OBSTACLE)

s -count - s-count + 1;
/* S *
if(nodeff->xij (f->yi - l]->back track-state -- OBSTACLE)

s -count -s-count + 1;
/* W */
if(node~f->xi - l1] f->yij->back-track-state =OBSTACLE)

s-count - s-count + 1;
return(s-count)

/* update -crowd -diag*************** *
/* Counts the known adjacent diagonal obstacles to the frontier node *

update-crowd-diag(node, f)

struct node rec *node[66]H66];
struct node-rec *f; /* frontier *

I
int d-count - 0;

/* NE/
if (node~f->xi + 1][f->yi + 1J->back-track-state -OBSTACLE)

d-count = d-count + 1;
/* SE */
if (node(f->xi + 1] (f->yi - 1->back-track-state -OBSTACLE)

d count = d-count + 1;
/* SW */
if(node~f->xi - llff->yi -lJ->back-track-state -- OBSTACLE)

d -count - d-count + 1;
/* NW */
if(node~f->xi - lJ [f->yi + 1]->b.ack.-track-state - OBSTACLE)

d count - d-count + 1;

return(d-count)

/********** calc move away ******************

/* Determines if a move to the frontier would be moving away from the

goal. Each axis move away counts as two. *

calc-move-away(f, c, g)

struct node-rec *f;

struct node-rec *c;
struct node_rec *g;

mnt ma-count - 0;

if(diff -int(f->xi,g->xi) > diff-int(c->xi,g->xi))
ma count - 2;

if(diff -int(f->yi~g->yi) > diff~int(c->yi,g->yi))
ma-count - ma-count + 2;

return(ma_count)

100

/* ***************** calc_momentum ********************************** */
/* Returns 0 if no change in direction, 1 if 45 degree change, two if 90
degree change, and three if 135 degree change or node not adjacent */

calc_momentum(f, c, p
struct node rec *f;
struct noderec *c;
struct node_rec *p;

if(adjacent(f,c) && adjacent(c,p)
return(diffint(p->xi - c->xi,c->xi - f->xi) + diffint (p->yi - c->yi,c-

>yi - f->yi));
else

return(3);

/* * compute subtotal * */

/* Computes the frontier nodes subtotal value dependent on the stable heuris-
tics */

float computesubtotal(n, factor, m, cs, cd
struct node rec *n; /* the node */

struct factor struct factor;
int m; /* momentum */
int cs; /* crowding_sides */
int cd; /* crowdingdiagonals */

return(n->dist from start * factor.start dist +
n->dist_fromgoal * factor.goaldist +
cs * factor.crowd sides +
cd * factor.crowddiag +
m * factor.momentum);

101

theap.c

File: theap.c
Programmer: g.b. parker
Environment: any
Language: C
Date: 9 july 92
Revised:
Convnents: Frontier heap functions

*/

#include "ga search.h"

int heapsize;

/* ***************** insert heap ************************************ */
/* Inserts a node into the frontier heap */

insertheap(fh, n)
struct noderec *fh[4096]; /* frontierheap *!
struct node rec *n; /* node to insert */

n->state - FRONTIER;
n->frontierindex - heap_size;
fh[heap size] - n;
heap size - heap_size + 1;
move-heap(fh, heap_size-i);

/* ***************** deleteheap ************************************ */
/* Deletes a node from the frontier heap *1

delete-heap(fh, n)
struct node rec *fh[4096]; /* frontier heap */
struct node rec *n; /* node to delete */

heap size - heapsize - 1;

fh[n->frontier index] - fh[heapsize];
fh(n->frontier index]->frontierindex - n->frontier-index;
n->state - VISITED;
fhtheap size] - NULL;
if (n->frontier index !- heap size

move heap(fh, n->frontier index);
n->frontier index - NA;

