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ABSTRACT

When hard coatings are designed to protect substrates against the

high speed frictional excitation of asperities, it is important to

consider parameters that would affect the integrity of the coating.

Thermo-mechanical cracking and coating delamination are the major

failures of hard coating. In analytical modeling, it is important to

know the limitation of the model and the validity of the conclusions

drawn from the analysis. The report addresses the postulation of a

two-dimensional model, which is used for the mathematical simplicity to

study the effects of various parameters. For high speed asperity

excitation, thermal stress dominates the analytical criteria. The

report considers the effect of coating thickness and its critical value.

Material parameters are grouped into those of mechanical properties and

those of thermal properties. The differences of those properties

between the coating and the substrate directly affect the integrity of

the coating. Irregularities, especially in the neighborhood of the

coating/substrate interface, are introduced to study their damaging

effects to the coating integrity. The report also addresses the

significance of some unavoidable randomness in coating and the resulting

effect on the coating integrity.
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NOMENCLATURE

a asperity characteristic dimension, the half
width of the contact area

c specific heat
C(t) distance from xI origin to the trailing edge of

the moving heat source
c 1  dilatational wave speed

c 2  shear wave speed

d the dimensionless coating thickness (= H/a)
d the dimensionless mean coating thickness

(= H /a)

e depth of the cavity
EI, E Young's modulus of the coating layer and the substrate,

respectively
E the expected value

f(a) the random fluctuation function
H the coating thickness

H0 the mean coating thickness

k thermal conductivity
K mode I stress intensity factor

K 1 mode II stress intensity factor

L' ligament thickness
L dimensionless ligament thickness (=L'/d)
M Mach number
P center of the finite difference cell

N,S,W.Z surrounding point of P
P(x) load distribution over the contact area

P average pressure over the contact area

q(x) heat flux distribution through the contact
area

qo 0 average heat flux through the contact area

RIR 1 1  Peclet numbers of the surface layer and the

substrate, respectively
T temperature field
U internal energy

u1 , u 2  displacement in xI and .x2 direction, respectively

u, v dimensionless displacement in f and q direction
(=ui/d), respectively

V traversing speed of asperity (in x direction)
Var [.] variance

{x', y') material coordinate fixed to the medium
(x, y) convective coordinate fixed to the moving

asperity
the sample random variable
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the material region: I for the coating layer;
II for the substrate

6 mass density ratio

6j Kronecker delta

0 dimensionless temperature field
(=(T-T 0 )k/q 0 a)

1 thermal diffusivity
#, a Lame constants

ll, 12 r22 stress field

6 r ,r,; dimensionless stresses (=# j/0)n •n th
an, yn n partial derivative with respect to x or y
x y

( V) y} dimensionless coordinate (=x/a, y/a)
p mass density
A statistical sample space
r dimensionless time (Vt/d)

(fij)t I the perturbative order for the stress components
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1.0 INTRODUCTION

The present report addresses the integrity of a coated medium,

which is subjected to the frictional excitation of a high-speed

asperity. Break-down of the coating integrity occurs principally in the

form of cracking of the coating or delamination of the coating from the

substrate. With Coulomb friction predominates in asperity excitation,

the stress state in the coated medium and particularly in the

neighborhood of the coating/substrate interface is governed by the

thermo-mechanical field. The thermal field results from the dissipative

frictional power, which manifests as thermal load traversing over the

wear surface of the coated medium. The thermal component of the stress

state dominates with increase of the asperity speed. These high thermal

stresses will then initiate fracture in the coated material, inasmuch as

the coating is introduced as a surface modification to improve the

surface wear property of the contacting bodies.

The integrity of the coating relies first on the choice of the

coating material, which would reduce friction as well as resist thermal

cracking. The integrity of the coating also depends on the interaction

between the coating and its substrate, which it is designed to protect.

The design of an effective coating is, therefore, depending on the

property of the coating, its geometry, and its property matching, or

mismatching, with the substrate.

For the purpose of a fundamental understanding of the parametric

effects which can best adapt to later application to design, the study

adopted an analytical formulation. The mathematical model is

represented by differential equations, which govern the

thermo-mechanical field of the coated medium and the substrate. The

dynamic boundary conditions are described by the boundary values of the

field. From the analytical formulation, mechanical and thermal proper-

ties that affect in a dominant way the thermo-mechanical field can be

identified. The effect of the coating thickness and their irregulari-

ties can be quantified. In the analyses, emphasis has been placed on

the coating being a hard deposition over the substrate. The mathematical



model is thus simplified to allow the use of thermoelastic formulation.

For hard coatings, it is postulated that failures will initiate by

thermo-mechanical cracking. The crack may occur with cohesive failure.

The criterion is the maximum tensile stress to reach a limit. Shear

crack may exist in the coating/substrate interface. The limiting

shearing stress will then be the cause of coating delamination.

The report will first address the coating as a single material in

its response to the asperity excitation. The purpose is to identify

those important characteristics of the coating material. The

deterministic effect of coating thickness will be established,

especially when the coating is thin, in the neighborhood of from 20 to

100 p. The interfacial relationship between the coating and the

substrate will be studied in detail for both the mechanical properties

and the thermal properties of both materials. The interfacial

irregularities, defects and random thickness, will then be discussed.
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2.0 MATHEMATICAL FORMULATION

The traversing asperity imposes a moving traction over the surface

as well as a moving heat source caused by the rate of frictional work.

The stress field caused by the traction, normal and frictional, Is the

mechaaical portion of the response, while that of the heat source i; the

thermal portion of the response. In numerical computations, the size of

the asperities are of the order of 1 mm. The total thickness of the

medium including both the coating layer and the substrate is at least an

order of magnitude larger than the asperity size. Mathematically, the

material is represented by a half space with the asperity traversing

over the surface boundary at a uniform speed (V) as shown in Figure 1.

The asperity is characterized by the contact pressure P(X1),

distributed over a contact width of 2a. The coefficient of friction pf

is postulated at the steady state value corresponding to that of the

surface temperature. For hard coating surface, Blau (1980) and Ruff and

Blau (1980), demonstrated that the surface yield, due to the asperity

excitation, are sub-granular. The plastic deformation and surface shear

for hard wear material are restricted to a very thin surface layer of

4-7 microns. If the depth at which cracks initiate is of an order larger

than that of the plastic zone, the thermo-elastic theories for crack

initiation may apply. The energy loss due to plastic deformation is

thus incorporated into the frictional energy loss on the wear surface.

The governing differential equations are the Fourier equation, and

the thermo-elastic Navier's equation, respectively expressed in the

material coordinates (fixed to the coated medium):

SfliiTf'= t T ', (I)

+p)dij=I l + (3A# + 2,T#)oýd T, (2)

IThe Fourier equation holds provided that the asperity speed is lower
than the speed of thermal wave.
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where (. j) are the Lame's elastic coefficients, uiis the displacement

field, T is the temperature field, p is the mass density, a is the

coefficient of thermal expansion, x is the thermal diffusivity, I and J

index the coordinates and ft indexes I and II for the coating layer and

the substrate respectively, and where 0t denotes a time derivative. The

indicial summation convention and Schouten's partial derivative

notation, d = O/axi. are used. Both governing equations (1, 2) require

explicit time-dependent solutions. The analytical complexity may be

alleviated by using the convective coordinates (fixed to the asperity),

provided that the asperity parameters are uniform and that the geometry

is uniform in the traversing direction and the solutions are of steady-

-state. Equations in (1. 2) become

Sfl ij = VaITf, (3)

a Ufl + (1- A-*2y )a Uf = G M 2 12f~d1f 2 (1 +Vfl)&fl 1j 4

where vP is the Poisson's ratio, M=V/C2 (= [V 2 IP,/ ]1/2), is the Mach

number of shear in Region II, and G = /AIIPA/PAfPII. The stress field

(fij) is computed from the solved displacement field {ui) through the

thermoelastic Hookian law given by:

f fl = AkU961+ I i Jl + (3Af+2#)eT6 (5)ii fl k k ij 1 I ( it ij. 1

where 46j is the Kronecker delta.

