
NAVAL POSTGRADUATE SCHOOL
Monterey, California

AD-A2 5 7 433 c STATN

S~DTIC_

SS ELECTE
NOV2

7 1992 D3

FF NTHESIS
(A ALLOCATION OF PERIODIC TASKS WITH PRECEDENCES
0• ON TRANSPUTER-BASED SYSTEMS

by

Marco A. G. Falcao

September, 1992

Thesis Advisor: Shridhar B. Shukla
Second Reader: Uno Kodres

Approved for public release; distribution is unlimited

92 i .) 7

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

Ia. REPORT SECURITY CLASSIFICATION 1 b. RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATIONIDOWNGRADING SCHEDULE Approved for public release; distribution is unlimited.

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Naval Postgraduate School (If applicable) Naval Postgraduate School

33

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

Ba. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Program Element No Project NO Task No. Work Unit Accelsion

Number

11. TITLE (Include Security Classification)

ALLOCATION OF PERIODIC TASKS WITH PRECEDENCES ON TRANSPUTER-BASED SYSTEMS

12. PERSONAL AUTHOR(S) Falcao, Marco A. G.

13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (year, month, day) 15. PAGE COUNT
Master's Thesis From To September 1992 igg

16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the U.S.
Government.
17. COSATI CODES 18. SUBJECT TERMS (continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGROUP ADA, Allocation, Multicomputers, Multitasking, Task, Transputers

19. ABSTRACT (continue on reverse if necessary and identify by block number)

Task allocation is an important component of the process of mapping modules of application programs to multicomputers. A scheme for static
allocation of periodic tasks with precedences to processors is developed considering task execution times, communication costs, and utilization
level of each processor. It has the main goal of minimizing the application response time with a minimum number of processors.

A network of transputars is employed as a platform to experimentally evaluate the allocation approach constructed with this work. An existing
communication layer in the language ADA is improved to provide an efficient support for task flow aimulations on transputer networks.

The first phase of the allocation scheme is a constructive assignment heuristic that allocates the cluster of tasks composed of all tasks in the
critical path to the same processor. The remaining tasks are allocated according to a heuristic function that considers task precedences, task
execution times, and relative sizes of intertask messages.

The initial allocation is improved in the second phase by using an iterative pairwise interchange of tasks that considers interprocessor
communication distances.

The overall scheme of task allocation was successfully tested and analyzed through simulation of several applications on a transputer network
providing a near optimal solution.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
[]UNCLASSIFIED/UNLIMITED El SAME AS REPORT [OTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area code) 22c. OFFICE SYMBOL
Shridhar B. Shukla (408) 6-46-2764 ECISh

DD FORM 1473.84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete UNCLASSIFIED

i

Approved for public release; distribution is unlimited.

Allocation of Periodic Tasks
with Precedences

on Transputer-based Systems

by

Marco A. G. Falcao
Lieutenant Commander, Brazilian Navy

B.S., University of Sao Paulo

Submitted in partial fulfillment

of the requirements for the degree of

MASTER OF SCIENCE IN ELECTRICAL ENGINEERING

from the

NAVAL POSTGRADUATE SCHOOL

September 1992

Author: :.

Marco A. G. Falcao

Approved by: I- _L AL.
Shridhar B. Shukla, Thesis Advisor

Uno Kodres, Second Reader

Michael A. Morgan, Chai an
Department of Electrical and Computer Engineering

ii

ABSTRACT

Task allocation is an important component of the process of mapping modules of

application programs to multicomputers. A scheme for static allocation of periodic tasks

with precedences to processors is developed considering task execution times,

communication costs, and utilization level of each processor. It has the main goal of

minimizing the application response time with a minimum number of processors.

A network of transputers is employed as a platform to experimentally evaluate the

allocation approach constructed with this work. An existing communication layer in the

language ADA is improved to provide an efficient support for task flow simulations

on transputer networks.

The first phase of the allocation scheme is a constructive assignment heuristic that

allocates the cluster of tasks composed of all tasks in the critical path to the same

processor. The remaining tasks are allocated according to a heuristic function that

considers task precedences, task execution times, and relative sizes of intertask

messages.

The initial allocation is improved in the second phase by using an iterative

pairwise interchange of tasks that considers interprocessor communication distances.

The overall scheme of task allocation was successfully tested and analyzed

tt rough simulation of several applications on a transputer network providing a near

optimal solution. Accesion For

NTIS CRA&I
DTIC TAB -

DTy•IC QUAITYZ • Ui.anrnou'ced 3
Justification

By

Dist. ibution I
Avaii'etlity C, e

• .- Oi•,t i AvafiiP'.o
111 Dist Su iai1

TABLE OF CONTENTS

I. INTRODUCTION 1

A. ELEMENTS OF PROGRAM EXECUTION ON MULTICOMPUTERS 1

B. REQUIREMENTS IMPOSED BY APPLICATIONS 3

C. CURRENT STATE OF THE ART 5

D. OBJECTIVES 6

E. THESIS ORGANIZATION 8

II. COMMUNICATION LAYER 10

A. GENERAL STRUCTURE 10

1. OCCAM HARNESSES MODIFICATION 10

2. THE HOST COMMUNICATION LAYER PACKAGE 15

3. THE COMMUNICATION LAYER PACKAGE 17

a. TASK INOUT 17

b. TASK QUE 22

4. ADA IN A DISTRIBUTED ENVIRONMENT 23

5. DEADLOCK AVOIDANCE 27

B. AUV SIMULATION FLOW 30

C. DEADLOCK RELATED TO THE AUV SIMULATION FLOW . . 32

D. CHARACTERIZATION OF COMMUNICATION PERFORMANCE . 33

E. CHANGES REQUIRED TO MEET NEW PROJECT

SPECIFICATIONS 36

iv

III. TASK ALLOCATION 38

A. PROBLEM DEFINITION 38

B. DESCRIPTION OF THE HEURISTIC 41

C. LIMITATIONS OF THE CONSTRUCTIVE ASSIGNMENT . 49

D. ALLOCATION IMPLEMENTATION 52

E. PERFORMANCE RESULTS 57

1. APPLICATION FLOW WITH 25 TASKS 57

2. APPLICATION FLOW WITH 16 TASKS 60

a. CONSTRUCTIVE ASSIGNMENT WITH EQUAL

COMMUNICATION COSTS 60

b. IMPROVING THE ALLOCATION WITH EQUAL

COMMUNICATION COSTS 63

c. ADDING DIFFERENT COMMUNICATION COSTS TO

THE IMPROVED ALLOCATION 64

d. IMPROVING THE ALLOCATION WITH DIFFERENT

COMMUNICATION COSTS 65

IV. CONCLUSIONS AND FUTURE WORK 68

A. CONCLUSIONS 68

B. FUTURE WORK 69

1. ADA ON TRANSPUTER NETWORKS 69

2. TASK FLOW SIMULATOR 70

3. THE INMOS T9000 TRANSPUTER 71

4. EXTENDING THE TASK ALLOCATION SCHEME 72

APPENDIX A: OCCAM SOURCE CODE 73

v

A. OCCAM HARNESSES ON PROCESSOR EARTH 73

1. EARTHH.OCC 73

2. EARTHH2.OCC 73

3. MERGER.OCC 74

4. MAINH.OCC 75

5. MAIN.PGM 76

B. OCCAM HARNESSES ON PROCESSOR MARS 77

1. MARSH.OCC 77

2. MARSH2.OCC 78

C. OCCAM HARNESSES ON PROCESSOR PLUTO 78

1. PLUTOH.OCC 78

2. PLUTOH2.OCC 79

D. OCCAM HARNESSES ON PROCESSOR SATURN 79

1. SATURNH.OCC 79

2. SATURNH2.OCC 80

E. OCCAM HARNESSES ON PROCESSOR VENUS 80

1. VENUSH.OCC 80

2. VENUSH2.OCC 81

APPENDIX B: COMMUNICATION LAYER/AUV FLOW ADA SOURCE

CODE 82

A. COMMUNICATION LAYER ADA PROGRAMS 82

1. COMMON.ADA 82

2. COMLAYER.ADA 88

3. RANDOM PACKAGE 95

a. RANDOM.ADS 95

vi

b. RANDOM.ADB 95

c. SETSEED.ADA 96

d. UNITRAN.ADA 96

e. RANINT.ADA 97

B. HOST ADA PROGRAMS 97

1. HOSTLAY.ADA 97

2. EARTH.ADA 100

3. PRINTOUT.ADA 104

C. AUV FLOW MAIN ADA PROGRAMS 106

1. MARS.ADA 106

2. PLUTO.ADA 113

3. SATURN.ADA 118

4. VENUS.ADA 124

APPENDIX C: BASIC ADA PACKAGES USED IN TASK ALLOCATION 130

A. DISET.ADA 130

B. GRAPH2.ADA 133

C. QUEUES2.ADA 145

D. SORT.ADA 149

APPENDIX D: TASK ALLOCATION ADA PROCEDURES 156

A. STATICAL.ADA 156

B. CTFLOW.ADA 162

C. CALHEU.ADA 166

D. ALLOC.ADA 168

E. SCHED.ADA 174

vii

F. IMPROVE.ADA 177

LIST OF REFERENCES 183

INITIAL DISTRIBUTION LIST 185

viii

LIST OF TABLES

Table I: ALLOCATION OF CHANNELS ON MARS 11

Table II: ALLOCATION OF CHANNELS ON PLUTO 11

Table III: ALLOCATION OF CHANNELS ON SATURN 12

Table IV: ALLOCATION OF CHANNELS ON VENUS 12

Table V: OCCAM HARNESSES ON PROCESSOR EARTH 13

Table VI: OCCAM HARNESSES ON PROCESSOR MARS 14

Table VII: OCCAM HARNESSES ON PROCESSOR PLUTO 14

Table VIII: OCCAM HARNESSES ON PROCESSOR SATURN 15

Table IX: OCCAM HARNESSES ON PROCESSOR VENUS 15

Table X: AUV FLOW - TASK EXECUTION TIMES 31

Table XI: EXPERIMENTAL EXECUTION TIMES FOR THE AUV FLOW 35

Table XII: HEURISTIC FUNCTION 49

Table XIII: PACKAGES AND THEIR FUNCTIONS USED IN

ALLOCATION 51

Table XIV: RESULTS FOR THE FLOW OF FIGURE 14 57

Table XV: UTILIZATION FOR THE FLOW OF FIGURE 14 59

Table XVI: RESULTS FOR THE CONSTRUCTIVE ASSIGNMENT WITH

EQUAL COMMUNICATION COSTS 61

Table XVII: UTILIZATION FOR THE CONSTRUCTIVE ASSIGNMENT

ALLOCATION WITH EQUAL COMMUNICATION COSTS 62

Table XVIII: RESULTS WITH THE IMPROVED ALLOCATION USING

EQUAL COMMUNICATION COSTS 63

ix

Table XIX: UTILIZATION FOR THE IMPROVED ALLOCATION WITH

EQUAL COMMUNICATION COSTS 63

Table XX: RESULTS WITH DIFFERENT COMMUNICATION COSTS IN

THE FLOW OF FIGURE 16 64

Table XXI: UTILIZATION WITH DIFFERENT COMMUNICATION

COSTS 65

Table XXII: RESULTS FOR THE IMPROVED ALLOCATION WITH

DIFFERENT COMMUNICATION COSTS 66

Table XXIII: UTILIZATION FOR THE IMPROVED ALLOCATION WITH

DIFFERENT COMMUNICATION COSTS 67

x

LIST OF FIGURES

Figure 1: Interaction between stages of the mapping

procedure 2

Figure 2: Communication topology 10

Figure 3: Host layer used by EARTH 18

Figure 4: Communication layer relation to the main

program 24

Figure 5: AUV simulation flow 30

Figure 6: Gantt chart for the AUV flow execution 34

Figure 7: Task allocation as a mapping problem 39

Figure 8: Minimum response time 41

Figure 9: Pseudocode for the constructive assignment 46

Figure 10: Pseudocode for task allocation improvement 50

Figure 11: User defined packages 52

Figure 12: STATICAL data flow diagram 54

Figure 13: Task flow input data file 55

Figure 14: 25-Task simulation flow 56

Figure 15: Task allocation for the flow of Figure 14 . . 58

Figure 16: 16-Task simulation flow 60

Figure 17: Constructive assignment with equal

communication costs 61

Figure 18: Improved task allocation with equal

communication costs 62

xi

Figure 19: Constructive assignment with different

communication costs 66

Figure 20: Improved allocation with different

communication costs 67

xii

I. INTRODUCTION

A. ELEMENTS OF PROGRAM EXECUTION ON MULTICOMPUTERS

Since the advent of very large-scale integrated (VLSI)

circuits, computer hardware has decreased in size and cost. In

addition, the employment of higher-performance parallel

computers has become essential for several modern applications

such as weather prediction, computational aerodynamics,

artificial intelligence, and military command and control

systems. Therefore, new software tools are required to exploit

the parallelism on these machines as well as to provide

transparent program development systems to the users.

Concurrent computing using multicomputers requires a

mapping between the user application and the processing nodes.

This mapping procedure is usually decomposed in distinct

elements to make this complex problem tractable. These

elements are partitioning, task allocation, node scheduling,

and message routing, as shown in Figure 1.

Partitioning is the part that divides the original problem

into subproblems that are solved by individual processors. The

solutions of these subproblems are combined to compose an

overall solution to the original problem. Therefore, it must

determine the computation grain size, which is the number of

operations performed in a task between intertask

communication, and the communication grain size, which

corresponds to the message size.

APPUCAMMO

PARTIIONNO

COMWWWAMN GRAN GRAN SM

Figure 1: Interaction between stages of the mapping procedure

Task allocation is the component that allocates the pieces

of program (program modules) obtained from partitioning to the

processors that compose the parallel computer. Locations of

the source and destination of messages, which constrain the

possible shortest paths used in message routing, are

established by this element.

Node scheduling considers task features such as

precedence, execution time and deadline, in order to schedule

task executions on each node processor. Thus, it affects the

2

traffic profile by determining the instants of message

transmission from one node processor to another.

Message routing decides how effectively the communication

subsystem can be implemented. It considers the minimization of

network latency, uniform utilization of the network resources,

and freedom from deadlock/livelock.

B. REQUIREMENTS IMPOSED BY APPLICATIONS

Real-time applications impose a diversity of requirements

that must be considered in the design of the new generation of

parallel computers. These requirements are not constant in

time but they can change frequently. For instance, consider

the problem of scheduling aperiodic tasks with time

constraints and random interval of arriving, or the problem

of meeting new system specifications to enhance the original

system[STANKOVIC 88]. Therefore, the computer power needed for

such applications as measured in terms of MIPS or MFLOPS is

not static and should be provided on demand.

Since the design of new applications implies high

development costs, it is highly desirable that new systems

should be dynamic and flexible. Therefore, system designers

must consider approaches to minimize the number of constraints

to be imposed on further modifications. For instance, this can

be accomplished by using scalable parallel computer

architectures and real-time operating systems with support for

dynamic allocation of tasks.

3

Another fundamental aspect of real-time applications is

that the correctness of system results is not only dependent

on the logical correctness of the program but also on its

ability to meet the individual deadlines imposed by

individual tasks. Consequently, critical tasks should be

scheduled for execution with higher priority than non-critical

tasks. Critical tasks are processes for which the consequence

of missing a deadline is catastrophic with violation of

personal or material safety.

Besides deadlines, task execution times, repetition rates

of periodic tasks, and precedence between tasks are also very

important requirements.

Fault tolerance is another issue that must be considered.

Multiple instances of the same process must run on different

processors to achieve the desired reliability.

Resource constraints are imposed by the system

architecture. Therefore, tasks are required to share several

resources other than CPU such as I/O channels, data

structures, files, and databases.

Basic to such sharing is intertask communication that may

result in interprocessor communication. The presence of an

efficient communication system underlying a multicomputer

network is a requirement that must be satisfied to minimize

the effects of delays due communication between tasks residing

at different nodes. These delays are the cause of the

saturation effect on the achievable speed-up when using

4

multiple processors. In addition, they are not predictable

causing problems for real-time applications.

Static systems are systems in which tasks and timing

constraints such as the arrival times of tasks are known

beforehand. Dynamic systems are those systems which tasks

arrive at random times. A static resource allocation scheme is

required for static systems. This approach can be employed at

compile-time since all needed information is known then. On

the other hand, a dynamic resource allocation scheme is

required for dynamic systems since it has to be used at

execution time and little is known about the application at

compile-time.

C. CURRENT STATE OF THE ART

There have been many studies in static scheduling in

distributed systems. This category of scheduling problems has

been traditionally formulated as the task allocation problem.

A useful survey on task allocation problems can be found on

[STANKOVIC 87].

Several approaches to the allocation model have been used.

They are graph theoretical, integer programming, and heuristic

methods[TSUCHYA 82]. These approaches pursue solutions that

minimize the interprocessor communication costs with a

balanced utilization of each processor.

The scheme presented by [TSUCHYA 82] employs integer

programming models to find optimal allocation with explicit

5

time constraints. A branch and bound search algorithm is used

to solve the allocation problem. This approach can be used to

balance processor loads and to minimize communication costs.

An AND-OR precedence graph with 23 tasks having port-to-port

timing requirements is used to validate this scheme. This

model allows the inclusion of several constraints such as

allocation preference, task exclusion, redundancy, time and

resource constraints.

The approach developed by [RAMAMRITHAM 89] uses a

heuristic-directed search. This algorithm handles periodicity

constraints, precedence, communication, and fault tolerance.

Experimental evaluation of the algorithm shows that a task set

can be feasibly allocated and scheduled, and the algorithm is

highly likely to find it without any backtracking during the

search.

D. OBJECTIVES

The objective of this thesis is to develop suitable

algorithms for static allocation of tasks having precedence

constraints on transputer-based systems. Specialized research

in this field has shown that optimal solutions for this

problem are NP-hard[QUINN 87], therefore heuristic methods are

required to find near optimal solutions.

Several task flows are employed on a transputer-based

system to evaluate the performance of the allocation

algorithms with respect to the interprocessor communication

6

costs, load balance on each processor and task flow response

time.

An existing communication layer software, developed by

(RICHMOND 91] in ADA, is upgraded to implement task flow

simulations on a transputer-based system. Modifications to the

communication layer that were necessary to improve its

functionality are as follows:

- Take similar communication routines existing on each

node main program and put them into a single ADA package to

make them easy to be reused as well as to improve the total

compilation time of the distributed program.

- Use different approaches to route messages among the

nodes that compose the transputer network. The first

implementation routes messages in a counter clockwise ring

fashion only.

- Reduce communication overhead in relation to the total

execution time of the distributed program.

- Study how to make the layer more robust with respect to

deadlocks.

A network of transputers is used in this thesis for the

simulation because it follows MIMD(Multiple Instruction Stream

Multiple Data Stream) parallel architecture providing

flexibility for further topological changes as well as

scalability. Moreover, its use makes the simulations more

realistic and simpler than purely theoretical models that

could be built in uniprocessor computers.

7

The programming language ADA is used in the current thesis

due the following reasons:

- Existence of a communication layer written in ADA

(RICHMOND 91] that makes the communication between tasks

location invariant, and

- Presence of high level ADA constructs that make it

easier to implement multitasking. ADA has incorporated a

technique called the Rendezvous[HOARE 78] that combines mutual

exclusion, task synchronization, and interprocess

communication.

- The language is a DOD standard(ANSI/MIL-STD-1815A-1983)

and has the potential to be the standard programming language

in the next generation of real-time systems.

E. THESIS ORGANIZATION

This thesis contains four chapters. Chapter I described

the elements of program execution on multicomputers,

requirements imposed by applications on real-time parallel

computer systems, a brief overview of the current state of the

art on the problem of task allocation, and the objectives of

the present work.

Chapter II contains the general structure of the

communication layer including discussions about topics such as

the AUV flow simulation, deadlock avoidance, characterization

8

of the communication performance, and changes to meet new

project specifications.

Chapter III describes the task allocation including the

constructive assignment heuristic, the iterative improvement

by pair-wise interchange of tasks, and simulations on the

transputer network.

Chapter IV states the conclusions and recommendations for

further research.

9

11. COMMUNICATION LAYER

A. GENERAL STRUCTURE

1. OCCAN HARNESSES MODIFICATION

Figure 2 shows the T-800 transputers that compose the

transputer network used in this thesis. Processor EARTH is

linked directly to the host PC, and therefore it is the only

processor with access to the I/O offered by the PC keyboard

and display. All other processors(MARS, VENUS, PLUTO and

SATURN) can only communicate with the host PC by sending

messages to the processor EARTH. Task SCREEN that runs on

EARTH can inspect the codes of messages sent by these

processors and then print suitable messages on the PC screen.

Figur 2: ommuicatin toolog

10

mom=

M.

Figure 2: Communication topology

10

Processors MARS, VENUS, PLUTO and SATURN are the

transputers that run the distributed software for the

application task flow simulation. The OCCAM harnesses for

processors MARS, VENUS, PLUTO and SATURN have been modified to

permit the use of different approaches for routing messages

through the transputer network.

Tables I, II, III, and IV show how the communication

channels are allocated on the processors MARS, PLUTO, SATURN

and VENUS respectively. The channel numbers shown in Figure 2

are the physical link numbers.

Table I: ALLOCATION OF CHANNELS ON MARS

IN/OUT NAME VIRTUAL PHYSICAL

CHANNEL NUMBER NUMBER

INPUT Earth2Mars 2 0

INPUT Venus2Mars 4 2

INPUT Pluto2Mars 5 3

OUTPUT Mars2Earth 2 0

OUTPUT Mars2Venus 4 2

OUTPUT Mars2Pluto 5 3

Table II: ALLOCATION OF CHANNELS ON PLUTO

IN/OUT NAME VIRTUAL PHYSICAL

CHANNEL NUMBER NUMBER

INPUT Mars2Pluto 3 2

INPUT Sat2Pluto 4 3

OUTPUT Pluto2Mars 3 2

OUTPUT Pluto2Sat 4 3

11

Table III: ALLOCATION OF CHANNELS ON SATURN

IN/OUT NAME VIRTUAL PHYSICAL
CHANNEL NUMBER NUMBER

INPUT Pluto2Sat 2 2

INPUT Venus2Sat 3 3

OUTPUT Sat2Pluto 2 2

OUTPUT Sat2Venus 3 3

Table IV: ALLOCATION OF CHANNELS ON VENUS

IN/OUT NAME VIRTUAL PHYSICAL

CHANNEL NUMBER NUMBER

INPUT Mars2Venus 2 3

INPUT Sat2Venus 5 2

OUTPUT Venus2Mars 2 3

OUTPUT Sat2Venus 5 2

The physical link numbers are associated with the

hardware communication channels existent on each transputer.

The T800 transputer has 4 bi-directional communication

channels that are numbered 0, 1, 2 and 3. The virtual channel

numbers are logical references to the communication channels

declared on each main ADA program.

The Alsys ADA compiler for transputer networks

requires that each main ADA program to be run in a transputer

node must have its own OCCAM harness in order to provide a

clean interface to the program in terms of used channels(ALSYS

12

90]. Tables V, VI, VII, VIII, and IX show all OCCAM programs

that are required for each processor node to run application

task flows using a distributed ADA program on the transputer

network shown in Figure 2.

Table V: OCCAM HARNESSES ON PROCESSOR EARTH

PROGRAM FUNCTION

EARTHH.OCC Declares the virtual
(EARTH HARNESS) channels used by EARTH and

invokes the EARTH ADA
program

EARTHH2.OCC Declares the entry point
that is used by EARTH
harness to call the EARTH
ADA program

MERGER.OCC Collect output errors from
up to 20 Ada programs

MAINH.OCC Invokes the EARTH harness
and the MERGER error
harness

MAIN.PGM Maps the virtual channels
of each processor to
physical links. Invokes the
following harnesses in
parallel: MAIN, MARS,
PLUTO, SATURN and VENUS

The OCCAM harnesses which declare the virtual channels

described in Tables I, II, III and IV, and the OCCAM program

that allocates virtual channels to physical links(MAIN.PGM)

are enclosed in Appendix A. They have been modified to permit

bi-directional communications between pairs of adjacent

transputers. The previous implementation sends messages in one

fixed direction around the ring. Different schemes of routing

13

Table VI: OCCAM HARNESSES ON DROCESSOR MARS

PROGRAM FUNCTION

MARSH.OCC Declares the virtual
(MARS HARNESS) channels used by MARS and

invokes the MARS ADA
program

MARSH2.OCC Declares the entry point
that is used by MARS
harness to call the MARS
ADA program

Table VII: OCCAM HARNESSES ON PROCESSOR PLUTO

PROGRAM FUNCTION

PLUTOH.OCC Declares the virtual
(PLUTO HARNESS) channels used by PLUTO and

invokes the PLUTO ADA
program

PLUTOH2.OCC Declares the entry point
that is used by PLUTO
harness to call the PLUTO
ADA program

messages can be used with the new version.

14

Table VIII: OCCAM HARNESSES ON PROCESSOR SATURN

PROGRAM FUNCTION

SATURNH.OCC Declares the virtual
(SATURN HARNESS) channels used by SATURN and

invokes the SATURN ADA
program

SATURNH2.OCC Declares the entry point
that is used by SATURN
harness to call the SATURN
ADA program

Table IX: OCCAM HARNESSES ON PROCESSOR VENUS

PROGRAM FUNCTION

VENUSH.OCC Declares the virtual
(VENUS HARNESS) channels used by VENUS and

invokes the VENUS ADA
program

VENUSH2.OCC Declares the entry point
that is used by VENUS
harness to call the VENUS
ADA program

2. THE HOST COMMUNICATION LAYER PACKAGE

The host communication layer is the software that

manages the communication of the host transputer(EARTH) with

other nodes. This layer is implemented by the generic package

HOSTLAYER enclosed in Appendix B.

The package HOSTLAYER includes only one task, the

task EARTH_QUE, which implements a circular buffer that is

used to keep the incoming messages until they can be sent to

their destination. This task works like a local mailman that

15

is in charge of storing and delivering the messages to the

local tasks. Further details of this task will be given later

since its implementation is identical to task QUE of package

COMLAYER.

An instance of the package HOSTLAYER must be

generated with the procedure SENDIT, which is the program

that issues entry calls to the local tasks passing the

messages to their destinations. The procedure SENDIT is

called by task EARTHQUE.

An instance of the package HOSTLAYER is created in

the main program EARTH.ADA, which is also enclosed in Appendix

B, with the procedure SENDITFROMEARTH. This procedure sends

messages to the local task existent on EARTH.ADA that is

SCREEN.

Task SCREEN can be used for two main purposes:

- Allow non host transputer nodes(MARS, PLUTO,

SATURN, VENUS) to send output messages to the host PC screen.

This can be done by setting an appropriate message code that

can be interpreted by task SCREEN that can print the desired

output as a result.

- Accumulate statistics about the AUV flow

simulation. For instance, task SCREEN accumulates the total

execution time and the number of iterations of task

VEHICLESYS that can be used to calculate the average loop

execution time.

16

Figure 3 illustrates the use of the HOSTLAYER by the

program EARTH.ADA. The messages are read from the input

channel(Mars2Earth) by the main program and sent to the

circular buffer implemented by task EARTH_QUE. From there the

messages are sent through procedure SENDITFROMEARTH to task

SCREEN that outputs information to the PC screen.

3. THE COMMUNICATION LAYER PACKAGE

The communication layer is the software that manages

the communication with external nodes by non host

transputers(MARS, PLUTO, SATURN and VENUS). This layer makes

implementation of Ada multitasking in the transputer network

to be location invariant because messages are sent from task

to task by using the same communication primitives independent

of the task location in the transputer network. It is

implemented by the generic package COMLAYER enclosed in

Appendix B. It should be noticed that, since the package

HOSTLAYER does not have a message traffic handler like task

INOUT on package COMLAYER, none of the application tasks

should execute on EARTH.

The package COMLAYER encapsulates tasks INOUT and QUE.

These tasks are described as follows:

a. TASK INOUT

This task accepts messages from either the main

program(external messages arriving at a node) or from local

tasks (messages going to other nodes or even messages going to

17

&ATM
1401?LAYM

TANSOM

Figure 3: Host layer used by EARTH

other tasks in the same node). The function WHEREIS that is

declared in package COMMON, enclosed in Appendix B, is called

and returns the destination node of the message. If the

destination node is the local node the message will be sent to

the task QUE that is responsible for the local message

distribution. On the other hand, if the message destination is

an external node it will be sent to this node through a

communication channel. The INOUT task also chooses the

18

communication channel to be used depending on the routing

strategy used for the network communication.

There are four possible routing strategies that can

be used with the network topology shown in Figure 2 that are

declared in the package COMMON:

- Counter-clockwise ring direction(CNTCLKRING) -

This is the approach that was used in the first

implementation. The messages are always sent in the direction

MARS->PLUTO->SATURN->VENUS->MARS.

- Clockwise-ring direction(CLKRING) - The messages

are always sent in the direction MARS->VENUS->SATURN->PLUTO-

>MARS.

- Multipath(MULTI_PATH) - Chooses one output

channel at random among all possible lower cost output

channels to a destination processor. The package RANDOM,

enclosed in the Appendix B, was extracted from (ALSYS 90] to

generate random numbers. This routing strategy is based on the

multipath routing technique for a store-and-forward network

layer implementation and is described in (TANENBAUM 89]. The

lower cost output channels were obtained by inspection of

Figure 2 taking into account the number of hops between the

nodes. The shortest path algorithm due to [DIJKSTRA 59] can be

used to compute the shortest path between two nodes for more

complicated networks. This algorithm is described in

[TANENBAUN 89].

19

- Best path(BESTPATH) - This technique is suitable

for hypercube networks. The network formed by the nodes MARS,

VENUS, SATURN and PLUTO in Figure 2 is a simple hypercube of

order 2. The algorithm always chooses the output channel that

eliminates deadlock among the lower cost channels. This

routing approach is based on algorithm A described in [TZENG

91]. The output channel is chosen by taking into account the

numbers that identify the processors(node addresses) in a

hypercube. The relative address of the message source node to

its destination node(the relative address of two nodes, say x

and y, is the bitwise Exclusive-or of their addresses, x XOR

y) is employed to choose the best channel to send the message.

This algoritim eliminates deadlock by avoiding the formation

of cycles by the routing paths.

The package COMMON declares all routing tables that

are used by these routing techniques. These tables must be

generated by dedicated programs using the four approaches

mentioned. It can be noticed that the routing tables are

highly dependent on the topology used. Therefore, they must be

recalculated whenever there is a change in the topology. Some

of them are even useless for certain topologies. For instance,

it does not make sense to use a ring for an hypercube of order

greater than two or for a mesh with a larger number of

transputers.

Looking forward to further expansion of the

employed network, it can be noticed that MULTIPATH seems to be

20

the best alternative for MESH topologies while BESTPATH seems

to be the best for HYPERCUBE topologies.

Task INOUT needs to be initialized with the

following data:

- SITE - Informs the identification of the current

node processor.

- SENDARRAY - Array of type CHANNELS.CHANNELARRAY

that must contain all output nodes used by this node

processor. For each transputer node we can have up to 4 output

channels that are declared in the node processor main program.

The package CHANNELS contains all communication primitives

that are offered by the Alsys Ada compiler system to run a

multitransputer program[ALSYS 90].

