—— AD-A257 375 ionPaGE

== W = Lo O

nesded. and ¢ nale of Any other aspect of this collaction of information. including supgestions for reducing this burden, 1 Washington
Headquerers s Highway. Sulle 1204, Aringion, VA 222024302, and 1o the Office of Information and Reguistory Afars, OFice of
Mansgement and Buog®. wae -,
1. AGENCY USE ONLY (Leave Blank) PR E 3. REPORT TYPE AND DATES COVERED

I Final: 15 Sept 1992

[4. TITLE AND SUBTITLE
Validation Summary Report: Meridian Software Systems, Inc., Meridian Ada, Version
4.1.3, BBN TC2000 under nX 3.0.1 (Host & Target), 920915W1.11269

6. AUTHOR(S)
Wright-Patterson AFB, Dayton, OH
USA

5. FUNDING NUMBERS

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)
Ada Validation Facility, Language Control Facilty ASD/SCEL
Bldg. 676, Rm 135

Wright-Patterson AFB, Dayton, OH 45433

8. PERFORMING ORGANIZATION
REPORT NUMBER

HOLCF C0090

[5. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES)
Ada Joint Program Office

United States Department of Defense
Pentagon, Rm 3E114

Washington, D.C. 20301-3081

YW T VTV B o T TS T T ——
10. SPONSORING/MONITORING AGENCY
REPORT NUMBER

| 11. SUPPLEMENTARY NOTES

T2a. DISTRIBUTION/AVAILABILITY STATEMENT 3 ;
Approved for public release; distribution unlimited.

12b. DISTRIBUTION CODE

13. ABSTRACT (Maximum 200 words)

Meridian Software Systems, Inc., Meridian Ada, Version 4.1.3, BBN TC2000 under nX 3.0.1 (Host & Target), ACVC 1.11.

[74 SUBJECT TERMS
Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val.

OF REPORT OF ABSTRACT
UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSI/MIL-STD-1815A, AJPO. [1€ PRICE COD

15. NUMBER OF PAGES |

NSN 7540-01-280-550

Standard Form 298, (Rev. 2-89)
Prescribed by ANSI Sid. 239-128

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on September 15, 1992.

Compiler Name and Version: Meridian Ada, Version 4.1.3

Host Computer System: BBN TC2000
under nX 3.0.1

Target Computer System: BBN TC2000
under pSOS+/88k

Customer Agreement Number: 92-06-12-MSS
See section 3.1 for any additional information about the testing
environment.
As a result of this validation effort, validation Certificate

920915W1.11269 is awarded to Meridian Software Systems, Inc. This
certificate expires two years after the ANSI adoption of

ANSI/MIL-STD-1815B.
Accesion For

This report has been reviewed and is approved. | NTIS CRA&I
DTIC TAB
Unannousnced]

Justification

0?\/ .)1%\—\ A

Validation Faciliity L
Steven P. Wilson Distribution |
Technical Director

ASC/SCEL

Wright-Patterson AFB OH 45433-6503

Availability Codes

. Avail and/or
Dist Special

41|

6&, Dxrector, omputet and Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

cTED 8
{a%fr:l Program Office — Q‘UALT“ INSPE!

Dr. John Solomond, Director
Department of Defense
Washington DC 20301

92-29311
DT R 92 11 10 038

e, & L A —— A . b e e e s . T e - T < = S Al . S

92-06-12-Mss

Ade COMPILER
VALIDATION SUMMARY REPORT:
Certificate Number: 920915W1.11269
Meridian Software Systems, Inc.
Meridian Ada, Version 4.1.3
BBN TC2000 under nX 3.0.1 =>
BBN TC2000 under pSOS+/88k

(FINAL)

Prepared By:
Ada Validation Facility
ASC/SCEL
Wright-Patterson AFB OH 45433-6503

HOLCF C0090

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on September 15, 1992.

Compiler Name and Version: Meridian Ada, Version 4.1.3

Host Computer System: BBN TC2000
under nX 3.0.1

Target Computer System: BBN TC2000
under pSOS+/88k

Customer Agreement Number: 92-06-12-MSS

See section 3.1 for any additional information about the testing
environment. '

As a result of this validation effort, Validation Certificate
920915W1.11269 is awarded to Meridian Software Systems, Inc. This
certificate expires two years after the ANSI adoption of
ANSI/MIL-STD-1815B.

This report has been reviewed and is approved.

T\ﬁa Va%i %at:.on Fa-cility

Steven P. Wilson

Technical Director

ASC/SCEL

Wright-Patterson AFB OH 45433-6503

n Organization

97 Direttor,;” C ter and Software Engineering Division
Institute for Defense Analyses
Alexandria VA 22311

Ada Joint Program Office

Dr. John Solomond, Director
Department of Defense
Washington DC 20301

DECLARATION OF CONFORMANCE

Customer: Meridian Software Systems, Inc.
Ada Validation Facility: ASD/SCEL, Wright-Patterson AFB OH 45433-6503

ACVC Version: 1.11

Ada Implementation:

Compiler Name and Version: Meridian Ada, Version 4.1.3

Host Computer System: BBN TC2000
nX 3.0.1

Target Computer System: BBN TC2000
pSOS+/88k

Customer’s Declaration

I, the undersigned, representing Meridian Software Systems, Inc., declare that Meridian
Software Systems, Inc. has no knowledge of deliberate deviations from the Ada Language
Standard ANSI/MIL-STD-1815A in the implementation listed in this declaration. I declare that
Meridian Software Systems. Inc. is the owner of the above implementation and the certificates

slyvv‘uded iyhe name of the owner’s corporate name.
. 4
~ %/“! ! £ —\ C\ Date: ‘-’{5 A‘- r 2N I [4

Stowef/Boyd. President |)
Meridian Software Systems, Inc.

