
ADA7~ Fo~MApprVed).-A257 373 ION PAGE 1II iIIII/IIHI m /IhIIbiID! // _ m 1 // Bn w~gs'~~ . u o utwr a,

raide andr "a w' al oIw Mlii d lI comain of wimuvr. m k wqpm Wr m1uw #ag b.M~, . o
HhadQliv ,i 14"yw. SuM* 1204. A*W. VA 2.430Z w. 10 0 01M 01m W hm aM Pqu1q AMhkK. Oro a
Manag~ ar Buaqg ..

1. AGENCY USE ONLY (Leave Blank) bE 3. REPORT TYPE AND DATES COVERED

Final: 15 Sept 1992
4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Validation Summary Report: Meridian Software Systems, Inc., Meridian Ada, Version
4.1.3, BBN TC2000 under nX 3.0.1 (Host & Target), 920915W1.11269

6. AUTHOR(S)

Wright-Patterson AFB, Dayton, OH
USA

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION

Ada Validation Facility, Language Control Facility ASD/SCEL REPORT NUMBER

Bldg. 676, Rm 135 HOLCF C0090

Wright-Patterson AFB, Dayton, OH 45433

9. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY

Ada Joint Program Office REPORT NUMBER

United States Department of Defense
Pentagon, Rm 3E!14
Washington, D.C. 20301-3081 0 _ ___

11. SUPPLEMENTARY NOTES "

12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION CODE

Approved for public release; distribution unlimited.

13. ABSTRACT (Maximum 200 words)

Meridian Software Systems, Inc., Meridian Ada, Version 4.1.3, BBN TC2000 under nX 3.0.1 (Host & Target), ACVC 1.11.

14. SUBJECT TERMS 15. NUMBER OF PAGES

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. 16._PRICECODE

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. 16. PRICE CODE

17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF ABSTRACT
OF REPORT OF ABSTRACT

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN 7540-01-280-550 Standard Form 298, (Rev. 2-89)
Prescrbt by ANSI Sid. 239-129

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on September 15, 1992.

Compiler Name and Version: Meridian Ada, Version 4.1.3

Host Computer System: BeN TC2000
under nX 3.0.1

Target Computer System: BBN TC2000
under pSOS+/88k

Customer Agreement Number: 92-06-12-MSS

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
920915W1.11269 is awarded to Meridian Software Systems, Inc. This
certificate expires two years after the ANSI adoption of
ANSI/AMIL-STD-1815B.

Accesion For

This report has been reviewed and is approved. NTIS CRA&I
DTIC lAB'3UnannouIced

Justification

Ada Validation Facility _ ----------......................................

Steven P. Wilson DistributionI
Technical Director Availability Codes
ASC/SCEL
Wright-Patterson AFB OH 45433-6503 Avail andIorDist Special

Arda 161ifa~n Organiato

DirectorN,>.tmputer and Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

DAr Joint Program Office T uaT -Dr. John Solomond, Director
Department of Defense
Washington DC 20301

92-29311
IflNiiNs\Q~ 9211 0 qo

92-06-12-MSS

Ade CCHPILER
VALIDATION SUMMARY REPORT:

Certificate Number: 920915W1.11269
Meridian Software Systems, Inc.

Meridian Ada, Version 4.1.3
BBN TC2000 under nX 3.0.1 ->
BWN TC2000 under pSOS+/88k

(FINAL)

Prepared By:
Ada Validation Facility

ASC/SCEL
Wright-Patterson AFB OH 45433-6503

HOLCF C0090

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on September 15, 1992.

Compiler Name and Version: Meridian Ada, Version 4.1.3

Host Computer System: BBN TC2000
under nX 3.0.1

Target Computer System: BBN TC2000
under pSOS+/88k

Customer Agreement Number: 92-06-12-MSS

See section 3.1 for any additional information about the testing
environment.

As a result of this validation effort, Validation Certificate
920915W1.11269 is awarded to Meridian Software Systems, Inc. This
certificate expires two years after the ANSI adoption of
ANSI/MIL-STD-1815B.

This report has been reviewed and is approved.

Ada Validation Facility
Steven P. Wilson
Technical Director
ASC/SCEL
Wright-Patterson AFB OH 45433-6503

SArda & tyi -n Organization
Dire~torl!C&puter and Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office
Dr. John Solomond, Director
Department of Defense
Washington DC 20301

DECLARATION OF CONFORMANCE

Customer: Meridian Software Systems, Inc.

Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB OH 45433-6503

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: Meridian Ada, Version 4.1.3

Host Computer System: BBN TC2000
nX 3.0.1

Target Computer System: BBN TC2000
pSOS+/ 8 8k

Customer's Declaration

I, the undersigned, representing Meridian Software Systems, Inc., declare that Meridian
Software Systems, Inc. has no knowledge of deliberate deviations from the Ada Language
Standard ANSI/MIL-STD-1815A in the implementation listed in this declaration. I declare that
Meridian Software Systems. Inc. is the owner of the above implementation and the certificates
shal bewarded i ame of the owner's corporate name.

