-~ . N - 9\
AD-A257 374 :NTATION PAGE e 368 Q

WA e
I mm-wmmmuwmmdmnmmdHmmvmwmmmmnw 10 Washington
1215 Jetterson Davis Highway, Sulte 1204, Ariinglon, VA 22202-4302, and to the Office of information and Reguiatory Affairs, Oftice of
Management and BuogGet, Wasiingaur, L avewe.
{7 AGENCY USE ONLY (Leave Blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED
Final: 15 Sept 1992
3. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Validation Summary Report: Meridian Software Systems, Inc., Meridian Ada, Version
4.1.3, Essence 386 under DOS 5.0, running MS Windows 3.0 (Host & Target),
920915W1.11267

6. AUTHOR(S)

Wright-Patterson AFB, Dayton, OH
USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Ada Validation Facility, Language Control Facility ASD/SCEL
Bldg. 676, Rm 135

Wright-Patterson AFB, Dayton, OH 45433

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Ada Joint Program Office

United States Department of Defense

Pentagon, Rm 3E114

Washington, D.C. 20301-3081

11. SUPPLEMENTARY NOTES

' REPORT NUMBER

92-29320
MHHNMALER =2/

12a, DISTRIBUTION/AVAILABILITY STATEMENT
Approved for public_release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)
Meridian Software Systems, Inc., Meridian Ada, Version 4.1.3, Essence 386 under DOS 5.0, running MS Windows 3.0
(Host & Target), ACVC 1.11.

P T
14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. e
Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE CODE

P ———— —————————— Y YT Y I Y I TN T Y Y=Y YT
17. SECURITY CLASSIFICATION] 18. SECURITY CLASSIFICATION [19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF ABSTRACT
UNCLASSIFIED UNCLASSIFED UNCLASSIFIED
NSN 7540-01-280-550 Standard Form 298, (Rev. 2-89)

Prescribed by ANS! Std. 239-128

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on September 15, 1992.

Compiler Name and Version: Meridian Ada, Version 4.1.3

Host Computer System: Essence 386 ’
under DOS 5.0, running MS Windows 3.0

Target Computer System: Essence 386
under DOS 5.0, running MS Windows 3.0

Customer Agreement Number: 91-06~12-MSS

See section 3.1 for any additional mfomatlon about the testing
environment.

As a result of this validation effort, validation Certificate
920915W1.11267 is awarded to Meridian Software Systems, Inc. This
certificate expires two years after the ANSI adoption of
ANSIMIL~-STD-1815B. ’

This report has been reviewed and is approved.

2
a Validation Facility
Steven P. Wilson
Technical Director Dy
ASC/SCEL c
Wright-Patterson AFB OH 45433-6503 QUALIT? Nspy
CTap 4

tion Organization

Direttor? \@omputer and Software Engineering Division
Institute for Defense Analyses

Alexandria VA 22311

Aocnss!on For

FTIS eRasd

PC T4 0
Uoanacaneed 0
Joint Program Offlce Ju.:—stiruatiux______’

Dr. John Solomond, Director
Department of Defense Py

Washington DC 20301 Distribeiien/
Availability Codes
ivemil andfor |
Dist Special

A-\

9

Ada COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 920915W1.11267
Meridian Software Systems, Inc.
Meridian Ada, Version 4.1.3
Essence 386 under DOS 5.0, running MS Windows 3.0 =>
Essence 386 under DOS 5.0, running MS Windows 3.0

(FINAL)

Prepared By:
Ada Validation Facility
ASC/SCEL
Wright-Patterson AFB OH 45433-6503

1-06-12-MSS

HOLCF C0082

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on September 15, 1992.

Compiler Name and Version: Meridian Ada, Version 4.1.3

Host Computer System: Essence 386
under DOS 5.0, running MS Windows 3.0

Target Computer System: Essence 386
under DOS 5.0, running MS Windows 3.0

Customer Agreement Number: 91-06-12-MSS

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, validation Certificate
920915W1.11267 is awarded to Meridian Software Systems, Inc. This
certificate expires two years after the ANSI adoption of
ANSI/MIL-STD-1815B.

This report has been reviewed and is approved.

a Validation Facility

Steven P. Wilson

Technical Director

ASC/SCEL

Wright-Patterson AFB OH 45433-6503

oh Organization

mputer and Software Engineering Division
Institute Mor Defense Analyses

Alexandria VA 22311

Ada Joint Program Office

Dr. John Solomond, Director
Department of Defense
Washington DC 20301

DECLARATION OF CONFORMANCE

Customer: Meridian Software Systems, Inc.
Ada Validation Facility: =~ ASD/SCEL, Wright-Patterson AFB OH 45433-6503

ACVC Version: 1.11

Ada Implementation:
Compiler Name and Version: Meridian Ada, Version 4.1.3

Host Computer System: Essence 386
(under DOS 5.0, running MS Windows 3.0)

Target Computer System: Same as Host

Customer’s Declaration

I, the undersigned, representing Meridian Software Systems, Inc., declare that Meridian
Software Systems, Inc. has no knowledge of deliberate deviations from the Ada Language
Standard ANSI/MIL-STD-1815A in the implementation listed in this declaration. I declare that
Meridian Software Systems, Inc. is the owner of the above implementation and the certificates
shall be awarded in the name of the owner’s corporate name.