10 Pasteur Street

Irvine, CA 92718

TABLE OF CONTENTS

CHAPTER 1 INTRODUCTION
1.1 USE OF THIS VALIDATION SUMMARY REPORT
1.2 MFMCESO - . . . L] L] * L4 L] L] L] L] L]
1.3 ch TEST CLASSES L] L] L] . L d . L] L] L] -
1.4 DEFINITION OF TERMS . . « « ¢« ¢« « o o«
CHAPTER 2 IMPLEMENTATION DEPENDENCIES
2.1 mmm st L] . L] L] - - . . L] L] L]
2.2 IWPLIQBLE msTs. L] L] * - Ld * L] L d L]
2.3 TEST MODIFICATIONS. . . . « « ¢ « « o«
CHAPTER 3 PROCESSING INFORMATION
3.1 TESTING ENVTRONMENT . « ¢ « &« o o o «
3.2 SUMMARY OF TEST RESULTS . « ¢« « « « .
3.3 TEST EXECUTION. « « ¢ ¢« ¢ o « o o o o
APPENDIX A MACRO PARAMETERS
APPENDIX B COMPILATION SYSTEM OPTIONS

APPENDIX C APPENDIX F OF THE Ada STANDARD

L] * . L]

1-1
1-2
1-2
1-3

2-1
2-1
2-4

3-1
3-2
3-2

= s o ————— e . - i} —— el e~ — o e ¥

CHAPTER 1
INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90) against the Ada Standard (Ada83) using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms wused in this report, the reader is referred to
[Pro90]. A detailed description of the ACVC may be found in the current
ACVC User’s Guide [UG89].

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national 1laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply
only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of
this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada validation Organizarion

Computer and Software Engineering Division
Institute for Defense Analyses

1801 North Beauregard Street

Alexandria VA 22311-1772

1-1

INTRODUCTION

1.2 REFERENCES

(Ada83] Reference Manual for the Ada Programming Lan e,
ANSIMIL-STD- , February 150 -1987.

[Pro90] Ada Compiler Validation Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

[(UG89) Ada Compiler Validation Capability User’s Guide, 21 June 1989.

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and
class L tests are expected to produce errors at compile time and link time,
respectively. _

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are used for this purpose. The package REPORT
also provides a set of identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK FILE is used to check the contents of
text ‘files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK FILE is checked by a set of
executable. tests. If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values — for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. 1In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation—-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

1-2

INTRODUCTION

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1), and
possibly removing some inapplicable tests (see section 2.2 and [UG89)).

In order to pass an ACVC an Ada implementation must process each test of
the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof. \

Ada Compiler The means for testing compliance of Ada implementations,
Validation consisting of the test suite, the support programs, the ACVC
Capability user’s guide and the template for the validation summary
(ACVC) report.

Ada An Ada compiler with its host computer system and its target
Implementation computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.

Office (AJPO)

Ada The part of the certification body which carries out the
Validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization

(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada

Implementation
Computer A functional unit, consisting of one or more computers and
System associated software, that wuses common storage for all or

part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user—-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

1-3

Conformity

Customer

Declaration of
Conformance

Host Computer
System

Inapplicable
test

IS0
LRM

Operating
System

Target

Computer
System

Validated Ada
Compiler

Validated Ada
Implementation

validation

Withdrawn
test

INTRODUCTION

Fulfillment by a product, process, or service of all
requirements specified.

An individual or corporate entity who enters into an agree-
ment with an AVF which specifies the terms and conditions
for AVF services (of any kind) to be performed.

A formal statement from a customer assuring that conformity
is realized or attainable on the Ada implementation for
which validation status is realized.

A computer system where Ada source programs are transformed
into executable form.

A test that contains one or more test objectives found to be
irrelevant for the given Ada implementation.

International Organization for Standardization.

The Ada standard, or Language Reference Manual, published as
ANSI/MIL-STD-1815A-1983 and 1ISO 8652-1987. Citations from
the LRM take the form “"<section).<subsection>:<paragraph>."

Software that controls the execution of programs and that
provides services such as resource allocation, scheduling,
input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

A computer system where the executable form of Ada programs
are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated successfully
either by AVF testing or by registration [ProS0].

The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

A test found to be incorrect and not used in conformity
testing. A test may be incorrect because it has an invalid
test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming

language.

1-4

CHAPTER 2
IMPLEMENTATION DEPENDENCIES

2.1 WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 2 August 1991.

E28005C B28006C C32203A C34006D C355081 C35508J
C35508M C35508N C35702A C357028B B41308B C43004A
C45114A C45346A C45612A C45612B C45612C C45651A
C46022a B49008A B49008B A74006A C74308A B83022B
B83022H B83025B B83025D €83026A B83026B C83041A
B85001L C86001F C94021A c97116Aa C98003B BA2011A
CB7001A CB7001B CB7004A CC1223A BC1226A CC1226B
BC3009B BD1B02B BD1BO6A AD1B08A BD2A02A CD2A21E
CD2A23E CD2A32A CD2A41A CD2A41E CD2AB7A CD2B15C
BD3006A BD4003» Cp4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CDS5111A CD7004C ED7005D
CD7005E AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CDS005A CD9005B CDA201E
CE21071 CE2117A CE21178B CE2119B CE2205B CE2405A
CE3l11C CE3116A CE3118A CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812A CE3814A CE3902B

2.2 INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test’s inapplicability may
be supported by documents issued by the 1SO and the AJPO known as Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references tn Ada Commentaries are included as
appropriate.

2-1

S D _—— e

IMPLEMENTATION DEPENDENCIES

The following 201 tests have floating-point type declarations
requiring more digits than SYSTEM.MAX DIGITS:

C24113L..Y (14 tests) C35705L..Y (14 tests)
C35706L..Y (14 tests) C35707L..Y (14 tests)
C357908L..Y (14 tests) C35802L..2 (15 tests)
C45241L..Y (14 tests) C45321L..Y (14 tests)
C45421L..Y (14 tests) C45521L..2 (15 tests)
C45524L..2 (15 tests) C45621L..Z (15 tests)
C45641L..Y (14 tests) C46012L..Z (15 tests)

C35713B, C45423B, B86001T, and C86006H check for the predefined type
SHORT_FLOAT; for this implementation, there is no such type.

