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ABSTRACT

Search of an unknown space by a physical agent (such as an autonomous vehicle) is
unique in search as the customarily most important goal (to reduce the computation time
required to obtain the shortest distance) is not as important as minimal movement. There is
a real-time aspect since the agent is actually moving; using energy each step of the way.
Having limited energy resources and knowledge of the terrain (only adjacent nodes), the
key factor for the physical agent’s search algorithm is reduction of steps. Hence, any
heuristic that can help keep step count to a minimum must be considered. Korf and Shing
addressed this issue in separate works. Both made use of known information about the
frontier node’s distance from the current node in addition to a heuristic estimating the
distance from goal.

In this thesis, we present a simple genetics-based method to produce adaptive, efficient
multi-heuristic search strategies for the real-time problem. Extensive empirical study
shows that this approach produced search strategies with much better performance over
existing search algorithms for most terrain types. The methodologies used to develope
these improved strategies for our specific case, are also applicable to a multitude of real-

time search/optimization problems in the general case.
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L. INTRODUCTION

Search of an unknown space by a physical agent (such as an autonomous vehicle) is
unique in search as the customarily most important goal (to reduce the computation time
required to obtain the shortest distance) is not as important as minimal movement. There is
a real-time aspect since the agent is actually moving; having limited time to determine its
next move and using energy each step of the way. This is in contrast to the traditional
problem of search of known space for the shortest path which can be efficiently
accomplished by A* search with a good heuristic estimating the distance to goal. The path
is found without any movement. Although factors other than the actual distance from start
and estimated distance from goal could reduce the number of nodes examined in the
traditional problem, these factors usually increase the computational cost per node
examined and produce paths that are longer than the shortest path which makes additional
heuristics undesirable. Such is not the case for the real-time problem.

The physical agent traversing a terrain in the real-time problem knows only its current
position, the goal’s position, and whether adjacent and previously adjacent nodes are
passable or not. It learns about the terrain only as it mdves from node to node examining
all nodcs adjacent. Information about past nodes, visited or adjacent, can be stored to build
up its knowledge base. Computational time to determine the next move is important, as
stopping to compute before each move is undesirable. On the other hand, insufficient
computations can result in unnecessary steps and wasted energy.

Having limited energy resources and knowledge of the terrain the key factor in the
physical agent’s search is the reduction of physical steps. In [Pa89], Papadimitrion and
Yannakakis showed that the computational problem of deriving optimal search strategies
for the real-time problem is PSPACE-complete. Hence, any heuristic that can help keep
step count to a minimum must be considered. Korf [Ko90] studied this problem and
developed the real-time-A* search, which uses the physical agent’s distance from the node

(g (n)) in addition to the distance from goal heuristic (h (n) ) to determine the best next




move by minimizing the objective function f(n) = g (n) + h(n) for every adjacent node
n. Shing and Mayer [Sh91] developed persistence search which included a persistence
factor (pf = 0 to 1) to bias the distance from current. The next move is determined by
minimizing the objective function f(n) = pfx g (n) + h(n) for every frontier node n.
Experimental results led to the conclusion that the pf could be adjusted to optimize search
depending on terrain type and the density of obstacles. Details of these search strategies are
in Chapter III.

Extending on these works, we believe a combination of additional heuristics can be
beneficial in minimizing physical agent steps. As the number of heuristics increases, it is
essential to have some efficient means of assigning bias adjustments to various heuristics
to optimize f(n) for different terrain types and densities of obstacles. If the combinatorial
explosion required to produce all possible combinations of heuristics is not intractable, the
required testing of each to select a best makes this means computationally prohibitive.
Since enumeration is probably not possible, some random means of attaining the best
combination seems to be the most plausible. DeJong [De75] made clear the advantages of
genetic algorithms over purely random selection.

In this thesis, we present a simple genetic algorithm based method to produce adaptive,
efficient multi-heuristic search strategies for the real-time problem. Extensive empirical
study showed that this apprnach produced search strategies with much better performance
(reduced number of steps without prohibitive computation time) over existing search
algorithms for most terrain types. The methodologies used to develope these improved
strategics for owm specific case, are also applicable to a multitude of real-time search/

optimization problems in the general case.




II. PROBLEM MODEL

A. TERRAIN MATRIX

To best demonstrate the effectiveness of the multi-heuristic search strategies produced
by a genetic algorithm, we chose to apply the strategies to random obstacle distributions in
the form of a two-dimensional 64x64 grid of squares (nodes). Nodes can be either free or
obstacles, movement can be in eight directions through free spaces only. A perimeter
surrounding this grid is a solid row/column of obstacles. The distance from a node to its

horizontal/vertical neighbor is 1.0; to its diagonal neighbor is J2. The total distance
traveled from start to goal according to any search scheme is the sum of each of these
individual steps. The effectiveness (fiess) of a specific search scheme is the ratio of the
shortest path length from start to goal divided by the distance traveled. Given as.a
percentage, 100 is the best possible; meaning the distance traveled is equivalent to the
shortest path. Specific nodes of the grid are be identified by Cartesian coordinates with the
left border column being the y axis and the bottom border row being the x axis. The lowest
left node is (1,1); the top right is (64,64).

B. DENSITY MATRIX

The 64 by 64 search space grid is divided into 16x16 density blocks, each containing
4x4 nodes and having a specified block density. Block densities range from 0-15. A block
density of 9 means that, on average, nine of the block’s 16 nodes will be an obstacle (chosen
at random). These density blocks are numbered from (0,0) to (15,15) where (0,0) is the
bottom left and (15,15) is the top right. Start and Goal positions are specified by density
blocks. Most of the block density distributions used will have a start block of (2,2) and a
goal block of (13,13). The specific start/goal node is located randomly in that block. See
Appendix A.




C. TERRAINS USED

There are ten different density distributions that were used for training and testing. The
block densities, once set, remain unchanged from the start of training through testing.
Although the block densities remain constant, actual obstacle placement is determined
stochastically and changes from.run to run. The point is to investigate the adaptability of
genetic algorithm to produce the best strategy to direct the search through terrains where
the general density distribution is known but actual obstacle placement is not. The first six
terrains are considered natural terrains since they closely resemble actual topological
conditions. The start density block is always (2,2) unless otherwise stated. The goal density

block is always (13,13) unless otherwise stated.

1. Central mountain
The highest density, 15 (denoted as f in Figure 1), is in the center with a gradual
decrease towards the lowest density, 1, on the outer edge. Figure 1 shows the density
distribution of the terfain in hexadecimal. Transit from start to goal requires a search

scheme to find the most efficient way around the mountain.

1111111111111111
133333833333333331
13555555555556531
1357?2727272?2727277531
1357999999997531
13523bbbbbb9 7531
13573bd4ddadadadb9s 7?2531
13579bd4££d4dDb9397531
135739b4¢£t£d4db37531
13579b4ddddb37531
13579bbDbDbDbDbI97531
135799999%9976531
1357?727?222?277777531
1355555555556565231
1333333333333331
1111111111111111

Figure 1: Central Mountain Terrain




2. Single Left Ridge
This terrain has a high density (15) ridge starting from left center moving
horizontally out past the grid’s midpoint. There is a gradual decrease in density down to 2
as the distance increases from ridge center (Figure 2). Transit through the ridge is not

possible.

NRPAON OO Y OARARMNN
DN ENOE OO P OARNN
BN OE OO M OALNN
NN LANAOE OO N OCRARENN
NVENROE OO P OCRENN
NN DBADE OO B OCRAANN
NN EADE OMMO N OAEANN
NRLEODOE OO N ORAENN
NN ENOP OO Y ONANN
NN AAON OO M ONSNN
NNVEADY OO ONENN
MVNEAOF OO ORARNNN
NMRONNEANROEY  OABRNDNONN
NMONNNNAENRONENNNNN
MOV EAAERNRNNNONN
NMRNNNRNNMOELENNNADNNN

Figure 2 : Single Left Ridge Terrain

3. Single Right Ridge
This terrain is similar to the Single Left Ridge but in the opposite direction
(Figure 3). This is a much more difficult situation since the physical agent must move away

from the goal to find its best route.




NNTWO S OHM OFDWYE NN
NNYLWOWD S OMNSHONSODWOLETNN
NNGTWO S OHHOSOWENN
NONPWDO S OMNMNOBSODWETNN
NNSWDO S ONHONDOETNN
NONYTWDO S OHHNONDWETNN
NONGWO S ONHMNOSODWLENN
NNGWD S O OBOWE NN
NNGWD % OHMNONOWE NN
NNTWRO S OWRNMNONODWOETNN
NNGWO S OHMNHOSOWET NN
NNNTWVWOHOOFODLENNN
NNNNTWO % SOWTNNNN
NONNNNGTOWDOWETNNNNN
NONNNNNTOWTNNNNNN
NNNNNNNTTNNNNNNN

Figure 3 : Single Right Ridge

Double Ridge

4.

This terrain has density areas producing a right ridge on top of a left ridge. Ridge

densities are 15 with a valley of 2 in between (Figure 4). An s-shaped path to get from start

to goal is required to transit this terrain.

NWOSHONBONTETTOLNNNN
NW SHONDONTTWLWLNNNN
NW S ONONTOWVOROETNNN
NW AN O BSDNWWNR FWNNN
NW B O BDNWDO $O0PTNN
NW S OBDOND S OHSONN
NW S ONOND SO SONN
NW B O BDNDO % O SONN
NW B OBDOND % O SWNN
NW AN OFDND 8 OWNSWLNN
NW SH O BDOND % OWN SWOLNN
NGTDOBODONGD S O SWNN
NNW NDWIWOLND S OH SWONN
NNGTOWWOWLTND S O SWONN
NNNWWELETND % O SWANN
NNNOVTLTETEND SO BOLNN

Figure 4 : Double Ridge Terrain




S. Single Left Plateau
This terrain is characterized by a large area of high density (10) (dense but
passable) starting from left center moving horizontally out past the grids midpoint (Figure
5). The start/goal density blocks are (4,0)/(11,15). A successful transit can consist of either
direct passage through the plateau or circumnavigate.

NOE ¢ 0 yPprypprrydby ON
NOp rerprrrryMepyON
NOp MM rryEEreyON
NOM MY MOy OMeYPpyON
NOPp Fw WPy rEryrdey ON
NOP s PPy PpLYrpyON
NOP M vy MYy PLNyON
NOF SO M PYYMYNYNYON
NOp PP rYPYLOYPEON
NOE MY PP YIYREOYNEYON
NOF sy PP YEyON
NOP M PPy DO
NOp S P MMM EFIPINYPEPYON
NOF # v YPrYrPEMRMEYON
N G0 G0 00 GO GO G0 G0 GO 0O GO Q0 QD G0 GO IV
NN

Figure 5 : Single Left Plateau Terrain

6. Single Left Plateau with Ridges

The same as single left plateau, except it has a ridge of higher density (12) (hard
to pass) along the plateaus perimeter (Figure 6). The start/goal density areas are (4,0)/
(11,15). Circumnavigation will usually be the only viable option.




NNNNNNNNNNNNNNNN
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DL ENREEENEEREENREY X'
NDOSOOOOLOLOODOOOLNON
NONSOSAI NGNS NOBDON
NOSONSSGSINNSABOSDN
NOSONSSSISNNNNONON
NOSONSS SN OSDN
NOSOSN NN NNONDN
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Figure 6 : Single Left Plateau with Ridges Terrain

Random Terrains

7.

Four different terrains were generated with random block densities set anywhere

from O to 15 with equal probability. Shown in Appendix B (Figures 30, 31, 32 & 33), these
grids were used to test the effectiveness of the different search strategies through unnatural

terrains.




III. BACKGROUND WITH DISCUSSION PERTINENT TO MODEL

A. KNOWN TERRAIN SEARCH

A guarantee of optimal path from start to goal is usually the main concern in known

terrain search.

1. A®* Search

[Ha68] - Widely accepted as the best algorithm for finding the shortest path in a
known search space, it uses the actual distance from start and a heuristic estimating the

distance from goal. The object of any frontier node is given by the following equation:
f(n) =s(n) +h(n) (Eq 3.1)
where s(n) = the actual distance from start to n, the frontier node, and A(n) = the
heuristic estimated distance from n to goal. Although guaranteed to find the optimal path,
assuming that the heuristic estimate is always less than the actual, it is not required to
minimize the number of nodes examined. Using Euclidean distance as the distance to goal
heuristic, A* search provided the shortest path for each terrain used in our experiment to

compare the effectiveness of each search scheme.

B. UNKNOWN TERRAIN SEARCH BY A PHYSICAL AGENT

Assuming limited sensory range, the physical agent cannot find the shortest path
without excessive moves. Although the shortest path would be nice, more important to the
search schemes success is the energy expended/time spent finding a satisfactory path.
Distance traveled is of major concern as is time to determine next move (related to this is
the computational limitations of the physical agent). The following algorithms have been
considered in an attempt to find the best. In all equations, n represents one of the frontier

nodes on the frontier list unless otherwise stated.




1. Hill-climb Search
[Wi92] - Depth first search with ecach move determined by the best (least distance
from goal) adjacent frontier node; n In the following equation:
f(n) = h(n) (Eq 32)
When no frontier nodes are adjacent to the current, the algorithm backtracks until adjacent
frontier nodes are encountered. This search scheme minimizes jumps in search of the best
frontier node, but pays the price in extra steps due to unchecked persistence on initially
good but eventually poor tracks and the often resultant steps required to backtrack.

2. Real-time-A* Search

[Ko90] - Uses distance from current (actual) and distance from goal (heuristic) to
determine best next move. This search only looks at adjacent nodes (frontier and visited).

In the following equation »n stands for adjacent non obstacle nodes.
f(n) = g(n) +h(n) (Eq 3.3)
8 (n) is the actual distance from the current to the adjacent node n. The A (n) is a heuristic
predicting the distance from 7 to the goal. Initially, A (n) is calculated by using Euclidean
distance in our example. The algorithm picks the adjacent node with the best f(n) . Before
moving, the value of the f (n) of the second best adjacent node is stored in the current node.
This stored value will, in future computations, be the node’s A (n) . This value remains

constant until the node is visited again. This well conceived search scheme requires -

minimal computations and memory,-but is subject to wasted moves when drawn into local
traps.
3. Best-first Search
[Wi92] (modified for physical agent) - Uses only the distance from goal heuristic
(Euclidean distance) to select the next move.
f(n) = h(n) (Eq 3.4)
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Once selected, it uses the shortest path through visited nodes (known search space) to
travel the distance from the current node to the selected frontier node. Although, after each
move it is at the best known location, the cost of getting there can be expensive. In worst
case situations it can end up jumping large distances back and forth while zeroing in on the
goal.

4. Persistence Search

[Sh91] - Similar in concept to Real-time-A*, it uses the distance from goal
heuristic and a weighted distance from current to determine its next move. Unlike Real-
time-A*, it makes more use of known information; resulting in better moves, but decreased
computational efficiency. The distance from goal is Euclidean. The distance from current
to frontier is the shortest path through visited nodes as in Best-first, but this distance is
weighted and used in detcrmining the next move. The object of a frontier node 7 is given by
f(n) = pfxg(n) +h(n) (Eq 3.5)
where g (n) = shortest distance from current position to n through visited nodes, A (n) =
Euclidean distance from n to goal. A persistence factor (pf = 0.0 to 1.0) is added to vary

the relative contribution of each of the heuristics to the detcrmination of next move.
Distance from current, assumed to be always less pertinent, can be reduced in importance

in comparison to distance from goal.

C. GENETIC ALGORITHMS

Genetic algorithms, developed by John Holland [Go89] and his associates, are based
on the laws of natural selection and survival of the fittest. Subjecting a population (animals,
search schemes, etc.) to environments where fitness for survival is required, individuals
best suited for survival will flourish and reproduce while individuals lacking the diversity
required to continue in all possible environments will discontinue.

The key to the success of a population is its robustness [Go89). An individual, and
therefore a population, is made up of traits which are derived from specific genes in the
individuals chromosome [St77]. Applicable traits in the animal world are weight, height,
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leg length, neck length, etc. A combination of these traits describe an individual. Extremes
in any one trait usually means more specification and added survivability in a limited range
of environments, whereas moderation in traits means added adaptability for diverse
environments. The key is to find the balance of these two in a population to give it proper
robustness. Example: the giraffe can afford to be specifically designed for reaching (long
neck and legs) because it doesn’t face diversities in environment that would require escape
through low canopy jungles. It is perfectly adapted for life on the plains with occasional
trees.

Similarly, search strategies can be very specialized in simple environments. Search
through a low density (of obstacles) terrain can be successfully accomplished with
efficiency and consistency by a simple hill climb algorithm (only oxnc trait, distance to goal
of adjacent nodes, is important). Search problems involving more complicated and
diversified solutions require the proper balance of traits (heuristics) to solve. Simple direct
“hill climbing” approaches can often result in searching locally optimal blind alleys.

One possible means of developing the balance of traits required to avoid getting stuck
in the local minimum is to enumerate all possible combinations. This would most assuredly
find the optimum, but in many problems the combinatorial explosion of possibilitics make
this method prohibitive. Purely random combination of trials is a possibility that seems to
avoid both the local minima and the combinatorial explosion problems. But on further
examination, it suffers the same drawbacks as enumeration, in that there are only a limited
number of trials possible whether you look at them in order or at random. Genetic
algorithms use randomness as a tool in a direct search for the optima. Promising potential
solutions can be searched in parallel while feedback information is used to select the next
partially random strategy. The results, as evaluated by DeJong [De75], show the superiority
of genetic algorithms over purely random.