102

/* ***************** moveheap ************************************** *1
/* Moves a node in the frontier heap if required; dependent on the value
of the nodes subtotal field. *1

moveheap(fh, i)
struct noderec *fh[4096]; /* frontier-heap */
int i; /* index of node to possibly move */

int parent - (i - 1) / 2;
int child - ((2*i+1) >- heap-size) ? i : 2*i+1;
int child2 - ((2*i+2) >- heap size) ? i : 2*i+2;
if ((child2 !- i) && (fh[child2]->subtotal < fh[child]->subtotal)

child - child2;
while (fh[i]->subtotal < fh[parent]->subtotal) {

swap(fh, i, parent);
i - parent;

parent - (i - 1) / 2;

while (fh[i]->subtotal > fh[child]->subtotal)
swap(fh, i, child);
i - child;
child - ((2*i+1) >- heap size) ? i : 2*i+1;
child2 - ((2*i+2) >= heap-size) ? i : 2*i+2;
if ((child2 !- i) && (fh[child2]->subtotal < fh[child]->subtotal)

child = child2;
I

/* ***************** swap *** *1
/* Swaps nodes in the frontier heap *1

swap(fh, il, i2)
struct noderec *fh[4096]; /* frontierheap */
int il, i2; /* indexes of nodes to swap *1
{

struct noderec *temp_ptr - fh[il];

fh[il]->frontier index - i2;
fh(i2]->frontier index - il;
fh[il] - fh[i2];
fh[i2] - tempptr;

103

evolve-c
/*

File: evolve.c
Progranmer: g.b. parker
Environment: any
Language: C
Date: 9 july 92
Revised:
Comments: Performs selection, crossover, and mutation on input population.

*!

#include "gasearch.h"

!* ***************** evolve *** *!
/* takes in a population, with fitness information which is used to produce
the next population */

evolve(individual, rs
struct individual struct *individual[32];
int rs; /* random-number *!
I

static struct individualstruct *temp_ind(32];
static int first = T; /* T or F *!
int k;
int top - 0;
int nextspot - 2;
int mate_heap[31];
int even - T;

if (first) I
create_population(temp_ind);
first - F;

s
temp-ind[0]->fitsum - 0.0;
temp ind[1J->fit sum - 0.0;

createmate heap(mateheap, individual, rs);

104

for (k0O;k<32;k++)
top - top + individual(k]->fitness;
while ((mate-heap~l] <- top) && (mate-heapfOJ > 0))

temp nd (next_spot] ->chrom.alleles -individual (kI ->chrom.alleles;
temp ind~next_spot]->previous-index k;
if (even)

next spot - next_spot + 2;
even - next_spot < 30 ? T :F;

else
next spot - get-odd();

pop mate heap(mate-heap);

if (individual~k]->f it -sum > temp-ind[0]->fit-sum
set-equal(temp-ind[0], temp indf 1], temp-ind(0]->previou3 index)
set-equal(individual(k], temp_ind(O], k)

else if ((individual[k]->fit-sum > temp-indflJ->fit_sum) &
(individual (k]->chrom.alleles !- temp-ind(0] ->chrom.alleles)

set-equal(individualtk], temp-ind(l], k)

crossover(individual, temp-ind, rs I
1* mutate done in crossover ~

/* create_mate_heap *** **** *****

/* Creates a heap of integers which will be used to stochastically choose
individuals for reproduction *

create_mate_heap(mh, ind, rs
mnt mh[3lJ;
struct individual-struct *ind[32];
mnt rs; /* random seed *

mnt k;
mnt total-fit - 0;

srandom(rs);
mh[0J - 0;

for (k-0;k<32;k++)
total-fit - total-fit + ind~k]->fitness;

for (k-l;k<31;k++)
insert-mate heap(mh, (random() total-fit))