On the surface boundary, the rate of friction work done by the

asperity's traversing over the wear surface manifests as heat input.

The asperity excitation also exerts a pressure and friction force on the

boundary. Hence at x2 = 0.

kk 2 T -qo = -FfP(x 1 )V' (6)

r22 = -P(x )d (7)

5



12if 2 = Pf P (x l) I

where k is the thermal conductivity, xI is the coordinate i.i

traversing direction of the asperity, and p(x 1) is the aipe.- - -tire

in the contact zone and zero elsewhere on the surface bcindii-' "b

temperature and the stress field satisfy the regularity :ou,. -

infinity. At the coating/substrate interface, the cont.':ui- ,:. ns

hold for temperature, heat flux. traction, and displacement - at

X2 = H,

TI = II ki2I =kl2II
T =T k I 2T -k 11 2T

I II I II-
#2j '2j, uj uj 

,

For the steady state solution of the homogeneous wear medium " a .- n

(3, 4) are solved with the boundary and continuity conditicn :-• ie

method of Fourier transform. The method facilitates the parzm .'

study of the properties.

When irregularities occur in the medium, homogeneity Canit 3, n

the traversing direction of the asperity no longer hoids. -: rm--ion

for transformation to equations in (3. 4) cannot be justifi'ý't 'I*- enre

complex equations in (1, 2). which are defined in the mater.-,

coordinates, must be used. With the explicit time variable.

difference method is applied for the solution of specific ma- I- ind

specific geometries.
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3.0 ASPERITY EXCITATION OVER A HARD WEAR MEDIUM

From the governing equations, the boundary conditions and the

continuity conditions (1 - 9), it is noticed that the thermo-mechanical

state (fij. ui) is influenced by the asperity parameters (a, t, P, V)

and the material parameters (A, p. p. a, k, x, pf). The coefficient of

Coulomb friction pf affects as a material parameter on the wear surface

only. The asperity parameter (t) is the aspect ratio of the asperity

contact area, the length perpendicular to the traverse direction to the

width in the traverse direction. The three dimensional characteristics

of the moving asperity was solved by Huang and Ju (1985).

The asperity parameters involve those excitation-related (V, P) and

those contact area configuration-related (a, t). Larger half-width (a)

leads to longer period of heat input. The thermo-mechanical field does

not depend on the shape of contact area, Figure 2 (Huang and Ju, 1987).

Yet its aspect ratio affects the temperature and the thermal stress

states, Figure 3 (Huang and Ju, 1987). It is noticed that at the

critical depth, at which the maximum value of principal thermal stress

in tension occurs, a square or a circular contact area (t - 1) could

result in almost six times the value of a two-dimension solution (t =

w). Two dimensional modeling is therefore useful for the determination

of the characteristics of the wear coating, but not in the actual

evaluation of the stress state. The asperity velocity (V) influences

the thermo-mechanical field in both the heat input, Equation (6) and the

convective terms in Equations (3, 4). The latter, occurring in the

differential equation, can be combined with the material parameters,

forming the Peclet Number (R = Va/s) in Equation (3) and the Mach Number

(M - V/C) in Equation (4). The former, being the surface rubbing speed,

directly determines the rate of heat input. It is conceivable that at

low rubbing speed the mechanical portion of the stress dominates. The

static case of V = 0 is indeed the limiting case. At high speed,

however, the thermal stress prevails. Huang and Ju (1987) demonstrated

that at a rubbing speed of 15 m/s the thermal stress is more than six

time that of the mechanical portion of the stress. It was noted that

the maximum values of the thermal and the mechanical components of the

7
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stress do not occur at the same location nor do they have the same

principal directions. Hence, the estimate of the wear characteristics,

due to high speed asperity excitation, shall be based on the thermal

stress state.

In the material parameters, the mass density occurs in the inertial

term in Equations (2, 4). However, since the asperity traversing speed

is much below the Rayleigh wave speed, Its effect there is essentially

perturbative. In Equations (1, 3), the mass density is combined with

the specific heat (c) as the thermal capacity (pc), contributing to the

thermal diffusivity (x) of the material. The thermal conductivity (k),

because of its presence in the boundary condition, Equation (6). and the

continuity condition, Equation (9). is an independent parameter. The

material parameters are therefore grouped as the mechanical constitutive

coefficient [., p, or P. E) and the thermal parameter [a, k, x]. The

coefficient of expansion is the principal excitation in Navier's

Equations (2, 4). The mechanical property is therefore dominated by a

single parameter [&E/(i-v)]. The thermal properties are grouped in dual

parameters, [k, x] or [k, pc]. Using the latter, Huang and Ju (1987)

concluded that, for materials of comparable thermal conductivity,

materials of high thermal capacity are definitely preferred for the

resulting lower temperature field. However, for materials of comparable

thermal capacity, those of high thermal conductivity yield lower thermal

stress state. Moreover, because of its correspondingly lower Peclet

number, the critical depth Vcr is thus accordingly larger. The critical

depth Vcr is the dimensionless depth V at which the maximum principal

thermal stress occurs, where V is the depth coordinate x2 modulated by

the asperity half width (a). Ju and Liu (1988a) found that the critical

depth depends predominantly on the Peclet Number. In their study, the

critical depth was computed directly by maximizing the thermal tensile

stress with respect to positions under the asperity inside the material.

The relationship between critical depth and the Peclet Number for all

materials in the two dimensional formulation may be simplified to

satisfy the exponential form

10



R(V cr)2275= 20.4368. (10)

The relation is depicted in Figure 4. The square symbols in the figure

represent actual materials; they are Aluminum (AI), Silicon Carbon

(SIC), Aluminum Oxide (A1 2 03 ), Stellite III (St), and Zirconium (Zr)

with the same asperity speed of 15 m/s, and the same asperity width of

0.254 mm. The traversing speed has been varied for Aluminum Oxide and

Stellite I11. The results all fall on the same curve. Invariably, the

critical depth is located at the cold side in the neighborhood where the

large temperature gradient occurs. Because of the combined effect

maximum tensile stress and a discontinuity in material property, the

critical depth shall characterize the material chosen for the coating

when the thickness of coating becomes critical.

11
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4.0 PARAMETRIC EFFECT IN A COATED MEDIUM

It was pointed out by Ju and Chen (1984), that the phenomenon of

thermo-mechanical cracking will be the same as a single material of the

coating if the coating thickness is of the same order of magnitude as

the asperity width. The interaction between coating and the substrate

becomes significant only for coating thickness being of order of

magnitude smaller than the asperity width. Ju and Liu (1988b) studied

the effect of coating thickness in the neighborhood of the critical

depth for various property differences between the coating and the

substrate. In Figure 5 through Figure 9, the principal stresses in both

the coating and the substrate are shown for the parametric variances of

[WE/(1-v)], as the dominant mechanical property, and the thermal

parameters [k] and [pc]. The variances are designated as:

NI = [eE/(l-v)]I/[eE/(l-v) 1 1 , (11)

Ik = kI/k (12)

pc = [Pc]i/[PC]I 1 . (13)

For all those variances, since the interest was essentially in the

effect of parametric matching (or mismatching) between the coating and

the substrate, the numerical values of the coating is set for the

Stellite III with the Peclet Number R=1400. The corresponding critical

depth for the coating is at qcr ' 0.16. Invariably, the worst case

occurs in the neighborhood of the critical depth. Figures 5 and 6 show

the principal stresses in the coating and the substrate respectively for

various variances of mechanical parameter. For the variance of one, the

coating and the substrate are of the same material. For variances

larger than one, the substrate is of softer material; while less than

one denotes stiffer substrate. For thick coatings (I > 0.16), the

maximum stress in the coating occurs at the critical depth. The figures

demonstrate that softer substrate provides less support for the coating.

