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ABSTRACT

When hard coatings are designed to protect substrates against the
high speed frictional excitation of asperities, it is important to
consider parameters that would affect the integrity of the coating.
Thermo-mechanical cracking and coating delamination are the major
failures of hard coating. 1In analytical modeling, it is important to
know the limitation of the model and the validity of the conclusions
drawn from the analysis. The report addresses the postulation of a
two-dimensional model, which is used for the mathematical simplicity to
study the effects of various parameters. For high speed asperity
excitation, thermal stress dominates the analytical criteria. The
report considers the effect of coating thickness and its critical value.
Material parameters are grouped into those of mechanical properties and
those of thermal properties. The differences of those properties
between the coating and the substrate directly affect the integrity of
the coating. Irregularities, especially in the neighborhood of the
coating/substrate interface, are introduced to study their damaging
effects to the coating integrity. The report also addresses the
significance of some unavoidable randomness in coating and the resulting

effect on the coating'integrity.
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NOMENCLATURE

asperity characteristic dimension, the half
width of the contact area
specific heat

distance from Xy origin to the trailing edge of

the moving heat source
dilatational wave speed

shear wave speed

the dimensionless coating thickness (= H/a)
the dimensionless mean coating thickness

(= Ho/a)

depth of the cavity
Young's modulus of the coating layer and the substrate,

respectively
the expected value

the random fluctuation function
the coating thickness
the mean coating thickness

thermal conductivity
mode I stress intensity factor

mode II stress intensity factor

ligament thickness

dimensionless ligament thickness (=L'/d)
Mach number

center of the finite difference cell
surrounding point of P

load distribution over the contact area
average pressure over the contact area

heat flux distribution through the contact
area
average heat flux through the contant area

Peclet numbers of the surface layer and the

substrate, respectively
temperature field
internal energy

displacement in x1 and_x2 direction, respectively

dimensionless displacement in { and g direction
(=u1/d), respectively

traversing speed of asperity (in x direction)
variance

material coordinate fixed to the medium
convective coordinate fixed to the moving
asperity

the sample random variable
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1.0 INTRODUCTION

The present report addresses the integrity of a coated medium,
which is subjected to the frictional excitation of a high-speed
asperity. Break-down of the coating integrity occurs principally in the
form of cracking of the coating or delamination of the coating from the
substrate. With Coulomb friction predominates in asperity excitation,
the stress state in the coated medium and particularly in the
neighborhood of the coating/substrate interface is governed by the
thermo-mechanical field. The thermal field results from the dissipative
frictional power, which manifests as thermal load traversing over the
wear surface of the coated medium. The thermal component of the stress
state dominates with increase of the asperity speed. These high thermal
stresses will then initiate fracture in the coated material, inasmuch as
the coating is introduced as a surface modification to improve the

surface wear property of the contacting bodies.

The integrity of the coating relies first on the choice of the
coating material, which would reduce friction as well as resist thermal
cracking. The integrity of the coating also depends on the interaction
between the coating and its substrate, which it is designed to protect.
The design of an effective coating is, therefore, depending on the
property of the coating, its geometry, and its property matching, or

mismatching, with the substrate.

For the purpose of a fundamental understanding of the parametric
effects which can best adapt to later application to design, the study
adopted an analytical formulation. The mathematical model is
represented by differential equations, which govern the
thermo-mechanical field of the coated medium and the substrate. The
dynamic boundary conditions are described by the boundary values of the
field. From the analytical formulation, mechanical and thermal proper-
ties that affect in a dominant way the thermo-mechanical field can be
identified. The effect of the coating thickness and their irregulari-
ties can be quantified. In the analyses, emphasis has been placed on

the coating being a hard deposition over the substrate. The mathematical




model is thus simplified to allow the use of thermoelastic formulation.
For hard coatings, it is postulated that failures will initiate by
thermo-mechanical cracking. The crack may occur with cohesive failure.
The criterion is the maximum tensile stress to reach a limit. Shear
crack may exist in the coating/substrate interface. The limiting

shearing stress will then be the cause of coating delamination.

The report will first address the coating as a single material in
its response to the asperity excitation. The purpose is to identify
those important characteristics of the coating material. The
deterministic effect of coating thickness will be established,
especially when the coating is thin, in the neighborhood of from 20 to
100 p. The interfacial relationship between the coating and the
substrate will be studied in detail for both the mechanical properties
and the thermal properties of both materials. The interfacial

irregularities, defects and random thickness, will then be discussed.
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2.0 MATHEMATICAL FORMULATION

The traversing asperity imposes a moving traction over the surface
as well as a moving heat source caused by the rate of frictional work.
The stress field caused by the traction, normal and frictional, is the
mechanical portion of the response, while that of the heat source i: the
thermal portion of the response. In numerical computations, the size of
the asperities are of the order of 1 mm. The total thickness of the
medium including both the coating layer and the substrate is at least an
order of magnitude larger than the asperity size. Mathematically, the
material is represented by a half space with the asperity traversing

over the surface boundary at a uniform speed (V) as shown in Figure 1.

The asperity is characterized by the contact pressure p(xl).
distributed over a contact width of 2a. The coefficient of friction Be
is postulated at the steady state value corresponding to that of the
surface temperature. For hard coating surface, Blau (1980) and Ruff and
Blau (1980), demonstrated that the surface yield, due to the asperity
excitation, are sub-granular. The plastic deformation and surface shear
for hard wear material are restricted to a very thin surface layer of
4-7 microns. If the dépth at which cracks initiate is of an order larger
than that of the plastic zone, the thermo-elastic theories for crack
initiation may apply. The energy loss due to plastic deformation is

thus incorporated into the frictional energy loss on the wear surface.

The governing differential equations are the Fourier equation! and
the thermo-elastic Navier's equation, respectively expressed in the

material coordinates (fixed to the coated medium):

xﬂﬁiiTﬂ'= atT”. (1)
(}ﬂ + ”ﬂ)aij“ﬁ = pﬂﬁe + (Slﬂ + apﬂ)aﬁﬁiTﬂ. (2)

!The Fourier equation holds provided that the asperity speed is lower
than the speed of thermal wave.

r




where (1, p) are the Lame's elastic coefficients, ujis the displacement
field, T is the temperature field, p is the mass density, & is the
coefficient of thermal expansion, ¥ is the thermal diffusivity, i and j
index the coordinates and # indexes I and II for the coating layer and
the substrate respectively, and where 0t denotes a time derivative. The
indicial summation convention and Schouten's partial derivative
notation, 01 = 0/ﬁxi. are used. Both governing equations (1, 2) require
explicit time-dependent solutions. The analytical complexity may be
alleviated by using the convective coordinates (fixed to the asperity),
provided that the asperity parameters are uniform and that the geometry
is uniform in the traversing direction and the solutions are of steady-

~-state. Equations in (1, 2) become

g (
xﬂﬁjJT = ValT , (3)

s s 2 I
a,.u, + (1—2Vﬂ)0jju = GﬂM (1—2yﬂ)011u1

1 i,
1j J + 2( +V”)aﬂa (4)

. , . 2 1/2
where Vﬂ is the Poisson's ratio, M=V/C (= [V pII/’II] ), is the Mach
number of shear in Region II, and Gﬂ = pIIpﬂ/ﬂﬂpII The stress field
{r J) is computed from the solved displacement field (u } through the

thermoelastic Hookian law given by:

ﬂ ﬂakuiﬁij + pﬂ(ﬁju{+6lu§) + (3)ﬂ+2pﬂ)aﬂTﬁ61j. (5)

where Jlj is the Kronecker delta.

On the surface boundary, the rate of friction work done by the
asperity's traversing over the wear surface manifests as heat input.
The asperity excitation also exerts a pressure and friction force on the
boundary. Hence at x2 =0,

1
kléaT = -q, = BP(x)V, (6)

1
’22 = _P(xl)- (7)




1 =
f12 = PePIxy). "

where k is the thermal conductivity, x_ is the coordinats 11 ~:

1
traversing direction of the asperity, and p(xl) is the aipe- -+ i :&=.ure
in the contact zone and zero elsewhere on the surface beuandiu- e
temperature and the stress field satisfy the regularity -~omc. - - @t
infinity. At the coating/substrate interface, the contiiui- 2. ans
hold for temperature, heat flux. traction. and displaceeent .. - . at
x2 = H,
I II s PR § _
T =T ", klazT = kllozT . )

. I _ 'II uI N uII .
2j) 2j’ J Jj '
For the steady state solution of the homogeneous wear medium ~:o.st.ans
(3, 4) are solved with the boundary and continuity conditicn: Ster he
method of Fourier transform. The method facilitates the param .-

study of the properties.