105

/ ******************crossover functions*************/

1* allele crossover ~*
/* Performs ctossover of the chromosome at a random allele position *

allele crossover(ind, temp imd, k, cross allele
struct individual -struct *ind(32J;
struct individual Istruct *temp-ind[32];
mnt k, cross-allele;
in{]>ho~lee epidk-crmall3
ind~kl]->chrom.alleles - temp ind(k] 1->chrom.allles;3

switch (cross-allele)

case 0:
ind(k]->chrom.factor.start -dist -temp-ind[k+l] ->chrom.factor.start-dist;
ind~k+l] ->chrom.factor.start-dist = temp-ind~k]->chrom.factor.start dist;

case 1:
ind~k]->chrom.factor.goal -dist = temp indfk+l]->chrom.factor.goal-dist;
ind(k+l] ->chrom.factor.goal-dist =temp ind~k] ->chrom.factor.goal-dist;

case 2:
ind[k] ->chrom.factor.current-dist-

tempind (k4-l]->chrom. factor, current-d1st;
ind[k+l] ->chrom.factor.current-dist =

temp ind(k] ->chrom.factor.current-dist;
case 3:

nd (k] ->chrom. factor. crowd-sides
temp_ind~k+l] ->chrom.factor.crowd-sides;

ind k+1] ->chrom. factor. crowd-sides =
temp ind(k] ->chrom.factor.crowd-sides;

case 4:
ind[k]->chrom.factor.crowd -diag = temp_ind~k+l]->chrom.factor.crovd-diag;
ind k+lJ ->chrom. factor .crowd-diag - temp-indfkJ ->chrom. factor.crovd-diag;

case 5:
nd (kI ->chrom. factor .move -away - temp mnd k+l] ->chrom. factor.move_away;
indfk+l] ->chrom. factor.move away - temp-ind[kJ->chrom.factor.move-away;

case 6:
ind~k] ->chrom. factor .momentum - temp ind~k+l] ->chrom. factor .momentum;
nd (k+l] ->chrom. factor .momentum -temp-indfkj ->chrom. factor.momentum;

106

/********** bit crossover*******************

/* Performs Crossover of an allele at a random bit position *

bit -crossover(ind, temp-ind, k, cross-allele
struct individual struct *ind[32];
3truct individual struct *temp-ind[32];
int k, cross-allele;

int cross-bit, inv-cro~ssbit;

cross-bit - get-mask(rand5())
inv-cross-bit - cross bit ^ MASK4

switch (cross-allele

I
case 1:

ind~k]->chrom.factor.start dist-
(temp_ind~kj->chrom.factor.start -dist £cross-bit)
(temp-ind~k+l]->chrom.factor.start-dist & inv-cro~ssbit)

ind k+l] ->chrom. factor. start dist -
(temp-indlk+l]->chrom.factor.start Idist & cross -bit)
(temp-ind[k]->chrom.factor.start-dist & mnv-cro~ssbit)

break;
case 2:

ind~kJ->chrom.factor.goal -dist
(temp-ind~k]->chrom.factor.goal -dist & cross-bit) I
(temp-ind~k+1]->chrom.factor.goal -dist & inv-cross-bit)

ind~k+ll ->chrom. factor .goal -dist
(temp-indfk+l]->chrom.factor.goal Idist & cross-bit)
(temp_ind(kJ->chrom.factor.goal-dist & inv-cross-bit)

break;
case 3:

ind k] ->chrom. factor. current -dist =

(temp_ind~kJ->chrom.factor.current -dist & cross-bit)
(temp ind~k+l]->chrom.factor.current -dist & inv-cross-bit)

ind[k+l] ->chrom.factor..current dist -
(temp-ind~k+l]->chrom.factor.current Idist & cross-bit
(temp indfk]->chrom.factor.current-dist & inv-cross-bit)

break;
case 4:

indfk]->chrom.factor.crowd -sides
(temp ind(k]->chrom.factor.crowd -sides & cross-bit)
(temp-ind~k+lJ->chrom.factor.crovd -sides & inv-Cross-bit)

ind~k+l]->chrom.factor.crowd sides -
(temp-ind[k+1]->chrom.factor.crowd Isides & cross-bit)
(temp-ind~kl->chrom.factor.crowd-sides & mv -cross bit)

break;