%’L éé ' Date:_ {9 ?i*ﬂvyli‘*f '4“2

Stowe Boyd, Presider\i

Meridian Software Sybtems, Inc.
10 Pasteur Street

Irvine, CA 92718

TABLE OF CONTENTS

INTRODUCTION

USE OF THIS VALIDATION SUMMARY REPORT
REFERENCES.
ACVC TEST CLASSES . . .
DEFINITION OF TERMS . .

e ® o @
W=
e« o o

IMPLEMENTATION DEPENDENCIES

WITHDRAWN TESTS ¢« . « ¢ & o &
INAPPLICABLE TESTS. . . « . + « & o &
TEST MODIFICATIONS. « « « « &

.
WM =

PROCESSING INFORMATION

TESTING ENVIRONMENT
SUMMARY OF TEST RESULTS
TESTEXECUTION. . ¢« + « ¢ « «~ o « o &

www w NN [%) [l ol ol ood [
.
W=

e o

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

1-1
1-2
1-2
1-3

2-1
2~-1
2-4

3-1
3-2
3-2

CHAPTER 1
INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard {Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization

Computer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria VA 22311-1772

1-1

INTRODUCTION

1.2 REFERENCES

(Ada83] Reference Manual for the Ada Programming Lan e,
ANSI/MIL—S'I‘D—IBIQ, February 1983 and ISO 533%—%987.

[Pro90) Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

(UGB9] Ada Compiler Validation Capability User’s Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values — for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. 1In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1), and
possibly removing some inapplicable tests (see section 2.2 and [UG89]).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof. .

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user’s guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its target
Implementation computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.

Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation quidance for operations of the Ada certification system.
Organization

(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada

Implementation
Computer A functional unit, consisting of one or more computers and
System associated software, that uses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user—designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

Conformity

Customer

Declaration of
Conformance

Host Computer
System

Inapplicable
test

IS0

LRM

Operating
System

Target

Computer
System

Validated Ada
Compiler

Validated Ada
Implementation

Validation

Withdrawn
test

INTRODUCTION

Fulfillment by a product, process, or service of all
requirements specified.

An individual or corporate entity who enters into an agree-
ment with an AVF which specifies the terms and conditions
for AVF services (of any kind) to be performed.

A formal statement from a customer assuring that conformity
is realized or attainable on the Ada implementation for
which validation status is realized.

A computer system where Ada source programs are transformed
into executable form.

A test that contains one or more test objectives found to be
irrelevant for the given Ada implementation.

International Organization for Standardization.

The Ada standard, or Langquage Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and 1ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection):<paragraph>."

Software that controls the execution of programs and that
provides services such as resource allocation, scheduling,
input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

A computer system where the executable form of Ada programs
are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has beer validated successfully
either by AVF testing or by registration [Pro90].

T™e process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

A test found to be incorrect and not used in conformity
testing. A test may be incorrect because it has an invalid
test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming

language.

1-4

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 2 August 1991.

E28005C B28006C C32203a C34006D C355081 C35508J
C35508M C35508N C35702A C35702B B41308B C43004A
C45114a C45346A C45612a C45612B C45612C C45651A
C46022A B49008A B49008B A74006A C74308A B83022B
B83022H B83025B B83025D C83026A B83026B C83041A
B85001L C86001F C94021A Cc97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BD1B02B BD1B0O6A AD1B08A BD2A02A CD2A21E
CD2A23E CD2A32A CD2a41A CD2A41E CD2A87A CD2B15C
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CDS111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD9005A CD9005B CDA201E
CE21071 CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3ll16Aa CE3l18a CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test’s inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-1

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35708L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521I...2 (15 tests)
C45524L..Z (15 tests) C45621L..Z2 (15 tests)
C45641L..Y (14 tests) C46012L..2 (15 tests)

C35713B, (C€45423B, B86001T, and C86006H check for the predefined type
SHORT FLOAT; for this implementation, there is no such type.

C35713C, B86001U, and <C86006G check for the predefined type
LONG_FLOAT; for this implementation, there is no such type.

C35713D and B86001z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORT FLOAT; for this
implementation, there is no such type.

A35801E checks that FLOAT'FIRST..FLOAT’'LAST may be used as a range
constraint in a floating-point type declaration; for this
implementation, that range exceeds the range of safe numbers of the
largest predefined floating-point type and must be rejected. (See
section 2.3.)

C45423A, C45523A, and C45622A check that the proper exception is
raised if MACHINE OVERFLOWS is TRUE and the results of various
floating-point operations lie outside the range of the base type; for
this implementation, MACHINE OVERFLOWS is FALSE.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is less than 47.

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

CA2009C and CA2009F check whether a generic unit can be instantiated
before its body (and any of its subunits) is compiled; this
implementation creates a dependence on generic units as allowed by
AI-00408 and AI-00506 such that the compilation of the generic unit
bodies makes the instantiating units obsolete. (See section 2.3.)

LA3004A..B, EA3004C..D, and CA3004E..F (6 tests) check pragma INLINE
for procedures and functions; for this implementation, pragma INLINE
has no effect unless the program is compiled and linked using global
optimization.

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type; this implementation does not support such
sizes.

IMPLEMENTATION DEPENDENCIES

CD2AB4A, CD2AB4E, CD2A84I..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation
does not support such sizes.

AE2101C and EE2201D..E (2 tests) use instantiations of package
SEQUENTIAL I0 with unconstrained array types and record types with
discriminants without defaults; these instantiations are rejected by
this compiler.

AE2101H, EE2401D, and EE2401G use instantiations of package DIRECT IO
with unconstrained array types and record types with discriminants
without defaults; these instantiations are rejected by this compiler.

The tests listed in the following table check that USE ERROR is raised
if the given file operations are not supported for the given
combination of mode and access method; this implementation supports
these operations.