The thermal stress Is thus higher. Stiffer substrate reduces the stress

in the coating but takes on more stress especially for very thin

13
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coatings. Figures 7 and 8 show the effect of the thermal conductivity

variance. For less conductive substrate (Hik 10), the thermal stress

is higher in the coating, especially at the coating/substrate interface

for thin coatings. When the substrate is more conductive (the variance

is 0.5). more heat is readily transferred to the substrate. The thermal

stress is correspondingly reduced. Figure 9 illustrates a combined

curve for maximum principal thermal stresses in the coating and in the

substrate due to variance in thermal capacity. In both cases, the

stresses are evaluated at the critical depth.

To study the criterion for coating delamination, Ju and Liu (1988b)

also showed the effect of the shearing stress at the coating/ substrate

interface, Figure 10. The existence of the interfacial shearing stress

results when the principal direction is not parallel to the wear sur-

face. Theoretically, when the principal angle is zero, the Interfacial

shearing stress vanishes. Figure 10 uses the variance in thermal condu-

ctivity without loss of generality. For a single material, 1k = 1.0,

the principal angle is small at locations closer to the wear surface.

As a result, the shearing stress is correspondingly small.

Significantly, the interfacial shearing stress reaches a maximum in the

neighborhood of the critical depth of the coating. The existence of the

interfacial shearing stress could cause interfacial shear cracks that

would lead to coating delamination. The interfacial shearing stress can

be controlled by proper selection of coatings to match the substrate.

16
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5.0 IRREGULARITIES

In the mathematical idealization, the coating is postulated to be

of a known uniform thickness and to be smoothly and coherently bonded to

the substrate. Such idealization, however feasible, would be too

expensive to fabricate. Irregularities would eventually occur through

wear. Inclusions do exist in the neighborhood of the interface. The

thickness of the coating may vary either through manufacturing tolerance

or through wear. Chen and Ju (1987, 1988, 1989a, 1989b) considered the

effects of a small void cavity at the coating/substrate interface, and

also an interfacial ceack to simulate weak bonds. Liu and Ju (1989)

studied the effect of random coating thickness on the temperature field.

In both areas of studies, emphasis is placed on the effect of coating

irregularities to estimate the integrity of the coating.

5.1 EFFECTS OF THE CAVITY

This section studies the thermo-mechanical cracking in a coated

medium with a near surface void. It Is one of a series of papers on the

thermo-mechanical cracking phenomenon. The physical observations of the

asperity friction are'based on the works of Archard (1959), BannerJee

and Burton (1979) and Kennedy (1984a). Analytical solutions of

thermo-mechanical cracking in a single material with no cavity were

obtained by Ling et a] (1965,1973), Mow and Cheng (1967). Kennedy

(1981,1982). Ju (1982) and Huang and Ju (1985). Research on asperity

excitation over coated surfaces with no cavity was first solved by Ju

and Chen (1984) for moderately thick coating layers. Later, Ju and Liu

(1988b) completed the investigation of the problem of a layered medium

with no cavity for thin coatings. Based on these previous works on the

problem of thermomechanical cracking from high-speed asperity friction,

it was observed that the thermal stress field dominates the stress field

and contributes principally to the failure by cracking. Among these

works, Ju and Liu (1988a) also established that, at uniform asperity

excitation, the Peclet number (R-Va/x) dominates the determination of

the critical depth (at which the tensile thermal stress reaches a

maximum) for the case of no defect. In the analysis, they obtained a

21



simple relationship between critical depth and Peclet number for the

two-dimensional problem which can be written as R(ycr)2.275 = 20.4368.

All previous work on the moving asperity problem dealt with uniform

solid media. Chen and Ju (1987) first solved the transient temperature

solution in a coated medium with a rectangular cavity, for which the

material coordinates must be used. Later on, Chen and Ju (1988) also

obtained the stress solutions of a single material with a rectangular

cavity near the wear surface. They concluded that: (1) because of the

cavity's poor heat transfer characteristics, the maximum tensile thermal

stress in the case of a single material with a rectangular cavity is

much higher than the maximum tensile stress in the case of no cavity,

and (1i) the occurrence of the maximum tensile stress is at the trailing

corner of the cavity, which defines a critical ligament thickness Lcr,

closer to the wear surface than the critical depth (Ju and Liu, 1988a)

of the material. For instance, for the case of a single material of

Stellite III with a cavity, the critical ligament thickness is

approximately 40 percent of the critical depth of the-same material.

This established that not only the Peclet number, but also the existence

of the defect will influence the location at which the maximum tensile

stress occurs. The present research will discuss the effects of a

cavity in the neighborhood of the interface of a coated medium. The

effect of the location of the cavity on stress field will also be

discussed.

5.1.1 ANALYTICAL MODEL

In the problem of cavity, or void inclusion, the homogeneity

condition in the traversing direction of the asperity no longer hold in

the vicinity of the cavity, Figure 11. Hence, the governing

differential equations, given in Equations (1, 2), must be used.

Regularity conditions are still to be satisfied at infinity. The

boundary conditions (6, 7, 8) remain. The continuity conditions (9)

hold at interface, except at cavity. Heat transfer at cavity is

negligible in comparison to that of the connected region. Small contact
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Is ignored, allowing a traction-free condition at the cavity boundary.

Small contact Is ignored. allowing a traction-free condition at the

cavity boundary. Because of the complexity of the geometry and the

boundary conditions, the finite difference method was employed to solve

the problem. The finite difference equation and the energy balance

method applied on the surface boundary and the cavity boundaries for the

temperature field are discussed by Chen and Ju (1987).

Ju and co-workers established that, for a moderately high-speed

asperity excitation, the thermal stress effect dominates the stress

field and eventually leads to failure in the no cavity case. Liu (1986)

also showed that, if the asperity speed Is larger than 0.127 m/s in

Stellite 111, the thermal stress dominates the failure, and the

mechanical stress becomes less important. However, the mechanical

stress may not be trivial when a cavity exists. Therefore, both the

mechanical and thermal stress field will be studied.

5.1.2 SOLUTION TECHNIOU

(I) Perturbation Method

For hard wear maierials, such as Stellite 111, and for a moderately

high asperity speed, the Mach number M is of the order of 10-3. Since

the parameter M 2 Is sufficiently small, Equations (2, 3) can be solved

by the perturbation method.

The solutions to Equations (2, 3) can be expressed as a power

series In (=M 2 ; that Is

Ufl((.j'7'C) _ uflq'qr) +_ cufl*((,V.T) + f2ufl(ý,V. 1 r) + (14)0 1 2

vfl(f'q'r'o = vflq'j.T) + fvfl(ý.J'r) + c2vfl ((1q1r) + (15)0 1 2

when Equation (14) and Equation (15) are substituted Into Equations (2,

3), the terms with the same power of e are grouped, leading to recursive
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equations for displacements. The recurrence formulas can be written as:

0 (NP d _ +a) + a _ + a (Nau

1c2 3r IT 3716))
viO7fl0# + 's" I 2l 1 (16)

o 10 t o

c= 2i + I a f i 6) + (1 7 )

where 2'

whee V (Af+2# 5)/p 1 Jc2 ;N=A,/p 1 1 C 2 ; N# m*/P 1 1 c2 ; b#-(3Afl+2#f)/pl 1 ;

7#=(qoat)l/kI; 6 =Pfi/P11 ; c1 =[4lii+2i&1 )/pi 1 /2 , c2[p /, l1, /2 ; o

is the Kronecker delta; and i denotes the perturbative order.

Similarly, one can obtain the recurrence formulas for the stress

field as follows:

(Nfl U + N2 -1v 2 (18)

(N!4NL• VP), (20)

P0  1 v 2 C 2

2

where (')i denotes the perturbative order for the stress components.

The solutions of each perturbative order can be obtained by applying the
finite difference method.
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(ii) Difference Equations

Because of the complexity of the geometry and the boundary

conditions, the finite difference method was employed to solve the

problem. The finite difference equations and the energy balance method

applied on the surface boundary and the cavity boundaries for the

temperature field are discussed by Chen and Ju (1987). According to the

numerical results by Chen and Ju (1987,1988), a high temperature and

high stress concentrations will be found in the vicinity of the cavity.