- SENDTABLE - Table of type OUTTABLE. The type

OUTTABLE is defined in the package COMMON. It is an

unconstrained array(PROGRAMS range<>, NATURAL range<>) of

BOOLEAN. The PROGRAMS range is constrained to the range of

node programs MARS..PLUTO(MARS, VENUS, SATURN and PLUTO). The

NATURAL range is constrained to the number of output channels.

The BOOLEAN content of SENDTABLE(DESTINATIONPROGRAMINDEX,

OUTPUTCHANNELINDEX) has the following meaning:

.TRUE - OUTPUTCHANNELINDEX points to a valid

output channel that may be used for sending messages to the

destination program pointed by the DESTINATIONPROGRAMINDEX.

.FALSE - The output channel pointed by

OUTPUTCHANNELINDEX is not a valid channel to be used for

21

sending messages to the destination program pointed by the

DESTINATIONPROGRAMINDEX.

The main entry points defined for task INOUT can be

seen as communication primitives offered to the main node

programs and to the tasks belonging to them to make

multitasking in a transputer network location invariant. The

mentioned entry points are described as follows:

- INCOMING - It is called by the main node program

to pass a message just arrived from an external node.

- SEND - It is used by local tasks either to send

messages to remote tasks(tasks located in external nodes) or

to send messagesto other local tasks. It is emphasized here

that the local task does not have to worry about where the

destination task is located and this feature makes the task's

communication location invariant. Communication transparency

is provided because the same primitives are used to express

both remote and local communications.

b. TASK QUE

This task implements a kind of QUEUE that is a

circular buffer. It is called from task INOUT that passes the

message to be distributed locally. This message is placed in

the circular buffer and waits for its time of delivery. The

messages are delivered in order of arrival but, if a

rendezvous with the receiving task cannot be established, this

message loses its opportunity to be delivered and has to wait

22

for the next circular buffer scan to have another opportunity.

Therefore, the order of delivery of the messages is not

guaranteed to be the same as the order of arrival in the

circular buffer.

An instance of the procedure that issues entry calls

to the local tasks(SENDIT) must be created on each processor

node. This procedure is not transparent in relation to the

allocation of tasks on the transputers. This happens because

the user should know which tasks are allocated to each

transputer to write each specific node procedure to generate

SENDIT.

Figure 4 shows the relationship between the tasks

in one node program when using the communication layer. It can

be noticed that the task WAITING that was used in the first

implementation[RICHMOND 91] was eliminated from the

communication layer. Task WAITING uses one additional queue

that may be employed between INOUT and QUE tasks and was

eliminated because it was not really used by the communication

layer.

4. ADA IN A DISTRIBUTED ENVIRONMENT

Several approaches can be applied for implementation

of the ADA language in distributed systems. These approaches

are reviewed by [ATKINSON 88] and the most important are

summarized as follows:

23

FEADfMu WUTr

MI UCALT~AM

P ORA-

- -Ful ADA Mutil Co-nctn Programs - Inti

IND

case one separate ADA program is required for each processor

node that composes the transputer network. These programs use

basic communication primitives to communicate with each other.

This requires knowledge of the underlying network by the

programmer but leads to a faster implementation. The main

disadvantages of this approach are that programs must be

24

rewritten when the network is changed and that ADA semantics

regarding multitasking is not fully implemented.

- Full ADA, Single Program - The program is written as

only one ADA program. This approach fully implements the ADA

semantics and, as a consequence, it is highly portable. The

problems of partitioning, task allocation and task

distribution must be solved by the compiler. Unfortunately,

compiler technology for distributed programs has not solved

these problems in a satisfactory way. In addition, it requires

a fairly complicated communication software system to support

the full ADA semantics across the network.

- Non-Uniformly Restricted ADA, Single Program - In

this case, the ADA semantics is fully implemented within the

limits of abstract entities called virtual nodes.

Communication across the boundaries of the virtual nodes is

achieved by remote rendezvous.

The implementation of the communication layer employs

a solution based on the Full ADA Multiple Communicating

Programs approach because it employs one ADA program for each

node processor. In addition, communication between these

programs is achieved by basic primitives offered by the

package CHANNELS.

In the first implementation of the communication

layer, the remote rendezvous is simulated by task QUE at the

receiving ncie(CALLEE) that sends an acknowledge message to

the task origin (CALLER). The origin of the message will not

25

proceed until it gets the acknowledge message from the CALLEE.

In fact, this is the only way to go when working with the

following types of entry calls[ATKINSON 88]:

- Entry call that has out parameters. It works as a

remote subroutine call so that the CALLER has to wait for the

CALLEE return before proceeding.

- Conditional entry calls - A conditional entry call

issues an entry call that is then canceled if a rendezvous is

not immediately possible[VOLZ 85]. Due the time delays in the

remote communication the CALLER may cancel an entry call when

the CALLEE is still able to accept the entry call.

- Timed entry calls - A timed entry call issues an

entry call that is canceled if a rendezvous is not started

within a given delay[REYNOLDS 83]. There is a problem of

interpretation in where to consider the time delay. It can be

considered from the CALLER or from the CALLEE time reference.

The acknowledge messages employed in the first version

of the communication layer were avoided in the new version due

to the following reasons:

- These messages may lead to a deadlock situation in

case of using MULTIPATH or BESTPATH routing strategies. This

problem seems to be related with the cycle formed by tasks

INOUT and QUE when INOUT may send a message to QUE at the same

time that QUE is sending an acknowledgement to INOUT.

- The AUV tasks can communicate by using simple

messages without requiring an immediate return from the

26

destination. Timed entry calls are issued by task QUE in the

CALLEE node. Therefore, it does not seem to be a big problem

if the CALLER task proceeds before the rendezvous with the

CALLEE has been established. After all, if the CALLER task

depends on results of an action to be taken by the CALLEE

task, it will suspend in an accept statement waiting for the

required results. Thus, the new version of the communication

layer does not implement the Ada rendezvous in a peer to peer

sense but rendezvous is used between the tasks that implement

the communication layer and the local node tasks.

- The acknowledge messages contributed to the total

overhead of the communication layer. Since for eveiy message

there is an associated acknowledge message, it practically

doubles the communication load.

5. DEADLOCK AVOIDANCE

There are at least four potential deadlock situations that

may occur in distributed systems leading to a general blocking

situation:

- Asynchronous use of the communication channels - For

instance, in Figure 2, consider the case where VENUS attempts

to send a message to MARS at the same time that MARS attempts

to send a message to VENUS. Both processors are using the

shortest path links to send their messages. Both processors

are using the primitive WRITE of the package CHANNELS that is

not preemptive. Therefore, if none of the transputers gives

27

up, then the programs will deadlock. If this problem happens

with the communication layer, the situation may be recovered

because the WRITE primitive is called from task INOUT and the

READ primitive is called from the MAIN program on each node.

Since the tasks are switched on each processor node, it is

possible that the WRITE primitive in a node could get

synchronized with a READ primitive of the other node due the

random nature of the task activation mechanism, however, this

is not guaranteed. The program user should then enforce the

synchronization when using the primitives READ and WRITE to

ensure that this situation will never happen. In this

communication layer absence of deadlock is guaranteed by

using Best Path or Ring routing strategies. The Multipath

routing strategy is not guaranteed to be deadlock-free due its

random mechanism. Another solution is to use the READORFAIL

and WRITEORFAIL primitives of the package CHANNELS. These

primitives employ a preemptive time-out that gives up the use

of the primitive if it cannot succeed within a specified

period. This solution may cause indefinite postponement that

is also undesirable.

- Lack of the circular buffer space - For instance, if

MARS is trying to send a message to PLUTO but this processor

does not have room in its circular buffer to hold the new

message, then PLUTO tries to send a message to another

processor to free space for the incoming message. Considering

that all other processors are also with their circular buffers

28

full, a deadlock situation will occur. This problem is avoided

by choosing a suitable size for the circular buffer in task

QUE of the communication layer to accommodate the traffic

generated by the flow simulation. It can be noticed that an

excessive size of the circular buffer implies waste of memory

space as well as higher overhead for the communication

layer(RICHMOND 91]. A circular buffer of size 20 was enough

for all application flow simulations in this thesis.

- Asynchronism between tasks - Considering two tasks

A and B, if task A issues an entry call to task B at the same

time that task B issues an entry call to task A, deadlock

situation will occur. One way to prevent this kind of deadlock

is to avoid cycles in the directed graph that represents the

task flow to be simulated. For the cases where cycles cannot

be avoided it is required that all tasks in the cycle get

their inputs before trying to send their outputs to obtain an

overall cycle synchronization. Another alternative is to use

preemptive entry calls(conditional or timed entry calls) for

the rendezvous implementation. This solution has the

inconvenience of indefinite postponement. Therefore, the

programmer should enforce task synchronization to avoid this

kind of deadlock.

- Asynchronism of messages arriving in one task - One

single task may have several entries accepting messages from

different tasks. These messages need to be synchronized to

avoid potential deadlocks due different message arrival

29

times. Programs MARS, PLUTO, SATURN and VENUS use selective

non-ordered loops to avoid this problem.

B. AUV SIMULATION FLOW

menu=

OWN-

Figure 5: AUV simulation flow

Figure 5 shows the Autonomous Underwater Vehicle(AUV)

simulation flow that was used in the original implementation

and in the evaluation of the communication layer modification

reported in this document. A detailed description of the AUV

flow can be found in (RICHMOND 91].

30

Table X contains the execution times that are used for all

tasks of the AUV flow simulation. Each value is only an

estimated execution time based on the complexity of the

component task and may not represent the real execution time.

Task TIMER is not included in TABLE X because it is the task

that controls the interval of repetition to be used by the AUV

simulation with little overhead to the total execution time.

The AUV simulation flow is implemented by programs

MARS.ADA, PLUTO.ADA, SATURN.ADA and VENUS.ADA, and the package

Table X: AUV FLOW - TASK EXECUTION TIMES

TASK EXECUTION

TIME(seconds)

VEHICLESYS 0.08

SONAR 0.02

NAVIGATION 0.05

MONITOR 0.03

AVOIDANCE 0.08

EXEMISSION 0.06

GUIDANCE 0.07

AUTOPILOT 0.04

COMMON.ADA. These programs are enclosed in Appendix B.

31

C. DEADLOCK RELATED TO THE AUV SIMULATION FLOW

The following measures are used to avoid deadlocks when

using the communication layer for the AUV implementation:

- The AUV flow shown in Figure 5 has multiple cycles

and all of them start and finish at task VEHICLESYS. Due the

data dependency to task AUTOPILOT and the time control

imposed by task TIMER, the task VEHICLESYS cannot issue entry

calls until it accepts VSORDERS from AUTOPILOT and GO from

task TIMER. This feature ensures the task synchronization that

avoids the deadlock.

- The acknowledge messages that were used in the

original implementation were removed in the modified

implementation because they were leading to deadlock for

certain routing strategies.

- Task QUE employs a circular buffer to store the

local messages and the procedure SEND-IT to distribute them to

local tasks. An instance of the procedure SENDIT is generated

on each node. This procedure ensures a preemptive scheme of

message delivery. The procedure issues an entry call, if the

call cannot succeed within a given time delay, it is canceled

and the message is skipped in the circular buffer. It has to

wait for the next circular buffer scan to have another

opportunity of being delivered. All instances of SENDIT use

zero delay for the timed entry call. This delay is important

because it has the effect of suspending the task when the

rendezvous with a local task cannot be established right away.

32

- Figure 4 shows another kind of cycle that is

composed by tasks INOUT, QUE, and the local task. Each cycle

is formed by the following task sequence: task INOUT -> task

QUE -> local task -> task INOUT. These potential deadlocks are

avoided because the local task only issues an entry call to

INOUT after accepting all entry calls from task QUE.

D. CHARACTERIZATION OF COMMUNICATION PERFORMANCE

Figure 6 shows the Gantt Chart for the execution of the

AUV flow of Figure 5 on the transputer network formed by

processors MARS, PLUTO, SATURN and VENUS of Figure 2. This

chart also shows the static task allocation that was used for

the AUV flow simulation.

The static allocation is defined by the declaration of the

type TASKS and the function WHEREIS in package COMMON and by

the instances of procedure SENDIT on each node.

It can be seen from Figure 6 that the time spent by the

AUV flow is lower bounded by 0.35 seconds that is the sum of

the execution times of the tasks that compose the longest

path from task VEHICLESYS in Figure 5(VEHICLESYS, SONAR,

AVOIDANCE, EXEMISSION, GUIDANCE and AUTOPILOT). This minimum

cost does not take into account the communication overhead.

Therefore, the maximum theoretical speed-up that can be

achieved with this data-flow considering that it cannot be

pipelined due to existent data dependencies is 0.43/0.35=1.23.

The value of 0.43 seconds is obtained by adding all task

33

A N=

I

I. 0 I I I.

- - - -0-- - - -- - -

Figure 6: Gantt chart for the AUV flow execution

execution times giving a time that is equivalent to the time

needed to run the flow in a single processor.

Due to the AUV flow limitation, the best speed-up that can

be achieved is much lower when compared with the possible

linear speed-up for 4 processors(1.23 < 4). This happens

because the AUV flow is not parallel enough to exploit all

potential parallelism of the 4 transputers. This fact can also

be noticed by the low utilization of the processors as shown

in Figure 6.

Table XI shows the best results that were achieved for the

AUV flow execution time with different routing strategies.

From Table XI it can be noticed that the maximum

communication overhead obtained is 23.1 msec given by the

counter clockwise ring routing strategy(O.3731secs-

0. 35secs=23. 1 ms). The minimum communication overhead obtained

34

Table XI: EXPERIMENTAL EXECUTION TIMES FOR THE AUV FLOW

Routing Counter Clock- Multi- Best
strategy clock- wise path path

wise ring
ring

Execution 0.3731 0.3693 0.3675 0.3675
time(s) I I I 1 _ _ _

is 17.5msec given by both multipath and best path routing

strategies(0.3675secs-0.35secs=17.5 msec). Therefore, an

improvement is achieved by using different routing strategies

than the counter clockwise ring routing strategy even for

transputer networks with very few components, as in the case

of Figure 2. This difference tends to be bigger when using

more complex transputer networks.

Considering the communication overhead for the AUV flow of

9 hops per iteration and an approximated message size of 94

bytes, we can estimate the bandwidth for the best path routing

strategy((94*8*9)/(0.0175)=386.7 Kbps).

The factors that can contribute for the communication

overhead are:

- Size of the message;

- Interprocessor distance in number of hops;

- Transputer link communication channel bandwidth(10 to 20

Mbps for the INMOS T800);

- Frequency of the main AUV flow loop

iteration.(1/0.37=2.70 Hz);

- Task switching(executed every lms[ALSYS 90] with an

overhead of about 20 microseconds per switch);

35

- Circular buffer scan delay(queue delay);

- Overhead due the comparisons used by the case statement

in function WHEREIS of the package COMMON;

- Overhead due the comparisons used by the case statements

used by procedures SENDIT on each processor;

The size of the message and the interprocessor distance in

number of hops are the factors that have a major influence on

the communication overhead.

E. CHANGES REQUIRED TO MEET NEW PROJECT SPECIFICATIONS

Unfortunately, the scheme supported by the Alsys ADA

Compilation System is very inflexible to changes in the

network topology. Therefore, at least the following

modifications are required to adapt the communication layer

software to different topologies:

- Existent OCCAM harnesses must be modified to reflect the

new network topology so as to include the allocation of extra

communication links to extra processors.

- Two extra OCCAM harnesses and an extra ADA program have

to be produced for each additional transputer node to be

included in the network.

- The package COMMON must be modified in order to update

the routing tables.

- The initialization messages that are used by programs

EARTH.ADA, MARS.ADA, PLUTO.ADA, SATURN.ADA and VENUS.ADA to

36

set the routing strategy and the period of repetition of the

simulation flow must be modified.

In addition, in order to simulate different applications

the following changes must be implemented:

- The types TASKS and ENTRYS in package COMMON must be

redefined.

- The SENDIT procedures in programs MARS.ADA, PLUTO.ADA,

SATURN.ADA and VENUS.ADA must be rewritten to reflect the new

task entry points.

- The body and specification of the tasks in programs

MARS.ADA, PLUTO.ADA, SATURN.ADA and VENUS.ADA must be modified

in order to represent the new allocation.

37

III. TASK ALLOCATION

A. PROBLEM DEFINITION

The problem of task allocation can be defined formally by

using graph theory. The application flow can be represented by

a graph Gt = (Vt,E.), where Vt is a set of vertices

representing tasks Vt={tlIt 2, ... ,tn} and E. is a set of directed

edges representing the intertask dependency. Data structures

can be used in the vertices to hold task information such as

execution times, deadlines and repetition rates, and in edges

to hold communication costs such as the size of the ressage.

Figure 5 shows an example of graph representation of the AUV

simulation flow.

The network topology can also be represented by a graph Gp

= (VpEp), where V is a set of vertices representing

processors Vp={PIP21,...,PM} and E is a set of links

representing communication channels. Data structures can be

used in the vertices to hold information about the processor

such as memory capacity and performance in MIPS, and the edges

can hold information about the communication channels such as

bandwidth in Mbps. Figure 2 shows an example of graph

representation of the transputer network used in this thesis.

The problem of task allocation usually can be seen as a

many-to-one mapping, as shown in Figure 7. The problem can be

38

stated as how to generate an efficient mapping from N tasks to

M processors to minimize the intertask communication costs, to

balance the load utilization on the processors, to meet

individual task deadlines or to minimize the total response

time of the simulation flow. Task allocation is a

TAl ALL"T

N TAM MN POCEMM

Figure 7: Task allocation as a mapping Problem

combinatorial problem whose search space S(number of possible

solutions) for a problem with N tasks and M processors can be

calculated by the following equation:

S=MN (1)

39

An objective function must be defined to search for a

solution in the space S. This function must establish the main

goal of the problem because some of the potential goals of the

optimization may be contradictory. For instance, the best

solution to minimize interprocess communication costs may lead

to a load unbalanced system. For this thesis, the objective

function tries to minimize the response time for the entire

task flow and the number of processors used. Some

simplifications are assumed to this problem such as no

requirements to meet individual task deadlines, application

task flow pre-sorted in topological order, only periodic tasks

considered in the application flow, all tasks executed with

the same rate of repetition ,and deterministic execution

times(the worst case task execution time is employed). The

latter simplification is unrealistic because task execution

times can have large variances, but at least it makes the

static allocation ot tasks to processors possible[QUINN 87].

Even with the simplifications mentioned above, this

problem is classified as NP-hard, meaning that it is unlikely

that a polynomial-time algorithm could always find an optimal

allocation given an arbitrary task flow graph. As an example,

consider the case where the number of processors is equal to

4 and the number of tasks is equal to 16. The search space as

calculated by Equation (1) results 4,294,967,296 possible

solutions. If an exhaustive search were used for this problem

with an assumed cost of 0.1msec per search the complete search

40

El-2 OFwnOM. PMr
T.ITT,%T4,TO, TAOIS

012 013 014 ,M%6EMMNTE
�OU COMMBWATCH Cm

T TI T4

TO
EGQE

COO

MUIM TI T)UCAL PEONE TiE - El E3 E 5 0- IlI

Figure 8: Minimum response time

would be completed in approximately five days. Thus, even

small instances of the problem are hard and its complexity

grows exponentially.

Therefore, heuristics are required to reduce the search

space leading to near optimal solutions in polynomial time.

B. DESCRIPTION OF THE HEURISTIC

A constructive assignment of tasks to processors is

employed to obtain a near to optimal solution for the minimum

41

response time of an arbitrary application task flow with a

minimum number of processors. Different aspects are considered

in this scheme.

First, we notice that the best solution that can be

achieved is lower bounded by the sum of the execution times of

the tasks that are in the critical path, as illustrated in

Figure 8. This feature is independent of the number of

processors used in the network. Equation (2) formalizes how to

compute the minimum theoretical response time Rtmi, as a

function of the task execution times Ei for every task i on

the critical path.

R E(2)
1

The real minimum task flow response time for a network of

processors is increased mainly by two sources that are the

delay caused by task dependencies and the task communication

overhead.

Task dependencies can usually be minimized by using more

processors on the network to match the parallelism on the

network with the parallelism on the task flow. This solution

is not always satisfactory because increasing the number of

processors may lead to an underutilized system. Communication

overhead can be minimized by allocating tasks with high

communication costs on the same processor and by having an

efficient communication system.

42

The minimum response time Rt can be calculated as the sum

of its minimum theoretical Rtmin the overhead due task

dependencies 0 d and the overhead due the communication Oc as

stated in Equation (3).

Rt=R in+Od+ 0 c (3)

The overhead due task dependencies Od is independent of

the communication system. It happens because a child task

cannot start execution before all its parent tasks finish

execution.

The overhead due the communication system Oc is a function

of several factors such as message size, interprocessor

distances, bandwidth and queueing delay.

There is no possible alternative to decrease Rmin for a

given task flow because this is an intrinsic feature of the

task flow. It can only be changed by modifying the task flow.

Two other parameters that are frequently used to evaluate

the performance of parallel computers are the speed-up and the

throughput. The speed-up is defined as the ratio of the total

execution time of the task flow on an uniprocessor computer to

the execution time on the parallel computer. The throughput is

a measure of the number of computations of the total task flow

in a given time interval.

The total execution time of the application task flow on

a uniprocessor computer Tuni can be calculated as the sum of

43

the task execution times E1 for every task j on the

application task flow, as stated in Equation (4).

~ (4)
3

Assuming that the application task flow cannot be

pipelined due to task dependencies. Then, the speed-up Sp can

be calculated by Equation (5).

S TUi (5)SP= Rt

As our heuristic has also a goal of minimizing the number

of used processors, we can estimate what is the minimum number

of processors to be tried in the search for a solution. We

know that there is upper bound for the speed-up that can be

calculated as in Equation (6) but there is also an upper-bound

for this parameter imposed by the number of processors

employed in the network M as shown in Equation (7).

S T (6)

SP '.M (7)

From (6) and (7) we can derive a lower bound to the number

of processors to be used as shown in Equation (8).

44

Mi Ti (8)

An important rule to be applied in the heuristic is to

group together all tasks that compose the critical path and

allocate this cluster of tasks to the same processor pi. Then,

we allocate the remaining tasks in processors P2 to p.. From

Equation (1) we can notice that this rule reduces the search

space. For instance, if there are Ni tasks on the critical

path out of the total of N tasks on the task flow the new

search space Sne can now be calculated by Equation (9).

Sew= (N-N1) (M-1) (9)

A second rule should minimize the total overhead-imposed

to the response time Ototat described in Equation (10).

Ototai Od+Oc (10)

This rule is based on a pair-wise examination of

communication tasks[RAMAMRITHAM 89]. Every pair of tasks must

be examined according to one heuristic function. This

heuristic function must reflect the utility of putting one

particular pair of tasks together on the same processor or on

separate processors. This function depends on Ci, that is the

communication cost between two tasks Ti and T and on the

execution times of these tasks, Ei and E1 respectively.

45

Equation (11) shows how the function Hij balances the influence

of these factors by tunable constants Ki and K2.

E+Ej (11)

The higher the value of this heuristic function, the

higher is the utility in putting this pair of tasks on the

Connsuct o Utak flow grah;
DeWmIoe Io WNW pet and Io minkimum

number otf praeunoma o be used;
Maaote du*sr oltasks In the -Wad pat ixo

poaew P1;
For eve of tsks P5iCalwutehoudsb) uncl~on hQj);

SW the values of hIJ) in asmending order,
FrllonltwsktownroossmP21o Pm*
WhIle not all asks are alMoe loop

Pick not alocated tsk parlr wP&I to lowemt hoJ);
Mocat T1 and 11 to dielunt proesoes;
Plck not allocaed task pak J" wt Il te highes h"•;
Moca Tk and11Io the same proes a

end loop;

Figure 9: Pseudocode for the constructive assignment

same processor. On the other hand, its lower value indicates

more advantage in putting them on separate processors. The

communication cost Cij will be assumed zero when there is no

precedence relationship between tasks Ti and T . Therefore,

tasks with no precedence relationship tend to have a lower

value of Hij reflecting a tendency to go on separate

46

processors. This is a good consequence because tasks with no

precedence relationships are good candidates for parallel

execution.

In addition, the term that is inversely proportional to

the sum of the execution times Ei and Ej takes into

consideration the following aspects:

- The lower the sum of Ei and Ej the lower is the

advantage obtained by running them in parallel even if they

do not present a precedence relationship.

- On the other hand, the higher the sum of Ei and Ej. the

better it is to have them separated because it balances the

processor utilization. Also, tasks i and j are more likely to

have some overlap on their execution times.

The basic scheme employed in the task allocation is

summarized in Figure 9.

The sorted vector h(i,j) is searched from top-down and

from bottom-up to allocate tasks that are not on the critical

path. Tasks with lower h(i,j) values have priority to be

allocated in separate processors while tasks with higher

h(i,j) values have priority to be allocated on the same

processor. The least used processor criterion is used to

determine which processors to employ for the pair allocation

to balance the load on the network.

Table XII is an example of calculation of the heuristic

vector h(i,j) for the task flow of Figure 8 assuming K1 = 0.5,

K2 = 0.5, and all communication costs equal to 1.0.

47

Considering the example of Figure 8, we obtain Tuni = 15

and Rtmin = 11. By using Equation (8), we get that M should be

greater or equal 15/11=1.36. Therefore, two or more

processors are required to achieve the best speed-up.

From Figure 8, we know that the critical path is composed

of tasks T1, T3 , T5 and T6 . Thus, this set of tasks is

allocated to processor P1.

This example is too simple to fully demonstrate how the

constructive assignment of tasks works but at least we can

follow its search mechanism. Initially, the heuristic examines

the pair of tasks {T 3 ,T 4}; we should put T3 and T4 in separate

processors and T3 is already allocated to p,. So, we allocate

T4 to processor P2. Then, the heuristic examines the pair of

tasks {T2 ,T5 }; we should put T2 and T5 on the same processor

and, T5 is already allocated to pl, so we skip this pair.

Finally, the heuristic examines the pair of tasks {T2 ,T 3}. We

should put T2 and T3 in separate processors. T3 is already

allocated to pl, so we allocate T2 to processor p2 and we are

done because all tasks are allocated. If the allocation were

not complete then the following sequence of pairs would be

searched({5,6},{3,6},{l,2},{4,5},...).

48

Table XII: HEURISTIC FUNCTION

ij E. Ej Ci Hij

3 4 6.0 3.0 0.0 0.056

2 3 1.0 6.0 0.0 0.071

3 6 6.0 1.0 0.0 0.071

4 5 3.0 2.0 0.0 0.100

2 4 1.0 3.0 0.0 0.125

1 5 2.0 2.0 0.0 0.125

1 6 2.0 1.0 0.0 0.167

2 6 1.0 1.0 0.0 0.250

3 5 6.0 2.0 1.0 0.562

1 3 2.0 6.0 1.0 0.562

1 4 2.0 3.0 1.0 0.600

4 6 3.0 1.0 1.0 0.625

1 2 2.0 1.0 1.0 0.667

5 6 2.0 1.0 1.0 0.667

2 5 1.0 2.0 1.0 0.66

C. LIMITATIONS OF THE CONSTRUCTIVE ASSIGNMENT

The constructive assignment heuristic presented in the

last section has some limitations that recommend the use of an

iterative improvement to increase the quality of the task

allocation.

The main limitation is that the heuristic does not take

into account the interprocessor distances because these

distances are only known after the allocation is completed.

49

The communication costs only consider the relative sizes of

the task synchronization messages.

In addition, the heuristic function does not provide a

completely ordered set of task pairs. We can notice in table

XII that there are many pairs of tasks with the same value of

heuristic function h(i,j).

An improvement of the task allocation can be obtained by

applying the approach described in Figure 10.

For evwy aIOnmor node P on 1he curern aloclon loop
Calwkte the echedule of executlon usbig lask

precedences and get the test execulon *mes;
Caculate the oommuniclcn overhead uslbg

commun'ido cots and 1he kftrprooessor
dbtWoes;

end loop;
CulcUhe the S*autad embIUM response *ree for 1he

cuwfet uaocdon(RTcuwerM;
For K 1..NUM loop/ Repeat NUM *nes

Change the current alocdon usMg a pawbe
kitadrcange of tasks and get a new alooolnm;

For every processor node P on the new aloldoon loop
Clculate 1he schedule of executon usbig task

redences and get 1he lateMt exeoutlon *aes;
Caijia the communIcato overhead uslng

oonumnunaion coft and 1he iteprocesor
dlbtmno;

end loop;
Calculae tie e•lmetd maximum resp ons Ine for he

new allocao(Rsneo);
I RTnew < RTounren then

Cuwent allo adn :- New alollon;
end E,

end loop;

Figure 10: Pseudocode for task allocation improvement

Equation (12) describes how to calculate the

communications overhead on processor l(OcL) as a function of

the edge communication costs Cij and the interprocess

50

communication distances Dj for every task i in processor 1 and

any task j in other processors.

Oc,= L1Cj.Dij (12)

The pair-wise exchange of tasks first divides the set of

tasks in two sub-sets of tasks by using a random number

Table XIII: PACKAGES AND THEIR FUNCTIONS USED IN
ALLOCATION

PACKAGE STATUS FILE
FUNCTION

RANDOM Library N/A Generate
random
numbers

TEXTIO Library N/A Input/
Output

QUEUES_2 User QUEUES2.ADA Generic
Defined Queue

abstract
data type

DISCRETESET User DISET.ADA Generic
Defined Discrete

Set
abstract
data type

SORTADT User SORT.ADA Generic
Defined Sort

routines

GRAPH2_ADT User GRAPH2.ADA Generic
Defined Directed

Graph
abstract

_data type

51

generator. Then, it exchanges every item in the first sub-set

with the corresponding item in the second sub-set. This

exchange should only be performed if neither task is on the

critical path.

D. ALLOCATION IMPLEMENTATION

A general overview of the heuristic described in the

previous section is illustrated in Figure 10. The complete

scheme is implemented by the main procedure STATICAL in file

ORMM A AllMM MTA

wg C>IT~me ->SAO

1Rr90R=D W EI RiNE

a BE ca -NO

BOp W. W4T WAIIMMO

awr11 -AT ORM70 M%

CATE

Figure 11: User defined packages

STATICAL.ADA. Table XIII shows the packages that are used by

this program. The packages QUEUES2.ADA, DISET.ADA, SORT.ADA

52

and GRAPH2.ADA are enclosed in Appendix C. The separately

compiled procedures CONSTRUCTTASKFLOW, CALCHEURISTIC,

ALLOCATE, SCHEDULE and IMPROVE are called by the main program

STATICAL.

The files STATICAL.ADA, CTFLOW.ADA, CALHEU.ADA, ALLOC.ADA,

SCHED.ADA and IMPROVE.ADA are enclosed in Appendix D.

Figure 11 shows the basic operations offered by each one

of the abstract data types as defined in the generic packages

QUEUES2, DISCRETESET, GRAPH2_ADT and SORTADT. These packages

are ADA versions of the MODULA-2 implementations described in

[STUBBS 87].

Package DISCRETESET implements the SET abstract data type

that is very useful in task allocation. For instance, each

node allocation is a SET of tasks that run on a particular

processor node.

