®)

NAVAL POSTGRADUATE SCHOOL
Monterey, California

A257 339

AD-A —
[T \\\II\\\\I\l\Hll\ DTIC

ELECTE
NOv2 3 ISQZD

- THESIS

A Relational/Object-Oriented Database Management System:
R/OODBMS
by
Ronald L. Spear
September 1992

Thesis Advisor: Dr. Michael L. Nelson

Approved for public release; distribution is unlimited.

92-29
'lll‘lllll’lnlllﬂllﬂlﬂlﬂllllldllﬂ:l!ll

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

a REPOR ORITY CLASSIFICATION 0. RESTRIC TIVE MARKINGS
UNCLASSIFIED
a SECURITY CL2 ATION AUTRORITY 3. OIS TRIBUTION/AVAILABILITY OF REFORT
TS AT oW ETED R ST App{OVC_d fqr pub-hc.release;
distribution is unlimited
4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. GA | [e) (S)
6a. NAME OF PERFORMING ORGANIZATION 6"(1'/' My 7a. 1 |
Computer Science Dept. i applicacie
Naval Postgraduate School 37 Naval Postgraduate School
6¢. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)
Monterey, CA 93943-5000 Monterey, CA 93943-5000
Za. NAME OF FUNDING/SPONSORN [8b. OF-FICE SYMBOL | 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER |
ORGANIZATION (if applicable)
8c. ADDRESS (City, State, and ZIP Code) 10_SOURCE OF FUNDING NUMBERS
PROGHAN PROJECT TASK WCRK UNIT
ELEMENT NO. | NO. NO. ACCESSION NO
11. TITLE (Include Security Classification)
A Relational/Object-Oriented Database Management System: RIOODBMS (U)
2. PERSONAL AUTHOR(S)
Spear, Ronald L.
T3a 736, TIME COVERED 14. DATE OF REPORT (Year, Month, Day) |15. PAGE COUNT

Master’s Thesis FROM 8/90 TO 9/92 1992 September 24
16. SUPPLEMENTARY NOTATION

The views expressed in this thesis are those of the author and do not reflect the official
policy or position of the Department of Defense or the United States Government.

17, COSATI CODES 18. SUBJECT TERMS (Continue on reversa if nacassary and identify by block number)
FIELD GROUP sus.croup | database, relational model, object-oriented model, object-oriented program-
ming, heterogeneous database

19. ABSTRACT (Continue on reversa if necessary and identify by block number)

During the last decade, the business sector has become increasingly reliant upon information management. This
trend will most likely continue. Deficiencies/constraints in conventional database management systems continue to
become more apparent as this reliance continues to grow. Primary areas of deficiency are in modeling, storing, and
managing increasingly complex information as in CAD and CASE among others.

The purpose of this thesis is to implement a combined relational/object-oriented database management system that
will overcome these deficiencies/constraints. Three possible approaches to such a system exist: build the system from
scratch, build object-oriented capabilities on top of an existing relational system, or build relational capabilities on
top of an existing object-oriented system. The last approach is the one chosen for this work. This thesis expands pre-
vious work in this area and uses a commercial object-oriented database management system, IDB, in its implemen-
tation.

. / . CATION
[} UNCLASSIFIED/UNLIMITED [] SAMEASRPT. [7] DTIC USERS UNCLASSIFIED

223 . NAME OF RESPONSIBLE INDIVIDUAT 22b. TEL%PHONE &Include Area Code) |22c.
Dr. Michael L. Nelson (408) 646-2026 CS/Ne

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obs?leta UNCLASSIFIED
1

Approved for public release; distribution is unlimited

A Relational/Object-Oriented Database Management System:
R/OODBMS

by
Ronald L. Spear
Captain, United States Army
B. A., Concordia College , 1983

Submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1992

Author: /
— Ronald L.

Approved By: W«/é —//-—- /f'/«&

Dr. Michael L. Nelson Thesis Advisor

i

Prof. C. Théflas Wu, Second Reader

PERRN/N| %

Robert B. McGhee, Chairman,
Department of Computer Science

ii

ABSTRACT

During the last decade, the business sector has become increasingly reliant upon
information management. This trend will most likely continue. Deficiencies/constraints in
conventional database management systems continue to become more apparent as this
reliance continues to grow. Primary areas of deficiency are in modeling, storing, and
managing increasingly complex information as in CAD and CASE among others.

The purpose of this thesis is to implement a combined relational/object-oriented
database management system that will overcome these deficiencies/constraints. Three
possible approaches to such a system exist: build the system from scratch, build object-
oriented capabilities on top of an existing relational system, or build relational capabilities
on top of an existing object-oriented system. The last approach is the one chosen for this
work. This thesis expands previous work in this area and uses a commercial object-oriented

database management system, IDB, in its implementation.

DTIC QUALITY I5FLCTED 4

: Keousl- rpv .
NTIS eRaal
PPEC TAS 0O
Unvirac une ed 0
Justif.eation |

Bv__ .
g}stribntxon[
Availability _odes

lAvmil and]or
:Dist | Special

l

ii

i

A

TABLE OF CONTENTS

INTRODUCTION 1
MOTIVATIONcorreincrintcetnenrnrsecstensnnssasssssesesssssnsssesessssasenessene 1

B. OBJECTIVES OF A RELATIONAL/OBJECT-ORIENTED
DATABASE SYSTEM.......cotiriiiniiininenitneninteissssssesssessessessesssssssensessasens 2
C. RESEARCH OVERVIEW.......oiiiiiienentenierennesssesecssessesesansnssessessannes 3
SURVEY OF THE LITURATURE 4
A. GENERAL ...ttt ctsncaceessssssnsstesesssesssnnssessssssessanennes 4
B. OBJECT-ORIENTED PROGRAMMING CONCEPTS.........cccecevrevirennane 4
1. ClaSSES/ODJECLSccvrerecrirmenrearerecsnencesersesssssesseseessssssssansessessesnesaans 5
2 MELhOdS......cvvierirtcieeritctnteer st e 7
3. | INhETItanCe......couermeeiiietictiientiecceerece st ce e es e s sessse s sse e snaa s 8
4 Encapsulation.........c.coviiiccinneennoniinieniccrsnesssscsssssesesnnenssessenaeses 12
C. RELATIONAL DATABASE MANAGEMENT SYSTEMS 13
1. Relational Model Concepts.........ccevereeerrenreererreesersersersaessereessesaenns 14
a. ReIations........ccoiinininiiiniicieinerreesecersccreessesneseeseseens 14
b. Schemas and CONSHAINLS..........coceurnvereeereereerssenseesnesesnssnnne 17
c. OPEIAtIONScoveirieieirneecnssviuenneesesaesessseseorersssssesaessssseanes 18
2. Formal Query Languages............ccceuevererunvenesenenenienenresnessseesenas 19
a. Relational Algebracccovuerureeicuenuiesecereenenseceesessnenaens 19
) b. Relational CalCulUscc.couecuercenserncuscnnsersensersnnserinens 24
3. Other Query Languagescoceeevvevieenrernnneneseescceereesensessesessaeens 25
| a SQL ottt sesassss et sessosnesasssssssaane 25
b QUEL ...ttt sssssssesesassssnons 26
c QBE ...t sttt ese e e sass s e saees 27

iv

1L

D. OBJECT-ORIENTED DATABASES ... 27
Object-Oriented Model Conceptsc..ouerevvecreeenecenrnrereeennennne 28
Object-Oriented Database Systems..............c.coeceevereeerernenirnerrennens 29
IDB Object Database OVEIVIEW............uecvveeeeereeveenrereeveneeseereens 31
a. General Information........c.ccceveviiirieesnneeccenrenennerneseesneenens 31
b. Clusters and SITUCIUTES........ccccceveruerieinrienerensesneneeessnsseas 32
C. Nodes, References and Attributes..........cocceevcvnninvuiennnnnncne 35
d. Transactionscececeveceuennes eeressesreeeeree e saaeresae e srneseans 38
Other SYSIEMScuveeriiiiiiniiiectrrreerceesaectesessessesseesesssesaesseseenees 39
a. ONTOS/VDASEoveneriiiiieiierincsiesesresiseseesssesasaessssessenes 39
b. GEMSLIONE.... oottt ssbe st sessesssaeassns 40
c. POSTGRES........cccoviirtriineecineerieeesesrencsnresesssscseessacs 42

E. PREVIOUS WORKoooiviitiitiitiintniisicenncsie e esescosessassesssncssanes 43
ROOMSonninmiiseieesectssestesssssaesessesssesessensassssssssensasesan 43
Implementing Relational Operations in Prograph 44

DETAILED PROBLEM STATEMENT 45

A. GENERALcootintrrciesiintcinisnsestesescese e e stssssse st sasnssssnssasasssssansns 45

B. RELATIONAL DATABASE LIMITATIONSoocovrerenennesceceenne 45
Simple Data TYPES......ccccoererrmretrieereeeereeeeseesnessesnesserssasessssssessenees 45
Tuple FUnCHiONccoviicmiiiiiinicctistnecnec et sranensesanessessscnnes 47
INRETItANCE.........ooveririrereeincini et ere e sses e sae e sesansnas 48
Impedance MismatChi.........cooueviiiiiicniinnniiniicintirenscsssssenesesanes 49

C. OBJECT-ORIENTED DATABASE LIMITATIONS...........ccccecvreceiunnes 49
Mathematical Foundationccceceeinininccncccrcnscnacee cverseressenaes 50
Standardization...........cceeereecnierinenieninsencreesensensesessesessssessessssesnnns 50
Relational Operations..........cccceeceveeeerreeeteneesernnenennersressessesaesssseeseces 51

IV.

4, Other Problemscoviiiniriniiiniictieneniccsnenesesreisesssnesnens 52

D. A COMBINED SYSTEM ...ttt csnsasnacees 52
1. Desirable Propertiesoccveviireerrcueneenerreseesecessssesennsssessessessens 52

2. P0ssible APPrOachescocoevicereiriiceinrnrenricesecsesneesesassesssessonnes 53

E. WHY THIS APPROACH ...ttt retescsnsneesissessssenenens 53
IMPLEMENTATION OF AN R/OODBMS IN IDB 55
A THE SYSTEM DESIGN.......cciiiirriiiinccinnenescssisssesssiisssssssssnies 55
B. ORIENTATION TO R/OODBMS.........coirccninrcririniensnasnssenenenns 58
1. The Database DIr€CtOryccceeveerrerreenreesrercreseesersssnesnsesensssaenns 58

2. Inside a R/OODBMS Database...........ccoeevveerrverirmrscsresnevssenenenn, 59

C. RELATIONAL METHODScovveiiitirninncisinesniecsissessernnsessesnes 62
1. UNION..cooieiiriririnriesiesreessessssresseesssesesnesssasessasnssssss s stessanaserssonessnss 64

2 DIffETENCE.......coviiiiiiniiririicecneintiincssirist s seseessaessssanesnens 66

3 SEIECHON.......ciriiiiiriitie vt sn s sr s ensnssnanes 68

4, Cartesian Product..........ecevruruence eerererrsetrerea e e e eresan s setaseeanaes 70

5 PrOJECHON ..ttt sttt saaesaessnesnenaes 74

D. THE DATABASE CLASSoireiiieniinnceenssensesessnsssssnsssssennes 76
1. AUTIDULES.....ccuirieicriieeeter et sacreas st es s esssssssas 76

2. Methods.....coiieiiiitiiticcctnccre e sb e ans 77

E. THE RELATION CLASS.......coooiiiinininniriienesinseenesesnasasssssessenes 78
1. AUTIDULES.........voeeiiniiriieieccnrrrereestsassisssssscersaeas e snesssesssnsnsnses 78

a Relation_name...........cvecccrivevincinninimmnniosiniinnsisnsesssesenns 78

b Attribute_namesocoiiiiemnninncnenineenneinessennns 78

c AUTIDULE_LYPES....ecnevrerirriteenstsessisissnseesssssssessnssssenes 79

d TUPIES ..ottt 79

e TUPIE_LYPE...oorrriiirireeircrttcnn ettt snenaas 80

vi

2 MEthOdS.....c.ovinviviniiiiiiititiccciniet et secnee e sasnes s 82
F. THE TUPLE CLASS ...ttt seseencssessssnsssssesesessens 82
1. AUTIDULES....vvinircniiiictierecr et eres et e seeresseseesessesaessessseassanes 83
2. MEhOAS......ocuiiviiiiiittectct ettt evese e st e e e 83
a. Initialize_tuple.......cceevervueevevueriniereienreteceenesareseetesesanenens 83
b. Insert_fields and Insert_tuplescccccevcrvceevinncnnercnnnnnne. 83
c. Comparison methods.......c..ceueeveeeinreenveneeneeseneececrenrenenenns 85
3. USer DEfINItIONSoiviimiiniruceeueseninaeseninestssesesssessossosssssseseencas 87
V. ALTERNATIVE PROJECT AND CARTESIAN PRODUCT
IMPLEMENTATIONS 88
A GENERAL ...ttt sssnsnsssscsisassesssesssssenes 88
B IDB TYPES ...ttt stseeestsssestesesessesssnsssesesssescasanses 89
C. THE RESULT_TUPLE SUBCLASSooocrirccneceeneecceneneeenes 90
D THE MODIFIED OPERATIONS............. et sttt e st sa et e sasaanens 91
1. PIOJECE oottt sttt steseeasesseseecassessesseaneasaesasaesnnas 91
2 CARTESIAN PRODUCT.........cocvnmrerrenrnencericenaeresernsesnssnssenns 95
E. CONCLUSIONS.oiitititieeseneneseesssssesesntssssesenssssssesassssensssassessans 97
V. CONCLUSION 29
A SUMMARY ..ottt e sssestsnsas s stesessesesssssssssasssssssenss 99
B CONCLUSIONScotiieiriinersenesrnacieseesetssessaesessssssssssssncssssssssseses 100
C. FUTURE RESEARCH SUGGESTIONS oo sesaeseaessanes 100
APPENDIX A : EXAMPLE IDL SCHEMA 104
APPENDIX B : DATABASE DIRECTORY SOURCE CODE 105
APPENDIX C : R/OODBMS SOURCE CODE 110

vii

APPENDIX D : A SAMPLE R/OODBMS DATABASE ASCII ¢

CLUSTER FILE 178
APPENDIX E : MODIFIED R/OODBMS SCHEMA 186
APPENDIX F : MODIFIED PROJECT 190
APPENDIX G : MODIFIED CARTESIAN PRODUCT 199
LIST OF REFERENCES 206
BIBLIOGRAPHY 211

INITTAL DISTRIBUTION LIST

212

viii

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17
Figure 18
Figure 19
Figure 20
Figure 21
Figure 22
Figure 23
Figure 24