Therefore, a very fine mesh must be used near the cavity and a relative

coarse mesh can be used in the regions far away from the cavity. This

non-uniform mesh can be transformed to a uniform mesh and the solution

may be obtained in the transformed plane. The difference equations of

the thermoelastic Navier's equation for the zeroth order solution can be

written as

A1v(i-i,j-l,n) + A2 u(i-i,jn) + A3v(i-l,J+l,n) + A4 u(i,j-in) +

+ A5 u(i,J,n) + A6 u(i,j+1,n) + A7 v(i+l,j-l,n) +

+ A8 u(i+l.j,n) + A9 v(i+l,J+1,n) = (-i-- 0), (21)
c2

and

B u(i-l,J-in) + B2 v(i-i,jn) + B3 u(i-l.j+l,n) + B4v(i,j-1,n) +

+ B5 v(i,J,n) + B6v(i,J+1,n) + B u(i+1.J-l,n) +

+ Bav(i+lj,n) + Bgu(i+l.j+l,n) = a (!b #f), (22)
c 2

where A1 ,A 2 ..... B1 ,B 2 ... are given in Chen and Ju (1989b), and the

temperature gradients are derived from the temperature field.

(III) Special Element At Cavity Corner

The scheme in this case is to devise special elements in which the

approximation simulates the diverging rate in the vicinity of the

singular point. However, this method can be used only when the behavior
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of the singularity is known. The procedure of this method is to assume

a series which ccnsists of both the regular terms and the singular

terms. For the current problem, the stress singularity at the cavity

corner should be the same as those used by Williams (1952) and Sih

(1962). The series form for the displacement in the neighborhood of the

cavity corner can be written as

u(r,#) = regular term + IAnr f(e) (23)

where r is the distance from the corner point and (=31/2.

5.1.3 NUMERICAL RESULTS

Numerical results are obtained by using the finite difference

non-uniform rectangular mesh and material properties for Stellite III.

Numerical results of a coated medium with no cavity were compared with

the analytic solutions (Ju and Chen, 1984), the error for the

temperature field is less than 1%, and the error for the stress field is

less than 5%; this confirms the accuracy of the numerical scheme. The

details of the numerical results for the temperature field are referred

to Chen and Ju (1987). Only the numerical results of the stress field

will be discussed in the present section. When the cavity is located

entirely in the surface layer, because the coating layer is much thicker

than the ligament thickness, the effect is similar to that of a single

material (Ju et al, 1984,1988). However, when the top edge of the

cavity is at the interface, both the coating layer and the substrate

will influence the stress field. Therefore, all figures are plotted for

the worst cases when the top edge of the cavity is at the interface, and

when the asperity Is right over the cavity.

The effect of the cavity on the magnitude of the mechanical stress

field can be seen in Figure 12, which shows the principal thermal stress

field (case 7A), mechanical stress field (case 7B), and combined stress

field (case 7C). In this figure, the material of the substrate is

Stellite III, and the material properties of the coating layer are the
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same as Stellite III except that Young's modulus is twice that of

Stellite Ill. This figure establishes that, while the tensile thermal

stress is larger than the tensile mechanical stress, the mechanical

stress field is not negligible as In the no cavity case.

When the cavity location, or the ligament thickness, is smaller

than the critical depth of the coating material, the largest tensile

stress will occur at the top trailing corner of the cavity. The maximum

value occurs when the ligament thickness, the coating thickness in the

present section, reaches a critical value. Figure 13 shows the critical

ligament thickness of a coated medium with a cavity. From this figure,

one can see that the maximum tensile stress occurs when the ligament

thickness L=0.094, which is the same as the critical ligament thickness

of a single material. Figure 14 compares the critical depth (cr ) of a

coated medium with no cavity with the critical ligament thickness (L c)

of a coated medium with a rectangular cavity. From this figure, one can

see that, for the same Peclet number (R1 ), qcr is always larger than

L
cr

Figures 15 and 16 demonstrate the effects of Young's modulus of the

coating layer and the substrate on the thermal sL.'ess field. In Figure

15, the material of the substrate is Stellite Ill for all cases.

Young's modulus EI of the surface layer is to vary; that is, EI is the

same as Stellite II[ (case 1), E1 is twice that of Stellite III (case

7A), and E is, respectively, one-half (case 9A) and three times (case

9B) that of Stellite III. In Figure 16, the material of the coating

layer is Stellite Ill for all cases. Young's modulus of the substrate

is one-fifth (case 10A), one-half (case lOB), and five times (case 10C)

that of Stellite III. From these figures, it is shown that, when the

coating Is stiffer than the substrate, the thermal stress at the

critical ligament thickness is increased In proportion. Figure 17

compares the effect of Young's modulus on the thermal stress field from

a single material and from a coated medium with a stiffer surface layer.

In the figure, dashed lines represent the case of a single material with

a cavity, while solid lines represent the case of a hard coated medium

with a cavity. From this figure, we observe that the thermal stress
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increases linearly in proportion to Young's modulus for the single

material case. For the coated medium case, however, increasing Young's

modulus in the coating layer by the same amount will result in higher

thermal stress than in the case of a single material. This is because

we will have a relatively softer substrate by increasing Young's modulus

in the coating layer.

The effects from thermal conductivity and the coefficient of

thermal expansion are presented in Figures 18 and 19. These effects are

similar to those found in the case of a single material with a cavity.

From the failure specimen for the'case of a single material with no

cavity, it is observed that the thermo-mechanical cracking occurs on a

plane nearly perpendicular to the wear surface. However, Ju et al

(1984, 1988) showed that, in the case of a layered medium with

no-cavity, shear delamination (cracking is parallel to the wear surface)

may occur, caused by the change in the principal directions (larger

angle of principal direction); therefore, it is important to understand

what will affect principal directions. Figure 20 shows the effect of

the ligament thickness (cavity location) on principal directions at a

point in the neighborhood of the top trailing corner of the cavity

(f=0.3 and V=0.006 above the cavity corner). The angle of principal

direction reaches a maximum at the critical ligament thickness when

L =0.094. Figures 21 and 22 compare the effect of Young's modulus oncr

principal directions for the case of a single material with a cavity

(dashed line) and for the case of a layered medium with a cavity (solid

line). These two figures establish that decreasing Young's modulus in

the coating layer (E ) or increasing Young's modulus In the substrate

(E i) will increase the angle of principal direction. Nevertheless,

changing Young's modulus in the case of a single material with a cavity

will not affect the principal directions. Figures 23 and 24 illustrate

the effects of the thermal conductivity and the coefficient of thermal

expansion on principal directions for the case of a single material with

a cavity (dashed line) and the case of a coated medium with a cavity

(solid line). These two figures Illustrate that thermal conductivity

and the coefficient of thermal expansion will not influence principal
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directions significantly.

5.1.4 I

This section discusses thermo-mechanical cracking arising from a

moving frictional load in coated media with a interfacial cavity. The

present section demonstrates that, when cavities exist at the

coating/substrate interface, the resulting thermal stress which

determines the failure phenomenon is much more severe than that in the

no cavity case.

Like most numerical solutions, functional relationships can not be

obtained without voluminous computations. However, significant

conclusions can be reached through a carefully selected set of pertinent

parametric values. The conclusions of the present problem are:

(i) the effects of the mechanical and thermal properties on the

stress field are consistent with those obtained in the no-cavity case by

Ju and Chen (1984). These effects may be summarized as follows: thermal

stress can be reduced by decreasing Young's modulus in the coating

layer, increasing Young's modulus in the substrate, increasing thermal

conductivity and thermal capacity of the coating layer, and decreasing

the coefficient of thermal expansion of the coating layer.

(ii) the location of the cavity Influences thermal stress, which

reaches a maximum, for Stellite III, at the critical ligament thickness

of L =0.094 for both cases of a single material with a cavity and acr

layered medium with a cavity.