Package GRAPH2_ADT implements the directed-graph(DGRAPH)

abstract data type that is used to represent the application

task flow.

Package QUEUES2 implements a FIFO queue that is used as an

auxiliary data structure for the calculation of the critical

path of the task flow.

Package SORTADT implements several schemes of SORT. A

quick sort algorithm(QS_3) is employed to sort the heuristic

vector h(i,j).

Package RANDOM is employed to generate the two clusters of

tasks that are used in the iterative pair-wise exchange task

53

Figur 12:STATCAL ata low iagra

TAWFLO R ~ Iwu PVm..A8
- f In TA isoceur O N U A L

FILE

ýC0,TPJK RO#AP"q

P-.AinAYIAAYGTA@C EIS

Fhigu roedre12 STTCAeadstae flow diag esramn hapi to

tafigure 12nhow then deeatesadietdts flow digagorhainprosigra

the operators INSERT_NODE and INSERT_EDGE of the package

GRAPH2_ADT. In addition, it counts the number of tasks and

calculates the critical path for the task flow.

- It calls the procedure CALC_HEURISTIC that calculates

the heuristic function h(i,j) for every pair of tasks {i,j}

and then sorts the vector h(i,j) using a quicksort algorithm.

54

- It calls the procedure ALLOCATE that queries the user to

input the number of processors to be used and then allocate

tasks to the processors following the constructive assignment.

- It calls the procedure SCHEDULE that calculates the

schedule of execution on each processor. It employs an

algorithm that schedules tasks with lower identification

numbers first. It is assumed that the input task flow had

already been submitted to a topological sorting.

- Finally, if the number of processors is equal to 4 it

will call the procedure IMPROVE that enhances the task

allocation using the iterative pair-wise interchange of

tasks.

FILE: i.OWMT

EXAMLE - R•W VON 4 TAMI

NWE I I

NWE 2 1.0
E E12 1.0

Now a "0

EME I 1.0
1EW 4 U0

EI 1 4 1.0

:w 6 1.0
82 a 1.0NWE a 1.0

ME 4 0 1.0

Figure 13: Task flow input data file

55

The task flow input data file must be specified using the

commands NODE and EDGE. The command NODE must be followed by

El -. mn 10O~m me1 IEl

• E1-lOnw

T2G

E3 - 20 me E4-30 n-

EB~- 10& ED 14 40 M e "E1l0 - 2 114' MET 3

El I=E14 40l

T1 E1 - 0m T 1 4 e1.0E8 -20 me

Figure 14: 25-Task simulation flow

the task identification number of type INTEGER and by the task

execution time of type FLOAT. The command EDGE must be

followed by the source and destination task identifiers both

of type INTEGER and by the communication cost of type FLOAT.

56

The first line of the file is not used because it is reserved

for comments. Figure 13 shows one example of task flow input

data file for the flow described in Figure 8 with

communication costs equal to 1.0. We can notice that an extra

edge is placed between task T6 and task Ti to characterize the

assumption that this flow cannot be pipelined.

E. PERFORMANCE RESULTS

1. APPLICATION FLOW WITH 25 TASKS

The 25-task example of Figure 14 was simulated using

the transputer network of Figure 2 to verify the robustness

of the communication layer in relation to deadlocks with a

more complex flow than the AUV flow and to evaluate the

constructive assignment heuristic. This flow is a modified

version of the Air-Defense flow described in [TSUCHIYA 82].

The allocation for this flow considering all communication

costs equal to 1.0, K1 = 0.5 and K2 = 0.5 is shown in Figure

16.

Table XIV shows the results obtained for this flow with

different routing strategies:

Table XIV: RESULTS FOR THE FLOW OF FIGURE 14

Routing Counter Clock- Multi- Best
Strategy clock- wise Path Path

wise ring
ring

Execution 380.62 379.87 378.04 377.43
time(ms)

57

By running the program STATICAL we can get that Tuni = 1049

ms and that the longest path is composed of tasks T1, TV, T5,

T11, T18 , T21 , T23 and T25 with Rtmin = 280 ms and Tu=i/Rtmin

3.7464. Thus, by Equation (8) we should use at least 4

processors. This program also gives Od = 45ms and Rtmin+Od =

A P - -i ii

T4 1o 110 7" i1i

SS MID U 114 11O T2 Ti

Figure 15: Task allocation for the flow of Figure 14

325.Oms when using 4 processors. Therefore, we should use

more than 4 processors to drive the dependency overhead to

zero. The communication overhead can be obtained by using the

data in Table XIV that gives Oc = 377.43 - 325.0 = 52.43 ms.

The communication efficiency can be calculated by Equation

(13) that gives Ec = 86.10 %.

58

R +Od+oC (13)Et= R+Od+Oc

The processor utilization Up can be calculated by Equation

(14). Table XV shows the utilization for every node processor.

From this data, we can notice that the allocation scheine

resulted in a load balanced system.

EEI (14)
U = Lep

P Rt

Table XV: UTILIZATION FOR THE FLOW OF FIGURE 14

NODE MARS PLUTO SATURN VENUS

Up(%) 74.18 78.69 61.47 63.59

Since we do not have automatic tools for changing the

allocation on the network of transputers we will investigate

how to improve the constructive assignment and how the

allocation changes to reflect different communication costs

using a simpler flow with 16 tasks. This simplification is due

the amount of work required to change the allocation with a

larger flow without automatic tools and does not imply loss of

generality.

59

2. APPLICATION FLOW WITH 16 TASKS

Figure 16 shows the task application flow that is used

in this sub-section. It is an arbitrary task flow with several

features commonly found in real applications such as task

dependencies and threads of parallelism with fork/joint

structures.

a. CONSTRUCTIVE ASSIGNMENT WITH EQUAL COMMUNICATION

COSTS

M-1m-t • -0• t0
01,2-10 0 1.84 14-94

1!Nvm. y42D T4 ' -' 76 *.Um

•-1 •-

oA . 41 C267,.8 - C" o.1 - %10

C1611-9 07 114- 1 1.0 113 c w

Figure 16: 16-Task simulation flow

Figure 17 shows the allocation generated by the

constructive assignment heuristic considering all

communication costs equal to 1.0, K, = 0.5 and K2 = 0.5.

60

PLUT T10 , TlU , 11

SA•15 TO T4 1S TIA jig

1W -

Figure 17: Constructive assignment with equal
communication costs

Table XVI presents the results obtained with this task

allocation on the transputer network of Figure 1.

Table XVI: RESULTS FOR THE CONSTRUCTIVE ASSIGNMENT WITH
EQUAL COMMUNICATION COSTS

Routing Counter Clock- Multi- Best
strategy clock- wise path Path

wise ring
ring

Execution 170.75 163.91 163.70 163.97
time(ms) I- I

This flow has Tuni = 410.0 ms and its longest path is

composed by tasks T1, T2, T6 , T11 and T14 with Rtin = 125 ms

61

Table XVII: UTILIZATION FOR THE CONSTRUCTIVE ASSIGNMENT
ALLOCATION WITH EQUAL COMMUNICATION COSTS

NODE MARS PLUTO SATURN VENUS

Up(%) 76.23 60.99 54.99 57.94

resulting in Tuni/Rtmin = 3.28. With the allocation shown in

figure 17, we get 0 d = 20 ms and Rtmin +Od = 145 ms. The

communication overhead can be obtained by using the data of

Table XVI resulting in Oc = 163.97-145.0 = 18.97 ms. The

communication efficiency, as calculated by Equation (13), is

& ,•s ,•, •

MAWn "n, 72 13 1"1 1

PLUTO 11 W T

SA1VW4 11 16.7 TV

'• RRJ'MU 'U

Figure 18: Improved task allocation with equal communication
costs

62

EC = 88.43 %. The resulting processor utilization on each node

processor is shown on Table XVII.

b. IMPROVING THE ALLOCATION WITH EQUAL COMIUNICATION

COSTS

Figure 18 shows the task allocation generated by

improving the original allocation considering equal

communication costs and by using 100 iterations of the

iterative pair-wise tasks interchange algorithm.

Table XVIII presents the results obtained with this

task flow simulation on the transputer network of Figure 2.

Table XVIII: RESULTS WITH THE IMPROVED ALLOCATION USING
EQUAL COMMUNICATION COSTS

Routing Counter Clock- Multi- Best
strategy clock- wise path Path

wise ring
ring

Execution 145.47 142.05 141.99 142.23
time(ms)

Table XIX: UTILIZATION FOR THE IMPROVED ALLOCATION WITH
EQUAL COMMUNICATION COSTS

NODE MARS PLUTO SATURN VENUS

Up(%) 87.88 87.88 91.4 63.27

63

With this allocation, we get 0 d = 5 ms and Rtmin+Od

- 130ms. The communications overhead can be obtained by using

the data of Table XVIII resulting 0 = 142.23 - 130 = 12.23

ms. The communication efficiency, as calculated by Equation

(14), is EC = 91.4 %. The resulting processor utilization on

each node processor is shown in Table XIX.

c. ADDING DIFFERENT COMMUNICATION COSTS TO THE

IMPROVED ALLOCATION

In this part, we simulate the allocation presented

in Figure 18 but using the different communication costs shown

in Figure 16. These costs are simulated by sending task

synchronization messages more than once. For instance, Figure

16 specifies C12= 10, therefore 10 messages are sent from task

T, to task T2. Table XX shows the results obtained with this

simulation.

Table XX: RESULTS WITH DIFFERENT COMMUNICATION COSTS IN THE
FLOW OF FIGURE 16

Routing Counter Clock- Multi- Best
strategy clock- wise path Path

wise ring
ring

Execution 216.28 211.56 208.73 208.97
time(ms)

The communications overhead is obtained by using

the data on table XX resulting O¢ = 208.97 - 130.0 = 78.97 Ms.

The communications efficiency, as calculated by Equation (13),

is Ec = 62.21 %. The resulted processor utilization on each

64

Table XXI: UTILIZATION WITH DIFFERENT COMMUNICATION COSTS

NODE MARS PLUTO SATURN VENUS

Up(%) 59.82 40.66 57.42 38.28

node processor is shown on table XXI.

The constructive assignment and the iterative

improvement must reflect communication costs and

interprocessor distances.We evaluate next the constructive

assignment considering different communication costs and its

iterative improvement.

d. IMPROVING THE ALLOCATION WITH DIFFERENT

COMMUNICATION COSTS

Figure 19 shows the allocation generated by using

the constructive assignment heuristic considering the task

flow with the different communication costs shown in Figure

16.

In addition, Figure 20 presents the improved

allocation obtained by using the pair-wise task interchange

approach considering different communication costs and Table

XXII shows its simulation results.

With this allocation we get Od = 20 ms and Rtmin+Od

= 145 ms. The communications overhead can be obtained by using

the data in Table XXII resulting in Oc = 202.51 - 145 = 57.51

ms. The communications efficiency, as calculated by Equation

65

it is TI 1 11 T14

TU114 ,10 T 12 TIA Tim

vuow 10% TIM")

TW "-~

Figure 19: Constructive assignment with different
communication costs

Table XXII: RESULTS FOR THE IMPROVED ALLOCATION WITH
DIFFERENT COMMUNICATION COSTS

Routing Counter Clock- Multi- Best
strategy clock- wise path Path

wise ring
ring

Execution 206.55 212.92 209.06 202.51
time(ms)

(13), is EC = 71.6%. The resulting processor utilization on

each node processor is shown in Table XXIII.

We can notice that the overhead due dependencies has

increased from 5ms for the allocation of Figure 18 to 20ms for

66

MAFGm ,n 72 , 0 ir ,r6,4,•_

PWIC J4 TIC._ T1 TMe

Figure 20: Improved allocation with different
communication costs

Table XXIII: UTILIZATION FOR THE IMPROVED ALLOCATION WITH
DIFFERENT COMMUNICATION COSTS

NODE MARS PLUTO SATURN VENUS

Up% 61.73 44.44 54.32 41.97

the allocation of Figure 20. However, the overall response

time has been improved with the new allocation because the

communication overhead has been reduced from 78.97ms to

57.51ms.

67

IV. CONCLUSIONS AND FUTURE WORK

A. CONCLUSIONS

From the communication layer description in Chapter II we

conclude that:

- The communication layer package(COMLAYER) can be easily

reused when encapsulated in a generic package. All other

packages and procedures of the communication system will

require the modifications described in section II.E when

either the simulated flow/task allocation or the network

topology changes.

- Different approaches for routing messages can be used

with the employed network topology. The Multipath and -the Best

Path routing strategies have improved the communication

performance in relation to the Ring routing strategy employed

in the first implementation[RICHMOND 91]. In addition, these

new approaches can also be used with higher order network

topologies such as hypercubes or meshes.

- The communication layer has become more robust with

respect to deadlocks as demonstrated by the successful

simulation of one application flow with 25 tasks in sub-

section III.E.I.

- The communication layer limitation of having to use only

one pre-defined type for all message formats precludes its use

68

with more general application task flows. Despite this

shortcoming, the communication layer and the language ADA are

very useful to experiment task flow simulations on transputer

networks.

Considering the task allocation described in chapter

III and the goals of minimizing the application flow response

time and the number of processors on the network, we conclude

that:

- A constructive assignment heuristic can be employed to

generate an initial near to optimal static task allocation

taking into consideration task execution times and

communication costs.

- The initial task allocation can be improved by an

iterative pair-wise interchange of tasks taking into

consideration the interprocess communication distances.

B. FUTURE WORK

1. ADA ON TRANSPUTER NETWORKS

The use of ADA on transputers network is not

straightforward in the version of the ALSYS-ADA compiler

available in the PARCDS-Laboratory. The main problem is that

we need to write two OCCAM harnesses for every transputer main

program. The process of writing OCCAM harnesses for every

transputer node to increase the number of transputers on the

network is very slow and error prone. Therefore, there is a

69

need for tools to generate these OCCAM harnesses automatically

to make them totally transparent to the ADA user.

Another problem related to the ALSYS-ADA compiler is

that it is very slow. One program for task flow simulation

takes about 40 minutes to be compiled.

In addition, there are no appropriate debugging tools

to support this ADA distributed development system. The

programs are debugged by sending messages to the host

transputer that is the only one that has access to the I/O

offered by the host PC. Furthermore, when we have a deadlock

situation these messages might not be delivered to the host PC

and we get in a difficult situation to find out what causes

the deadlock.

ALSYS-ADA is now offering a new product called ADA-MAP

that promises solving these problems. A further evaluation is

needed to check if this new product really solves these

problems to justify additional investments on this ADA

compiler.

2. TASK FLOW SIMULATOR

A task flow simulator would be a useful tool to

support the study of task allocation on transputer networks.

With the current approach, it is a very slow process to change

the task allocation on the transputer network because, for

every change, we need to rewrite parts of the programs

COMMON.ADA, MARS.ADA, PLUTO.ADA, SATURN.ADA and VENUS.ADA.

70

A task flow simulator can be implemented by improving

the program STATICAL.ADA. Besides generating the task

allocation this program would also produce the programs

COMMON.ADA, MARS.ADA, PLUTO.ADA, SATURN.ADA and VENUS.ADA.

For the sake of simplicity, the task flow simulator

would run on the transputer network employed in this thesis.

This problem is still fairly complicated because it involves

text processing to generate the programs COMMON.ADA, MARS.ADA,

PLUTO.ADA, SATURN.ADA and VENUS.ADA automatically from the

task allocation computed in STATICAL.ADA.

3. THE INMOS T9000 TRANSPUTER

The INMOS T9000 transputer is the most recent release

of the new generation of transputers. It runs at 50 Mhz, with

16-Kb cache, up to 4-gigabyte of local memory, 32 bit ALU, a

64 bit CPU, 4 bi-directional serial-communications links at

100 Mbps each, a virtual-channel processor, a programmable

memory interface, two on-chip timers, four pairs of event

channels for synchronizing internal processes with external

events, and two control links that allow control signals to be

sent between T9000s independently of the data links.

The new T9000 INMOS transputer has a packet-switched

virtual communications system that takes the responsibility of

routing messages from the programmer's code to significantly

faster hardware reducing the communication overhead.

71

4. EXTENDING THE TASK ALLOCATION SCHEME

This thesis is a first step towards more elaborate

schemes of task allocation on transputer networks. The

following sequence of studies is suggested in order to

gradually improve the current task allocation approach to face

the strict requirements of the next generation of real-time

parallel computers:

-Static allocation considering task placement

constraints.

-Static allocation considering deadlines for the tasks

that compose the application task flow.

-How the current static allocation scheme can be

complemented by a dynamic allocation approach in order to

consider aperiodic tasks.

-How the current static allocation scheme can be

complemented by a dynamic allocation approach to consider

tasks with non-deterministic execution times.

-What is the communication support and timing analysis

tools required to implement a dynamic allocation scheme on a

network of transputers. Investigate if the existing

communication layer and the language ADA are still suitable

for such a scheme.

72

APPENDIX A: OCCAM SOURCE CODE

A. OCCAM HARNESSES ON PROCESSOR EARTH

1. EARTHH.OCC

#OPTION "AGNVW"
INCLUDE 'hostio.inc"

PROC earth.harness (CHAN OF SP FromAda, ToAda,
CHAN OF ANY Debug,
CHAN OF INT Mars2Earth, Earth2Mars,
(]INT FreeMemory)

#IMPORT "earthh2 .tax"

(h]INT dummy.ws:
wsl IS FreeMemory:
(3]INT in.program:
[3]INT out.program:
SEQ

-- Set up vector of pointers to channels.
in.program[O] := MOSTNEG INT -- not used
LOAD. INPUT.CHANNEL (in.program[1], ToAda)
LOAD. INPUT.CHANNEL (in.program(2], Mars2Earth)
LOAD.OUTPUT.CHANNEL (Out .program(0], Debug)
LOAD.OUTPUT.CHANNEL (out .program[1], FromAda)
LOAD.OUTPUT. CHANNEL (out .program[2], Earth2Mars)

-- Invoke the Ada program.
-- Assumes the entry point name has been changed to
"-"earth.program".

earth.program (wsl, in.program, out .program, dummy.ws)

2. EARTHH2.OCC

#OPTION "AEV"

PROC earth.program (IjINT wal, in, out, ws2)
[1000]INT d:
SEQ

SKIP

73

3. MERGER.OCC

#OPTION "AGNVW"
#INCLUDE "hostio.inc"

PROC debug.merger (CHAN OF SP FromFiler, ToFiler,
[]CHAN OF ANY Debug,
CHAN OF BOOL Stop)

#USE "hostio.lib"

-- A debug channel merger and blocker.

VAL max.debug IS 20:
VAL number.of.debug IS SIZE Debug:

INT line.index:
(256]BYTE line.buffer:
BYTE value, r:
BOOL running, reset, s:
[max.debug]BOOL mask:
VAL BYTE line.feed IS 10 (BYTE):
SEQ

SEQ i = 0 FOR number.of.debug
mask(i] := TRUE

running := TRUE
reset := FALSE
line.index := 0
WHILE running

PRI ALT
ALT i = 0 FOR number.of.debug

mask(i] & Debug[i] ? value
SEQ

IF
value = line.feed

SEQ
-- Send the complete line.
so.puts (FromFiler, ToFiler,

spid.stdout,
[line.buffer FROM 0 FOR line.index],

r)
line.index := 0
mask [i] := FALSE
reset := TRUE

TRUE
SEQ

-- Add character to line.
line.buffer[line.index] := value
line.index := line.index + 1

reset & SKIP

74

SEQ
reset :=FALSE
SEQ i =0 FOR number.of.debug
mask[i] := TRUE

Stop ? s
running :=FALSE

4. MAINH.OCC

#OPTION 'AGNVW"
#INCLUDE "hostio.inc"

PROC main.harness (CHAN OF SP FromFiler, ToFiler,
CHAN OF INT Mars2Earth, Earth2Mars,
[]INT FreeMemory)

#USE "hostio. lib'"

#USE "earthh.t8s"
#USE "merger.t8s"

[lICHAN OF ANY Debug:
[2]CHAN OF SP FromAda, ToAda:
CHAN OF BOOL StopDebug, StopMultiplexor:
SEQ

PAR

-- A multiplexor to combine the debug and normal
-- output.

so.multiplexor (FromFiler, ToFiler, FromAda, ToAda,
StopMultiplexor)

-- A debug channel merger.
debug.merger (ToAda[0], FromAda[0], Debug, StopDebug)

-- A process to invoke the earth program.
ws IS FreeMemory:
SEQ
earth.harness (FromAda~l], ToAda[l], Debug(0],

Mars2Earth, Earth2Mars, ws)
StopDebug I FALSE
StopMultiplexor ! FALSE

so.exit (FromFiler, ToFiler, sps.success)

75

5. MAIN. PGN

#INCLUDE "hostio.inc"
INCLUDE "linkaddr.ijfc'"

#USE "mainh.c8s"
#USE "marsh.c8s"
#USE "venush.c8s"
#USE "saturnh. c8s"
#USE "plutoh. c8s"

CHAN OF INT Mars2Earth, Earth2Mars, Mars2Pluto, Pluto2Mars,
Mars2Venus,Venus2Mars, Pluto2Saturn, Saturn2Pluto,
Saturn2 Venus, Venus 2Saturn:
CHAN OF SP FromFiler, ToFiler:

PLACED PAR

PROCESSOR 0 T8

PLACE FromFiler AT link0.in:
PLACE ToFiler AT link0.out:
PLACE Mars2Earth AT link2.in:
PLACE Earth2Mars AT link2.out:

(3250 00] fINT wsl:
main.harness (FromFiler, ToFiler, Mars2Earth,

Earth2Mars, wsl)

PROCESSOR 1 T8

PLACE Earth2Mars AT link0.in:
PLACE Mars2Earth AT link0.out:
PLACE Venus2Mars AT link2.in:
PLACE Mars2Venus AT link2.out:
PLACE Pluto2Mars AT link3.in:
PLACE Mars2Pluto AT link3.out:

(280000] fINT ws2:
mars.harness (Mars2Earth, Earth2Mars, Venus2Mars,
Mars2Venus, Mars2Pluto, Pluto2Mars, ws2)

PROCESSOR 2 T8

PLACE Saturn2Venus AT link2.in:
PLACE Venus2Saturn AT link2.out:
PLACE Mars2Venus AT link3.in:
PLACE Venus2Mars AT link3.out:

76

(280000) INT ws2:
venus.harness (Mars2Venus, Venus2Mars, Venus2Saturn,
Saturn2Venus, ws2)

PROCESSOR 3 TB

PLACE Pluto2Saturn AT link2.in:
PLACE Saturn2Pluto AT link2.out:
PLACE Venus2Saturn AT link3.in:
PLACE Saturn2Venus AT link3.out:

[280000] INT ws2:
saturn. harness (Saturn2Venus, Venus2 Saturn,
Saturn2Pluto, Pluto2Saturn,ws2)

PROCESSOR 4 TB

PLACE Mars2Pluto AT link2.in:
PLACE Pluto2Mars AT link2.out:
PLACE Saturn2Pluto AT iink3.in:
PLACE Pluto2Saturn AT -link3.out:

(280000] INT ws2:.
pluto.harness (Mars2Pluto, Pluto2Mars, Saturn2Pluto,
Pluto2 Saturn, ws2)

B. OCCAM HARNESSES ON PROCESSOR MARS

1. MARSN.OCC

#OPTION "AGNVW'
#INCLUDE "hostia.inc"

PROC mars.harness (CHAN OF INT Mars2Earth, Earth2Mars,
Venus 2Mars, Mars 2Venus,

Mars2Pluto, Pluto2Mars,
[]INT FreeMemory)

#IMPORT "marsh2 .tax"

[l]INT dummy.ws:
wsl IS FreeMemory:
[6]INT in.program:
[6]INT out.program:
SEQ

-- Set up vector of pointers to channels.
in.program[0] :=MOSTNEG INT -- not used
in.program~l] :=MOSTNEG INT -- standard i/o not used

77

LOAD. INPUT.CHANNEL (in.program[2], Earth2Mars)
in.program(3] :=MOSTNEG INT -- reserved for future

-- use
LOAD. INPUT.CHANNEL (in.program[4], Venus2Mars)
LOAD. INPUT.CHANNEL (in.program[5], Pluto2Mars)
out.program[O] MQSTNEG INT -- standard i/o not used
out.program[l] MOSTNEG INT - standard i/o not used
LOAD.OUTPtJT.CHANNEL (out .program[2], Mars2Earth)
out.program[3] :=MOSTNEG INT -- reserved for future

-- use
LOAD.OUTPUT. CHANNEL(out .program(4], Mars2Venus)
LOAD.OUTPUT.CHANNEL (out.program[5 I, Mars2Pluto)

-- Invoke the Ada program.
-- Assumes the entry point name has been changed to
"-"mars.program".

mars .program (wsl, in-program, out.program, duxnmy.ws)

2. NARSH2.OCC

#OPTION 'AEV"

PROC mars.program ([JINT wsl, in, out, ws2)
[1000]INT d:
SEQ

SKIP

C. OCCAM HARNESSES ON PROCESSOR PLUTO

1. PLUTOH.OCC

#OPTION "AGNVW"
#INCLUDE "hostio. inc"

PROC pluto.harness (CHAN OF INT Mars2Pluto, Pluto2Mars,
Saturn2Pluto, Pluto2 Saturn,

[]INT FreeMemory)

#IMPORT "plutoh2 .taxe

[h]INT dummy.ws:
wsl IS FreeMemory:
(6]INT in.program:
[6]INT out.program:
SEQ

-- Set up vector of pointers to channels.
in.program[O] := MOSTNEG INT -- not used

78

in.program[1] MOSTNEG INT -standard i/O not used
in-program[2] MOSTNEG INT -- reserved for future

-- use

LOAD. INPUT.CHANNEL (in.program[3], Mars2Pluto)
LOAD. INPUT.CHANNEL (in.program[4], Saturn2Pluto)
in.program[5] MOSTNEG INT -- reserved for future

-- use

out.program[O] :~MOSTNEG INT -- standard i/o not used
out.program[1] MOSTNEG INT -standard i/o not used
out.program[2] :=MOSTNEG INT -- reserved for future

-- use
LOAD.OUTPUT.CHANNEL (out .program[3], Piuto2Mars)
LOAD.OUTPUT.CHANNEL (out.program(4], Pluto2Saturn)
out.program[5] :=MOSTNEG INT -- reserved for future

-- use

-- Invoke the Ada program.
-- Assumes the entry point name has been changed to
"-"pluto.program'.

pluto.program, (wsl, in.program, out.program, dummy.ws)

2. PLUTOH2.OCC

#OPTION "AEV"

PROC pluto.program ([JINT wsl, in, out, ws2)
[1000]INT d:
SEQ

SKIP

D. OCCAM HARNESSES ON PROCESSOR SATURN

1. SATURNH.OCC

#OPTION "AGNVW"
#INCLUDE "hostio.inc"

PROC saturn.harness (CHAN OF INT Saturn2Venus, Venus2Saturn,
Saturn2Pluto, Pluto2Saturn,
[]INT FreeMemory)

IMPORT "saturnh2 .tax"

[1]INT dunuuy.ws:
wsl IS FreeMemory:
[6]INT in.program:
[6]INT out.program:

79

SEQ
__ Set up vector of pointers to channels.
in.program[O] MOSTNEG TNT -- not used
in.program[l] :=MOSTNEG TNT -- standard i/o not used
LOAD. INPUT.CHANNEL (in.program(2], Pluto2Saturn)
LOAD. INPUT. CHANNEL (in.program[3], Venus2 Saturn)
in.program(4] MOSTNEG TNT -- reserved for future

-- use
in.program[5] MOSTNEG INT -- reserved for future

-- use
out.program(O] MOSTNEG TNT -- standard i/o not used
out.program[1] MOSTNEG £NT -- standard i/o not used
LOAD.OUTPUT.CHANNEL (Out .program[2], Saturn2Pluto)
LOAD.OUTPUT. CHANNEL (out .program[3], Saturn2Venus)
out.program[4] MOSTNEG TNT -- reserved for future use
out.program[5] MOSTNEG TNT -- reserved for future use

-- Invoke the Ada program.
-- Assumes the entry point name has been changed to
"--saturn.program".

saturn.program (wsl, in.program, out.program, dummy.ws)

2. SATURNH2.OCC

#OPTION "AEV"

PROC saturn.program ([]INT wsl, in, out, ws2)
[iQOOJINT d:
SEQ

SKIP

E. OCCAM HARNESSES ON PROCESSOR VENUS

1. VENUSH.OCC

#OPTION "AGNVW"
INCLUDE "hostio. inc'

PROC venus.harness (CHAN OF TNT Mars2Venus, Venus2Mars,
Venus2Saturn, Saturn2Venus,
[]TNT FreeMemory)

IMPORT "venush2 .tax"

[iJINT duinmy.ws:
wsl IS FreeMemory:
[6]INT in.program:

80

[6]INT out.program:
SEQ

-- Set up vector of pointers to channels.
in.program(O] MOSTNEG INT -- not used
in.program~l] : MOSTNEG INT -- standard i/o not used
LOAD. INPUT.CHANNEL (in.program[2], Mars2Venus)
in.program[3] :=MOSTNEG INT -- not used
in.program[4] :=MOSTNEG INT -- reserved for future

-- use
LOAD. INPUT.CHANNEL (in-program[5], Saturn2Venus)
out.program[O] MOSTNEG INT -- standard i/o not used
out.program(l] :=MOSTNEG INT -- standard i/o not used
LOAD.OUTPUT.CHANNEL (out .program[2], Venus2Mars)
out.program[3] :=MOSTNEG INT -- reserved for future use
out.program[4] MOSTNEG INT -- resereved for future

-- use
LOAD.OUTPUT.CHANNEL (out .program[5], Venus2Saturn)

-- Invoke the Ada program.
-- Assumes the entry point name has been changed to

- venus.program".
venus .program (wsl, in-program, out .program, dummy.ws)

2. VENUSH2.OCC

#OPTION "AEV"

PROC venus.program ([]INT wsl, in, out, ws2)
[1000]INT d:
SEQ

SKIP

81

APPENDIX B: COMMUNICATION LAYER/AUV FLOW ADA SOURCE CODE

A. COMMUNICATION LAYER ADA PROGRAMS

1. COMMON.ADA

with CHANNELS;

with CALENDAR;

package COMMON is

-- Declarations of the statistics of the network and the
-- common data types that are used in the communication
-- scheme.