C35713C, B86001U, and C86006G check for the predefined type
LONG_FLOAT; for this implementation, there is no such type.

C35713D and B86001Z check for a predefined floating-point type with a
name other than FLOAT, LONG FLOAT, or SHORT FLOAT; for this
implementation, there is no such type.

A35801E checks that FLOAT'FIRST..FLOAT'LAST may be used as a range
constraint in a floating-point type declaration; for this
implementation, that range exceeds the range of safe numbers of the
largest predefined floating-point type and must be rejected. (See
section 2.3.)

C45423A, C45523A, and (C45622A check that the proper exception is
raised if MACHINE OVERFLOWS is TRUE and the results of various
floating-point operations lie outside the range of the base type; for
this implementation, MACHINE OVERFLOWS is FALSE.

C45531M..P and C45532M..P (8 tests) check fixed-point operations for
types that require a SYSTEM.MAX MANTISSA of 47 or greater; for this
implementation, MAX MANTISSA is less than 47.

B86001Y uses the name of a predefined fixed-point type other than type
DURATION; for this implementation, there is no such type.

CA2009C and CA2009F check whether a generic unit can be instantiated
before its body (and any of its subunits) is compiled; this
implementation creates a dependence on generic units as allowed by
AI-00408 and AI-00506 such that the compilation of the generic unit
bodies makes the instantiating units obsolete. (See section 2.3.)

LA3004A..B, EA3004C..D, and CA3004E..F (6 tests) check pragma INLINE
for procedures and functions; for this implementation, pragma INLINE
has no effect unless the program is compiled and linked using global
optimization.

IMPLEMENTATION DEPENDENCIES

CD1009C checks whether a length clause can specify a non-default size
for a floating-point type; this implementation does not support such
sizes.

 CD2A84A, CD2AB4E, CD2ABAI..J (2 tests), and CD2ABS40 use length clauses
to specify non-default sizes for access types; this implementation
does not support such sizes.

BD8001A, BD8003A, BD8004A..B (2 tests), and AD8011A use machine code
insertions; this implementation provides no package MACHINE CODE.

AE2101C and EE2201D..E (2 tests) use instantiations of package
SEQUENTIAL IO with unconstrained array types and record types with
discriminants without defaults; these instantiations are rejected by
this compiler.

AE2101H, EE2401D, and EE2401G use instantiations of package DIRECT IO
with unconstrained array types and record types with discriminants
without defaults; these instantiations are rejected by this compiler.

The tests listed in the following table check that USE ERROR is raised
if the given file operations are not supported for the given
combination of mode and access method; this implementation supports
these operations.

Test File Operation Mode File Access Method

CE2102D CREATE IN FILE SEQUENTIAL IO
CE2102E CREATE OUT FILE SEQUENTIAL IO
CE2102F CREATE INOUT FILE DIRECT IO ~
CE21021 CREATE IN FILE DIRECT IO
CE2102J CREATE OUT FILE DIRECT 10
CE2102N OPEN IN FILE SEQUENTIAL IO
CE21020 RESET IN FILE SEQUENTIAL_ IO
CE2102P OPEN - OUT_FILE SEQUENTIAL IO
CE2102Q RESET OUT_FILE SEQUENTIAL IO
CE2102R OPEN INOUT FILE DIRECT IO ~
CE21028 RESET INOUT FILE DIRECT IO
CE2102T OPEN IN_FILE DIRECT IO
CE2102U RESET IN FILE DIRECT 10
CE2102v OPEN OUT FILE DIRECT 10
CE2102W RESET OUT FILE DIRECT 10
CE3102E CREATE IN FILE TEXT_IO
CE3102F RESET Any Mode TEXT_I0
CE3102G DELETE - TEXT 10
CE31021 CREATE OUT_FILE TEXT_I0
CE3102J OPEN IN FILE TEXT_IO
CE3102K OPEN OUT _FILE TEXT_IO

IMPLEMENTATION DEPENDENCIES

The following 16 tests check operations on sequential, direct, and
text files when multiple internal files are associated with the same
external file and one or more are open for writing; USE_ERROR is
raised when this association is attempted.

CE2107B..E CE2107G..H CE2107L CD2110B CE2110D
CE2111D CE2111H CE3111B CE3111D..E CE3114B
CE3115a

CE2203A checks that WRITE raises USE ERROR if the capacity of an
external sequential file is exceeded; this implementation cannot
restrict file capacity.

CE2403A checks that WRITE raises USE ERROR if the capacity of an
external direct file is exceeded; this implementation cannot restrict
file capacity.

CE3304A checks that SET LINE LENGTH and SET PAGE LENGTH raise
USE ERROR if they specify ~an 1inappropriate value for the external
file; there are no inappropriate values for this implementation.

CE3413B checks that PAGE raises LAYOUT ERROR when the value of the
page number exceeds COUNT’LAST; for this implementation, the value of
COUNT’LAST is greater than 150000, making the checking of this
objective impractical.

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 9 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the
way expected by the original tests.

B22003a B83033B B85013D

A35801E was graded inapplicable by Evaluation Modification as directed by
the AVO. The compiler rejects the use of the range
FLOAT'FIRST..FLOAT'LAST as the range constraint of a floating-point type
declaration because the bounds lie outside of the range of safe numbers
(cf. LRM 3.5.7:12).

EAl003B was graded passed by Processing Modification as directed by the
AVO. This test checks whether legal units of a compilation are accepted
if one of the compilation units is illegal. This test was processed with
compiler option "-fi1", which forces the compiler to generate code for
legal units of a compilation.