LIST OF FIGURES

Class Definition Example.........cccccooveeineninneniniiniiiccrereeissessese oo 7
A Class and Its SUDCIASScocvvmrriviiineniiitiineneeeseee et ssee e sseaeans 9
A Simple Inheritance Hierarchycccocveeinrernrininccncencreesenenreesecrenienennan 9
A More Complex Inheritance Hierarchycocuoveceeinvcninvecrecnennenn... 10
A Multiple Inheritance LattiCe...........c.ccuereeueevrcricveenccerereeveaererenrrssesrereene... 11
Sample Relational Databasec.ccccooveirieinrnineninecereneneneeesecreenn, 15
Reordered Officer Relation............ccoeecceiiiinnentneninnsenesneesesesessessnnennns 16
Sample Relational Database Schema............ccoceeeeeevenereevenecereneeecenenene, 17
Example Result of a Select Operation............cccceeveercrurrerersercrrereescerenennanas 21
Example Result of a Project Operation...........cccceeververurvereerueseeneneneecsennenns 22
Union Compatible Relations and Result of Unionccccccoceverurvenrevennnn... 23
Result of Difference Operation on Relations in Figure 11........................... 24
OODBMS Manifestococecirineirrirrnenesrserresnnssressesssesasssesassessessessasanns 30
An Example of a Directed Attribute Graph [NMSWS83, p. 8]......ccccueuun.n. 35
A Class HIETarchyccccocevrverniicineenieseiiessecresiecesssssessseseesessasssessensessensons 36
Universal Types [PEI1C, P. 36]..c..uvereimreeiisiciisesctssinsssissnsnnnnnne 37
IDB Browser INterface..........cccceveeierieerveneerinrennenensencssesessessessnsssssnssssnsanns 56
Entering @ Databasecccoeviiirrreriereneneninneneninenneseesessessessesessssssesssansenee 59
The Relational Address DBccccvvnininnennncnrinonenncnsenesneenssensesesnennens 60
The Relation Ptl........cciiiiniiinenniiniienencisnnteniesiesnessessssessssssessssasnnns 61
Union QUETY ...coueiiiiiiiintcincniciecrectseseenessesseseessssenesesassnssessonessssansanes 65
Difference QUETYcoeeceevirciiieenrerertirineere e reeres e sreesessessesneiaesassasssessassens 67
SEIECt QUETY ..vcviriniiiiiriiitic ettt sesssnesessssassasasssessssnasaane 69
Cartesian Product QUETYccvvevereeeinenniiinienctnecinnccenaciessseessencsessennanas 71

ix

Figure 25
Figure 26

Figure 27
Figure 28
Figure 29
Figure 30
Figure 31
Figure 32
Figure 33
Figure 34
Figure 35
Figure 36
Figure 37

IDL Schema for Employee and Assigned Project Relations....................... 72

Example Resultant Relation Schema for a

Cartesian Product Operation.........ccoueuueeviereereereneiiiiesrecnessnesssesseneeeveenes 72
The Relation r3 and One of its TUPIES........cccvveverriiierneeeerrerrereeecees e 73
The Relation Pl ettt sre e 74
Cartesian Product of 13 and ptlcccccovioiniiieirce et 74
PrOJECt QUETYoevieiiniiiiice ettt ettt s se st s st s sn st esaa s e ene 75
Example Resultant Relation Schema for a Project Operation...................... 76
Person, Addr, Phone_number Class Definitionscceeeveevenereenceraannns 86
IDL Types [PE1C, P. 62].....cceeeeeiiereteeeeetecrecteseeeenreesnresserteesesessessesssnns 90
Resultant Relation Schema for Project and Cartesian Product.................... 91
Modified Project QUETYcocccccvveemirininerrenereeeeeereseesessesnessssassessesasaasssnes 92
Template for Overriding Insert_fields_b Method..........ccccceeevercnenerenenrenne 95
Modified Cartesian Product QUETYc.cccoeeienrevieiecreiececneieceseeesseseseseeane 96

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank Dr. Nelson, my advisor, for his support
and guidance. When I would get bogged down in the coding of our R#ZOODBMS, Dr.
Nelson provided much needed focus which 1:ad to a working system. Throughout the entire
thesis process, his thoughtful questions provoked my thinking which helped me to consider
more carefully what [was doing and what I needed to do. He could always be counted on
to provide timely and constructive feedback.

Thanks also goes to my second reader, Dr. Wu, for his time in effort in assisting with
my thesis. He was also quite helpful in the conducting the research necessary for the survey
of the literature.

Ellen Borison and John Nestor, of Persistent Data Systems, were of great assistance
in making the IDB learning curve a little less steep by providing excellent support. Thank
you both for your patience in answering my sometimes trivial questions.

A special thanks goes to my fellow Army officers of class CS11: CPT Walter, CPT
(P) Rothlisberger, CPT Nash, CPT Warren, CPT Tharpe, CPT Hoppe, CPT(P) Reese, and
CPT Weigeshoff. Without their fellowship, camaraderie, and assistance, I would never
have made it to the last quarter with a completed thesis. Their support was invaluable
during the first quarter of the curriculum when I had unfortunately missed a third of the
quarter.

Finally, I would like to thank my lovely wife Karin whose support has been
unwavering throughout our entire time here. Even during my longest days of studying, she
never complained and only supported my efforts to succeed here. I could not have done it
without her. Bryan and Devin could always be counted on to take my mind off studies when

we were together, thank you both.

xi

I. INTRODUCTION

A. MOTIVATION

The popularity of Object-Oriented Programming (OOP) is steadily increasing. As
more and more people develop an interest in the additional capabilities that arise from using
the object-oriented paradigm, they realize the flexibility and power that OOP provides for
representing real world objects in an intuitive and natural manner. This flexibility and high
level of abstraction provided by OOP constructs has lead many database professionals to
consider object-oriented concepts as they relate to database management systems (DBMS).

During the last decade, the business sector has become increasingly reliant upon
information. Information nmianagement and control pays dividends to businesses in terms of
increased power and revenue. In the coming decade, this reliance will surely increase. The
requirement to manage very large quantities of data more efficiently and to perform queries
on them rapidly is only part of the problem. The data that businesses wish to store and
manage is becoming increasingly complex.

Some specific areas that have an immediate need for a database to store and manage
complex data are computer aided design (CAD), computer aided software engineering
(CASE), computer-integrated manufacturing (CIM), and computer aided engineering. Data
representing images and text is applicable to virtually all large businesses. In the medical
field, for example, a patient’s medical file could be managed by a database that keeps track
of not only the textual records from an appointment, but also x-rays, lab results, cat scan
pictures, and other non-textual information. [Me90]

The relational data model has existed for many years. It was developed by Codd in

1970 {Co70]. This model quickly gained widespread acceptance and use commercially.

Much of the business sector has a heavy investment in relational databases, and the
relational model is credible and familiar. Therefore, there is a reluctance to change to
another model/system, even when there is a need.

Vendors have realized the need for modeling complex information (visual, textual,
audible, etc.). In response, several object-oriented databases management systems
(OODBMS) are now available in the commercial market. Some businesses with a need for
managing complex data are using them. Many of these businesses have expressed a desire
for an interface that can access both object-oriented databases and relational databases

{St91a].

B. OBJECTIVES OF A RELATIONAL/OBJECT-ORIENTED DATABASE
SYSTEM

In general, conventional database models are designed to meet the requirements of a
specific need. As Hsiao states, “this is the notion of application specificity, i.e., being
specific to a kind of database application.”[Hs91, p. 3] The general areas that the
conventional data models, relational, hierarchical, network, and functional data models, are
used for are record keeping, product assemblies, inventory controls, and inference making,
respectively.[Hs91]

The main objective of this research is to determine if a single DBMS can be realized
that would serve the needs of both relational and object-oriented users. A relational DBMS
(RDBMS) has many advantages over non-relational systems. There are, however, some
constraints on relations, such as the type of real world entities that it can represent.

An OODBMS has a more robust capability for representing real world entities as
objects. The restriction on types of relations in a RDBMS can be lifted in an OODBMS.
Both RDBMSs and OODBMSs have their own set of advantages, but they are not the same

set of advantages. It is desirable to have a DBMS that has the advantages found in both of

these sets, plus any additional advantages that may arise from having a combined relational/
object-oriented database management system (R/OODBMS).

The user of a RFOODBMS should be able to implement a relational schema and query
the database using either ‘standard’ relational queries or an object-oriented type query.
Thus, there would be a very low learning curve for users already accustomed to relational
systems. Additionally, they would not have to abandon the relational approach that they are
already familiar with for this new object-oriented paradigm. Yet, they would also gain the
capability to manage complex data/objects with the same system.

A secondary objective is to determine if any OODBMS can be the basis for a R/
OODBMS. That is, are there certain requirements that must be met by a commercial
OODBMS so that a RFOODBMS can be successfully constructed? Also, are there any

characteristics of these systems that would facilitate this construction more than others?

C. RESEARCH OVERVIEW

This is a feasibility study which continues previous work done in the area by Nelson
[Ne88] and Filippi [Fi92]. Implementing relational operations in IDB is the primary thrust
of this research. Additionally, assessing the capabilities and advantages of using both
RDBMSs and OODBMSs falls within the scope of this research. A comparison of these
assessments with that of a single RFOODBMS will follow so that it can be determined

whether the needs of a RDBMS and an OODBMS can be satisfied by a single R#OODBMS.

II. SURVEY OF THE LITURATURE

A. GENERAL

The focus of this chapter is the fundamental terms and concepts in the areas of object-
oriented programming (OOP), relational database management systems (RDBMS), and
object-oriented database management systems (OODBMS). The discussion of these topics
is not intended to be a complete work on them, but rather an introduction to present those

concepts and terms necessary as a foundation for this thesis.

B. OBJECT-ORIENTED PROGRAMMING CONCEPTS

“I'have a cat named Trash. In the current political climate, it would seem that if I were
trying to sell him (at least to a Computer Scientist), I would not stress that he is gentle to
humans and is self-sufficient, living mostly on field mice. Rather, [would argue that he is
object-oriented” {Kin89, p. 23].

What does it mean for something to be object-oriented? Since the advent of Simula-
67 in the 1960s and later Smalltalk in the 1970s [Mi88][Mo089], object-oriented
programming languages (OOPLs) and the object-oriented paradigm have been increasingly
great topics for discussion and debate. Different products are advertised as object-oriented,
the hot buzzword, however there is no universally accepted definition
[Kin89][Ne91][Ne90b][SB86].

“What is needed is a definition general enough to encompass all of the current views
of OOP, yet strong enough to stand up as the basis for the undeflying theory of OOP”

[Ne91, p. 4]. The broad definition used in this paper is object-oriented = objects + classes

+ inheritance + encapsulation. This is a slight modification of the definition in [We87].1

Currently, there is also much debate about the design process for an OOP program.
In conventional languages, several approaches have been formalized such as the top-down,
bottom-up, structured, etc. These approaches are, in general, ‘action’ approaches while
OOP uses an ‘object’ approach [GH91b]. However, the OOP community lacks any
established methodology to their ‘object’ approach [PN91b]. This subject is considered to

be beyond the scope of this paper, however, and as such will not be discussed any further.

1. Classes/Objects

A class may be defined as “a description of one or more similar objects” [SB86,
p. 43]. An object is an instantiation of a class [Mo89]. Clearly, this is a circular definition
which can be avoided by defining an object as the fundamental element of OOP. That is,
an object is a self-contained set of variables (which may be thought of as attributes in
database terms), and responds only to messages to execute specific defined procedures

(also called methods in OOP terms) [BM91][Ne91]{SB86]. An object’s method(s) are the

only means by which manipulation of its variables can occur. 2

The description of an object/class is composed of variables/attributes and the
procedures/methods that operate on them. These variables and methods describe general
characteristics that all instances of a class have. The only way to communicate with an
object is through messages to execute its methods. Thus, an object’s messages are the

interface to a particular object. An important point is that the variables of an object may

1. [We87] defines QOP as “object-oriented = objects + classes + inheritance”. It may be argued that
this equation is the same as our slightly modified equation since some definitions of class imply en-
capsulation. For a more detailed discussion, see [Ne91]

2. Thus, a class may be thought of as an abstract data type (ADT) or as the implementation of an
ADT [Da84][Ne91]. The interface to the data type is defined solely by the methods defined for the
class. The implementation of these methods is contained within the class which allows the interface
to be implementation-independent.

themselves be objects. In this case, the object is called a composite object that has at least
one variable which is a previously defined object [EN89][Ne90b]. The composition of
composite objects can be compared with inheritance where composition is a form of part
inheritance the later is concerned more with behavior inheritance [Ne90b].

Most OOP languages provide for both class and instance variables, although it is
not required for a language to be considered object-oriented [Ne91][Ne90b]. The
difference is that a class variable will have the same value for all instances of the class. If
a method in any of the instances of that class change the value of a class variable, then the
value is changed for every instance of the class. Thus, it is a variable shared by all instances
of the class. In contrast, an instance variable has a local value for a particular instance. A
change to the value of an instances instance variable of one object has no effect on the

corresponding variable in another instance of the class3

Consider a military officer as an example of an entity that might be described in
a class definition. The class name could be Officer with several variables that further
characterize an officer. A possible class variable could be the number of company grade
officers (O-1 through O-3) that exist: CompanyGradeCount. Thus, every instance of the
Officer class would have the same value for CompanyGradeCount. Each officer has a
name, grade, social security number, and an assigned unit that may be represented by the
instance variables Name, Grade, SSN, and Unit, respectively. These variables would be
instance variables since each instance of an officer will not necessarily have the same

values for each of these variables. This officer class definition is presented in Figure 1.

3. IDB, the OODBMS used in this thesis, does not provide the capability to define class variables.
However, in our discussions with Persistent Data Systems, they have mentioned that later versions
of IDB may contain this capability.

Class: Officer
Superclass: none
Class Variables: CompanyGradeCount
Instance Variables: Name, Grade, SSN, Unit
Methods: Promote, Retire, Relocate

Figure 1 Class Definition Example

2. Methods

As previously mentioned, methods are the means by which an objects variables
are manipulated [Ne90b]. They define the only legal actions/operations that characterize an

object. A method is invoked by sending an object a message to invoke one of its methods.

A message can be likened to a procedure call in a conventional programming language.4
Changing the implemenﬁtion details for any method should have no effect on messages
needed to invoke that method [Ne90b]. Thus, code that uses message passing for method
invocation is implementation independent. It is in this sense that the description/definition
of class may imply encapsulation (also called information hiding).

In our military officer example, it may be desirable to be able to promote, retire,
or relocate an officer. Therefore, these three actions might be implemented as methods for
the Officer class (see Figure 1). The Promote method would change the Grade instance

variable and could change the CompanyGradeCount class variable; Relocate would change

4. The exact implementation for the message passing concept may vary among different OOP lan-
guages.Value operations (idl_vop) and type operations (idl_top) are the means by which IDB imple-
ments message passing.

the Unit instance variable; and Retire would change the Unit and Grade instance variables,

and possibly the CompanyGradeCount class variable.

3. Inheritance

Inheritance allows further specialization of a class (called the superclass) by

exploiting class similarities [Ni89]. That is, a subclass inherits the variables and methods

of its ancestors and adds its own variables and methods.? In this way, it is a specialization
of its ancestors and its ancestors are a generalization of the subclass
[BM91][CY90][HO871[Hs91][Mi88][M089]. In more fundamental terms, it is a form of
code sharing [Ne90b} that facilitates and encourages code reuse [Ni89][Mi88]. As you

travel down an inheritance hierarchy6, classes become more specialized. As you travel up,
they become more generalized.

In Figure 2, the class Human is the superclass of the subclass ServiceMember. A
simple inheritance hierarchy of these two classes is shown in Figure 3. Any ServiceMember
will have Species as a class variable; Weight, Height, Sex, and Ssn as instance variables;
and the methods Born, Die, EnterService, and DepartService. A ServiceMember is a

specialization of a Human, while a Human is a generalization of a ServiceMember.

5. Inheritance of methods is sometimes called behavioral inheritance while inheritance of variables
is called structural inheritance [Da9%0].

6. An inheritance hierarchy is simply a graphical representation of the inheritance relationship be-
tween classes [Ne90b).

Class: Human
Superclass: none
Class Variables: Species
Instance Variables: Weight, Height, Sex
Methods: Born, Die
Class: ServiceMember
Superclass: Human
Class Variables: none
Instance Variables: Ssn
Methods: EnterService, DepartService

Figure 2 A Class and Its Subclass

Human

ServiceMember

Figure 3 A Simple Inheritance Hierarchy

Consider the inheritance hierarchy in Figure 4, Officer’ is now a subclass of
ServiceMember. The ancestors of Officer are Human and ServiceMember, while its
descendents are the subclasses CompanyGrade, FieldGrade, and FlagGrade. Thus, the class
Officer inherits all the variables and methods from both Human and ServiceMember.
Again, you can see that as you travel down the inheritance hierarchy the classes become

more specialized while the classes higher in the hierarchy are more general.

7. The Officer class definition in Figure 1 would have to be modified to reflect that ServiceMember
is now its superclass.