The basic genetic algorithm makes use of a population of individuals (usually binary
strings of fixed length) that are made up of the traits pertinent to the problem (traits are
usually represented by a fixed number of the bits in specific locations). Three genetic
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operators are used to transform the original (randomly generated) population into an
optimal one: selection, crossover, and mutation.

The Fitness of an individual of the population is established by some form of
evaluation function. One scheme is to compare each to a known optimum, assigning higher
fitness to ones approaching the optima. This evaluation can also be averaged over some set
number of trials (cycles) for each individual and then assigned as the fitness before forming
the next generation.

Each new generation of the population is formed by stochastically selecting
individuals from the prior population. Higher fitness individuals have a higher chance of
being selected. Reproduction is performed by randomly pairing selected individuals for
crossover and mutation.

Crossover is performed at a random point in the binary string. The two selected strings
interchange their tail sections at the crossover point to from two new individuals. The
crossover point can be anywhere from O to the last bit. For example, let the two selected
strings be 00000000 and 11111111, and let 5 be the crossover point. Then the crossover
operation will produce the new strings 00000111 and 11111000. In general, crossover
forms two new individuals with one hopefully having all the best from its two parents.

Mutation is a bit by bit operator that takes each individual and randomly (with a
specified probability) decides if each bit will be changed? For example, changing the
second bit of the string 00000.1 11 by mutation will result in the new string 01000111. This
genetic operator, as in nature, ensures that populations maintain adaptability even when
specialization is the rule. An extremely high mutation probability regresses the genetic
algorithms to a uniform randomly distributed population, a very low one reduces the
populations adaptability. A happy medium seems to be in the 0.01 to 0.001 range for
probability of individual bit mutation.

A myriad of variations are possible to improve the performance and robustness of the
genetic algorithms. For the purpose of our research, these were found to be unnecessary,

and will not be covered in this discussion.
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IV. FACTORS RELEVANT TO SEARCH

A. DISTANCE FROM START

This is usually the actual shortest path from the start node to the considered frontier.
Currently believed to be useless in a real-time environment, it should be selectively
climinated by natural selection as the genetic algorithm trains. For our implementation, it
is approximated by computing the Euclidean distance from start to frontier. It may be
significant in some of the more complex terrains that require a switch back.

B. DISTANCE FROM CURRENT

The distance from the current node to the frontier node; important in Real-Time-A*
and Persistence Search to determine if backtracking is worth the steps required. It is the
actual distance computed as the actual steps required to move from the current node to the
frontier.

C. DISTANCE FROM GOAL
The Euclidean distance from the current node to the goal node. This heuristic is usually

considered important in any search. It is used in combination with “distance from current”
for Persistence Search, and by itself for Best-first Search.

D. CROWDING ‘

The crowding parameters, crowding sides and crowding diagonals, are an attempt to
assist the physical object in avoiding areas of increased obstacle density. This reduces
exploration of paths through high density areas, favoring the safer path of increased options
available in the open space. The parameters are separated in case one is more appropriate
than the other. Both would be much more effective without the self imposed constraint of
physical object perception only being adjacent nodes. If all nodes adjacent to the frontier
node could be seen, these factors importance would increase significanty.
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1. Crowding sides
This heuristic examines the frontier node’s known horizontal/vertical neighbors
to count the number of obstacles. Nodes with more known obstacle neighbors are less

desirable. The minimum value is 0 and 4 is the maximum.

2. Crowding diagonals
" Thisis similar to the previous parameter with the count being made of the frontier
node’s diagonal neighbors.

E. MOVE AWAY FACTOR

It attempts to continually reduce the search space by reducing desirability of nodes
that increase the x and/or y difference between the current and goal nodes. Increasing the x
or y distance counts as 2, increasing both counts as 4, and no increase results in the heuristic

having a value of 0.

F. MOMENTUM

This heuristic attempts to avoid zigzag by making forward (in relation to last move)
nodes the most desirable. It should be useful in valley/ridge terrains where the best path is
straight through the valley. By maintaining momentum, the physical object avoids steps
wasted in popping in and out of each crevice which has nodes closer to the goal. Straight
ahead movement results in a value of 0, a 45° shift makes it 1, a 90° shiftis 2, and a 135°
shift or non-adjacent move results in a value of 3 (making only the adjacent nodes subject

to change after a move).
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V. PROGRAM DEVELOPMENT

A. DATA STRUCTURES

1. Node structure

The 64x64-grid is internally represented as a 66x66 two dimensional array (the
perimeter nodes are all marked as obstacles) made up of pointers to node records. The
records store information pertinent to terrain, search (heuristics), graphic display, and
pointers to other node records (used in the program for various dynamic structures). The
heuristic values stored include distance from start, distance from goal, distance from
current, crowding sides, crowding diagonals and subtotal. No other node records are used
in the program; other structures requiring nodes are set up using pointers to these records.

2. Population structure
A 32 member array of individual records makes up the population. Each stores
the individual’s fitness and its chromosome which contains biases for each search
parameter. The chromosome is a 32 bit unsigned integer; subdivided into eight four-bit

unsigned integers, it holds up to eight heuristic bias factors with a range from 0 to 15.

XXXXXXXX

place holder |

start distance factor
goal distance factor
current distance factor

crowd sides factor
crowd diagonals factor
move away factor
momentum factor

Figure 7 : Individual Chromosome Structure
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3. Frontier Heap
Implemented as an array of pointers to node records. Functions to manipulate this

min-heap are in theap.c.

4. Mate Heap
An array of 31 integers. The first is a count of the heaps members, the other 30
are chosen at random in the range of 0 to the sum of all individual fitnesses. They are used
to randomly select individuals for reproduction. Functions to manipulate this heap are in

eheap.c.

B. SEARCH ALGORITHMS

Algorithms used for this analysis, with appropriate modifications, are covered in this
section. Each node, represented as a record, has a number of fields that are used to store
needed information. When a function operating on a specific node v is used, a read or write
to the appropriate field takes place. For example: in the A* algorithm the following
calculation takes place; f(v) = s(v) + h(v). The value s(v) calculated earlier was stored in
v.s (the nodes dist_from_start field), h(v) is calculated and stored in v.h (the nodes
dist_from_goal field), and f(v) is stored in v.f (the nodes subtotal field).

1. A® Search
This search (Figure 8) will find the shortest path from start to goal if a path exists.

The heuristic estimating distance to goal (h(v)) is a lower bound of the actual cost of the

optimal path from v to the goal.

2. Hill-Climb Search
This search (Figure 9) always moves forward until there is no where to go. It then

back-tracks the way it came until a move is possible. It is a depth-first search with a

heuristic to determine the best move to advance it to the goal.
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a_star_search

(1)  current := start

(2)  while current != goal do

(3) for all nodes, v, adjacent to current do

O] if UNTOUCHED

(5) s(v) = current.s + distance(current, v)  /* Euclidean */ -
(6) f(v) = s(v) + h(v) /* h(v) is the Euclidean dist to goal */ _
0 add to frontier heap

(8) elsif FRONTIER

()] if | s(v) > current.s + distance(current, v)

(10) update s(v) and f(v)

(11) update position in frontier heap

(12) endif

(13) endif

(14) if frontier_heap is empty

(15) return BIG_NUMBER /* there is no path from start to goal */
(16) endif

a7 end for loop

(18) current := top(frontier_heap)

(19) end while loop

(20) return goal.s

- Figure 8 : A* Search Algorithm
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hill_climb_search

(1)
)
(3
4
&)
(6)
)]
®
®
(10)
(11)
(12)
(13)
(14)
(15)
(16)
17
(18)
(19)
(20)
1)
(22)

(23)
(29)

current := start
while current != goal do
best := dummy_node /* f(dummy_node) = BIG_NUMBER #*/
for all nodes, v, adjacent to current do
if UNTOUCHED
f(v) := distance(v, goal) /* the Euclidean dist to goal */
mark v as FRONTIER
endif
if FRONTIER and f(best) > f(v)
best:=v
endif
end for loop
previous_current := current
if best != dummy_node
current := best
current.predicessor := previous_current
elsif current != start
current := current.predicessor
else
return BIG_NUMBER
endif
current.dist_traveled :=
previous_current.dist_traveled + distance(current, previous_current)
end while loop |
return goal.dist_traveled

Figure 9 : Hill Climb Search Algorithm
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3. Real-Time-A® Search
This algorithm (Figure 10) is in accordance with Korf’s description [K090]. For
our implementation, the node array was used to store the h value since it was already in

place, negating the necessity for a hash table.

4. Best-First Search
This search (Figure 11) always goes to the best (minimum h(v)) node regardless
of its distance from the current node. It is possible to implement as a specific case of the

multi-heuristic search (Figure 13).

5. Persistence Search
Shown in Figure 12, gf + hf are intended to effectively replace/descretize/expand

the persistence factor, pf, in the original work ([Sh91] equation 3.5). pf can have any value
between 0.0 and 1.0. We found that an infinite range of possibilities for this factor was not
required. A descrete, yet sufficient, span can be ootained by setting gf and Af to any
number of possibilities where gf < hf. Setting Af to 15 and incrementing gf from O to 15
gives us the equivalent of a 0.0 ;0 1.0 range incriminated by 0.067.
f(v) = gfxg(v) + hfx h(¥) (Eq 5.1)
There is also now the expanded capability of having the g(v) be the more
important factor in the search (gf > hf). This search can also be implemented as a specifi:

case of the multi-heuristic search.
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real_time_astar_search
(1) current := start
(2)  best := dummy_node

(3)  second_best := dummy_node /* f(dummy_node) = BIG_NUMBER ¥/

(4)  while current != goal do

) for all nodes, v, adjacent to current do

(6) if UNTOUCHED

€)) h(v) := distance(v, goal) /* Euclidean */
/* else h(v) is already set */

(8) endif

) g(v) := distance(current, v)

(10) f(v) := g(v) + h(v)

(11) if best.f > f(v)

(12) second_best := best

(13) best ;= v

(14) elsif second_best.f > f(v)

(15) second_best := v

(16) ' endif

17) end for loop

(18) previous_current := current

(19) current ;= best

(20) previous_current.h := second_best.f

(21) current.dist_traveled :=

previous_current.dist_traveled + distance(current, previous_current)
(22) end while loop
(23) return goal.dist_traveled

Figure 10 : Real Time A* Search Algorithm
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best_first_search

0y
2
3
C))
(5)
(6
@)
®
9
(10)
(11)
(12)

(13)
(14)
(15)
(16)

current := start
while current != goal do
for all nodes adjacent to current do
if UNTOUCHED
h(v) := distance(node, goal) /* Euclidean */
add to frontier_heap
endif
end for loop
if empty(frontier_heap)
return BIG_NUMBER /* no solution */
endif
v.dist_traveled := current.dist_traveled + g(v)
where g(v) is the shortest distance through known paths from
current to frontier node.
previous_current := current
current := top(frontier_heap) /* minimum h(v) */
end while loop

return goal.dist_traveled

Figure 11 : Best First Search
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persistence_search
(1) current := start
) while current != goal do

3) for all nodes adjacent to current do

4 if UNTOUCHED

(5) h(v) := distance(node, goal) /* Euclidean */
(6) add to frontier_heap

@ endif

(8) end for loop

) if empty(frontier_heap)

(10) return BIG_NUMBER /* no solution */

(11) endif

(12) find the frontier node, v, that minimizes the equation:
f(v) := gf * g(v) + hf * h(v) where g(v) is the shortest distance through
known pathé from current to frontier node. gf and hf, set before search,
are bias factors used to vary the relative importance of g(v) and h(v).
They can have a value from O to 15.

(13) v.dist_traveled := current.dist_traveled + g(v)
(14) current:= v
(15) remove current from frontier_heap and update

(16) end while loop
(17) return goal.dist_traveled

Figure 12 : Persistence Search Algorithm
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6. Multi_heuristic Search
This is the general algorithm (Figure 13) enstantiated in our case to handle five
stable_heuristics and two unstable_heuristics. Stable_heuristics being ones that have
values that will not change if more than two steps away from the current node. They include
Euclidean distance from goal (hg), Euclidean distance from start (hs), crowd sides (kcs),
crowd diagonals (hcd), and momentum (Am). The subtotal fs (v) is calculated using these
functions multiplied by their respective bias factor and stored in v.subtotal.
fs(v) = hgfx hg (v) +hsfx hs (v) + hesf X hes (v) +hedf x hed (v) + hmfx hm(v) (Eq 5.2)
Unstable_heuristics have values that are liable to change as the current node
changes. Examples in our case: distance from current (hdc) and move away (hma). The
algorithm minimizes equation 5.3 using the efficient “branch-and-bound” search through
known (visited) nodes described in section 4.3 of [Sh91].
f(v) = fs(v) + hdcf x hdc (v) + hmaf x hma (v) (Eq 5.3)
The hsf, hgf, hdcf, hésf, hcdf, hmaf, and hmf are bias factors that correspond with the
individual chromosome’s lower 28 bits which are set during training. The highest four bits
are, in our implementation, a place holder for future additional heuristics since only seven
applicable heuristics were identified. Note that the Best-first and Persistence Search could
be implemented as special cases of the multi-heuristic search algorithm. Best-first uses an
individual chromosome input of 00100000 (the third factor being hgf). Persistence Search
uses an individual chromosome input of 00xy0OOO with x and y varying from O to 15
(fourth factor being hdcf).




multi_heuristic_search
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(19)

(20)
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current := start
while current != goal do
for all nodes v within 2 moves of current do
if adjacent and UNTOUCHED
v.subtotal := inner_product(stable_heuristics * respective_biases)
add v to frontier_heap /* min subtotal node on top */
elsif FRONTIER
if any stable_heuristics of v have changed
v.subtotal := v.subtotal + adjustment
update position in frontier_heap
endif
end if
end for loop
if empty (frontier_heap)
return BIG_NUMBER  /* no solution */
endif
find frontier node, v, that minimizes
f(v) = v.subtotal + inner_product(unstable_heuristics * respective_biases)
v.dist_traveled := current.dist_traveled + g(v) A
where g(v) is the shortest distance through known paths from current to
frontier node.
current := v /* and remove v from heap */
end while loop
return goal.dist_traveled

Figure 13 : Multi Heuristic Search Algorithm




C. GENETIC ALGORITHM
The task of the genetic algorithm is to find the combination of the seven bias factors

that will result in the optimum search scheme. The values of these seven bias factors are
stored in a single individuals chromosome. Application of genetic operators to a population
(32 in our case) of these individuals will, after numerous iterations, produce our desired
optimal individual.

The genetic algorithm, described in this section, is invoked during training after some
predetermined number of cycles (making up one generation). The input population will
have a fitness value (ability to get through the terrain) assigned to each of it’s 32 individuals
(details of this process are described in the next chapter). This fitness value and the
individual’s chromosomal make-up are required by the genetic algorithm.

Our algorithm (Figure 16) makes use of the three genetic operators: selection,
crossover, and mutation. The implementation is similar to the algorithm presented in
chapter one of the text by Goldberg, [Go89], with the additions of allowing the best two
individuals to go unchanged and an average of one out of seven of the remaining not going
through crossover. The result is similar to De Jong’s R3 elitist model [De75]. Examples of

our crossover implementation are detailed in Figures 14 & 15.

Alleles are represented in hexidecimal

Before allele crossover: 55555555 / 88888888
Randomly picked crossover allele position is 3 (4th allele)
After allele crossover: 55558888 / 88885555

Figure 14 : Allele Crossover Example

The 4th allele is expanded out into binary representation

Before bit crossover: 5550101 8888 / 888 1000 5555
Randomly picked crossover position between bits is 2
After bit crossover: 555 1001 8888 / 888 0100 5555

Figure 15 : Bit Crossover Example
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genetic_algorithm
(input is a population of individuals)

(1)
¢
3)
4

)

(6)
0)

®

&)

(10)
(1)
(12)
(13)
(14)
(15)
(16)
(17)
(18)
(19)
(20)
1)
(22)

total_fitness := all individual fitnesses added together
select 32 individuals as follows /* selection */
best := individual with the highest fitness
second_best := individual with the second highest fitness
[*second_best must be distinct from best */
stochastically select 30 individuals with higher fitness individuals having
the greatest chance of selection
end selection -
create new_population with these 32 individuals
pair individuals in such a way that it is unlikely that an individual is paired
with itself; pair best with second_best
for each individual pair, except best and second best, do
randomly pick crossover allele position /* crossover */
ifnot0 /* 0 means no crossover */
exchange all alleles after the crossover allele
randomly pick crossover position between bits of selected allele
ifnotOor4 /* 0 or 4 means crossover does not breakup the allele */
exchange bits after the crossover position between bits
endif
endif
for each gene of the individual /* mutation */
invert bit if random < prob of mutate
end for loop
end for loop
add best + second_best to new_population as individuals 0 & 1 respectively.
return new_population

Figure 16 : Genetic Algorithm
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VI. TRAINING

Training of the population is analogous to selectively breeding a random group of
asexual organisms to obtain superior capability in a specific area. The capability you wish
to optimize is transit from start to goal in the least number of steps. The specific area is a
specific terrain layout where you have an idea about general areas of density, but have no
information about the location of specific obstacles.

The first step is to gcnei'ate a series of specific terrains from your general idea of the
densities. This can be done by placing obstacles in each area if a randomly generated
number is less than the specified density. In our implementation, we simply loop through
the 64x64 node array assigning each nodes state to OBSTACLE if the random number is
less than the density value of the corresponding density block. The second step is to
generate a population of 32 individuals giving them randomly generated chromosomes.
Now the training begins (Figure 17). In all our work, we used 1000 generations with five
cycles (trials) per generation.