(Iii) for the same Peclet number (RI), the critical ligament

thickness (L cr) is smaller than the critical depth ( cr) of a coating

material. When the coating thickness is designed to avoid the critical

depth of the coating material, consideration must be extended to the

possibility of Interfacial voids. Hence, the coating thickness should

not be In the neighborhood of the critical ligament thickness.
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(iv) for a thin coated medium, the cavity location and the material

properties matching (especially Young's modulus) will intluence the

principal directions of the thermal stress field. In particular, the

obliqueness of the principal axis reaches a maximum when the coating

thickness is at the critical ligament thickness. The phenomenon implies

a large shearing stress at the coating/substrate interface, leading

toward delamination of the coating.

5.2 EFFECTS OF THE LINE CRACK

It Is demonstrated that when heat flow is disturbed by the presence

of defects, there is a high local intensification of temperature and its

gradients In the vicinity of the defects (Chen and Ju, 1987), causing

very high thermal stresses around the defects. Such phenomenon

eventually results in growth of the defects and may lead to failure.

The earlier paper (Chen and Ju, 1987) considered a near-surface cavity

defect and a moving line heat source which traverses over the surface at

a moderately high speed. The current section will address the thermal

phenomenon of a half-space with a near-surface line crack defect. The

excitation again is a moving line heat source.

For the fracture mechanics problems, although analytical techniques

are very important, but they are very difficult or even impossible to

obtain. For complex geometries and loading conditions, numerical

techniques are increasingly being used. Since the late 1960's, the

finite element methods have been used for such complex fracture

mechanics problems. Initially, finite element methods in fracture

mechanics employed conventional elements, requiring an extremely fine

mesh in the vicinity of the crack tip to obtain accurate stress

intensity factors. Later, Byskov (1970), Walsh (1971) and Wilson (1971)

-1/2
introduced special crack tip elements, which directly modeled the r

singularity near the crack tip, combined with conventional elements

covering the rest of the domain, to solve linear fracture mechanics

problems. This method reduces the total number of elements needed by

using relatively large singular elements near the crack tip and
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conventional elements in remaining regions. It was proven that this

method is efficient and can yield a very accurate solution. Recently,

Chen and Ju (1988) extended the special elements concept to the finite

difference method and successfully solved the problem of a semi-infinite

body containing a rectangular cavity. In this research, the finite

difference method used by Chen and Ju (1988) will be modified to solve

the line crack problem.

Once a finite difference solution Is obtained, the value of the

stress intensity factor can be estimated by the use of the established

crack tip elements. There are many practical methods which can be used

to evaluate stress intensity factors. The present section will use the

displacement extrapolation method due to its relative simplicity, ease

of Interpretation and ready extension of the discrete data.

5.2.1 ANALYTICAL MODEL

The geometry of the medium may be approximated by a seml-infinite

body containing a line crack. The excitation of the surface is a moving

heat source as shown in Figure 25. Since the existence of the line

crack disrupts the homogenelty condition in the direction of traversing

of the heat source, the material coordinate system which is fixed to the

medium must be employed. With reference to previous work (Chen and Ju,

1988, Ju and Huang, 1982, and Ju and Liu, 1988a), the uncoupled

thermoelastic theory can be applied.

The governing equation for the temperature field is the Fourier

equation, Equation (1). The temperature field satisfies the zero

initial condition and the regularity condition at infinity. On the

surface, heat flux is prescribed over a moving contact.area. Due to the

high-speed of the moving heat source and the size of the line crack, the

heat flux is not expected to cross over the crack surfaces. Therefore,

the crack surfaces are postulated to be adiabatic. The adiabatic

conditions on the crack surfaces will result in an upper bound solution

of the temperature field.
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For the thermal stress field, the thermoelastic Navier's equations

and the Hooke's law are used, Equations (2, 5). The medium is initially

unstressed. Boundary conditions for the thermal stress field are:

(i)the surface boundary and the crack surface are traction free;

(ii)at infinity, the regularity conditions hold.

5.2.2 SOLUTION TECHNIOUE

Due to the complexity of the geometry and the boundary conditions,

the finite difference method is employed to solve both the temperature

field and the thermal stress field. The difference scheme will now be

presented.

(1) Temperature Field

To obtain the solution of the temperature field, an explicit finite

difference scheme incorporating the energy balance method is used. The

explicit finite difference scheme, the stability criteria and the energy

balance method on the surface boundary are discussed by Chen and Ju

(1987). The procedure of the energy balance method at the crack tip is

(Figure 26)

QW4P = k (Ay/2) ([T+(i-1.J,n)-t(i,j,n)]/Ax +

+ [T (i-l,J,n)-T(i,J,n)J/Ax), (24)

QS-P = k (Ax) [T(i,J-ln)-T(i,j,n)J/Ay, (25)

QZ-p = k (Ay) [T(i+1,J,n)-T(i.J,n)J/Ax. (26)

QNp = k (Ax) [T(i,j+1,n)-T(i,j,n)]/Ay, (27)

where Q is the heat flux, Indexed by the flow direction, T+ and T-

represent the temperatures of the upper and lower surfaces of the crack,

respectively.

.4
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The rate of change of internal energy 6 in the time interval At at

the point P(iJ) is

6P = pc (AxAy) [T(ij,n+l)-T(i,jn)]/At (28)

Conservation of energy requires that the algebraic sum of the heat

flowing to the point P is equal to the rate of change of internal energy

at the same point, i.e., QSUM = UP" From conservation of energy, one

can obtain the equation for the crack tip. The dimensionless equation

for the crack tip is

Ar +
*(i,j,n+l) = $(i,jn) + __r- (to+(i-lJ.n) +

+ -(i-lj,n)]/2 - 20(ij,n) + 0(i+i,J,n)) +

+ -AL. [I(i,J-l,n)-20(ij,n) + $(i.J+l,n)]. (29)
RAV2

Similarly, the equations for the crack surfaces can be obtained by using

the energy balance method.

(1i) Stress Field

For hard wear material such as Stellite III and a typical asperity

speed, the Mach number for the thermal stress field is of the order of

10 . Since M is a small parameter, the solution for the thermal

stress field can be obtained by the perturbation method (Chen and Ju,

1988), using M2 as the perturbation parameter. Using the technique

introduced by Chen and Ju (1988), for the present case, the contribution

of the higher order terms may be shown to be insignificant. Therefore,

only the zeroth order solution is presented here.

Since high temperature and high temperature gradient are found in

the vicinity of the crack, a fine mesh must be used near the line crack

and a relative coarse mti: can be used in the regions away from the

crack. This non-uniform mesh can be transformed parametrically to the
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uniform mesh and solved in the transformed plane. Discussion of the

conventional finite difference equations and the coordinates

transformation are referred to Chen and Ju (1988) and Anderson et al.

(1984).

(i11) Special Crack Tip Elements

Since the presence of heat flow produces no additional

singularities (Sih, 1962), the local character of the thermal stress

singularity at the crack tip is of the same nature as that of the
-1/2

mechanical stress; i.e.. r . For plane thermoelastic loading

conditions, the displacement field associated with the tip is described

by the asymptotic equations (Owen and Fawkes. 1983)

rn/2 n1)0 C( 2]-

u = j./2 (a11(x'+ .2 +(1)n)Cos() _! cos(!! - 2)0] -

n= 1

- a 2[(+ 2 _(_ 1 )n)sn() 0 - sin(! - 2)0]) , (30)

and

Sn/2n
v __/ {a [(,_ ! ()n )e ! sin(!! - 2)0] +2# n 2 2 + 2
n- 1

+ a 2 [(X,_ fl +(i1)n)cos(j!)e + 2 cos(!!-2 )e)(1n 2 2- 2)6)(1

where r Is the distance measured from the crack tip, K'=3-4p for plane
1 2

strain problem, V is Poisson's ratio, a and a are constants to be
n n

determined. From equations (30, 31), it can be seen that the first

terms of the displacement series yield stresses as a function of r-1/2

which characterizes the stress singularity at the crack tip. In the

numerical scheme, for small r, the first few terms of the displacement

series dominate. The conventional finite difference equations and the

special elements constitute a complete set of difference equations for

finding the thermal stress field solution.
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5.2.3 NUMERICAL RESULTS

Because of the moving heat source, the thermal stress field is

unsymmetrical. Hence, the mixed mode stress intensity factors are to be

evaluated. Numerical computations are carried out for the following

values of the parameters: V=15 m/s, a-O.3d, d=lmm. The material

properties are those of Stellite III. The smallest mesh size used under

the moving heat source and near the crack tips is AC=0.01 and AV=0.005.