When irregularities occur in the medium, homogeneity cind 8" n
the traversing direction of the asperity no longer hoids. ™a oef.-ion
for transformation to equations in (3, 4) cannot be justifiaqg “e- snre
complex equations in (1, 2), which are defined in the mater .+
coordinates, must be used. With the explicit time variable. * - -~
difference method is applied for the solution of specific ma-~ t. and

specific geometries.




3.0 ASPERITY EXCITATION OVER A HARD WEAR MEDIUM

From the governing equations, the boundary conditions and the
continuity conditions (1 - 9), it is noticed that the thermo-mechanical

state {¢, ., ui} is influenced by the asperity parameters (a, t, P, V)

and the :iterial parameters (4, g, p, &, k, &, pf). The coefficient of
Coulomb friction pf affects as a material parameter on the wear surface
only. The aspgrity parameter (t) is the aspect ratio of the asperity

contact area, the length perpendicular to the traverse direction to the
width in the traverse direction. The three dimensional characteristics

of the moving asperity was solved by Huang and Ju (1985).

The asperity parameters involve those excitation-related (V, P) and
those contact area configuration-related (a, t). Larger half-width (a)
leads to longer period of heat input. The thermo-mechanical field does
not depend on the shape of contact area, Figure 2 (Huang and Ju, 1987).
Yet its aspect ratio affects the temperature and the thermal stress
states, Figure 3 (Huang and Ju, 1987). It is noticed that at the
critical depth, at which the maximum value of principal thermal stress
in tension occurs, a square or a circular contact area (t = 1) could
result in almost six times the value of a two-dimension solution (t =
o). Two dimensional modeling is therefore useful for the determination
of the characteristics of the wear coating, but not in the actual
evaluation of the stress state. The asperity velocity (V) influences
the thermo-mechanical field in both the heat input, Equation (6) and the
convective terms in Equations (3, 4). The latter, occurring in the
differential equation, can be combined with the material parameters,
forming the Peclet Number (R = Va/k) in Equation (3) and the Mach Number
(M = V/C) in Equation (4). The former, being the surface rubbing speed,
directly determines the rate of heat input. 1t is conceivable that at
low rubbing speed the mechanical portion of the stress dominates. The
static case of V = 0 is indeed the limiting case. At high speed,
however, the thermal stress prevails. Huang and Ju (1987) demonstrated
that at a rubbing speed of 15 m/s8 the thermal stress is more than six
time that of the mechanical portion of the stress. It was noted that

the maximum values of the thermal and the mechanical components of the




wonnquisyp
proj pue ware Peuco Juilrea 10§ SpPY NS ‘z am3y

(\.HX Iw
- [A mmw - 90 "0

Ol =4 ‘T3V)

@ e g
gmwumm W04 [NN-NON
UVINDEID :




onyes 130dse Surirea 0y Surpuodsariod pRY RIS ‘¢ am3yy

as—x -3

”t .9\ T o't vo " 90 e 0 (Y

o | N ' . [l , [l PO | o

2

\\

./ - (a4nssaad wiogpun Lg-¢
s saeinbueldaa)

- , S 13




stress do not occur at the same location nor do they have the same
principal directions. Hence, the estimate of the wear characteristics,
due to high speed asperity excitation, shall be based on the thermal

stress state.

In the material parameters, the mass density occurs in the inertial
term in Equations (2, 4). However, since the asperity traversing speed
is much below the Rayleigh wave speed, its effect there is essentially
perturbative. In Equations (1, 3), the mass density is combined with
the specific heat (c) as the thermal capacity (pc), contributing to the
thermal diffusivity (x) of the material. The thermal conductivity (k),
because of its presence in the boundary condition, Equation (6). and the
continuity condition, Equation (9), is an independent parameter. The
material parameters are therefore grouped as the mechanical constitutive
coefficient [A, g, or v, E] and the thermal parameter [a, k, £]. The
coefficient of expansion is the principal excitation in Navier's
Equations (2, 4). The mechanical property is therefore dominated by a
single parameter [6E/(1-v)]). The thermal properties are grouped in dual
parameters, [k, x] or [k, pc]. Using the latter, Huang and Ju (1987)
concluded that, for materials of comparable thermal conductivity,
materials of high thermal capacity are definitely preferred for the
resulting lower temperature field. However, for materials of comparable
thermal capacity, those of high thermal conductivity yield lower thermal
stress state. Moreover, because of its correspondingly lower Peclet
number, the critical depth 'cr is thus accordingly larger. The critical
depth ’cr is the dimensionless depth § at which the maximum principal

thermal stress occurs, where gy is the depth coordinate x, modulated by

the asperity half width (a). Ju and Liu (1988a) found tﬁat the critical
depth depends predominantly on the Peclet Number. In their study, the
critical depth was computed directly by maximizing the thermal tensile
stress with respect to positions under the asperity inside the material.
The relationship between critical depth and the Peclet Number for all
materials in the two dimensional formulation may be simplified to

satisfy the exponential form

10




R(ﬂcr)2'275 = 20.4368. (10)

The relation is depicted in Figure 4. The square symbols in the figure
represent actual materials; they are Aluminum (Al), Silicon Carbon '
(SiCc), Aluminum Oxide (A1203). Stellite III (St), and Zirconium (Zr)
with the same asperity speed of 15 m/s, and the same asperity width of
0.254 mm. The traversing speed has been varied for Aluminum Oxide and
Stellite ITI. The results all fall on the same curve. Invariably, the
critical depth is located at the cold side in the neighborhood where the
large temperature gradient occurs. Because of the combined effect
maximum tensile stress and a discontinuity in material property, the
critical depth shall characterize the material chosen for the coating

when the thickness of coating becomes critical.

11
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4.0 PARAMETRIC EFFECT IN A COATED MEDIUM

It was pointed out by Ju and Chen (1984), that the phenomenon of
thermo-mechanical cracking will be the same as a single material of the
coating if the coating thickness is of the same order of magnitude as
the asperity width. The interaction between coating and the substrate
becomes significant only for coating thickness being of order of
magnitude smal!er than the asperity width. Ju and Liu (1988b) studied
the effect of coating thickness in the neighborhood of the critical
depth for various property differences between the coating and the
substrate. In Figure 5 through Figure 9, the principal stresses in both
the coating and the substrate are shown for the parametric variances of
{aE/(1-v)], as the dominant mechanical property, and the thermal

parameters [k] and [pc]. The variances are designated as:

HM = [aE/(l-v)]I/[aE/(l—v)]XI. (11)
nk = kl/kII' (12)
Hpc = [pcl /lpc)y;- (13)

For all those variances, since the interest was essentially in the
effect of parametric matching (or mismatching) between the coating and
the substrate, the numerical values of the coating is set for the
Stellite III with the Peclet Number R=1400. The corresponding critical
depth for the coating is at ”cr = 0.16. Invariably, the worst case
occurs in the neighborhood of the critical depth. Figures 5 and 6 show
the principal stresses in the coating and the substrate respectively for
various variances of mechanical parameter. For the variance of one, the
coating and the substrate are of the same material. For variances
larger than one, the substrate is of softer material; while less than
one denotes stiffer substrate. For thick coatings (3 > 0.16), the
maximum stress in the coating occurs at the critical depth. The figures
demonstrate that softer substrate provides less support for the coating.
The thermal stress is thus higher. Stiffer substrate reduces the stress

in the coating but takes on more stress especially for very thin

13
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coatings. Figures 7 and 8 show the effect of the thermal conductivity
variance. For less conductive substrate (ﬂk = 10), the thermal stress
is higher in the coating, especially at the coating/substrate interface
for thin coatings. When the substrate is more conductive (the variance
is 0.5), more heat is readily transferred to the substrate. The thermal
stress is correspondingly reduced. Figure 9 illustrates a combined
curve for maximum principal thermal stresses in the coating and in the
substrate due to variance in thermal capacity. In both cases, the

stresses are evaluated at the critical depth.