The returned population evolves through the trials of 5000 terrains. One of the
individuals of this population is likely to have a chromosome that approximates the
optimum combination of bias factors. Identification of this individual is accomplished

during testing.




training
(1) for the number of generations do

(2) for the number of cycles do
3) loop until a successful A* search
) create a terrain from the density_array
3) shortest_path := A* search
(6) end until loop
¥)) run each individual through the terrain accumulating its fitness_sum by
comparing its actual path to the shortest path
8) end for loop
) compute each individual’s average fitness from fitness_sum and
number of cycles

(10) apply the genetic algorithm to the population
(11)  end for loop
(12) return a trained population.

Figure 17 : Training Algorithm
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VIL TESTING

Testing of the trained populations was performed by comparing the search conducted
by the best individual in each population to searches accomplished using Hill-climbing,
Best-first, Real-time-A*, and Persistence search. The following equation was used to
compute fitness for all search schemes:

fitness = integer ( ((shortestpath) + (actualpath)) x 100) (Eq 7.1)
Each search scheme was tested on 500 distinct terrains produced using the corresponding
density matrix. ‘

Before testing, the best of each population was chosen by running the population
through 50 distinct terrains. The individual with the highest fitness was chosen to represent
the GA-trained population. The best values for distance from goal and distance from
current bias factors f~- tl.c Persistence search were determined by running 32 combinations
(chromosomes of N0f00000 to 00ff0000 and 0000000 to QOff0000) through 50 distinct
terrains. From this, the best combinations of the two factors was used to represent
Persistence search.

The GA-produced best individual, Persistence best, Hill-climb, Real-time A*, and
Best-first schemes were then all used to find a path in the 500 separate terrains. Average
fitnesses over the 500 were assigned and a comparison of these fitnesses is presented in the

results.




VIII. EXPERIMENTAL RESULTS

The fitness of each search scheme in these results is the number of its required steps
divided by the minimum steps possible, averaged over the 500 terrains used for testing.
Fitness is presented as a percentage, with a 100% search scheme being one that can, on the
average, search a terrain type in the minimum steps possible. In general, the easier the

density layout of the terrain, the higher the fitness will be.

A. NATURAL TERRAINS
A graph comparing the fitness of applicable search schemes is presented for each
natural terrain density layout (Figures 18 - 23). The following discussion is pertinent to

each of these comparisons.

1. Central Mountain
This graph (Figure 18) shows that this terrain is only moderately hard for all the
search schemes. Persistence search with a distance to current factor (gf) of 15 and a distance
to goal factor (hf) of 11 (gf/hf = 15/11) was the best of the conventional search methods.
The genetic algorithm produced an individual with chromosomal make-up of f00732b9
(see figure 7, page 16 for breakdown) which performed 1.20 times better than the best
conventional. Driven more to the goal by the move-away heuristic than distance to goal,

this scheme was better equipped to avoid the congestion of the central mass.

2, Single Left Ridge
Overall this terrain was a little harder than the Central Mountain but was still
handled moderately well by all search strategies (Figure 19). The best conventional was
again persistence search using a gf/hf ratio of 15/6. The genetic algorithm scheme
(f00828ff) had a fitness 1.16 times as good as the best Persistence and 1.28 times better than
the next competitor (Hill-climbing).
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Figure 19 : Single Left Ridge Results
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3. Single Right Ridge

As could be predicted, this was a hard problem (Figure 20). The normal search
schemes tend to spend a lot of time searching every possible route that was most direct to
the goal. Thev would get stuck under the ridge with no way around, except back the same
way they came. The best of these was Hill-climbing since it probably doesn’t waste a lot of
steps backtracking. The best Persistence search had a gf/hf ratio of 2/15 showing it’s
favoritism for a no backtrack approach. The search scheme produced by the genetic
algorithm was superior to all by a multiplication factor of 1.26. Its chromosomal make-up
was f00c2ca8. This scheme considers distance to goal to be not significant. It instead uses
move away factor as the drive toward the goal. As the Persistence search with its gf/hf ratio

of 2/15 the genetic algorithm produced scheme considered the amount of backtracking a

major factor.
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Figure 20 : Single Right Ridge Results
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4. Double Ridge

This terrain was a very difficult problem (Figure 21). Requiring negotiation
around two ridges which involved a switch-back away from the goal, none of the search
schemes were over 20% fitness. The average of the five schemes was 10%. The best
Persistence, with a gh/hf ratio of 6/15, was roughly equivalent to Hill-climbing. The genetic
algorithm generated scheme with a chromosomal make-up of f83b19bc was the best
strategy with a fitness 1.21 times better than Persistence. Here is an example where distance
to start was of significance; probably helpful in influencing the search to make the switch-
back away from the goal. Move away factor was a major influence in striving toward the
goal, backtracking was determined to be non-productive, but maintaining momentum was
found to be important. It’s interesting to note that diagonal crowding was considered more
important than side crowding (no explanation). The complexity of this scheme with the
subtle interaction between these differing bias factors helps to confirm the necessity of a

genetic algorithm to sort them out.
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Figure 21 : Double Right Left Ridge Results
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5. Single Left Plateau

This terrain was slightly easier for all the search strategies (Figure 22) although it
presented a unique problem. The through the plateau route is possible but requires
numerous explorations. Circumnavigating the plateau saves exploration steps but costs in
the distance required. Since each of the 500 terrains had varying obstacle placement, we
suspect sometimes it was best to transit through and other times better to go around. Since
no general path was consistently optimal, the genetic algorithm had to develope a scheme
that was equally effective for both routes or concentrate on perfecting one. In either case,
its performance was again superior by a significant margin (multiplicative factor of 1.19).
The resultant chromosomal make-up was f05¢884f. The next best was Persistence with a
gf/hf ratio of 11/15.
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Figure 22 : Single Left Plateau Results




6. Single Left Plateau With Ridges
This terrain adds topological characteristics that favor circumnavigation as a
search strategy. The genetic algorithm produced scheme, with a chromosomal make-up of
f07¢033d, was the best by a multiplication factor of 1.17 over the next best competitor
(Figure 23). Momentum being the most important factor, it probably helped keep the search
moving horizontally until clear of the plateau. Persistence was again the second best with

a gh/hf ratio of 11/15.
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Figure 23 : Single Left Plateau With Ridges Results

7. General Comment
The genetic algorithm was extremely successful in producing the best search

strategies for all natural terrains.




B. RANDOM TERRAINS
Although the genetic algorithm produced search schemes where clearly superior for

the natural terrains, we wanted to test their viability on randomly generated terrains.

1. Random One/ Random Two / Random Three

The results from these three terrains showed that the search heuristics produced
by génetic algorithms was of minimal value (Figures 24 to 24). These were all simple
problems with the average fitness for all the search schemes being 64%. Fitness varied little
between search strategies with a maximum of a 8% difference between the best and the
worst. The genetic algorithm produced scheme was 1.02 (Random One), 1.01 (Random
Two), and 1.03 (Random Three) times as good as the best conventional search strategy. The
Random One persistence gf/hf ratio was 15/11; the genetic algorithm produced
chromosome was £1€90234. The Random Two gf/hf = 15/4; GA-produced chromosome =
f0b947c1. The Random Three gh/hf = 15/5; GA-produced chromosome = f1£73351.
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Figure 24 : Random One Results
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Figure 25 : Random Two Results
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Figure 26 : Random Three Results




2. Random Four

This terrain was significantly harder than the other three randomly generated
terrains which can be observed by the low performance of the search strategies. The
average fitness of all strategies was 36% (Figure 24). The difficulty probably comes from
the encapsulation of the goal. Examining figure 33, page 46, we can see that the goal is
blocked by mostly high density blocks from (11,15) down to (11,10) across to (15,10). The
only passible blocks are (15,10) and (11,12). Neither of which are a direct route,
necessitating significant exploration. The genetic algorithm produced (f0b51535) scheme
was 1.10 times better than the next best which was a persistence stratégy with a gf/hf ratio
of 14/15. This again seems to suggest that the genetic algorithm is only required when the
problem is hard.
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Figure 27 : Random Four Results

39




3. General Comments

It is difficult to improve on the simple search strategies when the terrain is of low
complexity. As suggested by DeJong [De92] the genetic algorithm can only optimize to a
certain point (dependent on implementation) before reaching a state of dynamic
equilibrium. The first three random terrains were of insufficient complexity to allow the
genetic algorithm to convincingly surpass all conventional search schemes. It was however,

in all cases, better than the best conventional ones.

C. GENERAL COMMENTS

In all cases, although the genetic algorithm produced strategy was always as least as
good as the next besi, it was not a substantial improvement over Persistence search unless
the terrain was natural. Only in the most complex of the four random terrains did the genetic
algorithm produced scheme really excel. This seems to suggest that the additional
heuristics are only essential in natural terrains where some pattern in obstacle density exists
or in random terrains of high complexity.

Actual natural terrains, although usually best modeled by our natural terrains, could
possibly be more similar to the random. Since the genetic algorithm produced search
strategies are substantially better for our natural terrains and as least as good as standard
search schemes for random terrains, they should be advantageous to use on any actual
natural terrain. This is of course contingent on the physical agent’s dependence on minimal
steps and its computational speed. If it’s computational speed is sufficient to avoid delays
before each step and/or minimal steps are essential, the genetic algorithm produced scheme
should always be used.

Appendix C shows a comparison of the average time required for each strategy to
search from start to goal for each of the terrains. As expected, the more complicated
strategies require additional computation time, but are not considered slow enough to

prohibit their use except in cases of high speed agents with slow computational speed.




IX. CONCLUSIONS

Heuristics previously used for search of an unknown space by a physical agent are
distance from goal and distance from current. These are insufficient to minimize energy
expenditure (steps taken) when some general knowledge of the area is known. The
additional heuristics found to be pertinent are distance from start, crowding factors which
account for obstacle node density around the considered frontier node, move-away factor
which encourages reduction of the search space, and momentum which avoids wasted steps
in course variations. These seven heuristics with their proper individual biases were found
to be superior to standard search schemes. In this thesis we showed that genetic algorithms
can be effectively used to develop optimal heuristic biases that are adaptable to unknown
search spaces if some general knowledge of the search space is available. Training done
with randomly generated search spaces having common characteristics lead to robust
search schemes which are, on the average, more fit than previously used strategies.

We believe that this methodology of identifying all possible heuristics, fitting them
into a binary representation, and applying genetics-based training is also applicable to a
multitude of real-time search/optimization problems. Tests in other specific areas are
needed to prove our conjecture. In addition, further research could be done in the
application of more advanced genetic algorithms. Our results showed significant
improvement using only basic genetics-based concepts, advanced techniques should

continue to improve the effectiveness of resultant strategies.
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APPENDIX A
TERRAIN DEVELOPMENT FROM A SAMPLE DENSITY MATRIX

Terrains are randomly produced using a density matrix as a guide. Figure 28 shows a density
matrix that was used to develope the terrain is shown in figure 29. This density matrix was not used
for our analysis, but helps to make clear the relationship between the density matrix and the actual
terrain.

The density matrix is stored as a text file as shown in the figure. At each cycle for training or
iteration for testing the density information is used to form a new terrain. Each hexadecimal number
represents the desired density for a 4x4 area. The actual obstacle placement is random. Compare
figures 28 and 29. The top left 4x4 area was filled in by checking if a random number (between 0
and 15) is less than 4 at each node. This should on the average happen 4 out of 16 times making the
obstacle count of each 4x4 area equal 4. The top left 4x4 is the average case with 4 out of the 16
nodes being obstacles.

The remaining 4x4 areas are filled out in a similar fashion. The start and goal nodes are chosen

at random in the (2,2) and (13,13) areas as also demonstrated in figure 29.

4444444444444444
4444444444444444
4444444444444444
44444444444444434
4444444444444444
444444444d4d444444
4444444444444444
4444444444444444
44444444446444444
4444444444444444
4444444444444444
0000000000000000
0010203040506070
0000000000600000O0
80390a0b0c0d0elf0
000000000000000O

Figure 28 : Sample Density Matrix
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Terrain has a density of 4 in the top 11/16 Goal

Start The lower 5/16 shows increasing density areas 0 to 15
surrounded by areas of 0 density.

Figure 29 : One of Many Possible Resultant Terrains
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APPENDIX B

RANDOM TERRAIN DENSITY MATICES
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Figure 30 : Random Terrain One
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Random Terrain Two

Figure 31 :
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Figure 32 : Random Terrain Three
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APPENDIX C

SEARCH STRATEGY COMPUTATIONAL TIME

TABLE 1: AVERAGE SECONDS REQUIRED TO SEARCH EACH TERRAIN

. . a1y 1 Real-Time- GA-
Best F@t Persistence | Hill Climb A+ Produced
Central
Mountain 0.0239 0.0274 0.0065 0.0163 0.0615
Single Left
Ridge 0.0232 0.0264 0.0075 0.0176 0.0694
Singe Right
Ridge 1.3051 0.1496 0.0199 0.1405 0.2718
Double
Ridge 3.2553 1.3562 0.0420 0.4131 2.3420
Single Left
Plateau 0.1071 0.0982 0.0167 0.0626 0.1481
Single Left
Plateau 0.0769 0.0856 0.0146 0.0487 0.1310
With Ridges
Random
One 0.0177 0.0265 0.0064 0.0114 0.0478
Random
Two 0.0313 0.0267 0.0056 0.0150 0.0644
Random
Three 0.0294 0.0258 0.0065 0.0151 0.0521
Random
Four 0.1629 0.2255 0.0165 0.0481 0.1563
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APPENDIX D

PROGRAM C CODE
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ga_search.h

/*
File: ga_search.h
Programmer: g.b. parker
Environment: any

Language: C

Date: 9 july 92

Revised:

Comments: This file holds all the header information needed for all
ga_search files.
*/

#include <stdio.h>

#define F 0
#define T 1

#define UNTOUCHED
#define OBSTACLE
#define VISITED
#define FRONTIER
#define START
#define GOAL
#define CURRENT
#define SHORTEST
#define X

W N e W K= O

#define NUM 0

#define N
#define E
#define S
#define W

» W

#define NE
#define SE
#define SW
#define NW

T S

#define MASKO 0 /* 0000 */
#define MASK1 8 /* 1000 */
#define MASK2 12 /* 1100 */
#define MASK3 14 /* 1110 */
#define MASK4 15 /* 1111 */




#define NA -1 /* not applicable:; for frontier_in-
dex */

#define BIG_NUMBER 10000
#define STANDARD DENSITY 4
#define PROB_BIT_MUTATE 50 /* x/10000 prob of mutate */
#define SQRT2 1.414213562
#define randlé6() ((random()/13) % 16) /* return rand int from 0 to 15 */
#define rand8() ((random()/13) % 8) /* return rand int from 0 to 7 */
#define rand5() ((random()/13) % 5) /* return rand int from 0 to 4 */
#define randl10000() (random() % 10000) /* return rand int from 0 to 9999 */
/* Graphics definitions */
#define SLEEPTIME 2
#define ASTITLE "A* Search "
#define GATITLE "Genetic Algorithm Produced Search"
#define PERSTITLE "Persistence Search "
#define BFTITLE "Best First Search "
#define HCTITLE  "Hill Climb Search "
#define RTASTITLE "Real Time A* Search "
/* Node record for terrain */
struct node_rec
{
int xi;
int yi;
float x; /* for graphics */
float y; /* for graphics */
int state; /* UNTOUCHED, OBSTACLE, VISITED, or FRONTIER */
int back_track_state; /* UNTOUCHED, VISITED, or OBSTACLE */
float subtotal; /* includes all but dist from current & move away */
float dist_from_start;
float dist_from goal;
float dist_from current;
struct node_rec *predecessor; /* points to predecessor for a-star search */
int frontier_index; ‘ /* position in frontier heap */
struct node_rec *gnext; /* next in q for dist from current DFS */
struct node_rec *Qqreset; /* reset link list after back DFS */
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/* 1Individual record for population */

struct factor_struct {

unsigned int place_holder : 4;
unsigned int start_dist H
unsigned int goal_dist : 4;
unsigned int current_dist : 4;
unsigned int crowd _sides : 4;
unsigned int crowd_diag : 4;
unsigned int move_away : 4;
unsigned int momentum : 4;

| I

union chrom_union {
struct factor_struct factor;
unsigned int alleles;

b g

struct individual_struct {
union chrom_union chrom;
int fitness;
float fit_sum; .
int previous_index;

b

/* global variables */
extern int heap_size;

/* Functions listed under file */

/* astar.c */
float a_star():
int update_astar_frontier():;

/* rt_astar.c */

float rta_star():;

int update_rtastar_adjacent():;
int insert():

/* hill _climb.c */

float hill climb();

struct node_rec *move_adjacent();
struct node_rec *find best():;

/* test.c */
int test():;

h
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/* train.c */
int train{():;

/* tsearch.c */
float search():;

/* psearch.c */

float psearch():

int p_update_frontier_list():

struct node_rec *p pick best_ frontier():

/* bfsearch.c */

float bfsearch():

int bf_update_frontier_list();

struct node_rec *bf pick_best_frontier();

/* tsetup.c */

int get_seed():

unsigned int get_pers_chrom();
int read_density_file():;

int make_array():

int make_node();

struct node_rec *find_node();

/* tpopulation */

" int create_population();

struct individual_struct *new_individual():;
int get_population();

/* tprint.c */

int print_density();
int print_node():

int print_population();

/* tfrontier.c */

int update_frontier_list():

struct node_rec *pick_best_frontier():;
int update_adjacent_obstacles();

float update_dist();

int update_crowd_sides():

int update_crowd_diag():

int calc_move_away();

int calc_momentum() ;

float compute_subtotal():
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/* theap.c */

int insert_heap():
int delete_heap():
int move_heap();
int swap():;

/* tmisc.c */

float compute_shortest():
int equalf():

/* update_dist_start(); */
int gen_xi():

int gen_yi():

int show_least_nodes():

/* evolve.c */

int evolve();

int create_mate_heap():
int crossover():

int allele_crossover();
int bit_crossover();
int get_mask();

/* eheap.c */

int insert_mate_heap():;
int pop_mate_heap();

" int move_mate_heap();
int swap_num();

/*tdisplay.c */

int initialize();
int draw_terrain();
int show_mouse();
int draw_nodes():
int draw_grid();
void squaref ()
void square():;




main.c

/%
File: main.c
Programmer: g.b. parker

Environment: any
Language: C

Date: 9 july 92
Revised:
Comments: This is the control for user input and call of train or test.

