
AD-A257 374 ENTATION PAGE jPP Al.0040

I11 lo ll 1111111111111 D II thi b rden sinud of ayClle ffl. #itsI r.o1W ion knI~s berairt nlding SUM IO for .o c hi's g t hi ude.t a~i
1215 Iidbreon Davis Higtway. Sulte 120-4. Arlingon. VA ~04X2. and to ft. Offlice0 Ini kdmlaof ari Raguex Attar%. Offic. of

Managerment arid Budget wast#m V..

1. AGENCY USE ONLY (Leave Blank) 12. REPORT DATE 3.* REPORT TYPE AND DATES COVERED

II Final: 15 Sept 1992
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Validation Summary Report: Meridian Software Systems, Inc., Meridian Ada, Version
4.1.3, Essence 386 under DOS 5.0, running MS Windows 3.0 (Host & Target),
920915W1 .1 1267
6. AUTHOR(S)

Wright-Patterson AFB, Dayton, OH
USAI

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) FGNZTO

Ada Validation Facility, Language Control Facility ASD/SCELEL =R

Bldg. 676, Rm 135 NO:VI~ oGAIA T O

Wright-Patterson AFB, Dayton, OH 45433

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY
Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E1 14
Washington, D.C. 20301-3081

11. SUPPLEM ENTARY NOTES

92-29320
12a. DISTRIBUTION/AVAI LABILITY STATEMENT
Approved for public.release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Meridian Software Systems, Inc., Meridian Ada, Version 4.1.3, Essence 386 under DOS 5.0, running MS Windows 3.0
(Host & Target), ACVC 1. 11.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16,___PRICE __CODE_

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1 815A, AJPO. 1.PIECO

17. SECURITY C1.ASSIFICATION 18. SECURITY CLASSIFICATION 119. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT I OF ABSTRACT

UNCLASSIFIED UNCLASSIFED IUNCLASSIFIED _________

NSN 7540-01-280-550 Standard Form 298, (Rev- 2-89)
Prescrbed by ANSI Std. 239-128

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on September 15, 1992.

Compiler Name and Version: Meridian Ada, Version 4.1.3

Host Computer System: Essence 386
under DOS 5.0, running MS Windows 3.0

Target Computer System: Essence 386
under DOS 5.0, running MS Windows 3.0

Customer Agreement Number: 91-06-12-MSS

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
920915W1.11267 is awarded to Meridian Software Systems, Inc. This
certificate expires two years after the ANSI adoption of
ANSI/MI L-STD-1815B.

This report has been reviewed and is approved.

-Ada Validation Facility
Steven P. Wilson
Technical Director
ASC/SCEL Z2TC
Wright-Patterson AFB OH 45433-6503 /UA.EJ7.D.

A a eld~ton Organization
Dire to ', Wmputer and Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

Ao~soafi For

~IMS GW&
3?Imc !nAU 0

Mt Joint Program Office Jucit if eattm
Dr. John Solomond, Director
Department of Defense
Washington DC 20301 Distril1/

AvaliabtlitT Codes
_iA4-_H. 1and/0r_

Dist Special

91-06-12-MSS

Ada COMPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 920915W1.11267
Meridian Software Systems, Ir.

Meridian Ada, Version 4.1.3
Essence 386 under DOS 5.0, running MS Windows 3.0 ->

Essence 386 under DOS 5.0, running MS Windows 3.0

(FINAL)

Prepared By:
Ada Validation Facility

ASC/SCEL
Wright-Patterson AFB O0 45433-6503

HOLCF C0082

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on September 15, 1992.

Compiler Name and Version: Meridian Ada, Version 4.1.3

Host Computer System: Essence 386
under DOS 5.0, running MS Windows 3.0

Target Computer System: Essence 386
under DOS 5.0, running MS Windows 3.0

Customer Agreement Number: 91-06-12-MSS

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
920915W1.11267 is awarded to Meridian Software Systems, Inc. This
certificate expires two years after the ANSI adoption of
ANSI/MIL-STD-1815B.

This report has been reviewed and is approved.

Ad1 Validation Facility
Steven P. Wilson
Technical Director
ASC/SCEL
Wright-Patterson AFB OH 45433-6503

Ad~a r"•li oh Organization
SDir cto mputer and Software Engineering Division

Ins itut-e lfor Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

DECLARATION OF CONFORMANCE

Customer: Meridian Software Systems, Inc.

Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB OH 45433-6503

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: Meridian Ada, Version 4.1.3

Host Computer System: Essence 386
(under DOS 5.0, running MS Windows 3.0)

Target Computer System: Same as Host

Customer's Declaration

I, the undersigned, representing Meridian Software Systems, Inc., declare that Meridian
Software Systems, Inc. has no knowledge of deliberate deviations from the Ada Language
Standard ANSI/MIL-STD-1815A in the implementation listed in this declaration. I declare that
Meridian Software Systems, Inc. is the owner of the above implementation and the certificates
shall be awarded in the name of the owner's corporate name.

Stowe Boyd, ~~~Date: ~ ~ ~ ~ ? • i ~ iStowe Boyd, President
Meridian Software Syltems, Inc.
10 Pasteur Street
Irvine, CA 92718

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATICN SUMMARY REPORT 1-1
1.2 REFERENCES 1-2
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS 2-1
2.2 INAPPLICABLE TESTS2-1
2.3 TEST MODIFICATIONS2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT. 3-1
3.2 SUMMARY OF TEST RESULTS 3-2
3.3 TEST EXECUTION3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures (Pro90] against the Ada Standard (Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
(Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1-1

INTRODUCTION

1.2 REFERENCES

[Ada831 Reference Manual for the Ada Pro2ramming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

[UG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values - for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1), and
possibly removing some inapplicable tests (see section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its target
Implementation computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTION

Conformity Fulfillment by a product, process, or service of all
requirements specified.