Z ded he ne Date: '-• A -7x £1
Stowe Boyd, President
Meridian Software Syste ns, Inc.
10 Pasteur Street
Irvine, CA 92718

TABLE OF CCNTENTS

CHAPTER 1 INTRODUCTION

1.1 USE OF THIS VALIDATION SUMMARY REPORT 1-1
1.2 REFERENCES. 1-2
1.3 ACVC TEST CLASSES 1-2
1.4 DEFINITION OF TERMS 1-3

CHAPTER 2 IMPLE4ENTATION DEPNDEN4CIES

2.1 WITHDRAWN TESTS............... 2-1
2 . 2 INAPPLICABLE TESTS. 2-1
2.3 TEST MODIFICATIONS 2-4

CHAPTER 3 PROCESSING INFORMATION

3.1 TESTINGT 3-1
3.2 SUMMARY OF TEST RESULTS 3-2
3. 3 TEST EXECUTION 3-2

APPENDIX A MACRO PARAMETERS

APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

CHAPTER 1

INTRODUCTICN

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard (Ada83] using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC may be found in the current
ACVC User's Guide (UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772

1-1

INTRODUCTION

1.2 REFERENCES

[Ada83] Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

(Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

[UG89] Ada Compiler Validation Capability User's Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACYC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable. tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values - for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1), and
possibly removing some inapplicable tests (see section 2.2 and [UG891).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user's guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its target
Implementation computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.
Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization
(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and
System associated software, that uses commuon storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

INTRODUCTION

Conformity Fulfillment by a product, process, or service of all
requirements specified.

Customer An individual or corporate entity who enters into an agree-
ment with an AVF which specifies the terms and conditions
for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for

which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be

test irrelevant for the given Ada implementation.

ISO International Organization for Standardization.

LRM The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from
the LRM take the form "<section>.< subsection>: <paragraph>."

Operating Software that controls the execution of programs and that
System provides services such as resource allocation, scheduling,

input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target A computer system where the executable form of Ada programs
Computer are executed.
System

Validated Ada The compiler of a validated Ada implementation.
Compiler

validated Ada An Ada implementation that has been validated successfully
Implementation either by AVF testing or by registration [Pro90].

Validation The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

Withdrawn A test found to be incorrect and not used in conformity
test testing. A test may be incorrect because it has an invalid

test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

CHAPTER 2

IMPLEMTATION DEPENDE4CIES

2.1 WITHDRANN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 2 August 1991.

E28005C B28006C C32203A C34006D C35508I C35508J
C35508M C35508N C35702A C35702B B41308B C43004A
C45114A C45346A C45612A C45612B C45612C C45651A
C46022A B49008A B49008B A74006A C74308A B83022B
B83022H B83025B 883025D C83026A B83026B C83041A
B85001L C86001F C94021A C97116A C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BD1B02B BDIBO6A AD1BO8A BD2AO2A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2A87A CD2Bl5C
BD3006A BD4003P CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD9005A CD9005B CDA201E
CE21071 CE2117A CE2117B CE2119B CE2205B CE2405A
CE3111C CE3116A CE31l8A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test's inapplicability may
be supported by documents issued by the ISO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Ada Commentaries are included as
appropriate.

2-3

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAXDIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C35738L..Y (14 tests) C35802L..Z (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..Z (15 tests)
C45524L..Z (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C35713B, C45423B, B86001T, and C86006H check for the predefined type
SHORTFLOAT; for this implementation, there is no such type.

C35713C, B86001U, and C86006G check for the predefined type
LONGFLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORTFLOAT; for this
implementation, there is no such type.

A35801E checks that FLOAT'FIRST..FLOAT'LAST may be used as a range
constraint in a floating-point type declaration; for this
implementation, that range exceeds the range of safe numbers of the
largest predefined floating-point type and must be rejected. (See
section 2.3.)

C45423A, C45523A, and C45622A check that the proper exception is
raised if MACHINE OVERFLOWS is TRUE and the results of various
floating-point operations lie outside the range of the base type; for
this implementation, MACHINEOVERFLOWS is FALSE.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAXMANTISSA is less than 47.

B86001Y uses the name of a predefined fixed-point type other than type
DURATICN; for this implementation, there is no such type.

CA2009C and CA2009F check whether a generic unit can be instantiated
before its body (and any of its subunits) is compiled; this
implementation creates a dependence on generic units as allowed by
AI-00408 and AI-00506 such that the compilation of the generic unit
bodies makes the instantiating units obsolete. (See section 2.3.)

LA3004A..B, EA3004C..D, and CA3004E..F (6 tests) check pragma INLINE
for procedures and functions; for this implementation, pragma INLINE
has no effect unless the program is compiled and linked using global
optimization.

2-2

IMPLEMENTATION DEPENDENCIES

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type; this implementation does not support such
sizes.

CD2A84A, CD2A84E, CD2A841..J (2 tests), and CD2A840 use length clauses
to specify non-default sizes for access types; this implementation
does not support such sizes.

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8011A use machine code
insertions; this implementation provides no package MACHINECODE.

AE2101C and EE2201D..E (2 tests) use instantiations of package
SEQUENTIAL 10 with unconstrained array types and record types with
discriminants without defaults; these instantiations are rejected by
this compiler.

AE2101H, EE2401D, and EE2401G use instantiations of package DIRECT 10
with unconstrained array types and record types with discriminants
without defaults; these instantiations are rejected by this compiler.