Ten command live arguments are optional. The syntax for a call is as follows
(the 0 argument is the program call): (0) t; (1) 0 for train, 1 for test:;

(2) random_seed; (3) input population file name; (4) input terrain density file
name; (5) start region on X axis; (6) start region on Y axis; (7) goal region
on X axis; (8) goal region on Y axis; (9) number of generations if training,
iterations if testing; (10) cycles per generation if training, array position
of best individual in the GA_produced population for testing; (11) file name
for out population if training, hexadecimal representation of best Persistence
search scheme.

x/

#include "ga_search.h"

/t de v v de de e ok de e e ek ok ok ok ok ok min (22 2223222222222 2222222222202 2222t R 22E R R &) */

main( argc, argv )

int argc:

char *argvl[]:

{
struct individual_struct *individual(32];
int arg_seed = 0;
char arg_population(32}:
char arg_population_out [32];
char arg_density(32];
int choice = 0;
int sx = 2;
int sy = 2;
int gx = 4;
int gy = 2;
int iterations = 25;
int generations = 3;
int cycles_per_generation = 2;
int best_individual = -1;
unsigned int pers_chrom;
char hname(64];
int hnlength;
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gethostname ( hname, hnlength );

strcpy( arg_population, "
strcpy( arg_population_out, "popx.out
strcpy( arg_density, "

switch ( argc )
{
case 12:
sscanf( argv[1l], "%s", arg_population_out ):
sscanf( argv([1l1l], "%x", &pers_chrom );
case 11:
sscanf( argv([10], "%d", &cycles_per_generation );
sscanf( argv([10], "%d", &best_individual );
case 10:
sscanf( argv(9)], "%d", &generations );
sscanf( argv([9), "%d", &iterations );
case 9:
sscanf( argv(8], "%d", &gy ):
case 8:
sscanf ( argv[7], "$d", &gx );
case 7:
sscanf( argv(6], "%d", &sy ):
case 6:
sscanf( argv[5], "%d", &sx );
case 5:
sscanf( argv([4], "%s3", arg_density ):
case 4:
sscanf ( argv([3], "%s", arg_population );
case 3: '
sscanf( argv([2], "%d", &arg_seed ):

W)-
ll).

")

’

’




case 2:
sscanf( argv[l], "%d", &choice ):
switch ( choice )
{
case 0:
train(individual,arg_seed, arg_population,arg_density, sx, sy, gx, gy,
generations,cycles_per_generation,arg_population_out,hname );
put_population( individual, arg_population_out );
break:;
case 1:
individual[0] = NULL:
test (individual, arg_seed,arg_population,arg_density, sx, sy, gx, gy,
iterations,best_individual,pers_chrom);
break;
case 2:
train(individual, arg_seed,arg_population,arg_density, sx, sy, gx, gy,
generations, cycles_per_generation,arg _population_out,hname) ;
test (individual, arg_seed,arg_population,arg_density, sx, sy, gx, gy,
iterations,best_individual,pers_chrom):;
put_population( individual, arg_population_out );
break:;
}
break:;
case 1l:
train(individual, arg_seed,arg_population,arg_density, sx,sy,gx, gy,
generations,cycles_per_generation,arg_population_out, hname) ;
put_population( individual, arg_population_out );
}
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train.c

/-k
File: train.c
Programmer: g.b. parker
Environment: any

Language: C

Date: 9 july 92

Revised:

Comments: Called by main to train a population of 32 individuals. 1If no
input population, a random one is generated.
*/

#include "ga_ search.h"

/* Khhkhkhkkkkhkkhhkkhkkidh train AXEKAAXAAAAARARAAARAARRA A AR ARANA AR AR AR N AR */

train( individual, arg_seed, arg_population, arg_density, sx, sy, gx, gy, gen-
erations, cycles_per generation, arg_population_out, hname )
struct individual_ struct *individual(32];
int arg_seed;
char arg_population{32];
char arg_density(32];
int sx, sy, gx, gy:
int generations, cycles_per_generation;
char arg_population_out (32];
char hname(64];
{
int density[16][16];
struct node_rec *node([66] [66];
int gen, cycle, i, rs, short_count;
float shortest_path:
int dummy;

rs = arg_seed ? arg_seed : get_seed():
srandom(rs): /* seed the random generator */

printf ("\nRandom seed is %d", rs );
get_population( individual, arg_population );

read_density_ file( density, arg_density );




for( gen = 1; gen <= generations; gen++ ) {
printf("\n gen = %d (cycle,rs) = ", gen);
for( cycle = 1; cycle <= cycles_per_ generation; cycle++ ) {
rs = rs + 1;
short_count = 0;
while( (shortest_path = a_star(sx,sy,gx,gy, rs,density,node ))
> ( BIG_NUMBER - 1.0 ) ) {
if( short_count > 1000000000 ) {
printf ("\nPROGRAM ABORTED - iteration %d - no shortest path\n",i):
return(F);
}
else
rs = rs + 1;°
}
printf (" (%d,%d)", cycle, rs );
for( i=0; i<32; i++ ) |
if( cycle == 1 )
individual[i)->fit_sum = shortest_path / search( sx,sy,gx,gy,
individual[i]=->chrom.factor, rs,density,node, &dummy ) ;
else
individual{i]}->fit_sum = individual([i]->fit_sum + shortest_path /
search( sx,sy,gx,gy,individual{i}->chrom.factor,rs,density,
node, &dummy ) ;
if( cycle == cycles_per_generation )
individual[i]->fitness = (int) ((individual (i]->fit_sum /
cycles_per _generation) * 100.0);
}

}
if (gen == generations - 1 )
cycles_per_ generation = cycles per generation + 10;

evolve( individual, rs );
put_rs( rs ):;
if ( ( (gen % 10) == 0 ) || (gen < 10) )

put_gen (gen, arg_population_out,hname, rs) ;

/* put gen to a standard update file */

if ( (gen % 50) == 0 ) {

put_population( individual, arg_population_out ):
}
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/* L2222 222222 R2 %21 put gen L2 2222222222222 22222222222 22222222 22 */

/* Called by train to continually store status information to a file in the
directory of execution */

put_gen{ gen, arg_population_out, hname, rs )
int gen;

char arg_population_out [32]:

char hname[64];

int rs;

{

FILE *gen_file, *fopen():;

gen_file = fopen("running.update®, "a");

fprintf(gen_file,"™ %s %s gen = 3d rs = %3d\n", hname, arg_population_out,
gen, rs);

fclose(gen_file);
}

/t i 2222222232222 22 ¢4 put rs 1332222222222 22222223222 2222 2223222222 2 */
/* Puts random seed info to a file in the directory of execution */
put_rs( rs )
int rs;
{

FILE *rs_file, *fopen{():

rs_file = fopen("rs.update", "a");

fprintf(rs_file,” %d ", rs);

fclose(rs_file);




test.c

/*
File: test.c
Programmer: g.b. parker
Environment: any
Language: C

Date: 9 july 92
Revised:
Comments: Called by main to perform a comparative test of search

strategies. The default is for all individuals of the population to be
tested, unless a specific individual is specified.
*/

#include "ga_search.h"
#include <sys/time.h>

/* kkkkhkkkkkkhkkhkhkkkkx taogt (222222222222 2222222322222 2222222222222 X2 2 24 */

test ( individual, arg_seed, arg_population, arg_density, sx, sy, gx, gy,
iterations, . best_individual, pers_chrom )

struct individual struct *individual{32];

int arg_seed;

char arg _population([32]:

char arg _density[32];

int sx, sy, gx, gy’

int iterations;

int best_individual;

unsigned int pers_chrom;

{

struct individual_ struct *best_first;

struct individual_struct *persistence_search;
int density([16][16];

struct node_rec *node(66][66];

int i, rs, k, short_count;

float shortest_path;

float realtime_astar fit_sum;
int realtime_astar_fitness;
float hill_climb_fit_sum;

int hill climb_fitness;

61




float temp;

float ga_t = 0.0;
float ga_ticks = 0.0;
flrat bf t = 0.0;
float bf_ticks = 0.0;
float pers_t = 0.0;
float pers_ticks = 0.0;
float hc_t = 0.0;
float hc_ticks = 0.0;
float rta_t = 0.0;
float rta_ticks= 0.0;

long sec, usec;
struct timeval *tvp = (struct timeval *)malloc(sizeof (struct timeval)):;
struct timezone *tzp = (struct timezone *)malloc(sizeof (struct timezone)):

best_first =

(struct individual_struct *)malloc(sizeof (struct individual_struct));
persistence_search = .

(struct individual_struct *)malloc(sizeof (struct individual_struct)):

best_ first->chrom.alleles = 0xe0100000;
persistence_search->chrom.alleles = pers: chrom;
best_first->fit_ sum = 0.0;

persistence_search->fit_sum = 0.0;

rs = arg_seed ? arg_seed : get_seed():;
srandom(rs); /* seed the random generator */

printf ("\nRandom seed is %d", rs):
if ( individual(0] == NULL )
get_population( individual, arg population );

for (k=0;k<32;k++)
individual {k]->fit_sum = 0.0;

read_density file( density, arg_density );

printf ("\n(iteration,rs) ");
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for( i = 1; i <= iterations; i++ ) {
rs = rs + 1;
short_count = 0;
while ( (shortest_path = a_star( sx, sy, g%, gy, rs, density, node ))
> ( BIG_NUMBER - 1.0 ) ) {
if( short_count > 1000000000 ) {
printf ("\n PROGRAM ABORTED - iteration %d - no shortest path\n", i );
return(F) ;
}
else {
printf (" (%d,%d)",i,rs );
rs = rs + 1;

}
printf (" (%d,%d)",i,rs );
if (best_individual == -1)
for(k=0;k<32;k++) {
temp = search( sx,sy,gx,gy,individual [k]->chrom.factor, rs,density,
node, &ga_t ):
individual (k]->fit_sum =
individual[k]->fit_sum + shortest_path / temp;
if (temp < shortest_path )
printf ("\nSHORTEST PATH > ACTUAL PATH ");
}
else {
k = best_individual;
temp = search{( sx,sy,gx,gy,individual [k]->chrom.factor,rs,density,
node, &ga_t )
individual[k]->fit_sum = individual(k]->fit_sum + shortest_path / temp:
if (temp < shortest_path )
printf (*\nSHORTEST PATH > ACTUAL PATH ");
ga_ticks = ga_ticks + ga_t;
best_first->fit_sum = best_first->fit_sum + shortest_path /
bfsearch( sx, sy,gx,gy,best_first->chrom.factor,
rs,density,node,&bf_t );
bf_ticks = bf_ticks + bf_t;
persistence_search->fit_sum = persistence_search->fit_sum +
shortest_path / psearch( sx,sy,gx,gy,
persistence search->chrom.factor, rs,density,node,é&pers_t );
pers_ticks = pers_ticks + pers_t;
hill climb_fit_sum = hill climb_fit_sum + shortest_path /
hill_climb( sx, sy, gx, gy, rs, density, node, &hc_t );
hc_ticks = hc_ticks + hc_t:
realtime astar_fit_sum = realtime_astar_ fit_sum + shortest_path /
rta_star( sx, sy, gx, gy, rs, density, node, &rta t );
rta_ticks = rta_ticks + rta_t;
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if (best_individual == -1) /* no best individual input */
for (k=0;k<32;k++)
individual (k]->fitness =
(int) ((individual [k]->fit_sum / iterations) * 100.0):
else

individual [k]->fitness =
(int) ((individual (k]->fit_sum / iterations) * 100.0);

best_first->fitness = (int) ((best_first->fit_sum / iterations) * 100.0);
persistence_search->fitness =
(int) ((persistence_search->fit_sum / iterations) * 100.0);
realtime_astar fitness =
(int) ({realtime_astar_fit_sum / iterations) * 100.0);
hill climb_fitness = (int) ((hill_climb_fit_sum / iterations) * 100.0);

if (best_individual == -1)
print_population( individual );

else {
printf("\n ga-produced %24 %7.3f %7.3f $x", individual(k]->fitness,

individual[k]->fit_sum, ga_ticks, individual [k]->Chrom.alleles)
printf("\n best_first %2d %7.3f %7.3f %x", best_first->fitness,
best_first->fit_sum, bf_ticks, best_first->chrom.alleles);
printf ("\n persistence %24 %7.3f %7.3f $x",
persistence_search->fitness, persistence_search->fit_sum,
pers_ticks, persistence_search->chrom.alleles);
print£("\n hill climb %2d %7.3f %7.3f", hill climb_fitness,
hill climb_fit_sum, hc_ticks );
printf("\n RTA star $2d %7.3f %7.3f", realtime_astar_fitness,
realtime_astar_fit_sum, rta_ticks );
}
printf("\n");




tsetup.c

/*
File: tsetup.c
Programmer: g.b. parker
Environment: any
Language: C

Date: 9 july 92

Revised:

Comments: Setup functions
*/

#include "ga_search.h"

/* (22222222222 g 2S£ 4 get seed AAAARAAXAAAAAA A A AASAAEAAA AR IR AR Rk Rk kdkk */

/* Interfaces with user to get random seed */

get_seed()
{
char nl[l]; /* absorbs new_line after seed entry */
int rand_seed;
printf ("\nEnter random seed or 0 (system assign seed): ");
scanf ("%d", &rand_seed);
gets(nl);
if (rand_seed != 0)
return rand_seed;
else
return getpid():;

* RhkkkhAkkRkkkkkkkk AhkhkhkdkkhkRkkkhkkARkAA Rk Akk kA hkAxkk *
get_pers_chrom

/* Interfaces with user to get Persistence chromosome */

unsigned int get_pers chrom()
{
char nl[1l}]; /* absorbs new_line after seed entry */
unsigned int pers_chrom;
printf ("\nEnter Persistence chromosome (8 hex digits) or 0 (e0110000): *):;
scanf ("%¥x", &pers_chrom) ;
gets(nl);
if (pers_chrom != 0)
return( pers_chrom );
else
return( 0xe0110000 );




/* 1322233222222 2 22 ¢ read density file I 2222222322223 22 2232223222222 22 */
/* Reads density file from execution directory */

read_density_ file( density, file_name )
int density[16]([16];

char file name[32];

{

int 1, 3j;

FILE *density file, *fopen{();

int not_end = T;

int node_density = STANDARD DENSITY;

if( file_name(0] == ' ') {
printf ("\nEnter density file name: ");
gets(file_name):

}

if ( (density file = fopen(file_name,"r")) == NULL ) {
printf ("\nThe file does not exist, standard densities being used."):;
not_end = F;
}
for ( =15 ; 3>=0 ; j-- ) {
for ( i=0 ; i<=15 ; i++ ) {
if ( not_end && ( fscanf(density file,"%x",&node_density) != EOF ) )
density[i] [j] = node_density;
else {
density[i] {j] = STANDARD DENSITY;
not_end = F;
}
}
}
if(density file != NULL)
fclose(density_file);




/* kkkkkhkhkhkAkkkhhdhkx make array L2 RS2 RS2SRt 2 222 222222222222 % ﬁ'/

/* Creates the node array on initial use, then resets records after that */

make array( density, node )
int density[16]([16]);
struct node_rec *node(66] [66];
{
static int first = T; /* indicates if first time to make array */

int i, 3j:

for(i=0;i<=65;i++) {
make_node( node, i, 0, first );
make_node( node, i, 65, first );
node[i] [0]->state = OBSTACLE;
node[i] [65]->state = OBSTACLE;
}

for(j=1;j<=64; j++) {
make_node( node, 0, j, first ):
make_node( node, 65, j, first ):;
node[0] [j]->state = OBSTACLE;
node[65] [j]->state = OBSTACLE;
}

for (j=1;j<=64; j++)
for(i=1;i<=64;i++) {
make_node( node, i, j, first );
if (randlé6() < density([(i-1)/4]1[(j-1)/4})
node[i] [j]->state = OBSTACLE;
}
first = F;
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/* kkkAAkk R AR ARANAE make NOdEe AXXXAAAARARKKAAARAARRAARRXARREARRE AN AN */

/* Resets single node information */

make_node( node, xi, yi, first )
struct node_rec *node([66]) [66];
int xi;
int yi;
int first; /* T of F */
{

int k;

if( first ) {
node[xi) {yi] = (struct node_rec *)malloc(sizeof (struct node_rec));
node[xi] [yi]->xi = xi;
node[xi] [yil->yi = yi;
node(xi) [yi]->x = (float)xi;
node([xi] [yi]l->y = (float)yi;
}
node([xi]) [yi]->state = UNTOUCHED; /* OBSTACLE, VISITED, or FRONTIER */
node(xi] [yi]->back_track_state = UNTOUCHED; /* VISITED, or FRONTIER */
node [xi] [yi]->subtotal = BIG_NUMBER;
node{xi] [yil->dist_from_start = BIG_NUMBER;
node [xi] (yi]->dist_from_goal = BIG_NUMBER;
node [xi] {yi]->dist_from current = 0.0;
node(xi] {yi] ->predecessor = node[xi] [yi];