Customer An individual or corporate entity who enters into an agree-
ment with an AVF which specifies the terms and conditions
for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.
Inapplicable A test that contains one or more test objectives found to be
test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

Validated Ada An Ada implementation that has beer validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMP1LEMqTATIMt DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 2 August 1991.

E28005C B28006C C32203A C34006D C35508i C35508J
C35508M C35508N C35702A C35702B B41308B C43004A
C45114A C45346A C45612A C45612B C45612C C45651A
C46022A B49008A B49008B A74006A C74308A B83022B
B83022H B83025B B83025D C83026A B83026B C83041A
B85001L C86001F C94021A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BD1B02B BDIBO6A ADIB0oA BD2AO2A CD2A2lE
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2Bl5C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD9005A CD9005B CDA201E
CE21071 CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For thisimplementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C455211..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C35713B, C45423B, B86001T, and C86006H check for the predefined type
SHORT FLOAT; for this implementation, there is no such type.

C35713C, B86001U, and C86006G check for the predefined type
LONGFLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

A35801E checks that FLQAT'FIRST..FLOAT'LAST may be used as a range
constraint in a floating-point type declaration; for this
implementation, that range exceeds the range of safe numbers of the
largest predefined floating-point type and must be rejected. (See
section 2.3.)

C45423A, C45523A, and C45622A check that the proper exception is
raised if MACHINE OVERFLOWS is TRUE and the results of various
floating-point opeations lie outside the range of the base type; for
this implementation, MACHINE OVERFLOWS is FALSE.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is less than 47.

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

CA2009C and CA2009F check whether a generic unit can be instantiated
before its body (and any of its subunits) is compiled; this
implementation creates a dependence on generic units as allowed by
AI-00408 and AI-00506 such that the compilation of the generic unit
bodies makes the instantiating units obsolete. (See section 2.3.)

LA3004A..B, EA3004C..D, and CA3004E..F (6 tests) check pragma INLINE
for procedures and functions; for this implementation, pragma INLINE
has no effect unless the program is compiled and linked using global
optimization.

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type; this implementation does not support such
sizes.

2-2

IMPLEMENTATION DEPENDENCIES

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation
does not support such sizes.

AE2101C and EE2201D..E (2 tests) use instantiations of package
SEQUENTIAL 10 with unconstrained array types and record types with
discriminants without defaults; these instantiations are rejected by
this compiler.

AE2101H, EE2401D, and EE2401G use instantiations of package DIRECT 10
with unconstrained array types and record types with discriminanits
without defaults; these instantiations are rejected by this compiler.

The tests listed in the following table check that USE ERROR is raised
if the given file operations are not supported for the given
combination of mode and access method; this implementation supports
these operations.

Test File Operation Mode File Access Method

CE2102D CREATE IN FILE SEQUENTIAL 10
CE2102E CREATE OUT FILE SEQUENTIAL0IO
CE2102F CREATE INOUT FILE DIRECT 10
CE2102I CREATE IN FILE DIRECT-IO
CE2102J CREATE OUT FILE DIRECT-IO
CE2102N OPEN IN FILE SEQUENTIAL 10
CE21020 RESET IN-FILE SEQUENTIAL-IO
CE2102P OPEN OUT FILE SEQUENTIAL-IO
CE2102Q RESET OUT-FILE SEQUENTIAL-10
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUT FILE DIRECT-IO
CE2102T OPEN IN FILE DIRECT--IO
CE2102U RESET IN-FILE DIRECT-IO
CE2102V OPEN OUT FILE DIRECT-IO
CE2102W RESET OUT--FILE DIRECT-IO
CE3102E CREATE IN FILE TEXT 1?
CE3102F RESET Any Mode TEXT-IO
CE3102G DELETE TEXT 10
CE3102I CREATE OUT FIZE TEXT-IO
CE3102J OPEN IN FILE TEXT-IO
CE3102K OPEN OUT FILE TEXT-IO

The following 16 tests check operations on sequential, direct, and
text files when multiple internal files are associated with the same
external file and one or more are open for writing; USE ERROR is
raised when this association is at-:empted.

CE2107B..E CE2107G..H CE2107l CD2110B CE2110D
CE2111D CE2111H CE3111B CE3111D.. E CE3114B
CE3115A

2-3

IMPLEMENTATION DEPENDENCIES

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded;- this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; this iiplementation cannot restrict
file capacity.

CE3304A checks that SET LINE LENGTH and SET PAGE LENGTH raise
USE ERROR if they specify -an Tnappropriate value fo? the external
file; there are no inappropriate values for this implementation.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 9 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the
way expected by the original tests.

B22003A B83033B B85013D

A35801E was graded inapplicable by Evaluation Modification as directed by
the AVO. The compiler rejects the use of the range
FLOAT' FIRST.. FLOATL'LAST as the range constraint of a floating-point type
declaration because the bounds lie outside of the range of safe numbers
(cf. LRM 3.5.7:12).

EAI003B was graded passed by Processing Modification as directed by the
AVO. This test checks whether legal units of a compilation are accepted
if one of the compilation units is illegal. This test was processed with
compiler option "-fI", which forces the compiler to generate code for
legal units of a compilation.