The tests listed in the following table check that USE ERROR is raised
if the given file operations are not supported for the given
combination of mode and access method; this implementation supports
these operations.

Test File Operation Mode File Access Method

CE2102D CREATE IN FILE SEQUENTIAL 10
CE2102E CREATE OWf FILE SEQUENTZIALIO
CE2102F CREATE INCOT FILE DIRECT 10
CE21021 CREATE IN FILE DIRECT-IO
CE2102J CREATE OUT FILE DIRECT--10
CE2102N OPEN IN FILE SEQUENTIAL_10
CE21020 RESET IN-FILE SEQUENTIALIO
CE2102P OPEN OLf FILE SEQUENTIA-1IO
CE2102Q RESET (LT -FILE SEQUENTIAL0IO
CE2102R OPEN INOUT FILE DIRECT 10
CE2102S RESET INOUt--FILE DIRECT-IO
CE2102T OPEN IN FILE DIRECT-IO
CE2102U RESET IN-FILE DIRECT-IO
CE2102V OPEN OWY FILE DIRECT-10
CE2102W RESET OUT-FILE DIRECT-IO
CE3102E CREATE IN FILE TEXT I1
CE3102F RESET Any Mode TEXT-IO
CE3102G DELETE TEXT0-IO
CE3102I CREATE OUT FILE TEXT-IO
CE3102J OPEN IN FILE TEXT-IO
CE3102K OPEN OWt FILE TEXT-IO

2-3

IMPLEMENTATION DEPENDENCIES

The following 16 tests check operations on sequential, direct, and
text files when multiple internal files are associated with the same
external file and one or more are open for writing; USE ERROR is
raised when this association is attempted.

CE2107B..E CE2107G..H CE2107L CD2110B CE2110D
CE2111D CE2111H CE3111B CE3111D..E CE3114B
CE3115A

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded;- this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; this implementation cannot restrict
file capacity.

CE3304A checks that SET LINE LENGTH and SET PAGE LENGTH raise
USE ERROR if they specify an inappropriate value for the external
file; there are no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the
page number exceeds COUNT'LAST; for this implementation, the value of
COUNT'LAST is greater than 150000, making the checking of this
objective impractical.

2.3 TEST MODIFICATIONS

Modifications (see section 1.3) were required for 9 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the
way expected by the original tests.

B22003A B83033B B85013D

A35801E was graded inapplicable by Evaluation Modification as directed by
the AVO. The compiler rejects the use of the range
FLOAT'FIRST..FLOAT'ILAST as the range constraint of a floating-point type
declaration because the bounds lie outside of the range of safe numbers
(cf. LRM 3.5.7:12).

EA1003B was graded passed by Processing Modification as directed by the
AVO. This test checks whether legal units of a compilation are accepted
if one of the compilation units is illegal. This test was processed with
compiler option "-fI", which forces the compiler to generate code for
legal units of a compilation.

2-4

IMPLEMENTATICN DEPENDENCIES

CA2009C and CA2009F were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests contain instantiations of a generic unit
prior to the compilation of that unit's body; as allowed by AI-00408 and
AI-00506, the compilation of the generic unit bodies makes the cr•,pilation
unit that contains the instantiations obsolete.

BC3204C and BC3205D were graded passed by Processing Modification as
directed by the AVO. These tests check that instantiations of generic
units with unconstrained types as generic actual parameters are illegal if
the generic bodies contain uses of the types that require a constraint.
However, the generic bodies are compiled after the units that contain the
instantiations, and this implementation creates a dependence of the
instantiating units on the generic units as allowed by AI-00408 and
AI-00506 such that the compilation of the generic bodies makes the
instantiating units obsolete-no errors are detected. The processing of
these tests was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

2-5

CHAPTER 3

PROCESSING INFORMATICN

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For technical information about this Ada implementation, contact:

William E. Crosby
Meridian Software Systems, Inc.
10 Pasteur Street
Irvine CA 92718
(714) 727-0700

For sales information about this Ada implementation, contact:

Meridian Software Systems, Inc.
Attn: Jim Smith
10 Pasteur Street
Irvine CA 92718
(714) 727-0700

Testing of this Ada implementation was conducted at the customer's site by
a validation team from the AVF.

3-1

PROCESSING INFORMATION

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floating-point precision that exceeds the implementation's maximmu
precision (item e; see section 2.2), and those that depend on the support
of a file system - if none is supported (item d). All tests passed,
except those that are listed in sections 2.1 and 2.2 (counted in items b
and f, below).

a) Total Number of Applicable Tests 3786
b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 88
d) Non-Processed I/0 Tests 0
e) Non-Processed Floating-Point

Precision Tests 201

f) Total Number of Inapplicable Tests 289 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded onto a Sun 3 system and then transferred via an
NFS ethernet to the host computer system.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

Test results were transferred via the NFS ethernet to a Sun 3 system and
were printed from that system.

Testing was performed using comuand scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

3-2

PROCESSING INFORMATICN

Switch Effect

-fE Generate error file for the Ada listing utility.

-fI Ignore compilation errors and continue generating
code for legal units within the same compilation
file (for test EAI003B).

-fQ Suppress "added to library" and "Generating code
for" information messages.

-fw Suppress informative warning messages.

-i Produce a listing file.