To study the criterion for coating delamination, Ju and Liu (1988b)
also showed the effect of the shearing stress at the coating/ substrate
interface, Figure 10. The existence of the interfacial shearing stress
~ results when the principal direction is not parallecl to the wear sur-
face. Theoretically, when the principal angle is zero, the interfacial
shearing stress vanishes. Figure 10 uses the variance in thermal condu-
ctivity without loss of generality. For a single material, ﬂk = 1.0,
the principal angle is small at locations closer to the wear surface.

As a result, the shearing stress is correspondingly small.
Significantly, the interfacial shearing stress reaches a maximum in the
neighborhood of the critical depth of the coating. The existence of the
interfacial shearing stress could cause interfacial shear cracks that
would lead to coating delamination. The interfacial shearing stress can

be controlled by proper selection of coatings to match the substrate.

16
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5.0 IRREGULARITIES

In the mathematical idealization, the coating is postulated to be
of a known uniform thickness and to be smoothly and coherently bonded to
the substrate. Such idealization, however feasible, would be too
expensive to fabricate. Irregularities would eventually occur through
wear. Inclusions do exist in the neighborhood of the interface. The
thickness of the coating may vary either through manufacturing tolerance
or through wear. Chen and Ju (1987, 1988, 1989a, 19$9b) considered the
effects of a small void cavity at the coating/substrate interface, and
also an interfacial crack to simulate weak bonds. Liu and Ju (1989)
studied the effect of random coating thickness on the temperature field.
In both areas of studies, emphasis is placed on the effect of coating

irregularities to estimate the integrity of the coating.
5.1 EFFECTS OF THE CAVITY

This section studies the thermo-mechanical cracking in a coated
medium with a near surface void. It is one of a series of papers on the
thermo-mechanical cracking phenomenon. The physical observations of the
asperity friction are based on the works of Archard (1959), Bannerjee
and Burton (1979) and Kennedy (1984a). Analytical solutions of
thermo-mechanical cracking in a single material with no cavity were
obtained by Ling et al (1965,1973), Mow and Cheng (1967), Kennedy
(1981,1982), Ju (1982) and Huang and Ju (1985). Research on asperity
excitation over coated surfaces with no cavity was first solved by Ju
and Chen (1984) for moderately thick coating layers. Later, Ju and Liu
(1988b) completed the investigation of the problem of a layered medium
with no cavity for thin coatings. Based on these previous works on the
problem of thermomechanical cracking from high-speed asperity friction,
it was observed that the thermal stress field dominates the stress field
and contributes principally to the failure by cracking. Among these
works, Ju and Liu (1988a) also established that, at uniform asperity
excitation, the Peclet number (R=Va/kx) dominates the determination of
the critical depth (at which the tensile thermal stress reaches a

maximum) for the case of no defect. 1In the analysis, they obtained a
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simple relationship between critical depth and Peclet number for the

two-dimensional problem which can be written as R(gcr)z'275 = 20.4368.

All previous work on the moving asperity problem dealt with uniform
solid media. Chen and Ju (1987) first solved the transient temperature
solution in a coated medium with a rectangular cavity, for which the
material coordinates must be used. Later on, Chen and Ju (1988) also
obtained the stress solutions of a single material u;th a rectangular
cavity near the wear surface. They concluded that: (i) because of the
cavity's poor heat transfer characteristics, the maximum tensile thermal
stress in the case of a single material with a rectangular cavity is
much higher than the maximum tensile stress in the case of no cavity,
and (ii) the occurrence of the naxinu-'tensile stress is at the trailing
corner of the cavity, which defines a critical ligament thickness Lcr'
closer to the wear surface than the critical depth (Ju and Liu, 1988a)
of the material. For instance, for the case of a single material of
Stellite III with a cavity, the critical ligament thickness is
approximately 40 percent of the critical depth of the same material.
This established that not only the Peclet number, but also the existence
of the defect will influence the location at which the maximum tensile
stress occurs. The péesent research will discuss the effects of a
cavity in the neighborhood of the interface of a coated medium. The
effect of the location of the cavity on stress field will also be

discussed.

5.1.1 ANALYTICAL MODEL

In the problem of cavity, or void inclusion, the homogeneity
condition in the traversing direction of the asperity no longer hold in
the vicinity of the cavity, Figure 11. Hence, the governing
differential equations, given in Equations (1, 2), must be used.
Regularity conditions are still to be satisfied at infinity. The
boundary conditions (6, 7, 8) remain. The continuity conditions (9)
hold at interface, except at cavity. Heat transfer at cavity is

negligible in comparison to that of the connected region. Small contact
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is ignored, allowing a traction-free condition at the cavity boundary.
Small contact is ignored, allowing a traction-free condition at the
cavity boundary. Because of the complexity of the geometry and the
boundary conditions, the finite difference method was employed to solve
the problem. The finite difference equation and the energy balance
method applied on the surface boundary and the cavity boundaries for the

temperature field are discussed by Chen and Ju (1987).

Ju and co-workers established that, for a moderately high-speed
asperity excitation, the thermal stress effect dominates the stress
field and eventuallyvleads to failure in the no cavity case. Liu (1986)
also showed that, if the asperity speed is larger than 0.127 m/s in
Stellite III, the thermal stress dominates the failure, and the
mechanical stress becomes less important. However, the mechanical
stress may not be trivial when a cavity exists. Therefore, both the

mechanical and thermal stress field will be studied.

5.1.2 SOLUTION TECHNIQUE

(1) Perturbation Method

For hard wear materials, such as Stellite III, and for a moderately
high asperity speed, the Mach number M is of the order of 10-3. Since

the parameter M2 is sufficiently small, Equations (2, 3) can be solved

by the perturbation method.

The solutions to Equations (2, 3) can be expressed as a power

series in (=M2: that is

uﬂ(f.q.r.c) = ug(f.w.r) + cuglf.q.r) + ezug(f.q{r) + e0e, (14)

vﬂ({.y.r.c) = vg(f.q.r) + fve(f.y,r) + €2v,(€,9,7) + +++, (15)

when Equation (14) and Equation (15) are substituted into Equations (2,

3), the terms with the same power of ¢ are grouped, leading to recursive
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equations for displacements. The recurrence formulas can be written as:

)
0 o 21yl M) A M) vl au{) -
T F T2 G gy s TG T gy s oy
s E;Z! P . 62uigl
= 510 az { c: é) + (1—610) § —;:5—- , (16)
s
P o ""f) I L S IO L/ ST I 0‘4, ]
[/ I S T 2 T TG 9y oy
ba7 v’
S B (-{2—” ¢ a-dy) 8 ;%—-‘ : (17)
2

- 2, M. 2 WA A ,
where N{ (Aﬂ+2pﬂ)/pllca. N, Jﬂ/pllcz' N, “ﬁ/pllca' bp (3Ap+2pﬂ)/pll,

. §e e - /2, 1/2
747 (qg3ag) /Ky 5‘pﬁ/911' c =lUpp*2m /P17 cp=lpyy /o] » 8

is the Kronecker delta; and i denotes the perturbative order.

io

Similarly, one can obtain the recurrence formulas for the stress

field as follows:

Y I
#II 601 I/} i b7
A e R e L e
2
Y
P o, 0
(afg)j . "Lol § Ng "571 . ‘«'i?l" (19)
0u’ dvﬂ b27
R LA T

cz
2
where (-)i denotes the perturbative order for the stress components.