Test File Operation Mode File Access Method

CE2102D CREATE IN FILE SEQUENTIAL IO
CE2102E CREATE OUT FILE SEQUENTIAL IO
CE2102F CREATE INOUT FILE DIRECT IO
CE2102I CREATE IN FILE DIRECT 10
CE2102J CREATE OUT FILE DIRECT IO
CE2102N OPEN IN FILE SEQUENTIAL_ IO
CE21020 RESET IN FILE SEQUENTIAL IO
CE2102P OPEN OUT FILE SEQUENTIAL_IO
CE2102Q RESET OUT FILE SEQUENTIAL IO
CE2102R OPEN INOUT FILE DIRECT IO
CE2102S RESET INOUT FILE DIRECT IO
CE2102T OPEN IN FILE DIRECT IO
CE2102U RESET IN FILE DIRECT IO
CE2102V OPEN OUT FILE DIRECT IO
CE2102W RESET OUT_FILE DIRECT 10
CE3102E CREATE IN FILE TEXT IO
CE3102F RESET Any Mode TEXT 10
CE3102G DELETE — TEXT IO
CE31021 CREATE OUT FILE TEXT IO
CE3102J OPEN IN FILE TEXT 10
CE3102K OPEN OUT_FILE TEXT IO

The <£{ollowing 16 tests check uvperations on sequential, direct, and
text files when multiple internal files are associated with the same
external file and one or more are open for writing; USE ERROR is
raised when this association is af.:empted.

CE2107B..E CE2107G..H CE2107. CD2110B CE2110D
CE2111D CE2111H CE3111iB CE3111D..E CE3114B
CE3115A

2-3

IMPLEMENTATION DEPENDENCIES

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded; this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; this implementation cannot restrict
file capacity.

CE3304A checks that SET LINE LENGTH and SET PAGE LENGTH raise
USE ERROR if they specify an 1Inappropriate value for the external
file; there are no inappropriate values for this implementation.

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 9 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the
way expected by the original tests.

B22003A B83033B B85013D

A35801E was graded inapplicable by Evaluation Modification as directed by
the AVO. The compiler rejects the use of the range
FLOAT’FIRST..FLOAT’LAST as the range constraint of a floating-point type
declaration because the bounds lie outside of the range of safe numbers
(cf. LRM 3.5.7:12).

EA1003B was graded passed by Processing Modification as directed by the
AVO. This test checks whether legal units of a compilation are accepted
if one of the compilation units is illegal. This test was processed with
compiler option "-fi", which forces the compiler to generate code for
legal units of a compilation.

CA2009C and CA2009F were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests contain instantiations of a generic unit
prior to the compilation of that unit’s body; as allowed by A1-00408 and
AI-00506, the compilation of the generic unit bodies makes the compilation
unit that contains the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification as
directed by the AVO. These tests check that instantiations of generic
units with unconstrained types as generic actual parameters are illegal if
the generic bodies contain uses of the types that require a constraint.
However, the generic bodies are compiled after the units that contain the
instantiations, and this implementation creates a dependence of the
instantiating units on the generic units as allowed by A1-00408 and
AI-00506 such that the compilation of the generic bodies makes the
instantiating units obsolete—no errors are detected. The processing of
these tests was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

2-4

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For technical information about this Ada implementation, contact:

William E. Crosby

Meridian Software Systems, Inc.
10 Pasteur Street

Irvine, CA 92713

(714) 727-0700

For sales information about this Ada implementation, contact:

Meridian Software Systems, Inc.
Attn: Jim Smith

10 Pasteur Street

Irvine, CA 92718

(714) 727-0700

Testing of this Ada implementation was conducted at the customer’s site by
a validation team from the AVF.

3-1

PROCESSING INFORMATION

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The 1list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floating-point precision that exceeds the implementation’s maximum
precision (item e; see section 2.2), and those that depend on the support
of a file system — if none is supported (item d). All tests passed,
except those that are listed in sections 2.1 and 2.2 (counted in items b
and £, below).

a) Total Number of Applicable Tests 3792

b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 82
d) Non-Processed 1/0 Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 283 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
tape were loaded onto a Sun 3 system, transferred via a PC-NFS ethernet to
a PC-class machine, and written onto diskettes. The contents of the
diskettes were loaded directly onto the host computer.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation. Test results were
transferred via diskettes and the PC-NFS ethernet back to the Sun 3 system,
where they were printed.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

3-2

PROCESSING INFORMATION

Switch Effect
-fE Generate error file for the Ada listing utility.
-f1 Ignore compilation errors and continue generating

code for legal units within the same compilation
file (for test EA1003B).

-£Q Suppress "added to library" and "Generating code
for" information messages.

-£fs Use 80286~specific instructions where possible.

-fv Enable overflow checking (this is normally not

specified directly by the user but is always
provided by the compilation system).

-fw Suppress informative warning messages.
-1 Produce a listing file.

The following switches appear as modifiers to the -1 command,
in the form -lcps:

-C Produce continuous form Ada listings (no page
headers.

-p Obey PRAGMA PAGE directives within program even
though the -c flag says not to generate page
breaks.

-5 Output Ada 1listing to the standard output file

instead of to a disk file.
The following switches apply to the linker.

-E Arrange for program to send Windows message when
finished so Windows validation scripts can
properly wait for a test to finish.