/* points to predecessor for a-star search */
node (xi) [yi]->frontier_index = NA; /* not have index to frontier_heap */
node (xi] [yi)->qnext = NULL;

/* points to next in q for dist from current DFS */
node[xi] (yi] ->qreset = NULL; /* reset link list after back DFS */




/% xkkekxxxxxkkixkk* find node ARRRRRRRARRRARKNRRRAANARRANRRRAARRNARR N * /

/* Picks a random node in the designated density area. Used to identify
start and goal nodes. */

struct node_rec *find_node( node, dens_col, dens_row)
struct node_rec *node(66][66];

int dens_col;

int dens_row;

{
int k, xi, yi, base_x, base_y:

base_x = (dens_col * 4) + 1;
base_y = (dens_row * 4) + 1;

for (k=0;k<100;k++) {
xi = base_x + (randlé6() % 4);
yi = base_y + (randlé6() % 4);

if (nodel(xi)[yi)->state == UNTOUCHED)
return nodef{xil (yil:;

}
return node[xi][yil:
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tpopulation.c

/*
File: tpopulation
Programmer: g.b. parker
Environment: any
Language: Cc

Date: 9 july 92

Revised:

Comments: Functions dealing with population creation/storage
*/

#include "ga_search.h"

/* bRk kA AAXR ARk hkk create_population L2 2 2222222222222 2222 22 22 222 2] t/

/* Generates a population of random individuals */

create_population( individual )
struct individual struct *individual(32);

{
int k:

for (k=0;k<32;k++) {
individual([k] =
(struct individual struct *)malloc(sizeof (struct individual_ struct)):
new_individual( individual(k] );
}

J* kkkxrkxhkkekkkkkkdt new individual AAXEAXXEAXXARXKAKKARRRRXRARRANRAR &/

/* Sets initial values of individual records fields */

struct individual_struct *new_individual( ind )
struct individual_struct *ind;
{

ind->chrom.factor.place_holder = 0xf;
ind->chrom.factor.start_dist = randlé();
ind->chrom.factor.goal dist = randlé6();

ind->chrom.factor.current_dist = randlé6():;
ind->chrom.factor.crowd_sides = randl6();
ind->chrom.factor.crowd _diag = randié();

ind->chrom.factor.move_away = randlé6();
ind->chrom. factor.momentum = randlé6();
ind->fitness = 0;

ind->fit_sum = 0.0;

ind->previous_index = 99;
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I s 2222222222222 22 4 22 R 2822222222222 222222222222 2 2 2 JUN 1
get_population

/* Reads population from a file */

get_population( individual, file name )
struct individual_struct *individual(32];
char file name[32];
{

int i;

FILE *population_file, *fopen();

int not_end = T;

unsigned int alleles;

if ( file_name([0] == ' ' ) {
printf ("\nEnter population file name: ");
gets(file_ name);

}

if ( (population_file = fopen(file_name,®r®”)) == NULL ) ({
printf("\nThe file does not exist, random population being used."):
create_population( individual );

\ ‘ :

else {

for ( i=0 ; i<32 ; i++ ) |
individual(i) =
(struct individual_struct *)malloc(sizeof (struct individual_ struct)):
individual[i])->fitness = 0;
individual [i]->fit_sum = 0.0;
individual[i]}->previous_index = 99;

if ( not_end && ( fscanf(population_file,"%x",&alleles) != EOF ) )
individual[i]->chrom.alleles = alleles;

else {
new_individual( individual(i] );
not_end = F;
}
}
fclose(population_file);
) .

n




[* RRREAKEAXNRRNRAAN DUt POPULALION FAXXAXKANKAARKARKXARKARKKRRRRANAAN */

/* Puts the population to a designated file */

put_population( individual, file_name )
struct individual_struct *individual(32];
char file_name[32];
{

int i;

FILE *population_file, *fopen{():

if( file name({0] == ' ' ) {

printf ("\nEnter output population file name: ");

gets(file_name);
}

population_file = fopen(file_name, "w");

for ( i=0 ; i<32 ; i++ )
fprintf (population_file, "$x\n", individual[i)->chrom.alleles);

fclose (population_file):
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astar.c

/*
File: astar.c
Programmer: g.b. parker
Environment: any
Language: o

Date: 9 july 92

Revised:

Comments: A-star search - Finds the shortest path
*/

#include "ga_search.h"

int heap_size;

/* khkkkhkhhkhkkkkhkkhkk o star L2 3SR 2SR 222222222 ssss2 X222 2R 2 R S 4 */
float a_star( sx, sy, gx, gy, random seed, density, node )
int sx,sy,gx,gy; /* position in density array for start & goal */
int random_seed;
int density[16](16];
struct node_rec *node(66] [66]:;
{
struct node_rec *current, *start, *goal;
struct node_rec *frontier heap[4096);
int k;

#ifdef IRIS
union chrom_union dummy_cu:
dummy cu.alleles = 0;
#endif

heap size = 0;
srandom(random_seed); /* seed the random generator */
make_array(density, node);
start = find node(node, sx, sy);
start->state = START;
start->dist_from_start = 0.0;
goal = find node(node, gx, gy):
goal->state = GOAL;
for (k=0;k<4096;k++)
frontier_heap(k) = NULL;
current = start;
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#ifdef IRIS
/* initialize the IRIS system */
initjalize (ASTITLE):
draw_terrain(node,start,goal,current,goal->dist_from start,
durmny _cu.factor);
#endif

while ( current != goal) {
update_astar_frontier( node,current, frontier_heap, start,goal );
if( heap_size == () break;
current = frontier_heap(0];
delete_heap( frontier_heap, frontier_heap(0] ):;

!

#ifdef IRIS
draw_tetrain(node,start,goal,current,goa1->dist_from_start,
dummy cu.factor):;
sleep( SLEEPTIME );
#endif

goal->state = GOAL;
start->state = START:

return( goal->dist_from start );
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[* kxkxkxxxkkkairerx ypdate astar frontier FAXXAAXAXAXRAKXXAXXXXAXANAAAS %/

update_astar_frontier( node, ¢, frontier heap, start, goal )
struct node_rec *node(66] [66];
struct node_rec *c; /* current */
struct node_rec *frontier_heap{4096];
struct node_rec *start;
struct node_rec *goal;
{
int xi, yi, base_xi, base_yi, top_xi, top_yi:

)
[

base xi = c->xi == 1 :e=>xi - 1;
base yi = c->yi == 1 : c=>yi - 1;
top_xi = c->xi == 64 ? 64 : c->xi + 1;

"
top_ yi = c->yi == 64 2 64 : c->yi 1;

)
[
+ +

for (xi=base xi;xi<=top_xi;xi++)
for (yi=base_yi;yi<=top_ yi;yi++)
if ( (nodel[xi][yil->state == UNTQUCHED) ||
(node[xi] [yi])~->state == GOAL) ) {
node[xi] [yi]->state = FRONTIER;
node [xi] [yi]->predecessor = c;
node[xi] [yi]->dist_from goal = update_dist(node(xi] (yi],goal);
node [xi] (yi]->dist_from start =
c->dist_from_start + update_dist (node(xi] [yil,c):
node[xi] (yi}->subtotal = node[xi] [yi]l->dist_from goal +
node[xi] [yil->dist_from_ start;

insert_heap( frontier_heap, node(xi]{yi] ):

}

else if ( node(xi] (yi]l->state == FRONTIER ) {
if ( node([xi](yil->dist_from_start >
(c->dist_from_start + update_dist (node(xi](yi],¢)) ) {
node[xi] [yi]l->dist_from_ start =
c->dist_from_start + update_dist(node([xi][yi]l,c):
node(xi] [yi]->subtotal = node{xi} [yi]->dist_from_goal +
node[xi] [yi]l->dist_from start;
move_heap( frontier_heap, node(xi] (yi]->frontier_index ):;
} 4
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hill_climb.c

/*
File: hill climb.c
Programmer: g.b. parker
Environment: any

Language: (o4

Date: 9 july 92

Revised:

Comments: Hill climb search - Finds best adjacent frontier node or back-
tracks
*/

#include "ga_search.h"
#include <sys/time.h>

J* Xkkkkkkkkxkkkkkkkx hill climb A**XkAXAXXXKRKKKKAKANRKKRXRNRARRRRKKN X/

float hill_climb( sx, sy, gx, gy, random seed, density, node, ticks )
int sx,sy,gx,gy; /* position in density array for start & goal */
int random_seed:
int density[16][16];
struct node_rec *node[66] [66];
float *ticks:;
{
struct node_rec *current, *next, *start, *goal;
int k = 1;

long sec, usec;

static struct timeval *tvp;
static struct timezone *tzp;
static int first = T;

#ifdef IRIS
union chrom union dummy cu;
dummy cu.alleles = 0;
#endif

if( first ) {
tvp = (struct timeval *)malloc(sizeof (struct timeval));
tzp = (struct timezone *)malloc(sizeof (struct timezone)):;
first = F;

srandom(random_seed); /* seed the random generator */
make_array(density, node);

start = find_node(node, sx, sy):

start->state = START;

start->dist_from start = 0.0;
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goal = find node(node, gx, gy):
goal->state = GOAL;

current = start;

current->state = CURRENT;

#ifdef IRIS
/* initialize the IRIS system */
initialize (HCTITLE);

#endif

getéimeofday(tvp, tzp):;
sec = tvp->tv_sec;
usec = tvp->tv_usec;

while ( current != goal) ({
next = move_adjacent( node, current, start, goal ):;

if ( next != NULL )
next->predecessor = current;

else if ( current->predecessor != NULL )
next = current->predecessor:;
else

printf ("\nNO SOLUTION - hill climb search"):;

next->dist_from_ start =
current->dist_from start + update_dist( current, next );

current->state = VISITED;

current = next;

current->state = CURRENT;
#ifdef IRIS

draw_terrain(node,start,goal,current,next->dist_from start,

dummy cu.factor);
#endif
}

gettimeofday(tvp, tzp):;
*ticks = (float) (tvp->tv_sec - sec) + (tvp->tv_usec - usec)/1000000.0;

#ifdef IRIS
sleep{( SLEEPTIME );
#endif

goal->state = GOAL;
start->state = START;

return{ goal->dist_from start );
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/* kkkkkhk kA RXRXAXXXY move adjacent L2 2R 222222222222 2223 2222222222 22 */

struct node_rec *move_adjacent( node, ¢, start, goal )
struct node_rec *node([66] [66];
struct node_rec *c; /* current */
struct node_rec *start;
struct node_rec *goal;
{
struct node_rec *best;
int xi, yi, base_xi, base_yi, top_xi, top_yi; .

best = NULL;

base_xi = c->xi == 1
base_yi = c->yi == 1
top_xi = c->xi == 64
top_yi = c->yi == 64

-

1 c->xi - 1;
1 : c->yi - 1;
64 : c->xi + 1;
64 : c->yi 1;

LIS I )
..

«J
+

for (xi=base_xi;xi<=top_xi;xi++)
for (yi=base_yi;yi<=top_yi;yi++)
switch ( node([xi] [yi]->state )
{
case UNTOUCHED:
case GOAL:
node([xi] [yi]->state = FRONTIER;
node[xi) [yi]l~->dist_from_goal = update dist( node[xi] [yil, goal ):
best = find best( best, node(xi][yi] );
break;
case FERONTIER:
best = find best( best, node[xi] [yi]) ):
break;
}
return( best );

/* hhkkhkkhhhhkhkkhkhhd find best **kkkkkrkkAkAAARRAAAARRA AR Ak hkhkkkAhd */

/* Assigns the input node to best if appropriate */

struct node_rec *find best( best, n )
struct node_rec *best;
struct node_rec *n;
{
if ( best == NULL )
best = n;
else if ( n->dist_from _goal < best->dist_from_goal )
best = n;
return( best );

78

T R O O R TR R R R T T |




rt_astar.c

/*
File: rt_astar.c
Programmer: g.b. parker
Environment: any

Language: C

Date: 20 feb 92

Revised: 2 apr 92

Comments: RTA-star search - Finds best adjacent node visited or frontier
*/

#include "ga_search.h"
#include <sys/time.h>

int heap_size;

/* khkkkkkhhkkkkkkkkx* rta star (2222222232222 2 2222222 22222222 s 2Rl g */

float rta_star( sx, sy, gX, gy, random_seed, density, node, ticks )
int sx,sy,gx,g9y: /* position in density array for start & goal */
int random_seed;
int density([16](16]:
struct node_rec *node([66][66];
float *ticks;
{
struct node_rec *current, *start, *goal;
struct node_rec *best_two[2];
int k = 1;

long sec, usec:;
static struct timeval *tvp;
static struct timezone *tzp;
static int first = T;

#ifdef IRIS
union chrom_union dummy cu;
dummy cu.alleles = 0;

#endif

if( first ) {
tvp = (struct timeval *)malloc(sizeof (struct timeval));
tzp = (struct timezone *)malloc(sizeof (struct timezone));
first = F;

heap_size = 0;
srandom(random_seed); /* seed the random generator */
make_array(density, node);
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start = find node(node, sx, sy):;
start->state = START;
start->dist_from start = 0.0;
goal = find node(node, gx, gy):
goal->state = GOAL;

current = start;

current->state = CURRENT;

#ifdef IRIS
/* initialize the IRIS system */
initialize (RTASTITLE);
#endif -

gettimeofday(tvp, tzp):
sec = tvp->tv_sec;
usec = tvp->tv_usec;

while ( current != goal) {

best_two[0] = NULL;
best_two[l] = NULL;
update_rtastar_ adjacent( node, current, best_two, start, goal ):
if( best_two[0] == NULL ) break:
if( best_two[l] == NULL )

current->dist_from goal = BIG_NUMBER;
else

current->dist_from goal = best_two[l]->subtotal;
current->state = VISITED;
best_two[0]->dist_from start =

current->dist_from_start + update_ dist (current,best_two(0]);

current = best_two(0];
current->state = CURRENT;

#ifdef IRIS )
draw_terrain(node,start,goal,current,best_two[0]->dist_from start,
dummy_ cu.factor);
#endif
}

gettimeofday(tvp, tzp):;
*ticks = (float) (tvp->tv_sec - sec) + (tvp->tv_usec - usec)/1000000.0; .

#ifdef IRIS
sleep( SLEEPTIME ):; i
#endif

goal->state = GOAL;
start->state = START;
return( goal->dist_from_start );




/t 1223222223222 22 2 24 update rtastar adjacent L2 2228282222222 2222222 2] t/

update_rtastar_adjacent( node, ¢, best_ two, start, goal )
struct node_rec *node(66][66];
struct node_rec *c; /* current */
struct node_rec *best_two([2];
struct node_rec *start;
struct node_rec *goal:;
{
int xi, yi, base_xi, base yi, top_xi, top_vi;

base xi = c->xi == 1 1 : c->xi - 1;

W

base_yi = c->yi == 1 1 : c->yi - 1;
top_xi = c~>xi == 64 ? 64 : c->xi + 1;
top_yi = c~>yi == 64 2 64 : c->yi + 1;

for (xi=base_xi;xi<=top_xi;xi++)
for (yi=base_yi;yi<=top_yi;yit++)
switch ( node(xi] (yi]->state )

{

case UNTOUCHED:

case GOAL:
node [xi] [yi]->state = FRONTIER;
node [xi] [yi] ->predecessor = c;
node [xi] (yi)->dist_from goal = update_dist( node[xi](yi], goal )};
node [xi] [yi]->subtotal =

node [xi] {yi]->dist_from goal + update_dist( node{xi]([yi], ¢ ):

insert ( best_two, node(xi] [yi] ):
break;

case FRONTIER:

case VISITED:
node [xi] [yi] ->subtotal =

node([xi] (yi]->dist_from goal + update_dist( node(xi] (yi], ¢ );

insert ( best_two, nodelxi] [yi] ):
break;

case CURRENT:
break;
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/* (2822222222222 2 2 insert (22222222222 2222222222232 22222222220 21 */

/* Assigns the input node to best or second best as appropriate */

insert ( best_two, n )
struct node_rec *best_two{2];
struct node_rec *n;

{

if ( best_two[0] == NULL )
best_two[0] = n;

else if ( n->subtotal < best_two[0]->subtotal ) {
best_two([l] = best_two[0]:
best_two{0] = n;

}

else if ( best_two[l] == NULL )
best_two(l] = n;

else if ( n->subtotal < best_two[1l]->subtotal )
best_two(l] = n;




bfsearch.c

/*
File: bfsearch.c
Programmer: g.b. parker
Environment: any
Language: C

Date: 9 july 92

Revised:

Comments: Best First Search - modified standard bfs for use with real-
time search
*/

#include "ga_search.h”
#include <sys/time.h>

/* hhkkhkkkkhkkkkkkkk® hfsearch (2222222222222 2222822222222 2R s Rt d] */

float bfsearch( sx, sy, g%, gy, ind_chrom_factor, random seed, density, node,
ticks )
int sx,sy,gx,gy; /* position in density array for start & goal */
struct factor_struct ind_chrom factor;
int random_seed;
int density{16](16];
struct node_rec *node[66][66];
" float *ticks;
{
struct node_rec *current, *previous, *start, *goal;
struct node_rec *frontier_heap([4096];

long sec, usec:

static struct timeval *tvp;
static struct timezone *tzp;
static int first = T;

float dist_traveled = 0.0;
int k;