107

case 5:
ind~k] ->chrom. factor.crowd-diag-

(temp-ind(k]->chrom.factor.crowd-diag & cross-bit I
(temp_ind(k+1]->chrom.factor.crowd-diag & inv-cross-bit)

ind~k+l] ->chrom.factor.crowd-diag -
(temp_.ind(k+lJ->chrom.factor.crowd-diag & cro33-bit)
(temp-ind~k]->chrom.factor.crovd-diag & inv-cross-bit)

break;
case 6:

ind(k] ->chrom.factor.move away-
(temp-ind(k]->chrom.factor.move away & cross-bit)
(temp-ind~k+1]->chrom.factor.move -away & inv-cro~ssbit)

indtk+l] ->chrom-factor.move-away
(temp-indfk+l]->chrom.factor.move away & cross-bit)
(temp-ind(k]->chrom.factor.move away & inv-cross-bit)

break;
case 7:

nd (k] ->chrom. factor .momentum
(temp indfk]->chrom.factor.momentum & cross -bit I
(temp-indfk+l]->chrom.factor.momentum & inv-cross-bit)

ind[k+l] ->chrom. factor.momentum -
(temp-ind~k+1J->chrom.factor.momentum & cross -bit I
(temp ind(k]->chrom.factor.momentum &n mvcross bit)

/********** crossover******************* *
/* The main function */

crossover(individual, temp_ind rs
struct individual -struct *individual (32];
struct individual-struct *temp-ind[32];
mnt rs; /* random-seed *

mnt k;
mnt cross-allele;

srandom(rs);
cross-allele - rand80;

set-equal(temp indlO], individual(OJ, temp_ind(O]->previou3 -index)
set equal(temp ind~lJ, individualf 11, temp-ind(l]->previous-index)

for(k-2;k<32;k-k+2) (
allele -crossover(individual, temp-imd, k, cross Iallele)
bit-crossover(individual, temp mnd, k, cross-allele)
mutate (individual, k, rs3)

106

/ ********** get -mask *********************

/* called by bit-crossover ~

int get-mask(rn)
int in; /* random number *

switch (rn

case 0:
return MASKO;

case 1:
return MASK1;

case 2:
return MASK2;

case 3:
return MASK3;

case 4:
return MASK4

1*/ ******** mutate **********************

1* Runs through each bit of the chromosome determining if if will invert *

mutate (ind, k, rs
struct individual-struct *ind(32];
int k, rs;

uninditmt-fatr xfff{
unsigned int mut-factori - Oxfffffff0;

int g;

for (g0O;g<28;g++)I
mut-factori - (mut-factori << 1) + one-if-mutate();
mut-factor2 - (mut-factor2 << 1) + one-if-mutateo;

indk-crmall3-idk-crmall3AMt-fcol
ind(kl]->chrom.alleles - ind~k] l->Chrom.alleles -mut-factori;

109

/* ***************** one if mutate ********************************** */
/* Returns 1 if mutation is to take place at the present bit */

one if-mutate()

if (randl0000() < PROBBITMUTATE
return(1);

else
return(0);

I

/* ***************** get odd ** */
/* Determines placement of selected individual for reproduction.
Distributes individuals to avoid mating of like chromosomes. */

/* Definitions only pertinent to this function */
#define LOW 0
#define MED 1
#define HIGH 2

get oddo)
{

static int next - LOW;
static int base - 1;

switch (next
I
case LOW:

next - MED;
base - base + 2;
return(base);

case MED:
next - HIGH;
return(base + 10 1;

case HIGH:
next - LOW;
if (base -- 11

base - 1;
return(31);

I

else
return(base + 20 1;

110

/ * set-equal *******************

/* Sets one individual equal to another *

set-equal(from ind, to-imd, k)
struct individual-struct *from-ind, *to-ind;
int k;

to -ind->chrom.alleles - from ind->chrom.alleles;
to mnd->fitness - from ind->fitness;
to -ind->f it-sum - from-ind->fmt sum;
to-ind->previous-index k;

eheap.c
/.