-w<unit> Link program as if <unit> had been with’ed by the
main procedure. Used with ’‘redir’ to redirect
test output to a file.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for S$MAX IN LEN—also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value
$MAX IN LEN 200 -— Vvalue of V
$BIG ID1 (1..v-1 => 'A’, V=> '1’)
$BIG_ID2 (1..v-1 => 'A’, V=> '2')
" $BIG ID3 (1..V/2 => 'A’) & '3" &
(1..V=1-V/2 => 'A’)
$BIG_ID4 (1..v/2 => 'A’) & '4’ &
(1..v=1-v/2 => 'A’)
SBIG_INT__LIT (1..v-3 => r0’) & "298"
$BIG REAL LIT (1..v=5 => '0’) & "690.0"
$BIG_STRING1 rteo& (1..V/2 => 'AY) & '
$BIG_STRING2 ™oL (1..V-1-v/2 => 'A’) & 'l & '™
$BLANKS (1..v-20 => ' ')

$MAX_LEN INT BASED LITERAL
"2:" & (1..V-5 => '0') & "11:"

A-1

MACRO PARAMETERS

Macro Parameter Macro Value

$MAX LEN REAL BASED LITERAL
"16:" & (1..v-7 => '0') & "F.E:"

$MAX STRING LITERAL ‘"’ & (1..V-2 => 'A’) & '"’

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value
$ACC_SIZE 32
SALIGNMENT 2
$COUNT_LAST 32766
$DEFAULT MEM SIZE 1024

$DEFAULT STOR_UNIT 8

$DEFAULT_SYS_NAME 18086

$DELTA DOC 2.0%*(-31)

$ENTRY ADDRESS 16#0%
$ENTRY_ADDRESS1 16#1#
$ENTRY_ADDRESS2 16424

S$FIELD LAST 32767
$FILE_TERMINATOR i

$FIXED_NAME NO_SUCH FIXED TYPE
$FLOAT NAME NO_SUCH_FLOAT TYPE
$FORM_STRING ne

$FORM_STRING2 "CANNOT RESTRICT FILE CAPACITY"

SGREATER THAN DURATION
90_000.0

SGREATER THAN DURATION BASE LAST
To_007_000.0

A-2

MACRO PARAMETERS

Macro Parameter Macro Value

$GREATER THAN FLOAT BASE LAST

~ 1.8E+308

$GREATER _THAN FLOAT SAFE LARGE

1.0E308
SGREATER THAN SHORT FLOAT SAFE LARGE

1.0E308
$HIGH PRIORITY 20
$ILLEGAL EXTERNAL FILE NAMEl ‘

\NODIRECTORY\FILENAME1
$ILLEGAL EXTERNAL FILE NAME2

\NODIRECTORY\FILENAME2
$INAPPROPRIATE LINE LENGTH

-1
$INAPPROPRIATE PAGE LENGTH

-1
$INCLUDE_PRAGMA1 PRAGMA INCLUDE ("A28006D1.ADA")
$INCLUDE PRAGMA2 PRAGMA INCLUDE ("B28006F1.ADA")
$INTEGER FIRST -32768
$INTEGER LAST 32767

$INTEGER LAST PLUS 1 32768
$INTERFACE LANGUAGE C
SLESS_THAN DURATION -90 000.0

$LESS_THAN DURATION BASE FIRST
-10_000_000.0

SLINE_TERMINATOR ASCII.CR & ASCII.LF
SLOW_PRIORITY 1

$SMACHINE CODE_STATEMENT
INST1’ (Bl=>164#904%);

$MACHINE CODE TYPE INST1

MACRO PARAMETERS

Macro Parameter

Macro Value

$MANTISSA DOC

$MAX DIGITS

$MAX INT
$MAX INT PLUS 1
$MIN_INT

$NAME

$NAME LIST
$NAME_SPECIFICATIONI

SNAME SPECIFICATIONZ2

31
15

2147483647

2_147 483_648
-2147483648

BYTE [NTEGER

18086
C:\ACVC\TESTAX2120A
C:\ACVC\TEST\X2120B

$NAME SPECIFICATION3 C:\ACVC\TEST\X3119A
SNEG_BASED_INT 164FFFFFFFE$

SNEW _MEM SIZE 1024

$NEW_STOR_UNIT 8

SNEW_SYS_NAME 18086

$PAGE _TERMINATOR ASCII.CR & ASCII.LF & ASCII.FF

$RECORD_DEFINITION RECORD Bl: UNSIGNED BYTE; END RECORD;

SRECORD_NAME INST1
$TASK SIZE 32

$TASK STORAGE SIZE 2048
$TICK 1.0/:8.2

$VARIABLE ADDRESS FCNDECL.VAR_ADDRESS

$VARIABLE ADDRESS1 FCNDECL.VAR_ADDRESS1
$VARIABLE ADDRESS2 FCNDECL.VAR_ADDRESS2

$YOUR_PRAGMA NO_SUCH_PRAGMA

A~-4

The compiler options of this Ada
Appendix, are provided by the customer.

APPENDIX B

COMPILATION SYSTEM OPTIONS

implementation, as described in this

Unless specifically noted

otherwise, references in this appendix are to compiler documentation and

not to this report.

B-1

Aug

-£D

-fE

~fF

14 17:10 1992 Essence 13186 - ACVC 1.11 Page 11

MERIDIAN ADA COMPILER OPTIONS

Generate debugging output. The -fD option causes the
compiler to generate the appropriate code and data for
operation with the Meridian Ada Debugger.

Annotate assembly language listing. The -fe option
causes the compiler to annotate an assembly language
output file. The output is supplemented by comments
containing the Ada socurce statements corresponding to the
assembly language code sections written by the code
generator. To use this option, the =S option must also
be specified, otherwise the annotated file is not emitted.

Generate error log file. The -fE option causes the
compiler to generate a log file containing all the error
nessages and warning messages produced during compilation.
The error log file has the same name as the source file,
with the extension .err. For example, the error log file
for simple.ada is simple.err. The error leg file is
placed in the current working directory. 1In the absence
of the -fE option, the error log information is sent to
the standard output strean.

Disable floating point checks. This option is used to
inhibit checks for a math co-processor before ssgquences
of math co-processor instructions, resulting in a
slightly smaller and faster program. Use of this option
means that the resulting program requires, and you
guarantee, the run-time presence of a math co-processor
(either an 8087, 80287, or 80387). If a progranm
containing floating point computations is compiled with
the -fF option, it will behave unpredictably if run on a
machine without a math co-processor installed; the
machine may simply "freeze up" in this circumstance,
requiring a reboot. Refer to the bamp ~-u option, which
causes the floating point software to be linked with a
program.