#ifdef IRIS
union chrom union dummy cu;
dummy cu.alleles = 0;
#endif

if( first ) | .
tvp = (struct timeval *)malloc(sizeof (struct timeval));
tzp = (struct timezone *)malloc(sizeof (struct timezone)):
first = F;




srandom(random_seed); /* seed the random generator */
heap_size = 0;
make_array(density, node):

start = find_node(node, sx, sy);
start->state = START;
start->dist_from _start = 0.0;
goal = find_node (node, gx, gy):
goal->state = GOAL;

for (k=0;k<4096;k++)
frontier_heap(k] = NULL;
current = start;
previous = start;
#ifdef IRIS
/* initialize the IRIS system */
initialize (BFTITLE) ;
#endif
gettimeofday(tvp, tzp):
sec = tvp->tv_sec;
usec = tvp->tv_usec;

while ( current != goal) {
bf_update_frontier_list (node,current,previous,frontier_heap, start,goal);
if ( heap_size == 0) { '
printf ("\nENDING SEARCH BEFORE GOAL - no more frontier");
break;
}
previous = current;
current = bf_pick_best_frontier(node,current, frontier_heap,goal);
dist_traveled = dist_traveled + current->dist_from_current;
#ifdef IRIS
draw_terrain(node,start,goal,current,dist_traveled,dummy_cu.factor):;
#endif
}

gettimeofday(tvp, tzp):
*ticks = (float) (tvp->tv_sec - sec) + (tvp->tv_usec - usec)/1000000.0;

#ifdef IRIS
sleep( SLEEPTIME );
#endif

goal->state = GOAL;
start->state = START;

return{ dist_traveled );



[* kxxAxRexRARARRXRRAX bf update frontier list AXXAXAAXXAXKRAXNAXKAARENE */

bf_update_frontier_list( node, ¢, p, frontier_ heap, start, goal )

struct
struct
struct
struct
struct
struct
{

node_rec *node[66] [66];

node_rec *c; /* current */
node_rec *p; /* previous */
node_rec *frontier heap(4096];
node_rec *start;

node_rec *goal;

int xi, yi, base_xi, base_yi, top_xi, top_yi;
float old subtotal;

base_xi = c->xi - 1;
base yi = c->yi - 1;
top_xi = c->xi + 1;
top_yi = c->yi + 1;

for (xi=base xi;xi<=top_xi;xi++)
for (yi=base_yi;yi<=top_yi;yi++)

) |

if ( (node{xi)]{yi)->state == UNTOUCHED) || (node(xi]([yi]->state == GOAL)

node[xi] [yi]~->state = FRONTIER;

node [xi] [yi] ->predecessor = c;

node[xi] [yi]l->dist_from goal = update_dist( node[xi][yi]), goal ):
node[xi] [yi]->subtotal = node[xi] [yi]l~->dist_from goal;
insert_heap( frontier_heap, node(xi][yi] )

/% *kxxkxxkkkxkxxxx% bf pick_best_frontier *AxxaxkrrxkakkrXkkkxxAX*AX% */

/* Finds best frontier node, returns it */

struct
struct
struct
struct
struct
{

node_rec *bf_pick_best_frontier( node, current, frontier_ heap, goal )
node_rec *node[66]{66];

node_rec *current;

node_rec *frontier_heap[4096];

node_rec *goal;

struct node_rec *best ptr, *q, *gend, *qreset;

float node_cost = BIG_NUMBER;

float norm = 1.0; /* (current->dist_from goal / 16.0); normalize factor */
int xi, yi, k;

float steps:

int done = F;




best_ptr = frontier_heap(0];

q = current;

gend = current:;

qreset = current;
current->back_track_state = VISITED:
current->dist_from current = 0.0;

while ( !'done && (q '= NULL) ) {

steps = gq->dist_from current + 1.0;
for(k=0;k<8;k++) {
if (k==4)
steps = qg->disc_from_current + SQRT2;
xi = gen_xi( k, q->xi );
yi = gen_vi( k, q->yi ):

if( ( (node[xi) [yi)->state == VISITED) ||
(node{xi] {yi]l=->state == FRONTIER) {|
(node[xi] [yi]->state == START) ) &&

node(xi] (yi)l->back_track_state == UNTOUCHED ) {
node([xi] [yi]->dist_from_current = steps;
node([xi] (yi)->back_track_state = VISITED;
node [xi] [yi]) ->qreset = qreset:
qreset = node([xi)[yi]l;
if ( (node[xi] [yi]l->state == VISITED) ||
(node[xi]) [yi]->state == START) ) {
gend->gnext = node[xi] (yil;
qgend = node(xi] [yil:
b
else | /* node[xi] [yi)]->state == FRONTIER */
if ( node([xi] [(yi] == best ptr )
done = T;

}
q = g->qnext;
}
reset_back_track_state( qreset );
best_ptr->state = VISITED;
delete_heap( frontier_heap, best_ptr ):

return( best_ptr ):




psearch.c

/*
File: psearch.c
Programmer: g¢g.b. parker
Environment: any

Language: Cc

Date: 9 july 92

Revised:

Comments: Persistence Search - uses distance to goal and distance to cux-
rent
to determine best frontier.
*/ :

#include "ga_searxch.h”
#include <sys/time.h>

/* AhkhkkRhkkhkhkkkhhkhkhkx psearch E2 2222222222222 2222222222222ttt R R X/ i/

float psearch( sx, sy, gx, gy, ind chrom factor, random seed, density, node,
ticks )
int sx,s8y,gx,gy; /* position in density array for start & goal */
struct factor_struct ind_chrom factor;
int random_seed;
int density({16]([16];
struct node_rec *node([66] [66];
float *ticks;
{
struct node_rec *current, *previous, *start, *goal;
struct node_rec *frontier_heap(4096]):

long sec, usec;

static struct timeval *tvp;
static struct timezone *tzp;
stati~ int first = T;

float dist_traveled = 0.0;
int k;

if( first ) {
tvp = (struct timeval *)malloc(sizeof (struct timeval));
tzp = (struct timezone *)malloc(sizeof (struct timezone));
first = F;

srandom(random seed); /* seed the random generator */
heap_size = 0;

make_array(density, node);

start = find_node(node, sx, sy):

start->state = START;




for

#endif

}

}

#endif
}

#endif

start->dist_from start = 0.0;
goal = find node(node, gx, gy):
goal->state = GOAL;

{(k=0;k<4096;k++)

frontier_heapl(k] = NULL;
current = start;
previous = start;
#ifdef IRIS
/* initialize the IRIS system */
initialize (PERSTITLE);

gettimeofday(tvp, tzp):;
sec = tvp->tv_sec;
usec = tvp->tv_usec;

while ( current != goal) ({
if ( adjacent (current, goal) ) {
dist_traveled = dist_traveled + update_dist( current, goal );

current = goal;

else {

p_update_frontier_ list( node, current, previous, frontier heap, start,
) goal, ind_chrom factor );
if( heap_size == 0) ({
printf ("\nENDING SEARCH BEFORE GOAL %d %d - no more frontier"”,
current->xi, current->yi);
break;
}
previous = current;
current = p pick_best frontier( node, current, frontier_ heap,
goal, ind_chrom_ factor ):
dist_traveled = dist_traveled + current->dist_from current;

#ifdef IRIS
draw_terrain(node, start,goal, current,dist_traveled, ind_chrom_ factor):

gettimeofday(tvp, tzp);
*ticks = (float) (tvp->tv_sec - sec) + (tvp->tv_usec - usec)/1000000.0;

#ifdef IRIS
sleep( SLEEPTIME );

goal->state = GOAL;
start->state = START;

return( dist_traveled ):




[* kkkxkkkkxkkkti*xx p update frontier 1liSt ***XAxadaxxrxaxAkcAdAnrn */

p_update_frontier_list( node, c, p, frontier_heap, start, goal, factor )

struct
struct
struct
struct
struct
struct
struct
{

node_rec *node(66) [66];

node_rec *c; /* current */
node_rec *p; /* previous */
node_rec *frontier heap[4096];

node_rec *start;
node_rec *goal;
factor_struct factor;

int xi, yi, base_xi, base_yi, top_xi, top yi;
float old_subtotal;

base xi = c->xi ~ 1;
base_yi = c->yi - 1;
top_xi = c->xi + 1;
top_yvi = c->yi + 1;

for (xi=base_xi;xi<=top_xi;xi++)
for (yi=base_yi;yi<=top_yi;yi++)

node(xi] [yi]->state =

FRONTIER;

node([xi] [yi] ->predecessor = c;
node[xi] [yi]->dist_from _goal =
node[xi] {yi] ->subtotal =

node[xi] (yi]->dist_from goal * factor.goal _dist;
insert_heap( frontier_heap, node([xi] [yi] )

if ((node[xi] [yi]->state == UNTOQUCHED) || (node([xi]([yi]->state == GOAL)) {

update_dist( node(xi] [yil, goal );

/* khkkhkkkhkkhkhkkkkhkkikk p_pick best frontier Khkkkhkkkkhkkkkhkhkkhkkhkkkhkkkkkk */

/* Finds best frontier node,

struct
tor )
struct
struct
struct
struct
struct
{

returns it */

node_rec *p pick_best frontier( node, current, frontier heap, goal, fac-

node_rec *node(66] (66];

node_rec *current;

node_rec *frontier heap[4096];

node_rec *goal:
factor_struct factor;

struct node_rec *best_ptr,
float node_cost = BIG_NUMBER;
float norm = 1.0; /* (current->dist_from_goal / 16.0); normalize factor */
float lower_bound = frontier_heap[0]->subtotal;

float upper_bound = BIG_NUMBER;
int xi, yi, k;
float steps;

*q, *gend,

*qreset;




best_ptr = current;

q = current;

gend = current:;

gqreset = current;
current->back_track_state = VISITED;
current->dist_from current = 0.0;

while ( (lower_bound < upper_bound) && (q != NULL) ) {
steps = g->dist_from_current + 1.0;
for (k=0;k<8;k++) {
if (k==4)
steps = qg->dist_from current + SQRT2;
xi = gen_xi( k, q->xi );
yi = gen_yi( k, g->yi );

if ( ( (node[xi]{yi]->state == VISITED) ||
(node [xi) [yi]->state == FRONTIER) ||
(node[xi] [yi]->state == START) ) &&
node[xi] [yi)->back_track_state == UNTOUCHED ) ({
node([xi] [yi)->dist_from_current = steps;
node[xi}] (yi)->back_track_state = VISITED;
node{xi] {yi]~->greset = greset;
qgreset = node{xi] (yi);

if ( (nodefxi] [yi]->state == VISITED) ||
(node([xi] {yi]~->state == START) ) {

gend->qnext = node(xi] [yi]:

gend = node([xi] [(yi):;
}
else { /* node[xi] [yi]->state == FRONTIER */

node_cost = node([xi] (yi]l->subtotal +

node [xi) [yi)->dist_from_current * factor.current_dist;

if (node_cost < upper_bound) {
upper_bound = node_cost;
best_ptr = nodelxi] (yil:

}

}
q = g->gqnext;
lower_bound = frontier_heap[0]->subtotal + steps * factor.current_dist; .
}
reset_back_track_state( qreset );
best_ptr->state = VISITED;
delete_heap( frontier_ heap, best_ptr );

return( best_ptr );




tsearch.c

/*
File: tsearch.c
Programmer: g.b. parker
Environment: any
Language: C

Date: 9 july 92
Revised:
Comments: This is a multi-heuristic search that takes in the bias

factors in the form of an eight digit hexadecimal number.
*/

tinclude "ga_search.h"
#include <sys/time.h>

int heap_size;

/* Ak kkkkkRARAAkARRAIN gagyrch *AKKAXAARA A A AR ARk kA Ak hh kR kA kR bkt d */

float search( sx, sy, gx, gy, ind_chrom factor, random_seed, density, node,
ticks )
int sx,sy,gx,gy; /* position in density array for start & goal */
struct factor_struct ind_chrom factor; '
int random_seed;
int density[16){16];
struct node_rec *node(66]{66];
float *ticks;
{
struct node_rec *current, *previous, *start, *goal;
struct node_rec *frontier_heap(4096];

long sec, usec;

static struct timeval *tvp:
static struct timezone *tzp;
static int first = T;

float dist_traveled = 0.0;
int k;

1f( first ) {
tvp = (struct timeval *)malloc(sizeof (struct timeval));
tzp = (struct timezone *)malloc(sizeof (struct timezone)):
first = F;

91




srandom(random _seed); /* seed the random generator */
heap_size = 0:
make_array (density, node);

start = find_node(node, sx, sy):
start->state = START;
start->dist_from start = 0.0;
goal = find node(node, gx, gy):
goal->state = GOAL;

for (k=0;k<4096;k++)
frontier_heaplk] = NULL;

current = start; ’

previous = start;

#ifdef IRIS .
/* initialize the IRIS system */
initialize (GATITLE) ;

#endif

gettimeofday(tvp, tzp):
sec = tvp->tv_sec;
usec = tvp->tv_usec;

while ( current != goal) {

if ( adjacent (current, goal) ) {
dist_traveled = dist_traveled + update_dist( current, goal );
current = goal;

}

else {
update_frontier_list( node, current, previous, frontier_heap, start,

goal, ind_chrom_ factor );
if( heap_size == 0) {
printf ("\nENDING SEARCH BEFORE GOAL - no more frontier™);
break;
}
previous = current;
current = pick_best frontier( node, current, frontier_ heap, goal,
' ind_chrom_factor ):

dist_traveled = dist_traveled + current->dist_from current;

}

#ifdef IRIS
draw_terrain(node,start,goal,current,dist_traveled,ind chrom factor):;
#endif
} /* end while loop */

gettimeofday(tvp, tzp):
*ticks = (float) (tvp->t-_sec - sec) + (tvp->tv_usec - usec)/1000000.0;
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#ifdef IRIS
sleep{( SLEEPTIME );
#endif

goal->state = GOAL;
start->state = START;

#ifdef SUN
/* Print to standard output */
/* not normally used, but optional for sun */
/*
printf ("\n"):
print_node (node) ;
printf ("\n");
print£("\nDIST = %f", dist_traveled);
*/
#endif

return( dist_traveled );
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tfrontier.c

/*
File: tfrontier.c
Programmer: g.b. parker
Environment: any
Language: o

Date: 9 july 92
Revised:
Comments: Maintenance of frontier list

*/

#include "ga_search.h"
#include "math.h"

[* kxkkrxakkxxkktki® ypdate frontier 1iSt A *FAAEAXAXAARXARAXAXNRRKANS */

/* Looks two away from the current node to update stable search
characteristics */ '

update_frontier_list( node, c, p, frontier_ heap, start, goal, factor )
struct node_rec *node{66] [66]; ’
struct node_rec *c; /* current */
struct node_rec *p; /* previous */
struct node_rec *frontier_heap{4096];
struct node_rec *start;
struct node_rec *goal;
struct factor_struct factor;
{
int xi, yi, base_xi, base_yi, top_xi, top_yi:
float old subtotal;

base_xi = c->xi == 1 2 1 : c->xi - 2;
base yi = ¢c->yi == 1 ? 1 : c->yi - 2;
top_xi = c->xi == 64 ? 64 : c->xi + 2;
top_yi = c->yi == 64 ? 64 : c->yi + 2;

update_adjacent_obstacles( node, ¢ );




for (xi=base_xi;xi<=top_xi;xi++) {
for (yi=base_yi;yi<=top_yi:;yit++) {

if ( ((node([xi])[yi)->state == UNTOUCHED) ||
(node[xi] [yi]->state == GOAL) ) && adjacent (node[xi] (yil,c) ){
node(xi] [yi]->state = FRONTIER;
node[xi) {yi]l->predecessor = ¢;
node[xi) {yi]->dist_from_goal = update_dist( node(xi) [yi], goal );
node([xi) [yi]->dist_from start = update_dist( node(xi] [yi], start ):
node[xi] [yi]->subtotal =
compute_subtotal( nodel[xi] [yi], factor,
calc_momentum(node(xil [yil,c,p),
update_crowd_sides (node,node[xi] {yil),
update_crowd_diag(node,node(xi] (yi]) ):
insert_heap( frontier_heap, node(xi] (yi] )’
}

else if ( node(xi})([yi]->state == FRONTIER ) {
old_subtotal = node(xi] [yi]l->subtotal;
node([xi) [yi}->subtotal =
compute_subtotal( node[xi] [yil], factor,

calc_momentum(node{xi] (yil,c,p),
update_crowd_sides (node,node[xi] {yi]),
update_crowd_diag(node,node(xi] {yil) );

if ( !equalf (old_subtotal,node([xi] [yi]->subtotal) ) |

move_heap( frontier_ heap, node(xi] (yi]->frontier_ index );
}
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/% *xxxxwxxnwnncixrr ypdate_adjacent _obstacles **AXEAAXXKAXRAANARNARANL X/
/* Records for future use which adjacent nodes are obstacles */

update_adjacent_obstacles( node, c )

struct node_rec
struct node_rec
{

*node[66] [66];
*c; /* current */

int xi, yi, base_xi, base_yi, top_xi, top_yi;

base_ xi

top_xi
top_yi

= ¢c=->xi - 1;
base yi = c->yi - 1;
= c=>xi + 1;
= c=>yi + 1;

for (xi=base_xi;xi<=top_xi;xi++)
for (yi=base_yi;yi<=top_yi:;yi++)
if ( node[xi]) [yi]->state == OBSTACLE )
node [xi] {yi]->back_track_state = OBSTACLE;

J* RXKAKRKRRRKKRRRRR Dick DeSt frontier *AAXXXAXAXAAXXARANNANXRANARRN &/

/* finds best frontier node, returns it */

‘struct node_rec
struct node_rec
struct node_rec
struct rode_rec
struct node_rec

*pick_best_frontier(node,current,frontier_ heap,goal, factor)
*node[66] [66];

*current;