The solutions of each perturbative order can be obtained by applying the
finite difference method.
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(i1) Difference Equations

Because of the complexity of the geometry and the boundary
conditions, the finite difference method was employed to solve the
problem. The finite difference equations and the energy balance method
applied on the surface boundary and the cavity boundaries for the
temperature field are discussed by Chen and Ju (1987). According to the
numerical results by Chen and Ju (1987,1988), a high temperature and
high stress concentrations will be found in the viclinity of the cavity.
Therefore, a very fine mesh must be used near the caQity and a relative
coarse mesh can be used in the regions far away from the cavity. This
non-uniform mesh can be transformed to a uniform mesh and the solution
may be obtained in the transformed plane. The difference equations of

the thermoelastic Navier's equation for the zeroth order solution can be

written as

Alv(i~1,j—1.ﬁ) + Aau(i~1.j.n) + Aav(i—l,j+1,n) + A4u(i,j-1.n) +
+ Asu(i.j.n) + A6u(i,j+1,n) + A7v(i+1,j—1,n) +

: ) %58
+ Agu(i+1,j,n) + Agv(i+1,j+1,n) = 7 (—;5— ), (21)
2
and
Blu(i—l.j—l.n) + Bav(i—l,j.n) + B3u(i-1.j+1,n) + B4v(1,j—1.n) +
+ st(i,j,n) + st(i,j+1.n) + Bvu(i+1.j—1.n) +
b2y
+ Bev(i+],j.n) + Bgu(i+1.j+1,n) = ﬁ% (—éié ¢ﬁ). (22)
2
where Al'Aa""' Bl,Ba....are given in Chen and Ju (1989b), and the

temperature gradients are derived from the temperature field.

(111) Special Element At Cavity Corner
The scheme in this case is to devise special elements in which the
approximation simulates the diverging rate in the vicinity of the

singular point. However, this method can be used only when the behavior
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of the singularity is known. The procedure of this method is to assume
a series which ccnsists of both the regular terms and the singular
terms. For the curreant problem, the stress singularity at the cavity
corner should be the same as those used by Williams (1952) and Sih
(1962). The series form for the displacement in the neighborhood of the

cavity corner can be written as

u(r,f) = regular term + :E:An rni/( £(9), (23)
where r is the distance from the corner point and (=37/2.

5.1.3 NUMERICAL RESULTS

Numerical results are obtained by using the finite difference
non-uniform rectangular mesh and material properties for Stellite III.
Numerical results of a coated medium with no cavity were compared with
the analytic solutions (Ju and Chen, 1984), the error for the
temperature field is less than 1%, and the error for the stress field is
less than 5%; this confirms the accuracy of the numerical scheme. The
details of the numeriqal results for the temperature field are referred
to Chen and Ju (1987). Only the numerical results of the stress field
will be discussed in the present section. When the cavity is located
entirely in the surface layer, because the coating layer is much thicker
than the ligament thickness, the effect is similar to that of a single
material (Ju et al, 1984,1988). However, when the top edge of the
cavity is at the interface, both the coating layer and the substrate
will influence the stress field. Therefore, all figures are plotted for
the worst cases when the top edge of the cavity is at the interface, and

when the asperity is right over the cavity.

The effect of the cavity on the magnitude of the mechanical stress
field can be seen in Figure 12, which shows the principal thermal stress
field (case 7A), mechanical stress field (case 7B), and combined stress
field (case 7C). In this figure, the material of the substrate is
Stellite 111, and the material properties of the coating layer are the
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same as Stellite [II except that Young's modulus is twice that of
Stellite I11. This figure establishes that, while the tensile thermal
stress is larger than the tensile mechanical stress, the mechanical

stress field is not negligible as in the no cavity case.

When the cavity location, or the ligament thickness, 1s smaller
than the critical depth of the coating material, the largest tensile
stress will occur at the top trailing corner of the cavity. The maximum
value occurs when the ligament thickness, the coating thickness in the
present section, reaches a critical value. PRigure 13 shows the critical
ligament thickness of a coated medium with a cavity. From this figure,
one can see that the maximum tensile stress occurs when the ligament
thickness L=0.094, which is the same as the critical ligament thickness
of a single material. Figure 14 compares the critical depth (’cr) of a
coated medium with no cavity with the critical ligament thickness (Lcr)
of a coated medium with a rectangular cavity. From this figure, one can
see that, for the same Peclet number (RI), ’cr is always larger than
Lcr'

Figures 15 and 16 demonstrate the effects of Young's modulus of the

coating layer and the substrate on the thermal si.ess field. In Figure
15, the material of the substrate is Stellite 111 for all cases.
Young's modulus EI of the surface layer is to vary; that is, EI is the
I is twice that of Stellite III (case
7A), and EI is, respectively, one-half (case 9A) and three times (case
9B) that of Stellite 1I1. 1In Figure 16, the material of the coating

layer is Stellite III for all cases. Young's modulus of the substrate

same as Stellite III (case 1), E

is one-fifth (case 10A), one-half (case 10B), and five times (case 10C)
that of Stellite III. From these figures, it is shown that, when the
coating is stiffer than the substrate, the thermal stress at the
critical ligament thickness is increased in proportion. Figure 17
compares the effect of Young's modulus on the thermal stress field from
a single material and from a coated medium with a stiffer surface layer.
In the figure, dashed lines represent the case of a single material with
a cavity, while solid lines represent the case of a hard coated medium
with a cavity. From this figure, we observe that the thermal stress

»
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increases linearly in proportion to Young's modulus for the single
material case. For the coated medium case, however, 1hcreasing Young's
modulus in the coating layer by the same amount will result in higher
thermal stress than in the case of a single material. This is because
we will have a relatively softer substrate by increasing Young's modulus

in the coating layer.

The effects from thermal conductivity and the coefficient of
thermal expansion are presented in Figures 18 and 19. These effects are

similar to those found in the case of a single material with a cavity.

From the failure specimen for the case of a single material with no
cavity, it is observed that the thermo-mechanical cracking occurs on a
plane nearly perpendicular to the wear surface. However, Ju et al
(1984, 1988) showed that, in the case of a layered medium with
no-cavity, shear delamination (cracking is parallel to the wear surface)
may occur, caused by the change in the principal directions (larger
angle of principal direction); therefore, it is important to understand
what will affect principal directions. Figure 20 shows the effect of
the ligament thicknes§ (cavity location) on principal directions at a
point in the neighborhood of the top trailing corner of the cavity
(=0.3 and 9=0.006 above the cavity corner). The angle of principal
direction reaches a maximum at the critical ligament thickness when
Lcr=°'094' Figures 21 and 22 compare the effect of Young's modulus on
principal directions for the case of a single material with a cavity
{dashed line) and for the case of a layered medium with a cavity (solid
line). These two figures establish that decreasing Young's modulus in
the coating layer (EI) or increasing Young's modulus in the substrate
(Ell) will increase the angle of principal direction. Nevertheless,
changing Young's modulus in the case of a single material with a cavity
will not affect the principal directions. Figures 23 and 24 illustrate
the effects of the thermal conductivity and the coefficient of thermal
expansion on principal directions for the case of a single material with
a cavity (dashed line) and the case of a coated medium with a cavity
(solid line). These two figures illustrate that thermal conductivity
and the coefficient of thermal expansion will not influence principal

»
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directions significantly.

5.1.4 SUMMARY

This section discusses thermo-mechanical cracking arising from a
moving frictional load in coated media with a interfacial cavity. The
present section demonstrates that, when cavities exist at the
coating/substrate interface, the resulting thermal stress which
determines the failure phenomenon is much more severé than that in the

no cavity case.

Like most numerical solutjons, functional relationships can not be
obtained without voluminous computations. However, significant
conclusions can be reached through a carefully selected set of pertinent

parametric values. The conclusions of the present problem are:

(i) the effects of the mechanical and thermal properties on the
stress field are consistent with those obtained in the no-cavity case by
Ju and Chen (1984). These effects may be summarized as follows: thermal
stress can be reduced by decreasing Young's modulus in the coating
layer, increasing Youﬁg's modulus in the substrate, increasing thermal
conductivity and thermal capacity of the coating layer, and decreasing

the coefficient of thermal expansion of the coating layer.

(ii) the location of the cavity influences thermal stress, which
reaches a maximum, for Stellite I1II, at the critical ligament thickness
of Lcr=o'°94 for both cases of a single material with a cavity and a

layered medium with a cavity.

(iii) for the same Peclet number (RI). the critical ligament
thickness (Lcr) i{s smaller than the critical depth (qcr) of a coating
material. When the coating thickness is designed to avoid the critical
depth of the coating material, consideration must be extended to the
possibility of interfacial voids. Hence, the coating thickness should
not be in the neighborhood of the critical ligament thickness.
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(iv) for a thin coated medium, the cavity location and the material
properties matching (especially Young's modulus) will influence the
principal directions of the thermal stress field. In particular, the
obliqueness of the principal axis reaches a maximum when the coating
thickness is at the critical ligament thickness. The phenomenon implies
a large shearing stress at the coating/substrate interface, leading

toward delamination of the coating.