Ignore compilation errors and continue generating code
for legal units within the same compilation file.

Generate exception location information. The -fL option
causes location information (source file names and line
numbers) to be maintained for internal checks. This
information is useful for debugging in the event that an
"Exception never handled” message appears when an
exception propagates out of the main program. This flag
causes the code to be somewhat larger. If -fL is not

B~-2

Aug 14 17:10 1992 Essence 386 -~ ACVC 1.11 Page 14

used, exceptions that propagate out of the main program
will behave in the same way, but no location information
will be printed with the "Exception never handled”
nessage.

-fN Suppress numeric checking. The -fN flag suppresses two
kinds of numeric checks for the entire compilation:
division_check and overflow_check. These checks are
described in section 11.7 of the ILRM. This flag reduces
the size of the code.

-£Q Suppress “added to library" and "Generating code for"
information messages normally output by the compiler.

-fR Inhibit static initialization of variables. This option
is intended for use in ROM-based embedded environments in
conjunction with the Meridian Ada Run-Time Customization
Library. The -fR option is applicable only in the
presence of the -fs option, which suppresses certain
runtime checks. Normally, the Ad) compiler initializes
constants or variables with static data when the
following conditions all occur:

1. Checking is disabled with the -fs option.

2. The initializer expression is static (known at
compile time).

3. The object is a global (in top-level package
specification or body).

. If the -fR flag is specified, static initialization is
suppressed for variables (but not for constants):;
assignments to each component of a variable are performed
in the code. Note that this always happens in the
absence of the -fs option.

~£fs Suppress all checks. The -fs flag suppresses all
automatic checking, including numeric checking. This
flag is equivalent to using pragma suppress on all checks.
This flag reduces the size of the code, and is good for
producing "production quality® code or for benchmarking
the compiler. Note that there is a related ada option,
-fN to suppress only certain kinds of numeric checks.

-£S The -fS flag causes the compiler to generate additional
80286 instructions not available on the 8086/8088.
Programs compiled in this mode tend to be smaller than
programs compiled using the normal 8086/8088 mode.

-fu Inhibit library update. The -fU option inhibits library

updates. This is of use in conjunction with the -5
option. Certain restrictions apply to use of this option.

B-3

Aug 14 17:10 1992 Essence 386 -~ ACVC 1.11 Page 15

-fv Compile verbosely. The compiler prints the name of each
subprogram, package, or generic as it is compiled.
Information about the symbol table space remaining
following compilation of the named entity is also printed
in the fora "[nK)".

-fw Suppress varning messages. W¥ith this option, the
compiler does not print warning messages about ignored
pragmas, exceptions that are certain to be raised at
run-time, or other potential problems that the compiler
is otherwise forbidden to deem as errors by the LRM.

-g The -g option instructs the compiler to run an additional
optimization pass. The optimizer removes common
sub-expressions, dead code and unnecessary jumps. It
also does loop optimizations.

-K Keep internal form file. This option is used in
conjunction with the Optimizer. Without this option, the
compiler deletes internal form files following code
generation.

-lmodifiers
Generate listing file. The -1 option causes the compiler
to create a listing. Optional modifiers can be given to
affect the listing format. You can use none or any
combination of the following modifiers:

c Use continuous listing format. The listing by
default contains a header on each page. Specifying
-lc suppresses both pagination and header ocutput,
producing a continuous listing.

p Obey pragma page directives. Specifying -lp is only
meaningful if -lc has also been given. Normally -lc
suppresses all pagination, whereas ~lcp suppresses
all paginaiion except where explicitly called for
within the source file with a pragma page directive.

s Use standard output. The listing by default is
written to a file with the same name as the source
file and the extension .lst, as in simple.lst from
simple.ada. Specifying ~ls causes the listing file
to be written to the standard output stream instead.

t Generate relevant text output only. The listing by
default contains the entire source program as vell
as interspersed error messages and warning messages.
Specifying -1t causes the compiler to list only the
source lines to which error messages or wvarning
messages apply, followed by the messages themselves.

The default listing file generated has the same name as
the source file, with the extansion .lst. For example,

B~4

Aug 14 17:10 1992 Essence 386 - .CVC 1.11 Page 16

the default listing file produced for simple.ada has the
name simple.lst. The listing file is placed in the
current working directory. Note: -1 also causes an
error log file to be produced, as with the ~fE option.

-L library-~name
Default: ada.lib

Use alternate library. The -L option specifies an
alternative name for the program library.

-N No compile. This option causes the ada command to do a
"dry run®" of the compilation process. The command
invoked for each processing step is printed. This is
similar to the -P option, but no actual processing is
pertormed.

~P Print compile. This option causes the ada command to
print out the command invoked for each processing step
as it is performed.

~S Produce assembly code. Causes the code generator to

produce an assembly language source file and to halt
further processing.

B-5

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted

otherwise, references in this appendix are to linker documentation and not
to this report.

B-6

COMPILATION SYSTEM OPTIONS

Aug 14 17:10 1992 Essence 386 - ACVC 1.11 Page 17

MERIDIAN ADA LINKER OPTIONS

Aggressively inline. This option instructs the optimizer
to aggressively inline subprograms when used in addition
to the -G option. Typically, this means that subprograns
that are only called once are inlined. If only the -G
option is used, only subprograms for which pragma inline
has been specified are inlined.