NUMPROGS : constant INTEGER := 5 ;
NUM_PATHS : constant INTEGER 13;
NUM_ENTRYS : constant INTEGER := 19;

type INT_16 is range -2**15 .. 2'*15-1;

type TASKS is (HOST TASK, TASKSCREEN, TASKAUTOPILOT,
TASK TIMER,TASKVEHICLE_SYS,
TASKEXEMISSION, TASKMONITOR,
TASK AVOIDANCE, TASKGUIDANCE,-
TASKNAVIGATION, TASKSONAR,
EARTH_MA'N, MARSMAIN, VENUSMAIN,
SATURNMAIN, PLUTO-MAIN,
NOTASK, SHUTDOWN, LOOP_TASK);

subtype EARTH TASKS is TASKS range
HOST TASK..TASKSCREEN;

subtype MARSTASKS is TASKS range
TASKAUTOPILOT..TASKVEHICLESYS;

subtype PLUTO TASKS is TASKS range
TASK_EXEMISSION..TASKMONITOR;

subtype SATURN TASKS is TASKS range
TASKAVOIDANCE..TASK GUIDANCE;

subtype VENUS TASKS is TASKS range
TASKTmAVIGATION..TASKSONAR;

subtype MAINTASK" is TASKS range EARTHMAIN..PLUTOMAIN;
subtype SPECIALTASKS is TASKS range NOTASK..LOOPTASK;

type PROGARRAY is array (1..NUMPROGS) of INTEGER;

82

type PATHARRAY is array (1..NUMPATHS) of INTEGER;

type PROGRAMS is (EARTH, MARS, VENUS, SATURN, PLUTO);

type ROUTINGSTRATEGY is (CNTCLKRING, CLK_RING,
MULTI_PATH, BESTPATH);

type OUTTABLE is array(PROGRAMS range <>, NATURAL range
<>) of BOOLEAN;

type POINTERTABLE is access OUTTABLE;
type POINTERCHANNEL is access CHANNELS.CHANNELARRAY;

type COUNTOUTPUTS is array(PROGRAMS range <>) of
NATURAL;

NROFOUTPUTS: COUNTOUTPUTS(MARS..PLUTO) := (3, others
=> 2);

type CONFIGTABLEMARS is array(ROUTINGSTRATEGY) of
OUTTABLE(EARTH..PLUTO,O..NROFOUTPUTS(MARS)-1);

MARSCONFIG: CONFIGTABLEMARS :=
((-- counter clockwise ring

-- OutToEarth OutToVenus OutToPluto
(TRUE, FALSE, FALSE), -- EARTH
(FALSE, FALSE, FALSE), -- MARS
(FALSE, FALSE, TRUE), -- VENUS
(FALSE, FALSE, TRUE), -- SATURN
(FALSE, FALSE, TRUE)), -- PLUTO

(-- clockwise ring
-- OutToEarth OutToVenus OutToPluto

(TRUE, FALSE, FALSE), -- EARTH
(FALSE, FALSE, FALSE), -- MARS
(FALSE, TRUE, FALSE), -- VENUS
(FALSE, TRUE, FALSE), -- SATURN
(FALSE, TRUE, FALSE)), -- PLUTO

(-- Multipath
-- OutToEarth OutToVenus OutToPluto

(TRUE, FALSE, FALSE), -- EARTH
(FALSE, FALSE, FALSE), -- MARS
(FALSE, TRUE, FALSE), -- VENUS
(FALSE, TRUE, TRUE), -- SATURN
(FALSE, FALSE, TRUE)), -- PLUTO

(-- Bestpath
OutToEarth OutToVenus OutToPluto

(TRUE, FALSE, FALSE), -- EARTH
(FALSE, FALSE, FALSE), -- MARS
(FALSE, TRUE, FALSE), -- VENUS

83

(FALSE, TRUE, FALSE), -- SATURN
(FALSE, FALSE, TRUE))); -- PLUTO

type CONFIGTABLEPLUTO is array(ROUTINGSTRATEGY) of
OUTTABLE(EARTH..PLUTO,O..NROFOUTPUTS(PLUTO)-1);

PLUTOCONFIG: CONFIGTABLEPLUTO :=
((-- counter clockwise ring
-- OutToMars OutToSaturn

(FALSE, TRUE), -- EARTH
(FALSE, TRUE), -- MARS
(FALSE, TRUE), -- VENUS
(FALSE, TRUE), -- SATURN
(FALSE, FALSE)), -- PLUTO

(-- clockwise ring
-- OutToMars OutToSaturn

(TRUE, FALSE), -- EARTH
(TRUE, FALSE), -- MARS
(TRUE, FALSE), -- VENUS
(TRUE, FALSE), -- SATURN
(FALSE, FALSE)), -- PLUTO

(-- Multipath
-- OutToMars OutToSaturn

(TRUE, FALSE), -- EARTH
(TRUE, FALSE), -- MARS
(TRUE, TRUE), -- VENUS
(FALSE, TRUE), -- SATURN
(FALSE, FALSE)), -- PLUTO

(-- Bestpath
-- OutToMars OutToSaturn

(TRUE, FALSE), -- EARTH
(TRUE, FALSE), -- MARS
(FALSE, TRUE), -- VENUS
(FALSE, TRUE), -- SATURN
(FALSE, FALSE))); -- PLUTO

type CONFIGTABLESATURN is array(ROUTINGSTRATEGY) of
OUTTABLE(EARTH..PLUTO,O..NROFOUTPUTS(SATURN)-1);

SATURNCONFIG: CONFIGTABLESATURN :=

((-- counter clockwise ring
-- OutToVenus OutToPluto

(TRUE, FALSE), -- EARTH
(TRUE, FALSE), -- MARS
(TRUE, FALSE), -- VENUS
(FALSE, FALSE), -- SATURN
(TRUE, FALSE)), -- PLUTO

84

(-- clockwise ring
-- OutToVenus OutToPluto

(FALSE, TRUE), -- EARTH
(FALSE, TRUE), -- MARS
(FALSE, TRUE), -- VENUS
(FALSE, FALSE), -- SATURN
(FALSE, TRUE)), -- PLUTO

(-- Multipath
-- OutToVenus OutToPluto

(TRUE, TRUE), -- EARTH
(TRUE, TRUE), -- MARS
(TRUE, FALSE), -- VENUS
(FALSE, FALSE), -- SATURN
(FALSE, TRUE)), -- PLUTO

-- Bestpath
-- OutToVenus OutToPluto

(FALSE, TRUE), -- EARTH
(FALSE, TRUE), -- MARS
(TRUE, FALSE), -- VENUS
(FALSE, FALSE), -- SATURN
(FALSE, TRUE))); -- PLUTO

type CONFIGTABLEVENUS is array(ROUTINGSTRATEGY) of
OUTTABLE(EARTH..PLUTO,O..NROFOUTPUTS(VENUS)-1);

VENUSCONFIG: CONFIGTABLEVENUS

((-- counter clockwise ring
-- OutToMars, OutToSaturn
(TRUE, FALSE), -- EARTH
(TRUE, FALSE), -- MARS
(FALSE, FALSE), -- VENUS
(TRUE, FALSE), -- SATURN
(TRUE, FALSE)), -- PLUTO

(-- clockwise ring
-- OutToMars, OutToSaturn
(FALSE, TRUE), -- EARTH
(FALSE, TRUE), -- MARS
(FALSE, FALSE), -- VENUS
(FALSE, TRUE), -- SATURN
(FALSE, TRUE)), -- PLUTO

(-- Multipath
-- OutToMars, OutToSaturn
(TRUE, FALSE), -- EARTH
(TRUE, FALSE), -- MARS
(FALSE, FALSE), -- VENUS
(FALSE, TRUE), -- SATURN

85

(TRUE, TRUE)), -- PLUTO

(-- Bestpath
-- OutToMars, OutToSaturn
(TRUE, FALSE), -- EARTH
(TRUE, FALSE), -- MARS
(FALSE, FALSE), -- VENUS
(FALSE, TRUE), -- SATURN
(TRUE, FALSE))); -- PLUTO

type ENTRYS is (OUTPUT, UPDATE_SONAR, VS ORDERS,
SYSSTATUS,AP_ORDERS,UPDATENAV,
UPDATEORDERS, AVOID_REC, SONAROBSTICLE,
OBJECTALERT, EXEUPDATE, OBAVOID,
MONTTORUPDATE, TOMONITOR, PILOTUPDATE,
ACKNOWLEGE, NO_ENT, RETURNING,
TEST TIME);

type MESSAGEFORM is
record

ORIGIN : TASKS := NOTASK;
DESTIN : TASKS := NO TASK;
ENTCALL : ENTRYS := NOENT;
TIMESTAMP : DURATION := 0.0;
CODE_1 : INT_16 := 0;
CODE_2 : INT_16 0;
MESSAGECODE : INT_16 0;
PROG : PROGARRAY := (others =>0);
PATH : PATHARRAY := (others =>0);

end record;

type MASKTYPE is array(MARS..PLUTO) of BOOLEAN;

type CONFIGMESSAGE is
record

MASK : MASKTYPE := (others => FALSE);
ROUT INFO : ROUTINGSTRATEGY;

end record;

type PERIODMESSAGE is
record

MASK : MASK TYPE := (others => FALSE);
PERIODINFO DURATION;

end record;

86

SHUTDOWN MESSAGE : MESSAGE FORM := (SHUTDOWN, SHUTDOWN,

NO_ENT, 0.0, 0, 0, 0, (others => 0), (others => 9));

HOST : constant PROGRAMS := EARTH;

READINT constant DURATION := 5.0;

-- Instantiations of the generic channel i/o package.

package MESSAGE_10 is new CHANNELS.CHANNELIO
(MESSAGEFORM);
package CONFIG_10 is new CHANNELS.CHANNELIO
(CONFIGMESSAGE);
package PERIOD_10 is new CHANNELS.CHANNELIO
(PERIODMESSAGE);

function IFITSHERE (FROMPROGRAM : in PROGRAMS; TO_TASK

in TASKS) return BOOLEAN;

function WHEREIS (INTASK: in TASKS) return PROGRAMS;

end COMMON;

package body COMMON is

function IF-ITSHERE (FROMPROGRAM : in PROGRAMS; TOTASK
in TASKS) return BOOLEAN is

begin
case FROMPROGRAM is

when EARTH =>
case TOTASK is

when EARTHTASKS'FIRST..EARTHTASKS'LAST =>
return TRUE;

when others =>
return FALSE;

end case;
when MARS =>

case TOTASK is
when MARSTASKS'FIRST..MARSTASKS'LAST =>

return TRUE;
when others =>

return FALSE;
end case;

when PLUTO =>
case TO TASK is

when PLUTO TASKS'FIRST..PLUTOTASKS'LAST
LOOP TASK =>

return TRUE;
when others =>

87

return FALSE;
end case;

when SATURN =>
case TO TASK is

when SATURN TASKS'FIRST..SATURN TASKS'LAST =>
return TRUE;

when others =>
return FALSE;

end case;
when VENUS =>

case TO TASK is
when VENUS TASKS'FIRST..VENUSTASKS'LAST =>

return TRUE;
when others =>

return FALSE;
end case;

when others =>
return FALSE;

end case;

end IFITSHERE;

function WHEREIS(INTASK: in TASKS) return PROGRAMS is

begin
case IN TASK is

when EARTH TASKS'FIRST..EARTHTASKS'LAST =>
return EARTH;

when MARS TASKS'FIRST..MARSTASKS'LAST =>
return MARS;

when PLUTOTASKS'FIRST..PLUTOTASKS'LAST I LOOPTASK

return PLUTO;
when SATURN TASKS'FIRST..SATURNTASKS'LAST =>

return SATURN;
when VENUS TASKS'FIRST..VENUSTASKS'LAST =>

return VENUS;
when others =>

return MARS;
end case;

end WHERE IS;
end COMMON;

2. COMLAYER.ADA

with COMMON;
use COMMON;
with CALENDAR;

88

use CALENDAR;
with CHANNELS;
with RANDOM;

generic

-- Function to be instantiated on each node program.
-- This function issues entry calls that send messages to
-- local tasks.
with procedure SENDIT (MESSAGE: in MESSAGE_FORM;

MESS: out BOOLEAN);

package COMLAYER is

-- Local mailman implemented by a circular buffer.Puts the
-- local arriving messages in a circular buffer and
-- distribute them to the local tasks.
task QUE is

-- Called by the task INOUT to pass a local message.
entry TOQUE (QUEMESSAGE: in MESSAGEFORM);

end;

-- Traffic handler: Sends the local messages to task QUE
-- and sends the external messages to the remote nodes
-- through appropriate output channels.
task INOUT is

entry INITI (SITE : in PROGRAMS);
entry INIT2 (SEND ARRAY :

in CHANNELS.CHANNELARRAY);
entry INIT3 (SENDTABLE : in OUT TABLE);
entry INCOMING (INOUTMESSAGE : in MESSAGEFORM);
entry SEND (INOUTMESSAGE : in MESSAGEFORM);

end;
end COMLAYER;

package body COMLAYER is

-- Local mailman implemented by a circular buffer.Puts the
-- local arriving messages in a circular buffer and
-- distribute them to the local tasks.
task body QUE is

MAXSTORAGE : constant INTEGER := 20;
-- Circular buffer size
SENTMESSAGE : BOOLEAN :- FALSE;
-- Indicates if the rendevouz for local message delivery
-- was accomplished succssefully.
ALLFULL : BOOLEAN :- FALSE;
-- Indicates that the circular buffer is full. That
-- is,there is no more room for an incoming message.

89

PENDMESS : BOOLEAN := FALSE;
-- Indicates that there is a pending message waiting
-- for a position in the circular buffer.
FULL : constant BOOLEAN := TRUE;
-- Indicates that the current position of the circular
-- buffer contains valid message which is still
-- to be delivered.
EMPTY : constant BOOLEAN := FALSE;
-- Indicates that the current position of the circular
-- buffer has a non valid message. That is, this
-- position is empty or this message has already been
-- delivered and can be discarded.
NUMBER : INTEGER := 0; -- Index that
-- points to a circular buffer position.
MESSAGESINMAIL: INTEGER := 0; -- Control the
-- number of messages in the circular buffer.
SLOT: array(0 .. (MAXSTORAGE-l)) of BOOLEAN
(others => FALSE);
-- SLOT indicates if the pointed circular buffer
-- position contains a valid message or not.
STORAGE : array(0 .. (MAXSTORAGE-i)) of
MESSAGEFORM;
-- STORAGE is the array that implements the circular
-- buffer.
TEMPMESSAGE : MESSAGE_FORM; -- temporary variable to
-- hold the incoming message.

begin
MAIN: loop

select
-- Accept calls from the task INOUT with arriving
-- local messages
accept TO_QUE (QUEMESSAGE : in MESSAGE_FORM) do

TEMPMESSAGE := QUEMESSAGE;
end TOQUE;

-- Puts the message into the circular buffer
STORAGE (NUMBER) := TEMP MESSAGE;
MESSAGES IN MAIL := MESSAGESINMAIL + 1;
SLOT (NUMBER) := FULL;

-- Priority is given to any messages waiting to be
-- mailed, so another accept statement is needed
-- before attempting to deliver a message.
SEND:loop

if ALL FULL = FALSE then -- the circular buffer
-- has room for a new incoming message.
select

-- Accept calls from the task INOUT with
-- arriving local messages.

90

accept TOQUE (QUE MESSAGE : in MESSAGEFORM)
do TEMP MESSAGE := QUEMESSAGE;
end TOQUE;

if MESSAGES IN MAIL < MAX STORAGE then -- If
-- the circular buffer has room for a new
-- incoming message searches for the next
-- free position in the circular buffer
-- and stores the message in this position.
STORE: loop

if SLOT(NUMBER) = EMPTY then
-- Free position was found.
-- Puts the message into the circular
-- buffer.
STORAGE(NUMBER) := TEMPMESSAGE;
MESSAGESINMAIL := MESSAGESINMAIL+1;
SLOT(NUMBER) := FULL;
exit;

end if;
-- Add 1 to NUMBER so that next mail slot
-- can be checked.
NUMBER := (NUMBER + 1) MOD MAXSTORAGE;

end loop STORE;

-- Searches for the next used position in the
-- circular buffer.
if MESSAGES IN MAIL /= 0 then

NUMBER := (NUMBER + 1) MOD MAX STORAGE;
while SLOT(NUMBER) /= FULL loop

NUMBER := (NUMBER + 1) MOD MAXSTORAGE;
end loop;

end if;

else
-- the circular buffer has no room for a
-- new incoming message.
ALL FULL TRUE;
PEND MESS := TRUE;

end if;
or

-- cannot accept a new message from task INOUT
-- so suspends the task and puts the task at
-- the end of the ready queue.
delay 0.0;

end select;
end if;

-- if the circular buffer position contains a valid
-- message call SEND IT in order to issue an entry
-- call for message delivery.

91

if SLOT(NUMBER) = FULL then
SEND IT (STORAGE (NUMBER), SENTMESSAGE);

end if;

-- if a rendevouz with the destination task has
-- ocurred then the message was successfully sent
-- to its destination.
if SENT MESSAGE then

SENT MESSAGE := FALSE; -- turn off the flag
SLOT(NUMBER) := EMPTY; -- liberates circular
-- buffer position
MESSAGESINMAIL := MESSAGESINMAIL - 1;

if PENDMESS then -- if there is a pending
-- message store the pending message in the
-- just freed circular buffer position

STORAGE(NUMBER) := TEMPMESSAGE;
SLOT(NUMBER) := FULL;
MESSAGESINMAIL := MESSAGESINMAIL + 1;
PEND MESS := FALSE;
NUMBER := (NUMBER + 1) MOD MAXSTORAGE;

end if;

-- updates the status of the boolean variable
-- ALL FULL which indicates whether the circular
-- buffer is full or not
if MESSAGES IN MAIL < MAXSTORAGE then

ALL FULL =FALSE;
else

ALL FULL TRUE;
end if;

else -- The message was not succssefully sent so it
-- loses its turn and has to wait for the next
-- circular buffer scan
NUMBER := (NUMBER + 1) MOD MAXSTORAGE;

end if;

-- To save processor time the loop is exited when
-- there are no pending mail deliveries.
exit when MESSAGESINMAIL = 0;

end loop SEND;
or

terminate;
end select;

end loop MAIN;
end QUE;

92

-- Traffic handler: Sends the local messages to task QUE
-- and sends the external messages to the remote nodes
-- through appropriate output channels.
task body INOUT is

HERE : BOOLEAN; -- indicates if the message is
-- destinated to the local node or to an external node.
STORAGEMESSAGE: MESSAGE FORM; -- message just arrived
-- in the traffic handler
CURRENTNODE : PROGRAMS; -- local processor ID
OUTCHANNEL : CHANNELS.CHANNELREF; -- it will
-- point to the output channel to be writen by the task
-- INOUT when sending a message to a external processor.
DESTPROGRAM : PROGRAMS; -- holds the processor ID
-- of the message destination
-- The INDINDEX array is used to hold all the possible
-- indexes that points to the output channels which can
-- be used to send messages to a specific processor.
-- These indexes can reference the output channels when
-- used with CURRENT ARRAY
type INDEXARRAY is ARRAY(NATURAL range <>) of NATURAL;
INDINDEX: INDEXARRAY(O..3); -- Indirect index array for
-- the output channels
OUT COUNT: NATURAL; -- counter used as index for the
-- INDINDEX array
TOSS: FLOAT; -- random variable that is used when we
-- have more than one possible output channel to send a
-- message to a specific processor.
CURRENTARRAY : POINTERCHANNEL; -- It is an acess type
-- variable which type is defined in the package COMMON.
-- CURRENTARRAY points to the array of output channels
-- to be used by the task INOUT.
CURRENT TABLE : POINTER TABLE; -- It is an acess type
-- variable which type is defined in the package COMMON.
-- CURRENT_TABLE points to the roun-ing table to be used
-- by the rounting algorithm.
ARRIVED : BOOLEAN := FALSE;

begin
-- Accept intialization messages from the main processor
-- program
accept INITi (SITE : in PROGRAMS) do

CURRENTNODE := SITE; -- local processor ID
end INITI;

accept INIT2 (SENDARRAY : in CHANNELS.CHANNELARRAY) do
CURRENTARRAY := new
CHANNELS.CHANNELARRAY'(SENDARRAY); -- output
-- channels array

end INIT2;

93

accept INIT3 (SENDTABLE: in OUTTABLE) do
CURRENT TABLE := new OUTTABLE'(SENDTABLE);
-- routing table

end INIT3;

loop
select

-- Used to accept messages just arrived from
-- external nodes.Called by each main node program.
accept INCOMING (INOUTMESSAGE : in MESSAGEFORM) do

STORAGEMESSAGE := INOUTMESSAGE;
ARRIVED := TRUE;

end INCOMING;
or

-- Used to accept messages from local tasks.
accept SEND (INOUTMESSAGE: in MESSAGE_FORM) do

STORAGEMESSAGE := IFOUTMESSAGE;
ARRIVED := TRUE;

end SEND;
or

-- terminate;
delay 0.001;

end select;

if ARRIVED then
ARRIVED := FALSE;
OUT COUNT := 0; -- initialize counter used as index
-- for the INDINDEX array
-- Find the destination pr)cessor by using the
-- function WHEREIS which
-- is declared in the package COMMON
DEST PROGRAM := WHERE IS (STORAGEMESSAGE.DESTIN);
-- Verifies if the message is for the local node or
-- for an external processor
if DEST PROGRAM = CURRENTNODE then

HERE TRUE;
else

HERE := FALSE;
end if;
if HERE then -- if destination is the local node it

-- passes the message to the local mailman
QUE.TO_QUE (STORAGEMESSAGE);
else

-- Destination is an external processor
-- Search for all output channels that can be used
-- to communicate with the destination processor
-- and store this information in the IND-INDEX
-- array
for J in CURRENTTABLE.all'RANGE(2) loop

if CURRENTTABLE(DEST PROGRAM, J) = TRUE then
INDINDEX(OUTCOUNT) := J;

94

e. RAN-INT.ADA

separate (RANDOM)

function RANDOM INT (N : POSITIVE) return POSITIVE is
RESULT INTEiýER range 1 .. N;

begin
RESULT INTEGER (FLOAT (N) * JNIT-RANDOM + 0.5);
return RESULT;

exception
when CONSTRAINT ERROR NUMERIC ERROR =>

-- If machine rounds 0.5 down to 0, return 1.
return 1;

end RANDOM-INT;

B. HOST ADA PROGRAMS

1. HOSTLAY.ADA

with COMMON;
use COMMON;

generic

--Function to be instantiated
with procedure SENDIT (MESSAGE: in MESSAGEFORM;

ACK: out BOOLEAN;
MESS: out BOOLEAN);

package HOST-LAYER is

task EARTH QUE is
entry TO-QUE (QUE-MESSAGE: in MESSAGE-FORM);

end;

end HOST-LAYER;

package body HOST-LAYER is

task body EARTHQUE is

MAX-STORAGE : constant INTEGER 20;
SENT-MESSAGE : BOOLEAN FALSE;
SENT-ACK : BOOLEAN FALSE;
ALL-FULL : BOOLEAN FALSE;

97

PENDMESS : BOOLEAN := FALSE;
FULL : constant BOOLEAN := TRUE;
EMPTY : constant BOOLEAN FALSE;
NUMBER : INTEGER 0;
MESSAGESINMAIL: INTEGER 0;
SLOT: array(O .. (MAXSTORAGE-i)) of BOOLEAN := (others
=> FALSE);
STORAGE: array(0 .. (MAX_STORAGE-i)) of MESSAGEFORM;
TEMPMESSAGE MESSAGE_FORM;

begin
MAIN: loop

select
accept TO_QUE (QUE MESSAGE : in MESSAGEFORM) do

TEMPMESSAGE := QUEMESSAGE;
end TO_QUE;

STORAGE (NUMBER) : TEMPMESSAGE;
MESSAGESINMAIL := MESSAGESINMAIL + 1;
SLOT (NUMBER) := FULL;

-- Priority is given to any messages waiting to be
-- mailed, so another ACCEPT statement is needed
-- before attempting to deliver a message.

SEND:loop
if ALL FULL = FALSE then

select
accept TOQUE (QUEMESSAGE : in MESSAGEFORM)

do
TEMPMESSAGE := QUEMESSAGE;

end TO_QUE;

if MESSAGESINMAIL < MAXSTORAGE then
STORE: loop

if SLOT(NUMBER) = EMPTY then
STORAGE(NUMBER) := TEMP MESSAGE;
MESSAGESINMAIL : MESSAGES_IN_MAIL+1;
SLOT(NUMBER) := FULL;
exit;

end if;
-- Add 1 to NUMBER so that next mail slot
-- can be checked.
NUMBER := (NUMBER + 1) MOD MAXSTORAGE;

end loop STORE;

-- Add 1 to NUMBER so that last in will not
-- be forst out if there are other messages
-- in the queue
if MESSAGESINMAIL /= 0 then

NUMBER := (NUMBER + 1) MOD MAXSTORAGE;

98

while SLOT(NUMBER) /= FULL loop
NUMBER := (NUMBER + 1) MOD MAXSTORAGE;

end loop;
end if;

-- This is a flag that says that are
-- incoming messages not yet stored in
-- the queue, and no others should be read
-- until it is.

else
ALL FULL TRUE;
PENDMESS := TRUE;

end if;
or

delay 0.0;
end select;

end if;
if SLOT(NUMBER) = FULL then

SENDIT (STORAGE (NUMBER), SENTACK,
SENTMESSAGE);

end if;

if SENT MESSAGE then
SENTMESSAGE := FALSE;
SLOT(NUMBER) := EMPTY;
MESSAGESINMAIL := MESSAGESINMAIL - 1;

if PEND MESS then
STORAGE(NUMBER) := TEMPMESSAGE;
SLOT(NUMBER) := FULL;
MESSAGESINMAIL := MESSAGESINMAIL + 1;
PEND MESS := FALSE;
NUMBER := (NUMBER + 1) MOD MAXSTORAGE;

end if;

if MESSAGESINMAIL < MAXSTORAGE then
ALLFULL := FALSE;

else
ALLFULL := TRUE;

end if;
else

NUMBER := (NUMBER + 1) MOD MAXSTORAGE;
end if;
-- To save processor time the loop is exited when
-- there are no pending
-- mail deliveries.

exit when MESSAGESINMAIL = 0;
end loop SEND;

or

99

terminate;
end select;

end loop MAIN;

end EARTH_QUE;
end HOSTLAYER;

2. EARTH.ADA

with TEXTIO;
with COMMON;
use COMMON;
with PRINTOUT;
use PRINTOUT;
with HOSTLAYER;
with CHANNELS;
with CALENDAR;
use CALENDAR;

procedure EARTH is

package INTEGERINOUT is new TEXTIO.INTEGERIO(INTEGER);
use INTEGER INOUT;
package TIME_IO is new TEXT_IO.FIXEDIO(DURATION);
package FLTIO is new TEXTIO.FLOATIO(FLOAT);

CONFIGOPTION : INTEGER;
IN MESSAGE : MESSAGEFORM;
MAIN TALK : MESSAGEFORM;
FIRST MESSAGE: CONFIGMESSAGE;
SECOND MESSAGE: PERIODMESSAGE;
LOCATION : constant PROGRAMS := EARTH;
TIME OUT : TIME;
QUITTIME : TIME;
ABORTED : BOOLEAN;
FAILED : INT_16 := 0;
MESS COUNT : INT_16 := 0;
QUITINT : DURATION := 55.0;
PERIOD : DURATION;
MESSAGEERROR: exception;

InFromMars: CHANNELS.CHANNEL REF :=
CHANNELS.INPARAMETERS (2);
OutToMars: CHANNELS.CHANNEL REF :=
CHANNELS.OUTPARAMETERS(2);

task SCREEN is
entry OUTPUT (SCREENMESSAGE: in MESSAGEFORM);

end;

100

procedure SENDITFROMEARTH (MESSAGE: in MESSAGEFORM;
ACK : out BOOLEAN;
MESS : out BOOLEAN) is

MESSAGESENT: BOOLEAN := FALSE;
ACKSENT BOOLEAN FALSE;

begin
select

SCREEN.OUTPUT (MESSAGE);
MESSAGESENT := TRUE;

or
delay 0.01;

end select;
ACK := ACK_SENT;
MESS := MESSAGESENT;
return;

end SENDITFROMEARTH;

package EARTHLAYER is new HOSTLAYER(SENDITFROMEARTH);
use EARTHLAYER;

task body SCREEN is

OUT2SCREEN: MESSAGE_FORM;
LOCALS : array (TASKS) of INT_16 := (others => 0);
COUNT : INTEGER := 0;
N : INTEGER := 0;
AVETIME : FLOAT;
STARTSTAMP: CALENDAR.TIME;
TIMER : DURATION := 0.0;
TOTTIME : DURATION := 0.0;
OUTTIME : DURATION := 0.0;

begin

MAIN: loop
accept OUTPUT (SCREENMESSAGE: in MESSAGEFORM) do

OUT2SCREEN := SCREENMESSAGE;
end OUTPUT;

case OUT2SCREEN.MESSAGECODE is
when 11 =>

TEXTIO.PUT_LINE ("Main Earth program finished.");
PRINTMESSAGE(OUT2SCREEN);
exit;

when 20 =>
LOCALS (OUT2SCREEN.ORIGIN)
LOCALS(OUT2SCREEN.ORIGIN) + 1;

101

TOT -TIME := TOT-TIME + OUT2SCREEN.TIMESTAMP;
N := N + 1;

when 21 =>
LOCALS (OUT2 SCREEN .ORIGIN)
LOCALS(OUT2SCREEN.ORIGIN) + 1;

when 30 =>
START_-STAMP := CLOCK;

when 31 =>
TIMER := CLOCK - STARTSTAMP;
OUTTIME :=OUT2SCREEN.TIMESTAMP;

when 71 =>
TEXTIO.PUT-LINE(" Vehicle Sys)

when 72ý =>
TEXT_-IO.PUT-LINE(" Sonar)

when 73 =>
TEXTIO.PUT-LINE(" Navigation")

when 74ý =>
TEXTIO.PUT-LINE(" Monitor")

when 73 =>
TEXTIO.PUT-LINE(" Avoidance")

when 76ý =>
TEXTIO.PUT-LINE(" Exe Mission")

when 77 =>
TEXTIO.PUT-LINE(" Guidance")

when 78ý =>
TEXT_-IO.PUT-LINE(" Auto Pilot")

when 99 =>
TEXT_-IO.PUT -LINE("Shutdown Received.");

when others =>
TEXT_-IO.PUT LINE ("Bad MESSAGECODE.");

end case;
end loop MAIN;

TEXTIO.PUT ("EARTHMAIN=
INTIO.PUT (LOCALS(EARTH MAIN));
TEXTIO.NEWLINE;

TEXTIO.PUT("TASKVEHICLESYS=
INT_10. PUT(LOCALS(TASK VEHICLE SYS));
TEXTIO.NEWLINE;

TEXTIO.PUT ("Total time from SCREEN was:)
TIMEIO.PUT (OUT-TIME);
TEXTIO.NEWLINE;

TEXTIO.PUT ("Ave Time calculated from VEHICLESYS was:
"H) ;
AVE-TIME := FLOAT(TOTTIME) / FLOAT(N);
FLTIO.PUT(AVETIME);
TEXTIO.NEWLINE;

end SCREEN;

102

procedure PRINTHEADER is

begin
TEXTIO.PUTLINE("Please, Choose one of options(l to 4)
below");
TEXTIO.PUTLINE(" 1)Ring Counter Clockwise");
TEXTIO.PUT LINE(" 2)Ring Clockwise");
TEXTIO.PUT LINE(" 3)Random Multipath");
TEXTIO.PUTLINE(" 4)Best Path");

end PRINTHEADER;

procedure PRINT_QUERY is

begin
TEXTIO.NEWLINE;
TEXTIO.PUTLINE("Please, Enter the repetition period
interval.");

end PRINTQUERY;

function CHECKMASK(MASK: MASKTYPE) return BOOLEAN is

begin
for I in MASK'range loop

if MASK(I) = FALSE then
return FALSE;

end if;
end loop;
return TRUE;

end CHECKMASK;