2~4

. PRSI P U 2 - - . A J—

IMPLEMENTATION DEPENDENCIES

CA2009C and CA2009F were graded inapplicable by Evaluation Modification as
directed by the AVO. These tests contain instantiations of a generic unit
prior to the compilation of that unit’s body; as allowed by AI-02408 and
AI-00506, the compilation of the generic unit bodies makes the crmpilation
unit that contains the instantiations obsolete.

BC3204C and BC320SD were graded passed by Processing Modification as
directed by the AVO. These tests check that instantiations of generic
units with unconstrained types as generic actual parameters are illegal if
the generic bodies contain uses of the types that require a constraint.
However, the generic bodies are compiled after the units that contain the
instantiations, and this implementation creates a dependence of the
instantiating units on the generic units as allowed by AI-00408 and
AI-00506 such that the compilation of the generic bodies makes the
instantiating units obsolete—no errors are detected. The processing of
these tests was modified by re-compiling the obsolete units; all intended
errors were then detected by the compiler.

2-5

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For technical information about this Ada implementation, contact:

William E. Crosby

Meridian Software Systems, Inc.
10 pasteur Street

Irvine CA 92718

(714) 727-0700

For sales information about this Ada implementation, contact:

Meridian Software Systems, Inc.
Attn: Jim Smith
10 Pasteur Street
- Irvine CA 92718
{714) 727-0700

Testing of this Ada implementation was conducted at the customer’s site by
a validation team from the AVF.

3-1

PROCESSING INFORMATION

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each test
of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC [Pro90]. ,

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floating-point precision that exceeds the implementation’s maximm
precision (item e; see section 2.2), and those that depend on the support
of a file system — if none is supported (item d). All tests passed,
except those that are listed in sections 2.1 and 2.2 (counted in items b
and £, below).

a) Total Number of Applicable Tests 3786

b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 88
d) Non-Processed 1/0 Tests 0
e) Non-Processed Floating~Point

Precision Tests 201

f) Total Number of Inapplicable Tests 289 (c+d+e)
g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

A magnetic tape containing the customized test suite (see section 1.3) was
taken on-site by the validation team for processing. The contents of the
magnetic tape were loaded onto a Sun 3 system and then transferred via an
NFS ethernet to the host computer system.

After the test files were loaded onto the host computer, the full set of
tests was processed by the Ada implementation.

Test results were transferred via the NFS ethernet to a Sun 3 system and
were printed from that system.

Testing was performed using command scripts provided by the customer and
reviewed by the validation team. See Appendix B for a complete listing of
the processing options for this implementation. It also indicates the
default options. The options invoked explicitly for validation testing
during this test were:

3-2

TRy e/ T T T e T T T T = o ——= pugu—t

PROCESSING INFORMATION

Switch Effect
-fE Generate error file for the Ada listing utility.
~-fI Ignore compilation errors and continue generating

code for legal units within the same compilation
file (for test EA1003B).

-£fQ Suppress "added to library" and "Generating code
for" information messages.

~fw Suppress informative warning messages.

-1 Produce a listing file.

The following switches appear as modifiers to the -1 command,
in the form -lcps:

~C Produce continuous form Ada 1listings (no page
headers).

-p Obey PRAGMA PAGE directives within program even
though the -c flag says not to generate page
breaks.

~s Output Ada 1listing to the standard output file

instead of to a disk file.

Test output, compiler and linker listings, and job logs were captured on
magnetic tape and archived at the AVF. The listings examined on-site by
the validation team were also archived.

APPENDIX A

MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in [UG89].

parameter values are presented in two tables.

The

The first table lists the

values that are defined in terms of the maximum input-line length, which is

the value for $MAX IN LEN—also listed here.

These values are expressed

here as Ada string aggregates, where "V" represents the maximum input-line

length.

‘Macro Parameter Macro Value
$MAX IN LEN 200 — Value of V
$BIG_ID1 (1..v-1 => 'a’, V= '1’)
$BIG_ID2 (1..V-1 => ‘a7, V=> 127)
$BIG_ID3 (1..v/2 = 'a’) & '3’ &
(1..v=-1-v/2 => 'A’)
$BIG_ID4 (1..V/2 => 'A’) & '4’ &
- (1..V-1-v/2 => 'A’)
SBIG_INT_LIT (1..v=3 => '0’) & "298"
$BIG_REAL LIT (1..v-5 => r0’) & "690.0"
$BIG_STRING1 ™ & (1..V/2 => 'A') &'
$BIG_STRING2 g (1..V-1-V/2 = A7) & 'L & '™
$BLANKS (1..v=20 => * *)

$MAX LEN INT BASED LITERAL
"2:" & (1..V=5 => ’0’) & "11:"

A-1

MACRO PARAMETERS

Macro Parameter Macro Value

$MAX_LEN REAL BASED LITERAL
"16:" & (1..v-7 => '0’) & "F.E:"

$MAX STRING LITERAL '"’ & (1..V-2 => 'A’) & '’

The following table lists all of the other macro parameters and their
respective values.

Macro Parameter Macro Value
SACC_SIZE 32 .
SALIGNMENT 4
$COUNT_LAST 2 147 483 646

$DEFAULT MEM SIZE 1024
$DEFAULT STOR UNIT 8

$DEFAULT SYS_NAME BBN PSOS

$DELTA_DOC 2.0%*(-31)
SENTRY_ADDRESS 16404
SENTRY_ADDRESS1 16414
‘ SENTRY_ADDRESS2 16424
$FIELD LAST 2147 483 647
$FILE_TERMINATOR v
$FIXED NAME NO_SUCH_FIXED TYPE
$FLOAT_NAME NO_SUH_FLOAT TYPE
$FORM_STRING bk
$FORM_STRING2 "CANINOT_RESTRICT FILE CAPACITY"