CA2009C and CA2009F were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests contain instantiations of a generic unit
prior to the compilation of that unit's body; as allowed by AI-00408 and
AI-00506, the compilation of the generic unit bodies makes the compilation
unit that contains the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification as
directed by the AVO. These tests check that instantiations of generic
units with unconstrained types as generic actual parameters are illegal if
the generic bodies contain uses of the types that require a constraint.
However, the generic bodies are compiled after the units that contain the
instantiations, and this implementation creates a dependence of the
instantiating units on the generic units as allowed by AI-00408 and
AI-00506 such that the compilation of the generic bodies makes the
instantiating units obsolete-no errors are detected. The processing of
these tests was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONET

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For technical information about this Ada implementation, contact:

William E. Crosby
Meridian Software Systems, Inc.
10 Pasteur Street
Irvine, CA 92718
(714) 727-0700

For sales information about this Ada implementation, contact:

Meridian Software Systems, Inc.
Attn: Jim Smith
10 Pasteur Street
Irvine, CA 92718
(714) 727-0700

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3-1

PROCESSING INFORMATI(CN

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Prograrming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floating-point precision that exceeds the implementation's maximum
precision (item e; see section 2.2), and those that depend on the support
of a file system - if none is supported (item d). All tests passed,
except those that are listed in sections 2.1 and 2.2 (counted in items b
and f, below).

a) Total Number of Applicable Tests 3792
b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 82
d) Non-Processed I/O Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 283 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
tape were loaded onto a Sun 3 system, transferred via a PC-NFS ethernet to
a PC-class machine, and written onto diskettes. The contents of the
diskettes were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation. Test results were
transferred via diskettes and the PC-NFS ethernet back to the Sun 3 system,
where they were printed.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

3-2

PROCESSING INFRTIMN

Switch Effect

-fE Generate error file for the Ada listing utility.

-fI Ignore compilation errors and continue generating
code for legal units within the same compilation
file (for test EA1003B).

-fQ Suppress "added to library" and "Generating code

for" information messages.

-fS Use 80286-specific instructions where possible.

-fV Enable overflow checking (this is normally not
specified directly by the user but is always
provided by the compilation system).

-fw Suppress informative warning messages.

-1 Produce a listing file.

The following switches appear as modifiers to the -1 command,
in the form -lcps:

-c Produce continuous form Ada listings (no page
headers.

-p Obey PRAGMA PAGE directives within program even
though the -c flag says not to generate page
breaks.

-s Output Ada listing to the standard output file
instead of to a disk file.

The following switches apply to the linker.

-E Arrange for program to send Windows message when
finished so Windows validation scripts can
properly wait for a test to finish.

-w<unit> Link program as if <unit> had been with'ed by the
main procedure. Used with 'redir' to redirect
test output to a file.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in (UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX IN LEN--also listed here. These values are expressed
here as Ada string aggregates, where "V"1 represents the maximum input-line
length.

Macro Parameter Macro Value

$MAX IN LEN 200 -- Value of V

$BIG IDI (i..V-I -> 'A', V-> '1')

$BIG ID2 (l..V--I -> 'A', V-> '2')

$BIG ID3 (1..V/2-> 'A') & '3' &
(1..V-l-V/2 -> 'A')

$BIGID4 (1..V/2-> 'A') & '4' &
(l..V-1-V/2-> 'A')

SBIG INTLIT (1..V--3 -> '0') & "298"

$BIG REALLIT (1..V-5 -> '0') & "690.0"

$BIG STRING1 '"' & (I..V/2 -> 'A') & ' "'

$BIG STRING2 '" & (1..V-l-V/2 -> 'A') & '1' a

SBLANKS (l..V-20 -> '

$MAX LEN INT BASED LITERAL
"2:" ; (1..V-5-> '0') & "11:"

A-1

MACRO PARAMETERS

Macro Parameter Macro Value

$MAX LEN REALBASED_LITERAL
"16:" & (l..V-7 -> '0') & "F.E:"

$MAXSTRINGLITERAL I", & (l..V-2 -> 'A') & "'I

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

SACCSIZE 32

$ALIGMENT 2

$COUNT_LAST 32766

$DEFAULTMEM_SIZE 1024

$DEFAULT STOR_UNIT 8

$DEFAULTSYS-NAME 18086

$DELTA_DOC 2.0**(-31)

SENTRY ADDRESS 16#0#

SENTRYADDRESS1 16#1#

$ENTRY ADDRESS2 16#2#

$FIELDLAST 32767

$FILETERMINATOR r r

$FIXEDNAME NOSUCHFIXEDTYPE

$IFOAT NAME NOSUCHFLOAT TYPE

$FORMSTRING "i"

$ FORMSTRING2 "CANNOTRESTRICTFILECAPACITY"

$GREATER THANDURATION
90_000.0

$GREATERTHAN DURATION BASE LAST

T-o2oo 000.0

A-2

MACRO PARAMETERS

Macro Parameter Macro Value

$GREATERTHAN-FLOAT BASE LAST
1.1E+308

$GREATERTHANFLOAT SAFE LARGE
-- l.E308

$GREATERTHAN SHORT FLOAT SAFE LARGE

S -- 1.07308

SHIGH PRIORITY 20

$ILLEGAL_EXTERNAL FILE NAME1
\-- ODIRECTORY\FILENWI1

$ILLEGALEXTERNAL FILE NAME2
-- NODIRECTORY\FILZNAME2

$ INAPPROPRIATELINELENGTH
-1

$ INAPPROPRIATEPAGELENGTH
-1

$INCLUDEPRAGMAl PRAGMA INCLUDE ("A28006D. .ADA")