5.2 EFFECTS OF THE LINE CRACK

It is demonstrated that when heat flow is disturbed by the presence
of defects, there is a high local intensification of temperature and its
gradients in the vicinity of the defects (Chen and Ju, 1987), causing
very high thermal stresses around the defects. Such phenomenon
eventually results in growth of the defects and may lead to failure.

The earlier paper (Chen and Ju, 1987) considered a near-surface cavity
defect and a moving line heat source which traverses over the surface at
a moderately high speed. The current section will address the thermal
phenomenon of a half-space with a near-surface line crack defect. The

excitation again is a moving line heat source.

For the fracture mechanics problems, although analytical techniques
are very important, but they are very difficult or even impossible to
obtain. For complex geometries and loading conditions, numerical
techniques are increasingly being used. Since the late 1960's, the
finite element methods have been used for such complex fracture
mechanics problems. Initially, finite element methods in fracture
mechanics employed conventional elements, requiring an extremely fine
mesh in the vicinity of the crack tip to obtain accurate stress
intensity factors. Later, Byskov (1970), Walsh (1971) and Wilson (1971)

introduced special crack tip elements, which directly modeled the r—l/2

singularity near the crack tip, combined with conventional elements
covering the rest of the domain, to solve linear fracture mechanics
problems. This method reduces the total number of elements needed by

using relatively large singular elements near the crack tip and
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conventional elements in remaining regions. It was proven that this
method is efficient and can yield a very accurate solution. Recently,
Chen and Ju (1988) extended the special elements concept to the finite
difference method and successfully solved the problem of a semi-infinite
body containing a rectangular cavity. In this research, the finite
difference method used by Chen and Ju (1988) will be modified to solve

{
the line crack problem.

Once a finite difference solution is obtained, the value of the
stress intensity factor can be estimated by the use 6f the established
crack tip elements. There are many practical methods which can be used
to evaluate stress intensity factors. The present section will use the
displacement extrapolation method due to its relative simplicity, ease

of interpretation and ready extension of the discrete data.

5.2.1 ANALYTJICAL MODEL

The geometry of the medium may be approximated by a semi-infinite
body containing a line crack. The excitation of the surface is a moving
heat source as shown in Figure 25. Since the existence of the line
crack disrupts the homogeneity condition in the direction of traversing
of the heat source, the material coordinate system which is fixed to the
medium must be employed. With reference to previous work (Chen and Ju,
1988, Ju and Huang, 1982, and Ju and Liu, 1988a), the uncoupled
thermoelastic theory can be applled.

The governing equation for the temperature field is the Fourier
equation, Equation (1). The temperatufe field satisfies the zero
initial condition and the regularity condition at infinity. On the
surface, heat flux is prescribed over a moving contact.area. Due to the
high-speed of the moving heat source and the size of the line crack, the
heat flux is not expected to cross over the crack surfaces. Therefore,
the crack surfaces are postulated to be adiabatic. The adiabatic
conditions on the crack surfaces will result in an upper bound solution

of the temperature field.
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For the thermal stress field, the thermoelastic Navier's equations
and the Hooke's law are used, Equations (2, 5). The medium is inftially
unstressed. Boundary conditions for the thermal stress field are:

(1) the surface boundary and the crack surface are traction free;
(ii)at infinity, the regularity conditions hold.

5.2.2 SOLUTION TECHNIQUE

Due to the complexity of the geometry and the bdundary conditions,
the finite difference method is employed to solve both the temperature
field and the thermal stress field. The difference scheme will now be

presented.

(1) Temperature Field

To obtain the solution of the temperature field, an explicit finite
difference scheme incorporating the energy balance method is used. The
explicit finite difference scheme, the stability criteria and the energy
balance method on the surface boundary are discussed by Chen and Ju
(1987). The procedure of the energy balance method at the crack tip is
(Figure 26)

+
Qup = k (Ay/2) ([T (i-1,3.n)-t(i,j,n)1/Ax +
+ [T—(i"l,j,n)-T(i,J,n)]/AX}. (24)
Qq,p = k (Ax) ([T(i,J-1,n)-T(4,].n)]1/Ay, (25)
Q. =k (Ay) [T(i+1,j,n)-T(i,]i.n)}/Ax, (28)
QMD = k (Ax) (T(i,j+1,n)-T(i,j.n)])/Ay, (27)

where Q is the heat flux, indexed by the flow direction, ’l‘+ and T

represent the temperatures of the upper and lower surfaces of the crack,

respectively.
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The rate of change of internal energy U in the time interval At at
the point P(i,]J) is

b, = pc (Axdy) [T(i.3,n+1)-T(1,§,n)}/At . (28)

Conservation of energy requires that the algebraic sum of the heat

flowing to the point P is equal to the rate of change of internal energy

at the same point, i.e., QSUM = ﬁp. From conservatioh of energy, one

can obtain the equation for the crack tip. The dimensionless equation
for the crack tip is

$(1.3.0¢1) = $(L.4.n) + BT (6" (1-1,5.n) +
RA¢?
+ ¢ (i-1,3,n)1/2 - 24(i.j,n) + $(i+1,3,n)) +
+ AT [¢(i.j‘l.n)-2¢(i.j,n) +¢(l-j+l-n)]' (29)
Rqu

Similarly, the equations for the crack surfaces can be obtained by using

the energy balance method.

(i1) Stress Field
For hard wear material such as Stellite III and a typical asperity
speed, the Mach number for the thermal stress field is of the order of

10-3. Since M2 is a small parameter, the solution for the thermal

stress field can be obtained by the perturbation method (Chen and Ju,

1988), using "2 as the perturbation parameter. Using the technique
introduced by Chen and Ju (1988), for the present case, the contribution

of the higher order terms may be shown to be insignificant. Therefore,
only the zeroth order solution is présented here.

Since high temperature and high temperature gradient are found in
the vicinity of the crack, a fine mesh must be used near the line crack
and a relative coarse mccl: can be used in the regions away from the

crack. This non-uniform mesh can be transformed parametrically to the
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uniform mesh and solved in the transformed plane. Discussion of the
conventional finite difference equations and the coordinates
transformation are referred to Chen and Ju (1988) and Anderson et al.
(1984).

(1i1) Special Crack Tip Elements

Since the presence of heat flow produces no additional
gsingularities (Sih, 1962), the local character of the thermal stress
singularity at the crack tip is of the same nature as that of the

mechanical stress; i.e., r 172

For plane thermoelastic loading
conditions, the displacement field associated with the tip is described

by the asymptotic equations (Owen and Fawkes, 1983)

2 n/2
u =Z "2# (a;[(xw -‘2-‘ +(—1)n)cos(-g)0 - ‘5‘ cos(-g - 2)0] -
n=1
- a2ls'+ 3 --DMsind)o - B sin(} - 201} (30)
and
00
n/2 -
v = :E: rzp (a;[(x'— g —(—l)n)sin(g)O + g sin(g - 2)0] +
n=1
+ ai[(n'— 2 +(-1)")cos(3)0 + 3 cos(3 - 2)6]) . (31)

where r is the distance measured from the crack tip, x'=3-4r for plane

strain problem, ¥ is Poisson's ratio, a; and ai are constants to be

determined. PFrom equations (30, 31), it can be seen that the first

terms of the displacement series yield stresses as a function of r—l/z,

which characterizes the stress singularity at the crack tip. 1In the

numerical scheme, for small r, the first few terms of the displacement
series dominate. The conventional finite difference equations and the
special elements constitute a complete set of difference equations for

finding the thermal stress field solution.
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5.2.3 NUMERICAL RESULTS

Because of the moving heat source, the thermal stress field is
unsymmetrical. Hence, the mixed mode stress intensity factors are to be
evaluated. Numerical computations are carried out for the following
values of the parameters: V=15 m/s, a=0.3d, d=1mm. The material
properties are those of Stellite III. The smallest mesh size used under
the moving heat source and near the crack tips is Af=0.01 and Ay=0.005.

But the mesh sizes are rapidly increased away from these two regions.