File: eheap.c
Programmer: g.b. parker
Environment: any
Language: C
Date: 9 July 92
Revised:
Comments: Frontier heap functions

*/

#include "gasearch.h"

/* *************** insertmateheap * */

insertmateheap(mh, num
int mh[31]; /* mate heap */
int num; /* number to insert */

mh[O] - oMi0] + 1;
rnh[mh[0]] - num;
movemate heap(mh, mh[O]);

/* ***************** pop mate heap ********************************** *1
/* Removes top of mate heap */

popmate heap(mh)
int mh[31]; /* mate-heap */

mh[l] - mh[mh[fo 1;
mh(mh[O]] - 0;
mh[0] - mh[0] - 1;
move_mateheap(mh, 1);

112

/* * movemate heap ********** */

/* Readjusts heap after addition/removal of one of its members */

movemateheap(mh, i)
int mh[31J; /* mateheap */
int i; /* index of num to possibly move */

int parent - i -- 1 ? 1 : i / 2;
int child - ((2*i) > mh[0]) ? i : 2*i;
int child2 - ((2*i+1) > mh[0]) ? i : 2*i+1;

if ((child2 !- i) && (mh[child2) < mh[child])

child = child2;

while (mh[i] < mh[parent])
swapnum(mh, i, parent);
i = parent;
parent - i == 1 ? 1 : i / 2;

I

while (mh(i] > mh[child])
swap num(mh, i, child);
i - child;
child - ((2*i) > mh[O]) ? i : 2*i;
child2 = ((2*i+1) > mh[O]) ? i : 2*i+1;
if ((child2 !- i) && (mhfchild2] < mhfchildj)

child = child2;

)

/* ***************** swap num *************************************** */

/* Swaps positions of two members of the mate-heap */

swap_num(mh, il, i2)
int mh(31]; /* mateheap */
int il, i2; /* indexes of numbers to swap */

int temp num;

tempnum - mh[il];
mh[il] - mh[1i2;
mh[i2] - temp-num;

113

tniis.c
/*

File: tmisc.c
Programmer: g.b. parker
Environment: any
Language: C
Date: 6 apr 92
Revised:
Comments: Miscellaneous functions

*/

#include "gasearch.h"

/* ***************** gen-xi *** */
/* Generates an integer value dependent on the input xi and k.
Used with genyi to generate all adjacent nodes to (xi,yi). */

int genxi(k, xi
int k;
int xi;

switch (k)

case 0:
return(xi);

case 1:
return(xi+l);

case 2:
return(xi);

case 3:
return(xi-1);

case 4:
return(xi+l);

case 5:
return(xi+l);

case 6:
return(xi-1);

case 7:
return(xi-1);

114

/ * ******** gen~yi **********************

/* Generates an integer value dependent on the input yi and k.

Used with gen_xi to generate all adjacent nodes to (xi,yi). *

int gen~yi(k, yi
int k;
int yi;

switch Wk

case 0:
return(yi+1)

case 1:
return(C yi)

case 2:
return(yi-1)

case 3:
return(yi)

case 4:
return (yi+1)

case 5:
return(yi-1)

case 6:
return(yi-1)

case 7:
return(yi+l)

/ ********** equalf **********************

/* Checks if two floats are equal (within 0.0001) *

mnt equalf C x, y
float x, y;

if (((x-y) < -0.0001) 11 ((x-y) > 0.0001)

return(F)
else

return(T)

/* * showleastnodes * */

/* Sets the state field to x for all nodes in the shortest path */

/* Not currently used, but available for graphics *1

showleastnodes(node, g)
struct node rec *node[66] [661;
struct node rec *g; /* goal */

struct noderec *best ptr;
float best;
int xi,yi,k;

while ((g->dist_from start > 0.0) && (g->distfromstart < 10000.0))

best - BIGNUMBER;
for(k-0;k<8;k++) I

xi - gen xi(k, g->xi);
yi - gen_yi(k, g->yi);
if((node[xi][yi]->state != OBSTACLE) &&

(node[xi] [yi]->distfromstart < best)) {
best - node [xi] [yi]->distfromstart;
best_ptr - node[xi][yi];

g = bestptr;

g->state - X;

116

tdisplay.c

File: tdisplay.c
Progranmner: g.b. parker
Environment: any
Language: C
Date: 9 july 92
Revised:
Comments: Functions called by all searches to display the search on the