$INCLUDEPRAGMA2 PRAGMA INCLUDE ("B28006F1.ADA")

$INTEGER FIRST -32768

$INTEGERLAST 32767

$INTEGERLASTPLUS_1 32768

$ INTERFACELANGUAGE C

$LESS THAN DURATION -90_000.0

$LESSTHAN DURATION BASE FIRST
- - -1U o000000.0

$LINETERMINATOR ASCII.CR & ASCII.LF

SLOW PRIORITY 1

$MACHINECODE_STATEMENT
INSTI D(Bl->16#90#);

$MACHINECODE TYPE INSTi

A-3

MACRO PARAMETERS

Macro Parameter Macro Value

SMANTISSADOC 31

$MAXDIGITS 15

$MAXINT 2147483647

$MAXINTPLUS_1 2147483648

$MININT -2147483648

SNAME BYTE _NTEGER

$NAMELIST 18086

$NAMESPECIFICATIOt41 C :\ACV.CTEST1NX2120A

$NAME_SPECIFICATION2 C:\ALCVC\TEST\X2120B

$NAMESPECIFICATION3 C :\ACVC\TEST\X3119A

$NEGBASEDINT 16#FFFFFFFE#

$NEW MEM SIZE 1024

SNEW_STOR_UNIT 8

$NEWSYSNAME 18086

$PAGETERMINATOR ASCII.CR & ASCII.LF & ASCII.FF

$RECORDDEFINITION RECORD Bl: UNSIGNED BYTE; END RECORD;

$RECORDNAME INSTI

$TASKSIZE 32

$TASK STORAGE SIZE 2048

STICK 1.0/18.2

$VARIABLE ADDRESS FCNDECL. VAR ADDRESS

$VARIABLEADDRESS1 FCNDEC.L.VARADDRESSi

$VARIABLE ADDRESS2 FCNDECL.VAR ADDRESS2

$VYRPRADEA NOSUCL PRAGMA

A-4

APPENDIX B

COMPILATION SYSTM OPTIONS

The compiler options of this Ada Lmplementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

B-I

Aug 14 17:10 1992 Essence 386 - ACVC 1.11 Paqe 13

MERIDIAN ADA COMPILER OPTIONS

-fD Generate debuqginq output. The -fD option causes the
compiler to generate the appropriate code and data for
operation with the Meridian Ada Debuqger.

-fe Annotate assembly languaqe listing. The -te option
causes the compiler to annotate an assembly language
output file. The output is supplemented by comments
containing the Ada source statements corresponding to the
assembly language code sections written by the code
generator. To use this option, the -S option must also
be specified, otherwise the annotated file is not emitted.

-fE Generate error log file. The -fE option causes the
compiler to generate a log file containing all the error
messages and warning messages produced during compilation.
The error log file has the same name as the source file,
with the extension .err. For example, the error log file
for simple.ada is simple.err. The error log file is
placed in the current working directory. In the absence
of the -fE option, the error log information is sent to
the standard output stream.

-fF Disable floating point checks. This option is used to
inhibit checks for a math co-processor before sequences
of math co-processor instructions, resulting in a
slightly smaller and faster program. Use of this option
means that the resulting program requires, and you
guarantee, the run-time presence of a math co-processor
(either an 8087, 80287, or 80387). If a program
containing floating point computations is compiled with
the -fF option, it will behave unpredictably if run on a
machine without a math co-processor installed; the
machine may simply "freeze up" in this circumstance,
requiring a reboot. Refer to the bamp -u option, which
causes the floating point software to be linked with a
program.

-fI Ignore compilation errors and continue generating code
for legal units within the same compilation file.

-fL Generate exception location information. The -fL option
causes location information (source file names and line
numbers) to be maintained for internal checks. This
information is useful for debugging in the event that an
"Exception never handled" message appears when an
exception propagates out of the main program. This flag
causes the code to be somewhat larger. If -fL is not

B-2

Aug 14 17:10 1992 Essence 386 - ACVC 1.11 Page 14

used, exceptions that propagate out of the main program
will behave in the same way, but no location information
will be printed with the "Exception never handled"
message.

-fN Suppress numeric checking. The -fif flag suppresses two
kinds of numeric checks for the entire compilation:
division check and overflow check. These checks are
described in section 11.7 of the LRM. This flag reduces
the size of the code.

-fQ Suppress "added to library" and "Generating code for"
information messages normally output by the compiler.

-fR Inhibit static initialization of variables. This option
is intended for use in RON-based embedded environments in
conjunction with the Meridian Ada Run-Time Customization
Library. The -fR option is applicable only in the
presence of the -fs option, which suppresses certain
runtime checks. Normally, the Ada compiler initializes
constants or variables with static data when the
following conditions all occur:

1. Checking is disabled with the -fs option.

2. The initializer expression is static (known at
compile time).

3. The object is a global (in top-level package
specification or body).

If the -fR flag is specified, static initialization is
suppressed for variables (but not for constants);
assignments to each component of a variable are performed
in the code. Note that this always happens in the
absence of the -fs option.

-fs Suppress all checks. The -fs flag suppresses all
automatic checking, including numeric checking. This
flag is equivalent to using praqma suppress on all checks.
This flag reduces the size of the code, and is good for
producing "production quality" code or for benchmarking
the compiler. Note that there is a related ads option,
-fN to suppress only certain kinds of numeric checks.