$GREATER THAN DURATION
90_000.0

A-2

MACRO PARAMETERS

Macro Parameter Macro Value

SGREATER THAN DURATION BASE LAST

IO OOU 000.0
$GREATER THAN FLOAT BASE LAST

1.8E+308
SGREATER THAN FLOAT SAFE LARGE

1.0E308
$GREATER THAN SHORT FLOAT SAFE LARGE

1.0E308
$HIGH PRIORITY 20
$ILLEGAL EXTERNAL FILE NAMEL

/NODIRECTORY/FILENAMEL
$ILLEGAL EXTERNAL FILE NAME2

/NODIRECTORY,/FILENAME2
$INAPPROPRIATE LINE LENGTH

-1
$INAPPROPRIATE_PAGE LENGTH

-1
$INCLUDE_PRAGMAL PRAGMA INCLUDE ("A28006D1.ADA")
$INCLUDE_PRAGMA2 PRAGMA INCLUDE ("B28006F1.ADA")
$INTEGER FIRST -2147483648
$INTEGER LAST 2147483647

SINTEGER LAST PLUS 1 2 147 483 648
SINTERFACE LANGUAGE C
$LESS_THAN DURATION -90_000.0

$LESS_THAN DURATION BASE FIRST
-10_000_000.0

SLINE_TERMINATOR ASCII.LF
SLOW_PRIORITY 1

SMACHINE CODE_STATEMENT
NULL;

A-3

-

MACRO PARAMETERS

Macro Parameter

Macro Value

$MACHINE CODE_TYPE
$MANTISSA DOC

$MAX DIGITS

$MAX INT
$MAX INT PLUS 1

$MIN INT

SNAME

$NAME LIST

SNAME SPECIFICATION1
$NAME_SPECIFICATION2
$NAME SPECIFICATION3
$NEG_BASED INT
$NEW_MEM SIZE
$NEW_STOR UNIT
$NEW_SYS NAME
$PAGE_TERMINATOR
$RECORD_DEFINITION
$RECORD_NAME

$TASK SIZE
$TASK_STORAGE SIZE
STICK

$VARIABLE ADDRESS
$VARIABLE ADDRESS1
$VARIABLE ADDRESS2
$YOUR_PRAGMA

INSTRUCTION

31

15

2147483647

2 147_483 648

~2147483648

BYTE INTEGER

BBN_PSOS
/tworld/pacveval /X2120A
/tsworld/pacvc/val /X2120B
/t/world/pacve/val /X3119A
16#FFFFFFFE#

1024

8

BBN PSOS

ASCII LF&ASCII.FF

NEW INTEGER;
NO_SUCH_MACHINE CODE_TYPE
32

2048

1.0

FCNDECL.VAR_ADDRESS
FONDECL.VAR_ADDRESS1
FONDECL.VAR_ADDRESS2
NO_SUCH_PRAGMA

A-4

APPENDIX B
COMPILATION SYSTEM OPTIONS

The compiler options of this Ada implementation, as described in this
Appendix, are provided by the customer. Unless specifically noted
otherwise, references in this appendix are to compiler documentation and
not to this report.

B-1

-£D

-t

MERIDIAN ADA COMPILER OPTIONS

Generate debugging output. The -fD option causes the
compiler to generate the appropriate code and data for
operation with the Meridian Ada Debugger.

Annotate assembly language listing. The -fe option
causes the compiler to annotate an assembly language
output file. The output is supplemented by comments
containing the Ad: source statesents corresponding to the
assembly lanquage code sectiona writtan by the code
generator. To use this option, the -5 option must also
be specified, othervise the annotated file is not emitted.

Generate error log file. The ~fE option causes the
compiler to generate a log file containing all the error
nessages and warning nessages produced during compilation.
The error log file has the same name as the source file,
with the extension .err. For axample, the arror log file
for simple.ada is simple.err. The error log file is
placed in the current vorking directory. 1In the absence
of the -fE option, the error log information is sent to
the standard ocutput stream.

Ignore compilation errors and continue generating code
for legal units within the same compilation file.

Generate exception location intormation. The -fL option
causes location information (source file names and line
numbers) to be maintained for internal checks. This
information is useful for debugging in the event that an
"Exception never handled” message appears when an
exception propagates out of the main program. This flag
causes the code to be somevhat larger. If -fL is not
used, exceptions that propagate out of the m:ain program
will behave in the same way, but no location information
will be printed with the "Exception never handled”
nessage.

Suppress numeric checking. The -fN flag suppresses two
kinds of numeric checks for the entire compilation:
division_check and overflow_check. These checks are
described in section 11.7 of the LRM. This flag reduces

the size of the code.

Suppress “added to library” and "Generating code for*
information messages normally output by the compiler.

Suppress all checks. The ~-fs flag suppresses all

B-2

-fw

automatic checking, including numeric checking. This
flag is equivalent to using pragma suppress on all checks.
This flag reduces the size of the code, and is good for
producing “production quality” code or for benchmarking
the compiler. Nota that there is a rslated ada option,
=fN to suppress only cartain kinds of numeric checks.

Inhibit library update. The ~fU option inhibits library
updates. This is of use in conjunction with the -8
option. Cartain rastrictions apply to use of this option.

Compile verbosely. The compiler prints the name of each
subprogram, package, or generic as it is compiled.
Information about the symbol table space remaining
following compilation of the named entity is also printed
in the form "{nK)".

Suppress wvarning sessages. With this option, the
compiler does not print varning messages about ignored
Pragras, exceptions that are certain to be raised at
run-time, or other potential problems that the compiler
is othervise forbidden to deem as errors by the LRM.

The ~g option instructs the compiler to run an additional
optimization pass. The optimizer removes common
sub-expressions, dead code and unnscessary jumps. It
also does loop optimizations.

Keep internal form file. This option is used in
conjunction with the Optimizer. Without this option, the
compiler deletes internal form files following code
generation.