-Cc compiler-program-name

-9

-i

Default: (as stored in program library)

Use alternate compiler. The -c option specifies the
complete (non relative) directory path to the Meridian
Ada compiler. This option overrides the compiler
program name stored in the program library. The ~-c
option is intended for use in cross-compiler
configurations, although under such circumstances, an
appropriate library configuration is normally used
instead.

Link the program so it can wait properly when called by
WinExec. Arrange for a message to be sent to the parent
Windows task when the Ada program terminates.

Suppress main program generation step. The -f option
suppresses the creation and additional code generation
steps for the temporary main program file. The -f option
can be used when a simple change has been made to the
body of a compilation unit. If unit elaboration order

is changed, or if the specification of a unit is changed,
or if new units are added, then this option should not be
used.

Perform global optimization only. The -g option causes
bamp to invoke the global optimizer on your progranm.
Compilation units to be optimized globally must have been
compiled with the ada -K option.

Perform global and local optimization. The -G option
causes bamp to perform both global and local optimization
on your program. This includes performing pragma inline.
As with the -g option, compilation units to be optimized
must have been compiled with the ada -K option.

The -i option is used in conjunction with the bamp -r
option when producing "pre-linked" code for use with the

B-7

COMPILATION SYSTEM OPTIONS

Aug 14 17:10 1992 Essence 386 - ACVC 1.11 Page 18

Intel Development Tools. The -i option causes certain
information to be emitted into the object tile that is
needed under some circumstances by the Intel linker,
LINK86. By default, pre-linked object modules use the
Microsoft object format.

-I Link the program with a version of the tasking run-time
which supports pre-emptive task scheduling. This option
produces code which handles interrupts more quickly, but
has a slight negative impact on performance in general.

-L library-name
Default: ada.lidb

Use alternate library. The -L option specifies the name
of the program library to be consulted by the bamp
program. This option overrides the default library name.

-m Produce link map. The -m option causes a text file
containing a 1link map to be written. The link map is
Microsoft-compatible and the link map file name has the
extension .map for Real Mode programs (the default).
For Extended Mode Programs (produced when the bamp -x
option is given), the link map is 0S/x86-compatible and
the link map file name has the extension .xmp.

-M main-program-stack-size
Default:
© 20K in Real Mode prograns

© 64K in Extended Mode programs, when tasking is not
used

© 64K - <task-stack-size> in Extended Mode programs,
when tasking is used

Set main program stack size. The -M option sets the
stack size (number of decimal bytes) for the main program
(excluding tasking). Note that the sum of the main
program stack size and the tasking stack size must be no
more than 64K bytas.

-n No link. The -n option suppresses actual object file
linkage, but creates and performs code generation on the
main program file.

=N No operations. The ~N option causes the bamp command to
do a "dry run®; it prints out the actions it takes to
generate the executable program, but does not actually
perform those actions. The same kind of information is
printed by the -P option.

B-8

COMPILATION SYSTEM OPTIONS

Aug 14 17:10 1992 Essence 386 - ACVC 1.11 Page 19

-0 output-file-nanme

-r

Default: file.exe

Use alternate executable file ocutput name. The -0 option
specifies the name of the executable program file written
by the bamp command. This option overrides the default
output file name.

Print operations. The -P option causes the bamp command
to print out the actions it takes to generate the
executable program as the actions are performed.

Create re-linkable output. The -r option causes an
object file (.obj file) to be generated rather than an
executable file (.exe file). The resulting file contains
all symbol and relocation information, and can then be
used with any low-level linker accepting object files
compatible with the Intel or Microsoft object formats.

-g task-stack-size

-u

-V

Default:
o0 20K if tasking used
o Zero if tasking not used

Use alternate tasking stack size. The -s option
specifies the number of bytes (in decimal) to be
allocated to all the tasks to be activated in the Ada
program. This option overrides the default task stack
size. Note that the sum of the main program stack size
and the tasking stack size must be somewhat smaller than
64K bytes. The size of individual task activation
stacks can be specified with a length clause.

Link software floating point library. Use of the -u
option enables a program containing floating point
computations to run with or without a math co-processor
chip. A related compiler option, the ada -fF option,
also can be used to control the action of the run-time in
the absence of a math co-processor chip. The ada ~-fF
option and the bamp =-u option should not both be used in
the same program.

Link verbosely. The -v option causes the bamp command to
print out information about what actions it takes in
building the main program.

-¥ scratch-file

Link using "virtual" mode. This option allows larger
programs to be linked, although slightly more slowly. A

B9

COMPILATION SYSTEM OPTIONS

Aug 14 17:10 1992 Essence 386 - ACVC 1.11 Page 20

scratch-file must be specified. The scratch-file can

reside on a RAM disk (if one is available) for faster

operation. The -V option affects only the operation ot

the low-level cbject linker. The scratch-file is used as

::ratch memory in which the various object files are
nked.

-w library_unit
Link the program as if the specified library unit had been
with'ed by the main procedure.

- Suppress warnings. This option allows you to suppress
warnings from the optimizer. .

-x The -x option is used to create an Extended Mode program.
This option applies only to Extended Mode Meridian Ada.
The -x option produces a program that can be run with the
ramp command to run in Extended Mode (a .exp file). 1If
the -x option is not used, a Real Mode program (a .exe
file) is produced.

B~10

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. - Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

type INTEGER is range -32768 .. 32767;

type SHORT INTEGER is range -32768 .. 32767;

type BYTE INTEGER is range -128 .. 127;

type LONG_INTEGER is range -2 147 483 648 .. 2 147 483 647;

type FLOAT is digits 15
range -1.79769313486231E+308 .. 1.79769313486231E+308;

type DURATION is delta 0.0001 range -86400.0 .. 86400.0;

APPENDIX F OF THE Ada STANDARD

ApprendiX - —oemenignon-vepenaent Zhara

AﬁMMMmmMWN.MhdH
App-\dimeotd-qup&ymﬁ\ﬁanmudfwhm
WGMWM/MIMAMMM
this appendix be named Appendix F.