-fS The -fS flag causes the compiler to generate additional
80286 instructions not available on the 8086/8088.
Programs compiled in this mode tend to be smaller than
programs compiled using the normal 8086/8088 mode.

-fU Inhibit library update. The -fU option inhibits library
updates. This is of use in conjunction with the -S
option. Certain restrictions apply to use of this option.

B-3

ClU SYM M

Aug 14 17:10 1992 Essence 386 - ACVC 1.11 Page 15

-fv Compile verbosely. The compiler prints the name of each
subprogram, package, or generic as it is compiled.
Information about the symbol table space remaining
following compilation of the named entity is also printed
in the form "[nK:]I.

-fw Suppress warning messages. With this option, the
compiler does not print warning messages about ignored
praquas, exceptions that are certain to be raised at
run-time, or other potential problems that the compiler
is otherwise forbidden to doem as errors by the LRN.

-g The -g option instructs the compiler'to run an additional
optimization pass. The optimizer removes common
sub-expressions, dead code and unnecessary jumps. It
also does loop optimizations.

-K Keep internal form file. This option is used in
conjunction with the Optimizer. Without this option, the
compiler deletes internal form files following code
generation.

-lmodifiers
Generate listing file. The -1 option causes the compiler
to create a listing. Optional modifiers can be given to
affect the listing format. You can use none or any
combination of the following modifiers:

c Use continuous listing format. The listing by
default contains a header on each page. Specifying
-lc suppresses both pagination and header output,
producing a continuous listing.

p Obey praqma page directives. Specifying -lp is only
meaningful if -lc has also been given. Normally -lc
suppresses all pagination, whereas -lcp suppresses
all paginauion except where explicitly called for
within the source file with a pragma page directive.

s Use standard output. The listing by default is
written to a file with the same name as the source
file and the extension .lat, as in simple.lst from
simple.ada. Specifying -Is causes the listing file
to be written to the standard output stream instead.

t Generate relevant text output only. The listing by
default contains the entire source program as well
as interspersed error messages and warning messages.
Specifying -It causes the compiler to list only the
source lines to which error messages or warning
messages apply, followed by the messages themselves.

The default listing file generated has the same name as
the source file, with the extension .1st. For example,

B-4

Aug 14 17:10 1992 Essence 386 - J.CVC 1.11 Page 16

the default listing file produced for simple.ada has the
name simple.lst. The listing file is placed in the
current vorkinq directory. Note: -1 also causes an
error log file to be produced, as vith the -fE option.

-L library-name

Default: ada.lib

Use alternate library. The -L option specifies an
alternative name for the program library.

-N No compile. This option causes the ada command to do a
"dry run" of the compilation process. The command
invoked for each processing step is printed. This is
similar to the -P option, but no actual processing is
performed.

-P Print compile. This option causes the ada command to
print out the command invoked for each processing step
as it is performed.

-S Produce assembly code. Causes the code generator to
produce an assembly language source file and to halt
further processing.

B-5

MILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and not
to this report.

B-6

CUATOI3N SYSI CPTNIS

Aug 14 17:10 1992 Essence 386 - ACVC 1.11 Page 17

MERIDIAN AD LIMKR OPTIONS

-A Aggressively inline. This option instructs the optimizer
to aggressively inline subprograms when used in addition
to the -G option. Typically, this means that subprograms
that are only called once are inlined. If only the -G
option is used, only subprograms for which praqma inline
has been specified are inlined.

-c compiler-program-name

Default: (as stored in program library)

Use alternate compiler. The -c option specifies the
complete (non relative) directory path to the Meridian
Ada compiler. This option overrides the compiler
program name stored in the program library. The -c
option is intended for use in cross-compiler
configurations, although under such circumstances, an
appropriate library configuration is normally used
instead.

-E Link the program so it can wait properly when called by
WinExec. Arrange for a message to be sent to the parent
Windows task when the Ada program terminates.

-f Suppress main program generation step. The -f option
suppresses the creation and additional code generation
steps for the temporary main program file. The -f option
can be used when a simple change has been made to the
body of a compilation unit. If unit elaboration order
is changed, or if the specification of a unit is changed,
or if new units are added, then this option should not be
used.

-g Perform global optimization only. The -g option causes
bamp to invoke the global optimizer on your program.
Compilation units to be optimized globally must have been
compiled with the ada -K option.

-G Perform global and local optimization. The -G option
causes bamp to perform both global and local optimization
on your program. This includes performing pragma inline.
As with the -g option, compilation units to be optimized
must have been compiled with the ada -K option.

-i The -i option is used in conjunction with the bamp -r
option when producing "pre-linked" code for use with the

B-7

Cow ATIou sysl anion

Aug 14 17:10 1992 Essence 386 - ACVC 1.11 Page 18

Intel Development Tools. The -i option causes certain
information to be emitted into the object file that is
needed under some circumstances by the Intel linker,
LINK86. By default, pre-linked object modules use the
Microsoft object format.

-I Link the program with a version of the tasking run-time
which supports pre-emptive task scheduling. This option
produces code which handles interrupts more quickly, but
has a slight negative impact on performance in general.

-L library-name

Default: ada.lib

Use alternate library. The -L option specifies the name
of the program library to be consulted by the bamp
program. This option overrides the default library name.

-m Produce link map. The -m option causes a text file
containing a link map to be written. The link map is
Microsoft-compatible and the link map file name has the
extension .map for Real Mode programs (the default).
For Extended Mode Programs (produced when the bamp -x
option is given), the link map is OS/x86-compatible and
the link map file name has the extension .xmp.