-- main program
begin

PRINTHEADER;
GET(CONFIGOPTION);
case CONFIGOPTION is

when 1 =>
FIRSTMESSAGE.ROUTINFO := CNTCLKRING;

when 2 =>
FIRSTMESSAGE.ROUTINFO := CLKRING;

when 3 =>
FIRSTMESSAGE.ROUTINFO := MULTIPATH;

when 4 =>
FIRSTMESSAGE.ROUTINFO BESTPATH;

when others =>
raise CONSTRAINT_ERROR;

end case;
PRINTQUERY;
TIMEIO.GET(SECONDMESSAGE.PERIOD INFO);

CONFIGIO.WRITE(OutToMars, FIRSTMESSAGE);
CONFIGIO.READ(InFromMars, FIRSTMESSAGE);

103

if CHECKMASK(FIRSTMESSAGE.MASK) = FALSE then
raise MESSAGEERROR;

end if;

PERIODIO.WRITE(OutToMars, SECONDMESSAGE);
PERIODIO.READ(InFromMars, SECONDMESSAGE);
if CHECK_MASK(SECOND MESSAGE.MASK) = FALSE then

raise MESSAGEERROR;
end if;

QUITTIME := CLOCK + QUIT_INT;
MAINTALK.DESTIN := TASKSCREEN;
MAINTALK.ORIGIN := EARTHMAIN;
MAINTALK.MESSAGECODE := 21;
EARTH_QUE.TOQUE (MAINTALK);

loop
TIME-OUT := CLOCK + READINT;
MESSAGEIO.READORFAIL (InFromMars, INMESSAGE,

TIMEOUT, ABORTED);
if ABORTED then

FAILED := FAILED + 1;
else

MESSCOUNT := MESSCOUNT + 1;
INMESSAGE.PROG(1) := INMESSAGE.PROG(1) + 1;
EARTH_QUE.TOQUE(INMESSAGE);

end if;

exit when CLOCK > QUITTIME;
end loop;

MAINTALK := INMESSAGE;
MAINTALK.DESTIN := TASKSCREEN;
MAINTALK.MESSAGECODE := 11;
MAINTALK.CODE_1 := FAILED;
MAINTALK.CODE_2 := MESSCOUNT;
EARTH_QUE.TOQUE (MAIN_TALK);

end EARTH;

3. PRINTOUT.ADA

with COMMON;
use COMMON;
with TEXT IO;
package PRINTOUT is

package PRINTTASK is new
TEXTIO.ENUMERATIONIO (TASKS)

104

package PRINTPROG is new TEXTIO.ENUMERATIONIO
(PROGRAMS);
package INT 10 is new TEXTIO.INTEGERIO(INT_16);
procedure PRINTMESSAGE (MESSAGE : in MESSAGEFORM);

end PRINTOUT;

package body PRINTOUT is

procedure PRINTMESSAGE (MESSAGE : in MESSAGEFORM) is
TO TASK NAME : TASKS ;
FROMTASKNAME : TASKS ;
I INTEGER;

begin
FROM TASK NAME := MESSAGE.ORIGIN
TEXT IO.NEWLINE;
TEXT IO.PUT LINE

********** S,);

TEXTIO.PUTLINE ("* Message Report
*.");

TEXTIO.PUTLINE ('** SI);
TEXTIO.PUT (* From : ");
PRINT TASK.PUT (FROMTASKNAME,37) ;
TEXTIO.PUTLINE (" *");
TEXTIO.PUTLINE ("* Path Array:*.);

TEXTIO.PUT ("*");

for I in 1..NUM PATHS loop
TEXTIO.PUT (7 °I);
INTIO.PUT (INT_16 (MESSAGE.PATH(I)),3);

end loop;
TEXTIO.PUTLINE (" *");
TEXTIO.PUTLINE ('* Program Array:

*
TEXTIO.PUT ("* i);

for I in 1..NUM PROGS loop
TEXTIO.PUT (7- ");
INT_IO.PUT (INT_16 (MESSAGE.PROG(I)),3);
TEXT IO.PUT (.);

end loop;

TEXTIO.PUTLINE (" *");
TEXT IO.PUT ("* CODE_1 : 66);

INT_IO.PUT (MESSAGE.CODE_1,3);
TEXTIO.PUT (" CODE_2 : "°);
INTIO.PUT (MESSAGE.CODE_2,3);
TEXTIO.PUT (" Message Code :

105

INTIO.PUT (MESSAGE.MESSAGECODE);
TEXTIO.PUTLINE (" *");

TEXT IO.PUT LINE
***** ***** ************* ***************

********* ********* ****

end PRINTMESSAGE;

end PRINTOUT;

C. AUV FLOW MAIN ADA PROGRAMS

1. MARS.ADA

with COMMON;
use COMMON;
with CHANNELS;
with CALENDAR;
use CALENDAR;
with COMLAYER;

procedure MARS is

INMESSAGE : MESSAGEFORM; -- input message
FIRST MESSAGE : CONFIG_MESSAGE; -- initialization message
-- that contains the chosen routing strategy
SECONDMESSAGE : PERIODMESSAGE; -- initialization message
-- that contains the interval of repetition for the
-- AUV flow execution
LOCATION : constant PROGRAMS := MARS; -- local

-- processor ID
STOPPER : constant INTEGER := 100; -- number of
-- loop iterations to be run by the AUV flow simulation
NUMBEROFINPUTS: constant NATURAL := 3; -- number of used
-- communication channel inputs
WHICHCHANNEL: INTEGER; -- returned by the call to
-- primitive READ of the package CHANNELS
-- indicating from which channel the message comes in.
NUMBEROFOUTPUTS: constant NATURAL := 3; -- number of used
-- communication channel outputs
-- This task receives PILOTUPDATE message from task
-- VEHICLE SYS and
-- APORDERS message from task GUIDANCE and sends VSORDERS
-- message to task VEHICLESYS
task AUTOPILOT is

entry AP ORDERS (PILOT MESSAGE : in MESSAGEFORM);
entry PILOTUPDATE (PILOTMESSAGE : in MESSAGEFORM);

end;

106

-- This task controls the frequency of execution of the AUV
-- flow.It receives the period interval to be used from
-- main program MARS during initialization.
task TIMER is

entry SETTIMER(SETPERIOD: in DURATION);
end;

-- This task accepts message GO from from task TIMER and
-- message VSORDERS from task AUTO PILOT and sends
-- message SYSSTATUS to task NAVIGATION, message
-- UPDATESONAR to task SONAR, message TO MONITOR to task
-- MONITOR and message PILOTUPDATE to task AUTOPILOT.
-- The entry FIN is not used in this implementation.
task VEHICLE SYS is

entry VS ORDERS (VSMESSAGE : in MESSAGEFORM)
entry GO
entry FIN

end;

-- communication channels that are used
OutToEarth : CHANNELS.CHANNELREF :=
CHANNELS.OUTPARAMETERS (2);
InFromEarth : CHANNELS.CHANNELREF
CHANNELS.INPARAMETERS (2);
InFromVenus : CHANNELS.CHANNELREF :=
CHANNELS.INPARAMETERS (4);
OutToVenus : CHANNELS.CHANNELREF
CHANNELS.OUTPARAMETERS (4);
InFromPluto : CHANNELS.CHANNELREF
CHANNELS.INPARAMETERS (5);
OutToPluto : CHANNELS.CHANNELREF :=
CHANNELS.OUTPARAMETERS (5);

-- Array that contains the input communication channels.
-- This array isused by the call to primitive READ of the
-- package CHANNELS.
MARS ARRAY: CHANNELS.CHANNELARRAY(O..NUMBEROFINPUTS-l)
:= (InFromEarth, InFromVenus, InFromPluto);

-- This array enables each input communication channel
-- individually for use with primitive READ of package
-- CHANNELS.It is associated with MARS ARRAY.
MARSGUARD: CHANNELS.GUARDARRAY(O..NUMBEROFINPUTS-l) :=

(TRUE, TRUE, TRUE);--all input channels are
-- enabled

-- Array that contains the output communication channels
-- OUTARRAY:
CHANNELS.CHANNELARRAY(O..NUMBER OF OUTPUTS-1) :=

(OutToEarth, OutToVenus, OutToPluto);

107

-- Table that defines the routing strategy to be used. The
-- type OUT TABLE is defined in package COMMON.
MARSTABLE: OUTTABLE(EARTH..PLUTO,
O..NROFOUTPUTS(MARS)-1);

-- This procedure is used for the instantiation of the
-- package COMLAYER. It is used by task QUE in package
-- COMLAYER when sending messages to local tasks AUTOPILOT
-- and VEHICLE SYS.
procedure SENDITFROMMARS (MESSAGE in MESSAGEFORM;

MESS : out BOOLEAN) is

MESSAGESENT : BOOLEAN := FALSE;

begin
case MESSAGE.DESTIN is

when TASKAUTOPILOT =>
case MESSAGE.ENTCALL is

when APORDERS =>
select

AUTOPILOT.APORDERS (MESSAGE);
MESSAGESENT := TRUE;

or
delay 0.0;

end select;
when PILOTUPDATE =>

select
AUTO PILOT.PILOTUPDATE (MESSAGE);
MESSAGESENT := TRUE;

or
delay 0.0;

end select;
when others => null; -- Not a valid call

end case;
when TASKTIMER =>

case MESSAGE.ENT CALL is
when others => null; -- Not a valid call

end case;
when TASKVEHICLESYS =>

case MESSAGE.ENTCALL is
when VSORDERS =>

select
VEHICLESYS.VSORDERS (MESSAGE);
MESSAGESENT := TRUE;

or
delay 0.0;

end select;
when others => null; -- Not a valid call

end case;
when others => null; -- Not a valid task

end case;

108

MESS := MESSAGESENT;
return;

end SENDITFROMMARS;

-- instantiates the package for communication layer.
package MARS LAYER is new COMLAYER(SENDITFROMMARS);
use MARSLAYER;

task body AUTOPILOT is
PILOTINT : constant DURATION := 0.04;
IN_TASK, NEWSYS, TALK : MESSAGE_FORM;
OPEN1: BOOLEAN := TRUE;
OPEN2: BOOLEAN := TRUE;

begin

loop
while (OPEN1 or OPEN2) loop

select
when OPEN1 =>

accept PILOT UPDATE (PILOTMESSAGE : in
MESSAGEFORM) do

NEW_SYS := PILOTMESSAGE;
OPEN1 := FALSE;

end PILOTUPDATE;
or

when OPEN2 =>
accept APORDERS (PILOTMESSAGE : in

MESSAGEFORM) do
INTASK := PILOTMESSAGE;
OPEN2 := FALSE;

end APORDERS;
or

terminate;
end select;

end loop;

OPEN1 := TRUE;
OPEN2 := TRUE;

delay PILOTINT;
INTASK.ORIGIN := TASKAUTOPILOT;
INTASK.DESTIN TASKSCREEN;
INTASK.ENTCALL OUTPUT;
INTASK.MESSAGECODE := 78;
-- INOUT.SEND(INTASK); -- debugging message

INTASK.ORIGIN := TASKAUTOPILOT;

109

INTASK.DESTIN := TASKVEHICLE_SYS;
INTASK.ENT CALL := VS_ORDERS;
INOUT.SEND (INTASK);

end loop;

end AUTOPILOT;

-- This task controls the frequency of execution of the
-- AUV flow. It receives the period interval to be used
-- from main program MARS
-- during initialization.
task body TIMER is

COUNT : INTEGER := 0
TALK : MESSAGEFORM;
NEXTTIME: CALENDAR.TIME;
INTERVAL: DURATION;

begin
accept SETTIMER(SETPERIOD: in DURATION) do

INTERVAL := SETPERIOD;
end SETTIMER;
NEXTTIME := CALENDAR.CLOCK;
loop

delay NEXTTIME - CALENDAR.CLOCK;
VEHICLE SYS.GO;
COUNT := COUNT + 1;
exit when COUNT = STOPPER;
NEXTTIME := NEXTTIME + INTERVAL;

end loop;

delay 3.0;
TALK := SHUTDOWNMESSAGE;
TALK.DESTIN := LOOP TASK;
TALK.MESSAGECODE := 99;
INOUT.SEND (TALK);

end TIMER;

task body VEHICLESYS is
VEHICLEINT : constant DURATION := 0.08;
INTASK, TALK : MESSAGE FORM;
NEXT TIME : CALENDAR.TIME := CLOCK + VEHICLEINT;
PRE_STAMP : CALENDAR.TIME;
START STAMP : CALENDAR.TIME;
TIMER : DURATION;
FINAL : DURATION;
COUNT : INTEGER := 0;

begin

110

PRESTAMP := CLOCK;
TALK.ORIGIN TASK VEHICLESYS;
TALK.DESTIN TASK SCREEN
TALK.ENT CALL OUTPUT
TALK.MESSAGE CODE 30
INOUT.SEND (TALK);
loop

select
accept GO;
STARTSTAMP := CLOCK;
delay VEHICLE_INT;

INTASK.ORIGIN TASKVEHICLE_SYS;
IN TASK.DESTIN TASK_SCREEN;
IN TASK.ENT CALL := OUTPUT;
INTASK.MESSAGECODE := 71;
-- INOUT.SEND (INTASK); -- debugging message

IN TASK.ORIGIN TASK VEHICLE SYS;
INTASK.DESTIN TASK NAVIGATION ;
INTASK.ENTCALL SYS_STATUS
INOUT.SEND (IN_TASK);

IN TASK.ORIGIN := TASK VEHICLE SYS;
INTASK.DESTIN TASK SONAR
INTASK.ENTCALL UPDATESONAR
INOUT.SEND (IN_TASK);

INTASK.ORIGIN := TASKVEHICLESYS;
INTASK.DESTIN TASKMONITOR
IN TASK.ENT CALL := TO MONITOR
INOUT.SEND (IN_TASK);

INTASK.ORIGIN TASKVEHICLESYS;
INTASK.DESTIN TASK AUTO PILOT ;
INTASK.ENT CALL := PILOTUPDATE
INOUT.SEND (IN_TASK);

accept VS_ORDERS (VSMESSAGE : in MESSAGEFORM) do
INTASK := VSMESSAGE;

end VSORDERS;

TIMER CLOCK - START_STAMP;
COUNT := COUNT + 1;
TALK.ORIGIN TASKVEHICLESYS;
TALK.DESTIN := TASKSCREEN
TALK.ENTCALL := OUTPUT
TALK.TIMESTAMP := TIMER

111

TALK.MESSAGECODE := 20
INOUT.SEND (TALK);

exit when COUNT = STOPPER;
or

accept FIN;
exit;

end select;
end loop;

FINAL := CLOCK - PRESTAMP;

TALK.ORIGIN := TASKVEHICLESYS;
TALK.DESTIN := TASKSCREEN
TALK.ENT CALL := OUTPUT
TALK.TIME_STAMP := FINAL
TALK.MESSAGECODE := 31
INOUT.SEND (TALK);

end VEHICLE_SYS;

begin

-- reads the routing strategy initialization message
CONFIGIO.READ(InFromEarth, FIRSTMESSAGE);
FIRST MESSAGE.MASK(MARS) := TRUE;
-- passes the routing strategy message to PLUTO
CONFIGIO.WRITE(OutToPluto, FIRSTMESSAGE);

-- reads the routing strategy message from VENUS and sends
-- it back to EARTH
CONFIGIO.READ(InFromVenus, FIRSTMESSAGE);
CONFIGIO.WRITE(OutToEarth, FIRSTMESSAGE);

-- reads the period interval initialization message
PERIODIO.READ(InFromEarth, SECONDMESSAGE);
SECONDMESSAGE.MASK(MARS) := TRUE;

-- passes the period interval message to PLUTO
PERIODIO.WRITE(OutToPluto, SECONDMESSAGE);

-- reads the period interval message from VENUS and sends
-- it back to EARTH
PERIODIO.READ(InFromVenus, SECONDMESSAGE);
PERIODIO.WRITE(OutToEarth, SECONDMESSAGE);

-- initialize the routing strategy table
MARSTABLE := MARSCONFIG(FIRSTMESSAGE.ROUTINFO);

-- set the timer with the period interval
TIMER. SET_TIMER(SECONDMESSAGE.PERIOD INFO);

112

-- initialization of task INOUT
INOUT.INITl(LOCATION); -- main node program ID
INOUT.INIT2(OUTARRAY); -- output channel array
INOUT.INIT3(MARS_TABLE); -- routing table

loop
-- Reads message from a input channel
MESSAGEIO.READ(MARSARRAY, MARS_GUARD, WHICHCHANNEL,

INMESSAGE);

-- Increments MARS counter in the PROG(2) message field
INMESSAGE.PROG(2) := INMESSAGE.PROG(2) + 1;

-- if a shutdown message has arrived exit the loop
if IN MESSAGE.ORIGIN = SHUTDOWN and INMESSAGE.DESTIN

- HOST TASK then
IN MESSAGE.PROG(2) := -1 * INMESSAGE.PROG(2);
delay 1.0;
INOUT.INCOMING (INMESSAGE);
exit;

end if;

-- sends input message to the traffic handler
INOUT.INCOMING (INMESSAGE);

end loop;

end MARS;

2. PLUTO.ADA

with COMMON;
use COMMON;
with CHANNELS;
with CALENDAR;
use CALENDAR;
with COMLAYER;

procedure PLUTO is

use COMMON;
use CALENDAR;

INMESSAGE : MESSAGEFORM; -- input message

FIRST MESSAGE : CONFIGMESSAGE; -- initialization message
-- that contains the chosen routing strategy

113

SECONDMESSAGE : PERIOD MESSAGE; -- initialization message
-- that contains the interval of repetition of the
-- AUV flow execution

LOCATION : constant PROGRAMS PLUTO; -- local
-- processor ID

NUMBER OF INPUTS: constant NATURAL := 2; -- number of
-- used communication channel inputs

WHICHCHANNEL : INTEGER; -- returned by the call to
-- primitive READ of package CHANNELS indicating from
-- which channel the message comes in.
NUMBEROFOUTPUTS: constant NATURAL := 2; -- number of used
-- communication channel outputs
-- This task receives message MONITORUPDATE from task
-- MONITOR and message OBJECT ALERT from task AVOIDANCE. It
-- sends message UPDATEORDERS to task GUIDANCE.
task EXE MISSION is

entry OBJECT ALERT (EXEMESSAGE : in MESSAGE FORM);
entry MONITOR_UPDATE (EXEMESSAGE : in MESSAGEFORM);

end;

-- This task receives message TOMONITOR from task
-- VEHICLESYS and sends message MONITORUPDATE to task
-- EXE MISSION
task MONITOR is

entry TO-MONITOR (MON MESSAGE : in MESSAGE_FORM);
end;

-- communication channels that are used
OutToSaturn : CHANNELS.CHANNELREF :=
CHANNELS.OUTPARAMETERS (4);
InFromSaturn: CHANNELS.CHANNELREF :=
CHANNELS.INPARAMETERS (4);
InFromMars : CHANNELS.CHANNEL REF :=
CHANNELS.INPARAMETERS (3);
OutToMars : CHANNELS.CHANNELREF :=
CHANNELS.OUTPARAMETERS(3);

-- Array that contains the input communication channels.
-- This array is used by the call to primitive READ of
-- package CHANNELS.
PLUTOARRAY: CHANNELS.CHANNELARRAY(0..NUMBEROFINPUTS-I)
:= (InFromSaturn, InFromMars);

-- This array enables each input communication channel
-- individually
-- for use with primitive READ of package CHANNELS.
-- It is associated with PLUTOARRAY.

114

PLUTO GUARD: CHANNELS.GUARDARRAY(0..NUMBEROFINPUTS-I)
:= (TRUE, TRUE);

-- Array that contains the output communication channels
-- OUTARRAY:
CHANNELS.CHANNEL ARRAY(0..NUMBER OF OUTPUTS-i)

(OutToMars, OutToSaturn);

-- Table that defines the routing strategy to be used. The
-- type
-- OUTTABLE is defined in package COMMON.
PLUTO TABLE:
OUTTABLE(EARTH..PLUTO,0..NROFOUTPUTS(PLUTO)-1);

-- This procedure is used for the instantiation of the
-- package COMLAYER. It is used by task QUE in package
-- COMLAYER when sending messages to local tasks.
procedure SENDITFROMPLUTO (MESSAGE : in MESSAGEFORM;

MESS : out BOOLEAN) is

MESSAGESENT : BOOLEAN := FALSE;
begin

case MESSAGE.DESTIN is
when TASK EXE MISSION =>

case MESSAGE.ENT CALL is
when OBJECTALERT. =>

select
EXE MISSION.OBJECTALERT(MESSAGE);
MESSAGE_SENT := TRUE;

or
delay 0.0;

end select;
when MONITORUPDATE =>

select
EXE MISSION.MONITOR UPDATE(MESSAGE);
MESSAGE_SENT := TRUE;

or
delay 0.0;

end select;
when others => null; -- Not a valid call

end case;
when TASK MONITOR =>

case MESSAGE.ENT CALL is
when TOMONITOR =>

select
MONITOR.TO MONITOR (MESSAGE);
MESSAGESENT := TRUE;

or
delay 0.0;

end select;
when others => null; -- Not a valid call

115

end case;
when others => null; -- not a valid task

end case;

MESS := MESSAGESENT;
return;

end SENDITFROMPLUTO;

-- instantiates the package for communication layer
package PLUTOLAYER is new COMLAYER(SENDITFROMPLUTO);
use PLUTOLAYER;

task body EXEMISSION is

EXEINT: constant DURATION := 0.06;
TALK, IN-TASK : MESSAGE-FORM;
OPEN1: BOOLEAN TRUE;
OPEN2: BOOLEAN := TRUE;

begin

loop
while (OPEN1 or OPEN2) loop

select
when OPEN1 =>

accept MONITORUPDATE (EXE MESSAGE : in
MESSAGEFORM) do

INTASK := EXEMESSAGE;
OPEN1 := FALSE;

end MONITORUPDATE;
or

when OPEN2 =>
accept OBJECTALERT (EXEMESSAGE : in
MESSAGE FORM) do

IN TASK := EXE MESSAGE;
OPEN2 := FALSE;

end OBJECTALERT;
or

terminate;
end select;

end loop;

OPEN1 := TRUE;
OPEN2 := TRUE;
delay EXEINT;

INTASK.ORIGIN := TASKEXEMISSION;
INTASK.DESTIN := TASK SCREEN;
INTASK.ENTCALL := OUTPUT;
INTASK.MESSAGECODE := 76;

116

-- INOUT.SEND (INTASK); debugging message

INTASK.ORIGIN := TASKEXEMISSION;
IN TASK.DESTIN := TASK GUIDANCE;
IN TASK.ENT CALL := UPDATEORDERS;
INOUT.SEND (INTASK);

end loop;
end EXEMISSION;

-- This task receives message TO-MONITOR from task
-- VEHICLESYS and sends message MONITORUPDATE to task
-- EXEMISSION
task body MONITOR is

MONITORINT: constant DURATION := 0.03;
IN_TASK, TALK : MESSAGEFORM;

begin

loop
select

accept TOMONITOR (MONMESSAGE : in MESSAGEFORM)
do

IN TASK := MON MESSAGE;
end TO_MONITOR; -
delay MONITORINT;

INTASK.ORIGIN TASKMONITOR;
INTASK.DESTIN := TASKSCREEN;
INTASK.ENTCALL := OUTPUT;
INTASK.MESSAGECODE := 74;
-- INOUT.SEND(INTASK); -- debugging message

INTASK.DESTIN := TASKEXEMISSION;
INTASK.ORIGIN := TASKMONITOR;
INTASK.ENTCALL := MONITORUPDATE;

INOUT.SEND (IN_TASK);
or

terminate;
end select;

end loop;

end MONITOR;

begin

-- reads the routing strategy initialization message
CONFIGIO.READ(InFromMars, FIRSTMESSAGE);

117

FIRSTMESSAGE.MASK(PLUTO) := TRUE;

-- passes the routing strategy message to SATURN
CONFIGIO.WRITE(OutToSaturn, FIRSTMESSAGE);

-- reads the period interval initialization message
PERIODIO.READ(InFromMars, SECONDMESSAGE);
SECONDMESSAGE.MASK(PLUTO) := TRUE;

-- passes the period interval message to SATURN
PERIODIO.WRITE(OutToSaturn, SECONDMESSAGE);

-- initialize the routing strategy table
PLUTOTABLE := PLUTOCONFIG(FIRSTMESSAGE.ROUTINFO);

-- initialization of task INOUT
INOUT.INIT1(LOCATION); -- main node program ID
INOUT.INIT2(OUTARRAY); -- output channel array
INOUT.INIT3(PLUTO_TABLE); -- routing table

loop
-- Reads message from a input channel
MESSAGEIO.READ(PLUTOARRAY, PLUTOGUARD, WHICHCHANNEL,

IN_MESSAGE);

-- increments PLUTO counter in PROG(5) message field
INMESSAGE.PROG(5) := INMESSAGE.PROG(5) + 1;

-- if a shutdown message has arrived exit the loop
if IN MESSAGE.ORIGIN = SHUTDOWN then

INMESSAGE.DESTIN HOSTTASK;
INMESSAGE.PROG(5) := -1 * INMESSAGE.PROG(5);
INOUT.INCOMING (INMESSAGE);
exit;

end if;

-- sends input message to the traffic handler(task INOUT)
INOUT.INCOMING (INMESSAGE);

end loop;
end PLUTO;

3. SATURN..ADA

with COMMON;
use COMMON;
with CHANNELS;
with CALENDAR;
use CALENDAR;
with COMLAYER;

118

procedure SATURN is

INMESSAGE : MESSAGEFORM; -- inputmessage
FIRST MESSAGE : CONFIGMESSAGE; -- initialization message
-- that contains the chosen routing strategy
SECONDMESSAGE : PERIODMESSAGE; -- initialization message
-- that contains the interval of repetition of the
-- AUV flow execution.
LOCATION : constant PROGRAMS SATURN; -- local
-- processor ID

NUMBER OF INPUTS: constant NATURAL := 2; -- number of
-- used communication channels inputs
WHICHCHANNEL: INTEGER; -- returned by the call to
-- primitive READ of package CHANNELS indicating from
-- which channel the message comes in.
NUMBER OF OUTPUTS : constant NATURAL := 2; -- number of

-- used communication channels output.

task AVOIDANCE is
entry OBAVOID (AVOIDMESSAGE : in MESSAGEFORM);

end;

task GUIDANCE is
entry UPDATENAV (GUIDEMESSAGE : in MESSAGEFORM);
entry UPDATEORDERS (GUIDEMESSAGE : in MESSAGEFORM);
entry AVOID_REC (GUIDEMESSAGE : in MESSAGEFORM);

end;

-- communication channels that are used
OutToVenus : CHANNELS.CHANNELREF

CHANNELS.OUT PARAMETERS (3);
InFromVenus : CHANNELS.CHANNELREF :=

CHANNELS.IN PARAMETERS (3);
InFromPluto : CHANNELS.CHANNELREF :=

CHANNELS.IN PARAMETERS (2);
OutToPluto : CHANNELS.CHANNELREF

CHANNELS.OUTPARAMETERS (2);

-- Array that contains the input communication channels.
-- This array is used by the call to primitive READ of
-- package CHANNELS.

SATURNARRAY:
CHANNELS.CHANNELARRAY(O..NUMBEROFINPUTS-I) :=

(InFromVenus, InFromPluto);

-- This array enables each input communication channel
-- individually

-- for use with primitive READ of package CHANNELS.
-- It is associated with SATURNARRAY.