IRIS. This file should not be excluded from Makefile if compiled on the SUN.
*/

#include "ga_search.h"
#include <gl.h>
#include <device.h>

/* ***************** initialize ************************************* *1
/* Initializes graphics systems for output */

initialize (title)
char title[33];

/* set up a preferred size and location for the window */

prefsize(XMAXSCREEN+1,YMAXSCREEN+1-256);
prefposition(0,980,0,980);

/* open a window for the program */
winopen("search");

/* put a title on the window */

wintitle(title);
/* put the machine into double buffer mode */

doublebuffero;
/* set RGB mode for color */

RGBmode();
/* configure the IRIS (means use the above command settings) *!

gconfig(;
/* queue the redraw device */

qdevice(REDRAW);
!* queue buttons needed */

qdevice(BUT6); /* ESC */
qdevice(BUT50); /* enter */
qdevice(BUT4); /* right shift */
qdevice(BUT73); /* down arrow

/* set the world coordinate system *!
ortho2(-1.0,66.0,-1.0,6 6 .0);

117

/* draw terrain
/* Called by searches to draw the node array

draw-terrain(nodestarttgoalrcurrentdi3tchrom)

3truct node rec *node[66](661;

3truct node rec *start,*goal,*current;

float dist; /* di3t traveled */

struct factor-3truct chrom; /* ind-chrom-factor

short value;

static int cont - T;

int MMOU3e F;

int first T;

int do-Print;

if(adjacent(3tartcurrent) 11 adjacent(goalcurrent)

cont - T;

while((MMOU3e 11 first) && cont

do-print - F;

draw-grido;

draw-nodes(node,3tartgoalcurrent);

while(qtesto)

switch (qread (&value)

I

case BUT6: /* "ECS" to terminate display for that search

cont - F;

break;

case BUT50: /* "return" to halt display

mmouse - T;

break;

case BUT4: /* "shift" to continue display

MMOU3e - F;

break;

case BUT73: /* "down arrow" to print node info to standard output

doprint - T; /* node i3-3elected by MOU3e Position

break;

default:

break;

show-MOU3e(nodedistchromdoprint);

3wapbuffer3(); /* change the buffers ...

first - F;

/********** show mouse ********************

/* Shows mouse position and prints node info if selected *

show-mouse (node, dist,c,do~print)
struct node rec *node(66] (66];
float dist;
struct factor s truct c; 1* ind-chrom factor *

int do~print;

mnt mx~pix - getvaluator(MOUSEX);
mnt myypix - getvaluator(MOUSEY);

mnt mx - ((67 * mxypix)/980) - 1;
mnt my = ((67 * myy-ix)/980) - 1;

if (mx > 65
mx - 65;

if (my > 65
my - 65;

RGBcolor (0, 0, 0)
square (node (mx](my] ->x, node (mx] [my] ->y, 0 .35)

if(do~print)
printf("\n dist-%f", dist);
printf("\n(%d,%d)\n%d state\n%d btstate\n%f subtotal\n%f %d start

\n%f %d goal\n%f %d current\n%d frontier",
node (mx] (my]->xi, node~mx] [my]->yi, node~mx] [my] ->state,
node [mx] (my]->back-track-state, node [mx] my] ->subtotal,
node~mx][my]->dist -from start, c.start-dist,
node (mx] (my] ->dist_from ~goal, c .goal -dist,
node [mx] [my]->dist -from-current, c.current-dist,
node (mx] (my] ->frontier-index);

printf("\n%f from below", nodetmx] (my]->subtotal -

(node (mx] (my]->dist -from start *c.start-dist +
node~mx](my]->dist-fromk-goal *c.goald~ist))

printf ("\ncs-%d, cd-%d,ma-%d,m-%d\n",
c crowd-sides, c .crowd-diag, c.move-away, c.momentum);