-M main-program-stack-size

Default:

"o 20K in Real Mode programs

"o 64K in Extended Mode programs, when tasking is not
used

"o 64K - <task-stack-size> in Extended Mode programs,
when tasking is used

Set main program stack size. The -M option sets the
stack size (number of decimal bytes) for the main program
(excluding tasking). Note that the sum of the main

program stack size and the tasking stack size must be no
more than 64K bytes.

-n No link. The -n option suppresses actual object file
linkage, but creates and performs code generation on the
main program file.

-N No operations. The -N option causes the bamp command to
do a "dry run"; it prints out the actions it takes to
generate the executable program, but does not actually
perform those actions. The same kind of information is
printed by the -P option.

B-8

C MIJWT SY cpTzo

Aug 14 17:10 1992 Essence 386 - ACVC 1.11 Page 19

-o output-file-name

Default: file.exe

Use alternate executable file output name. The -o option
specifies the name of the executable program file written
by the bamp command. This option overrides the default
output file name.

-P Print operations. The -P option causes the bamp command
to print out the actions it takes to generate the
executable program as the actions are performed.

-r Create re-linkable output. The -r option causes an
object file (.obj file) to be generated rather than an
executable file (.exe file). The resulting file contains
all symbol and relocation information, and can then be
used with any low-level linker accepting object files
compatible with the Intel or Microsoft object formats.

-s task-stack-size

Default:

"o 20K if tasking used

"o Zero if tasking not used

Use alternate tasking stack size. The -s option
specifies the number of bytes (in decimal) to be
allocated to all the tasks to be activated in the Ada
program. This option overrides the default task stack
size. Note that the sun of the main program stack size
and the tasking stack size must be somewhat smaller than
64K bytes. The size of individual task activation
stacks can be specified with a length clause.

-u Link software floating point library. Use of the -u
option enables a program containing floating point
computations to run with or without a math co-processor
chip. A related compiler option, the ada -fF option,
also can be used to control the action of the run-time in
the absence of a math co-processor chip. The ada -fF
option and the bamp -u option should not both be used in
the same program.

-v Link verbosely. The -v option causes the bamp comnand to
print out information about what actions it takes in
building the main program.

-V scratch-file
Link using "virtual" mode. This option allows larger
programs to be linked, although slightly more slowly. A

B-9

CNUMATION SYS= OPTIK

Aug 14 17:10 1992 Essence 386 - ACVC 1.11 Page 20

scratch-file must be specified. The scratch-file can
reside on a RAN disk (if one is available) for faster
operation. The -V option affects only the operation of
the low-level object linker. The scratch-file is used as
scratch memory in which the various object files are
linked.

-w library unit
Link the program as if the specified library unit had been
withled by the main procedure.

-W Suppress warnings. This option allows you to suppress
warnings from the optimizer.

-x The -x option is used to create an Extended Mode program.
This option applies only to Extended Mode Meridian Ada.
The -x option produces a proqram that can be run with the
ramp command to run in Extended Mode (a .exp file). If
the -x option is not used, a Real Mode program (a .axe
file) is produced.

B-10

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -32768 .. 32767;
type SHORT INTEGER is range -32768 .. 32767;
type BYTE INTEGER is range -128 .. 127;
type LONG_INTEGER is range -2_147_483_648 .. 2_147_483_647;

type FLOAT is digits 15

range -1.79769313486231E+308 .. 1.79769313486231E+308;

type DURATION is delta 0.0001 range -86400.0 .. 86400.0;

end STANDARD;

C-1

APPIMIX F' Or TE AMm. SMIMAR

This appuodhx lit mpm atmfepnt duw~n~k ad Mwid

Ada. Note tha tw ar e no pm -di'ng appendicM This aPPSIIUK ais iAd

Apperdix F in orde to cmzipy with the RO~M' MWIUaI for 111 Ad
Prouu'm~gLiguap (LRM) ANSIIMfL-STD-48IA wkdch swdiet

fths appia be namd Apperidix F.

Impbmuted OQapw 13 feat~ures clude lengt C1a1110, OMIuuwaon
repamentstio clausm, record reprewftboi clausin. addim claMOMn
into. ptk pwackagoem my~iachine code inaeftamu, pragnaMfoce
and uzvkiackd programming.

F. I Pragmas
The impinemmted pre-defoted pragiras are

al abo &to See the LRM section 10.5

interface See section F.I.

list See fth LRM Appendix B

pack See section F.1.2

PSge See the LRM Appendfix B

ty~o See the LRM Appendix B

suppress See section F.I.3

inline See the LRM section 6.3.Z. This pragma is not actualy effective
un~les you comrpile/link your program using the global
Optlnuzer.

ThS remaining pre~defined pragmas are accepted. but presently ignored:

controlled OPtI4NALas. systan pave
shared stoz.jwnJut ,moy.Umize

Namewd parameter notation for pragmas is not supported.

Whjen illegal param~ete formis ame encountered at compile time, the
compiler issues a warning message rathe than an errx, ras required b.
the Ada language definition. Refer to the LRM Appendix B for additional
information about the pre-defined praginas.