Implemented Chapter 13 festures include length clauses, enumeration
representation clauses, record representation clauses, address clauses,
mmpummmcodemumpnmm
and unchecked programmung.

M

F.1 Pragmas

The impiemented pre-defined pragmas are:
elaborate See the LRM section 10.5

interface SeesectionF.1.1

list See the LRM Appendix B
pack See section F.1.2
page See the LRM Appendix B

prior.ty Seethe LRM Appendix B
suppress SeesectionF.1.3

inline See the LRM section 6.3.2. This pragma 1s not actually effective
uniess vou compile/link your program using the giobal
optiruzer.

The remairung pre-defined pragmas are accepted. but presently ignored:

controlled optimize system_name

shared storsge_unit memory_size

Named parameter notation for pragmas 1s not supported.

When illegal parameter forms are encountered at compiie ime, the
compiler issues a warrung message rather than an error. as requred by
the Ada language definition. Refer to the LRM Appendix B for additional
information about the pre-defined pragmas.

F.1.1 Pragma interface

The form of pragma interface 1n Mendian Adas:
pragma intarface(language, subprogram [, *link-pams®))

OpenAda wingows Comprier User's Guae Poge 247

C-2

link-name

Itisa

APPENDIX F OF THE Ada STANDARD

This is the name of a subprogram to which the pragma
interface applies.

This is an string liteval ing the name of the
non-Ada to the Ada
named in the second parameter. If link-neme is

thenh&k;mdeﬁubbthenhnofmbpvgm
D!pendmgon language specified, some sutomatic
modifications may be made to the link-name to produce the
actual object code symbol name that is generated
M?mxbhmﬁgm
link-name is always transiated to upper case. Although the
Meridian object linker is case-sensitive, it is a rare oblect
module that contains mixed-case symbols; at present, all
Meridian 80x86 object modules use upper case only.

to use the optional link-ntme parameter to

interface u\lywha\uummheembprognmhumm t does
wmmmambmadaﬂaﬁﬁaawh:’mm Ada
subprogram name cannot be given using rules for constructing
identifiers (e.g., if the name contains a ‘$’ character).

The characteristics of object code symbols generated for each interface

language are:
assembly
builtin

microsoft_c

The object code symbol is the same as link-name.

The object code symbol is the same as link-neme, but prefixed with
two underscore characters (“__"). This language interface

is reserved for special interfaces defined by Meridian

Software Systezns, Inc. The builtin interface is presently

used to deciare certain low-level run-titne operations

whose names must not conflict with programmer-defined

of language system defined names.

The object code symbol is othe same as link-name, but with one
underscore character (“_") prepended. This is the
convention used by the C compiler.

Nommmwuwumww

ge interface is reserved for special
nuuheud by Meridian Software Systems, Inc. The
internal interface is presently used to declare certain
machine-level bit operations.

The object code symbol is the same as link-neme, but with one
underscore character (*_") prepended. This is the
convention used by the Microsoft C compiler.

Poge 248

c-3 OpenAda Wincows Compier User's Guide

APPENDIX F OF THE Ada STANDARD

F.1.2 Pragma Pack

_Progmos.
windows The object code is the same as link-neme. This is the
conrvention used by the Microsoft C compiler for

Pascal-style aalling conventions.

The low-level aalling conventions are changed in the of
M_chﬁh&am;‘mﬂv&m:;-n;m

A interface) within the same declarative part as
$o which intexrface the

deciaration, and to the first use of nhzogln.A

praga intertace thata toa declared in a paciage

declaration; the pragma interface may not appear in the
package body in this case. A pragma interface deciaration for eithera
private or nonprivate declaration may appear in the pri
part of a pacikage specification. prvase

Pragma intexrface for library units is not supported.
Refer to the LRM section 13.9 for additional information about pragma
interface.

Pragma pack is implemented for composite types (records and arrays).

Pragma pack is permitted following the composite type declaration to
which it applies, provided that the pragma occurs within the same
declarative part as the composite type declaration, before any objects or
components of the composite type are deciared.
:In%eedmthededulﬁvepanmﬁcﬁonmﬁmﬂwtypededanﬁon
accompanying pra; pack cannot be split across a package
spedﬁaﬁmandbody.m P
The effect of pragma pack is to minimize stora comungﬂm by
dmmmqpswtmemgems;ochng se of pragma
pack does not defeat allocations of alignnent storage gaps for some
record types. Pragma pack does not affect the representations of real
types, pre-defined integer tvpes, and access types.

F.1.3 Pragma Suppress

Pragma suppress is implemented as described in the LRM section 11.7,
with these differences:
¢ Presently, division_check and overflow_check must be su
via a compiler flag, - £X; pragma suppress is ignored for these two
numeric checks.
¢ The optional “OM =" parameter name notation for pragma
suppress is ignored.

OpenAda Wincows Compier User's Guide Page 249

Cc-4

AFPENDIX P OF THR Ada STANDARD

Appenaix f_impiemeniation-Oependent Charoctenstics _

® The optionai second parameter t0 pragina suppress is ignored; the
pragma aiways applies to the entire scope in which it appears.