Human
|
ServiceMember
/ \
Enlisted Officer
/ \

Company Field Flag
Grade Grade Grade

Figure 4 A More Complex Inheritance Hierarchy

Methods that are inherited by a class may have their implementation overridden
(or redefined) while still maintaining the same method name [HO87][Mi88]. This allows
methods to be overloaded (also called pblymorphism) [Ne90b][Ni89][SB86]. That is, the
same message may be sent to different objects, invoking different implementations of the
same method depending on the object which receives the message. A common example of
polymorphism is that of the binary arithmetic operations on integers and real numbers.
When we want to add two integers, we write 2+39; the same operator name ‘+’ is also used
for the real numbers, 3.4+2.1.

In the example hierarchy (Figure 4), the subclasses of Officer all inherit the
method Promote (along with the other methods of the Officer class). However, each of the
subclasses (except for CompanyGrade) require a different implementation for the Promote

method since promoting a FlagGrade or FieldGrade officer would not change the Officer

class variable CompanyGradeCount.8 A method that has been overwritten by a subclass is

a polymorphic method.

10

Up to this point, our discussion of inheritance has focused only on single

inheritance: a class inherits from only one superclass.9 However, some languages allow for

multiple inheritance: a class inherits from two or more superclasses [Ne91][Ne90b]. The

relationship between classes when muitiple inheritance is allowed can be shown

graphically in a multiple inheritance lattice0 (see Figure 5) [SB86][Ne90b].

Human

/

Enlisted

-

ServiceMember

\

Officer

\

Student

AN

Nps
Student

Figure 5 A Multiple Inheritance Lattice

Inheritance is not without its own special problem which must be mentioned; that

of name conflicts (Ki91][Mi88][Ne88]{NMO90]. In Figure 5, assume that the Human class

8. This assumes that in the Officer class definition the Promote method has the implementation pre-
viously described: Promote changes the value of the CompanyGradeCount class variable. Thus, if
the method’s implementation is not overwritten a message sent to any of Officer’s subclasses would
invoke this implementation causing undesirable results.

9. Generally, the term inheritance by itself means only single inheritance [Ne90b].

10. The term lattice by definition allows more than one superclass {SB86] while an inheritance hi-
erarchy does not. This is in contrast to a hierarchy which is represented as a tree. However, it is fairly
common practice to refer to a multiple inheritance lattice more simple as a multiple inheritance hi-
erarchy [Ne90b].

11

has a Print method that has been overridden in both the Officer and Student subclasses.
Now, consider the class NpsStudent; which implementation of Print does it inherit?

In the case of single inheritance, a subclass may inherit a method X or variable Y
from its ancestors but also have a different method X or variable Y defined locally for the
subclass [Ni89][NMO90]. That is, the subclass also has in its class definition a method X
and a variable Y. How are the two different methods or variables differentiated? Usually
locally defined methods and variables override any inherited methods and variables with
the same name. However, some systems allow the overridden method/variable in the
superclass to be accessed by prefacing the name with super; for example, superX or superY.

Mutltiple inheritance has a similar name problem, however it is complicated since
there is more than one superclass involved. It is not as simple to just preface a redefined
name with super since more than one of the superclasses may have the same method/
variable name. In general, the possible solutions include making a choice between them
using some default criteria [SB86] (such as a class precedence [Mo89][SB86]), by
distinguishing among them [Ne88] (possibly by using their parent class name as a prefix
[Ni89]), by combining them [Mo089][Ne88], or by requiring the programmer to make an
explicit choice [Ki91][Mi88][Ni89].

4. Encapsulation

“An OOPL supports encapsulation if it allows users of objects to access them only
via their external interfaces” [Mi88, p. 15]. The external (public) interfaces to an object are
its methods and these are the only means that a user has for accessing/manipulating an
object. The user is not allowed direct access to the object and its inner workings[Da90].
Thus, encapsulation is a method of information hiding [Da90][Ne90b][Ne91] and offers
protection to objects from unauthorized/illegal operations on its variables [Mo89].

Additionally, hiding implementation details provides a separation (or decoupling) from the

12

code that defines and implements an object from that of the program code using the object
[Da90). This point is quite important since it allows changes to an object’s implementation

without having to change the user’s program code and vice-verse [Da90][Mo89](Ne91].

C. RELATIONAL DATABASE MANAGEMENT SYSTEMS
Prior to discussing the relational model specifically, it is worth giving a few moments
to the definition of a database management system (DBMS). A DBMS is a collection of
general-purpose software programs that allow maintenance of and access to a collection of
interrelated data [EN89][KS86]. A collection of interrelated déta is called a database.
However, when discussed in terms of specific DBMSs, the definition of database is a
little more restrictive and has the following properties[EN89]:
» the collection of data has some inherit meaning and is logically coherent;
« the database is created for a specific purpose, an intended group of users, and
some preconceived applications; and
« the database models and reflects some real world aspect.
The maintenance of and access to the data include facilities to define, create, and
manipulate (i.e., query and update) it.

There are numerous considerations for using a DBMS. Controlling redundancy: as the
number of times the same data is stored increases, there is a corresponding increase in
duplication of effort to update it; additionally, it is more likely that inconsistencies among
the data may arise (update anomalies). Sharing of data: in a multiuser DBMS concurrency
control of updates is critical to the correctness of updates. Restricting unauthorized access:
the DBMS should allow restrictions to be placed on access to database data. Representing
complex relationships among data: this includes easy and efficient retrieval and update of
related data. Enforcing integrity constraints: database designers must be allowed to specify

data constraints which the DBMS can enforce automatically or which can be enforced by

13

update programs. Provide backup and recovery: recovery from hardware and software

failures is the DBMS’s responsibility. [EN89][KS86]

1. Relational Model Concepts

In 1968, Dr. Edgar F. Codd had the idea that “predicate logic could be applied to
maintaining the logical integrity of the data” in a DBMS [CD90, p. 35]. This was the
conception of the relational data model. Two years later, Codd introduced his model in a
paper published in the Communications of the ACM [Co70]. It was a departure from what
had until that time been the conventional models (hierarchical data model and the network
data model) since his model allowed for a more abstract representation of the database
[OVII1][KS86](Fi92j. This simplistic yet complete model has evolved into a kind of
defacto standard in the database industry.

The relational model is firmly founded in strong mathematical concepts and
theory. Predicate logic and set theory are the primary foundation upon which the relational
model rests. This allows a formalism in the way that data is represented and manipulated

in the context of the model.

a. Relations

The relational model represents a database as a collection of relations.
Relations, the fundamental building block of the model, are represented by the intuitive
notion of a table (or flat file) of values [Da84]}[EN89][KS86][OV91][SSU91]. Each row of
the table represents a tuple of the relation. A tuple is a collection of data values that are
related. The columns of the table represent artributes of the relation (see Figure 6). In the
sample relational database, there are two relations: Officer and Milifary Unit. Each tuple is

interpreted as a fact that describes a relation instance. Every attribute value within a tuple

must be atomic. That is, it is not constructed of other components; it is indivisible.!!

14

Officer
Name SSN Unit
Spear 550-34-2453 3BDE
Walter 233-45-3423 2BDE
Nash 241-4500974 1BDE
Rothlisberger 123-45-6789 3BDE
MilitaryUnit
UnitName Location 7 CdrSSN
I1BDE Grafenwohr 123-45-6789
2BDE Erlangen 550-34-2453
3BDE : Bamberg 233-45-3423

Figure 6 Sample Relational Database

However, it must be understood that there is a subtle but important difference
between a relation and a table. A relation is a set of tuples. On the other hand, tuples of a
relation are represented as the rows of a table. A set by definition is unordered, but clearly
the rows of a table are ordered (from top to bottom)[EN89]. Thus, the relation Officer in

Figure 7 is the same as the Officer relation in Figure 6.

11. This requirement for atomic attributes is called the first normal form. Normalization is a process
of decomposing relational schemas into smaller relations that conform to several criteria: first, sec-
ond, and third normal forms. The goal of normalization is to aid database designers in analyzing a
database schema and developing a database with a ‘good’ design that avoids update anomalies.
(EN89]

15

By the same token, the order of the columns is not important since a tuple can
be thought of as a set of (<attribute>,<value>) pairs][EN89][Da84]. The value in each pair
must fall within the domain of its associated attribute. Thus, the first tuple in Figure 7 could
be written: (Name,Rothlisberger), (SSN, 123-45-6789), (Unit,3BDE); or (Unit,3BDE),
(Name,Rothlisberger), (SSN, 123-45-6789); etc.

Officer
Name SSN Unit
Rothlisberger 123-45-6789 3BDE
Nash 241-4500974 1BDE
Spear 550-34-2453 3BDE
Walter 233-45-3423 2BDE

Figure 7 Reordered Officer Relation

The reason this subtle difference between relations and tables is important
will become more apparent later. As will be discussed, all of the relational algebra operators
take relations as parameters and yield results that are also relations [Da84). Thus, they are
set operations and they have firm foundations in mathematical set theory. Consequently, if
someone has a good understanding of mathematical set theory, then they are well on their
way to understanding relational algebra.

Another consequence of a relation being defined as a set of tuples, is that, by
definition, each element in a set is unique. Therefore, all tuples in a relation must be unique.
This implies that there are no two tuples in a relation that have the same combination of
values for all attributes [EN89]. Thus, there is some combination of attributes that allows
each tuple of a relation to be uniquely identified; this combination is called a primary key

(the primary key of each relation in Figure 6 and Figure 7 is underlined). In the worst case,

16

the primary key is the set of all attributes of the relation [Da84][EN89]. A detailed
discussion of keys (including superkeys, minimal superkeys, candidate keys, primary keys,

and foreign keys) can be found in [EN89].

b. Schemas and Constraints

When discussing databases, it is important to differentiate between the
database schema and database instance. A database schema is a set of relation schemas and
a set of integrity constraints while an instance is a snap-shot of the data in the database at
a given instant in time[KS86][EN89]. A relational schema can be thought of as a template
for the relation. The type definition in programming language notation bears a close
correspondence to a relation schema [KS86]. The schema is known, in database terms, as
intention of the relation while the instance is the extension [EN89].

In the previous examples (Figure 6 and Figure 7), the Officer relation and the
Military Unit relation aré both examples of a relation instance. Figure 8 shows the relational
schemas for the Officer and Military Unit relations. Another notation for a schema is a
listing of the relation’s attributes and their corresponding domains[KS86]:

* Officer-scheme = (Name : string, SSN : integer, Unit : string)

+ Military Unit-scheme = (UnitName : string, Location : string, CdrSsn : integer)

Officer

Name SSN . Unit
MilitaryUnit

UnitName Location CdrSSN

Figure 8 Sample Relational Database Schema

17

In general, integrity constraints are defined for a database schema and should
hold for every instance of the schema [EN89]. There are several types of integrity
constraints: key constraints, entity integrity constraints, and referential integrity constraints
[Da84][EN89}[OVI1]. Key constraints are concerned with ensuring the uniqueness of key
values for every tuple in any relation instance of a schema. Entity integrity constraints
restrict primary key values to be non-null [OV91]. Finally, referential integrity constraints
maintain consistency between tuples of two relations [OV91]. That is, if a tuple in one
relation refers to another relation, then it must refer to a tuple that exists in that relation. An
additional general constraint that is sometimes needed is called a semantic integrity
constraint [EN89]. In our military example, a semantic integrity constraint would be that

‘an officer in a unit cannot outrank the commander of his unit’.

¢. Operations

Three fundamental update operations exist for relations: modify, delete, and
insert. Delete and insert do what is expected - insert and delete tuples, respectively. Modify
allows values of some or all attributes of a tuple to be changed. The most important aspect
in performing these operations is to ensure that the integrity constraints defined for the
schema are not violated. Therefore, if any integrity constraints would be violated by the
update operation, then either the operation can be rejected or the system may attempt to
correct the reason that the operation violates integrity constraints. [EN89]

It is possible for an insert operation to violate all three of the integrity
constraints: key constraints, entity integrity constraints, and referential integrity
constraints. However, the delete operation can only violate the referential integrity
constraint. Both key constraints and referential integrity constraints can possibly be

violated by a modify operation. [EN89]

18

2. Formal Query Languages

Along with Codd’s initial presentation of the relational model in 1970, he also
proposed two formal query languages: relational algebra and relational calculus [Co70].
Before discussing the fundamental differences in the two, it should be noted that it has been
shown that they are equivalent in expressive power [EN89][OV91]. Thus, any query that
can be specified in one language can also be specified in the other. Query languages can
therefore be compared against either of these two to determine if they are relationally
complete [EN89].

Relational algebra, in contrast to relational calculus, is more closely related to the
underlying system instructions that perform the operations [KS86]. This is the primary
reason that relational algebra was chosen over relational calculus for use in this thesis.
Since the two are logically equivalent, it is sufficient to implement only one. Thus, in the
discussion that follows, relational algebra will be discussed in more detail than relational
calculus.

The fundamental difference between the two languages is that of a procedural
language verses a nonprocedural (or declarative) language. In a procedural language, such
as relational algebra, the query specifies the sequences of instructions necessary to obtain
the result. This is in contrast to nonprocedural language, such as relational calculus, which
specifies a query by delineating what information is desired rather than how it is to obtain

the information (i.e., the procedure to be followed). [EN89][KS86]

a. Relational Algebra

Relational algebra is a procedural language. Therefore, it more directly
corresponds to the operations necessary to satisfy a query. The set of operations that
constitute relational algebra are derived from the mathematical theory of sets [OV91]. Each

operation has as its parameter(s) a relation and returns a result that is also a relation [Da84].

19

Codd proposed eight operations in his presentation of the relational model in 1970: union,
intersection, difference, Cartesian product, select, project, join, and divide [Da84).
However, it can be shown that of the eight only five are primitive operations: select, project,
union, difference, and Cartesian product [Da84][EN89][KS86][NMQ90]. The other three

non-primitive operations can be formed by some combination of the five primitive ones.

(1) Select is a unary operation, taking a relation as its parameter and
yielding a subset of tuples from that relation as its result. The resultant relation has the same
relational schema as the input parameter relation. To identify the tuples that are to be in the
resultant relation, a selection condition (predicate) is specified in the select expression on
the specified relation. All tuples in the resultant relation will satisfy the selection condition.

[EN89][KS86]

The selection condition is a boolean expression consisting of clauses of
the form:
<name of attribute><comparison operator><constant value>;
or

<name of attribute><comparison operator><name of attribute>

where <name of attribute> is the name of an attribute of the input parameter relation;
<comparison operator> is either =, <, £, 2, >, or #; and <constant value> is any arbitrary
number of clauses may be connected with the AND, OR, and NOT operators to form the

selection condition expression [EN89].

In Figure 9, ResultRelation is the resultant relation from performing a
select operation on the relation Officer (Figure 7) where Unit = 3BDE. The original Officer
relation had 4 tuples while the resultant ResultRelation has only 2. The selection condition

can be arbitrarily complex.

20

ResultRelation

Name SSN Unit
Rothlisberger 123-45-6789 3BDE
Spear 550-34-2453 3BDE

Figure 9 Example Result of a Select Operation

(2) Projectis also a unary operation. The project operation uses an attribute
list to select the attributes that will appear in the resultant relation. The attribute list must
be a subset of the attributes of the input parameter relation. The schema of the resultant
relation in this case is not the same as the input parameter relation. The attributes are a
subset of the attributes in the input parameter relation. However, the attributes in the result
will be listed in the order that the attributes are listed in the attribute list. However, the

resultant relation will have the .ame number of tuples. [EN89]

In Figure 10, ResultRelation is the resultant relation from a projection
operation of the Name and SSN fields of the Officer relation (Figure 7). The original
Officer relation has three attribute fields while the resultant ResultRelation only has two.

However, both relations have the same number of tuples.