The following switches appear as modifiers to the -l command,
in the form -lcps:

-c Produce continuous form Ada listings (no page
headers).

-p Obey PRACR1 PAGE directives within program even
though the -c flag says not to generate page
breaks.

-s Output Ada listing to the standard output file
instead of to a disk file.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

3-3

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in (UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for SMAX IN LEN-also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value

$MAX IN LEN 200 - Value of V

$BIGID1 (l..V-l -> 'A', V -> '1')

$BIGID2 (l..V-l -> 'A', Vy-> '2')

$BIGID3 (l..V/2-> 'A') & '3' &
(l..V-l-V/ -> 'A'W)

$BIG ID4 (l..V/2 -> 'A') & '4' &
(l..V-l-V/2-> 'A')

$BIGINTLIT (l..V-3-> '0') & "298"

SBIGREALLIT (l..V-5-> '0') & "690.0"

$BIG STRINGI '"' & (l..V/2 -> 'A') & '"'

SBIGSTRING2 '"' & (l..V-l-V/2 -> 'A') & '1' & '"'

SBLANKS (1..V-20-> '

$MAX_LEN INT BASED LITERAL
"2:" & (l..V-5-> '0') & "11:"

A-I

S. - _ d

MACRO PARAMETERS

Macro Parameter Macro Value

$MAXLENREAL-BASED LITERAL
"16:" & (1..V-7 -> '0') & "F.E:"

$MAX STRING LITERAL '"' & (1..V-2 -> 'A') & '"'

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value

$ACCSIZE 32

SALIGNMENT 4

$COUNTLAST 2_147_483_646

SDEFAULT MEM SIZE 1024

$DEFAULT STOR UNIT 8

SDEFAULT SYS NAME BBN PSOS

SDELTADOC 2.0**(-31)

SENTRY ADDRESS 16#0#

SENTRY ADDRESS1 16#1#

SENTRY ADDRESS2 16#2#

SFIELD LAST 2_147_483_647

$FILETERMINATOR

$FIXED NAME NOSUCH FIXED TYPE

$ FLOATNAME NOSUk2iFLOATTYPE

$ FORMSTRING

$ FORMSTRING2 "CA WT_RESTRICTFILECAPACITY"

$GREATER THAN DURATION
90_000.0

A-2

MACRO PARAMETERS

Macro Parameter Macro Value

$GREATER THANDURATICN BASE LAST
T_000U 000.0

$GREATER THAN FLOAT BASE LAST
-1.E+308

$GREATER THAN FLOAT SAFE LARGE
1- .E308

$GREATER THAN SHORT FLOAT SAFE LARGE

1.0 308

$HIGH_PRIORITY 20

$ILLEGAL ETERNAL FILE NAMEI
-NODIRECTORY/FILEIAMEl

$ILLEGALXKTERNAL FILE NAME2
-- ODIRECTORY/FILSOM2

$INAPPROPRIATE LINE LENGTH
-1

$ INAPPROPRIATEPAGE LENGTH
-1

$INCLUDE PRAGMAl PRAGMA INCLUDE ("A28006D1.ADA")

$INCLUDE PRAGMA2 PRAG'A INCLUDE ("B28006F1.ADA")

$INTEGER FIRST -2147483648

$INTEGER LAST 2147483647

$INTEGER LAST PLUS 1 2_147_483_648

$INTERFACE LANGUAGE C

$LESSTHANURATI•CN -90_000.0

$LESSTHAN _URATION BASE FIRST
-11y_000_000. 0

$LINE TERMINAT'r ASCII.LF

$VOWPRIORITY 1

SMACHINECODESTAWTs'

NULL;

A-3

MACRO PARAMETERS

Macro Parameter Macro Value

$MACHINE CODE TYPE INSTRUCTION

SMANTISSA DOC 31

$MAX DIGITS 15

$MAXINT 2147483647

$MAXINTPLUS_1 2_147_483648

SIN INT -2147483648

$NAME BYTE INTEGER

$NAME LIST BBN PSOS

$NAMESPECIFICATION1 /t/wiorld/pacvc/val/X2120A

SNAMESPECIFICATION2 /t/world/pacvc/val/X2120B

$NAME_SPECIFICATION3 /t/world/pacvc/val/X3119A

SNEG BASED INT 16#FFFFFFFE#

SNEWME! SIZE 1024

$NEW•_S2R_UNIT 8

$NEWSYSNAME BBNPSOS

$PAGE_TERMINATOR ASCII LF&ASCII. FF

$RECORDDEFINITION NEW INTEGER;

$RECORDNAME NOSUCHMACHINE CODE TYPE

STASKSIZE 32

$TASK STORAGESIZE 2048

STICK 1.0

SVARIABLE _ADDRESS FCNDECL.VARADDRESS

$VARIABLE ADDRESS1 FCNDECL.VAR ADDRESSi

$VARIALE ADDRESS2 FCNDECL.VAR ADDRESS2

SYCURPRAQIA, NOSUCHPRAQAA

A-4

APPEN4DIX B

CCMPILATICN SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

B-I

c~ILATZcq Ssim apo7wO

MZDIAN AD&CO•OL ZR OPrXON

-fD Generate debugging output. The -fD option causes the
compiler to generate the appropriate code and data for
operation vith the Meridian Ada Debugger.