119

/********** draw nodes ********************

/* Draws node info, can be changed for color *

draw-nodes (node, start,goal,current)
struct node rec *node[66]f66];
struct node-rec *start,*gaalf*current;

int xci, yi;

for (xi-O;xi<-65;xi++)
for (yiumO;yi<-65;yi++)
switch(node~xiJ (yi]->state

case OBSTACLE:
RGBcolor(0,0,0);
squaref(node~xi][yi]->x,, node~xiJ[yi]->y,, 0.5)
break;

case VISITED:
/* RGBcolor(0,0,255); *
circf(riode~xi]Eyi]->x, nodelxi][yi]->y,, 0.1)
circ(riode[xi][yij->x, node~xi][yij->y, 0.3)
break;

case FRONTIER:
/* RGBcolor(0,255,0); *
circ(node~xij[yi]->x,, node(~ci]yi]->y, 0.3)
break;

/* RGBcolor(255,0O,255); *
circf(current->x, current->y, 0.3)

/* RGBcolor(255,0,0,); */
circf(start->x, start->y, 0.4)
circf(goal->x, goal->y, 0.4)

120

/ *~*~****~* draw _grid ****************** /
/* Draws the cross lines for the grid */

drawgrid C)

int i;
float fi;

/* draw the background color */
RGBcolor (255,255,255):
clear ();

RGBcolor (0, 0, 0);

for (i-0;i<-66;i++)
fi - (float) (i-0.5);
move2 (-0.5, fi);
draw2(65.5,fi);
move2 (fi, -0.5);
draw2 (fi, 65.5);

I

/* ***************** squaref ** */
/* display filled square for 2D displays */
void squaref (xc,yc,d)
float xc,yc; /* center point of square *1
float d; /* half of side length */

rectf (xc-d, yc-d, xc+d, yc+d);

/* ***************** square *** *1
/* display square for 2D displays */
void square (xc,yc,d)
float xc,yc; /* center point of square *1
float d; /* half of sidelength *1
C

rect (xc-d, yc-d, xc+d, yc+d);
1

121

tprint.c
/*

File: tprint.c
Progranlner: g.b. parker
Environment: any
Language: C
Date: 9 July 92
Revised:
Comments: Prints to standard output

*/

#include "ga_search.h"

/* ***************** printdensity ********************************** *1
/* Prints density terrain to standard output *1

printdensity(density
int density(16] (161;

int i, j;

for (J-15; J>-O; J--) I'
printf("\n");
for (i-0; i<-15; i++

printf("%x ", density[i]lj]):
)

/* ***************** print_population ******************************* *1
/* Prints the population to standard output *1

printpopulation(i)
struct individual struct *i[321;

int k;

for (k-O;k<32;k++)
printf("\n %d %x %d %f %d", k, i(k]->chrom.alleles, ilk]->fitness, ilk]-

>fitsum, i(k]->previousindex);

122

/* ***************** print node ************************************* *1
/* Prints node terrain to standard output *1

printnode(node)
struct node rec *node[66][661;

int i, j;

for (j-65; j>-O; j--
printf ("\n");
for (i-0; i<-65; i++

switch (nodeli] [j]->state)
C

case UNTOUCHED:
printf(");

break;
case OBSTACLE:

printf("#");
break;

case VISITED:
printf ("o");
break;

case FRONTIER:
printf ("f");
break;

case START:
printf("S");
break;

case GOAL:
printf("G");
break;

case CURRENT:
printf ("O");
break;

case SHORTEST:
printf ("s");
break;

case X:

printf("x");
break;

1

12

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

Dudley Knox Library 2
Code 052
Naval Postgraduate School
Monterey, CA 93943

Chairman, Code CS
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Prof. Man-Tak Shing, Code CSSh 4
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Prof. Yuh-Jeng Lee, Code CSLe
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943

Prof. Kenneth A. DeJong
Computer Science Department
George Washington University
Fairfax, VA 22030

Dr. John J. Grefenstette, Code 5514 1
Navy Center for Applied Research in Artificial Intelligence
Naval Research Laboratory
Washington, DC 20375-5000

Mr. Alan C. Schultz, Code 5514
Navy Center for Applied Research in Artificial Intelligence
Naval Research Laboratory
Washington, DC 20375-5000

USS AMERICA (CV-66) 2
Atn: LCDR Gary B. Parker
FPO-AE 09531-2790

124