21

ResultRelation
Name SSN
Rothlisberger 123-45-6789
Nash 241-4500974
Spear 550-34-2453
Walter 233-45-3423

Figure 10 Example Result of a Project Operation

(3) Union, in contrast to the first two operations, is a binary operation. It
along with the operations difference and Cartesian product are the standard mathematical
set operations {[Da84][EN89]. Thus, the union of two relations is a resultant relation that is
the set of all tuples that belong to either relation or to both. This operation, along with the
difference operation, can only be executed if the t@o input parameter relations are union
compatible. That is, they must have the same number of attributes (the same degree) and
the corresponding attribute must be based on the same domain (although they need not have
the same name) [Da84]. As an example, two union compatible relations are shown in
Figure 11. The resultant relation has the same degree as the input relations. Note that the

order of the attributes in the relations is important for checking union compatibility.

22

OfficerReserve

FirstName LastName
Ron Spear
James Schledorn
Leonard Tharpe
EnlistedActive
Fname Lname
James Justice
John Walter
Luther Moen
Jane Pauli
James Schledorn
ResultRelation
first_name last_name
Ron Spear
James Schledorn
Leonard Tharpe
James Justice
John Walter
Luther Moen
Jane Pauli

Figure 11 Union Compatible Relations and Result of Union

23

(4) Difference, given two input parameter relations, A and B, produces a
resultant relation which is comprised of all tuples in A that are not in B. As with the union
operation, the input parameter relations A and B must be union compatible. Therefore, the
difference of relations OfficerReserve and EnlistedActive (from Figure 11) is shown in
Figure 12. However, the difference of EnlistedActive and OfficerReserve would be a
resultant relation that contains all of the tuples in relation EnlistedActive except for the last

tuple which contains James Schledorn and no tuple from OfficerReserve.

OfficerEnlisted

first-name last-name
Ron Spear
Leonard Tharpe

Figure 12 Result of Difference Operation on Relations in Figure 11

(5) Cartesian Product, the last of the set operations, differs from the
previous fwo operations, union and difference, in two main ways. First, if the Cartesian
product operator is operating on relations A and B which have 2 tuples with 3 attributes and
5 tuples with 4 attributes respectively, then the resultant relation will have 10 (2 * 5) tuples
and 7 (3 + 4) attributes. In our previous example (Figure 11), the Cartesian product of the
two relations would have a resultant relation with 15 (3 *5) tuples and 4 (2 + 2) attributes.

Secondly, the two input parameters to this operation need not be union compatible.

b. Relational Calculus

While relational algebra is founded on the mathematical principles of set
theory, relational calculus (a procedural language) is founded on first order predicate

calculus [EN89]. Two well-know forms comprise the relational calculus: tuple relational

24

calculus and domain relational calculus. There is a strong similarity between the two forms.
As their names imply, tuple relational calculus is the form in which variables represent
tuples while domain relational calculus uses variables to represent attribute domain values
[KS86]. In tuple relational calculus, the database is viewed as a set of tuples, while in
domain relational calculus it is viewed as a set of domains. Thus, meaning is given to

queries by interpreting variables as assertions on the database [OV91].

3. Other Query Languages
SQL, QUEL, and QBE are three commercial query languages that expand on the
formal languages previously discussed, relational algebra and relational calculus. Both
SQL and QUEL are relationally complete languages, however, some implementations of
QBE are not (they lack explicit universal and existential quantifiers)[EN89]. In general,
they provide a higher level, more friendly user interface along with other facilities for data

definition (a data definition language function, DDL), data manipulation (data

manipulation language facilities, DML), and security constraint speciﬁcation12 [KS86]. It
is considered beyond the scope of this thesis to discuss these other areas. However, each of
these languages will be reviewed very briefly in this section to give the reader a feel for
considerations in implementing a commercial query language. All of these languages are

more declarative than procedural.
a. SQL
The Structured Query Language, SQL, is still referred to as Sequel

(Structured English QUEry Language) by many people and is probably the most well

known of the three. SQL combines constructs from both relational algebra and calculus

12. Although, each language does not necessarily provide for all of these facilities.

25

[EN89][KS86]. It has become somewhat of a defacto standard relational database
language. Queries in SQL can be interactive or embedded in an application [Da84].

The basic format for a SQL query is:

SELECT <list of attributes>

FROM <list of tables>

WHERE <condition>
where <list of attributes> is a list of names for which values are desired (corresponds to the
relational algebra project operation), <list of tables> is a list of required relations necessary
to satisfy the query, and <condition> identifies the tuples desired by evaluation of a boolean
exprrssion (corresponds to the relational algebra selection condition in a select operation
[EN89].

One departure from the formal relational models is that SQL allows tuples
within a relation to be repeated. Thus, a relation in SQL is not a set of tuples but a multiset
(or bag) [EN89].

Some current work in the area of query languages is being done using the idea
of a graphical interface for constructing queries. One such effort attempts to overcome the
difficulties in forming SQL queries (ease-of-use) by designing and implementing a

relationally complete graphical dataflow query language (DFQL) [C]91].

b. QUEL

QUEL has similar functionality to SQL; however, instead of combining
constructs from both of the formal languages, it closely parallels tuple relational calculus
[KS86]. Three types of clauses are generally used to construct most QUEL queries: range
of, retrieve, and where [KS86]. Range of explicitly declares the tuple variables, retrieve
declares the attribute to retrieve (corresponds to projection attribute list), and where

specifies the selection condition [EN89].

26

c¢. QBE

Query by Example, QBE, is most closely related to domain relational
calculus. It is unique in that it is a two dimensional language: skeleton tables (displaying
the relation schema) are displayed pictorially, and queries are then expressed by filling in
an example row(s). When looking at a QBE query, constant values appear without any
special markings or indicators while domain variables (which do not have to match any
specific database values and are completely arbitrary) are indicated by being preceded by
an underscore (‘_’). To specify that the values of a certain column are to be retrieved, the

prefix ‘P.’ (for print) is used. [EN89][KS86]

D. OBJECT-ORIENTED DATABASES

As with object-oriented programming, the relatively new area [Ne90a] of object-‘
oriented databases (OODBMS) does not as yet have a formal definition/specification or
even an agreed upon informal definition/specification [Ed91]{US90]. “Object-oriented
databases = object orientation + database capabilities” [Kh91, p. 31] is one attempt to
define OODBMSs where the database capabilities alluded to include persistence,
transactions, concurrency control, recovery, querying, versioning, integrity, security, and
performance issues [Kh91]. This could be rewritten as object-oriented databases = object-

oriented + database capabilities”.

This section provides a general description of OODBMS concepts along with a
discussion on several OODBMSs currently available: IDB, Ontos, Vbase, Gemstone, and

POSTGRES. Of the systems looked at, only IDB will be given more than a cursory look

13. [Kh91] defines object orientation as abstract data types + inheritance + object identity, which is
essentially the same definition previously used in this paper for object-oriented. For a more in-depth
discussion of OODBMS concepts see [US90].

27

since it is the system used to implement the Relational/Object-Oriented Database

Management System in this thesis.

1. Object-Oriented Model Concepts
The most well known data modeling model is the Entity-Relationship (ER) data
model. Until the late 1970s, this model was sufficient for supporting th. modeling needs of
conventional DBMSs (hierarchical, network, and relational systems) that meet traditional
business data processing requirements [EN89]. The ER data model is a high-level model
used prior to actually developing a database schema in a specific DBMS. As modeling
needs have become more complex, the ER data model has become increasingly inadequate.

To meet the needs for complex data models, many data models have been proposed. Of

those proposed, they generally fall into three categories: semantic data models!4, functional
data models, and object-oriented models [EN89].

In conventional DBMSs, data is modeled using the classical record-oriented ER
model. Here data is looked at as a group of relations (or record types) that are comprised of
a group of tuples (or records) which are all stored in a file [EN89]. Thus, the ER model must
be converted into a DBMS specific model (or schema) which may lose its resemblance to
any real world entities (or objects) during the conversion process. A good example is that
of an ER model for a relational database application which is converted to a group of
relations that are then normalized. In the normalization process, the original model may be
distorted to such an extent that any relationship to the original real world entities being
represented in the database application is lost as information is scattered among relations

[EN89].

14, [EN89] provides an detailed discussion of what they term the enhanced-ER model (EER) which
encompasses what they consider the most important concepts of the semantic data model.

28

Of the models mentioned above, we focus on the object-oriented data model.
With an object-oriented model, a database is considered group of objects that represent real
world entities [EN89]. In OODBMSs, objects are represented directly by database objects
[EN89]. Thus, there is no loss of the original model as with the ER model; as more complex
real-world entities are modeled using complex objects, there is a direct correspondence
between a real-world entity and its database representation. This direct correspondence
allows objects to maintain their integrity and identity which in turn allows the objects to be
identified and operated upon [EN89]. Some have gone so far as to question whether it is
meaningful to talk about an object-oriented data model [Ki90] since object-oriented data
model concepts and the object-oriented paradigm are for all practical purposes the same.

Fundamental object-oriented data model concepts include data abstraction,
encapsulation, object identity [Mc91], inheritance, complex objects, message passing, and
operator overloading (or polymorphism) [Ki90]. All of these concepts, with the exception
of object identity, were specifically addressed previously in this chapter under object-
oriented programming concepts. Generally, each object is represented by an object
identifier that is system generated. The identifier is independent from any key attributes

which allows atiributes to be modified without destroying the objects identity. [EN89]

2. Object-Oriented Database Systems
Persistence of objects is considered the primary difference between OOPLs and
OODBMSs [EN89]. Objects used in an OOPL program exist only during program
execution whereas those in OODBMSs must exist permanently in secondary storage from
session to session. Thus, the OODBMSs and OOPLs are quite similar except for additional
facilities provided by the OODBMS system. By the same token, OODBMSs have similar

advantages as those of OOPLs: expressibility, reusability, etc.

29

“The Object-Oriented Database System Manifesto”!> written in 1989 by M.
Atkinson, F. Bancilhon, D. DeWitt, K. Kittrick, D. Maier, and S. Zdonik for the First
International Conference on Deductive and Object-oriented Databases, Kyoto, Japan,
describes 13 mandatory characteristics, listed in Figure 13, for a database system to be

considered an OODBMS [Ed91].

1. supports complex objects

2. supports object identity

3. encapsulates objects

4. supports either types or classes
5. classes or types inherit from their ancestors
6. do not bind prematurely

7. are computationally complete
8. are extensible

9. data is persistent

10. manages very large databases
11. allow concurrent users

12. recover from software and hardware failures

13. have a simple way to query data

Figure 13 OODBMS Manifesto

15. This does not contain an agreed upon set of characteristics, rather, it is an attempt to offer char-
acteristics for agreement within the database community.

30

There are some correlations that may be made between RDBMS and OODBMSs
that help to conceptualize how some of the object-oriented paradigm relates to the
relational paradigm. A row in a relation may be thought of as an object in an OODBMS.
The set of rows of a relation may be equated to a class. Other concepts in OODBMSs that
have no correlation to anything in a relational system include: methods, object identifiers,
inheritance, and encapsulation. However, OODBMSs do not have a mathematical

foundation to stand on as relational systems do. [Ed91]
3. IDB Object Database Overview

a. General Information

IDB [Pe91a][Pe91b][Pe91c][Pe91d] is a new OODBMS that first entered the
commercial market in 1990 . However, it could be considered to have been in development
for over a decade with the design and architecture of the Interface Description Language
(IDL), a subset of which is a fundamental component of the IDB system. IDB was built
from the ground up as an object database management system. This is in contrast to some
other database management systems that claim to be object-oriented but are not ‘real’
object-oriented systems. Some of these are systems that have as their kernel or core a
relational system that has object-oriented extensions added on top. Others claim to be
object-oriented but fall short in fully implementing the concepts that comprise the object-
oriented paradigm: inheritance, encapsulation, polymorphism, and abstract data types.

The current version of IDB is 1.1. Version 1.0 ran on several platforms:
Domain OS (680X0), Sun 3 (680X0), Sun SPARC and Windows 3.x. Version 1.1 extends
this list to include the Macintosh, NeXT, and HP-UX (680X0 and PA-RISC). Other key
differences between the version 1.0 and 1.1 include: supported platforms that are
networked together can now share data over the network; attributes may be removed from

a schema without having to modify the ASCII form file; ease of access to menu facilities

31

has increased; development tools may be used with Windows 3; and bugs have been
removed that existed in version 1.0. [Pe91b]

Persistent Data Systems, the designer and developer of IDB, describe IDB as
“an object database for software developers who build applications that must manage
complex shared data”[Pe91d, p. 3]. Applications suited for use with IDB include CASE,
CAD, image management systems, hypertext systems, hypermedia systems and geographic
information systems. This list is not intended to be all inclusive, but rather to give the reader
an idea of the types of applications with requirements to model, manage, and store complex
and unconventional data. [Pe91d]

The data definition language (or schema language), IDL, extends Kernighan
and Ritchie (K&R) C [KR78] to include object-oriented capabilities. Polymorphism,
multiple inheritance, and dynamic binding and loading are among these capabilities.
Because IDB uses K&R C, tools available for working with C (such as the C compiler and
on-line debugger) on each supported platform may be used in the development of IDB
applications. [Pe91d]

IDL facilitates the interface between C and IDB. The interface can be thought
of as consisting of three parts: core interface, display manager interface, and browser
interface. The core interface allows IDB applications to have object-oriented capabilities.
Display management for stand alone applications uses the display manager interface. This
interface is not exclusive to stand alone applications since its features can also be accessed
from within the browser. The browser interface has the features of the display manager

interface in addition to other special features only available in the browser. [Pe91d]

b. Clusters and Structures

A key concept in IDB is that of a ‘cluster’. This term is used in both the

logical and physical sense. That is, the term cluster when used in the context of computer

32

science generally brings to mind clustering in memory. However, the word cluster in the
strict sense means to gather things together. In IDB, a cluster is a gathering of objects or a
group of objects. An object cannot be in more than one cluster. Since IDB is built as a multi-
user system, it also includes facilities for concurrent access control. Clusters are important
in maintaining the access control. “The cluster is the unit of data transfer and the unit of
locking for control of concurrent access” [Pe91d, p. 3].

Persistent Data Systems describes an IDB database as “a set of objects
connected by references” [Pe9lc, p. 6]. Since a cluster is a group of objects, then an IDB
database is simply a set of clusters connected by references. There are two kinds of
references in IDB: local references and cross references. The names themselves are quite
descriptive. Local references are those references between objects of the same cluster.
Cross references, on the other hand, are between objects belonging to different clusters.
[Pe91d]

Access to clusters is gained by opening a transaction on the cluster. It is at this
time that the cluster is read in from secondary storage into main memory. Local references
are made by using pointers to the object being referenced. Cross references may also use
pointers if the cluster containing the object they reference is already present in memory
(i.e., a transaction is also open on that cluster). The other possibility is that the object being
cross referenced is not in main memory. This case is resolved by using unique identifiers
that IDB issues to every object. [Pe91d]

IDB guarantees that every object created will have a unique identifier. This
identifier is not only unique to the cluster, system, platform, etc.; it is unique universally.
That is, an object created by IDB on any platform can be ported to any other platform and
still be guaranteed that the identifier is unique. This allows different platforms networked

together to share IDB files without object identification problems. Thus, “no two objects

33

will ever have the same identity and an object will maintain its identity even when moved
from place to place” [Pe91d, p. 4].

Several identifiers are needed to accomplish this: master identifiers (MID),
cluster identifiers (CID), object identifiers (OID), and local identifiers (LID). During
installation, a unique MID is set up that is assigned to each copy of IDB by Persistent Data
Systems. When a cluster is created, the MID is combined with further numerical identifiers
to form the CID. Finally, the OID is composed of the CID and the LID which uniquely
identifies the object within the cluster. [Pe91d]

Each cluster is described by an Interface Description Language (IDL)
structure. The structure contains all the necessary types to describe the objects of a cluster.
In other words, it contains the schema for the cluster specified in IDL. The IDL structure is
really the “description of structural constraints on data” [NMSW83, p. 7]. The fundamental
IDL model is predicated upon the directed attribute graph. An example of a directed
attribute graph is given in Figure 14.