F. 1. 1 Progma interface
The form of pragma interface in Meridian Ada is:

pzagma Latarifin I .Ianqudq@ * subprogram C, *1±Ak-Oaw I;

OeriAd WlrdOws COMPler User's Guae Page 247
c-2

A1PRM F Or TW Ad W9UQWv

builtin c. miaeormeEc, or aen~al. The nams builft mid
inamal an~ reena v wo e by Maridlmn coupiler

aabpuImnw This is the of acl suahpopam to which the pregma
interface -a-pie

N~ Lik-mdulfs to the value of uAibPrvpum

modificatons may be made t; *Ae fink-ome to produce the
actual object code symnbol name that is geneated
whenevr ehencesi ane made to tecrup dngAda
subprogram. The object code sybo giate 'for
link-now ns always translated to upper cme Although the
Meridian object Brnka is casesensiave. it is a rm obliect
module that cormims mixedcase symboWh at pmesit. al
Meridian SUN6 object miodules =e uppz cue caly.

Itis Appropriate to use the Optional link-mcw Parameter to Pragma
interf ace only when the in uce subprogram has a name that doe

rotcorupoidat all to its Ada identh or when the imaerta
subrogam. name arno be given using rules for .u~acn Ada

deifrs(e~g. i~f ttheemm contains a T character).
The characteristics of obpec code symbols generated for each intuatce
language wt

assembly The object code symbol is the same as link-,snu

builti. The object code symbol is the same as fink-m x, butprfxdwt
two underscore characters (0-7. This language in-r Ic
is reserved for special interfaces defined by Meindi=
Software System. Inc. The builtiu intertuce as presently
used to declare watain lowlevel run-time operations
whose naxnm must not coniflict with progr a -defined
or language sysite du6inM.

c The objec code symbol is othe sun as link-nom. but with one
underscore characte ('_) Prepended. This is the
conventom used by the C comipiler.

itin~aal No object code symbol is gerimnted. for an internal language
intrhmths lngugeinteriace is rmerveI far specwa

inwrace d~iV~ byMeridian Software Systems. Inc. The
internal -ntelac as presently used to declare cortam
mmchbu.4evel. bit opersdcas

mmiosoft-c The object code symbol is the seun as fink-new, but with one
undmmfoe character (-00) prepended. This is the
conivention, used by the Micrtasft C compiler.

AV9.241 C-3 000%040 bWtoni CONOW LUre 440

APPD9ZZ F OF T Ada. SThWDID

6MMIiin Ubym 12m bI~ Cww~dm. t••gst xl 8m• Un -• th hom1sof. C for fl

T"e low ig m Is cmmo m dainnged only in. a e oat a
zmiobc = No sumnok daft Cnva m pamad Ca

a oany cr u up to. e- p-- to
- tht e Wm4iM and that a"y yeim ddat

"inefaces1 app~ft OW~
aakroded Mdmiand porto them &ati e o sumbputoprua. A

prg ateraose thaptus ma to I I deciard inapse
spediosios mk t acur the sam package OW aS t*u
suprgrm dedmd th prapia into e may nt appear in the
package body in this 4as. A prepma interface declaration for a
"prvt %W prV=tubpc dedaraliona may appear in the pnVWt
Pont of a pcaespedmam

Pragma Lntertace fmr librry" unit is not s.ppord.

Rdef to the LRM secton 13.9 for akdonal information about pnagms
intetae

F.1.2 Progma Pack
Pngma Pack is iMPLOA•t•ad for composite type (records and a.-ns).

Pagu Pack is Pemitted followmg the cmposite type declaratim to
which it applies, provided that the prepms owun, within the same
declarative part as the composite type dedantion, befoe any objet or
components of the compoest type are declared

Note that the declarative part resiction means that the type declaration
and accompanying pfepna pack cannot be split aco a package
specification and body.

The effect of praeta pack is to minimize storg consunpton by
dis~e o'm porimn a typa whone nes • tpackn. s.e of prauma
pack does not defeat aleocaboons of onpmm gegapsf CMor
record types. Pragma pack does not affect the representations of real
type. pr-dened integer types, ad access types.

F.1.3 Pragma Suppress
Patg= suppress is implemented as described in the LXM section 11.7,
with these differencer

"* Presently, division.check and overflowcheck must be suppossed
via a Compiler flag, - Lx: pragma suppress as ignored for thee twonmneri check.

"* The optIona 0 o" parameternamenotationforpragma
suppress is ignored.

o0eMd MW*ows CO#;M User 's God*e Pop 249
C-4

APPIUSZ F OF UK A"a W1MIM

0 The opdond mia PIMA to p .uwppw.. is irwed; the
p ahim awys appe to *A come some a which it aPPOrs

F.2 Attributes
AH a~lurfx dearbsd in~ th LRM Afppuidb A a suppmad.U The

- 1 1je- *--M-- p lwda atwibute # looffset is appbed to
jkpamawt (and o nst asa ', h taoffdta

An scampie f6*ws

F.3 Standard Types
Addlfima standard "ap an daedir in Maiidian Ada:

y byteA.ntoegswa-18..17

type integer is camge -32768 .. 327671

type lasg~iategar is camae -2147483648 .. 2147483447oa

twoe fleet is digits 13
camae -1.797693134862312+308 .. 1.797693134862313.308i

type Laraties Lis delta 0.0001 image -86400.0000
66400 .0000,

F-4 Package System
The spedhation of package usytemi ir

peekage systow to

tye &"Case. is new lgag..intowers

typie ans is t (180401,
eysssAmA I cofstant mae so L2086,

Stie"*..it : sedatuat Ia. aI
mumory-lso a oeeatant is 1024s

Pa" 250 OpenAd b*,aaag CAWOvi i r u GuOe
C-5

AP1MW F OF- TM Ad. sU'mA

U~k.J~t a istaat to -147443"6#

USXta og tm~aaa to 2147463447#
man-di~gits I Gestneato IS#5
max~maias.a s esmataaa so 31#

timeA&4lt~a I .amst am. t 2.0 ** (-3111
"Oik asistnt to 1.0 / 13.2,

-- OthatMy vm-Dss-mam Oseslairatioms

mis~spre uioity to tateuu rang. 2.. 20,

The value of watem.amory...ase is presently imaningems.