F.2 Aftributes

All attributes described in the LRM Appendix A are supported. The
implementation-dependent Meridian attribute ’ Llocof£aet is applied to
4 parameter and returns as a the stack offset of that
(ummmnnp:). allows machine code
insertions to access parameters using error-prone symbolic names.
An eample follows.
machine_cods.inst3’ (168838, 1604R8, abytes’locotfset);

F.3 Standard Types
Additional standard types are defined in Meridian Ada:
® byte_integer
¢ short_integer
® long integer
The standard numeric types are defined as:

type byte_integer is zange -128 .. 137,

type sbhort_integer is range -32768 .. 32767,

type iateger is zange ~32768 .. 2327¢7,

type long_integer is range ~2147483648 .. 2147483647,

type float is digics 1S
range -1.797693134863318+308 .. 1.79769313486231R+300,

type duraticn is delta 0.0001 range -86400.0000
96400.0000)

F.4 Package System

The specification of package systea is:

package systea is
type address is new long_integer:;

type name is (18086);
Systen_pane 1 constant name = 18086,

storage_unit : cemstant e §;
AeRoTy_sise t comstant = 1024,

Poge 250 OpenAca Windows Complier User's Guce
Cc-5

APPENDIX F OF THE Ads STANDARD.

Regiictions on Repressnicuion Cicwses

-~ Systen-Dependent Named Iumbers

uin_ine : Comstant :s ~3147483648:
max_iat 1 constaat i» 21474083647;
sax_digits 1 comataat = 13)
sax_msatissa : comstaat i1» 31
fine_delta 1 CORSTARE i1» 3.0 ** (-31);
tick 1 comscant 1» 1.0 / 18.23;

-= Other fystas-Depeadent Declaraticas
subtype priority is integer range 1 .. 20
The value of syatem.nemory_sise is presently meaningiess.

F.5 Restrictions on Representation Clauses

F.5.1 Length Clauses

A size specification (t * size) is rejected if fewer bits are specified than
can accormnodate the type. The minimum gize of a composite type may
be subject to application of pragma pack. It is permitted to specify
ise sizes for unsigned integer ranges, e.g., 8 for the range 0. . 258.
» because of requirements imposed by the Ada language
definition, a full 32-bit range of unsigned values, ie. 0..(2°*32)-1,
cannot be defined, even using a size specification.

The specification of collection size (¢ ‘ stozage_size) is evajuated at
run-time when the scope of the type to which the length clause applies is
entered, and is therefore subject to rejection (via storage_error) based
on available storage at the time the allocation is made. A collection may
include storage used for run-time administration of the collection, and
therefore should not be expected to accommodate a specific number of
objects. Furthermore, certain classes of objects such as unconstrained
discriminant array components of records may be allocated outside a
given collection, 50 a collection may accommodate more objects than
might be expected.

The specification of storage for a task activation (¢’ storage_sise)is
evaluated at run-time when a task to which the length clause applies is
activated, and is therefore subject to rejection (via scorage_ezrror)
based on available storage at the time the allocation is made. Storage
reserved for a task activation is separate from storage needed for any
collections defined within a task body.

The specification of small for a fixed point tvpe (¢ * sma1l) is subject only
mmdmmmm@nwgf

F.5.2 Enumeration Represeniation Clauses

The internal code for the literal of an enumeration type named in an
enumerstion representation clause must be in the range of
standard. integer.

OpenAaa WInoows Compiler User's Gu'de_s Poge 257

APPENDIX F OF THE Ada STRDARD

Appendix F_impiementotion-Oepandent Charoctensiics

The vahie of an internal code may be obtained by applying an
appropriate instantiation of unchecked_conversion (o an integer type.

F.5.3 Record Represeniation Ciauses

The storage unit offset (the at static_simple_expression part) is given in
terms of 8-bit storage units and must be even.

A bit position (the range part) applied to a discrete type component may
be in the range 0. . 15, with 0 being the least significant bit of a
component. A range specification may not specify a size stnaller than can
accommodate the component. A range 1fication for a component not
accomunodating bit packing may have a hi upper bound as
appropriate (eg., 0. . 31 for a discriminant string component). Refer to
the internal data representation of a given component in determining the
Components of discrete types for which bit positions are specified may
not straddle 16-bit word boundaries.

The value of an alignment clause (the opti at mod part) must evaluate
ﬁol.l&or&mdmynotbemﬂemww
required by any component of the record. On MS-DOS, this means that
some records may not have alignment clauses smaller than 2.

F.5.4 Address Clauses

F.5.5 Interrupts

An address clause may be supplied for an object (whether constant or
variable) or a task , but not for a subprogram, package, or task unit.
mun;:g;gofm clause supplied for a task entry is given in
section .

An address expression for an object is a 32-bit segmented memory
address of type system.address.

A task entry’s address clause can be used to associate the entry with a
MS-DOS interrupt. Values in the range 0. . 255 are meaningful, and
represent the interrupts corresponding to those values.

An interrupt entry may not have any parameters.

F.5.6 Change of Representation

There are no restrictions for changes of representation effected by means
of type conversion.

c—7 OpenAda Wingows Compier Lser's Guice

AFPPENDIX F OF THE Ada STANDARD

No names are generated by the implementation to denote
lementation-dependent components.

imp.

There are no restrictions on the use of unchecked_conversiocn.
Cmvmabawemobmwhoumdomtcm\fmmmymkh
smgemmthmﬂeﬂnedvm

A surmmary of the implementation-dependent input-cutput
} istics is:

¢ Incalls to open and creatae, the form parameter must be the empty
string (the default value).

® More than one internal file can be associated with a single external
file for reading only. For writing, only one internal file may be
associated with an external file; Do not use reset to get around this
rule.

¢ Temporary sequential and direct files are given names. Temporary
files are deleted when they are closed.

o File I/Q is buffered; text files associated with terminal devices are
line-buffered.

® The packages sequential_io and direct_1io cannot be
instantiated with unconstrained composite types or record types
with discriminants without defauits.

F.9 Source Line and Identifier Lengths

Source lines and identifiers in Ada source programs are presently limited
to 200 characters in length.

OpenAga Windows Cormpeer User's Guice Poge 253
c-8