A directed attribute graph is composed of a set of typed nodes that possess a
set of attributes. The type of a node determines the particular set of attributes it will contain.
The attributes are either a primitive value (the value is embedded in the node and is either
boolean, integer, or rational) or a node-value (a pointer to another node). In Figure 14, the
attributes with node-values have pointers which are the directed edges in the graph pointing
to other nodes. Each graph must have a root node that allows all other nodes to be reached
by following some path along different attribute edges from the root to the nodes. “An IDL
structure specifies a related class of attributed directed graphs by listing the set of node

types, the attributes of each node type, and the type of the root” [NMSW83, p. 7].

34

* inner

v

left

right

op

level =2

depth=0

mult

leaf

val=7

level =0

inner
left
right
op
level=1
depth=1
' leaf

val=2

level =0

depth=2

plus

depth=1

Y leaf

val=3

level=0

depth=2

Figure 14 An Example of a Directed Attribute Graph [NMSW83, p. 8]

¢. Nodes, References and Attributes

Every IDB object must have a type and can only be in one cluster. The types

35

that an object may have are defined through the class structure that is delineated in the
cluster schema. In IDB, only classes which have no subclasses éan be instantiated as
objects. These classes are called nodes and have the type node type. In the class hierarchy,
the nodes are the leaves of the class structure. This is something of a departure from the

standard object-oriented concept of a class since only leaf classes can be instantiated.

—_

However, any class that is not a leaf can always be made a leaf (in a logical way) by
instantiating a subclass of the class to only inherit all attributes and methods of its
superclass. That is, it is a leaf which is a copy of its superclass except that the superclass
has subclasses and the leaf (by definition) does not. Other class types that are not node types
are said to be strict class types.

Consider the graph presented in Figure 15, which is derived from the example
IDL schema (included as APPENDIX A) from the IDB User’s Manual [Pe91d, p. 32]. It is
clear from the graph that the leaf nodes are ptrain, ftrain, fplane, and pplane. These classes
are IDB node types and may be instantiated to IDB objects. The other classes are used to
build the attributes and methods of the node types but may not be instantiated into objects.

These strict class types delineate attributes and methods that are common to all of their

descendants [New86]. IDB also supports the idea of multiple inheritance. Thus, in our

example, ptrain inherits all of the attributes and methods of class types passenger and train.

vehicle

passenger

plane

/ N\

ptrain ftrain fplane pplane

Figure 15 A Class Hierarchy

Newcomer likens the IDL node type to the idea of a record type in other
languages[New86]. Record fields are similar to a node’s attributes[New86]. There are two

kinds of references which connect objects: local references and cross references. All

36

references must also have a type; however, unlike objects which can only have node types,
references can have the type of any class in the cluster. A references of a certain type can
point to any class of that type or any of its descendants (if the class is not a node). Thus, a
reference of type train, in Figure 15 above, could point to a train, a ptrain, or a ftrain.

From the root reference of any cluster, all objects within that cluster must be
reachable by following some path along references in the cluster. Two objects may have
attributes that reference the same object. In this way, references facilitate sharing.
References are also allowed to create cycles within a cluster.

There is another possibility for the type of a reference: universal types. The
types discussed up to this point have all been associated with a particular cluster. Universal
types allow references to refer to an object in any cluster. The universal types and their

relation to each other is shown in Figure 16. [Pe9ic]

idl_univ
idl_any idl_univ_seq string
idl_univ_array idl_univ_link
any any any
(cluster_1) (cluster_2) (cluster_n)

Figure 16 Universal Types [Pe91c, p. 36]

37

d. Transactions

Since IDB is a multi-user system, concurrency control must be maintained.
Transactions are used to implement concurrent access control to clusters. Additionally,
transactions guarantee that cluster updates are all or nothing. That is, the entire cluster is
updated or nothing in the cluster gets updated. Thus, cluster modifications are ‘atomic’.
[Pe91c][Pe9ld]

Transactions allow users to read and write clusters. Access to a cluster is
determined by one of four types of transactions: write, create, read, and examine. To
modify an object, a write transaction must be open. Examine and read transactions allow
different forms of parallel access to a cluster by one or more user. New cluster values are
created by the create transaction. A series of ‘roll-back’ points may be established by nested.
write transactions. An arbitrary number of write transactions may be nested within other
create or write transactions. Large and complex modifications are facilitated in this manner.
[Pe91d]

Reading and traversal of cluster objects and the ability to use those objects
and their associated attributes to set values of browser variables is possible during read
transactions. While a read transaction is open on a cluster, no write or create transaction on
that cluster is allowed. Similarly, only while no write or create transaction is open, may a
read transaction be opened. This guarantees that the cluster being viewed in memory is the
same as that cluster on secondary storage.

Examine transactions are similar to read transactions except that it does not
stop a write transaction from being opened and/or committed on the same cluster. Thus, the
cluster being viewed in memory may be different (older) than that cluster on secondary

storage. This transaction can be opened at any time. It allows a greater amount of

38

concurrent use of the system. Clearly, this kind of transaction should only be used when
viewing the most current instance of the database is not necessary.

Modification of cluster objects and their associated attributes is accomplished
using either a create or write transaction. Modifications made to the cluster are not written
back to secondary storage until the transaction is committed. If after modifying the objects
of a cluster in memory, it is determined that the modifications are unwanted, then the
transaction may be aborted. In this case, that cluster in secondary storage remains
unchanged. It is important to note that during a write or create transaction, one or more
examine transactions may be open on the same cluster.

A special case of the write transaction is the create transaction. Create
transactions may only be opened during entry to a cluster. They are used if no cluster file
exists on secondary storage or if the cluster file that does exist is no longer wanted. The
create transaction creates a legal value to which the cluster root is set. Once the create
transaction is committed, then the created cluster and any other objects created during the

open transaction are written to the cluster file on secondary storage.
4. Other Systems

a. ONTOS/Vbase
Vbase, a single-user system, a product of Ontologic Inc. (now named Ontos
Inc.) released in 1988, had several problems that caused it to flop. First, it had several
language problems. The Type Definition Language (TDL) was a nonstandard language
which was plagued by many inherent problems associated with nonstandard languages.
TDL was used for schema definition and abstract object interface specification [HW91].
Their object manipulation language was an object-oriented extension of the C language,

called a compiled procedural language (COP) [HW91]. In addition to impedance

mismatch16 problems produced by these languages, Ontologic had to do everything to

39

support the languages and the languages had not passed the test of time. Additionally, there
was a lack of tools needed to work with the languages. [In89]

ONTOS is the successor to Vbase [AHS91]. It runs under UNIX, AIX, or OS/
2 [In89]. The design goal of ONTOS is that the system should allow trade-off decisions
between performance, formalism, and safety to be made by the user [AHS91]. The system
allows the user to directly access objects through direct references. In this manner, the user
may bypass system mechanisms, controlling low-level detail to enhance performance if
deemed critical to performance. ONTOS also supports C++, overcoming the nonstandard
language problem of Vbase[In89]. Additionally, it provides a class library to enhance its
modeling power. It also has no need for a schema definition language since it operates on
class definitions in C++ directly. Versioning, an alternative mechanism, a graphical
browser, an integrated object SQL, and a multi-user capability on a homogeneous network

also exist in ONTOS. [AHS91]

b. GemStone

The Servio Logic Corporation produces GemStone!’ [BMOS89][HWI1], a
disk-based storage manager designed for commercial and engineering markets [BOS91].
The designers of GemStone surveyed object-oriented extensions to C, Pascal, and the
OOPL Smalltalk before deciding to develop their own OOPL, OPAL, a modified version
of Smalltalk-80 [HW91]. OPAL is GemStone’s data definition language/data manipulation

language, which is also used for general computations/queries [BMO89]. Since it only uses

16. When information must pass between two structurally and semantically different languages im-
pedance mismatch may occur [HW91]. Database systems that use two different languages in their
implementation often have one that is a procedural language (conventional) and the other a more de-
clarative, higher-level language which results in a mismatch of two language paradigms [Kh91].

17. The current version of GemStone is Release 4.0

40

one language, OPAL, for programming, it bypasses the problem of impedance mismatch
[HW91]. GemStone provides an interface to several procedural languages: C, C++, and
Smalltalk [BOS91].

Visual Schema Designer (GS Designer) and Tool Suite are two graphical
tools which are included with GemStone. The GS Designer allows GemStone class

definitions to be modified, deleted. and created using a keyboard and mouse interface along

with bitmapped graphics in a windows environment. The class graph18 is the primary
organizing principle of the GS Designer. Both a high-level application development
environment and a visual programming environment are integrated by the graphical tool
‘tool suite’. Motif and OpenL ook are both supported by tool suite. [BOS91]

Recently, Servio Corp. introduced a collection of development tools that
facilitate object-oriented financial, scientific, and manufacturing systems construction by
application developers. This tool collection is called the GemStone Object Database
Development Environment, Geode. Geode is comprised of four components: the forms
designer, the visual program designer, the application designer, and the system
programmer tools. The forms designer facilitates the construction of screens for database
information display, update, and insertion. The visual program designer comes with a set
of basic libraries, which may be extended by the user, and applications to be develop>d
graphically without writing code. The products of both the forms designer and the visual
program designer are combined into complete applications by the application designer.
Finally, debuggers, cross-reference tools, graphical browsers, and performance profilers

comprise the system programmer tools. [Sc91]

18. A named group of classes interrelated by various types of relationships (including generalization,
association, and aggregation) is called a class graph. All GemStone class graphs have the predefined
Object class as its root. [BOS91]

41

GemStone supports several relational gateways. That is, it supports SQL
access to the external databases Sybase, Ingres, Oracle, and Informix. SQL query results
may be viewed as objects using these gateways which provides interoperability with
relational databases. The translation between the systems is facilitated using generic row
(tuple/record) and relation classes that may be specialized by the user hy defining

subclasses these generic classes. [BOS91}

c. POSTGRES

PGSTGRES!? is the successor to the INGRES relational DEMS, and has
been under devclopmént since 1986 under the leadership of Professor Stonebraker at the
University of California, Berkeley [St91b][SK91]. POSTGRES is often listed under the
heading of OODBMSs. However, it is more than that since it also supports knowledge
management. Actually, it is an extension of the traditional RDBMS that supports complex
objects; inheritance; methods and functiohs in the database; and contains both a complete
rule system and an abstract data type system [St91b]. POSTGRES II, the successor to
POSTGRES is in the design process and will try to manage main-memory data, disk-based
data, and archive-based data in a unified, elegant manner [BOS91].

The objectives of the designers of POSTGRES are to [Da%0]:

« provide better support for complex objects,

« provide user extendability for data types, operators, and access methods,

« provide active database facilities (alerters and triggers) and inferencing
support,

« simplify the DBMS code for crash recovery,

19. POSTGRES stands for Post INGRES and its current version is 3.0 [RK][SK91].

42

» produce a design that can take advantage of optical disks, multiple-processor
workstations, and custom-designed VLSI chips, and

» make as few changes as possible (preferably none) to the relational model.

E. PREVIOUS WORK

In 1988, Michael L. Nelson completed the fundamental work in this area. Nelson’s
primary goal was to design a Relational Object-Oriented Management System (ROOMS)
that could be implemented in almost any commercial object-oriented database or any
object-oriented programming language [Ne88]. Stephen C. Filippi expanded the work done
by Nelson with the completion of his Master’s Thesis, Implementing Relational Operations

In An Object-Oriented Database, in 1992 [Fi92].

1. ROOMS

ROOMS is the foundation upon which this thesis is built. ROOMS is a feasibility
study to show that the relational data model need not be discarded in moving to object-
oriented systems, and to allow the additional capabilities of the object-oriented paradigm
realization within conventional applications by removing limitations on data types
[Ne88][NMO90].

The fundamental structure of ROOMS is almost as simple as the relational system
it imitates. An object that is a collection of tuples (records) is a relation. An object that is a
collection of fields is a record. Objects that are user-defined class instantiations are fields.
In ROOMS, all records of a relation must have identical format. Distinction between
complex and simple objects are not made: no data type limitations. [Ne88][NMQ90]

To show that ROOMS is feasible, the five fundamental relational algebra
operations (selection, union, set difference, Cartesian product, and projection), which

constitute the basis for all other relational operations, were implemented in a LISP-based

43

OOPL, PC Scheme (PCS). However, PCS has no facilities for object persistence so the data

in this implementation is lost from one session to another. [Ne88]

2. Implementing Relational Operations in Prograph

This work continues the concepts of ROOMS by implementing the five
fundamental relational algebra operations in Prograph, an OOPL. The fundamental
contribution of this work is that of object persistence. Even though Prograph is not an
OODBMS, it contains primitive operations that allow for reading and writing database files
to secondary storage and for complex data type manipulation tFi92]. The natural step that
follows is to actually implement ROOMS in a commercially available OODBMS, which is
the thrust of this thesis.

III. DETAILED PROBLEM STATEMENT

A. GENERAL

The focus of previous chapters has been to provide the reader with a very brief
introduction to the motivation and topic of this work, a discussion of fundamental concepts
necessary for a more complete understanding of this thesis, and a point of departure for this
and future chapters. The purpose of this chapter is to provide an overview of some
limitations associated with RDBMSs and OODBMSs, along with a discussion of the
rationale for a combined R/OODBMS approach. In general, the limitations of RDBMSs
tend to be the strengths of OODBMSs and the limitations of OODBMSs the strengths of
RDBMS:s.

B. RELATIONAL DATABASE LIMITATIONS

RDBMSs use a very simple data structure, the idea of a table (rows and columns), and
are based upon a strong mathematical foundation, predicate logic and set theory. Primarily
because of these two factors, RDBMS became widely accepted for business applications
over the older and more awkward hierarchical and network database technologies.
However, RDBMSs have a severe limitation: the inability to deal with complex data. It is
the RDBMS’s simplicity, along with its mathematical foundation and its complex data

limitation, that are basis for this thesis.

1. Simple Data Types

For years, RDBMS have provided excellent performance for traditional, well
established business data processing applications. Their standard fixed collection of data
types (integers, rationals, strings, etc.) were sufficient to allow RDBMSs to function well.

Now, as more complex data nec:'s have developed within the business sector, particularly

45

in the engineering arena, it has become clear that this simple collection of data types is no
longer adequate. Although relational systems have not outgrown their usefulness as
traditional business database needs will always exist, there is definitely a need for
something to overcome their limited data types.

Some current RDBMSs provide the ability to include digitized pictures in their
database applications. However, none provide the ability to include more complex data
structures such as sounds, animated graphics, and extremely large and complicated inter-
relationships among relations within a database, to name some of the primary ones.
Although some relational systems have been extended to include some of these complex
data types, they generally do not include inheritance, encapsulation, and other
characteristics of the object-oriented paradigm.

As RDBMSs attempt to maintain more complicated data relationships,
performance of the system is degraded. The normalization process used in designing the
database schema to represent complex data cause many small relations to exist within the
database. As queries are made of the database, many join operations are then needed to
answer the query. Since join operations are very expensive in terms of performance, the
system tends to provide poor performance. However, in OODBMS this problem is avoided
since these complex relationships can be represented with complex objects that have an
explicit link between component objects. Thus, the need for numerous joins is avoided and
performance is increased.

When modeling real world entities, the relational model uses relations (flat
objects) to represent them. During the normalization process, the relations in a database
schema are further flattened out into a number of smaller relations. This decomposition of
real world entities into smaller flat relations represents a loss of abstraction. For example,
in the previous chapter there was a real world entity that was represented by the relation

Officer in a military database. A database containing the Officer relation might also have a

46

relation called Dependents to represent the real world entities that are dependents of
military officers. However, this is not a very good abstraction. A better abstraction for these
two real world entities in a military database is to have the Officer relation contain one more
attribute: Dependents. But, this attribute would be multi-valued which is not consistent
with the requirement that all attributes in a relational database be atomic. Therefore, multi-
valued attributes are not supported in RDBMSs.