F.5 Restrictions on Representoffon Clauses
P5.1 Length C30US..

A mesefcton (t s size) is rejected if fewe bits ane specified than
conacmmdt the Mym. The nunsanim man of a composite type may
be subject to applicatio of pragmi pack. It is perinitted to specify

f.or unsignd ' teg rane .. 8 for the range 0-*255.
T= = UeOf ruqu!rurwus inioedb the Ada language
d rionafufl32.bitrangoturm ipdvaluisLe. 0.. (2--32)-l.

cannot be ddzird. even using a size specdIfcation.

The specificationi of collection size (t I storage-s.ize) is evaluated at
rnm-time when the scope of the type to which the length clause applies is
adoered, and is therefore subject to rejection (via atorage..emw) based
On availabie sInrge at thetimmethe ailocation s made. A collegtonimay
iclude sumrag used for nmn-time admnidstbmto of the collectimn and

thee oe should rat be erpected to accommodate a spedfic nuimber of
obet.Furthermore, certin classes of objects such as uncounstrained

discriurazit ary components of records may be allocated outsde a
given cletoso a colletion mnay accomumodate lhre oj 1 m than
mnight be .cpected.

The* specification of storage for a task activation (t ,storave-size) is
evaluated at rnm-tin what a task to which the length clause applies as
activated, and is therefore subject to rejectlon (via storagoe..hzr)
based on available storage at the time the allocation is made. Storage
reseved for a task activation is separate from storage needed for any
collections defined within a task body.

The spe Hasio of small for a fixed point ty.pe (t -small) is subject only
to restictions defimed in the LRM section 13.2.

F.5.2 Enumeration Representation Clauses
The internal code for the literal of an enumsaton tyenammed in an
enuwaertion reprsenitation clause must be in the range of
standa~rd. integer.

OverAdO Wtain= C"oMWe UWse' GUMt Pag.251C-6

APIMMM= Pv Or, 7M Atdb 32NSMM

The value of an sal code may be obtim d by applying an
apprupaste U~bmOMa-GU ofO ue ok os atos Wan integ type-

F.U. Record Represeallo ue

The Stoage uinit clam (the at smicj e..PPrinii Part is P'. t
ternu m o.bt storage unts and numt be evaL

A bit positkm (the mange part) applied to a dis-ete type Impoint may
be in the ane 0. ..5,with 0 beng the mstsipiica bltcfa
WiposmmL A range - may sn pedy aia mar than an
accouinodate the WrapOiiL A rang specipctkma far S ca~ixfblt not
asmnmodating bit pac ;y have a highe upper ix as
appropMt (e.g., 0.. 3 3or a diatrninMant s.tv.t COICpom . Rci.e to
the intabnal dai rpm iwon o ia gkviv c xponmet in datatnUmng thecompotunt me and ,mapng o•s.

Catnpowwts o disclre types for which bit F mr -arspeci may
not~I' swdl bit word boundazies

The value of an alirnieft clause (the opdoal at mad part) evaluate
to 1, 2,4, or- , and may not be stnallec thanthe hgst aliprmamu
required by any componait of the mrord. On MSDXB. this nuams that
some records may not he alige i tm clauses smaller than I.

F.5A Address Clauss
An address clause may be suppied kr an object (whether comant or
variable) or a task entry, but not for a subprogam. package, or task unit.
The mangof an address clause supplied for a task entry Js pveR In

An addr. expressm for an object is a 32-bit segmented nunmozy
address of type ysem.. ad4duso.

F5.5 InteRupts
A tuk entrs address clause can be used to assocate the envy with a
MS-DMO interrupt Values in the range 0. .355 are meminiful andrepment the idn tu corresponinmg to those values.

An intrupt entry may not have any parametus.

F.S.6 Change of Represntctton
The an no resaictims for changes of represstatkn effected by nens
of type •onvesion.

PageS 252 CONda V*i"aws CRI"r Las GU
C-7

I L ___ __I___ __-I_____'l I___' II__.. _± • _ _i

AMEN=~I 1 OF TI MAf STNNDNM

F.6 Implementation-Dependent Components
NO PaMM are gnmalad by the implementatkm to deofte

F.7 Unchecked Conversions
There are no restrictioris on the use of -nchek&o er on
Cnvermons between objecw whose smes do not conform may result in
storage areas with undefined values.

F.8 Input-Output Packages
A summaray of the imnpleauetat•on-dependent input-output

* In calls to open and create, the form parameter must be the empty
string (the default value).

• Moe than one internal file can be associated with a single cernal
file for reading only. For wriing, only one internal file may be
associated with an external file; Do not use reset to get around this

*Temporary sequential and direct files are given narnos Teuqmoray
files are deleted when they are closed.

* File I/O is buffered; text files associated with terminal devices are
line-buffeneiL

* The packages aoquntial..io and directLa cannot be
instantiated with unconstrained composite types or record types
with discominarns without defaults.

F.9 Source Line and Identifier Lengths
Source lines and identifiers in Ada source programs are presently limited
to 200 chaacters in length.

QoeaAoc wwKsows Comroer user's Gida Pogo 253
C-8