But the mesh sizes are rapidly increased away from these two regions.

Figure 27 compares the temperature fields of the medium with and

without a line crack when the heat source is directly over the crack.

The ligament thickness (thickness between the wear surface and the crack

surface) for the medium with a line crack is L=0.022. In the figure,

solid lines are for the medium with a line crack and dashed lines are

for the medium with no crack. The temperature field and the temperature

gradient of the medium containing a line crack is much higher than those

of the medium with no crack. This high temperature field and its

gradients are the source of the high thermal stresses.

The plane strain'displacement equations are

K1  1/2
u = U (r/2r) [(2x'-1)cos(0/2)-cos(38/2)J -

- (r/2") 1/2 [(2'1+3)sin(8/2)+sin(38/2)] , (32)

and

K 1  1/2
V - - (r/2w) [(2x'+l)sin(O/2)-sin(3e/2)] -

K11  1
K (r/2) 1/2 ((2x'+3)cos(O/2)÷cos(3P/2)j 

, (33)4ji

In which Kr and K1 1 are the mode I and the mode II stress intensity

factors, and p is the shear modulus. Substituting the values of r and u

or v for nodal points along the crack surfaces emanating from the crack

tip allows a plot of KI and K1I against radial distance r. The
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approximate values of KI and K are thus obtained by extrapolation to
r=O. Figure 28 show the effect of the location of the moving heat

source on the stress intensity factors, where kl =K 1/0od is the

dimensionless stress intensity factors, d is the contact width of the

moving heat source, and f =1 unit. At the time r=1.2, when the moving0
heat source is right above the line crack, both kI and k2 reach a
maximum value. This figure thus establishes that, when the moving heat

source is right above the line crack, not only the thermal stress field

but also the stress intensity factors will reach the worst state.

Figures 29 to 33 present the effects of the mechanical and thermal

properties on the stress intensity factors when the moving heat source

is right above the line crack. Figures 29 and 30 present the effects of

the Young's modulus (E) and the coefficient of thermal expansion (a).

From these two figures, it can be observed that both k and k2 are

linearly proportional to the Young's modulus E and the coefficient of

thermal expansion a. The result can be expected from the Navier's

equation. Figure 31 illustrates the effect of thermal conductivity (k).

In this figure, thermal diffusivity (x) Is fixed. This figure shows

that both k and k2 are inversely proportional to thermal conductivity.

This is simply because larger thermal conductivity will result in a

lower temperature field. Figure 32 demonstrates the effect of thermal

capacity (pc) on stress intensity factors. In this figure, thermal

conductivity is fixed. The figure establishes that, as the thermal

capacity is decreased, the mode I stress intensity factor k1 is

decreased, but the mode II stress intensity factor k2 is increased.

The presence of defects will change the pattern of the temperature

distribution. Consequently, the critical depth, at which thermal

principal stress reaches a maximum,. is changed. Ju and Liu (1988a)

established that, for a medium with no defect, the critical depth, at

which the principal tensile stress reaches a maximum, is cr=0.16 for

Stellite I[1. However, when there is a rectangular cavity, the

principal tensile stress is the highest at the top trailing corner of

the rectangular cavity and reaches a maximum at the critical ligament

thickness L cr=0.0 9 4 . In the present section, it Is found that the

Ir
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geometry of the defect will influence the critical ligament thickness.

As illustrated in Figure 33, both k and k2 reach a maximum when the

ligament thickness is at L=O.08.

5.2.4sU S R

The present section demonstrates the use of the finite difference

method, supplemented with a special computational procedure, to

determine the stress intensity factors at the crack tip. The mixed mode

stress intensity factors for a thermoelastic problem with a moving heat

source excitation were considered in both the derivations and examples.

The procedures developed can readily be extended to different loading

conditions and different crack geometry. The perturbation method

mentioned in the section allows one to consider the various order

solutions in the numerical calculations depending on the magnitude of

the Mach number. For the current application, because of the smallness

of the Mach number, the zeroth order solution is adequate.

According to the numerical results, the conclusions of this work

are as follows.

(I) Because of the poor heat transfer characteristics of the crack

surface, temperature and its gradients in the vicinity of a line crack

are much higher than that of the medium with no defect. This high

temperature and high temperature gradients are the source of large

thermal stresses.

(11) Increasing Young's modulus, the coefficient of thermal

expansion and decreasing thermal conductivity will result in larger

stress intensity factors, leading to earlier crack propagation.

(III) Decreasing thermal capacity will result in smaller k but

larger k1 1.

(iv) For the moving asperity problem, there is a critical depth at

which the principal thermal stress reaches a maximum (Ju and Liu,

1988a). For Stellite III, the critical depth Is Vcr=O.16. However,

when there Is a defect, the depth at which the maximum value of stress

occurs is changed, depending on the location of the defect (Chen and Ju,

1988). For a rectangular cavity, the maximum thermal stress occurs at

59



I c;

600



the ligament thickness Lcr =0.0 9 4 . In this section. we established that

the geometry of the defect will also influence the critical ligament

thickness. For Stellite I11, the critical ligament thickness for a line

crack is at L =0.08.cr

5.3 EFFECTS OF THE RANDOM VARIATION IN COATING THICKNESS

This section presents the temperature field solution in a coated

medium, induced by the excitation of a fast-moving asperity over the

wear surface of the coating. The coating thickness is uniform for

individual specimens. However, random variation in thickness exists in

"a sample set 0. Such random variation in coating thickness arises from

"a myriad of source such as fabrication tolerances and wear during

services. Since the concept of deterministic temperature field no

longer applies in analyzing such thermo-mechanical problems, there

arises a new class of problems in which one is confronted with

determining a random temperature field. The use of the theory of random

processes becomes a necessity.

The random characteristics of heat transfer have not been fully

studied. Some representative works are noted here. Samuels (1966)

approached heat conduction in solids considering a linear system with

stationary Gaussian processes and solved several one-dimensional

problems. Ling (1972) studied heat conduction in a semi-infinite solid

involving Gaussian processes as forcing functions. Ahmadi (1974)

studied heat conduction in solids with random initial conditions. He

also applied the perturbation method to investigate heat conduction in

solids with random thermal conductivity (1978). Tzou (1988) used the

stochastic analysis to study the temperature field in a solid with

random thermal conductivity, lie (1989) also developed an

one-dimensionaal stochastic model to solve that contact problem in heat

conduction.

In the present study, we consider first the case that for

individual sample the coating thickness and its wear are uniform.

Random variation in thickness, however, exists in an assemblage of such

61



coatings, called the sample space. The coefficient of variation of the

thickness is small. We can then use a special perturbation techniques

and formulate the coating thickness a sample random variable. In other

words, the coating thickness varies from one specimen to another in the

sample space 0. In a single specific specimen, the coating thickness is

uniform. The solution for the temperature is expressed in the form of a

series expansion in a parameter c which is small in view of slight

random variations in the coating thickness. By truncating the series

solution which depends on the magnitude of c, we can compute the mean

temperature as well as the variance of the temperature on a large sample

of the coating media.

5.3.1 Formulation Of The Problem

With reference to Figure 1, a heat source moves at constant speed V

over a semi-infinite solid with a surface coating of a uniform thickness

H. The strength of the heat source is assumed constant in time and

uniform over its width 2a. Furthermore, the heat source is of

sufficient depth normal to the plane, such that the plane theory

applies. The coating thickness II is considered to be only a function of

the sample variable a. The variable a ranges over a probability space

composed of all the specimens. The probability density D(a) in 0 Is

assumed to be measurable. Hence, all of the statistical quantities

(s'ich as expected value, standard deviation, etc.) in the present

analysis are well-defined.