Continuing with the previous example, it can be seen that when an Officer tuple
is retrieved there is direct access to the dependent data also. However, if two relations were
used, then a join operation would be needed to associate an Officer tuple with that officer’s
associated dependents. This is a very simple example; however, the reader can imagine that
if the complexity of this type of situation is increased several orders of magnitude, then

surely a RDBMS would provide poor performance in responding to queries of this nature.

2. Tuple Function

As stated previously, relational databases are based on the simple data structure
of a table of values of simple types. Displaying the values of a tuple in a relational database
system is generally straight forward since the values are generally simple text or numbers
that the database can easily handle with ASCII characters. For traditional business data
processing applications, this is certainly sufficient. However, databases that contain more
complex attribute values (such as sounds, graphics, video, etc.) are not so simple.

Consider a database of machine parts that contains as an attribute a 3-D image of
each part along with more traditional attributes, cost, part number, size, weight, quantity on
hand, etc. If a user wants to display a the 3-D image of a particular part, then the part tuple
retrieved requires some method of displaying this attribute since a general RDBMS that
was not designed for this specific application will not be able to display this attribute.

However, an OODBMS could handle this situation by having a Display method for Part

47

objects which would display the 3-D image. Since OODBMSs! allow objects to have
methods defined for them, any OODBMS would suffice to construct and maintain this
machine parts database. This is in contrast to a RDBMS that would have to be developed
specifically for this application since the data does not contain any functionality that could

be used to determine how to handle it.

3. Inheritance

Relations in a relational database lack the ability to define a new relation based on
an existing relation. That is, a new relation cannot be created that has a schema that only
lists new attributes to be added to the schema for an already existing relation. For example,
assume that a relational database has a relation called Person that has the following
attributes: name, weight, birthdate, color eyes, and color hair. Now we wanted to add a new
relation, Officer, that has all the characteristics (attributes) of Person but also has attributes
rank, branch of service, and unit. It is desirable to allow Officer to inherit the attributes of
Person. The usefulness of inheritance is more evident if we consider that we also want to
have another new relation, Enlisted, that has the characteristics of Person along with
enlistment date, rank, ETS, etc. Now we have two relations that have the characteristics of
Person but do not have to redefine the common Person attributes in each of the new
relations. In a relational system, these common attributes cannot be inherited but each new
relation has to have them explicitly included in their schema.

Using the object-oriented paradigm, inheritance is included by definition and

supports code/schema reuse by allowing an object to be further specialized by the definition

1. It is realized that there is no standard definition for an OODBMS however, in all cases it is gen-
erally agreed that for a DBMS to be considered object-oriented that it must manage objects that have
attributes and methods associated with them,

48

of a subclass that inherits all of the attributes of its superclass. In our example, both Officer
and Enlisted would be subclasses of the class Person. Now, any instance of an Officer or
an Enlisted will include the common Person attributes without having them explicitly

defined in the class definition for Officer or Enlisted.

4. Impedance Mismatch

With many conventional database systems (relational, hierarchical, and network),
there is generally the problem of impedance mismatch. That is, they generally have one
language for data queries and another for data manipulation. In the relational case, a query
language like SQL may be used but then the actual data in the database is manipulated using
a conventional programming language. Thus, there is a mismatch by mixing the generally
procedural conventional language with the more declarative query language along with
their differing data structures [Kh91]. In OODBMSs, there is a closeness between data and
programs where a single language has the expressive power and flexibility to allow both

data queries and manipulation.

C. OBJECT-ORIENTED DATABASE LIMITATIONS

Many feel that OODBMSs are here to stay and that they are the next logical step in
the evolution of database technology. However, there still exist two primary drawbacks to
them which limit their acceptance as the answer to tomorrow’s database requirements: (1)
the lack of a theoretical basis and (2) no universally accepted standard definition. Neither
of these limitations exist in relational database model which has played a large role in the
overall acceptance of relational model. Thus, there is no reason why a more expressive and
powerful model that can easily have relational databases mapped onto it and overcomes

these limitations cannot become widely accepted for tomorrow’s applications.

49

1. Mathematical Foundation

Any query language in a relational system must be relationally completeZ. Thus,
RDBMS users are guaranteed that their queries will be answered correctly by any RDBMS
system since relational algebra is based on mathematical set theory and relational calculus
is based on mathematical predicate logic [EN89]. Queries in any language can be reduced
to a mathematical premise and be mathematically shown to be true. This is not the case with

OODBMSs which have no such theoretical basis.

2. Standardization

Possibly more serious than the non-existence of a formal theoretical basis is the
lack of a universally accepted standard definition, which may be considered one of the
relational model’s stronger features. Since relational databases have a universally agreed
upon definition and underlying theoretical foundation, different commercial RDBMSs are
functionally equivalent. Standardization leads to many advantages such as better support,
portability among different systemns, greater acceptance, common evaluation criteria, etc.
The OODBMS community lacks anything close to a standard or even a generally accepted
definition.

Not only is there no standard definition or specification, but the object-oriented
community cannot even agree upon terminology {Ed91][Ne91]. It is even more difficult to
define something when people cannot even agree on the terminology that is used to
describe it. Thus, when a database or any other software product is said to be object-

oriented, the user cannot be sure what that means. Since ‘object-oriented’ is a hot

2. Recall that relational calculus and relational algebra are equivalent. Thus, it is also correct to say
any query language must have the expressibility of relational calculus or relational algebra. In either
case, a language that satisfies this requirement is said to be relationally compiete.

50

buzzword, it is found in advertising for products that may have little to do with the object-
oriented paradigm. This brings to mind a quote used earlier: “I have a cat named Trash. In
the current political climate, it would seem that if I were trying to sell him (at least to a
Computer Scientist), I would not stress that he is gentle to humans and is self-sufficient,
living mostly on field mice. Rather, I would argue that he is object-oriented” [Kin89, p. 23].
The bottom line is that the object-oriented community suffers from definition overloading.

This lack of standardization has also been problematic in that there are no
standard benchmarks upon which to evaluate OODBMS performance [St91c]. Portability
between systems is poor since no single OODBMS data model exists along with a standard
core set of operations [Ed91]. OODBMSs differ among themselves on whether they have
a class library available and what classes are provided in the library if it exists. This puts
the consumer in a quandary since a decision must be made based on terminology that has
different meanings depending on who wrote it to select from very different available
OODBMSs that may be very costly. Since each OODBMS is so different and the computer
software industry is so volatile, the consumer may lose all support and have to turn to
entirely new system if the company that produced his system goes under. Clearly, if
OODBMSs had a consistent terminology and definition, then it would be much more

widely accepted.

3. Relational Operations

Companies that produce OODBMSs generally think in terms of managing objects

and not relations with their database. Thus, there are not any commercial OODBMSs that

support relations and relational operations3. However, an OODBMS that does support

3. Some do support an object-SQL interface.

51

relational operations would be valuable in terms of increased compatibility and
completeness. It has been shown that relational operations can and should be made a part
of an object-oriented database [Fi92][Ne88][NMO9%0]. An OODBMS that incorporates
these operations would benefit from increased credibility along with acceptability among

relational database developers.

4. Other Problems

Other problem areas that cannot be overlooked include the inability for most
commercial OODBMSs to interface with relational systems [St91a]. A better solution is the
integration of both object-oriented and relational systems. However, in the absence of an
integrated approach, some interface should be available. Finally, along with the powerful
modeling capabilities of the object-oriented data model comes an increased difficulty in
making changes to the database as requirements change in addition to design difficulties

[Ed91].
D. A COMBINED SYSTEM

1. Desirable Properties

A combined relational/object-oriented system will eliminate limita)ns that each
of these systems possess as a system by itself. It would allow a relationally modeled system
to naturally model and define complex objects along with their behavior which would
facilitate better performance in complex applications. This ability is not found in simple
extended relational systems. Generally, they allow for the definition of complex objects but
not for their behavior.

Relational classes as part of a combined systems class library are needed:
database, relation, and tuple (or record) classes. Additionally, the five fundamental

relational algebra operations (select, project, Cartesian product, difference, and union)

52

should be a part of all OODBMSs. Credibility and standardization of combined systems
will be enhanced as a result.

2. Possible Approaches

Two primary approaches to a combined relational/object-oriented system exist.
The first is to take an existing RDBMS and extend the system to include all of the concepts
in the object-oriented paradigm. Once this has been done, the underlying system is still
relational so the system should still have all of the functionality of a purely relational
system along with the advantages of the object-oriented paradigh. This would be a difficult
and arduous task. Additionally, since the underlying system is relational, it may not be as
efficient as an object-oriented system at managing objects. The other approach is to take an
existing OODBMS system and construct classes and associated methods that would allow
the OODBMS to brovide relational functionality within the system. Thus, the relational
model could be used with this system. This approach is much simpler since it requires the
construction of three classes and their associated methods as compared with trying to

implement all of the complex and powerful concepts of the object-oriented paradigm.

E. WHY THIS APPROACH

“The relational model is a viable approach to organizing persistent objects in an
object-oriented database” [NMO90, p. 319]. The real world consists of complex entities/
objects that are easily modeled with an object-oriented paradigm. A R/OODBMS exists
with the best of both worlds; it reduces the limitations that the individual systems realize
by themselves. Conventional applications in a R#OODBMS can be extended to include
complex data, and new non-conventional applications may also be developed in the same
system.

Original work done in the development of the ROOMS paradigm [Ne88] and later
work done with a R/OODBMS as implemented in Prograph [Fi92] is extended in this

53

thesis. ROOMS was not a full RFOODBMS since it lacked the ability to store persistent

objects. A R/OODBMS in Prograph was a logical next step in the extension of ROOMS to

a full database systcm.4 This work completes the proof of concept that began with ROOMS
and culminates in its extension into a commercially available OODBMS, IDB. The system
implemented in this thesis is a single RFOODBMS that can fulfill the requirements of both

relational and object-oriented users.

4. This is because Prograph is an object-oriented programming language that supports the storage
and retrieval of persistent objects in secondary storage through its built-in database primitives
[Fi92].

54

IV. IMPLEMENTATION OF AN R/OODBMS IN IDB

An R/OODBMS in IDB, as implemented in this thesis, is the culmination of a proof
of concept that began with ROOMS [Ne88]. In that respect, it is not intended to be a
production/commercial system. This chapter describes the fundamental design and detail
of the implementation of an R#OODBMS in IDB. Although, there may be ‘better’ or more
efficient implementations, the system as described is functional and does provide a proof
of concept. It should also be noted that the author has worked exclusively with the
commercially available IDB system. That is, there were no special/trade tools provided by

Persistent Data Systems for this effort.

A. THE SYSTEM DESIGN

As described in [Ne88], the fundamental design of ROOMS is quite simple. This
thesis is modeled after that design. A database is comprised of a group of relations. A
relation is comprised of a group of tuples. A tuple is comprised of a group of attributes.

Database, relation, and tuples are all implemented as classes. Both database and relation

classes are IDB node class types while the tuple class is a strict class type.l Thus, tuples
have as descendents user-defined classes that, when instantiated, become the tuples
comprising a relation. In this manner, relations differ by the type of tuples they contain.
While it is possible to create stand-alone applications in IDB, the RIOODBMS was
created for use within the IDB browser. Thus, the IDB core, display, and browser interface

were used in the implementation of the R#OODBMS. The R/OODBMS user interacts with

1. Recall that in IDB a strict class type has one or more descendents while a node class type has no
descendents.

55

the IDB browser to view the relations of a particular database and to perform relational

algebra operations on relations within a particular database.?

Figure 17 shows a picture of the IDB Browser Interface. Pull down menus are listed
along the top of the window. Within the browser, the programmer/application developer

may introduce their own menus. We opted not to use this feature; instead the commands

that the RFOODBMS user needs are displayed in the Menus pane.3

RO

| ¥2 ;

Cluster View Options Qppeggq§mggrrent Context Heap Help o

Address Database

Hissionary/Cannibal Database

Relat.ional Address DB2

2> dbdir:dbdir [E] /Hone

root. ¢ linked seq 3> [Address Database,...]
current. : linked seq 3> [Address Database,,...]
context : nil => nil

Help: sequence element

Figure 17 IDB Browser Interface

2. A database directory was developed to allow the R/OODBMS to manage more than one database.
APPENDIX B contains the source code, the IDL schema and C implementation of the methods for
the database directory cluster. APPENDIX C contains the IDL schema and C method implementa-
tions for R/OODBMS. .

3. There are four panes within the browser window as shown in Figure 17: Current Object, Context

Object, Browser State, and Menus. The user may have none, all, or any combination of these panes
displayed at any time by making appropriate menu selections from the View menu commands.

56

Since the RZOODBMS is i slemented as a proof of concept, it is not designed to have
all of the facilities that are expected in a production system. Therefore, several assumptions
are made about the R#OODBMS. It is assumed that the user will input correct information,
in the correct syntax, for the R/JOODBMS relational algebra operations and that the
relations named as operands in the operation actually exist within the database.
Additionally, all tuples within a relation must be instances of the same tuple descendent
class. Thus, error checking is not provided consistently in all relational algebra operations.
That is, different amounts of error checking have been provided among the operations in
the hope of demonstrating the feasibility of detailed error checking without the overhead of
implementing it for every operation. In two cases, detailed error checking has been
implemented to demonstrate the feasibility of doing it for all operations, as will be
described shortly.

By the same token, the relational operations, as implemented in this thesis, are
implemented in the simplest manner possible while still demonstrating the feasibility/proof
of concept of a R‘OODBMS. For example, you may recall from Chapter II that the
selection condition of a selection operation is a boolean expression consisting of clauses of
the form:

<name of attribute><comparison operator><constant value>;
or
<name of attribute><comparison operator><name of attribute>
where <name of attribute> is the name of an attribute of the input parameter relation;
<comparison operator> is either =, <, <, 2, >, or #; and <constant value> is any arbitrary
number of clauses may be connected with the AND, OR, and NOT operators to form the

selection condition expression [EN89]. In this implementation of R#OODBMS, only one

57

clause is allowed for the selection condition since allowing an arbitrary number of clauses

is just repeated applications of one clause in its simplest form.*

B. ORIENTATION TO R/OODBMS

This section is intended to familiarize the reader with using the R#ZOODBMS. It is not
intended to be a complete user’s guide. However, it should provide sufficient information
so that a user could use the source code in APPENDIX B and APPENDIX C on a platform
supported by IDB, translate the IDL schema, compile, and run the R#FOODBMS.

1. The Database Directory

The database directory allows multiple R#OODBMS databases to be managed in
IDB. If IDB is run with the following command line entry, then IDB will open the database

directory cluster and display the browser window shown in Figure 17: ‘idb ¢ dbdir -t

dbdir’.3 In Figure 17, there are four databases in the directory: Address Database,
Missionary/Cannibal Database, Relational Address DB, and Relational Address DB2. If
one of the databases is selected, say the Relational Address DB, then the browser window
would appear as shown in Figure 18. Here the Relational Address DB object is the current
object and the directory (sequence) of databases becomes the context object. To enter this

database, select the enter commar:d from the Menus pane.

4. Of course, there are more efficient methods of implementation than just repeated applications.

5. The name following the -c flag (dbdir in this case) in the command indicates the home cluster that
will be used when IDB begins running. The name following the -t flag (dbdir) indicates the home
cluster type. In this case, the home cluster is dbdir.c and its type is dbdir.