Figure 27 compares the temperature fields of the medium with and
without a line crack when the heat source is directly over the crack.
The ligament thickness (thickness between the wear surface and the crack
surface) for the medium with a line crack is L=0.022. In the figure,
solid lines are for the medium with a line crack and dashed lines are
for the medium with no crack. The temperature field and the temperature
gradient of the medium containing a line crack is much higher than those
of the medium with no crack. This high temperature field and its

gradients are the source of the high thermal stresses.

The plane strain 'displacement equations are

K
u =.Z£ (r/21) [(2x'—1)cos(0/2)-cos(30/2)] -
K
- % (/27 )1/ 2 [(2x'+3)sin(8/2)+sin(36/2)] . (32)
and
K 1/2
v = v (r/27) {(2x'+1)sin(#/2)-sin(38/2)] -
K
- ]lp! (r/2r)Y/ [(2x'+3)cos(0/2)+cos(30/2)_l . (33)

in which K[ and KII are the mode 1 and the mode 11 stress intensity
factors, and g is the shear modulus. Substituting the values of r and u
or v for nodal points along the crack surfaces emanating from the crack

tip allows a plot of KI and K against radial distance r. The

11
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approximate values of K, and KII are thus obtained by extrapolation to

r=0. Figure 28 show thi effect of the location of the moving heat
source on the stress intensity factors, where k1=KI/loJH is the

g dimensionless stress intensity factors, d is the contact width of the
moving heat source, and d°=1 unit. At the time 7=1.2, when the moving
heat source is right above the line crack, both k1 and k2 reach a
maximum value. This figure thus establishes that, when the moving heat
source is right above the line crack, not only the thermal stress field

but also the stress intensity factors will reach thé worst state.

Figures 29 to 33 present the effects of the mechanical and thermal
properties on the stress intensity factors when the moving heat source
is right above the line crack. Figures 29 and 30 present the effects of
the Young's modulus (E) and the coefficient of thermal expansion (a).
From these two figures, it can be observed that both k1 and k2 are
linearly proportional to the Young's modulus E and the coefficient of
thermal expansion a. The result can be expected from the Navier's
equation. Figure 31 illustrates the effect of thermal conductivity (k).
In this figure, thermal diffusivity (x) is fixed. This figure shows
that both k1 and k2 are inversely proportional to thermal conductivity.
This is simply because larger thermal conductivity will result in a
lower temperature field. Figure 32 demonstrates the effect of thermal
capacity (pc) on stress intensity factors. In this figure, thermal
conductivity is fixed. The figure establishes that, as the thermal
capacity is decreased, the mode I stress intensity factor kl is
decreased, but the mode II stress intensity factor kz-is increased.

The presence of defects will change the pattern of the temperature
distribution. Consequently, the critical depth, at which thermal
principal stress reaches a maximum, is changed. Ju and Liu {(1988a)
established that, for a medium with no defect, the critical depth, at
which the principal tensile stress reaches é maximum, is qcr=0.16 for
Stellite III. However, when there is a rectangular cavity, the
principal tensile stress is the highest at the top trailing corner of
the rectangular cavity and reaches a maximum at the critical ligament
thickness Lcr=0.094. In the present section, it is found that the

*r
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geometry of the defect will influence the critical ligament thickness.
As illustrated in Figure 33, both k1 and k2 reach a maximum when the
ligament thickness is at L=0.08.

|

5.2.4 SUMMARY

The present section demonstrates the use of the finite difference
method, supplemented with a special computational procedure, to
determine the stress intensity factors at the crackitip. The mixed mode
stress intensity factors for a thermoelastic problem with a moving heat
source excitation were considered in both the derivations and examples.
The procedures developed can readily be extended to different loading
conditions and different crack geometry. The perturbation method
mentioned in the section allows one to consider the various order
solutions in the numerical calculations depending on the magnitude of
the Mach number. For the current application, because of the smallness

of the Mach number, the zeroth order solution is adequate.

According to the numerical results, the conclusions of this work
are as follows.

(1) Because of the poor heat transfer characteristics of the crack
surface, temperature and its gradients in the vicinity of a line crack
are much higher than that of the medium with no defect. This high
temperature and high temperature gradients are the source of large
thermal stresses.

(ii1) Increasing Young's modulus, the coefficient of thermal
expansion and decreasing thermal conductivity will result in larger
stress intensity factors, leading to earlier crack propagation.

(iii) Decreasing thermal capacity will result in smaller kI' but
larger kII'

(iv) Por the moving asperity problem, there is a critical depth at
which the principal thermal stress reaches a maximum (Ju and Liu,
1988a). For Stellite III, the critical depth is qcr=0.16. However,
when there is a defect, the depth at which the maximum value of stress
occurs is changed, depending on the location of the defect (Chen and Ju,
1988). For a rectangular cavity, the maximum thermal stress occurs at

r
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the ligament thickness Lcr=0.094. In this section, we established that
the geometry of the defect will also influence the critical ligament
thickness. For Stellite III, the critical ligament thickness for a line
crack is at Lcr=0.08.

5.3 EFFECTS OF THE RANDOM VARIATION IN COATING THICKNESS

This section presents the temperature field solution in a coated
medium, induced by the excitation of a fast—noving.asperlty over the
wear surface of the coating. The coating thickness is uniform for
individual specimens. However, random varjation in thickness exists in
a sample set fl. Such random variation in coating thickness arises from
a myriad of source such as fabrication tolerances and wear during
services. Since the concept of deterministic temperature field no
longer applies in analyzing such thermo-mechanical problems, there
arises a new class of problems in which one is confronted with
determining a random temperature field. The use of the theory of random

processes becomes a necessity.

The random characteristics of heat transfer have not been fully
studied. Some représentative works are noted here. Samuels (1966)
approached heat conduction in solids considering a linear system with
stationary Gaussian processes and solved several one-dimensional
problems. Ling (1972) studied heat conduction in a semi-infinite solid
involving Gaussian processes as forcing functions. Ahmadi (1974)
studied heat conduction in solids with random initial conditions. He
also applied the perturbation method to investigate heat conduction in
solids with random thermal conductivity (1978). Tzou (1988) used the
stochastic analysis to study the temperature field in a solid with
random thermal conductivity. He (1989) also developed an
one-dimensional stochastic model to solve that contact problem in heat

conduction.

In the present study, we consider first the case that for
individual sample the coating thickness and its wear are uniform.
Random variation in thickness, however, exists in an assemblage of such

*r
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coatings, called the sample space. The coefficient of variation of the
thickness is small. We can then use a special perturbation techniques
and formulate the coating thickness a sample random varjable. In other
words, the coating thickness varies from one specimen to another in the
sample space {l. In a single specific specimen, the coating thickness is
uniform. The solution for the temperature is expressed in the form of a
series expansion in a parameter ¢ which is small in view of slight
random variations in the coating thickness. By truncating the series
solution which depends on the magnitude of ¢, we can compute the mean
temperature as well as the variance of the temperature on a large sample

of the coating media.

5.3.1 Formulation Of The Problem

With reference to Figure 1, a heat source moves at constant speed V
over a semi-infinite solid with a surface coating of a uniform thickness
H. The strength of the heat source is assumed constant in time and
uniform over its width 2a. Furthermore, the heat source is of
sufficient depth normal to the plane, such that the plane theory
applies. The coating thickness H is considered to be only a function of
the sample variable @. The variable o ranges over a probability space 0
composed of all the specimens. The probability density D(a) in @ is
assumed to be measurable. Hence, all of the statistical quantities
{s:ch as expected value, standard deviation, etc.) in the present

analysis are well-defined.

Referring to Figure 1, and using the material coordinates x'-y',
the temperature in each region (I or II), for t>0, must satisfy
Fourier's law of the heat conduction in a solid (no sum on the repeated

indices).
pﬂcﬂatTﬂ = kﬂvaTﬂ, w<x'<w, 0<y'<H +e'f(a), (34)

in which V2 is the Laplacian operator, pc constitutes the thermal
capacity, and 0t=0/0t, fJ designates the coating layer (I) or the

*r
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substrate (Il1). The thermal capacity is deterministic and constant in
the analysis. The term ¢'f(a) accounts for the random fluctuation of
the coating thickness. Taking into consideration a well-controlled
manufacturing process for depositing the coating or the hardness of the
coating materijal, the parameter ¢' is postulated to be a small number,

f.e. €' << 1,

The time dependent governing Equations (34), can be transformed
into a steady state formulation by using the convective coordinates
{x-y), which are fixed to the moving heat source. With the

transformation x'=x+Vt, y'=y, Equation (34) becomes

2. _ g
xﬂV ™ = VﬂxT , (35)
where ¥ is the thermal diffusivity, and 0x=0/0x.