Referring to Figure 1, and using the material coordinates x'-y',

the temperature in each region (I or I1), for t>O, must satisfy

Fourier's law of the heat conduction in a solid (no sum on the repeated
indices).

Pkcf t = -m<x<, O<y'<H 0+Ef(&), (34)

in which V2 is the Laplacian operator, pc constitutes the thermal

capacity, and 0t=0/Ot, fl designates the coating layer (I) or the
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substrate (II). The thermal capacity is deterministic and constant in

the analysis. The term c'f(&) accounts for the random fluctuation of

the coating thickness. Taking into consideration a well-controlled

manufacturing process for depositing the coating or the hardness of the

coating material, the parameter C' is postu]ated to be a small number,

I.e. e' << 1.

The time dependent governing Equations (34). can be transformed

into a steady state formulation by using the convective coordinates

(x-y), which are fixed to the moving heat source. With the

transformation x'=x+Vt, y'=y, Equation (34) becomes

X 2Tf = V0xTf. (35)

where x is the thermal diffusivity, and 0 =0/Ox.x

As the asperity moves, the contact friction results in heat. input,

which is constant in the convective reference frame. Hence, the

boundary condition on the surface is expressed as:

k q(x) within the contact areaklyTI = (36)

0 elsewhere,

where q(x) is the heat input over the contact area.

Regularity conditions hold at infinity; that is, at infinity,

x2 +y2-4 , and

T .= 0. (37)

At the interface, y=H 0o+'f(a), continuity conditions must be

satisfied for both the temperature and the heat flux.

TI = TII, (38-a)
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kyT T = kiyT (38-b)

To facilitate a parametric analysis, the following non-dimensional

quantities are defined

(=x/a, V=y/a, d=H/a, do=H /a c-=•'/a,

Q-q/q1 0  =(T0 -To)k /qoa, R =Va//]i R "'=a/xI

0I =k 1 k I

k=kI/A IV qo is the average heat input.

Equations (35 - 38) can now be written in terms of these

dimensionless variables as follows:

V2 0 = Raf (39)

- I { Q(•) within the contact area
- =~ (40)

0 elsewhere,

= , = d0 +cf(d) (41-a)

k I = 0I - d0 +Cf(e) (41-b)

1 *0, 2 2 --+0 m. (42)

In the next section, the resulting stochastic temperature

distribution in solid media with random thickness is studied by

perturbation.

5.3.2 Method of Solution

We recognize the fact that the coefficient c which modulates the

random fluctuation function f(a) Is to satisfy the condition Idol >>

I f(a)i. The quantity c can be the small perturbative parameter for the

p6.
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perturbation method. For a sample random thickness, c' in the the

material coordinate and c in the convective coordinate are the same.

•(•,y;e) is then expanded into a asymptotic series in powers of c:

n Xefl.~,; (43)
n=O

Since the continuity conditions (41) are imposed at d = do+ef(a), f

appears in the argument of •f in Equations (41) as well as in the

coefficients of the asymptotic series. To equate coefficients of equal

powers of c, at 7 = d0 +cf(&), c must be removed from the argument of

function 4((.do+cf(&);&), We shall use the technique of the boundary

condition transfer (Nayfeh, 1980). By writing 0 at d 0 d+ef(e) in

Equation (41-a) as • (ý,d 0 +cf(a)), and expanding 0- into a Taylor series

about = do, we have

0CO

0 #((,do+Cf(ft)) I [Cf(?)]na 0¢(f,do)" (44-a)

n=O

Similarly, 0 f at d 0 +cf(e) can be expressed as

0 ,do ( =Z) I ,,(,)]nan+l (,d) (44-b)

n=O

By substituting these Taylor series expansions (44-a and b) into the

continuity conditions, we obtains from Equations (41-a and b),

respectively, the equations

Z I .no.I
I [f(u)j 0 ,dO) =

n=O
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- --- [f(a)]nano" ((,do), (45-a)

n=O

X-j-- [~ )n~n+lI (I d0=OD

n-0
I -' [,f(&)]nan+lolII(~d) (45-b)

nt 0

The continuity conditions are effectively transferred from - do0 +ef(&)

to y - d0 by removing c from the argument of P((,d 0 +cf(e);&)) and

0f(f,d 0+ef(e);a).

Substituting Equation (43) into Equations (39, 40, 42, 45), a

system of equations may now be obtained by matching the terms of various

orders of c.

For the 0 th order:

00 + = R1 O, (46-a)

II II II1

11+ 110 = RII 0 1, (46-b)

subject to the conditions:

0 { Q(ý) within the contact area

0 0 elsewhere o 047)

0 =do# (48-a)

I 0 'a H do$ (48-b)

0 --+ 0, 2 2 -"I 6. (49)
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th
For the n order; n = 1, 2, 3.....

(Rn - (50-a)

+ II . R 0 (II

n+ 91 II £,n ' (50-b)

subject to the conditions:

-0 0. 0, (51)
Yn

n n
f ( (&)a 11 1 I= I i n n-i' d O , (52-a)

al n- , 'l fi-g)0ido,
I=0 1=0

n

f k~I Wa0kyj 11 n-1-

i=O
n S 1 1•+l, II

=- (W +10, 1n y do, (52-b)

i=O

0n11 ..O 2 2 1/2 (53)

The set of the zeroth order equations (46 - 49) is the corresponding

deterministic problem with c being zero when there is no random

variation in thickness. It is then clear that the effects of the higher

order terms will gradually enter the problem as the contributions of 0 #

(n = 1, 2,.--). and are summed into the perturbation series (43). The

random feature of the perturbation system can be observed, from the

continuity conditions (52), that the fluctuation function now is the

coefficient of each summed-up term.

By applying the Fourier transform to Equations (46 - 53) with

respect to (-coordinate. these equations become ordinary differential
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equations of the transformed temperature (s,y;e) in the transform

space, where s is the transform parameter. The analytical solutions for

various orders in the perturbation system in the transform space can be

obtained In sequence. Because of the complexity of the solution, they

are given in the Appendix. The expressions for fl *•(sy;'), and

l(s,q;&) (Appendix) can be expressed as:

f(10 = fn (,) w(sqy) for n = 0, It 2. ... (54)

The form in Equation (54) can be obtained due to the homogeneous

governing equations subject to the non-homogeneous continuity

conditions. Therefore, the temperature distribution in the solid may be

written as

fsl~ u =tnfn(&)Flfl(,,V) (55)

n=O

Let c be associated with the design tolerance of the coating thickness,

say, 0.5% of the design value. According to Equation (55), the accuracy

of the analysis could be in the order of 0.1% if the perturbation system

is solved up to the second order. Consequently, in the physical domain

(•,y;a), the solution may be adequately expressed, with second order

approximation, as

2
fl Xnfn(s)Wfl(fq). (56)

n=O

where

= f(s,7)exp(-Cfs)ds. 
(57)

The advantage of the present formulation to describe the diffusion
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phenomenon with geometrical randomness is readily evident from (56). By

applying an statistical operator to (56). for example the expected value

and the variance, we obtain

2

E (10( C') n E [fn(,)1 W'(fs'i. (58)a . 'n'
n=O

Var[0 (f.y,;) = C2 W Var (f(N)l + 2C 3 W 2(E[f3(e)1-
& a 1I~
-E [f(&l]E [f2(&), + C W2Var [f2l()]. (59)

a a ) 2 &a

Accordingly, Equations (58, 59) indicate that the statistical order

of the random response of the system is the same as that of the random

fluctuation function under the present formulation. In other word, the

mean value of the random response depends only upon the mean value of

the random fluctuation function and the same situation holds for the

variance.

5.3.3 Numerical Results

To illustrate the application of the proposed formulation, a cyclic

function is chosen to be the random variation of the coating thickness

In a collection of samples; i.e.

f(a) = sin(ap). (60)

The Gaussian distribution is the corresponding probability density

function of the process;

2
D(&) = - exp(- 2) -< a < m, (61)

4 -2-Yb 2b2

where b is the standard deviation of a random variable with Gaussian

distribution. The expected value for different orders of f(a) and the

variance can be evaluated as:

p69
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E [f(&)] = 0.