*frontier_heap[4096];

*goal;

struct factor_struct factor;

{

struct node_rec *best_ptr, *q, *gend, *Qgreset;

float node_cost = BIG_NUMBER;

float norm = 1.0; /* (current->dist_from goal / 16.0); normalize factor */
float lower_bound = frontier_heap([0]->subtotal;

float upper_bound = BIG_NUMBER;

int xi, yi, k;

float steps;

best_ptr = current;

q = current;

gend = current;
qreset = current;
current->back_track state = VISITED;

current->dist_

from current = 0.0;




}

while ( (lower_bound < upper_bound) && (q != NULL) ) {

steps = gq->dist_from current + 1.0;
for (k=0;k<8;k++) {
if (k==4)
steps = qg->dist_from_current + SQRTZ2;
xi = gen_xi( k, q->xi );
yl = gen_yi( k, q->yi )

if ( ( (node(xi] [yi)->state == VISITED) ||
(node[xi] ([yi]->state == FRONTIER) ||
(node[xi] [yi]->state == START) ) &&
node {xi} [yi]->back_track_state == UNTOUCHED ) {
node([xi] (yil->dist_from current = steps;
node[xi] (yi)->back_track state = VISITED;
node[xi] (yi)->qreset = greset;
qreset = node(xi) (yi];

if ( (node[xi]{yi)->state == VISITED) ||
(node[xi] [yi]->state == START) ) {

gend->gnext = node{xi} [yi]:

gend = node[xi] [yi];
}
else { /* node[xi] [yi]->state == FRONTIER */

node_cost = node([xi] [yi)->subtotal +

node([xi] [yil->dist_from_current * factor.current_dist +

calc_move_away(node(xi) [yi]l,current,goal) * factor.move_away;

if (node_cost < upper_bound) |
upper_bound = node_cost;
best_ptr = node[xi] [yil];
} /* end if */
} /* end else */
} /* end if */
} /* end for loop */
q = g->qnext;
lower_bound = frontier_heap(0]->subtotal + steps * factor.current_dist;
}) /* end while loop */

reset_back_track_state( qreset );
best_ptr->state = VISITED;
delete heap( frontier_ heap, best_ptr );

return( best_ptr ):;




/* RREXRXEXAREAXRXARR raset DACK Lrack State **AXXAkXRwARAXRANRRRRARAL */

/* Resets node record fields used to perform the backtrack search */

reset_back_track_state( qreset )
struct node_rec *qreset;

{
struct node_rec *temp;

while (qreset != NULL) ({
temp = greset->qreset;
greset->back_track_state = UNTOUCHED;
qreset->qreset = NULL;
qreset->gnext = NULL;
greset = temp;

% KRXXRXXXRXRARNRA*® ypdate 1iSt FEAKARXRARAKKKKRRAAARAAKRRRKARANANRR X /

/* Euclidean distance between input nodes */

float update_dist( nl, n2 )
struct node_rec *nl:
struct node_rec *n2;

{
float x = nl->x - n2->x;
float y = nl->y - n2->y;

return( sqrt( x*x + y*y ) ):
}

[* kkkkkkhkhkkkhkhkdk iff it AXARRRRARAFRAKIKKAXARARRIAA KA RN NN RN &/

/* Absolute difference between two integers */

diff_int( a, b)
int a, b:;
{

int ¢c = a - b;

if (¢ < 0)
return{ -c );
else
return( c ):




/* L2 222222222 22222 24 adjacent L2222 2222222222222 2222222322222 22222 */

/* Returns T if the input nodes are adjacent */

adjacent (nl,n2)
struct node rec *nl;
struct node_rec *n2;
{
return ( (diff_int(nl->xi,n2->xi) < 2) && (diff_int (nl->yi,n2->yi) < 2)
}

/* (2222222222222 224 update crowd sides (2223322222232 22 222222222 2222 */

/* Counts the known adjacent horizontal/vertical obstacles to the frontier
node */

update crowd sides (node, f)
struct node_rec *node(66] [66];
struct node_rec *f; /* frontier */
{

int s_count = 0;

/* N */

if ( node(f->xi] (£->yi + l]->back_track_state == OBSTACLE )
s_count = s_count + 1; :

/* E */

if ( node(f->xi + 1] (£->yi]->back_track state == OBSTACLE )
s_count = g count + 1;

/* 8 */

if( node[f->xi] [f->yi - 1]->back_track_state == OBSTACLE )
s_count = s_count + 1;

/* W */

if( nodel[f->xi - 1]([f->yi)->back_track_state == OBSTACLE )
s_count = s_count + 1;

return( s_count );




/% kkkxrkrkkkkkkkak* ypdate crowd diag KARRKARRRKRRRRRN AR AR RAARAARERN &/
/* Counts the known adjacent diagonal obstacles to the frontier node */

update_crowd_diag(node, f)
struct node_rec *node[66][66];
struct node_rec *£f; /* frontier */
{

int d_count = 0;

/* NE */

if ( nodel[f->xi + 1] ([f->yi + 1]->back_track_state == OBSTACLE )
d_count = d count + 1;

/* SE */

if ( node(f->xi + 1][f->yi - 1]->back_track_state == OBSTACLE )
d_count = d_count + 1;

/* SW */

if( node(f->xi - 1] [f->yi - 1l])->back_track_state == OBSTACLE )
d_count = d count + 1;

/* NW */

if( node[f->xi ~ 1] [£->yi + 1]->back_track_state == OBSTACLE )
d_count = d_count + 1;

return( d_count );

/* kkkkkkkkkkkkkhkkk ~alc move away XTSI 2223323222 2 224 2] t/
/* Determines if a move to the frontier would be moving away from the
goal. Each axis move away counts as two. */

calc_move away( £, c, g)
struct node_rec *f;
struct node_rec *c;
struct node_rec *g;

{
int ma_count = 0;

if ( diff_int (£->xi,g->xi) > diff_int (c->xi,g->xi) )
ma_count = 2;

if( diff_int (£->yi,g->yi) > diff_int (c->yi,g->yi) )
ma_count = ma_count + 2;

return( ma_count );
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[* RERKXXXRXERRRARAAE 02]C MOMENLUM FXXX XA Xk kkkkh kA kAR RARRRNAARRK AR &/

/* Returns 0 if no change in direction, 1 if 45 degree change, two if 90
degree change, and three if 135 degree change or node not adjacent */

calc_momentum( £, c, p )
struct node_rec *f£;
struct node_rec *c;
struct node_rec *p:
{
if( adjacent (f,c) && adjacent(c,p) )
return( diff_int (p->xi - c->xi,c->xi - £->xi) + diff_int (p->yi - c->yi,c-
>yi - f£->yi) );
else
return( 3 );

J% KEXXKAKRKKRANRNEXY cOmMPULE SUDLOLAL FAAAXXXXXRKARNAAXKKKXXKKKKKNNNAR %/

/* Computes the frontier nodes subtotal value dependent on the stable heuris-
tics */

float compute_subtotal( n, factor, m, cs, cd )

struct node_rec *n; /* the node */

struct factor_struct factor;

int m; /* momentum */

int c¢s: /* crowding_sides */

int cd; /* crowding_diagonals */

{
return( n->dist_from_start * factor.start_dist +
n->dist_from goal * factor.goal dist +
cs * factor.crowd_sides +
cd * factor.crowd_diag +
m * factor.momentum );
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theap.c

/*
File: theap.c
Programmer: g.b. parker
Environment: any

Language: C

Date: 9 july 92

Revised:

Comments: Frontier heap functions
*/

#include "ga_search.h"

int heap_size;

/* kkkAkkkkkhkkkkkkkkkx jnsert heap P22 ELI RSS2 22222222222 s 2 sl */

/* Inserts a node into the frontier heap */

insert_heap( fh, n )
struct node_rec *fh([4096]; /* frontier_heap */
struct node_rec *n; /* node to insert */
{

n->state = FRONTIER;

n->frontier_index = heap size;

fh{heap size] = n;

heap_size = heap_size + 1;

move_heap( fh, heap_size-1);

/* Ahkkhkhkkkhkhkhhkkkhi delete heap '222XT22222XX2E2 2222222222 R R it g */

/* Deletes a node from the frontier heap */

delete_heap( fh, n )
struct node_rec *fh[4096]; /* frontier_heap */
struct node_rec *n; /* node to delete */
{
heap_size = heap_size - 1;
fh(n->frontier_index) = fh[heap_size];
fh(n->frontier_index]->frontier_ index = n->frontier_index:
n->state = VISITED;
fh(heap_size] = NULL:
if ( n->frontier_index != heap size )
move_heap( fh, n->frontier_index );
n->frontier_ index = NA;
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/* AhkkkARAARARXRAARRX moyve heap LR R RSS2 2222222222222 2taR 2R */

/* Moves a node in the frontier heap if required; dependent on the value
of the nodes subtotal field. */

move_heap( fh, i )
struct node_rec *£fh[4096]; /* frontier_ heap */
int i; /* index of node to possibly move */

{

int parent = (i - 1) / 2;
int child = ((2*i+l1) >= heap_size) ? i : 2*i+l;
int child2 = ((2*i+2) >= heap_size) ? i : 2*i+2;
if ( (child2 !'= i) && (fh{child2])->subtotal < fh[child]->subtotal) )
child = child2;
while (fh{i]->subtotal < fh(parent]->subtotal) {
swap( fh, i, parent );
i = parent;
parent = (i - 1) / 2;
}
while (fh([i]=->subtotal > fhichild]->subtotal) {
swap( f£h, i, child );
i = child;
child = ((2*i+l) >= heap_size) ? i : 2*i+1;
child2 = ((2*i+2) >= heap_size) ? i : 2*i+2;
if ( (child2 !'= i) && (fh[child2]->subtotal < fh{child]->subtotal) )
child = child2;

/* Ahkkkhkkhkhkhkkkkkhk swap 22222222222 22222222222 222222222t sl */

/* Swaps nodes in the frontier heap */

swap( fh, i1, i2 )
struct node_rec *fh[4096); /* frontier_heap */
int i1, i2; /* indexes of nodes to swap */

{

struct node_rec *temp ptr = fh(il];

fh(il]->frontier_index = i2;
fh(i2]->frontier_index = il;
fh{il] = £h([i2]);

fh[i2] = temp ptr;
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evolve.c

/*
File: evolve.c
Programmer: g.b. parker
Environment: any
Language: C

Date: 9 july 92

Revised:

Comments: Performs selection, crossover, and mutation on input population.
*/

#include "ga_search.h”

/* khkhkkkAhkhkkhkkkkddtd auolve XXk khhrkkdkhhhrddhdhhhhhhhrhbhhhrdhhhrdhdn */

/* takes in a population, with fitness information which is used to produce
the next population */

evolve( individual, rs )
struct individual struct *individual(32]:
int rs; /* random_number */
{
static struct individual_struct *temp_ind[32];
static int first = T; /* T or F */ '
int k;
int top = 0;
int next_spot = 2;
int mate_heap(31];
int even = T;

if ( first ) |
create_population( temp_ind );
first = F;

}

temp_ind([0]->fit_sum = 0.0;

temp_ind(1]->fit_sum = 0.0;

create mate_ heap( mate_heap, individual, rs );
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for (k=0;k<32;k++) {
top = top + individual(kl->fitness:;
while ( (mate_heap[l] <= top) && (mate_heap[0) > 0) ) {
temp_ind[next_spot]->chrom.alleles = individual(k]->chrom.alleles;
temp_ind[next_spot]->previous_index = k;
if ( even ) {
next_spot = next_spot + 2;
even = next_spot < 30 2?2 T
}
else
next_spot = get_odd():
pop_mate_heap (mate_heap) ;
}
if ( individual[k]->fit_sum > temp_ind[0]->fit_sum ) {
set_equal( temp_ind(0), temp_ind[1l]), temp_ind(0]->previous_index ):
set_equal( individual(k], temp_ind(0], k )
}
else if ( (individual([k]}->fit_sum > temp_ind[1]->fit_sum) &&
(individual [k] ->chrom.alleles != temp_ind[0]->chrom.alleles) )
set_equal( individual(k], temp_ind(1], k );

: F2

}
crossover( individual, temp_ind, rs );
/* mutate done in crossover */

/* (2222222222222 E create mate heap 1222322222222 2222222222 22 2 2 8 2 */

/* Creates a heap of integers which will be used to stochastically choose
individuals for reproduction */

create_mate_heap( mh, ind, rs )

int mh{31];
struct individual_struct *ind[32];
int rs; /* random_seed */
{
int k;

int total_fit = 0;

srandom(rs) ;
mh(0] = 0;

for (k=0;k<32;k++)
total fit = total_fit + ind(k])->fitness;

for (k=1;k<31;k++)
insert_mate_heap( mh, (random() % total_fit) );
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JRAIRRRRXRXARRRRRRARRKAARY Or0aSOVEer fUNCLIONS AXA XA RA XN AR AR AR KRR AR A& N /

J* REREXARAERRAANARN a)l]@le CrOSSOVEr H*xAARkkkkkkhk AN RANXNAAXRRAKAN X/

/* Performs crossover of the chromosome at a random allele position */

allele_crossover( ind, temp_ind, k, cross_allele )
struct individual_struct *ind(32]:

struct individual_ struct *temp_ind(32]:;

int k, cross_allele;

{

ind(k]->chrom.alleles = temp_ind(k]->chrom.alleles;
ind(k+1]->chrom.alleles = temp_ind(k+l]->chrom.alleles;

switch ( cross_allele )
{
case 0:
ind(k]->chrom.factor.start_dist = temp_ind[k+1]->chrom.factor.start_dist;
ind(k+1]->chrom.factor.start_dist = temp_ind[k]->chrom.factor.start_dist;
case 1:
ind[k]->chrom.factor.goal_dist = temp_ind[k+1l)~>chrom.factor.goal_dist;
ind(k+1)->chrom.factor.goal_dist = temp_ind([k]->chrom.factor.goal_dist;
case 2:
ind{k]->chrom.factor.current_dist =
temp_ind[k+1]->chrom.factor.current_dist;
ind[k+1]->chrom.factor.current_dist =
temp_ind[k]->chrom.factor.current_dist;
case 3:
ind[k]}->chrom.factor.crowd_sides =
temp_ind[k+1l]->chrom.factor.crowd_sides;
ind(k+1]->chrom.factor.crowd_sides =
temp_ind[k]->chrom.factor.crowd_sides;
case 4:
ind[k]->chrom.factor.crowd_diag = temp_ind(k+l)->chrom.factor.crowd_diag:;
ind[k+1]->chrom.factor.crowd diag = temp_ind(k]->chrom.factor.crowd_diag:
case 5:
ind[k]->chrom.factor.move_away = temp_ind(k+1]->chrom.factor.move_away;
ind[k+1]->chrom.factor.move away = temp_ind[k]->chrom.factor.move_away:
case 6:
ind[k]->chrom.factor.momentum = temp_ind(k+l]->chrom.factor.momentum;
ind(k+1]->chrom.factor.momentum = temp_ind[k]->chrom.factor.momentum;
}
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/2 RRKRRRAKXRRARRARRRR Hit CrOSSOVEr FAXXAAKXKAXNKAKXRARNKARNRARRRAXRNRAR &/
/* Performs crossover of an allele at a random bit position */

bit_crossover( ind, temp_ind, k, cross_allele )
struct individual_struct *ind[32};
struct individual_struct *temp_ind(32];
int k, cross_allele;
{
int cross_bit, inv_cross_bit;

cross_bit = get_mask( rand5() ):
inv_cross_bit = cross_bit ~ MASK4;

switch ( cross_allele )
{
case 1:
ind[k]->chrom.factor.start_dist =
( temp_ind[k]->chrom.factor.start_dist & cross_bit ) |
( temp_ind[k+1])->chrom.factor.start_dist & inv_cross bit );
ind{k+1]~>chrom.factor.start_dist =
( temp_ind[k+1l]->chrom.factor.start_dist & cross_bit ) |
( temp_ind[k]->chrom.factor.start_dist & inv_cross_bit );
break;
case 2:
ind(k]->chrom.factor.goal_dist =
( temp_ind[k]->chrom.factor.goal_dist & cross_bit ) |
( temp_ind[k+1]->chrom.factor.goal_dist & inv_cross_bit );
ind[k+1]~>chrom.factor.goal_dist =
( temp_ind([k+1]->chrom.factor.goal_dist & cross_bit ) I
( temp_ind[k]->chrom.factor.goal _dist & inv_cross_bit )
break;
case 3:
ind (k] ->chrom.factor.current_dist =
( temp_ind[k]->chrom.factor.current_dist & cross_bit ) |
( temp_ind[k+l]->chrom.factor.current_dist & inv_cross_bit );
ind[(k+l]~->chrom.factor.current_dist =
( temp_ind[k+1]->chrom.factor.current_dist & cross_bit ) |
( temp_ind(k]->chrom.factor.current_dist & inv_cross_bit );
break:;
case 4:
ind (k] ->chrom.factor.crowd_sides =
( temp_ind[k])->chrom.factor.crowd_sides & cross_bit ) |
( temp_ind([k+1])->chrom.factor.crowd sides & inv_cross_bit );
ind(k+1])->chrom.factor.crowd sides =
( temp_ind[k+1]->chrom.factor.crowd_sides & cross_bit ) 1
( temp_ind[k]->chrom.factor.crowd_sides & inv_cross_bit );
break;
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case 5:
ind(k]->chrom.factor.crowd diag =
( temp_ind(k]->chrom.factor.crowd_diag & cross_bit ) I
( temp_ind(k+1l]->chrom.factor.crowd diag & inv_cross_bit ):
ind(k+1]->chrom.factor.crowd diag =
( temp_ind(k+1)->chrom.factor.crowd diag & cross_bit ) |
( temp_ind[k]->chrom.factor.crowd_diag & inv_cross_bit ):
break;
case 6:
ind(k]->chrom.factor.move_away =
( temp_ind(k]->chrom.factor.move_away & cross_bit ) |
( temp_ind[k+1]->chrom.factor.move_away & inv_cross_bit );
ind(k+1)->chrom.factor.move_away =
( temp_ind([k+1]}->chrom.factor.move_away & cross_bit ) |
( temp_ind{k]->chrom.factor.move_away & inv_cross_bit );
break;
case 7:
ind[k]->chrom.factor.momentum =
( temp_ind(k]->chrom.factor.momentum & cross_bit ) I
( temp_ind{k+1l]->chrom.factor.momentum & inv_cross_bit );
ind{k+1]}->chrom.factor.momentum =
( temp_ind[k+1]->chrom.factor.momentum & cross_bit ) |
( temp_ind[k]->chrom.factor.momentum & inv_cross bit ):