119

SATURN GUARD: CHANNELS.GUARDARRAY(O..NUMBEROFINPUTS-i)
:= (TRUE, TRUE);

-- Array that contains the output communication channels
OUTARRAY:

CHANNELS.CHANNELARRAY(0..NUMBEROFOUTPUTS-i)
:= (OutToVenus, OutToPluto);

-- Table that defines the routing strategy to be used. The
-- type OUTTABLE is defined in package COMMON

SATURNTABLE: OUTTABLE(EARTH..PLUTO,
0..NROFOUTPUTS(SATURN)-l);

-- This procedure is used for the instantiation of the
-- package COMLAYER. It is used by task QUE in package
-- COMLAYER when sending messages to local tasks.

procedure SENDITFROMSATURN (MESSAGE : in MESSAGEFORM;
MESS : out BOOLEAN) is

MESSAGESENT : BOOLEAN := FALSE;

begin
case MESSAGE.DESTIN is

when TASK AVOIDANCE =>
case MESSAGE.ENTCALL is

when OB AVOID =>
select

AVOIDANCE.OBAVOID (MESSAGE);
MESSAGESENT := TRUE;

or
delay 0.0;

end select;
when others => null; -- not a valid call

end case;
when TASK GUIDANCE =>

case MESSAGE.ENT CALL is
when UPDATENAV =>

select
GUIDANCE.UPDATENAV (MESSAGE);
MESSAGESENT := TRUE;

or
delay 0.0;

end select;
when UPDATEORDERS =>

select
GUIDANCE.UPDATEORDERS (MESSAGE);
MESSAGESENT := TRUE;

or
delay 0.0;

end select;
when AVOIDREC =>

120

select
GUIDANCE.AVOIDREC (MESSAGE);
MESSAGESENT := TRUE;

or
delay 0.0;

end select;
when others => null; -- Not a valid call

end case;
when others => null; -- not a valid task

end case;

MESS := MESSAGESENT;
return;

end SENDITFROMSATURN;

-- instantiates the package for communication layer
package SATURNLAYER is new COMLAYER(SENDITFROMSATURN);
use SATURNLAYER;

task body AVOIDANCE is

AVOIDANCEINT: constant DURATION := 0.08;
TALK, INTASK : MESSAGE-FORM;

begin

loop
select

accept OB AVOID (AVOIDMESSAGE : in MESSAGEFORM) do
IN TASK := AVOIDMESSAGE;

end OB_AVOID;

delay AVOIDANCE_INT;

INTASK.ORIGIN := TASKAVOIDANCE;
INTASK.DESTIN := TASKSCREEN;
IN TASK.ENT CALL := OUTPUT;
IN TASK.MESSAGE CODE := 75;
-- INOUT.SEND(INTASK); -- debugging message

IN TASK.ORIGIN := TASK AVOIDANCE ;
INTASK.DESTIN := TASKGUIDANCE
INTASK.ENT CALL := AVOIDREC
INOUT.SEND (INTASK);

IN TASK.ORIGIN := TASK AVOIDANCE ;
IN TASK.DESTIN := TASK EXE MISSION;
IN TASK.ENT CALL OBJECTALERT
INOUT.SEND (IN_TASK);

121

or
terminate;

end select;
end loop;

end AVOIDANCE;

task body GUIDANCE is

GUIDANCEINT: constant DURATION := 0.07;
EMERG, IN-TASK, GOTO, WEARE, TALK : MESSAGEFORM;
OPEN1: BOOLEAN := TRUE;
OPEN2: BOOLEAN := TRUE;
OPEN3: BOOLEAN := TRUE;

begin

loop

while (OPEN1 or OPEN2 or OPEN3) loop
select

when OPEN1 =>
accept UPDATENAV (GUIDEMESSAGE : in
MESSAGEFORM) do

WE ARE := GUIDEMESSAGE;
OPEN1 := FALSE;

end UPDATENAV;
or

when OPEN2 =>
accept AVOIDREC (GUIDEMESSAGE : -n

MESSAGEFORM) do
GO_TO := GUIDEMESSAGE;
OPEN2 := FALSE;

end AVOIDREC;

or
when OPEN3 =>

accept UPDATEORDERS (GUIDEMESSAGE : in
MESSAGEFORM) do

GOTO := GUIDEMESSAGE;
OPEN3 := FALSE;

end UPDATEORDERS;
or

terminate;
end select;

end loop;

OPEN1 := TRUE;

122

OPEN2 := TRUE;

OPEN3 := TRUE;

delay GUIDANCEINT;

INTASK.ORIGIN : TASKGUIDANCE;
IN TASK.DESTIN := TASKSCREEN;
IN TASK.ENTCALL OUTPUT;
INTASK.MESSAGECODE 77;
-- INOUT.SEND(INTASK); -- debugging message

INTASK.ORIGIN := TASKGUIDANCE ;
IN TASK.DESTIN := TASKAUTOPILOT;
INTASK.ENTCALL APORDERS
INOUT.SEND (INTASK);

end loop;

end GUIDANCE;

begin

-- reads the routing strategy initialization message
CONFIGIO.READ(InFromPluto, FIRSTMESSAGE);
FIRST_MESSAGE.MASK(SATURN) := TRUE;

-- passes the routing strategy to VENUS
CONFIGIO.WRITE(OutToVenus, FIRSTMESSAGE);

-- reads the period interval initialization message
PERIODIO.READ(InFromPluto, SECONDMESSAGE);
SECONDMESSAGE.MASK(SATURN) := TRUE;

-- passes the period interval message to SATURN.
PERIODIO.WRITE(OutToVenus, SECONDMESSAGE);

-- initialize the routing strategy table
SATURNTABLE := SATURNCONFIG(FIRSTMESSAGE.ROUTINFO);

-- initialization of task INOUT
INOUT.INITI(LOCATION); -- main node program ID
INOUT.INIT2(OUTARRAY); -- output channel array
INOUT.INIT3(SATURNTABLE); -- routing table

loop
-- Reads message from a input channel
MESSAGEIO.READ (SATURNARRAY, SATURNGUARD,

WHICHCHANNEL,INMESSAGE);

-- increments SATURN counter in PROG(4) message field
INMESSAGE.PROG(4) := INMESSAGE.PROG(4) + 1;

123

-- if a shutdown message has arrived exit the loop
if IN MESSAGE.ORIGIN = SHUTDOWN and INMESSAGE.DESTIN =

HOST TASK then
IN MESSAGE.PROG(4) : -1 * INMESSAGE.PROG(4);
INOUT.INCOMING (INMESSAGE);
exit;

end if;

-- sends input message to the traffic handler(task INOUT)
INOUT.INCOMING (INMESSAGE);

end loop;
end SATURN;

4. VENUS.ADA

with COMMON;
use COMMON;
with CHANNELS;
with CALENDAR;
use CALENDAR;
with COMLAYER;

procedure VENUS is

INMESSAGE : MESSAGEFORM; -- input message
FIRSTMESSAGE : CONFIG_MESSAGE; -- initialization message
-- that contains the chosen routing strategy
SECONDMESSAGE : PERIODMESSAGE; -- initialization message
-- that contains the interval of repetition of the
-- AUV flow execution
LOCATION : constant PROGRAMS := VENUS; -- local
-- processor ID
NUMBEROFINPUTS: constant NATURAL := 2; -- number of
-- used communication channel inputs
WHICHCHANNEL: INTEGER; -- returned by the call to
-- primitive READ of package CHANNELS indicating from
-- which channel the message comes in.
NUMBEROFOUTPUTS: constant NATURAL := 2; -- number of
-- used communication channel outputs

task NAVIGATION is
entry SONAROBSTICLE (NAVMESSAGE : in MESSAGEFORM);
entry SYS-STATUS (NAVMESSAGE : in MESSAGEFORM);

end;

task SONAR is
entry UPDATESONAR (SONARMESSAGE : in MESSAGEFORM) ;

end;

124

-- communication channels that are used
InFromMars : CHANNELS.CHANNELREF :=
CHANNELS.INPARAMETERS (2);
OutToMars : CHANNELS.CHANNELREF
CHANNELS.OUTPARAMETERS (2);
InFromSaturn : CHANNELS.CHANNELREF
CHANNELS.INPARAMETERS (5);
OutToSaturn : CHANNELS.CHANNELREF :=
CHANNELS.OUTPARAMETERS (5);

-- Array that contains the input communication channels.
-- This array is used by the call to primitive READ of the
-- package CHANNELS.
VENUSARRAY:
CHANNELS.CHANNELARRAY(O..NUMBEROFINPUTS-1) :=
(InFromMars, InFromSaturn);
-- This array enables each input communication channel
-- individually for use with primitive READ of package
-- CHANNELS.It is associated with VENUS ARRAY.
VENUSGUARD: CHANNELS.GUARDARRAY(O..NUMBEROFINPUTS-I)
:= (TRUE, TRUE);

-- Array that contains the output communication channels
OUTARRAY: CHANNELS.CHANNELARRAY(0..NUMBEROFOUTPUTS-i)
:= (OutToMars, OutTosaturn);

-- Table that defines the routing strategy to be used. The
-- type OUTTABLE is defined in package COMMON
VENUSTABLE: OUTTABLE(EARTH..PLUTO,
0..NROFOUTPUTS(VENUS)-i);

-- This procedure is used for the instantiation of the
-- package COMLAYER. It is used by task QUE in package
-- COMLAYER when sending messages to local tasks.
procedure SENDITFROMVENUS (MESSAGE : in MESSAGEFORM;

MESS : out BOOLEAN) is

MESSAGESENT : BOOLEAN := FALSE;
begin

case MESSAGE.DESTIN is
when TASK NAVIGATION =>

case MESSAGE.ENT CALL is
when SONAROBSTICLE =>

select
NAVIGATION.SONAR OBSTICLE(MESSAGE);
MESSAGESENT := TRUE;

or
delay 0.0;

end select;
when SYS STATUS =>

select

125

NAVIGATION.SYSSTATUS(MESSAGE);
MESSAGESENT := TRUE;

or
delay 0.0;

end select;
when others => null; -- Not a valid call

end case;
when TASK SONAR =>

case MESSAGE.ENT CALL is
when UPDATESONAR =>

select
SONAR.UPDATESONAR (MESSAGE);
MESSAGESENT := TRUE;

or
delay 0.0;

end select;
when others => null; -- Not a valid call

end case;
when others => null; -- not a valid task

end case;

MESS := MESSAGESENT;
return;

end SENDITFROMVENUS;

-- instantiates the package for communication layer
package VENUSLAYER is new COMLAYER(SENDITFROMVENUS);
use VENUSLAYER;

-- This task receives SYSSTATUS message from task
-- VEHICLE SYS and SONAROBSTICLE message from task SONAR.
-- It sends UPDATE_NAV message to task GUIDANCE.
task body NAVIGATION is

NAVIGATIONINT: constant DURATION := 0.05;
SYNCINT : DURATION := 0.03;
INTASK, TALK : MESSAGEFORM;
OPEN1: BOOLEAN := TRUE;
OPEN2: BOOLEAN := TRUE;

begin

loop
while (OPENI or OPEN2) loop

select
when OPEN1 =>

accept SYS STATUS (NAVMESSAGE : in
MESSAGEFORM) do

INTASK := NAVMESSAGE;
OPEN1 := FALSE;

end SYSSTATUS;

126

or
when OPEN2 =>

accept SONAROBSTICLE (NAV MESSAGE in
MESSAGEFORM) do

IN TASK := NAVMESSAGE;
OPEN2 := FALSE;

end SONAROBSTICLE;
or

terminate;
end select;

end loop;

OPEN1 := TRUE;

OPEN2 TRUE;

delay NAVIGATIONINT;

INTASK.ORIGIN : TASKNAVIGATION;
INTASK.DESTIN := TASKSCREEN;
INTASK.ENTCALL : OUTPUT;
INTASK.MESSAGECODE := 73;
-- INOUT.SEND(INTASK); -- debugging message

INTASK.ORIGIN := TASK NAVIGATION;
INTASK.DESTIN : TASKGUIDANCE;
INTASK.ENTCALL := UPDATENAY;
INOUT.SEND (INTASK);

end loop;

end NAVIGATION;

task body SONAR is

SONARINT: constant DURATION := 0.02;
TALK, IN TASK : MESSAGEFORM ;
EMERGMESSAGE : MESSAGEFORM ;

begin

loop
select

accept UPDATE_SONAR (SONARMESSAGE : in
MESSAGE_FORM) do

IN TASK := SONARMESSAGE;
end UPDATESONAR;

delay SONARINT;

127

INTASK.ORIGIN := TASKSONAR;
INTASK.DESTIN := TASKSCREEN;
IN TASK.ENT CALL OUTPUT;
INTASK.MESSAGECODE 72;
-- INOUT.SEND(IN_TASK); -- debugging message

EMERGMESSAGE.ORIGIN := TASKSONAR
EMERGMESSAGE.DESTIN := TASKAVOIDANCE;
EMERGMESSAGE.ENTCALL OBAVOID
INOUT.SEND (EMERGMESSAGE)

INTASK.ORIGIN := TASKSONAR
INTASK.DESTIN TASKNAVIGATION;
INTASK.ENT CALL := SONAROBSTICLE ;
INOUT.SEND (INTASK);

or
terminate;

end select;
end loop;

end SONAR;

begin

-- reads the routing strategy initialization message
CONFIGIO.READ(InFromSaturn, FIRSTMESSAGE);
FIRSTMESSAGE.MASK(VENUS) := TRUE;
-- passes the routing strategy message to MARS
CONFIGIO.WRITE(OutToMars, FIRSTMESSAGE);

-- reads the period interval initialization message
PERIODIO.READ(InFromSaturn, SECONDMESSAGE);
SECONDMESSAGE.MASK(VENUS) := TRUE;

-- passes the period interval message to MARS
PERIODIO.WRITE(OutToMars, SECONDMESSAGE);

-- initialize the routing strategy table
VENUSTABLE := VENUSCONFIG(FIRSTMESSAGE.ROUTINFO);

-- initialization of task INOUT
INOUT.INIT1(LOCATION); -- main node program ID
INOUT.INIT2(OUTARRAY); -- output channel array
INOUT.INIT3(VENUSTABLE); -- routing table

loop
-- Reads message from a input channel
MESSAGEIO.READ (VENUSARRAY, VENUS_GUARD,

WHICHCHANNEL, INMESSAGE);

128

-- increments VENUS counter in PROG(3) message field
INMESSAGE.PROG(3) := INMESSAGE.PROG(3) + 1;

-- if a shutdown message has arrived exit the loop
if INMESSAGE.ORIGIN = SHUTDOWN and INMESSAGE.DESTIN =

HOST TASK then
IN MESSAGE.PROG(3) := -1 * INMESSAGE.PROG(3);
INOUT.INCOMING (INMESSAGE);
exit;

end if;

-- sends input message to the traffic handler(task INOUT)
INOUT.INCOMING (INMESSAGE);

end loop;

end VENUS;

129

APPENDIX C: BASIC ADA PACKAGES USED IN TASK ALLOCATION

A. DISET.ADA

generic

type ATOM is range <>; -- Must be a discrete type

package DISCRETESET is

type SET is private;
type ATOM LIST is array (INTEGER range <>) of ATOM;
function CREATE return SET;
function UNION (A, B: SET) return SET;
function INTERSECTION (A, B : SET) return SET;
function DIFFERENCE (A, B: SET) return SET;
function COPY (A: SET) return SET;
function BUILDSET (L: ATOM LIST) return SET;
procedure INSERT (A: ATOM; S: in out SET);
procedure DELETE (A: ATOM; S: in out SET);
function MEMBER(A: ATOM; S: SET) return BOOLEAN;
function SUBSET(A, B: SET) return BOOLEAN;
function EQUAL(A,B: SET) return BOOLEAN;
function ISFULL(A: SET) return BOOLEAN;
procedure TAKEOUTMEMBER(A: in out SET;

OUTATOM: out ATOM;
SUCCESS: out BOOLEAN);

function COUNTMEMBERS(A: SET) return INTEGER;
procedure CLEARSET(S: in out SET);

private
type SET is array (ATOM'FIRST..ATOM'LAST) of BOOLEAN;

end DISCRETESET;

package body DISCRETESET is

function T return BOOLEAN renames TRUE;
function F return BOOLEAN renames FALSE;

function CREATE return SET is
begin

return(others => F);

130

end CREATE;

function UNION (A,B : SET) return SET is
begin

return A or B;
end UNION-;

function INTERSECTION (A,B: SET) return SET is
begin

return A and B;
end INTERSECTION;

function DIFFERENCE (A,B : SET) return SET is
begin

return A and (A xor B);
end DIFFERENCE;

function COPY (A: SET) return SET is
begin

return A;
end COPY;

function BUILDSET (L: ATOM LIST) return SET is

S: SET := CREATE;
begin

for I in L'RANGE loop
INSERT(L(I),S);

end loop;

return S;

end BUILDSET;

procedure INSERT (A: ATOM; S: in out SET) is

begin
S(A) := T;

end INSERT;

procedure DELETE (A: ATOM; S: in out SET) is

begin
S(A) := F;

end DELETE;

function MEMBER (A: ATOM; S: SET) return BOOLEAN is
begin

return S(A);
end MEMBER;

function SUBSET (A,B : SET) return BOOLEAN is

131

begin
return (A and B) = B;

end SUBSET;

function EQUAL (A,B: SET) return BOOLEAN is
begin

return A=B;
end EQUAL;

function ISFULL(A: SET) return BOOLEAN is

begin
for I in A'range loop

if A(I) = F then
return F;

end if;
end loop;
return T;

end ISFULL;

procedure TAKEOUTMEMBER(A: in out SET;
OUTATOM: out ATOM;
SUCCESS: out BOOLEAN) is

begin
SUCCESS := F;
for I in A'range loop

if A(I) = T then
OUT ATOM := I;
SUCCESS := T;
A(I) := F;
exit;

else
OUT ATOM := I;

end if;
end loop;

end TAKEOUTMEMBER;

function COUNTMEMBERS(A: SET) return INTEGER is

COUNT: INTEGER := 0;

begin
for I in A'range loop

if A(I) = T then
COUNT := COUNT + 1;

end if;
end loop;
return COUNT;

132

end COUNTMEMBERS;

procedure CLEARSET(S: in out SET) is

SUCCESS: BOOLEAN := TRUE;
A: ATOM;

begin
while SUCCESS loop

TAKEOUTMENBER(S,A,SUCCESS);
end loop;

end CLEARSET;

end DISCRETESET;

B. GRAPH2.ADA

generic

-- Types to be instantiated
type STANDARDELEMENT is private;
type KEYTYPE is private;

-- Function to be instantiated
with function ">"(K1, K2: KEYTYPE) return BOOLEAN;

-- Procedures to be instantiated
with procedure PROCESS(E: STANDARDELEMENT; EKEY:

KEYTYPE);

package GRAPH2_ADT is

-- Elements: A graph consists of nodes and edges. Although,
-- in general each node may contain many elements, this
-- package defines that each node will contain exactly one
-- element of type STANDARDELEMENT. Since an element
-- is assumed to have a unique key, each node is uniquely
-- identified by the key value of the element it contains.
-- The key value has a type KEYTYPE.

-- Structure: An edge is a one-to-one relationship between
-- a pair of distinct nodes. A pair of nodes can be
-- connected by at most one edge, but any node
-- can be connected to any collection of other nodes.

-- Domain: The number of elements in the graph is bounded.

133

type DGRAPH is private;
DGRAPHERROR: exception;

-- Operations: If G is a graph then reference to G-pre in a
-- postcondition is a reference to the value of G just
-- prior to the operation.

procedure INSERTNODE(G: in out DGRAPH;
TKEY: in KEYTYPE;
E: in STANDARDELEMENT;
SUCCESS: out BOOLEAN);

-- pre - None.
-- post - If G-pre is not full and does not contain an
-- element whose key value is e.key , then G contains e
-- and INSERTNODE is true, else INSERTNODE is false.

procedure INSERTEDGE(G: in out DGRAPH;
FROM KEY, TOKEY: in KEY-TYPE;
W: in STANDARDELEMENT;
SUCCESS: out BOOLEAN);

-- pre - None.
-- post - If KEY1 /= KEY2, and G-pre is not full,
-- contains nodes nl and n2 with elements whose key
-- values are KEY1 and KEY2, and does not contain an edge
-- connecting those nodes, then G contains an edge
-- connecting nl and n2 and INSERTEDGE is true, else
-- INSERTNODE is false.

procedure RETRIEVEEDGE(G: in out DGRAPH;
FROMKEY, TOKEY: in KEYTYPE;
W: out STANDARDELEMENT;
SUCCESS: out BOOLEAN);

-- pre - None.
-- post - Returns the weight and success = true if the
-- edge exists if the edge does not exist returns
-- success = false.

procedure DELETENODE(G: in out DGRAPH;
TKEY: in KEYTYPE;
SUCCESS: out BOOLEAN);

-- pre - None.
-- post - If G-pre contains node nl, whose element has key
-- value KEY1, then G does not contain nl or any of the
-- edges that connected n1 to other nodes in G-pre, and
-- DELETENODE is true, else DELETENODE is false.

134

procedure DELETEEDGE(G: in out DGRAPH;
TKFROM, TKTO: in KEY TYPE;
SUCCESS: out BOOLEAN);

-- pre - None.
-- post - If G-pre contains an edge connecting nodes whose
-- elements have key values KEY1 and KEY2 then G does not
-- contain that edge and DELETEEDGE is true, else
-- DELETEEDGE is false.

procedure UPDATENODE(G: in out DGRAPH;
TKEY: in KEYTYPE;
E: in STANDARDELEMENT;
SUCCESS: out BOOLEAN);

-- pre - None.
-- post - If G-pre contains element e-pre with key value
-- e.KEY1 then G contains e, but not e-pre, and Update is
-- true, else Update is false.

procedure UPDATEEDGE(G: in out DGRAPH;
FROMKEY, TOKEY: in KEYTYPE;
W: in STANDARDELEMENT;
SUCCESS: out BOOLEAN);

procedure RETRIEVENODE(G: in out DGRAPH;
TKEY: in KEYTYPE;
E: out STANDARD ELEMENT;
SUCCESS: out BOOLEAN);

-- pre - None.
-- post - If G-pre contains element E-pre with key value
-- KEYl, then E is E-pre and RETRIEVE returns true, else
-- RETRIEVE is false.

procedure CREATE(G: in out DGRAPH;
SUCCESS: out BOOLEAN);

-- pre - None.
-- post - If a graph can be created than G is an empty
-- graph and CREATE is true, else CREATE is false.

procedure KILL(G: in out DGRAPH);

-- pre - None.
-- post - GRAPH G does not exist.

procedure SETWAITING(G: DGRAPH);

-- pre - graph must be fully connected

135

procedure BREADTHFIRSTSEARCH(G: DGRAPH);

procedure DEPTHFIRSTSEARCH(G: DGRAPH);

private

type STATUS is (WAITING, READY, PROCESSED);
type GRAPHNODE;
type NODE_PTR is access GRAPHNODE;
type EDGENODE;
type EDGE_PTR is access EDGENODE;

type GRAPHNODE is
record

ELT: STANDARDELEMENT;
NODEKEY: KEY TYPE;
NEXTNODE: NODEPTR;
EDGE HEAD: EDGE PTR;
NODE STATUS : STATUS;

end record;

type EDGENODE is
record

DESTIN KEY,: KEYTYPE;
NEXT_EDGE: EDGEPTR;
WEIGHT: STANDARDELEMENT;
EDGESTATUS: STATUS;

end record;

type DGRAPHTYPE is
record

HEAD, TAIL: NODE_PTR;
SENTINEL : NODEPTR;

end record;

type DGRAPH is access DGRAPHTYPE;

end GRAPH2_ADT;

with UNCHECKEDDEALLOCATION;
with QUEUES2;

package body GRAPH2_ADT is

package MY-QUEUE is new QUEUES2(NODE_PTR);
use MY_QUEUE;

136

procedure FINDNODE(G: in out DGRAPH; TKEY: in KEYTYPE;

PTR: out NODEPTR) is

GP: NODEPTR;

begin
if G.HEAD /= null then

G.SENTINEL.NODE KEY := TKEY;
G.TAIL.NEXTNODE := G.SENTINEL;
GP := G.HEAD;
while TKEY /= GP.NODEKEY loop

GP := GP.NEXTNODE;
if GP = null then

PTR GP;
return;

end if;
end loop;
G.TAIL.NEXTNODE := null;
if GP /= G.SENTINEL then

PTR := GP;
return;

end if;
end if;
PTR := null;

end FINDNODE;

procedure INSERTNODE(G: in out DGRAPH;
TKEY: in KEY TYPE;
E: in STANDARD_ELEMENT;
SUCCESS: out BOOLEAN) is

GP: NODEPTR;
AUX: NODE_PTR;
OK: BOOLEAN;

procedure CREATENODE(P: in out NODE_PTR;
TKEY: in KEYTYPE;
E: in STANDARDELEMENT;
SUCCESS: out BOOLEAN) is

begin
P := new GRAPHNODE;
SUCCESS := TRUE;
P.ELT := E;
P.NODEKEY := TKEY;

exception
when STORAGEERROR =>

SUCCESS := FALSE;
end CREATE-NODE;

137

begin
FIND NODE(G, TKEY, AUX);
if AUX = null then

CREATE NODE(GP, TKEY, E, OK);
if OK then

if G.HEAD = null then
G.HEAD := GP;

else
G.TAIL.NEXTNODE := GP;

end if;
G.TAIL := GP;
SUCCESS := TRUE;

end if;
else

SUCCESS := FALSE;
end if;

end INSERTNODE;

procedure FINDEDGE(G: in out DGRAPH;
TKFROM, TKTO: in KEYTYPE;
EP: out EDGE_PTR;
SUCCESS: out BOOLEAN) is

AUXEDGEPTR: EDGE_PTR;
AUXNODEPTR: NODE_PTR;

begin
SUCCESS := FALSE;
FINDNODE(G, TKFROM, AUXNODEPTR);
if AUX NODE PTR =null then

SUCCESS := FALSE;
else

if AUX NODE PTR.EDGEHEAD /= null then
AUX EDGE PTR := AUX NODE PTR.EDGE HEAD;
while AUX EDGE_PTR 7= nuhl loop

if AUXEDGEPTR.DESTINKEY = TKTO then
SUCCESS := TRUE;
EP := AUXEDGEPTR;
exit;

end if;
AUX EDGEPTR := AUXEDGEPTR.NEXTEDGE;

end loop;
else

SUCCESS := FALSE;
end if;

end if;
end FINDEDGE;

procedure INSERTEDGE(G: in out DGRAPH;
FROMKEY, TO KEY: in KEY_TYPE;
W: in STANDARDELEMENT;

138

SUCCESS: out BOOLEAN) is

ALREADYEXISTS: BOOLEAN;
AUXNODEPTR: NODE_PTR;
AUXEDGEPTR1, AUXEDGEPTR2: EDGE_PTR;
EP: EDGEPTR;

begin
FINDEDGE(G, FROM KEY, TO KEY, EP, ALREADYEXISTS);
if ALREADYEXISTS then

SUCCESS := FALSE;
else

EP := new EDGENODE;
EP.DESTINKEY := TO-KEY;
EP.WEIGHT := W;
EP.NEXTEDGE := null;
FIND NODE(G, FROMKEY, AUXNODEPTR);
if AUX NODE PTR.EDGE HEAD = null then

AUX_NODE_PTR.EDGEHEAD := EP;
else

AUX EDGE PTR1 := AUXNODEPTR.EDGEHEAD;
while AUX EDGE_PTRI /= null loop

AUXEDGEPTR2 AUXEDGEPTR1;
AUXEDGEPTR1 := AUXEDGEPTRl.NEXT_EDGE;

end loop;
AUX EDGEPTR2.NEXTEDGE := EP;

end if;
end if;

end INSERTEDGE;

procedure RETRIEVEEDGE(G: in out DGRAPH;
FROMKEY, TOKEY: in KEYTYPE;
W: out STANDARDELEMENT;
SUCCESS: out BOOLEAN) is

EP: EDGEPTR;
OK: BOOLEAN;

begin
FIND EDGE(G, FROMKEY, TOKEY, EP, OK);
if OK then

SUCCESS := TRUE;
W := EP.WEIGHT;

else
SUCCESS := FALSE;

end if;
end RETRIEVE-EDGE;

139

procedure FREEGRAPHNODE is new
UNCHECKEDDEALLO7CATION (GRAPHNODE, NODEPTR);

procedure DELETENODE(G: in out DGRAPH;
TKEY: in KEYTYPE;

SUCCESS: out BOOLEAN) is

AUXNODEPTR: NODE_PTR;
EP: EDGEPTR;
OK: BOOLEAN;
GP: NODEPTR;
PREVIOUS: NODEPTR;
PTR: NODE_PTR;,

begin
if G.HEAD =null then

SUCCESS :=FALSE;
else

--first delete all edges towards this node
AUXNODE PTR := G.HEAD;
if AiUX_-NODE_PTR.NODE_KEY /= TKEY then
DELETEEDGE(G, AUXNODEPTR.NODE_KEY, TKEY, OK);

end if;
while AUXNODEPTR.NEXTNODE /= null loop

AUX_-NODE_-PTR := AUX_-NODEPTR.NEXTNODE;
if AUXNODEPTR.NODEKEY /= TKEY then
DELETEEDGE(G, AUXNODEPTR.NODEKEY, TKEY, OK);

end if;
end loop;

--delete the node
G.SENTINEL.NODEKEY := TKEY;
G.TAIL.NEXTNODE := G.SENTINEL;
GP := G.HEAD;
PREVIOUS := GP;
while TKEY 1=GP.NODEKEY loop

PREVIOUS :=GP;
GP := GP.NEXTNODE;

end loop;
G.TAIL.NEXTNODE := null;
if GP 1=G.SENTINEL then
PTR :=GP;
if PTR = PREVIOUS then
G.HEAD := PTR.NEXT NODE;
FREEGRAPHNODE(PTR);

else
PREVIOUS.NEXTNODE := PTR.NEXTNODE;
PTR.NEXT_NODE := null;
FREEGRAPHNODE(PTR);

end if;

140

SUCCESS := TRUE;
else

SUCCESS := FALSE;
end if;

end if;
end DELETENODE;

procedure FREEEDGENODE is new
UNCHECKEDDEALLOCATION (EDGE_NODE,EDGE_PTR);

procedure DELETEEDGE(G: in out DGRAPH;
TKFROM, TKTO: in KEYTYPE;
SUCCESS: out BOOLEAN) is

AUXNODEPTR: NODEPTR;
AUXEDGEPTR: EDGEPTR;
EP: EDGEPTR;
PREVIOUS: EDGEPTR;
OK: BOOLEAN;

begin
OK := FALSE;
FIND NODE(G, TKFROM, AUXNODEPTR);
if AUX NODE PTR = null then

OK := FALSE;
else

AUX EDGEPTR := AUX NODEPTR.EDGEHEAD;
PREVIOUS := AUXEDGE_PTR;
while AUX EDGEPTR /= null loop

if AUX EDGE PTR.DESTINKEY = TKTO then
OK :- TRUE;
EP := AUXEDGE_PTR;
exit;

end if;
PREVIOUS := AUXEDGE PTR;
AUX EDGEPTR := AUXEDGEPTR.NEXTEDGE;

end loop;
if OK then

if PREVIOUS = AUX EDGEPTR then
AUXNODEPTR.EDGE HEAD := AUXEDGEPTR.NEXTEDGE;
FREEEDGENODE(AUX_EDGE_PTR);

else
PREVIOUS.NEXTEDGE := AUXEDGEPTR.NEXTEDGE;
AUXEDGEPTR.NEXT EDGE := null;
FREE EDGENODE(AUXEDGE_PTR);

end if;
end if;

end if;
SUCCESS := OK;

end DELETEEDGE;

141

procedure UPDATENODE(G: in out DGRAPH;
TKEY: in KEY TYPE;
E: in STANDARDELEMENT;
SUCCESS: out BOOLEAN) is

PTR: NODE_PTR;

begin
FIND NODE(G, TKEY, PTR);
if PTR = null then

SUCCESS := FALSE;
else

PTR.ELT := E;
SUCCESS := TRUE;

end if;
end UPDATENODE;

procedure UPDATEEDGE(G: in out DGRAPH;
FROMKEY, TOKEY: in KEY_TYPE;
W: in STANDARDELEMENT;
SUCCESS: out BOOLEAN) is

EP: EDGEPTR;
OK: BOOLEAN;

begin
FIND EDGE(G, FROMKEY, TOKEY, EP, OK);
if OK then

EP.WEIGHT := W;
SUCCESS := TRUE;

else
SUCCESS := FALSE;

end if;
end UPDATE_EDGE;

procedure RETRIEVENODE(G: in out DGRAPH;
TKEY: in KEYTYPE;
E: out STANDARDELEMENT;
SUCCESS: out BOOLEAN) is

PTR: NODE_PTR;

begin
FIND NODE(G, TKEY, PTR);
if PTR = null then

SUCCESS := FALSE;
else

E := PTR.ELT;
SUCCESS := TRUE;

end if;

142

end RETRIEVENODE;

procedure CREATE(G: in out DGRAPH;
SUCCESS: out BOOLEAN) is

begin
G := new DGRAPHTYPE;
G.SENTINEL := new GRAPH-NODE;
SUCCESS := TRUE;

exception
when STORAGEERROR =>

SUCCESS := FALSE;
end CREATE;

procedure KILL(G: in out DGRAPH) is

BL: BOOLEAN;

begin
while G.HEAD /= null loop

DELETENODE(G, G.HEAD.NODEKEY, BL);
end loop;

end KILL;

procedure SETWAITING(G: DGRAPH) is

AUXNODEPTR: NODE_PTR := G.HEAD;
AUXEDGEPTR: EDGE_PTR;

begin
while AUXNODEPTR /= null loop

AUXNODEPTR.NODESTATUS := WAITING;
AUX EDGE PTR := AUXNODEPTR.EDGE_HEAD;
while AUX_EDGE_PTR /= null loop

AUXEDGEPTR.EDGESTATUS := WAITING;
AUX EDGEPTR := AUXEDGEPTR.NEXT EDGE;

end loop;
AUXNODEPTR := AUX NODEPTR.NEXTNODE;

end loop;
end SETWAITING;

procedure BREADTHFIRSTSEARCH(G: DGRAPH) is

Q: QUEUE;
SUCCESS: BOOLEAN;
GP: NODEPTR;
AUXGRAPH: DGRAPH := G;

procedure VISIT(P: in out NODEPTR) is -- Visit a graph
-- node

143

EP: EDGE_PTR;
AUXNODEPTR: NODE_PTR;

begin
ENQUEUE(Q, P);
while not EMPTY(Q) loop

SERVE(Q, P);
PROCESS(P.ELT, P.NODEKEY);
P.NODESTATUS := PROCESSED;
EP := P.EDGEHEAD;
while EP /= null loop -- Consider all neighbors

FIND NODE(AUXGRAPH, EP.DESTINKEY, AUXNODE PTR);
if A~UXNODEP-TR.NODESTATUS =WAITING then

ENQUEUE(Q, AUX NODE_PTR);
AUXNODEPTR.NODESTATUS :=READY;

end if;
EP :=EP.NEXTEDGE;

end loop;
end loop;

end VISIT;

begin
CREATE(Q, SUCCESS);
if not SUCCESS then

raise QUEUE_ERROR;
end if;
SETWAITING(G);
GP := G.HEAD;
while GP /= null loop

if GP.NODESTATUS = WAITING then
VISIT(GP);

else
GP := GP.NEXTNODE;

end if;
end loop;

end BREADTHFIRSTSEARCH;

procedure DEPTHFIRSTSEARCH(G: DGRAPH) is

GP: NODEPTR;

procedure VISIT(MYP: NODE_PTR) is

P: NODEPTR := MYP;
EP: EDGEPTR;
AUX_-NODEPTR: NODE_PTR;
AUXGRAPH: DGRAPH := G;

begin
PROCESS(P.ELT, P.NODE KEY);

144

P.NODE STATUS := PROCESSED;
EP := P.EDGEHEAD;
while EP /= null loop

FINDNODE(AUXGRAPH, EP.DESTINKEY, AUXNODEPTR);

if AUXNODEPTR.NODESTATUS = WAITING then
VISIT(AUX NODEPTR);

end if;
EP := EP.NEXTEDGE;

end loop;
end VISIT;

begin
SETWAITING(G);
GP := G.HEAD;
while GP /= null loop

if GP.NODESTATUS = WAITING then
VISIT(GP);

else
GP := GP.NEXTNODE;

end if;
end loop;

end DEPTHFIRSTSEARCH;

end GRAPH2_ADT;

C. QUEUES2.ADA

generic
type STANDARDELEMENT is private;

package QUEUES2 is

-- Elements: Although the elements can be a variety of
-- types, for concreteness we assume that they are of type
-- standard element.