-fe Annotate assembly lanquaqe listing. The -fe option
Causes the compiler to annotate an assembly language
output file. The output is supplemented by comments
containing the Adt. source statements corresponding to the
axsembly language code sections written by the code
generator. To use this option, the -S option must also
be specified, otherise the annotated file is not emitted.

- fE Generate error log file. The -fZ option causes the
compiler to generate a log file containing all the error
messages and warning messages produced during compilation.
The error log file has the same name as the source file,
with the extension .err. For example, the error log file
for simple.ada is si7ple.err. The error log file is
placed in the current working directory. In the absence
of the -fE option, the error log information is sent to
the standard output stream.

-fl Ignore compilation errors and continue generating code
for legal units within the same compilation file.

-fL Generate exception location information. The -fL option
causes location information (source file names and line
numbers) to be maintained for internal checks. This
information is useful for debugging in the event that an
"Exception never handled" message appears when an
exception propagates out of the main program. This !lag
causes the code to be somewhat larger. If -fL is not
used, exceptions that propagate out of the main program
will behave in the same way, but no location information
will be printed with the "Exception never handled"
message.

-•i Suppress numeric checking. The -fN flag suppresses tvo
kinds of numeric checks for the entire compilation:
division check and overflow..Check. These checks are
describea in section 11.7 of the LRM. This flag reduces
the size of the code.

-fQ Suppress "added to library" and "Generating code for"
information messages normally output by the compiler.

-fs Suppress all checks. The -fs flag suppresses all

0-2

COMIAICKq SY37M olTzctqS

automatic checkin, including numeric checking. This
flag is equivalent to usinq praqma suppress on all checks.
This flaq reduces Uhe size of the code, and is good for
producing "production qualitys code or for TVang
the compiler. Note that there in a related ada option,
-fN to suppress only certain kiods of numeric checks.

-EU Inhibit library update. The -EU option inhibits library
updates. This is of use in conjunction with the -S
option. Certain restrictions apply to use of this option.

-tv Compile verbosely. The compiler prints the name of each
subprogram, package, or generic as it is compiled.
Information about the symbol table space remaining
following compilation of the named entity is also printed
in the form nxK]-.

-fw Suppress warning messages. With this option, the
compiler does not print warning messages about ignored
praquas, exceptions that are certain to be raised at
run-time, or other potential problems that the compiler
is otherwise forbidden to deem as errors by the LEM.

-q The -q option instructs the compiler to run an additional
optimization pass. The optimizer removes common
sub-expressions, dead code and unnecessary Jumps. It
also does loop optimizations.

-K Keep internal form file. This option is used in
conjunction with the Optimizer. without this option, the
compiler deletes internal form files following code
generation.

-Imodifiers
Generate listing file. The -1 option causes the compiler
to create a listing. Optional modifiers can be given to
affect the listinq format. You can use none or any
combination of the followinq modifiers:

c Use continuous listinq format. The listing by
default contains a header on each page. Specifying
-lc suppresses both pagination and header output.
producing a continuous listing.

p Obey praqma page directives. Specifying -lp is only
meaningful if -lc has also been given. Normally -1c
suppresses all pagination, whereas -lcp suppresses
all pagination except where explicitly called for
within the source file with a praqua page directive.

s Use standard output. The listing by default is
written to a file with the same name as the source
file and the extension .1st, as in simple.lst from
simple.ada. Specifyinq -Is causes the listing file

B-3

CtWIATICi SYSTEM OP•ntIS

to be written to the standard output stzrea inste".A

t Generate relevant text output only. The listing by
default contains the entire source program as well
as interspersed error massages and warning messages.
Specifying -it causes the compiler to list only the
source lines to which error messaqes or yarning
messages apply, followed by the messages themselves.

The default listing file generated has the same name as
the source file, vith the extension .lat. For example,
the default listing file produced for simple.ada has the
name simple.lst. The listing file is placed in the
current working directory. Note: -1 also causes an
error log file to be producemd, as vith the -fZ option.

-L library-name

Default: ada.lib

Use alternate library. The -L option specifies an
alternative name for the program library.

-N No compile. This option causes the ada command to do a
"dry run" of the compilation process. The command
invoked for each processing step is printed. This is
similar to the -P option, but no actual processing is
performed.

-P Print compile. This option causes the ads command to
print out the command invoked for each processing step
as it is performed.

-S Produce assembly code. Causes the code generator to
produce an assembly language source file and to halt
further processing.

B-4

COMPILATION SYSTEI OPTIONS

LINKER OPTIONS

The linker options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to linker documentation and not
to this report.

9-5

=DZ1N ADM XLZ03 Op!0fh

-A Agressively inline. This option instructs the optiniser
to agqresaively inline subprograms when used in addition
to the -G option. Typically, this means that subprograms
that are only called once are inlined. If only the -Q
option is used, only -ubproqrsm for which pragqa inline
has been specified are inlined.

-c compiler-program-name

Default: (as stored in program library)

Use alternate compiler. The -c option specifies the
complete (non relative) directory path to the Meridian
Ada compiler. This option overrides the compiler
program name stored in the program library. The -c
option is intended for use in cross-compiler
configurations, although under such circumstances, an
appropriate library configuration is normally used
instead.