~lmodifiers

Generate listing file. The ~1 option causes the compiler
to create a listing. Optional modifiers can be given to
affect the listing format. You can use none or any
combination of the following modifiers:

¢ Use continuous listing format. The listing by
dafault contains a header on sach page. Specifying
-lc suppresses both pagination and header output,
producing a continuous listing.

p Obey pragma page directives. Specifying -lp is only
neaningful if -lc has also been given. Normally -ic
suppresses all pagination, whereas -lcp suppresses
all pagination except whers explicitly called for
within the source file vith a pragma page directive.

s Use standard output. The listing by default is
written to a file with the same name as the source
file and the extension .lst, as in simple.lst from
simple.ada. Specifying -ls causes the listing Zile

B~3

COMPILATION SYSTEM OPTIONS

to be written to the standard ocutput stream instead.

t Ganerate rslgvant taxt output only. The listing by
dsfault contains the entire source program as vell
as interspersed error messages and varning sessages.
Specifying -1t causes the compiler to list only the
source lines to wvhich error messages or varning
neassages apply, followed by the messages themselves.

The default listing file generated has the same name as
the source file, with the extension .lst. PFor example,
the default listing file produced for simple.ada has the
name simple.lst. The listing file is placed in the
current working directory. Note: -1 also causes an
error log file to be produced, as with the -fE optien.

-L library-name

Default: ada.lid

Use alternate library. The -L option specifies an
alternative name for ths program library.

No compile. This option causes the ada command to do a
"dry run” of the compilation process. The command
invoked for each processing step is printed. This is
similar to the -P option, but no actual processing is
performed.

Print compile. This option causes the ada command to
print out the command invoked for each processing step
as it is performed.

Produce assembly code. Causes the code generator to

produce an assembly language source file and to halt
furcther processing.

B-4

St S

COMPILATION SYSTEM OPTIONS

LINKER OPTIONS

The linker options of this Ada inplementation, as described in this
Appendix, are provided by the customer. Unless specifically noted

otherwise, references in this appendix are to linker documentation and not
to this report.

B-5

-A

MERIDIAN ADA LINKER OPTIONS

Aggressively inline. This option instructs the optimizer
to aggressively inline subprograms vhen used in addition
to the -G option. Typically, this mesans that subp

that are only called once are inlined. If only the -G
option is used, only subprograms for wviich pragma inline
has been specified are inlined.

-Cc compiler-program-name

-9

Default: (as stored in program library)

Use alternate compiler. The ~c option specifies the
complete (non relative) directory path to the Meridian
Ada compiler. This option overrides the compiler
program name stored in the program library. The -c
option is intended for use in cross-compiler
configurations, although under such circumstances, an
appropriate library configuration is normally used
instead.

Suppress main program generation step. The -f option
suppresses the creation and addaitional code generation
steps for the temporary main program file. The -f option
can be used when a simple change has been made to the
body of a compilation unit. If unit elaboration order

is changed, or if the specification of a unit is changed,
or if new units are added, then this option should not be
used.

Perform global optimization only. The =g option causes
bamp to invoke the global optimizer on your program.
Compilation units to be optimized globally must have been
compiled with the ada =K option.

Perform global and local optimization. The -G option
causes bamp to perform both global and local optimization
on your program. This includes performing pragma inline.
As with the ~g option, compilation units to be optimizad
nust have been compiled with the ada ~K option.

Link the program with a version of the tasking run-time
Which supports pre-emptive task scheduling. This option
produces code which handles interrupts more quickly, but
has a slight negative impact on performance in general.

=L library~name

-n

Default: ada.lid

Use alternats library. The -L option specifies the name
of the prograa library to be consulted by the bamp
program. This option overridas the default library name.

No link. The -n option suppresses actual cbject file
linkage, but creates and performs code generation on the
main program file.

No operations. The ~N option causes the bamp command to
do a “dry run®"; it prints out the actions it takes to
generate the axecutable progras, but does not actually
perfora those actions. The same kind of information is
printed by the =P option.

-0 output-file-name

-v

Default: file

Use alternate executable file ocutput name. The -0 option
specifies the name of the executable program file written
by the bamp command. This option overrides the default
output file name.

Print operstions. The -P option causas the barp command
to print out the actions it takes to generate the
executable program as the actions are performed.

Link verbosealy. The -v option causes the bamp command to
print out information about what actions it takes in
building the main progras.

Suppress warnings. This option allows you to suppress
wvarnings froam the optimizer.

B-7

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to
implementation-dependent pragmas, to certain machine-dependent conventions
as mentioned in Chapter 13 of the Ada Standard, and to certain allowed
restrictions on representation clauses. The implementation~dependent
characteristics of this Ada implementation, as described in this Appendix,
are provided by the customer. Unless specifically noted otherwise,
references in this Appendix are to compiler documentation and not to this
report. Implementation-specific portions of the package STANDARD, which
are not a part of Appendix F, are:

package STANDARD is
type INTEGER is range -2 147_483 648 .. 2 147 483 _647;
type SHORT INTEGER is range -32768 .. 32767; —
type LONG INTEGER is range -2 147 483 648 .. 2 147 483 647;
type BYTE INTEGER is range -128 ., 127;

type FLOAT is digits 15
range -1.79769313486231E+308 .. 1.79769313486231E+308;

type DURATION is delta 0.0001 range -86400.0 .. 86400.0;

c-1

AFPENDIX F OF THE Ada STANDARD

This appendix lists implementation-dependent charactenistics of Meridian
Adl.NgnﬂmMmmptwdhgcppa\dmmnppmﬁx-aM

Appendix F in order 10 with the Reference Manual for the Ada
Programnung Language* ANS]/MIL-STD-1815A which smates that
this appendix be named Appendix F.

Impienented Chapuer 13 festures include length clauses, enumeration
representation clauses, record representation clauses, address ciauses,

interrupts, peckage system, machine code nsertions, pragma interface,
and unchecked programmng.