58

Cluster View Options Commands Current Context Heap Help

Relational Address DB Address Database

type:relational ftissionary/Cannibal
file:rel_addr Relational Address D
exanine:true Relational Address D

=) dhdir:dbdir [E] /Hone
root ¢ linked seq =) [Address Database,...] Context First
current : database =) Relational Rddress DB Last
context. ; linked seq => [Address Database,.. Foruward
Backuard

Help: enter this cluster

Figure 18 Entering a Database

2. Inside a RROODBMS Database

Entering the Relational Address DB database, IDB opens the database cluster and

displays the relations within the database in the Current Object pane as shown in Figure

19.5 Now, any of the relations can be opened. For example, if the ptl relation is selected
then the Context Object pane will display the list of all relations within the database and the
Current Object pane will display short form of the tuples within the relation ptl (see Figure

20). Since each tuple within a relation is also an object, a tuple can be selected in which

6. In the interest of saving space and enhancing readability, interesting panes only will be shown in
Figures.

59

case the list of tuples would move to the Context Object pane and the particular tuple

selected is displayed in the Current Object pane.

_Current Context Heap Help -

Current NeuRelation

P

Cart Resultl
project resultl
conp abj

Help: select this menu

Figure 19 The Relational Address DB

Notice that as different objects are displayed in the Current and Context Object
panes, the commands available in the Menus pane change. At any time, the Menus pane
will display those methods associated with the objects being displayed in either of the
object panes as long as the application programmer has specified them to be browser
visible; there may be methods that are required by an object for interaction with other
objects only that the application programmer decides the application user should not have

access to (i.e., they are not browser visible).

IIB Browser
Yiew Options Commands Current Context Heap Help

ptl

=> 550926190
999999399
123456789
987654321

Current. NeuwTuple
Union
Projection
Difference
CartesianPro
Selection

Context NewRelation

Help: select this nenu

Figure 20 The Relation ptl

When any of the relations within a database is displayed in the Current Object
pane, the Menu pane commands associated with the Current Object include the five
fundamental relational algebra operations that are implemented within the R/OODBMS.
Selecting any of the relational algebra operations brings up an associated pop-up window
that allows the particular operation to be expressed in a query. The details of each of the

relational algebra operations are discussed in the next section.

61

C. RELATIONAL METHODS

As discussed in Chapter II, there are five fundamental relational algebra operations
from which all other relational algebra operations can be constructed: union, difference,
selection, Cartesian product, and projection. These five operations are implemented as
methods for the node class relation in the R#OODBMS. The difficulty in implementing
these operations is directly related to the structure of the resultant relation as compared to
that of the operand relation(s).

With the union, difference, and selection operations, the resultant relation has the
same structure as the operand relation(s). Thus, the resultant relation’s structure is already
defined within the database and can be used to construct the resultant relation. In this sense,
these operations may be considered simple. Cartesian product and projection, on the other
hand, both yield resultant relations that have a different structure from the operand
relation(s). Thus, the resultant relation’s structure may not already exist within the database
and either must be explicitly defined in the schema or dynamically constructed at run-time.
Thus, these two operations may be considered difficult.

The details of each operation are discussed below along with difficulties encountered
in their implementation and special implementation notes. Once one of the simple
operations (i.e., result relation has the same structure as the operand) was completed, the
other simple operations followed relatively quickly in their implementation. Selection,

however, was more difficult than the other two since it required the implementation of

default comparison operations: equal to, less than, and greater than.’

7. As discussed in Chapter I1, there are six comparison operators: =, #, <, >, <, and 2. The last
two are a combination of = and < and = and >, respectively. # is just the inverse of =. Thus, it is
sufficient to implement only =, <, and >.

62

Before continuing, it is important to discuss the two possibilities for inserting tuples
into the resultant relations: (1) a new tuple object can be created and then the values of the

tuple can be copied into this new tuple, or (2) a reference to the tuple to be inserted can be

used.d If the first approach is used, then the relations are independent of each other. That
is, an update to any of the relations (operand or resultant) will have no effect on the other
relations.

In the second approach, the relations become interdependent since they reference the
same tuple relation. Thus, a change to the tuple in one relation will also be reflected in the
corresponding referenced tuple in the other. This may or may not be desirable. A problem
associated with this approach is the resolution between duplicate tuples in a binary
operation. For example, there are two relations A and B, and we would like to perform the
union operation. Relation A contains a tuple that is identical to one in B. Thus, it is a
duplicate and must not be duplicated in the resultant relation, call it C. But, which tuple
does C reference: the tuple in A or the tuple in B? They are both identical.

It would be best to allow the user to indicate in their query which of the two
approaches is desired for a particular query. To show the feasibility of both approaches,
some operations in the R#OODBMS were implemented using the reference approach while
others used the copy approach. However, no operation was implemented with both
approaches left for the user to choose from. It is clear, however, that if they can be
implemented separately, then it is just a matter of additional programming and fine-tuning
the user interface to add the ability to let the user choose.

The persistence of the resultant relation for these operations should also be

considered. The resultant relation is not initially written to the database in secondary

8. That is, either make a copy of attributes in existing tuples or provide pointers to them.

63

storage, although it does appear in the list of relations for the database in the browser
window (it only exists in main memory). If a write transaction is entered and committed,
then the resultant relation will be written to secondary storage. If a write transaction is not
entered and subsequently committed, then the resultant relation is lost when the transaction
on the database is closed. Additionally, if a write transaction is entered and subsequently
aborted, then the database cluster is read from disk again and any relation not previously

stored on secondary storage is lost.?

Although a resultant relation only exists in main memory, it may be used in other
queries just as any other relation within the database. It does not matter whether the
temporary resultant relation has been committed to secondary storage, as far as the
relational algebra operations are concerned - the resultant relations may be operated on as
any other relation. For example, if relation R1 were unioned with R2 and the resultant
relation TEMP_R3 were yielded, then a subsequent difference operation could be executed
using TEMP_R3. It should be remembered, however, that even though these relations may

be used in other queries, they are not written to secondary storage until a write transaction

has been entered and subsequently committed. 1

We will now discuss each of the 5 basic operations individually.

1. Union

The union operation is performed by the function union_op. It takes two relations,

R1 and R2, and computes their union. The resultant relation is created by the function

9. Naturally, if a query is made during a write transaction, then the persistence of the resultant rela-
tion depends solely upon whether the write transaction is aborted or committed.

10. All resultant relations will be saved when the commit is executed. By the same token, if the write
transaction is aborted then all of the resultant relations will be lost since a new transaction is entered
after the abort which causes the database to be read from secondary storage.

init_temp_rel which takes R1 and R2 as its parameters and returns a relation with a unique
name and some default values taken from R1. The syntax of the union operation (shown in
the center of the pop-up window within the parentheses) is shown in Figure 21. Notice that
there is no resultant relation listed in the query. This operation creates and names a resultant
relation that will appear in the list of relations for the current database (this is in contrast to
the project and Cartesian product operations where the resultant relation is named in the
query, as will be discussed shortly). As previously noted, it would be desirable, in a
production system, to have the ability to phrase a query with the option of providing a

relation name or having a default name generated.

X DB Browser
Cluster Vieuw Option §§WCurrent Context Heap He.

s 4
5 5 8

ta;

Please input. the union query (R1 union R2):

Help: comnand input line
Error:

Response >

Figure 21 Union Query '

65

The union operation, in contrast to the other operations!!, has extensive error
checking in its implementation. The R#FOODBMS first checks to make sure that the operand
relations exist within the database. If both relations are found in the database, then they are
checked for union compatibility. Provided that the relations exist and are compatible, a
temporary relation is created by the init_temp_rel function and subsequently its tuples are
inserted, ensuring no duplicate tuples. Tuples are inserted by reference and in the case of
inserting a duplicate tuple, a reference is made to the tuple from relation R1.

The function used to check for duplicate tuples is the equal_to method which is
defined for the class tuple. As such, it has a default implementation that only checks to see
if the tuples reference the same object. This method will most likely have an over-riding

user-supplied implementation for each tuple type. The prototype/signature for the method

is boolean equal_to(tuple, tuple, index)!2. That is, the function takes three parameters, two
tuples and an index, and returns a boolean. Each of the tuples must be of the same type.
When the value of the index is 0, then the equal_to function compares the each entire tuple,
all the attribute values. Otherwise, index is greater than zefo and is an index to the attribute
within the-tuples that is to be compared (selection operation). This function is also used in

the selection operation.

2. Difference

The difference operation is implemented in a manner similar to that of the union
operation. The function set_diff_op takes two relations and computes their difference. The

resultant relation is created in exactly the same manner as in union_op. Set_diff_op also has

11. The difference operation has the same level of error checking as the union operation.

12. This is the actual C function signature/prototype that shows the function equal_to has three pa-
rameters (tuple, tuple, and index) and returns a boolean to the caller of the function.

the same level of error checking as union_op. The main difference between its
implementation and that of union_op is in the insert decision for tuples that will comprise
the resultant relation.

In the union_op function, all of the tuples from R1 are inserted into the resultant
relation. Afterwards, the tuples from R1 are compared with those already in the resultant
relation and if they are not duplicates, then the tuple from R2 is inserted into the resultant
relation. In the set_diff_op, each tuple in R1 is checked to see if it exists in R2; if it does
not, then the tuple is inserted into the resultant relation. Insertion is by reference here as in
the union_op function. Figure 22 shows the difference query pop-up window with the

correct syntax for the query.

0B Brovser | ——

Cluster View Uptiggﬁ_tqnnangg‘purrent Context Heap Hel
el SETURS e

B

Please input the Difference query (R1 = R2):

ence
Help: command input line sianProd
Error: tion

Response >

Figure 22 Difference Query

67

3. Selection

Of the three simple operations, selection was the most difficult to implement. It is
a more complex operation since, even in its simplest form, it operates on a single attribute
of arelation (which can be any one of the attributes in the relation’s schema) and compares
the value of that attribute for every tuple in the relation with a specified value to determine
which tuples should be included in the resultant relation. Again, the resultant relation is
created using the function init_temp_rel. This implementation, select_op, has the
functionality necessary to demonstrate the feasibility of implementing a fully functional
selection operation.

The general syntax for the RFOODBMS selection operation is:

<relation name> select <attribute name> <comparison operator> <attribute value>

where <relation name> is the name of the relation to be operated on, <attribute name> is
the name of the attribute within the relation upon which selection will be based,
<comparison operator> is a user-defined comparison operator (equal_to, greater_than, or
less_than), and <attribute value> is the value to be compared with. Figure 23 shows the
select query syntax. The particular query listed selects all tuples of ptl where the attribute

value of Hours Worked is greater than the Hours Worked attribute in Comp Object.

68

Browser

Ler View Options Conn “ Current Context Heap Help
hp ob j
550926
Please input the Select query (Rl select attr comp_op object):
n
e
Product
Help: comnand input line
Error: on
DI LTIt | select Hours Horked > Conp 0b ject
[|
tion >

Figure 23 Select Query

It would be desirable to be able to list just a value for the <attribute value>;
however, at a minimum it is necessary to be able to compare the same attributes of two
objects. In RFOODBMS, the <attribute value> is a comparison object of the same type as
the operand relation, R1. This comparison object can only have one tuple in it and may must
have at least one of the attribute values entered, the one to be used for comparison. In Figure
23, Comp Object has the same type as ptl, thus it has the same attributes. The one tuple in
Comp Object has 20 as the value for Hours Worked. Thus, the query is equivalent to select
all tuples in pt1 where Hours Worked is greater than 20.

Select_op checks the database to ensure that both the relation to be operated on

and the comparison object are both in the system. If they are, then the attribute name is used

69

to determine the index into the relation schema. If either of these conditions is not met, then
the system brings up a pop-up window explaining that an error has occurred, what the error
is, and allows the user to continue without crashing. Again, init_temp_rel is used to create
and name the resultant relation for this operation. Finally, based on the comparison operator
specified in the query, the appropriate comparison method is executed. The tuples of the
operand relation are iterated through and those meeting selection criteria are inserted into

the resultant relation by reference.

4. Cartesian Product

Of the two more difficult operations, Cartesian product is the simpler to

implement as it operates on all attributes of the tuples in each of the operand relations.!3

Since the resultant relation has a different structure than either of the operand relations, thé
init_temp_rel function cannot be used. Instead, the user must provide the definition of the
resultant relation within the database IDL schema beforehand. Now, a relation can be
created within the database to hold the result of the operation. As a logical contequence,
the relation that is to hold the result of the operation must be named in the query. Figure 24

shows the Cartesian product query pop-up window with the required syntax.

13 This is in contrast to the project operation where only a subset of the attributes will end up in the
resultant relation. In a Cartesian product operation all of the attributes from each operand relation
will be in the resultant relation.

70

Cluster VYieu Option: rrent Context Heap Help
E

Please input the Cartesian product query (R3 = R1 X R2):

on
ce

Help: comnand input line
Error: n
(G LA art. Resultl = r3 X ptl ion

Help:
Error:
CartesianProduct > Cart Resultl = r3 X ptil

Figure 24 Cartesian Product Query

Defining the resultant relation’s IDL schema is not difficuit since we know that

its schema is simply the concatenation of the two operand relation’s schemas. No matter

how complex the two operand relation’s schemas are, the Cartesian product resultant

relation will simple include the attributes as defined in both of the operand relations.!* For
example, suppose there are two relations, Employee and Assigned Project, with their

i respective tuple types defined with the IDL schema shown in Figure 25.

14, 1f multiple inheniance were available. the resultant relation could simply be defined as a subclass
of cach of the operand relations. As such, it would inherit the attnbutes of each of superclasses.

71

emp_tuple => person : person,
address : addr,
phone : phone_number,
widget ¢ 1dl_univ;
proj_tuple => essn : integer,
proj_num : integer,
hours : rational;

Figure 25 IDL Schema for Employee and Assigned Project Relations

In our example, the attribute types of each of the tuples in the Assigned Project
relation are simple: integers and rational. However, in tuples in the Employee relation,
attributes have user defined (and provided) types and are, therefore, more complex. But, it
is still a simple matter to create the schema for the resultant relation for a Cartesian product
operation since all of the types (person, ad”. - ne_number, idl_univ, integer, and

rational) are already defined within the database IDL schema (see Figure 26).

cartl_result_tuple => person : person,
address : addr,
phone : phone_number,
widget : idl_univ,
essn : integer,
proj_num : integer,
hours ¢ rational;

Figure 26 Example Resultant Relation Schema for a Cartesian Product Operation

Cart_prod_op implements the Cartesian product operation by first determining if
the two operand relations and the resultant relation are in the database. If they do exist, then
it is a fairly simple matter to take one tuple at a time from the first operand relation,
concatenate it with each tuple of the second, and insert each resultant tuple into the resultant
relation. The function insert_tuples is used by cart_prod_op to insert the tuples into the

resultant relation.

72

In the query shown in Figure 24, 13 is a relation with emp_tuple type tuples, ptl
has proj_tuple type tuples, and Cart Result] has cartl_result_tuple type. Figure 27 shows

the relation r3 with its two tuples, Kelly and Spear. In the left side of Figure 27, all of r3’s

tuples are shown in their abbreviated form. 15 1n the right side, a single tuple is shown in its

entirety.
.. |
: => Ronald L, JT¥M (29 Dec 62} [Karin] :
: SSN: 120926190 :
: : : :
: ! => (408)375-8619
= IS(ellg :
=> Spear :
: P : : = 397B Ricketts Road
et eerrieiiaciaaas . Hont.ereg » CA
The Relation 13 S T e
The Spear tuple of relation r3

Figure 27 The Relation r3 and One of its Tuples

The relation ptl is less complex and as such its abbreviated version has all of the
information of each tuple. Therefore, there is no need to include a single tuple of ptl in the
Figure 28. If a single tuple were shown, there would be three values: an employee ssn,
project number, and hours worked. However, these values would then be listed sequentially

in a vertical fashion.

15. The abbreviated form only shows the last name of the person attribute. The predefined IDB func-
tions idl_print and idl_key can have their implementations over-ridden by the user to present the re-
lation and its separate tuples in any desired fashion. Figure 27 shows one such display.

73

z> 120926190 2 10
993999399 1 45,200
123456789 2 51.5
987654321 30 4
Figure 28 The Relation ptl

The result of the Cartesian product of relations r3 and ptl is shown in Figure 29.

The left side of the figure shows the abbreviated display of the relation Cart Resultl tuples,

while the other side shows one entire tuple from the relation.