-t Suppress main program generation step. The -f option
suppresses the creation and additional code generation
steps for the temporary main program file. The -f option
can be used when a simple chanqe has been made to the
body of a compilation unit. If unit elaboration order
is changed, or if the specification of a unit is changed,
or if nev units are added, then this option should not be
used.

-g Perform global optimization only. The -9 option causes
bamp to invoke the global optimizer on your program.
Compilation units to be optimized globally must have been
compiled with the ads -K option.

-G Perform global and local optimization. The -G option
causes bamp to perform both global and local optimization
on your program. This includes performing praqga inline.
As with the -q option, compilation units to be optimized
must have been compiled with the ad& -K option.

Link the program with a version of the tasking run-time
which supports pre-emptive task scheduling. This option
produces code which handles interrupts more quickly, but
has a slight negative impact on performance in general.

-1 :- brary-name

8-6

Defaults ada.U1b

Use alteinata IibrUZI. me -L option specifies the 1iem
of the Program library to be coinunted by the bhMp
progr•a. Thia option overrides the default librazy name.

-n io link. The -n option mupies... actual object file
linksge, but creates and pertorms code generation On the
main program file.

-N iNo operations. The -n option causes the bamp command to
do a Ndry run" r it prints out the actions it takes to
qenerate the executable program, but does not actually
perform those actions. The sam kind of information is
printe by the -P option. -

-o output-file-name

Default: file

Use alternate executable file output name. The -o option
specifies ethe name of the executable proqram file vritten
by the bamp comnand. This option overrides the default
output file name.

-P Print operations. The -P option causes the beap command
to print out the actions it takes to generate the
executable proqram as the actions are performed.

-v Link verbosely. The -v option causes the bamp command to
print out information about vhat actions it takes in
buildinq the main proqras.

Suppress varninqs. This option allows you to suppress
warninqs from the optimizer.

B-7

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation-dependent
characteristics of this Ada implementation, as described in this Appendix,
are -provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is

type INTEGER is range -2 147 483 648 .. 2 147 483 647;
type SHORT INTEGER is range =32768 .. 32767; - -
type LONG INTEGER is range -2 147 483 648 .. 2_147_483_647;
type BYTE_-INTEGER is range -178 .- 127;

type FLOAT is digits 15
range -1.79769313486231E+308 .. 1.79769313486231E+308;

type DURATION is delta 0.0001 range -86400.0 .. 86400.0;

end STANDARD;

C-1

APPEDCIX F OF M Ada S7M1)AB

Tk&~ appeNdIX]is" mpu~ bondp~airdont charmritcs;~ of ?aindian
Ada. Now that thee ans no pMWJd~g &PaWpiACU ThIU &PP.Kiz S alled

ptogvaino 1,AN5IfMIL-SMD.161A which mates dot
dus appamdix te rimeud Appendix F.

1mpWimwd Oiapm 13 hatura unClude Iength~ diausm tin. auuaft
ropmettiwoui claUSm,6 IsCOd --wftuof ciausa. addres dlatum
mle. pa, pmcMgq sys"M macjlw code trmmom~i prapia tumioot
and wtchsKbd propranmin&

F. 1 Pragmas
The sMpIeMWId pre-defined pragmas am-

elaborate 5.. the LAM section 10.5

i.uiterf ac See sectior F.1.1

Ust Seethe LRM Appendix 8

pack See sction F.1.2

pa9G See the LRM Appendix B

pti.or3ty See the LRM Appendix B

guuppt..a See section F.13

1.111irw See the LRM section 6.3.2. This prapna is not actually effecuve
unleas vou compile/rink your program using the globa
optinuzeK.

The remtaining pre-defried prapnas ame aKetd but presenty ignored:

controlled optimite sysur. narn
shared Sto:."wu1 t fmozy-aize

Nansed psainetr notation for pragmaus is not Suippored.

When illega pranwtr formis ame encountered at compile bine. the
compiler isaues a warning 11Inmage father than~ an emrr. as required by
the Ada language definiton. Refer to the LRM Appendix B for additional
u~fortnation about the pre-defined praphis.

F. 1. 1 Progmo Interface
The formn of pragin interface in Mendiaui Ada is:

preqn &Atazfaee4 kjrpau.subpmewm 1, lnk

SSN coSOS cornOur LAW s Geo ft"o82Uj Pogo 179
c-2

APPIMIX F OF TM Ada S'WRN)A

"hwi

ise1.1d Mile is 0W u = l,:a~ m -~0V onOf 0110niM aSOMEY,
butan" C. at itraL 11 nanis bo~ft an isrmaal an
remwdv hirumbyh Mindia coiptler maintami a'

nAmritinra This n 0w rme of a subpsm g to wldch dw pragma
tItteggaaa -- j

ih*-mW This is an opuirnai string liul specifyinlg tw name of the
nen-Ada subprogra cormponrxding to 0w Ad&

subpropai in na d hw second pairaumeo. U -m lbk isun

o=ttd cLm dian "-P dadaulte to 0w value of xabmgrmu
irrltdto lowecassa Dependfing on the language

specified. some automatac mnodifications may be umad. fi
fte lvik- -- to produce tin actual obp.ct code symbol
name tiat.t g.-aied wiwien m rewun Mare a made to

tecorresponding Adai subprogram. The oboict code
symbol gomeawd for krak-nmar is always tunslaind to

It is appropriate to use "w optional Lint-nmur parameWe to
gnum aLritezface only when thne interface, subprogram

hsa name that dorn not correspond at all to its Ads
identifier or when the mum ism subprogram name cannot
be given using rules for consbucting Adii idenufiers (eg..
if the name contains a T character).