-- Structure: The structure is . mechanism for relating the
-- elements that allows determination of their order of
-- arrival into the queue.

-- Domain : The number of elements in the queue is
-- bounded.

type QUEUE is private;
QUEUEERROR: exception;

-- Operations: There are six operations. Occasionally in
-- the postcondition we must reference the value of the

145

-- queue immediately before execution of the operation. We

-- use Q-pre as notation for this operation.

procedure ENQUEUE(Q: in out QUEUE; E: in

STANDARDELEMENT);

-- pre: The size of Q is less than its bound.
-- post: Q includes E as its most recently arrived element.

procedure SERVE(Q: in out QUEUE; E: out STANDARDELEMENT);

-- pre: Q is not empty.
-- post: E is at least recently arrived element of Q-pre;
-- Q does not contain E.

function LENGTH(Q: in QUEUE) return NATURAL;

-- post: Length is the number of elements in Q.

function FULL(Q: in QUEUE) return BOOLEAN;

-- post: If the size of Q is less than its bound then Full
-- is false,
-- else full is true.

function EMPTY(Q: in QUEUE) return BOOLEAN;

-- post: If the size of Q is zero returns TRUE else returns
-- FALSE.

procedure CREATE(Q: in out QUEUE; SUCCESS: out BOOLEAN);
-- post: If a queue can be created, then q exists and is
-- empty and create is true, else create is false.

procedure KILL(Q: in out QUEUE);

-- post: Q-pre does not exist.

private
type NODE;
type NODEPOINTER is access NODE;

type NODE is
record

ELEMENT: STANDARDELEMENT;
NEXT : NODEPOINTER;

end record;

type QUEUEINSTANCE is
record

146

HEAD,
TAIL: NODEPOINTER;
SIZE: NATURAL := 0;

end record;

type QUEUE is access QUEUE_INSTANCE;

end QUEUES2;

with UNCHECKEDDEALLOCATION;

package body QUEUES2 is

procedure ENQUEUE(Q: in out QUEUE; E: in STANDARDELEMENT)
is

-- Add element E to queue Q.

begin
if Q.SIZE = 0 then -- insert new node into empty queue

Q.TAIL := new NODE'(E, NULL);
Q.HEAD := Q.TAIL;

else
Q.TAIL.NEXT := new NODE'(E, NULL); -- link new node to

-- tail
Q.TAIL := Q.TAIL.NEXT;

end if;

Q.SIZE := Q.SIZE + 1;
exception

when STORAGEERROR =>
raise QUEUE_ERROR;

end ENQUEUE;

procedure DISPOSE is new UNCHECKEDDEALLOCATION(NODE,
NODEPOINTER);

procedure SERVE(Q: in out QUEUE; E: out STANDARDELEMENT)
is

-- Retrieve and remove most recently added element.
P: NODEPOINTER; -- temporary pointer

begin
if Q.SIZE = 0 then -- queue is empty

raise QUEUE_ERROR;
end if;

E := Q.HEAD.ELEMENT; -- extract top element
P := Q.HEAD;
Q.HEAD := Q.HEAD.NEXT;

147

DISPOSE(P);
Q.SIZE := Q.SIZE - 1;

end SERVE;

function.LENGTH(Q: in QUEUE) return NATURAL is

-- return size of the queue
begin

return Q.SIZE;
end LENGTH;

function FULL(Q: in QUEUE) return BOOLEAN is

-- Is Q full?
P: NODE-POINTER; -- temporary pointer

begin
P := new NODE;
DISPOSE(P);
return FALSE;

exception
when STORAGE ERROR =>

return TRUE;
end FULL;

function EMPTY(Q: in QUEUE) return BOOLEAN is

-- Is Q empty
begin

return Q.SIZE = 0;
end EMPTY;

procedure CREATE(Q: in out QUEUE; SUCCESS: out BOOLEAN) is

-- If a queue can be created, then do so and return
-- SUCCESS = true else return SUCCESS = FALSE.
begin

if Q =NULL then
Q :=new QUEUE-INSTANCE;
SUCCESS := TRUE;

else -- storage has already been allocated for queue
KILL(Q);

end if;
exception

when STORAGE-ERROR => -- out of memory
SUCCESS := FALSE;

end CREATE;

148

procedure KILL(Q: in out QUEUE) is

P: NODEPOINTER;
begin

while Q.HEAD /= NULL loop
P := Q.HEAD;
Q.HEAD := Q.HEAD.NEXT;
DISPOSE(P);

end loop;
Q.TAIL := NULL;
Q.SIZE := 0;

end KILL;

end QUEUES2;

D. SORT.ADA

generic
type STANDARDELEMENT is private;
type INDEX is range <>;
with function "<" (El,E2: STANDARDELEMENT) return

BOOLEAN;

package SORTADT is

-- Each of the procedures in this module, except heapsort,
-- sorts an array of standard elements into ascending

-- order.Heapsort sorts into descending order.

type SORT ARRAY is array (INDEX range <>) of
STANDARDELEMENT;

procedure SELECTSORT (R: in out SORT ARRAY);
procedure EXCHANGESORT(R: in out SORT ARRAY);
procedure INSERT SORT (R: in out SORT_--ARRAY);
procedure QS_2 (R: in out SORTARRAY);
procedure QS_3 (R: in out SORTARRAY);
procedure MERGESORT (R: in out SORTARRAY);

end SORTADT;

package body SORTADT is

procedure SWAP (EL1, EL2: in out STANDARDELEMENT) is

TEMP EL2: STANDARDELEMENT := EL2;

149

begin
EL2 := EL1;
EL1 := TEMPEL2;

end SWAP;

function ">'" (El, E2: STANDARDELEMENT) return BOOLEAN is

begin
return (El /= E2) and not (El < E2);

end ">";

function ">=" (El,E2: STANDARDELEMENT) return BOOLEAN is

begin
return (El > E2) or (El = E2);

end ">=";

function "<=" (El, E2: STANDARDELEMENT) return BOOLEAN is

begin
return (El < E2) or (El = E2);

end "<=";

procedure SELECTSORT (R: in out SORTARRAY) is

SMALL: INDEX;

begin
for K in R'FIRST..INDEX'PRED(P'LAST) loop

SMALL := K;
for J in INDEX'SUCC(K)..R'LAST loop

if R(J) < R(SMALL) then
SMALL := J;

end if;
end loop;
SWAP (R(K), R(SMALL));

end loop;
end SELECTSORT;

procedure EXCHANGE-SORT (R: in out SORTARRAY) is

SORTED: BOOLEAN;
K: INDEX;

begin
K := R'LAST;
SORTED := FALSE;

while (K > R'FIRST) and (not SORTED) loop
SORTED := TRUE;

150

for J in R'FIRST..INDEX'PRED(K) loop
if R(J) > R(INDEX'SUCC(J)) then

SORTED := FALSE;
end if;

end loop;
K := INDEX'PRED(K);

end loop;
end EXCHANGE_SORT;

procedure INSERTSORT (R: in out SORTARRAY) is

SAVE: STANDARDELEMENT;
J: INDEX;

begin
if R'LENGTH > 1 then

for K in reverse R'FIRST..INDEX'PRED(R'LAST) loop
J := INDEX'SUCC(K);
SAVE := R(K);
while (SAVE > R(J)) loop

R(INDEX'PRED(J)) := R(J);
if J < R'LAST then

J := INDEX'SUCC(J);
else

exit;
end if;

end loop;
if SAVE > R(J) then

R(J) := SAVE;
else

R(INDEX'PRED(J)) := SAVE;
end if;

end loop;
end if;

end INSERTSORT;

procedure QS_2 (R: in out SORTARRAY) is

procedure QUICK_2(LEFT, RIGHT: INDEX) is

-- post - Element R(LEFT)-pre is in the sorted
-- position, say k, with R(LEFT) ... R(K-1) less then

-- R(K) and R(K+I)... R(RIGHT) larger than R(K).

J,K: INDEX;

begin
if LEFT < RIGHT then

J := LEFT;
K := RIGHT;
if R(LEFT) > R(RIGHT) then

151

SWAP(R(LEFT), R(RIGHT));
end if;
loop -- until J > K

loop -- until R(J) >= R(LEFT)
J := INDEX'SUCC(J);
exit when R(J) >= R(LEFT);

end loop;
loop -- until R(K) <= R(LEFT)

K := INDEX'PRED(K);
exit when R(K) <= R(LEFT);

end loop;
if J < K then

SWAP(R(J), R(K));
end if;
exit when J > K;

end loop;
SWAP(R(LEFT), R(K));
if K > INDEX'FIRST then

QUICK_2 (LEFT, INDEX'PRED(K));
end if;
QUICK_2 (INDEX'SUCC(K), RIGHT);

end if;
end QUICK_2;

begin -- QS_2
QUICK_2(R'FIRST, R'LAST);

end QS_2;

procedure QS_3 (R: in out SORTARRAY) is -- Quicksort

procedure QUICK3(LEFT, RIGHT: INDEX) is

J,K : INDEX;
begin

if LEFT < RIGHT then
-- Median of 3 modification
SWAP(R(INDEX'VAL((R'LENGTH+1)/2)),
R(INDEX'SUCC(LEFT)));
if R(INDEX'SUCC(LEFT)) > R(RIGHT) then

SWAP(R(INDEX'SUCC(LEFT)), R(RIGHT));
end if;
if R(LEFT) > R(RIGHT) then

SWAP(R(LEFT), R(RIGHT));
end if;
if R(INDEX'SUCC(LEFT)) > R(LEFT) then

SWAP(R(INDEX'SUCC(LEFT)), R(LEFT));
end if;

-- After Median of 3 mod. is complete, the smallest
-- sample value will be in position LEFT + 1; the

152

-- largest sample value will be in position RIGHT;
-- and the median sample value will be in
-- position LEFT.

J := INDEX'SUCC(LEFT);
K := RIGHT;

loop
loop -- Advance J right until a value greater than

-- R(LEFT) is found
J := INDEX'SUCC(J);
exit when R(J) >= R(LEFT);

end loop;
loop -- Advance K left until a value less than

-- R(LEFT) is found.
K := INDEX'PRED(K);
exit when R(K) <= R(LEFT);

end loop;
if J < K then -- Swap values

SWAP(R(J), R(K));
end if;
exit when J > K;

end loop;
SWAP (R(LEFT), R(K)); -- Put median value into its

-- sorted position

-- QUICK SORT remaining sublist partitions if they
-- contain 10 or more elements.

if (INDEX'POS(K) - INDEX'POS(LEFT)) > 10 then
QUICK3(LEFT, INDEX'PRED(K));

end if;
if (INDEX'POS(RIGHT) - INDEX'POS(K)) > 10 then

QUICK3(INDEX'SUCC(K), RIGHT);
end if;

end if;
end QUICK3;

begin -- QS 3
QUICK3 (R'FIRST, R'LAST);
INSERT SORT(R);

end QS_3;

procedure MERGE(L: NATURAL; R,T: in out SORTARRAY) is

-- pre - Array R contains sorted sublists of length L.
-- post- Array T contains sorted sublists of lenght 2L.

Q, KI, K2, END1, END2: NATURAL;

begin

153

if L >= R'LENGTH then
T := R;
return;

end if;
K1 := 1; -- K1 and K2 are indexes for the sublists to
K2 L + 1; -- be merged
Q 0;
loop -- Repeat

END1 := K1 + L - 1;
if END1 > R'LENGTH then -- Mark the ends of the

-- sublists to be
END1 := R'LENGTH; -- merged.

else
END2 =K2 + L - 1;
if END2 > R'LENGTH then

END2 := R'LENGTH;
end if;
while (K1 <= END1) and (K2 <= END2) loop

if R(INDEX'VAL(Kl)) <= R(INDEX'VAL(K2)) then
T(INDEX'VAL(Q+l)) := R(INDEX'VAL(KI));
K1 := K1 + 1;

else
T(INDEX'VAL(Q+l)) := R(INDEX'VAL(K2));
K2 := K2 + 1;

end if;
Q := Q + 1;

end loop;
end if;
if K1 <= END1 then -- Tack on elements from the

-- sublist with
for K in K1..ENDI loop -- more elements

T(INDEX'VAL(Q+l)) := R(INDEX'VAL(K));
Q := Q + 1;

end loop;
K1 := END1 + 1;

else
for K in K2..END2 loop

T(INDEX'VAL(Q+l)) := R(INDEX'VAL(K));
Q Q+I;
K2 := END2 + 1;

end loop;
K2 := END2 + 1;

end if;
K1 := K2; -- Set indexes for the next

-- pair of sublists
K2 := K1 + L;
exit when K11 ' R'LENGTH;

end loop;

end MERGE;

154

procedure MERGESORT (R: in out SORTARRAY) is

T: SORTARRAY(R'FIRST..R'LAST);
L: NATURAL;

begin
L := 1;
if R'LENGTH >= 2 then

loop
MERGE(L, R, T);
L := 2*L;
MERGE(L, T, R);
L := 2*L;
exit when L >= (R'LENGTH+1)/2;

end loop;
end if;
if L < R'LENGTH then -- If necessary, a final merge.

MERGE(L, R, T);
R := T;

end if;
end MERGESORT;

end SORTADT;

155

APPENDIX D: TASK ALLOCATION ADA PROCEDURES

A. STATICAL.ADA

with RANDOM;
with TEXTIO;
use TEXT_IO;
with QUEUES2; -- linked list implementation of queues
with DISCRETESET; -- sets are used as the main data
-- structures to control the allocation
with SORT ADT; -- several schemes of sorting
with GRAPH2_ADT; -- adjacency list implementation of
-- directed acyclic graphs

procedure STATICAL is

-- instantation of I/O routines
package INTEGERINOUT is new INTEGERIO(INTEGER);
use INTEGERINOUT;
package FLOATINOUT is new FLOATIO(FLOAT);
use FLOATINOUT;

-- defines the maximum number of tasks to be used with this
-- program
MAXPROCESS: constant INTEGER := 25;
NUM_OFTASKS: INTEGER; -- global variable that holds the
-- number of tasks in a task flow graph

MAXINDEX: INTEGER; -- global variable that holds the
-- maximum valid index for the heuristic array
-- defines the maximum number of components that can be used
-- by the array that holds the values calculated by
-- heuristic for each possible graph edge
MAX ARRAY: constant INTEGER :=
(MAXPROCESS*(MAXPROCESS-i))/2;

-- MY ATOM is basically the task identifier
type MY ATOM is range 1..MAX PROCESS;

156

package MY_DIS is new DISCRETE_SET(MYATOM);
use MYDIS;

-- data structures used for the calculation of ancestor and
-- parent arrays
type PRED ARRAY is array (2..MY ATOM'LAST) of SET;
PARENT ARRAY: PRED ARRAY := (others => MY DIS.CREATE);
ANCESTOR_ARRAY: PREDARRAY := (others => MYDIS.CREATE);

-- record that defines the structure of the information
-- stored on each task node and on each task edge
type MYELEMENT is

record
INFO: FLOAT; -- may represent execution costs(node) or

-- communication costs(edge)
ACCUMULATOR: FLOAT := 0.0; -- accumulator used for the
-- calculation of the longest path cost and also by
-- heuristics that take into account the displacement in
-- time from the root task
PROCESSSET: SET; -- stores information related with the
-- longest path ,that is the set of task identifiers

-- that compose the longest path end record;

-- record that defines the structure of the information
-- stored in the
-- array that holds the results of heuristic functions
-- applications

type MY RECORD is
record

PAIRSET: SET := MY DIS.CREATE; -- edge defined as a
-- pairset of task identifiers
INDEX FROM: INTEGER; -- source node
INDEXTO: INTEGER; -- destination node
EFROM : FLOAT; -- execution time of the source

-- node
ETO : FLOAT; -- execution time of the
-- destination node
COMM : FLOAT; -- communications cost
HINFO : FLOAT; -- result of the heuristic
-- function

end record;

-- defines the number of processors used in the allocation
-- scheme
type PROCESSOR is (P1, P2, P3, P4, P5, P6, P7, P8, P9,
Pl0);

-- gets the number of processors to be used
LASTPROCESSOR: PROCESSOR;

-- Array type that has one set per processor. Each set

157

-- defines which tasks are allocated to that processor
type PROCESSORARRAY is array(PROCESSOR) of SET;

-- processor array for application of heuristic
PARRAY: PROCESSORARRAY := (others => MYDIS.CREATE);

-- Keeps track of the accumulated absolute utilization of
-- each processor
-- that composes the network
type UTILIZATIONARRAY is array(PROCESSOR) of FLOAT;

-- utilization array for applycation of heuristici
U_ARRAY: UTILIZATIONARRAY := (others => 0.0);

-- controls what are the tasks already allocated in
-- accordance with heuristicl
ALLOCATEDTASKS: SET := MYDIS.CREATE;

UNIEXECOST: FLOAT := 0.0; -- uniprocessor execution time
-- of the data flow
AUXCOST: FLOAT := 0.0; -- aux. variable to compute
-- uniprocessor execution time
AUXCOUNT: INTEGER := 0; -- global variable used by the
-- procedure printout to count the number of tasks in a
-- graph
POTENTIAL SPEED UP: FLOAT; -- speed-up that could be
-- achieved if the minimum cost were equal to the sum of

-- the tasks that compose the longest path

-- Record used by the procedure SCHEDULE
type EXECUTIONINFO is

record

START TIME: FLOAT; -- task or communication start
-- time
ENDTIME: FLOAT; -- task or communication end time
TASKID: MYATOM; -- task identifier
IS COMM: BOOLEAN; -- communication or task
-- execution time
TASK_FROM: MYATOM; -- message sender
TASKDESTIN: MYATOM; -- message receiver

end record;

-- Queue that is used by the longest path cost algorithm
-- included in the procedure CONSTRUCTTASKFLOW
package NEW-QUEUES is new QUEUES2(MY ELEMENT);

-- Array that keeps the schedule for every processor

158

type SCHEDULEARRAY is array(MYATOM) of EXECUTIONINFO;
THESCHEDULE: SCHEDULEARRAY;

-- Array that is used by the scheduler
type TIMEARRAY is array(PROCESSOR) of FLOAT;
MYTIME: TIMEARRAY;

-- Used for instantiation of the package GRAPH2_ADT
procedure PRINTOUT(ELEMENT: in MYELEMENT; ELEMENTKEY:
in INTEGER);

-- Instantiation of the package GRAPH2_ADT
package MY DGRAPHS is new
GRAPH2_ADT(MY_ELEMENT, INTEGER,PRINTOUT);
use MY_DGRAPHS;

-- Used for instantiation of package SORTADT
function LESSTHAN (El, E2: MYRECORD) return BOOLEAN;

-- Instantiation of the package SORTADT
package NEWSORT is new SORTADT(MY RECORD, INTEGER,
LESS_THAN);
use NEWSORT;

DG: DGRAPH; -- directed graph
-- abstract data type
RESULTSET: SET := MYDIS.CREATE; set tha contains the
-- tasks that compose the longest path cost
HEURARRAY: SORTARRAY(1..MAXARRAY);-- array with values
-- that were calculated by heuristic function

-- Procedure used in the instantiation of the package
-- GRAPH2_ADT.
-- This procedure prints the element key(task identifier)
-- and the execution cost associated with the task.It also
-- accumulates the uniprocessor execution time and counts
-- the number of tasks in the task flow. This procedure
-- is up.d by the traversals depth firstsearch
-- and breadth firstsearch of the package MYDGRAPHS.
procedure PRINTOUT(ELEMENT: in MYELEMENT; ELEMENTKEY:
in INTEGER) is

begin
PUT(ELEMENTKEY, WIDTH => 4); -- prints task identifier
PUT(.' ");
PUT(ELEMENT.INFO, FORE => 2, AFT => 2, EXP => 0);
-- prints task execution cost
NEW-LINE;

159

if AUX COUNT < MAX PROCESS then
AUX COUNT AUXCOUNT + 1; -- counts the number of
-- tasks
AUXCOST := AUXCOST + ELEMENT.INFO;--accumulates
-- uniprocessor execution cost

end if;
end PRINTOUT;

-- Function used for instantiation of the package SORTADT

function LESSTHAN (El, E2: MYRECORD) return BOOLEAN is

begin
if El.HINFO < E2.HINFO then

return TRUE;
else

return FALSE;
end if;

end LESSTHAN;

-- Prints all atoms that compose a set
procedure PRINTSET(A: SET) is

begin
for I in 1..MAXPROCESS loop

if MYDIS.MEMBER(MY ATOM(I), A) then
PUT(I, WIDTH => 3);

end if;
end loop;
NEW-LINE;

end PRINTSET;

-- Prints one processor
procedure PRINTPROCESSOR(PROC: PROCESSOR; LPROC:
PROCESSOR) is

AUXINDEX: INTEGER := 0;

begin
for I in PROCESSOR'FIRST..LPROC loop

AUX INDEX := AUX INDEX + 1;
if I = PROC then

PUT("Tasks Allocated to P");
PUT(AUXINDEX, WIDTH => 1);
PUTLINE("/Utilisation");
exit;

end if;
end loop;

160

end PRINTPROCESSOR;

-- Finds in which processor the task is allocatted
procedure FINDPROCESSOR(P: in PROCESSORARRAY;

IN ATOM: in MY ATOM;
L_PROC: in PROCESSOR;
SUCCESS: out BOOLEAN;
OUTPROCESSOR: out PROCESSOR) is

OK: BOOLEAN := FALSE;

begin
for I in PROCESSOR'FIRST..LPROC loop

OK := MYDIS.MEMBER(INATOM, P(I));
if OK then

SUCCESS := OK;
OUT PROCESSOR := I;
exit;

end if;
end loop;

end FINDPROCESSOR;

-- Constructs one example of task flow and returns a set
-- that contains all tasks that are in its longest path
-- cost.
procedure CONSTRUCTTASKFLOW(G: in out DGRAPH;

OUTSET: in out SET)
is separate;

-- Calculate heuristics for each edge of the directed
-- graph giving the results in TEMPARRAY in accordance
-- with the heuristic function specified by
-- HEUR.TEMPARRAY is sorted in increasing order using the
-- values of the calculated heuristics
procedure CALCHEURISTIC(G: in out DGRAPH;

TEMPARRAY: in out SORT-ARRAY)
is separate;

-- Allocate tasks to processors.
procedure ALLOCATE(G: in out DGRAPH; LASTPROC: out

PROCESSOR;
TEMPARRAY: in out SORTARRAY;
TEMPSET: in out SET; -- longest path
-- cost set
PROCARRAY: in out PROCESSORARRAY;
UTILARRAY: in out UTILIZATION_ARRAY;
ALLOCATEDTASKS: in out SET) is separate;

161

-- Schedule tasks on each processor
procedure SCHEDULE(G: in out DGRAPH;

L PROC: in PROCESSOR;
P: in out PROCESSORARRAY;
S: in out SCHEDULEARRAY;
T: out TIMEARRAY) is separate;

-- Improves the task allocation
procedure IMPROVE is separate;

begin
CONSTRUCTTASKFLOW(DG,RESULTSET);
CALCHEURISTIC(DG,HEURARRAY);
ALLOCATE(DG,LASTPROCESSORHEURARRAY,RESULT_SET,
P__ARRAY,UARRAY,ALLOCATED TASKS);
SCHEDULE(DG,LASTPROCESSOR,PARRAY,THESCHEDULE,MYTIME);
if LAST PROCESSOR = P4 then

IMPROVE;
end if;

end STATICAL;

B. CTFLOW.ADA

separate(STATICAL)

procedure CONSTRUCTTASKFLOW(G: in out DGRAPH;
OUTSET: in out SET) is

TITLE: STRING(1..80);
TITLE LENGTH:NATURAL;
SUCCESS: BOOLEAN;
FILE NAME: STRING(1..30);
NAME LENGTH: NATURAL;
INF: FILE TYPE;
MYSTRING: STRING(1..4);
MYNODE: INTEGER;
MYEXE: FLOAT;
MY FROM:INTEGER;
MY TO: INTEGER;
MYCOST: FLOAT;

COMIJ: MYELEMENT;

162

function CONVERT(E: FLOAT) return MYELEMENT is

MYDATA: MYELEMENT;

begin
MYDATA.PROCESSSET := MYDIS.CREATE;
MYDATA.INFO := E;
return MYDATA;

end CONVERT;

procedure FINDLONGPATH(DG: in out DGRAPH; OUTSET: in out
SET) is

El, E2, E3: MYELEMENT;
SUCCESS: BOOLEAN;
AUXSET: SET;'
ACC: FLOAT;
MAX: FLOAT;
AUX_QUEUE: NEW_QUEUES.QUEUE;

begin
NEW_QUEUES.CREATE(AUX QUEUE, SUCCESS);
for I in 1..MAXPROCESS loop

RETRIEVENODE(DG, I, El, SUCCESS);
if not MYDIS.MEMBER(MYATOM(I), El.PROCESSSET) then

El.ACCUMULATOR := El.ACCUMULATOR + El.INFO;
MY DIS.INSERT(MYATOM(I), El.PROCESSSET);
UPDATENODE(DG, I, El, SUCCESS);

end if;
for J in 1..MAXPROCESS loop

if I /= J then
RETRIEVEEDGE(DG, I, J, E2, SUCCESS);
if SUCCESS then

RETRIEVENODE(DG, J, E2, SUCCESS);
if SUCCESS and J=l then

RETRIEVE NODE(DG, I, E3, SUCCESS);
NEW_QUEUES.ENQUEUE(AUXQUEUE, E3);

else
ACC := El.ACCUMULATOR + E2.INFO;
if ACC > E2.ACCUMULATOR then

E2.ACCUMULATOR := ACC;
E2.PROCESSSET := El.PROCESSSET;
MY DIS.INSERT(MYATOM(J), E2.PROCESSSET);
UPDATENODE(DG, J, E2, SUCCESS);

end if;
end if;

end if;
end if;

163

end loop;
end loop;
MAX : .= 0
while not NEW_QUEUES.EMPTY(AUX_QUEUE) loop

NEW_QUEUES.SERVE(AUXSQUEUE, El);

if E1.ACCUMULATOR > MAX then
MAX :=El.ACCUMULATOR;
OUTSET := E1.PROCESS_SET;

end if;
end loop;

end FINDLONGPATH;

begin
--creates the directed graph
CREATE(G, SUCCESS);
if not SUCCESS then

raise DGRAPHERROR;
end if;

PUT_LINE("Enter file with input data");

GET_LINE(FILE_NAME,NAMEJJENGTH);
OPEN(INF, MODE => IN_FILE, NAME =>

FILE_NAME(l..NAME_LENGTH));
GET_LINE(INF,TITLETITLE_LENGTH);
PUT_LINE(TITLE(l..TITLE_LENGTH));
while not END_OF_FILE(INF) loop
GET(INF,MY_STRING);
if MYSTRING = "NODE" then --insert a node

GET(INF,MYNODE);
GET(INF,MYEXE);
INSERT NODE(G, MYNODE, CONVERT(MY_EXE), SUCCESS);

else -- insert an edge
GET(INF,MYFROM);
GET(INF,MYTO);
GET(INF,MYCOST);
INSERTEDGE(G, MY FROM, MY_TO, CONVERT(MY_COST),
SUCCESS);

end if;
SKIP_LINE(INF);

end loop;

-- search and print elements of the created graph

PUTLINE("Breadth First Search");

BREADTH_FIRST_SEARCH(G);
NUM -OF-TASKS := AUX_COUNT;
MAX_-INDEX := (NUMOF_TASKS*(NTJMOF_TASKS-l))/2;
NEWLINE;
PUTLINE("Number of Tasks
PUT(NUM-OFTASKS, WIDTH => 3);

164

NEW_-LINE;
UNI_-EXECOST := AUX_COST;
-- print uniprocessor execution time
PUT_-LINE("Uniprocessor Execution Time");
PUT(UNI_EXE_COST, FORE => 4, AFT => 4, EXP => 0);
NEW__LINE;

PUT_LINE("Depth First Search");
DEPTHFIRST_SEARCH(G);

--find the longest path
FINDLONGPATH(G,OUTSET);
PUTLINE("LONG_PATH");
PRINT_SET(OUTSET);

-- initializes parent array
PUTLINE("Parent array calculation");
for J in 2. .NUM_OF_-TASKS loop

for I in 1..J-1 loop
RETRIEVEEDGE(G, I, J, COMIJ, SUCCESS);
if SUCCESS then
MYDIS.INSERT(MY ATOM(I) ,PARENTARRAY(MY-ATOM(J)));

end if;
end loop;
PRINT -SET(PARENTARRAY(MYATOM(J)));

end loop;

--initializes ancestor array
PUT_-LINE("Ancestor array calculation");
for J in 2..NUM_-OF_-TASKS loop

for I in 1..J-1 loop
RETRIEVE_EDGE(G, I, J, COMIJ, SUCCESS);
if SUCCESS then
MY_-DIS.INSERT(MY_-ATOM(I),ANCESTORARRAY(MYATOM(J)));
if I /= 1 then
ANCESTORARRAY(MYATOM(J)) :
MY_-DIS.UNION(ANCESTOR_-ARRAY(MY -ATOM(J)),
ANCESTORARRAY(MY__.ATOM(I)));

end if;
end if;

end loop;
PRINTSET(ANCESTORARRAY(MY ATOM(J)));

end loop;

end CONSTRUCTTASKFLOW;