F.1 Pragmas

The impiemented pre-defined pragmas are:
alsborata See the LRM section 105
interface SeesectionF.l.1

list See the LRM Appendix B
pack See section F.12
page See the LRM Appendix B

priozaty Seethe LRM Appendix B
suppress Seesection F.13

anline See the LRM secnon 6.3.2 This pragma 1s not actuallv effective
uniess vou compule/ link your program using the global
opurruzer,

The remairung pre-defined pragmas are accepted, but presently 1gnored:

controlled optimize systam name
shared storage_unit mamory size

Named parameter notation for pragmas 1s not supported.

When illegal parameter forms are encountered at compue tune. the
compiler issues a warrung message rather than an error. as required by
the Ada language defirution. Refer to the LRM Appendix B for additonal
nformaton about the pre-defined pragmas.

F.1.1 Pragma interface

The form of pragma interface 1n Mendian Ada is:
pragme interface(legusge subprogram [, “lUnk-name’))

32BN DSOS Comprer user s Guoe 0veea 8/28/7 Poge 179
c-2

Aopencx F impremensosion-Oepencery Charactenstics

where
language

subprogram

livk-name

APPENDIX F OF THE Ada STANDARD

This is the irserface one of the names assembly,
builtia, ¢, or internal. The names builtia and isteraal are
reservd for use by Mendian compiler mamtamers mn
run-tme support packages.

This is the name of a subprogram to which the pragma
incexface sppliss.

This is an optional string literal spacifying the name of the
nm-AduquMbhm

named in the sscond parameter. If link-name is
mmd.ﬁmhnkmddmlbnhmof
transiated to lowercase. Depending on the
speafied, some sutomatic modificatons may be made ©
the link-name to produce the actual object code symbol
name that is generated whenever references are made to

the corresponding Ada subprogram. The object code
symbol generated for fink-neme 15 aiwavy tnmh-d to

upper case.

It is appropriate to use the optional link-name parameter to
g:gmn antarface only when the mterface subprogram

a name that does not correspond at all to its Ada
wdentifier or when the interface subprogram name cannot
be given using rules for constructing Ada wdentifiers (e.g.,
if the name contains a ‘S’ character).

The charscternistics of object code symbols generated for each interface

language are:
assembly
builtin

The object code symbol is the same as link-name

The object code svmbol is the same as link-name, but prefixed with
two underscore characters (“__"). This ianguage interface

19 reserved for special interfaces defined by Mendian

Software Systems, inc. The builtin interface 15 presendy

used to declare certain low-levei run-time operations

whose names must not conflict with programmer-defined

or language svstem defined names.

The object code symbol is othe same as link-name, but with one
underscore character (“_") prepended. This 1s the
convention used by the C compiler.

No object code symbol is generated for an internal language
interface; this language mnterface 13 reserved for special
interfaces defined by Mendian Software Syswems. Inc. The
internal interface 15 presently used to deciare ceraun
machine-ievel bit operatons.

No automatic data conversions are performed on parameters of any
interface subprograms. It is up to the programmer 1o ensure that calling
conventions match and that anv necessary data conversions take place
when cailing interface subprograms.

~oge i80

Aevesc 6872 BBN DSOS Comorer user s Guce
C-3

APPENDIX F OF THE Ada STANDARD

Afeses

A pragma intecface may sppesr within the same declarstive part as
the subprogram to which the pragma intacrface ies, followmg the
mddnnm“mnhﬁntud subprogram. A
pragma intexfacs that appiies © & subprogram declared in a package
spanﬁnﬁmmmmmhmpmpm“h
subprogram deciaration; the pragma intarface may NOt Appear m the
peckag body in this case. A pragma intarface declaration for mther a
mmwmm.wmmmmwmhm.
part of a package specification.

Pragma intarface for library urts is not supporsed.

Rafer © the LRM section 13.9 for additional information about pragma
inctarface.

F.1.2 Pragma Pack

Pragma pack is impiemented for compomte tvpes (records and arrays).

Pragma pack is perutied following the composite type declaration to
which 1t applies, provided that the pragma occurs withun the same
deciarative part as the composite type deciaranon, before any objects or
components of the composite type are deciared.

Note that the declarative part restnction means that the type deciaration

and accompanymg pragma pack cannot be spiit across a package
speaification and body.

The effect of pragma pack is to nururruze storage consumpton by
discrete component types whose ranges perout packing. Use of pragma
pack does not defeat allocations of alignunent storage gaps for some
record types. Pragma pack does not affect the representations of real

tvpes, pre-defined integer types, and access types.

F.1.3 Pragma Suppress

Pragma suppress 1s unpiemented as descnbed in the LRM section 11.7,
with these differences:

® Presently, division_check and overflow_check must be su
via a compiler flag, ~£N; pragma suppress 13 1gnored for these two
numenc checks.

o The opuonal “oN =>” parameter name notation for pragma
suppress is ignored.

¢ The optional second parameter to pragma suppress 1s ignored; the
pragma aiwavs apples to the entire scope in which 1t appears.

e S e

F.2 Attributes

All attnbutes descnbed in the LRM Appendix A are suppored.