The characteristics of object code ryrmbols geram ed or each inteface
language are

assemnbly The object code symbol is the same as nink-nme.

builtin The obyec code symrbol is th same as Link-name. but prefixied with
two underscore c haracters ('.2.This language into. ic
is2.e0m.e for special interfaces defined by Meridian
Software Systmas, Inc. The builtin interface is prementy
used to declare certain low-levei run-uomw opemraos
whose names must not conflict with proprammer-defined
or language system. definedi namens.

c The obpec code symbol is othe same as Link-name, but with one
underscore character ('-.') prepended. This is tie
convention used by the C compiler.

internal No obyect code symbol is generated for an tinternail language
interface; Owi language interface is resrved for special
mintefaces defined by Meridian Software Svsums. Linc. The
internal iuneface is presuidv used to declare certain
macluna-mle bit operations.

No automatic data canveo -ar performed o aattr n
interface subprograms. It as up to the prograimme to nsure that calling
conventions match and that anv naemsazv, data conversions take place
when calling interface subprograms.

Z-20i0 ;s 0WO V C~SOS Cofterv Use S GCA.00
C-3

APPENDIX F OF THEAa S'T"M

AS•

A piagmLe wee my p w-diki disthem. lmw pt M
,i. suiptsuam tI whMwh the PlaSn t•nRtaiMmesepp folkmDm• •w
subprogram dacims, and prior to the t eoimbpiopm. A
pmixp atfa due apbi la subprogra deciaredina packays
specfioam mum oWur Within . same pGCage spancd ml so t
sbprop dauistmimi thdi prapm h.nrtaf may ro t appea in the
package body m "ib ce. A pim L• ma. dadliauMon for mtr apriat r rninpnmmv subprogran dalab may a•ppm mdi ph rinm

pet of a package spea•ln.

Pimp tatmzfem Lw hnibrary uss a not supportls

Reer to the LRM mcton 13.9 for additioal information about pftgma

F.1.2 Pragma Pack

Pragms pack is implmsmuld for composite types (records and arrmay).

Pragnia pack is pernutted folowing the compoff tpe dimatiot to
which it applies, provided that the pragMA occurs within the same
declarative part as thecomposite type declaatIon before aty obWWct or
componnts of the composite type ae dedar

Note that the de.larative part resiction meanrs diet the type declaration
and accompan.vmg pragma pack cannot be splt across a package
specification and body.

The effect of praesa pack is to Minmize storage consumpaon by.
discrete component types whose ranges permit packKn. Use Of prapu
pack does not defeat ailocaaons of aLignment storage ppe for some
record types. Pragma pack does not affect the repretatons of real
types. pre.defined integer type" and acces types

F. 1.3 Pragma Suppress
Pragma swppzm is impiemenwted as described in the LRM section 11.7.

with these ddfWWcu

"* Presentjv, divisiuocheck and overflow.check must be supprmsed
v a compiler flag, -fit: pragme suppress is ignored for these two
numeric checks.

"I The optional m> - parameter name notation for pragima
suppress is ignored.

"* The optional second parameier to pragme suppress a ignored. the
prae"u aiways appies to the entire scope in which it appears.

F.2 Attributes
AU attnbutews described in the LRM Appendix A am supporod.

BON c6CS Covrcsm ser u s Guom Q*WWinOe J ae 1-1
C-4

AP1MIX F OF MM Ada S'RMWDR

AWwUl~ F h* coo .-. ~ I~vv

F.3 Standard Types
Additional standaid types amw defined in tMndan Ada:

*shon...miege

flg stanciaro nwnenc types ame deiuna as:

cYFe b~OLflt.9MI is range -1281. :21:

tYVQ Ghezt&ter is9U Lcan"9 -32760 . 32767:

type xataqui is raaqng -2147403648 2-47483647.:

%YP &@9fI4m a irang -2147463648 4147413641-

type float is gaq~ta is
tango -1.79749313446231&+306 ., 1.1069313486231&*309:

type duration is delta 0.0001 xanqw -06400.0000
06400 .0000:

FA4 Package System
Mhe svecifcanon or package system is:

package system Le
type address L& ast loaqtJnq~w

typo LaeUafmpss
systemnuin constant name: bbn-pooo

steraqe.unt constant -0 8
washoy mis. conUstant :% :024:

-- System-Dep~neeat Hastmd UMub*Z

MIfL'lt. costn :w* -214742394S*
swai-nt :coec~ant *.2147403641!

UBZG"q&to constant : 5
man uAailasa doeajt: 3::
fLnr... mta ceaant u2..^ **431)

tics constanit : .

-- Other SystexiDoepdenia Zec;.acations

aubtYPO PZLOZitY isLUla9te" can" -

!ne V&iue C'I systeU.msory812*IS E't~isLnuIV rn~iflinh~tv.