As the asperity moves, the contact friction results in heat input,
which is constant in the convective reference frame. Hence, the

boundary condition on the surface is expressed as:

kld Tl -
y

q(x) within the contact area
{ (36)

0 elsewhere,

where q(x) is the heat input over the contact area.

Regularity conditions hold at infinity; that is, at infinity,

x2+y2 —» o0, and

T " = 0. (37)

At the interface, y=H0+c'f(a). continuity conditions must be
satisfied for both the temperature and the heat flux.

T =T 7, (38-a)
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I 11
klﬁyT = klléyT . (38-b)

To facilitate a parametric analysis, the following non-dimensional

guantities are defined

{=x/a, g=y/a, d=H/a, d0=Ho/a. €=€'/a,

- B_L . P
Q q/qo. é —(Tﬂ To)kl/qoa. RI—Va/xI. RII Va/nll.

“k=kl/kll' q, is the average heat input.

Equations (35 - 38) can now be written in terms of these

dimensionless variables as follows:

2.8 _ g
Vo4 R,3£¢ : (39)
Q(§) within the contact area
-0 ¢ = { , (40)
7 0 elsewhere,
¢ - ¢II' y = dy+ef(a) (41-a)
i ¢' = a4 g = dyref(a) (41-b)
k'y p 0
¢11‘_’ 0. £2+q2 - . (42)

In the next section, the resulting stochastic temperature
distribution in solid media with random thickness is studied by

perturbation.

5.3.2 Method of Solution

We recognize the fact that the coefficient ¢ which modulates the
random fluctuation function f(a) is to satisfy the condition 'dol >>
|ef(a)|. The quantity € can be the small perturbative parameter for the

»
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perturbation method. For a sample random thickness, ¢' in the the
material coordinate and € in the convective coordinate are the same.

¢(€£.9:0) is then expanded into a asymptotic series in powers of ¢:

¢p(£.y;a) = Zenqﬁﬁ({,y;a). (43)

n=0

Since the continuity conditions {(41) are imposed at y = do+cf(a). €

appears in the argument of ¢ﬂ in Equations (41) as well as in the
coefficients of the asymptotic series. To equate coefficients of equal

powers of ¢, at p = d0+ef(a). ¢ must be removed from the argument of
function ‘ﬁ({.do+ef(a);a). We shall use the technique of the boundary
condition transfer (Nayfeh, 1980). By writing ¢ﬂ at g = do+tt(a) in

Equation (41-a) as ¢ﬂ(£.d0+ef(a)). and expanding ¢ﬂ into a Taylor series

about # = d_, we have

0

0

¢ﬁ(f,d +ef(a)) = -lT— [ef(a)]nﬁn¢ﬂ(£,d ). (44-a)
0. n! n 0
n=0

Similarly, 0’¢ﬂ at 7 = d +€f(a) can be expressed as

1
n!

0
g -
6,,¢ (£.d0+ef(a))~z

n=0

[ef(a)]"d;‘*‘¢"(£.d0). (44-b)

By substituting these Taylor series expansions (44-a and b) into the
continuity conditions, we obtains from Equations (41-a.and b),

respectively, the equations

Y o ter(@1"978" (6., -

n=0
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00

= :E: ;, [ef(a)]"0;¢ll(£.do), (45-a)

n=0

L]

Y L ter@niy el -
n=0
o

- :E: 1 [ef(a)]n0;+llll(£.do)._ (45-b)

ni
n=0

The continuity conditions are effectively transferred from y = do+£f(a)
to g = do by removing ¢ from the argument of ¢’(f.do+ef(a):a)) and

I .
0'¢ (. vef(a):a).
Substituting Equation (43) into Equations (39, 40, 42, 45), a

system of equations may now be obtained by matching the terms of various
orders of €.

For the 0th order:

Beeho + Dpgbo = Rydebo: (46-2)

I1 1X 11
Ieebo * Opibo = Rypdehp - (46-b)
subject to the conditions:

Q(§) within the contact area

-0 47 = { .y =0, (47)
1o 0 elsewhere
¢(I, - ¢(I,I. = dg. (48-a)
"ka?¢; = an¢;l' 7 = dy (48-b)
¢;I -+ 0, (2% = o (49)
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For the nth order; n =1, 2, 3,...

Ogebn = Oppfn = Ridehy. (50-a)
I1 11 11
6££¢n + 0qq¢n = allaf¢n , (50-b)

subject to the conditions:

I
—a,'¢n = 0, ’ = oo (51)
n n
1 i i1 1 i i, 11
:E:'TT‘ f (a)a’¢n_i= - f (.)a'¢n_1. y = d,. (52-a)
1=0 i=0
n
1 i i+1,1
“kz it f (a)ﬁ’, ¢n-1-
i=0
n
1 i i+1,11
- :E:"?T_ SOV (52-b)
i=0
¢;I — 0, (£2+q2)1/2 — o (53)

The set of the zeroth order equations (46 - 49) is the corresponding
deterministic problem with ¢ being zero when there is no random

variation in thickness. It is then clear that the effects of the higher

order terms will gradually enter the problem as the contributions of ¢ﬁ
(n =1, 2,--+), and are summed into the perturbation series (43). The
random feature of the perturbation system can be observed, from the
continuity conditions (52), that the fluctuation function now is the

coefficient of each summed-up term.

By applying the Fourier transform to Equations (46 - 53) with

respect to {-coordinate, these equations become ordinary differential
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equations of the transformed temperature }ﬂ(s,q;a) in the transfora
space, where s is the transform parameter. The analytical solutions for
various orders in the perturbation system in the transform space can be

obtained in sequence. Because of the complexity of the solution, they
are given in the Appendix. The expressions for ag(s.q), aq(s.y;a). and

35(3.1:«) (Appendix) can be expressed as:

$ﬁ(8.q:a) = f"(a)Wﬂ(S.q) forn=0, 1, 2,--- (54)

The form in Equation (54) can be obtained due to the homogeneous
governing equations subject to the non-homogeneous continuity
conditions. Therefore, the temperature distribution in the solid may be

written as

' 1]
Jﬂ(s.rl;a) = anfn(a)ﬁﬁ(s,q). (55)
n=0 ‘

Let ¢ be associated with the design tolerance of the coating thickness,
say, 0.5% of the design value. According to Equation (55), the accuracy
of the analysis could be in the order of 0.1% if the perturbation system
is solved up to the second order. Consequently, in the physical domain
(£.9;a), the solution may be adequately expressed, with second order

approximation, as

2
g oy nn, 4
¢ (E.n:0) —:E:e f (a)wn(f.q), (56)
n=0
where
w+ic
Wg(bv) = f Wﬁ(s.v)exp(-tfﬂds. (57)
~w+{C

The advantage of the present formulation to describe the diffusion

»
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phenomenon with geometrical randomness is readily evident from (56). By
applying an statistical operator to (56), for example the expected value

and the variance, we obtain

2
B, (61,500 - PRERINTILATRIN (58)

n=0

Vara[éﬂ(f,ﬂ.;a)] = ezwfVara[f(a)] . 263w1H2(Ba[f3(a)]-

2

—Ea[f(a)]Ea[fa(a)]] . e‘wz

var, [£%(a)]. (59)

Accordingly, Equations (58, 59) indicate that the statistical order
of the random response of the system is the same as that of the random
fluctuation function under the present formulation. In other word, the
mean value of the random response depends only upon the mean value of
the random fluctuation function and the same situation holds for the

variance.

5.3.3 Numerical Results

To illustrate the application of the proposed formulation, a cyclic
function is chosen to be the random variation of the coating thickness

in a collection of samples; i.e.
f(a) = sin(ap). (60)

The Gaussian distribution is the corresponding probability density

function of the process;

! 2 i
D(a) =

exp(- JLE), -0 { a { o, (61)

where b is the standard deviation of a random variable with Gaussian

distribution. The expected value for different orders of f(a) and the

variance can be evaluated as:
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Ea[f(a)] = 0,
Ea[fz(a)] = [l—exp(—zbzpz)]/Z.
g, L2 (@) = o,
Ea[f4(a)] = [3—4exp(—2b2p2)+exp(—8b2p2)]/8.
var,[f(e)] = E (£2(a)] - EX[£(0)],

Vara[tz(a)] - Ea[f4(a)] - ai(rz(a)}.