}

/% KERKRKAKAKRRRRRRAR CPrOSSOVELr FAAKAXANNAXXARAANARRRNA AR RS RAR R AR AR R AR &/
/* The main function */

crossover( individual, temp_ind, rs )
struct individual_ struct *individual(32];
struct individual_struct *temp_ind[32]);
int rs; /* random_seed */
{

int k;

int cross_allele;

srandom(rs) ;
cross_allele = rand8();

set_equal( temp_ind([0], individual{0], temp_ind(0]->previous_index ):;
set_equal( temp_ind{l], individual{l}), temp_ind(1l]->previous_index );

for (k=2;k<32;k=k+2) {
allele_crossover( individual, temp ind, k, cross_allele );
bit_crossover( individual, temp_ind, k, cross_allele );
mutate ( individual, k, rs );

)
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/* (2222222222 22222 24 get mask (2232222322222 223222222222 222222222222 %) */

/* called by bit_crossover */

int get_mask( rn )
int rn; /* random number */
{
switch ( rn )
{
case 0:
return MASKO;
case 1l:
return MASK1;
case 2:
return MASK2;
case 3:
return MASK3;
case 4:
return MASK4;

/* khkkhAkhkkk kA ARk k% * mutate 1222282323 2222222 2232222222222 2222222 2 t/
/* Runs through each bit of the chromosome determining if if will invert */

mutate ( ind, k, rs )

struct individual_struct *ind(32]:

int k, rs;

{
unsigned int mut_factorl = Oxfffffffo0;
unsigned int mut_factor2 = Oxfffffffo0;
int g;

for (g=0:9<28;g++) {
mut_factorl = ( mut_factorl << 1 ) + one_if_mutate():;
mut_factor2 = ( mut_factor2 << 1) + one_if_mutate():;
}
ind[k]->chrom.alleles = ind[k]->chrom.alleles * mut_factorl;
ind[k+1)->chrom.alleles = ind[k+1])->chrom.alleles ~ mut_factor2:
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/t (2222222322222 2 ¢ one if mutate 1228222222222 2222222 232222822222 8 i/
/* Returns 1 if mutation is to take place at the present bit */

one_if mutate()
{
if ( rand10000() < PROB_BIT_ MUTATE )
return( 1 );
else
return( 0 );

/* 1222822222222 22 2 get Odd %A XXARAAAARRRRRRNANNARARANRAR A AR RA NN R A A t/

/* Determines placement of 3elected individual for reproduction.
Distributes individuals to avoid mating of like chromosomes. */

/* Definitions only pertinent to this function */
#define LOW 0
#define MED 1
#define HIGH 2

get_odd()

{
static int next = LOW;
static int base = 1;

switch ( next )
{
case LOW:
next = MED;
base = base + 2;
return( base );
case MED:
next = HIGH:
return( base + 10 );
case HIGH:
next = LOW;
if ( base == 11 ) {
base = 1;
return{ 31 ):
}
else
return( base + 20 );
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/t L2222 222222222222 set-equal L3S E 2222222222222 22222222222 22222 2

/* Sets one individual equal to another */

set_equal( from_ind, to_ind, k)

struct individual_struct *from ind, *to_ind;

int k;

{
to_ind->chrom.alleles = from_ind->chrom.alleles;
to_ind->fitness = from_ind->fitness;
to_ind->fit_sum = from_ ind->fit_sum;
to_ind->previous_index = k;
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cheap.c

/*
File: eheap.c
Programmer: g.b. parker
Environment: any

Language: C

Date: 9 July 92

Revised:

Comment s : Frontier heap functions

*/

#include "ga_search.h”

[% ARAXRXXREARAKEREN ingert MAte heap HAARAXAXARAAKAKRAKAARRXRARAKRNR * /

insert_mate_heap( mh, num )
int mh([31]; /* mate_heap */
int num; /* number to insert */
{
mh[0] = mh[0] + 1;
mh{ mh(0) ] = num;
move_mate_heap( mh, mh(0} );
}

/* ARk kRdhkhkdididkdiki pop mate heap b2 22222282 R2 2R 222222222 RE 22 E ] */

/* Removes top of mate heap */

pop_mate_heap( mh )
int mh{31]); /* mate_heap */
{

mh{1l] = mh( mh{0] };

mh{ mh(0]) ] = O;

mh{0] = mh(0] - 1;

move _mate_heap( mh, 1 );
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/% AkXEXRRARRRAKRXARE Move MALE heap *AXkANAAAXXARKAANKANKRARRRAA AN K AL X/
/* Readjusts heap after addition/removal of one of its members */

move_mate_heap( mh, i )
int mh{31]); /* mate_heap */
int i; /* index of num to possibly move */
{
int parent = i == 1 21 : i / 2;
int child = ((2*i) > mh([0]) ? i : 2*i;
int child2 = ((2*i+1) > mh(0]) ? 1 : 2*i+l;

if ( (child2 !'= i) && (mh[child2] < mh[child]) )
child = child2;

while (mh(i]) < mh(parent]) {
swap_num( mh, i, parent );
i = parent;
parent = i ==121 : 1/ 2;
}

while (mh(i] > mh({child]) {
swap_num( mh, i, child );
i = child;
child = ((2*i) > mh{0]) 2?2 i : 2*i;
child2 = ((2*i+l1l) > mh{[0]) ? i : 2*i+1;
if ( (child2 !'= i) && (mh{child2] < mh{child]} }
child = child2;

/* 1282222222222 08 swap_num 2 S 22222222 Rttt i s s et s Rad */

/* Swaps positions of two members of the mate_heap */

swap_num( mh, il, i2 )
int mh(31}; /* mate_heap */
int i1, i2; /* indexes of numbers to swap */

{
int temp_num;

temp_num = mh([il];

mh(il] = mh([i2]);

mh{i2] = temp_num;
}
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tmisc.c

/*
File: tmisc.c
Programmer: g.b. parker
Environment: any

Language: Cc

Date: 6 apr 92

Revised:

Comments: Miscellaneous functions
*/

#include "ga_search.h”

/* Khkkhkkhkhkikkhihkik gen X1 AN AR A AR AR RRRRARRRRR AN AR A ARR R A A AR AR AR AR t/

/* Generates an integer value dependent on the input xi and k.
Used with gen_yi to generate all adjacent nodes to (xi,yi). */

int gen_xi( k, xi )
int k;
int xi;
{
switch (k)
{
case 0:
return{ xi );
case 1:
return( xi+l );
case 2:
return( xi );
case 3:
return( xi-1 );
case 4:
return( xi+l );
case 5:
return( xi+l );
case 6:
return( xi-1 );
case 7:
return( xi-1 );
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/* IS X222 28222222 £ £/ gen yi 2223222822222 2322228222232 2R 2R R RS2 t/

/* Generates an integer value dependent on the input yi and k.
Used with gen_xi to generate all adjacent nodes to (xi,yi). */

int gen_yi( k, yi)
int k;
int yi;
{
switch (k)
{
case 0:
return( yi+l );
case 1:
return( yi );
case 2:
return( yi-1 );
case 3:
return( yi )’
case 4:
return( yirl );
case 5:
return{ yi-1 );
case 6:
return( yi-1 );
case 7:
return( yi+l );

}

/* Ahkhkkkhhkkkkhkhkkhk equalf Y Y 2 2222222232223 28222 222t sttt l g */

/* Checks if two floats are equal (within 0.0001) */

int equalf( x, y )
float x, y;
{

if ( ((x-y) < =-0.0001) |} ((x-y) > 0.0001) )
return( F );
else

return( T );
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/t kAKX ARRRARAEXRX ghOw least nodes IZ22222332 2222222232222t 2l t */

/* Sets the state field to x for all nodes in the shortest path */
/* Not currently used, but available for graphics */

show_least nodes( node, g )
struct node_rec *node[66][66];
struct node_rec *g; /* goal */
{

struct node_rec *best_ptr;

float best;

int xi,yi, k;

while ((g->dist_from_start > 0.0) && (g->dist_from_start < 10000.0)) {
best = BIG_NUMBER;
for (k=0;k<8;k++) {
xi = gen_xi( k, g->xi )
yi = gen_yi( k, g->yi );
if( ( node[xi] [yi]->state != OBSTACLE) &&
( node[xi] [yi]l->dist_from_start < best ) ) {
best = node([xi] [yi]->dist_from_start;
best_ptr = node(xi] [yi];
} .
}
g = best_ptr;
g->state = X;
}
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tdisplay.c

/*
File: tdisplay.c
Programmer: g.b. parker
Environment: any

Language: C

Date: 9 july 92

Revised:

Comments : Functions called by all searches to display the search on the

IRIS. This file should not be excluded from Makefile if compiled on the SUN.
*/

#include "ga_search.h"
#include <gl.h>
#include <device.h>

/* AhkdkkRA KAk kkkhkkkhk initialize Y2222 23222322222 22222222222 22 2 &) */

/* Initializes graphics systems for output */

initialize(title)
char title[33]:;
{

/* set up a preferred size and location for the window */
prefsize(XMAXSCREEN+1,YMAXSCREEN+1-256);
prefposition(0,980,0,980);

/* open a window for the program */
winopen ("search");
/* put a title on the window */
wintitle(title);
/* put the machine into double buffer mode */

doublebuffer() ;

/* set RGB mode for color */
RGBmode () ;

/* configure the IRIS (means use the above command settings) */

gconfig():

/* queue the redraw device */
gdevice (REDRAW) ;

/* queue buttons needed */
qdevice (BUT6); /* ESC */
qdevice (BUTS0); /* enter */
qdevice (BUT4); /* right shift */
gdevice (BUT73); /* down arrow */

/* set the world coordinate system */
ortho2(-1.0,66.0,-1.0,66.0);
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/t ARXKRKRRRRRARRRRAY draw terrain L2 22222222 R a2t i 2t 2 2 s R R ) 2] */

/* Called by searches to draw the node array */

draw_terrain(node, start,goal, current,dist,chrom)
struct node_rec *node[66] (66];

struct node_rec *start,*goal,*current;

float dist; /* dist_traveled */

struct factor_struct chrom; /* ind_chrom_factor */

{
short value;
static int cont = T;
int mmouse = F;
int first = T;
int do_print;

if ( adjacent (start,current) || adjacent (goal,current) )
cont = T;
while( (mmouse || first) && cont ) {

do_print = F;
draw_grid():

draw_nodes (node, start,goal,current) ;

while( gqtest() )

switch( gread(&value) )

{

case BUT6: /*
cont = F;
break;

case BUTSO: /*
mmouse = T;
break;

case BUT4: /*
mmouse = F;
break;

case BUT73: /*

*/

do_print = T;
break;

default:
break;

}

"ECS" to terminate display for that search */

"return” to halt display */

"shift" to continue display */

"down arrow™ to print node info to standard output

/* node is selected by mouse position */

show_mouse (node, dist, chrom,do_print);

swapbuffers(); /* change the buffers ... */

first = F;
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/* RRARAARARAAARRRARNY ahOW MOUSE FXXXNRAKAAAARAAXKRRNRRAAARAARRAA AR AR AR t/

/* Shows mouse position and prints node info if selected */

show_mouse (node,dist,c,do_print)
struct node_rec *node(66] [66];
float dist;
struct factor_struct c; /* ind_chrom_factor */
int do_print;
{
int mx_pix = getvaluator (MOUSEX);
int my pix = getvaluator (MOUSEY);

int mx = ((67 * mx_pix)/980) - 1;
int my = ((67 * my pix)/980) - 1;

if ( mx > 65 )
mx = 65;

if (my > 65 )
my = 65;

RGBcolor(0,0,0);
square( node [mx] (my] ->x, node[mx] [my]->y, 0.35 );

if( do_print ) {
printf("\n dist=%f", dist);
printf ("\n(%d, ¥d) \ntd state\n%d btstate\n%f subtotal\n%f %d start
\n%f %d goal\n%f %d current\nid frontier",
node [mx] [my] ->xi, node([mx] [my]->yi, node[mx] [my]->state,
node [mx] (my] ->back_track_state, node{mx] [my]->subtotal,
node [mx] {my]->dist_from start, c.start_dist,
node [mx] [my] ->dist_from goal, c.goal_dist,
node [mx] (my] ->dist_from current, c.current_dist,
node {mx] (my]->frontier_index);
printf ("\n%f from below"”, node[mx] [my]->subtotal -
{node [mx] [my) ->dist_from start * c.start_dist +
node [mx] [my] ->dist_from goal * c.goal_dist) );
printf ("\ncs=%d, cd=%d, ma=%d, m=%d\n",
c.crowd_sides,c.crowd diag,c.move_away,c.momentum) ;
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/* KXk hkkkkAkk kR RXR% draw nodes 2223222222222 2222222323223 222 22 ) */

/* Draws node info, can be changed for color */

draw_nodes (node, start,goal, current)
struct node_rec *node([66] [66];
struct node_rec *start,*goal, *current;
{

int xi, yi;

for (xi=0;xi<=65;xi++)
for (yi=0;yi<=65;yi++) ({
switch( node([xi] {yi]->state )
{
case OBSTACLE:
RGBcolor(0,0,0);
squaref ( node([xi] [yi)l->x, node[xi] [yil->y, 0.5 );
break;
case VISITED:
/* RGBcolor(0,0,255); */
circf( node([xi] [yi]=->x, nodelxi] (yil->y, 0.1 );
circ( node[xi] [yi]->x, node([xi] [yi}->y, 0.3 ):
break;
case FRONTIER:
/* RGBcolor(0,255,0); */
circ( node(xi) [yi]l->x, node(xi]{yil->y, 0.3 );
break:;
}
}

/* RGBcolor (255,0,255); */
circf( current->x, current->y, 0.3 );

/* RGBcolor(255,0,0); */

circf( start->x, start->y, 0.4 );
circf( goal->x, goal->y, 0.4 );
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/ﬁ RARRRARNAARARNAARRY raw grid LA A AR 2R 22222222222 X R t/

/* Draws the cross lines for the grid */

draw_grid()
{
int 1i;
float fi;

/* draw the background color */
RGBcolor (255,255,255) ;
clear();

RGBcolor(0,0,0);

for (i=0;i<=66;i++) {
fi = (float) (i-0.5);
move2 (-0.5,f1i);
draw2(65.5,f1);
move2 (£i,-0.5);
draw2 (£fi,65.5) ;

/* (2228222222222 22 2 squaref 222222222222 2222222222 2222222222222 2 2 i/
/* display filled square for 2D displays */
void squaref (xc,yc,d)
float xc,yc; /* center point of square */
float d; /* half of side length */
{
rectf (xc-d, yc-d, xc+d, yc+d) ;
}

/* (322X 322222224 square L2 22222222222 22322332222223222233 2222323224 */
/* display square for 2D displays */
void square (xc,yc,d)
float xc,yc; /* center point of square */
float d; /* half of sidelength */
{
rect (xc-d, yc-d, xc+d, yc+d) ;
}
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tprint.c

/*
File: tprint.c
Programmer: g.b. parker
Environment: any
Language: (o]

Date: 9 july 92

Revised:

Comments: Prints to standard output
*/

#include "ga_search.h”

/* 1222222222522 2222 print density ***i****t*********t*****’ﬁ****tt**ﬁ */
/* Prints density terrain to standard output */

print_density( density )
int density(16](16];

{
int 1, 3:

for ( 3=15; j>=0; j--) (-
printf ("\n");
for ( i=0; i<=15; i++ )
printf("%x ", density[il(3]):

/% *xkxxxxkkxxxk*x***x print population RARRARRARRARRA AR RRARRRARRRR AR X ]
/* Prints the population to standard output */

print_population( i )
struct individual_struct *i(32]:
{

int k;

for (k=0;k<32;k++)
printf("\n %d %x %d $f %d", k, i(k)->chrom.alleles, i(k])->fitness, i(k]-
>fit_sum, i(k]->previous_index):;
}
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/% REXRRRNARRRRRRNAR print_node

L3222 222222 R 2a2 2222222222222 S22 22 S ﬁ/

/* Prints node terrain to standard output */

print_node( node )
struct node_rec *node([66][66];
({

int i, 3

for ( 3=65; 3>=0; j~= ) {
printf("\n");
for ( i=0; i<=65; i++ )
switch (node[i][j]l->state)

{

case UNTOUCHED:
printf(".");
break;

case OBSTACLE:
printf ("4#");
break;

case VISITED:
printf("o™);
break; )

case FRONTIER:
printf ("£f");
break;

case START:
printf ("S");
break;

case GOAL:
printf ("G");
break;

case CURRENT:
printf£("O");
break;

case SHORTEST:
printf ("s");
break;

case X:
printf ("x");
break;

}
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