':. zN S :vrcu'e' .se, s ;'o

C-5

APPEDIXl F OF TEE Ada SITAIDM

#-11CO an ar - f

F.5 Resftictions on Representatlon Clause
F.S. 1 Length Clau~ses

A smispeackiakt(t* also) m nM'cd If fewes bbitla aIs
can accoaumdal t type. The UMiM13 mm of a ta type "my
be sub~sct to applhcat of prasms pee[t. it 1A ptosp.cfy
s Mm for inpd npr rans, e&,. 8 for he rsnge O. .2S&

zwe. ct.mae of Unqpwmms by tby l Ada laiguage
d ;;z a full 32-bit ran of urineud valium, i& 0.. (2"*32) -1.
cannot be defnsd evuit intg a simz spomfcati.

Thespaoaubon of COUoflc auim (t' mtoaw alsoiss)evahuaid at
run-Une whin tw shpe of 04 thee 11 whih t*e length clause applis ma
entered, and is therfore subsct to repicton (via storag 6Vz0) bsed0
on available stoage at Ow tm the allocaair na made. A coUllctn may
unclude storage used for run-.m adanurusumeon of the collsctmi. anid
therefore shouJd not be expeorsd to accoanuodaw a spacxiic number of
obec Purthernm certain clams of object such as unconattvud
di na t armay comporunm of records may be allocaud outtde a
pven collection, so a coUecton may accoamodain more obpe-U than
aught be expecid

The specification of storage for a task activation (t' ateraeqa e) is
evaluated at run-ume when a task to which the length clause apples is
activated, and is theoreo. subpct to rmjectin (via s.torae orror)
based on available storage at the tine the allocation is made. Storage
reserved for a task actvation is separate from storage needed for any
collections defined within a task body.

The specification of small for a fixed point .type (in.1U) i subiect ornv
to restition definud in the LM section 13.2

F.5.2 Enumeration Representation Clauses
The internal code for the literal of an enumeration type named in an
enumration represetation clause must be n the range oi

The value of an internal code may be obtained by applying an
appropriate instantiation oi unchoc•ok conversion to an miteer type.

F.5.3 Record Representation Clauses

The stowrage unit offset (the at staasnivk•_~rvreimsn part) s givet in
terms of &-bit storage units and must be even.

A bit position (the range part) applied to a discrete type component may
be i the range 0.!. 5. with 0 being the least s3gruicant btt of a
component. A range specification may not specify a sat smaller than can
accommodate the component. A range specisation for a component not
accommodating bit packing may have a higher up.per bound as
appropriate.g., 0. .3.1 for a discnamnant string component). Refer to

SBN aSOS Cov oee user s G•e•e fooe 1W83
C-6

APPUIX F OF = ,Aa STUM M

gw mu~m dat ruinq Mumm o, apvm a~mquMt daeunmlew

C Am'aw Of PhuFw typom or wkc bt b osiiuon, an specfied uW
not staddli 16-bs word bounduam.

The value of man lipganwt clam (tOw ophtiai at zod paO rt evaluate
to 1. 24. or 6, an my lot be mcau t+An the moiu a•l ent

quired b uy ea.om.m of wh reord. On the C.D(opn'ateg so .
tI ma t asretar'dsauwy not have apgunemtclaise mcnal
than2.

F.5A Address Claus

Au addmes clause may be n for a bt (wh r constnt or
variable) or a teuk , but nat for a subpogra package, or Usk nut.
The m lnno an clausm suppled for a aesk entry a p'to in

An addres exprmmon for an obp-t w a 32-bit egowtedem
address of type syrtm.addz.aa.

F.5.5 Interrupts
A task ehy's addrme clam can be used to associate " entry with a
pM signal. Vaues in the range 0. .31 an zwaningmul, and represent
tO intmaupw corresponding to hose values.

An mterrupt enry may not have any parameters.

F.5.6 Change of Representatlon
Ther are nor stnctaw for changes of reoresentabo effected by ieas
of type converson.

F.6 Implementation-Dependent Components
No names am generated by the unpieenitauon to denote
ainpienimuamon-depeidit comp~oneu.

F.7 Unchecked Conversions
Tinre am no res€ictons on ton use of unewo d- oantv Safn.
Convemins bertwem nobws wihd Am do not contorm mav result in
storae arms with undefned values.

C-7

APPM~IX F OF TMI A&a SThMNA3D

F.8 Input-Output Packages

*In cais lo andm mWmme dwfum paiuw smtm be *awips

*Mom duin arw uaherr1 file can be anmoale with a mmnglem isk
We for uwadig anky. For wnm&a only -*= mMle may be
mamoid waUhan ui Ilk tDo not weetznt opemii

*Teipa,.zy sequsita and dizoct film are gram n~aLn Temnwyon
~m amedeleted wta tey an ckas.

*File 1/0 is builmwd. tet film mwoate with bWinwia dmm am

* *fl packagis aqm tl ao and dizsotio camiot be
nuitentmiad f~iwcivua opate ypos or eor tyvpm
with daammuman witmot ddailte

F.9 Source Une and Identifier Lengths
Sourc Linen and iduitbfim m Ad& muom propafis an pmemniy limitd
to 2W characa m Mi mgiK

98N ZSOS Comovr Ww s Guae am atw.WUm Daqe)as
C-8