38BN £5CS Comouer Lser s Guge Jeveea 87282 2o0pe 181

C-4

APPENDIX F OF THE Ada STANDARD

Appencix f_impeermentanon-Oepencent Choroctensics

F.3 Standard Types
Additional standard types are defined \n Mendian Ada:
® bvie_integer
¢ short_integer

® long_ integer
“he stanaara numenc tvpes are defned as:

typPe byte_integer is range -120 .. 127:

tyYpe short_intager is range -32768 .. 32767:
LYPe intager A8 Tange ~-2147483648 .. I147883647:
typPe iong_intager 1s range -23147403648 . 2147403647:

type float 18 dugits 18
zange ~1.79769313406231K¢300 .. 1.7T9769313406231E+308:

type duration is delta 0.0001 range -96400.0000
06400.0000:

L e]
F.4 Package System

The specification of package systems:

package systam 13
tYpe adcdress 18 new long_integer:

type name 1s (bbn_psos):

Systen_nase ¢ CORSTAAt name ‘= bbn_psos:
storage_unit : constant ‘e §:
mmmory_size ' constant :e 1024:

-« Systam-Dependent Namad Numbers

;mn_ant : constant ‘w -2147483649-
|ax_int : constant :e 2147483647
max_digate . sonstant :w 18

SAX BANtisss - constant ‘e 31
fine_delta . constant :w 2.0 e* (~31):
Taes . oonstant w 1.3

== Cther Systam-Dependent Sec.azations
sSubtype Priority is integer range -

“he velue ot sy-m.u-aor,'_n.:. 1S DresentiVv mesning: sy

2=

Jame 30 ‘evae0 " ° T

11

BN E3CS Comoner _ser s Suioe

APPENDIX F OF THE Ada STANDARD

Resinctions on Represervotion i ses

F.5 Restrictions on Representation Clauses

F.5.1 Length Clauses

.

A sipe specification (¢’ s1ze) is reyected if fewer bits are specified than
can accommodate the type. The ounirum sime of a » type may
be subject to application of pragou pack. It is to speaify
Eumfwmgudin.pmp.c.g.ﬂorﬂnnnpo. .288,

, becsuse of requiremnents imposed by the Ada language
definition, & full 32-bit range of unmgned values, 1Le. 0. . (20*32) -2,
cannot be defined, even usng s size speafication.

The specification of collection size (¢t storage_size) is evaluawd at
run-ume when the scope of the type © which the length clause applies 1
entered, and is therefore subject to reyection (Via storage_arror) based
on available storage at the time the allocation is made. A coilecton may
nclude storage used for run-time sdmarustration of the coliection, and
therefore shouid not be expected to accommodate a specific number of
obrects. Furthermore, certain classes of objects such as unconstramned
discnmmant array components of records may be ailocated outnde a
gven collection, 30 & collechon may accommodate more objects than

rmught be expected.

The speaification of storage for & task activation (t’ storage_size)is
evaluated at run-tme when a task to which the length clause applies1s
activated, and is therefore subject to reyection (Via storage_error)
based on available storage at the time the ailocation 1s made. Storage
reserved for & task activation is separate from storage needed for any
collections defined within a task body.

The speaification of stail for a fixed point type (¢’ small) is subject only
to restnictions defined in the LRM secton 13

F.5.2 Enumeration Representation Clauses

The internal code for the literal of an enumeraton tvpe named in an
enumeration representation clause must be in the range of
scandard.integer,

The value of an internai code sy be obtamed bv appiving an
appropnate instantiation of unchecked_conversion to an Mieger tvpe.

F.5.3 Record Representation Clauses

The storage urut offset (the at static_simpie_expression part) is gven
terms of 8-bit storage uruts and must be even.

A bit posihon (the range part) applied to a discrete type component may
be in the range 0. . 15, with 0 being the least sigruficant bit of a
component. A range specification may not specify a size smaller than can
accommodate the component. A range specification for a component not
accomunodating bit paciung may have a hugher upper bound as
appropnate (e.g., 0. . 31 for a discnmmant stxang component). Refer to

38N o30S Comoeer ser s Guoe Jovasa §/28/92 200e 183

APPENDIX F OF THE Ada STANDARD

Appencix F_implemenialion-Oepencient Charoctensics

the interna) date represantation of & given comporent in detarsining the
compone ize and asngrang offses.

of discrete for which bit posi are specified may
nC:w-‘.l&hit types positions
The value of an aligranent clsuse (the optional st mod part) must evaluatse
to 1, 2, 4, or 8, and may not be staller than the highest aligrenent
requrred by any component of the record. On the CLIX operating system,

this means that scow records may not have alignment clsuses smaller
than 2.

F.54 Addr_oa Clauses

An address clsuse may be supplied for an objeit (whether constant or
vanabie) or a task entry, but not for a subprogram, peckage, or task urut
nuu-;??ofmmchmmyp(ndforn task entry 1s gven m
section .

An address expresmon for an object 15 a 32-bit segmented memory
address of type systam. address.

F.5.5 Interrupts
A task entry’s address clause can be used to associate the entry with a

pSOS sigral. Values in the range 0. . 31 are meaningful, and represent
the interrupts cotresponding o those values.

An interrupt entry may not have any parameters.

F.5.6 Change of Representation

There are no restnctions for changes of representation effected by means
of type conversion.

L]
F.6 Implementation-Dependent Components

No names are generated by the implementation to denote
unpiementaton-dependent components.

L~~~ "~ -~
F.7 Unchecked Conversions
There are no restnctions on the use of unahecked conversion

Conversions between obrwects whose s1izes do not conform mayv resuit in
storage areas with undefined values.

“oge 84 o0 /M 3AN BSOS Comoner user's Guioe
C-7

APPENDIX F OF THE Ada STANDARD

Sayoe Une ond Ieriierigeage-

e
F.8 Input-Output Packages
A suranary of the implemantation-dependant input-output
characenstics 12
¢ in cails 0 open and areats, the frm paramewy must be the empty
string (the defauit vaiue).
¢ More than ane intermal file can be associated with & singis external
file for reading anly. For writing, only one ovternal £ile may be

associated with an external file; Do not use reset 1o gt around this
rule

©¢ Temporary sequantial and direct files are given names. Temporary
files are deleted when they are cloged.

® File I/0 is buffered; text files associated with wermunal devices are
line-buffered.

¢ The packages sequential_io and direct_io cannot be
mstantated with unconstramed compomie types or record types
wnth discrirunants without defauits.

“
F.9 Source Line and identifier Lengths

Source lines and identifiers m Ada source programs are presently limuted
to 200 characters in length.

48BN p50S Comouer wser s Guae Revesc §/20/92 2o0ge 185
. c-8