165

C. CALBEU.ADA

separate(STATICAL)

procedure CALOHEURISTIC(G: in out DGRAPH;
TEMP ARRAY: in out SORTARRAY) is

SUCCESS: BOOLEAN;
SUCCESSi, SUCCESS2: BOOLEAN;
VALUE: INTEGER;
type H FUNCTION is array(1. .MAXPROCESS, l..MAX_PROCESS) of
FLOAT;
H: HFUNCTION := (others => (others => 0.0));
CIJ, El, EJ: MYTELEMENT;
COUNT: INTEGER := 0;
IS_-MEMBER: BOOLEAN;
AUXTERM: FLOAT;

function HETJRISTICl(EXI, EXJ, COMIJ: MY ELEMENTI return
FLOAT is

begin
return (0.5*COMIJ.INFO + (0.5/(EXI.INFO+EXJ.INFO)));

end HEURISTICi;

procedure PRINTHEADER is

begin
TEXT_-IO.PUT_-LINE("I J EI EJ CIJ HIJ");

end PRINTHEADER;

begin
for I in 1..NUM_OF_TASKS-i loop

for J in I+1..NtJM_OF_TASKS loop
COUNT := COUNT + 1;
MYDIS.INSERT(MY ATOM(I), TEMPARRAY(COUNT) .PAIR SET);
TEMP_-ARRAY(COUNT-) INDEXFROM :-= I;
MYDIS. INSERT(M.Y ATOM(J), TEMPARRAY(COUNT) .PAIR SET);
TEMP_-ARRAY(COUNT-).INDEXTO := J5;
RETRIEVE_NODE(G, I, El, SUCCESSi);
if not SUCCESSI then
EI.INFO := 0.0;

end if;
RETRIEVENODE(G, J, EJ, SUCCESS2);
if not SUCCESS2 then

166

EJ.INFO :=0.0;
end if;
RETRIEVEEDGE(G, I, J, CIJ, SUCCESS);
AUXTERM := 0.0;
if not SUCCESS then
CIJ.INFO 0.0;
ISMEMBER :=MYDIS.MEMBER(MY-ATOM(I),
ANCýESTORARRAY(-M" -ATOM(J)));
if ISMEMBER then
AUXTERM := 1.0;

end if;
end if;
if SUCCESS1 and SUCCESS2 then

H(I,J) :=HEURISTICl(EI, EJ, CIJ);
else

H(I,J) :=0.0;
end if;

TEMP_-ARRAY(COUNT) .EFROM =El. INFO;
TEMP_-ARRAY(COUNT).ETO EJ.INFO;
TEMP_-ARRAY(COUNT).COMM CIJ.INFO;
TEMP_-ARRAY(COUNT).HINFO :=H(I,J);

end loop;
end loop;

NEWSORT.QS_3(TEMP-ARRAY(1..MAXINDEX));
PRINT_-HEADER;
for I in 1..MAXINDEX loop
PUT(TEMP -ARRA7Y(I). INDEX FROM, WIDTH => 2);
PUT(-- ..);
PUT(TEMP ARRAY(I).INDEX TO, WIDTH => 2);
PUT("5 ");
PUT(TEMP ARRAY(I).EFROM, FORE => 2, AFT => 3, EXP => 0);
PUT(" I)

PUT(TEMP ARRAY(I).ETO, FORE => 2, AFT => 3, EXP => 0);
PUT(" ");
PUT(TEMP-ARRAY(I).COMM, FORE => 2, AFT => 3, EXP => 0);
PUT(" 1");
PUT(TEMPARRAY(I).HINFO, FORE => 2, AFT => 3, EXP => 0);
NEWLINE;

end loop;
end CALCHEURISTIC;

167

D. ALLOC.ADA

separate(STATICAL)

procedure ALLOCATE(G: in out DGRAPH; LAST_PROC: out
PROCESSOR;

TEMPARRAY: in out SORTARRAY;
TEMPSET: in out SET; PROCARRAY: in out

PROCESSOR ARRAY;
UTILARRAY: in out UTILIZATIONARRAY;
ALLOCATEDTASKS: in out SET) is

L PROC: PROCESSOR;
TOP DOWN INDEX: INTEGER;
BOTTOMUPINDEX: INTEGER := 1;
PAIRTOGETHER, PAIRSEPARATED: SET;
ALLOCATED: BOOLEAN;
SETTOALLOC: SET;
BOTH: BOOLEAN;
PROCUSED: PROCESSOR;
CURRENTATOM: MY ATOM;
CURRENTSET: SET;
CURRENT PROCESSOR: PROCESSOR;
VARUTILIZATION: FLOAT;

function FINDLEASTUSEDPROCESSOR(UTIL: UTILIZATIONARRAY)

return PROCESSOR is

LUP: PROCESSOR := PROCESSOR'FIRST;

begin
for I in PROCESSOR'SUCC(PROCESSOR'FIRST)..LPROC loop

if UTIL(I) < UTIL(LUP) then
LUP := I;

end if;
end loop;
return LUP;

end FINDLEASTUSEDPROCESSOR;

function FINDLEASTUSEDPROCESSOR(UTIL: UTILIZATIONARRAY;
PROC: PROCESSOR)

return PROCESSOR is

LUP: PROCESSOR;
FIRST: BOOLEAN := TRUE;

begin

168

for I in PROCESSOR'FIRST..LPROC loop
if I /= PROC then

if FIRST then
LUP := I;
FIRST := FALSE;

else
if UTIL(I) < UTIL(LUP) then

LUP := I;
end if;

end if;
end if;

end loop;
return LUP;

end FINDLEASTUSEDPROCESSOR;

procedure ADDITIONALUTILIZATION(ADDEDTASKS: in out SET;
ACCUM: out FLOAT) is

ACC: FLOAT := 0.0;
THEKEY: MYATOM;
THEELEMENT: MYELEMENT;
OK: BOOLEAN := TRUE;
SUCCESS: BOOLEAN;

begin

MY DIS.TAKE OUTMEMBER(ADDEDTASKS, THE_KEY, OK);
while OK loop

RETRIEVENODE(G, INTEGER(THEKEY), THEELEMENT,
SUCCESS);
ACC := ACC + THEELEMENT.INFO;
MYDIS.TAKEOUTMEMBER(ADDED_TASKS, THE_KEY, OK);

end loop;
ACCUM := ACC;

end ADDITIONALUTILIZATION;

procedure ALLOCATESETOFTASKSTOPROCESSOR(SETOFTASKS:
in SET;
PROCESSORDEST: in
PROCESSOR;
ALLOCATEDTASKS: in out
SET;
DELTA UTILIZATION: in out
FLOAT;
U ARRAY: in out
UTILIZATIONARRAY;
P ARRAY: in out
PROCESSORARRAY) is

ADDED TASKS: SET;

169

begin
ADDEDTASKS := MYDIS.DIFFERENCE(SETOF_TASKS,
ALLOCATEDTASKS);
ALLOCATEDTASKS := MYDIS.UNION(SET OFTASKS,
ALLOCATED TASKS);
P_ARRAY(PROCESSORDEST) := MYDIS.UNION(SETOFTASKS,
P_ARRAY(PROCESSOR DEST));
ADDITIONALUTILIZATION(ADDEDTASKS, DELTAUTILIZATION);
U ARRAY(PROCESSOR DEST) := UARRAY(PROCESSORDEST) +
DELTAUTILIZATION;

end ALLOCATESETOFTASKSTOPROCESSOR;

procedure ISPAIRALLOCATED (PAIR: in SET;
ANSWER: out BOOLEAN;
TO BE ALLOC: out SET;
ALLOCATEBOTH:out BOOLEAN;
ALREADYUSED: out PROCESSOR)

is

AUX: SET;
USED: INTEGER;
AUXPROCESSOR: PROCESSOR := P1;
AUXATOM: MYATOM;
OK: BOOLEAN;

begin
AUX := MYDIS.INTERSECTION(PAIR, ALLOCATED_TASKS);
USED := MYDIS.COUNTMEMBERS(AUX);
if USED = 2 then

ANSWER := TRUE;
else

ANSWER := FALSE;
TO BE ALLOC := MYDIS.DIFFERENCE(PAIR, AUX);
if USED = 1 then

MY DIS.TAKEOUTMEMBER(AUX, AUXATOM, OK);
FINDPROCESSOR(PROCARRAY, AUXATOM, L_PROC, OK,
AUX PROCESSOR);
ALREADY USED := AUX PROCESSOR;
ALLOCATEBOTH := FALSE;

else
ALLOCATEBOTH := TRUE;
ALREADYUSED := AUXPROCESSOR;

end if;
end if;

end ISPAIRALLOCATED;

procedure ALLOCATEPAIRSEPARATE is

170

SUCCESS: BOOLEAN;

begin
-- allocatte separate tasks
ISPAIRALLOCATED(PAIRSEPARATED, ALLOCATED, SETTOALLOC,
BOTH, PROC_USED);
if not ALLOCATED then -- there is at least one task not

-- allocated
if not BOTH then -- only one must be allocated

CURRENTPROCESSOR :=
FIND LEAST USEDPROCESSOR(UTILARRAY, PROC USED);
ALLOC-ATE_SETOFTASKSTOPROCESSOR(SET_TOALLOC,

CURRENTPROCESSOR,
ALLOCATEDTASKS,
VAR UTILIZATION,
UTILARRAY,
PROCARRAY);

else
CURRENTPROCESSOR :=
FIND LEAST USED PROCESSOR(UTILARRAY);
CURRENTSET := SETTO ALLOC;
MY DIS.TAKEOUTMEMBER(SET TOALLOC, CURRENTATOM,
SUCCESS);
ALLOCATESETOFTASKSTOPROCESSOR(SET TO ALLOC,

CURRENTPROCESSOR,
ALLOCATEDTASKS,
VAR UTILIZATION,
UTIL_ARRAY,
PROCARRAY);

SET TO ALLOC := MYDIS.DIFFERENCE(CURRENTSET,
SET TO ALLOC);
CURRENTPROCESSOR :=
FIND LEAST USEDPROCESSOR(UTILARRAY);
ALLOCATE_SETOFTASKSTOPROCESSOR(SETTOALLOC,

CURRENTPROCESSOR,
ALLOCATED TASKS,
VAR UTILIZATION,
UTILARRAY,
PROCARRAY);

end if;
end if;

end ALLOCATEPAIRSEPARATE;

procedure ALLOCATEPAIRTOGETHER is

begin
-- allocate tasks that should be together
ISPAIRALLOCATED(PAIRTOGETHER, ALLOCATED, SET_TOALLOC,

171

BOTH, PROCUSED);
if not ALLOCATED then -- at least one should be allocated

if not BOTH then -- allocate only one task
if PROCUSED = P1 then

CURRENTPROCESSOR
FINDLEASTUSEDPROCESSOR(UTILARRAY, P1);
ALLOCATESETOFTASKSTOPROCESSOR(SET TO ALLOC,

CURRENT PROCESSOR,
ALLOCATED TASKS,
VAR UTILIZATION,
UTIL ARRAY,
PROCARRAY);

else
ALLOCATESETOFTASKSTOPROCESSOR(SET TOALLOC,

PROCUSED,
ALLOCATEDTASKS,
VAR UTILIZATION,
UT IL ARRAY,
PROCARRAY);

end if;
else

CURRENTPROCESSOR :=
FINDLEASTUSEDPROCESSOR(UTILARRAY);
ALLOCATE_SET_OF_TASKSTOPROCESSOR(SETTOALLOC,

CURRENTPROCESSOR,
ALLOCATEDTASKS,
VARUTILIZATION,
UTIL ARRAY,
PROCARRAY);

end if;
end if;

end ALLOCATEPAIRTOGETHER;

-- get the options from keyboard
procedure GETOPTIONS(LPROC: out PROCESSOR) is

procedure QUERYNROFPROCESSORS(P: out PROCESSOR) is

NUMPROC:INTEGER;

begin
PUTLINE("Please, enter number of processors?");
GET(NUM_PROC);
case NUM PROC is

when 1 =>
P := PI;

when 2 =>
P := P2;

when 3 =>
P := P3;

172

when 4 =>
P := P4;

when 5 =>
P := P5;

when 6 =>
P := P6;

when 7 =>
P := P7;

when 8 =>
P := P8;

when 9 =>
P := P9;

when 10 =>
P := Pl0;

when others =>
P := PI0;

end case;
end QUERYNROFPROCESSORS;

begin
QUERY NR OF PROCESSORS(LPROC);

end GET_OPTIONS;

begin

TOPDOWNINDEX := MAXINDEX;
-- starts the allocation
CURRENT PROCESSOR :=
FINDLEASTUSEDPROCESSOR(UTIL ARRAY);
ALLOCATE SET OFTASKSTOPROCESSOR(RESULT_SET,
CURRENTPROCESSOR, ALLOCATED_TASKS, VARUTILIZATION,
UTILARRAY, PROCARRAY);

-- print potential parallel execution time
PUTLINE("Potential Parallel Execution Time:");
PUT(VARUTILIZATION, FORE => 4, AFT => 4, EXP => 0);
NEWLINE;

-- print potential speed-up
POTENTIALSPEEDUP := UNIEXE_COST/VARUTILIZATION;
PUT_LINE("Potential Speed-Up: ");
PUT(POTENTIALSPEED_UP, FORE => 4, AFT => 4, EXP => 0);
NEWLINE;

GETOPTIONS(L_PROC);

PUT_LINE(" bottomup topdown ");
while (not MYDIS.ISFULL(ALLOCATEDTASKS)) and then

(BOTTOMUPINDEX <= TOPDOWNINDEX) loop
PUT(BOTTOMUPINDEX, WIDTH => 6);

173

PUT("
PUT(TOP DOWNINDEX, WIDTH => 6);
NEW LINE;
PAIR SEPARATED TEMP ARRAY(BOTTOMUPINDEX).PAIRSET;
BOTTOM UP INDEX := BOTTOM UP INDEX + 1;
PAIR TOGETHER := TEMPARRAY(TOPDOWN INDEX).PAIRSET;
TOP DOWN INDEX TOPDOWN INDEX - 1;
ALLOCATE PAIRSEPARATE;
ALLOCATEPAIRTOGETHER;

end loop;

for I in PROCESSOR'FIRST..L PROC loop
PRINTPROCESSOR(I, LPROC);
PRINT SET(PROCARRAY(I));
PUT(UTILARRAY(I), FORE => 4, AFT => 4, EXP-=> 0);
NEW LINE;

end loop;

LASTPROC := L_PROC;

end ALLOCATE;

E. SCUED.ADA

separate(STATICAL)

procedure SCHEDULE(G: in out DGRAPH;
L PROC: in PROCESSOR;
P: in out PROCESSOR ARRAY;
S: in out SCHEDULEARRAY;
T: out TIMEARRAY) is

MY P: PROCESSOR ARRAY := P;
MYT: TIME_ARRAY := (others => 0.0);

procedure SCHEDULETASKS(G: in out DGRAPH; P: in
PROCESSORARRAY;

S: in out SCHEDULEARRAY) is

MY SCHEDULE: SCHEDULEARRAY;
SUCCESS: BOOLEAN;
CURRENTPROCESSOR, SOURCEPROCESSOR: PROCESSOR;
CURRENTELEMENT, EDGEELEMENT: MYELEMENT;
-- type TIMEARRAY is array(PROCESSOR) of FLOAT;
-- MY TIME: TIMEARRAY := (others => 0.0);
MYINFO: EXECUTIONINFO;
AUX_INFO: EXECUTION_INFO;
type AUXARRAY is array(MYATOM) of FLOAT;

174

EXTRAARRAY: AUXARRAY := (others => 0.0);
FOUND: BOOLEAN := FALSE;

function MAXIMUM(X,Y,W: FLOAT) return FLOAT is

Z: FLOAT := X;

begin
if Y > Z then

Z := Y;
end if;
if W > Z then

Z := W;
end if;
return Z;

end MAXIMUM;

begin
for I in MY ATOM'FIRST..MY ATOM'LAST loop

FINDPROCESSOR(P, I, LPROC, SUCCESS,
CURRENTPROCESSOR);
RETRIEVENODE(G, INTEGER(I), CURRENTELEMENT, SUCCESS);
if I = 1 then

MYINFO.STARTTIME := MY T(CURRENTPROCESSOR);
MY INFO.END TIME := MYINFO.STARTTIME +
CURRENTELEMENT.INFO;
MYINFO.TASKID := I;
MYINFO.IS_COMM := FALSE;
MYT(CURRENTPROCESSOR) := MY_INFO.ENDTIME;
MYSCHEDULE(MYATOM(I)) := MY-INFO;

else
for J in MYATOM'FIRST..MYATOM'PRED(I) loop

if I /= J then
RETRIEVEEDGE(G, INTEGER(J), INTEGER(I),
EDGEELEMENT, SUCCESS);
if SUCCESS then

AUXINFO := MYSCHEDULE(MYATOM(J));
FOUND := FALSE;
MYINFO.STARTTIME := MAXIMUM(AUX INFO.ENDTIME,

EXTRAARRAY(I),
MYT(CURRENTPROCESSOR));

EXTRAARRAY(I) := MYINFO.STARTTIME;
end if;

end if;
end loop;

MY INFO.END TIME := MYINFO.STARTTIME +
CURRENTELEMENT.INFO;
MYINFO.TASKID := I;
MYINFO.IS_COMM := FALSE;

175

MYT(CURRENTPROCESSOR) := MYINFO.ENDTIME;
MYSCHEDULE(MYATOM(I)) := MYINFO;

end if;
end loop;
S := MY SCHEDULE;

end SCHEDULETASKS;

procedure PRINTSCHEDULE(S: in out SCHEDULEARRAY;
P: in out PROCESSOR_ARRAY) is

FOUND: BOOLEAN := FALSE;
SUCCESS: BOOLEAN := TRUE;
CURRENTATOM: MYATOM;
CURRENTINFO: EXECUTIONINFO;

procedure PRINTP(PROC: in PROCESSOR) is

AUXINDEX: INTEGER := 0;

begin
for I in PROCESSOR'FIRST..LPROC loop

AUXINDEX := AUXINDEX+i;
if I = PROC then

PUT("PROCESSOR P");
PUT(AUXINDEX, WIDTH => 1);
NEWLINE;
exit;

end if;
end loop;

PUTLINE("START END TASK");

end PRINTP;

begin
for I in PROCESSOR'FIRST..LPROC loop

PRINTP(I);
MY DIS.TAKE OUT MEMBER(MYP(I),CURRENTATOM,SUCCESS);
while SUCCESS loop

CURRENTINFO := S(CURRENTATOM);
PUT(CURRENT_INFO.STARTTIME, FORE => 4, AFT => 4, EXP

=> 0);
PUT(" .);
PUT(CURRENTINFO.ENDTIME, FORE => 4, AFT => 4, EXP
=> 0);
PUT(# ');
PUT(INTEGER(CURRENTINFO.TASKID), WIDTH => 2);
NEW LINE;
MY_DIS.TAKEOUTMEMBER(MYP(I),CURRENTATOM,SUCCESS);

end loop;

176

end loop;

end PRINTSCHEDULE;

begin
SCHEDULE TASKS(G,P,S);
PRINT SCHEDULE(S,P);
T := MY_T;

end SCHEDULE;

F. IMPROVE.ADA

separate(STATICAL)

procedure IMPROVE is

-- Data for improvement of the task allocation by pairwise
exchange of tasks
CURR P ARRAY: PROCESSORARRAY := (others => MY DIS.CREATE);
CURRTHESCHEDULE: SCHEDULE ARRAY;
CURR MY TIME: TIMEARRAY;
COSTARRAY: TIMEARRAY;
CURRCOSTARRAY: TIMEARRAY;
TOT COST: TIME-ARRAY;
CURRTOT COST: TIMEARRAY;
type TOPOLOGYCOSTARRAY is array(Pl..P4,Pl..P4) of FLOAT;
HOPARRAY: TOPOLOGYCOSTARRAY := ((0.0,1.0,2.0,1.0),

(1.0,0.0,1.0,2.0),
(2.0,1.0,0.0,1.0),
(1.0,2.0,1.0,0.0));

SETCOUNT, INDICATOR: INTEGER;
GUESS: FLOAT;
CONTROL SET: SET := MY DIS.CREATE;
AUX SET : SET := MYDIS.CREATE;
type CHANGEARRAY is array(MYATOM) of MY-ATOM;
SWAPARRAY: CHANGEARRAY;
THISATOM: MYATOM;
SUCCESS: BOOLEAN;
PROCI, PROC2: PROCESSOR;
MAX COST: FLOAT;
CURRMAXCOST: FLOAT;

177

-- Calculates cost array
procedure CALCCOSTARRAY(G: in out DGRAPH;

P: in out PROCESSORARRAY;
C_ARRAY: out TIMEARRAY) is

TEMP COST ARRAY: TIME ARRAY := (others => n.0);
COSTELEMENT: MYELEMENT;
PRODCOST: FLOAT;
SUCCESS: BOOLEAN;
PROC_FROM, PROCTO: PROCESSOR;

begin
for I in I..NUM OF TASKS loop

for J in 1..NUMOFTASKS loop

if I /= J then
RETRIEVE EDGE(G, I, J, COST_ELEMENT, SUCCESS);
if SUCCESS then

FIND PROCESSOR(P,MY ATOM(I),P4,SUCCESS,PROC_FROM);
FINDPROCESSOR(P,MYATOM(J),P4,SUCCESS,PROC TO);
if PROCFROM /= PROCTO then -- if they are in

dif. processors
PROD COST :=
HOP ARRAY(PROC_FROM,PROC TO)*COSTELEMENT.INFO;
TEMPCOSTARRAY(PROCFROM) :=
TEMPCOSTARRAY(PROCFROM) +
PRODCOST;
TEMPCOSTARRAY(PROCTO)
TEMPCOSTARRAY(PROCTO) +
PRODCOST;

end if;
end if;

end if;
end loop;

end loop;
C_ARRAY := TEMPCOSTARRAY;

end CALCCOSTARRAY;

function FINDMAXCOST(TARRAY: in TIMEARRAY)
return FLOAT is

MAX: FLOAT := TARRAY(PI);

begin
for I in P2..P4 loop

if TARRAY(I) > MAX then
MAX := TARRAY(I);

end if;
end loop;
return MAX;

178

end FINDMAXCOST;

procedure PRINTNODEPROCESSOR(P: in PROCESSOR) is

begin
case P is

when P1 =>
PUT("PI");

when P2 =>
PUT("P2");

when P3 =>
PUT("P3");

when P4 =>
PUT("P4");

when others =>
null;

end case;
end PRINTNODE PROCESSOR;

procedure PRINTTOTCOST is

begin
PUT_LINE ("PROCESSOR MYTIME COSTARRAY
TOTAL COST");

for I in Pl..P4 loop
TOT COST(I) := MYTIME(I) + COSTARRAY(I);
PRINT_NODEPROCESSOR(I);
PUT(" Is);
PUT(MYTIME(I), FORE => 4, AFT => 4, EXP => 0);
PUT(" ..);
PUT(COSTARRAY(I), FORE => 4, AFT => 4, EXP => 0);
PUT(" "s);
PUT(TOTCOST(I), FORE => 4, AFT => 4, EXP => 0);
NEWLINE;

end loop;
end PRINTTOTCOST;

begin
CALCCOSTARRAY(DG,PARRAY,COSTARRAY);
PRINTTOTCOST;
MAXCOST := FINDMAXCOST(TOTCOST);

-- starts allocation improvement
RANDOM.SET_SEED;
for K in 1..100 loop

for I in 1..NUM OF TASKS loop
MY DIS.INSERT(MYATOM(I),CONTROLSET);

end loop;
SETCOUNT := NUM OFTASKS;

179

for I in 1..NIJMOFTASKS loop
GUESS := RANDOM.SýRAND;
for J in 1..SET_"COUNT loop

if GUESS < (FLOAT(J)/FLOAT(SET COUNT)) then
INDICATOR:=J
exit;

end if;
end loop;
for J in 1..SET_-COUNT loop
MYDIS.TAKEOUTMEMBER
(CO5NTROLSE-T,THIfS_-ATOM,SUCCESS);
if J = INDICATOR then

SWAP ARRAY(MYATOM(I)) := THIS-ATOM;
else
MYDIS.INSERT(THIS ATOM,AUXSET);

end if;
end loop;
CONTROLSET := AUXSET;
SET_-COUNT := SETCOUNT - 1;
MYDIS.CLEARSET(AUX SET);

end loop;

for I in 1..NUMOFTASKS/2 loop
FINDPROCESSOR(PARRAY,SWAPARRAY(MY-ATOM(2*I-1)),
P4, SUCCESS',PROCi);
FINDPROCESSOR(PARRAY, SWAPARRAY(MYATOM(2*I)),
P4,SUCCESS,PROC2);
if (PROCi = P1 or PROC2 = P1) then
MYDIS.INSERT(SWAP ARRAY(MY-ATOM(2*I-l)),,
CURR_-P ARRAY(PROC 1));
MY_-DIS. INSERT(SWAP ARRAY(MY-ATOM(2*I)),
CURR_-P -ARRAY (PROC2));

else
if PROCi = PROC2 then
MYDIS.INSERT(SWAPARRAY(MY-ATOM(2*I-1)),
CURRPARRAY(PROClT));
MY_-DIS-.INSERT(SWAPARRAY(MY-ATOM(2*I)),
CURRPARRAY(PROCI));

else
MYDIS.INSERT(SWAPARRAY(MY-ATOM(2*I-1)),
CURRP_-ARRAY(PROC2));
MY_-DIS.INSERT(SWAPARRAY(MYATOM(2*I)),
CURR_-P_-ARRAY(PROC1));

end if;
end if;

end loop;
if NUMOFTASKS mod 2 = 1 then
FINDPROCESSOR(P_ARRAY,SWAPARRAY
(MYA ýTOM(NUM -OFTASKS)) ,P4,SUCCESS,PROC1);
MY_-DIS.INSERT(SWAPARRAY
(MYATOM(NUM OF TASKS)) ,CURRPARRAY(PROC1));

180

end if;

PUT LINE ("ITERATION"-);
PUT(K, WIDTH => 3);
NEWLINE;

for I in Pl..P4 loop
PRINTNODE_-PROCESSOR(I);
PUT(" ")
PRINTSET(CURRPARRAY(I));

end loop;

SCHEDULE (DG, LAST_-PROCESSOR, CURRP_-ARRAY,
CURRTHESCHEDULE,CURRMYTIME);
CALCCOSTARRAY(DG,CJR-RPARRAY,
CURRCOSTARRAY);

for I in P1..P4 Ic~op
CURR_-TOTCOST(I) :=CURRMYTIME(I) +
CURR_-COSTARRAY(I);

end loop;
CURRMAXCOST :=FINDMAXCOST(CURR-TOTCOST);

PUT LINE("CURR MAX COST");
PUT(CURR -MAXCOST, FORE => 4, AFT => 4, EXP => 0);
NEWLINE;
PUT LINE("MAX COST");
PUT(MAXCOST, FORE => 4, AFT => 4, EXP => 0);
NEWLINE;

if CURR_-MAX_-COST < MAXCOST then
PARRAY CURRPARRAY;
M-Y -"IME CURRM-Y_-TIME;
COST ARRAY :=CURRCOSTARRAY;
TO'ICOST :=CURRTOTCOSýT;
MAX_-COST CURRMAXCOST;
THE; _SCHEDULE := CURR-THESCHEDULE;

end if;

for I in P1..P4 loop
MY_-DIS.CLEARSET(CURR_PARRAY(I));

end loop;-

end loop;

PUT_LINE("IMPROVED ALLOCATION");
for I in P1. .P4 loop
PRINTNODEPROCESSOR(I);

181

PUT (" 1');
PRINTSET(PARRAY(I));

end loop;

PRINTTOTCOST;

end IMPROVE;

182

LIST OF REFERENCES

[ALSYS 90]
Alsys Inc."PC Mothered Transputer Cross Compilation User
Manuals", Alsys, Burlington, MA, May 1990.

[ATKINSON 88]
Atkinson C., Moreton T., Natali A., "Ada for Distributed
Systems", Cambridge University Press, 1988.

[DJKSTRA 59]
Djkstra, E.W., A Note on two Problems in Connexion with
Graphs, Numerical Mathematics vol.1, Oct. 1959.

[HOARE 78]
Hoare, C. A. R., Communicating Sequential Processes,
Communications of the ACM, vol. 21, no. 8, Aug. 1978.

[QUINN 87]
Quinn, M. J., "Designing Efficient Algorithms for
Parallel Computers", McGraw-Hill, 1987.

[RAMAMRITHAM 89]
Ramamrithan, K., Allocating and Scheduling of Complex
Periodic Tasks, University of Massachusetts, Amherst,
Technical Report 90-01, Oct. 1989.

[REYNOLDS 83]
Reynolds, P. F., The Implementation and Use of Ada on a
Distributed System with High Reliability Requirements,
Final Report on NASA grant number:NAG-1-260,University
of Virginia, 1983.

[RICHMOND 91]
Richmond, C., On Programming Transputers to Capture Ada
Multitasking for the NPS Autonomous Underwater Vehicle,
Master's thesis, Naval Postgraduate School, Monterey,
CA, December 1991.

[STANKOVIC 87]
Stankovic, K. A., Ramamritham K., Cheng S., Scheduling
Algorithms for Hard Real-Time Systems - A Brief Survey,
University of Massachusetts, Jul. 1987.

[STANKOVIC 88]
Stankovic, K. A., Real-Time Computing Systems: The Next
Generation, University of Massachusetts, Feb. 1988.

183

(STUBBS 87]
Stubbs, D., Webre, N., "Data Structures with Abstract
Data Types and Modula-2", Brooks/Cole, 1987.

(TANENBAUN 89]
Tanenbaum, A. S., "Computer Networks", Prentice Hall,
1989.

[TSUCHIYA 82]
Tsuchiya, M., Ma, P. R., Lee, E. Y. S., A Task
Allocation Model for Distributed Computing Systems,IEEE
Transactions on Computers vol. 31, No. 1, 1982.

[TZENG 91]
Tzeng, N., Enhanced Hypercubes, IEEE Transactions on
Computers, vol. 40, No. 3, March 1991.

[VOLZ 85]
Volz, R. A., Some Problems in Distributing Real-time
Ada Programs Ac-ross Machines, Ada in Use, Proceedings
of the Ada International Conference, Paris, 1985.

184

INITIAL DISTRIBUTION LIST

No. Copies

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Chairman, Code EC 1
Department of Electrical & Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5002

4. Professor Shridhar Shukla, Code EC/Sh 2
Department of Electrical & Computer Engineering
Naval Postgraduate School
Monterey, CA 93943-5002

5. Professor Robert B. McGhee, Code CS/Mz 1
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5002

6. Professor Uno R. Kodres, Code CS/Kr 1
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5002

7. Professor Amr M. Zaky, Code CS/Za 1
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943-5002

8. Professor Anthony Healey, Code ME/Hy 1
Department of Mechanical Engineering
Naval Postgraduate School
Monterey, CA 93943-5002

9. Diretoria de Armamento e Comunicagoes da Marinha 2
Brazilian Navy
Rua Primeiro de Margo, 118, 21o andar
CEP 20010, Rio de Janeiro, RJ, Brasil

185

10. LCdr Marco A. G. Falcao
Brazilian Navy
Rua Primeiro de Margo, 118, 21o andar
CEP 20010, Rio de Janeiro, RJ, Brasil

186