The stochastic response for the present problem, with sample-dependent

randomness of coating thickness, can thus be obtained.

For aumerical computations, the material properties of Stellite III
have been chosen. The deterministic quantities involved in the

numerical calculations are:

a 0.254 mm, k = 9.7 J/MN-sec+K,

3.5x10% J/M3.K, Vv = 15 M/sec.

pc

b=2and p = 0.2 are.used in the Gaussian distribution defined in (60,
61). The corresponding coefficient of the variation of coating
thickness is computed to be 0.1%.

The following figures of results are all computed at the trailing
end of the asperity in the coated solid medium.
CASE I: The mismatch in thermal conductivity, ﬂk = kl/kll

Figures 34 and 35 show the variation of mean temperature
distribution with respect to § (the depth direction) for mean coating
thickness do, chosen at a thin geonétry of 0.03 and 0.65. Figures 36
and 37 show the standard deviation of temperature distribution under the
same conditions as Figures 34 and 35. PFigures 38 and 39 plot the mean
and the standard deviation of temperature distribution at the
coating/substrate interface with respect to the mean coating thickness

dO'
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A relative maximum of standard deviation at y = d0 can be observed
for a thin coating layer (referring to Figures 36, and 37). The
coefficient of variation of tenperathre can reach 18% for thin coatings
(referring to Figure 38 and 39) with a thickness randomness of only
about 0.1%. This indicates the occurrencejof a large deviation of the
temperature from its mean value as a result of the small randomness of
the coating thickness. Therefore, the amount of deviation from expected

values is by no means negligible.

Figures 40 and 41 demonstrate the effect of the "freguency" (p).
Pigure 40 shows that p has very little effect on the mean response.
However, Figure 41 demonstrates that the magnitude of standard deviation
increases as p increases up to p = 2, and thereafter becomes constant.
These two figures fllustrate the contribution of f(a) to the mean value
and the standard deviation. The coefficient of variation of the
temperature can reach as high as 22% when the mean coating thickness do
is about 0.05.

CASE I1: The mismatch in thermal capacity, “c = (pc)I/(pc)II

Under the same situation as the thermal conductivity case; Figures
42 and 43 show the mean temperature distribution, Figures 44 and 45 show
the standard deviation of temperature distribution. By comparing the
results with the thermal conductivity case, the temperature
distributions are not affected as much by the randomness of the coating
thickness from mismatches in thermal capacity. This is due to the fact
that kI = k and at the interface the heat flux continuity condition

Il
also implies continuity in the temperature gradient.

5.3.5. SUMMARY

The effect of the uniformly random coating thickness on the
temperature response in a medium with a fast-moving asperity has been
analyzed. In the present analysis, we have shown that the amount of the
standard deviation of temperature depends upon

(1)the mean coating thickness,

(2)the thermal conductivity,

»r
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(3)the random fluctuation function f(a).

In the numerical example, a large standard deviation of temperature
for a thin coating can be observed. As a consequence, the coating
bonding strength , which is selected on the basis of the mean value
estimation of temperature, may prove to be unreliable because of the
large probability of higher temperature field there. It is expected
that the temperature gradient in the neighborhood of thin coating
interface has also a significant amount of deviation, which must be
considered carefully in the related thermal failure analysis. For the
case of position-dependent random coating thickness (i.e., the coating
thickness varies from one position to another in one specific specimen)

has been understudied.
Finally, it is noted that the analytical results from truncation of

the asymptotic series depends on the magnitude of ¢. Por larger values,

more terms are needed for accuracy in numerical computation.
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6.0. CONCLUSIONS

In the design of hard coating to provide a wear surface for the
substrate against high-speed frictional load, the integrity of the
coating depends much on the coating thickness and the parametric
matching with the substrate. For thick coatings, order of 1 mm, the
effect of the substrate on the coating integrity is negligible.
Therefore, critical considerations for the appropriate thickness and the
interaction of coating and substrate must be given to coating thickness

less than 100 microns.

It was found that the principal thermal stress attains a maximum
tensile value at a distance from the wear surface, called the critical
depth. Discontinuity in material property further aggravates the stress
state. For better integrity of the coating, its thickness should avoid
to be located in the neighborhood of the critical depth of the coating
material. The critical depth is exponentially related to the traversing
speed of the asperity and the single material property, the thermal
diffusivity. Moreover, if the coating process cannot avoid weak bond
that interfacial cavity or crack would develop through use, the coating
thickness has another critical thickness to consider. The second
thickness that may lead to premature delamination is the critical
ligament thickness, which is also controlled by the same parameters as
for the critical depth.

The relative stiffness between the coating and the substrate is
essential governed by the support that the substrate provides for the
coating. The softer the substrate is, the more stress must the coating
be subject to the frictional loading. The thermal conductivity of the
substrate also is influential in the désign for coating integrity. The
stress level is lower in the coating, when the substrate is more
conductive. Interfacial shearing stress as a criterion for coating
delamination is determined by the parameter matching and the coating
thickness. The shearing stress rises rapidly as the coating increases
in thickness towards the critical depth of the coating material, or when
there 1s an interfacial void.

>
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Appendix

Temperature Field Solution

(1)Solution for the Ot"h order:

a; = A;exp(—FIq) + Béexp(FIq). (A.1)
&é[ = A5IGXD(—FIW). (A.2)
where
R Qe AL F )
0 . ’
F[[(r[+ﬂkFII)-(FI—HkFII)exp(—ZFIdO)]
BI ] O(Pl—ﬂkF[I)exp(—aFIdo)
0 .
F][(Fl+ﬂkF]I)-(Fl—ﬂkFII)exp(—ZFIdo)]
R 2Qexp[(F  -F )d ]
0 i ’
[(Fl+ﬂkFII)—(FI—HkFII)exp(—aFIdo)]
and

Fﬁ "y sz-LRﬂs )

(ii)Solution for the 1St order

S S 1

$1 = Ajexp(-F 7) + Blexp(F 1), (A.3)
o
$, = A  exp(-F.y), (A.4)
where
2 2.2
REER ~2f(a)6(Fl—nkFII)exp(—ZFIdo)
1 1 2’
[(F1+ﬂkFI)—(FI-HkFII)exp(—zPIdO)]
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AT ~2f(a)Q(F -Fy ) (F ol F o pJexp((Fy;-F )d;] .
1 [(Fl+ﬂkFl)-(Fl—ﬂkFII)exp(—ZFIdo)]2

—2f(a)Q(FI+FII)(FI—“kFII)exp[(FII-SFI)dol

[(FI+ﬂkF[)—(FI-ﬂkFII)exp(-ZFIdo)]z

+

(iii)Solution for the 2nd order

$; = A;exp(~FIq) + B;exp(Fly). (A.5)
¢;I = A;Iexp(—FIq). (A.6)

where

2 —— 2 -
R 2f (a)Qk[(PI ﬂkpll) (l[+ﬂkFII)exp( 4F d ) .
2

) 3
[(PI+HkFI)—(Fl—ﬂkFll)exp(—aFldo)]

2, . 2
2f (a)QFI(FI~“kFII)(Fl+ﬂkFII) exp(-2FId0)

- : 3
[(Fl+ﬂkbl)-(Fl—ﬂkFII)exp(—aFIdo)]

—
[\

o f@dE -F )7 (F L F ) expl(F -F)d.]

k II
A2= 3 -
[(}I+HkFI)—(Fl-ﬂkFII)exp(—ZFldo)]
2f2(a)Q(F§I—3F?)(F?—ﬂiF?[)exp[(FII—SF[)dO]
- +
. . . 3
[(rl+nkpl)—(»1~nkf11)exp(—zpldo)]
2, .\x 2 2
. f (a)Q(FI+FII) (F[—ﬂkFII) eXD[(FII—SFI)dol
. 3
[(FI+“kFI)-(FI—“kFII)exp(—ZFIdO)]
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