Ea[f2 (')] = ( 1-exp(-2b2p2))/2.

E~f a)] f3(.4 )2 2 o

a [f4(0)] 3-4exp(-2b2 p 2)+exp(-8b 2p)J/8

Var [f(()] = E [f 2 (a)] - 2 [f(l)],

Var [f(2 (W = E (f4 0)J - E2 [f 2 (&).
& a &

The stochastic response for the present problem, with sample-dependent

randomness of coating thickness, can thus be obtained.

For numerical computations, the material properties of Stellite III

have been chosen. The deterministic quantities involved In the

numerical calculations are:

a = 0.254 mm, k = 9.7 J/F. sec*K,

pc = 3.5x106 J/M3.K, V = 15 M/sec.

b = 2 and p = 0.2 are. used in the Gaussian distribution defined in (60,

61). The corresponding coefficient of the variation of coating

thickness is computed to be 0.1%.

The following figures of results are all computed at the trailing

end of the asperity in the coated solid medium.

CASE I: The mismatch in thermal conductivity, Hk = kI/k l

Figures 34 and 35 show the variation of mean temperature

distribution with respect to I (the depth direction) for mean coating

thickness do, chosen at a thin geometry of 0.03 and 0.05. Figures 36

and 37 show the standard deviation of temperature distribution under the

same conditions as Figures 34 and 35. Figures 38 and 39 plot the mean

and the standard deviation of temperature distribution at the

coating/substrate interface with respect to the mean coating thickness

d0 •
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A relative maximum of standard deviation at = do can be observed
for a thin coating layer (referring to Figures 36, and 37). The

coefficient of variation of temperature can reach 18% for thin coatings

(referring to Figure 38 and 39) with a thickness randomness of only

about 0.1%. This indicates the occurrence of a large deviation of the

temperature from its mean value as a result of the small randomness of

the coating thickness. Therefore, the amount of deviation from expected

values is by no means negligible.

Figures 40 and 41 demonstrate the effect of the "frequency" (p).

Figure 40 shows that p has very little effect on the mean response.

However, Figure 41 demonstrates that the magnitude of standard deviation

increases as p increases up to p = 2, and thereafter becomes constant.

These two figures illustrate the contribution of f(e) to the mean value

and the standard deviation. The coefficient of variation of the

temperature can reach as high as 22% when the mean coating thickness dO

is about 0.05.

CASE II: The mismatch in thermal capacity, 1c = (pc)I/(Pc) 1 1

Under the same situation as the thermal conductivity case; Figures

42 and 43 show the mean temperature distribution, Figures 44 and 45 show

the standard deviation of temperature distribution. By comparing the

results with the thermal conductivity case, the temperature

distributions are not affected as much by the randomness of the coating

thickness from mismatches in thermal capacity. This is due to the fact

that k, = k and at the interface the heat flux continuity condition

also implies continuity in the temperature gradient.

5.3.5. SUKARY

The effect of the uniformly random coating thickness on the

temperature response in a medium with a fast-moving asperity has been

analyzed. In the present analysis, we have shown that the amount of the

standard deviation of temperature depends upon

(I)the mean coating thickness,

(2)the thermal conductivity,
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(3)the random fluctuation function f(u).

In the numerical example, a large standard deviation of temperature

for a thin coating can be observed. As a consequence, the coating

bonding strength , which is selected on the basis of the mean value

estimation of temperature, may prove to be unreliable because of the

large probability of higher temperature field there. It is expected

that the temperature gradient in the neighborhood of thin coating

interface has also a significant amount of deviation, which must be

considered carefully in the related thermal failure analysis. For the

case of position-dependent random coating thickness (i.e., the coating

thickness varies from one position to another in one specific specimen)

has been understudied.

Finally, it is noted that the analytical results from truncation of

the asymptotic series depends on the magnitude of c. For larger values,

more terms are needed for accuracy in numerical computation.
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6.0. CONCLUSIONS

In the design of hard coating to provide a wear surface for the

substrate against high-speed frictional load, the Integrity of the

coating depends such on the coating thickness and the parametric

matching with the substrate. For thick coatings, order of I am, the

effect of the substrate on the coating integrity is negligible.

Therefore, critical considerations for the appropriate thickness and the

interaction of coating and substrate must be given to coating thickness

less than 100 microns.

It was found that the principal thermal stress attains a maximum

tensile value at a distance from the wear surface, called the critical

depth. Discontinuity in material property further aggravates the stress

state. For better integrity of the coating, its thickness should avoid

to be located in the neighborhood of the critical depth of the coating

material. The critical depth is exponentially related to the traversing

speed of the asperity and the single material property, the thermal

diffusivity. Moreover, if the coating process cannot avoid weak bond

that interfacial cavity or crack would develop through use, the coating

thickness has another critical thickness to consider. The second

thickness that may lead to premature delamination is the critical

ligament thickness, which is also controlled by the same parameters as

for the critical depth.

The relative stiffness between the coating and the substrate is

essential governed by the support that the substrate provides for the

coating. The softer the substrate is, the more stress must the coating

be subject to the frictional loading. The thermal conductivity of the

substrate also is influential in the design for coating integrity. The

stress level is lower in the coating, when the substrate is more

conductive. Interfacial shearing stress as a criterion for coating

delamination is determined by the parameter matching and the coating

thickness. The shearing stress rises rapidly as the coating increases

in thickness towards the critical depth of the coating material, or when

there is an interfacia] void.
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Appendix

Temperature Field Solution

(I)Solution for the 0th order:

I = AIexp(-FIV) + BoIexp(FIq), (A.1)

00= A 0 exp(-Flv), (A.2)

where

I __(FI+AkF_11)
AO=

0 FI[(FI41+1kFI[)-(FI -k F1)exp(-2FId0)]

I O(F I A F 11))ep(-2F Idd)0
0(F Ik F I)exp(-2F do)

0 FI[(F1I÷
1 kFII )-(FI--[[kFII)exp(-2FIdo)]

20exp[(FII-FI )dO0 1Ao=
0 [(FIdAkFII)-(F I-k F II)exp(-2FId 0 )]

and

F- s2

(ii)Solution for the Ist order

A• I exp(-FIV) + BI exp(FI)' (A.3)

eI ep Ix

SA exp(-FV), (A.4)

where

-2f()(F2_ 2 F2 )exp(-2Fido)
A =B I I kI1

1 [(F +AkFI )-(F I-k F )exp(-2FId0)]2
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-( +1kF I)-(F I -HkF11 Fep-FI )I -2f(a)O(FI-FII)(FI A k F11 )exp[(F1 1 -FI)d o
A =

[(F 1 +1kFI)-(FI-Fk F )exp(-2FId 0)]2

(iii)Solution for the 2nd order

1 = AIexp(-FIq) + BIexp(FI). (A.5)

11 = A2 exp(-Fiq). (A.6)

where

I 2f2 (&)OF I(FCH kF 11) 2{1? +Ak F it)exP(-4F Ido0)
A2 2 2 3

[(F Ik F I)-(F -HkF1 )expF-2FIdo)]

I (F I AkFi (FI kF 1 1)exp(-2FIdo)]3
2 - 2

[(FI4H k F I)--(FI-H k F IIexp(-2F Ido0)]3

Af 2 (i ) F (F -1 1 2 ) ( F2 2 1 ) e xI- ) d d

2f 2 (&)(F2I- 3F[2)(F 2-ff 2F 2)exp[(F - 3F )dO

I1 1I kI 1 kIT 1 0

[(F I+AkF FI)-(FCHkFI)exp(-2FId0)] 3

f2(s)O(FI+FI)2 (FI -kF11 )2exp[(F 1 1-5FI)d 0 ]

[(FI Ak I I )-(F -Hk F)exp(-2FId 0)]3
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