:
L= Kelly 120926190 2 10 :
: Kelly 999999993 1 45,200
Kelly 123456789 2 51.5
Kelly 987654321 30 q
=> Spear 120926190 2 10 :
Spear 999999999 1 45,200
Spear 123456789 2 51.5
Spear 987654321 30 4
The Relation Cart Resultl

..

: => Ronald L. (29 Dec 62) :
: oSNs 120926190 :

! =) (408)375-8619
: => 3978 Ricketts Road

Honterey, CA
: 93940
| 120526190
10.0 :
The Spear tuple of Cart Resultl

Figure 29 Cartesian Product of r3 and pt!

5. Projection

Although the projection operation has a resultant relation with the same number

of tuples as the operand relation, it is complicated by the fact that any combination of the

attributes of the operand relation can constitute the schema of the resultant relation. As with

Cartesian product, since the resultant relation has a different structure than that of the

74

operand relation, the user must provide the definition for the resultant relation in the IDL
schema beforehand. Again, this is not a difficult task since the schema of the resultant
relation is a subset of the attributes of the operand relation. Thus, all of the attribute types
must already be defined in the database schema. Parsing the query is more difficult since
any combination of the attributes can be specified in the query to be projected into the
resultant relation. Figure 30 shows the browser pop-up window that accepts the project

query and also specifies the query syntax for this operation.

1!.!ﬂﬁlﬂiiii§il - _ : ::::::::::::::::::::::::::::::::

Cluster View Options Cgﬂqﬁi §$FQFf§§t Context. Heap Help

55 |
T SRED RSO | R
5% Lo AR H

project 1

=> 20,399
3.2000
67.25
Please input. the Project query (R2 = R1 project Attr_list):

c
Help: connand input line nF
Error: . n
Response > j pt.1 project Hours Horked,Enp > ion

Projection > project 1 = ptl project Hours MHorked,Enployee SSN

Figure 30 Project Query

Consider a relation with tuples of type proj_tuple as defined in Figure 25. If the
user wanted to project the hours worked and employee ssn of each tuple, then a schema for

the resultant relation would look like the one in Figure 31. The function project_op

75

implements the operation. Once it has checked to ensure that the operand relation and the
resultant relation exist, it calls the function insert_fields to insert the appropriate attributes

into the resultant relation.

projectl_result_tuple => hours : rational,
essn : linteger;

Figure 31 Example Resultant Relation Schema for a Project Operation

D. THE DATABASE CLASS

The database class is an IDL node class and is actually quite simple. Its sole purpose
is to keep track of the relations within the database. As mentioned in Chapter II, each IDB
cluster must have a root class from which all other classes can be reached. For the R/
OODBMS, the database class is the root. Thus, all functions that implement the relational
algebra operations start their search for the relations from this class. This coincides with the

idea of a database being a collection of relations.

1. Attributes

The database class has only two attributes: name and relations. The name attribute
is included so that when a database is entered users can see the name of the database that
they are in. However, none of the operations in the R#OODBMS require this attribute. The
relations attribute is very important since it is the means by which all relations in the

database are reached. Its type is a sequence of relations where relation is another IDL node

class. The sequence is a doubly-linked list. 16 All of the RZOODBMS reiational algebra
operations use the relations attribute to iterate through when trying to locate a particular

relation within the database.

76

2. Methods

As with all objects in R#OODBMS, the predefined IDB core interface methods

idl_key and idl_print are over-written.!” Simply stated, idl_print displays an object while
idl_key displays a short description of the object [Pe91a]. Their predefined
implementations are functional but, of course, cannot anticipate the types of objects that
will be displayed, much less the most pleasing format to display them in. In the following
discussion of other classes these methods will not be discussed again although each has its
own implementation for the idl_key and idl_print methods.

The only other method defined for the database class is new_relation which, as
the name implies, creates a new relation and inserts it into the database. To create a new
relation using the new_relation method, the user must first enter a write transaction.
Otherwise, when this method is selected from the Menus pane, an initialize new relation
pop-up window will appear but the user will not be able to view and edit all of the relation

attributes necessary. If a write transaction is open when new_relation is selected, then the

pop-up window will display all attributes of a relation ready for editing.18 The user is

responsible for initializing the relation attributes to valid values.

16. Sequences in IDB are either arrays (the default) or doubly-linked lists. Arrays are convenient for
sequences with a static number of entries. However, every time the size of the sequences changes
there is a great amount of overhead involved. Linked lists support sequences whose number of en-
tries varies dynamically.

17. Both idl_key and idl_print can only be used with the display manager. An exception will be
raised if attempts are made to invoke these methods without the display manager. [Pe91a]

18. The idl_print implementations for relations do not display all attributes during read and examine
transactions. However, since the user needs the ability to edit all attributes, they are visible during
write and create transactions.

E. THE RELATION CLASS

Codd’s relational model is simple, representing databases as a collection of relations
(or tables). Hence, relations are the fundamental building block of the model and as such
the relation class of our R#OODBMS is the fundamental building block of the system. As
with the database class, the relation class is an IDB node class type. Since a relation is a
collection of tuples, it stands to reason that the attribute tuples is the most important

attribute in this class.
1. Attributes

a. Relation_name
This attribute plays a greater roll in the R#FOODBMS than does the database

classes’ attribute name. The relation_name allows different relations within a database to

be easily differentiated. Of course, the database name within the database directory plays

as great a role. The type of this attribute is an DB string.l9

b. Attribute_names

The relational schema is specified by the relation’s attributes which are listed
in attribute names. This attribute has a type that is a sequence of name where name is an
object/class (an IDB node class) that has a single attribute, name. The name attribute of the
name object is a string type. Thus, attribute_names is simply a sequence of strings. Since

the schema of a relation is static, the default array sequence is used here.

19. An IDB string differs from a C string in that it has an additional null character at the end of the
string. That is. there are two null characters at the end of an IDB string. IDB strings can generally be
used in the same manner as C strings.

78

The degree of a relation is simply determined by the number of attributes.
This is easily done by checking the size of the array that comprises attribute_name. Two
relations are said to be union compatible if each is of the same degree and if corresponding
attributes have common domains. Thus, attribute_names is used by both the union and
difference operations to determine if the two operand relations are union compatible.

The project and select operations are the only other R/OODBMS relational
algebra operations that require the attribute attribute_names since they operate on a subset
of the attributes and single attribute of the operand relation, respectively. Specifically,
attribute_names is used to determine if an attribute(s) in a query is in the operand relation
or not. Additionally, it is used to determine the index (position within the relational schema)

of an attribute.

c. Attribute_types
Attribute_types is of the same type as attribute_names, however, it is used
only in support of the union and difference operations to determine if operand relations are
union compatible. As stated above, union compatible relations have corresponding
attributes with a common domain. Having a common domain means that the attributes have
the same types. Thus, once two relations are determined to be of the same order, their

attribute types are checked to ensure that they have a common domain.
d. Tuples

The tuples attribute within a relation is a sequence of tuples where tuple is an

IDB strict class type. Thus, tuple has subclasses which are referenced by this attribute.20

Thus, IDB allows a relation to have a sequence of tuples where some of the tuples reference

20. An attribute in IDB that has a strict class type can reference that class or any of its descendents.

79

one subclass type of the IDB strict class tuple while others reference a different subclass.
However, if allowed in an RFOODBMS, then this sequence of tuples should not be called
a relation, as this would allow various tuples to have a different number of attribute values
and/or have different domains for corresponding attributes. Thus, all tuples within a
relation must be of the same subclass of the IDB strict class tuple.

It is the tuples attribute that allows one relation to differ from another in
structure. All of the descendents of the IDB strict class tuple are user defined. The user may
define a subclass of tuple to have any desired structure. For example, the user may with to
have an employee relation and a project relation where the employee relation contains
personal information about the employee while the project relation contains information
about different projects that the company has worked on. A relation should be constructed
to model each. To create each relation, the user must first define the type of tuple that will
comprise each relation: ‘an employee tuple and a project tuple. Now, the new_relation
method of the database class is used to create the new relations. Each relation should be
given a descriptive name. Only employee tuples should be inserted into the employee
relation and project tuples into the project relation. This restriction must be enforced by a
production system; however, our proof of concept system assumes that the user will do this.

Since the number of tuples within a relation varies with time, the size of the
tuple sequence is dynamic. Database updates, insertions, deletions, etc. generally
necessitaie a modification to the number of tuples within a relation. Therefore, the sequence
of tuples that comprise the tuples attribute is a doubly-linked list which allows the sequence

to dynamically grow and shrink at run-time.

e. Tuple_type

Tuple_type is of the IDB strict class type tuple. Thus, it can reference any of

the user defined tuples that comprise relations within the database. When a relation is

80

created, the tuple_type attribute must reference an object that is of the same type as all
tuples within the relation. Therefore, an object should be created solely for that purpose and
then the tuple_type attribute needs to reference it.

As discussed in Chapter II, IDB invokes methods by the use of two different
operations: idl_vop and idl_top. Id]_top is used to invoke a specific method implementation
within the class hierarchy while idl_vop invokes the implementation of a method that is
most closely defined for an object. For example, idl_print has a default implementation that

is inherited by ali classes. Consider the two tuple types employee tuple and project tuple,

both of which have specific implementations for the idl_print method.2! Both of these
classes have tuple as their superclass and tuple also has a specific implementation defined
for idl_print. Thus, there are now four implementations for the one method, idl_print: the
default, the strict class tuple’s, employee tuple’s and project tuple’s. Idl_top allows us to
explicitly indicate which implementation of idl_print is invoked regardless of which object
is being printed while idl_vop invokes the specific implementation closest in the hierarchy
to the object that is to be printed. Thus, using idl_top, an employee tuple could be printed
using thc- strict class tuple’s implementation. However, if idl_vop were instead used to
invoke the idl_print method, then the employee tuple’s implementation would be invoked.

Tuple_type is used in an idl_vop operation to indicate which implementation
of a method to invoke. This is used most often within the method new_tuple (create_tuple
is its C implementation) to invoke the correct implementation of initialize_tuple. Each
descendent of the strict class tuple must have its own user defined and specified

implementation for initialize_tuple.

21. That is, along with their IDL schema definitions, both classes have redefined the implementation
for the idl_print method.

81

f. Key

The default key used in the R‘'OODBMS is to check the value of every
attribute within a tuple. Each relation has at least one superkey: the key that is all of the

attributes of the relation. By definition, each tuple within a relation must be unique. Since

a tuple is comprised of all its attributes, the set of all its attributes is therefore a key.22 When
this implementation is over-ridden the user may use this attribute to specify some other key

to be used when comparing tuples.

2. Methods

Other than the relational algebra operations, idl_key method, and idl_print
method that have already been discussed, the IDB node class relation has two other
methods defined: new_tuple and check_union_compatability. Their names are quite
descriptive of their function. As mentioned earlier, create_tuple is the C implementation of
the method new_tuple. As with all of the node class relation’s methods, new_tuple requires
no user defined methods. However, it does invoke a user defined and provided method:
initialize_tuple (a method of the strict class tuple). The function of
check_union_compatability has already been discussed in the sections pertaining to the

attributes attribute_names and attribute_types.

F. THE TUPLE CLASS
User defined tuples must be subclasses of the strict class type tuple. Of the three
required classes that comprise the R#OODBMS, tuple is the only one that is not an IDB

node type. As such, it cannot be instantiated into tuples (objects) that can be inserted into

22. This is not to say it is the only key. There usually exists other keys that are a subset of attributes
comprising a relaticn.

82

relations. Instead, the user must provide the definition for tuples that are descendents of this

class.

1. Attributes

Tuple, as a strict class type, has no attributes defined for it. There are no attributes
that are common to tuples of every relation. Thus, it makes no sense to define attributes at

this level since they would be inherited by all descendents.

2. Methods

Each method defined for this class has a default implementation that is very
general. As a whole, most of the default implementations are so general that they tend not
to be very useful. Users must provide their own implementation for each method defined
for this class. Clearly, the implementation of the method initialize_tuple must be different
for an employee tuple than for a project tuple since they likely have different orders and

differing domains corresponding to their attributes.

a. Initialize_tuple
As the name implies, the function of this method is to return a newly created
and initialized tuple. It has a tuple as its only parameter, creates a new tuple, initializes the

tuple with valid values, and returns the new tuple.

b. Insert_fields and Insert_tuples
The first approach attempted in 'implementing these insert_fields and
insert_tuples, which support the project operation and Cartesian product operation
respectively, was unsuccessful. Consider the Cartesian product operation: to form the
resultant relation each tuple of the first operand relation is concatenated with each tuple in
the second. This concatenation process is continued for every tuple in the first relation. It

therefore seemed logical to create a function called insert_tuple that would take as its

83

parameters two operands, the tuple to be inserted and the resultant tuple. Each user defined
tuple used within a relation in the database would have their own particular implementation
of the method.

For example, recall the tuple types defined by the schemas in Figure 25 and
Figure 26. To insert the resultant tuples into the resultant relation for the operation Cart
Resultl =13 X ptl (where the relation Cart Resultl has tuples of type cartl_result_tuple,
relation r3 hus type emp_tuple, and ptl has type proj_tuple). the relation r3 would be
iterated through a tuple at a time. The insert_tuple method for r3 would then be invoked to
insert the 13 tuple valaes into the resultant relation tuple. Subsequently, insert_tuple would
be invoked again however, this time for ptl which would insert its tuple’s values into the
resultant relatior tuple. Thus, one complete tuple of the resultant relation is complete. This
would continue with the first tuple in r3 and every tuple in ptl. Subsequently, the same
process would be done for the rest of r3’s tuples.

It is clear that the resultant tuple, sent as a parameter to the insert_tuple
method, will always have correct attributes to have values filled in; however, it will also
have other attributes that will change from one invocation to the next. Additionally, the
tuple to be entered into the resultant tuple will always be a constant type belonging to the
class for which the particular insert_tuple implementation ic specified. That is, the
insert_tuple implementation for emp_tuple will always have a parameter tuple that is of
type emp_tuple, with attributes person, address, phone, and widget, 5 be inserted into the
resultant tuple. The resultant tuple parameter sent to this implementation of insert_tuple
will always have attributes person, address, phone, and widget in addition to the attributes
essn, proj_num, and hours.

Now the same operation is executed again except with ptl replaced by a
relation called R2 that has the attributes sponsor_ssn and dependent_naine. An appropriate

resultant wuple type, cart2_result_tuple, is created with the attributes person, address,

84

phone, widget, sponsor_ssn, and dependent_name. This time when insert_tuple is invoked
for r3 it will receive two tuples: one of type emp_tuple and the other of type
cart2_result_tuple. Again the resultant relation has the attributes that this implementation
will requires, person, address, phone, and widget, but this time the resultant tuple also has
the attributes sponsor_ssn and dependent_name. Thus, each implementation of insert_tuple
must be able to handle differing structures for the resultant relation. This proved to be
problematic for both the insert_tuple method and insert_field method.

The solution used in our R/OODBMS is to have two methods called
insert_tuples and insert_fields. Instead of having every tuple type that belongs to some
relation in the database, each resultant tuple type requires its own implementation. That is,
in our example involving the Cartesian product operation, cartl_result_tuple and
cart2_result_tuple would both have their own implementation of the method. There are
now three parameters to the method: the two operand relations and the resultant relation.
The entire concatenation process is completed within these methods and the resultant
relation is returned from the method after completion. The method insert_fields works in a
similar manner; however, it requires only two parameters, the operand relation and

resultant relation.

¢. Comparison methods

The comparison methods implemented in the R/OODBMS are equal_to,
less_than, and greater_than. The equal_to method is used by the check union compatibility
function and select operation. Although there are default implementations for these within
the R/OODBMS, they have very limited applicability since the possible tuple types are
limitless and each generally requires specific implementation for comparing tuples of the

same type. Thus, the default implementations are a point of departure, but users must

85

provide their own implementations for each tuple type that is user defined if the R/
OODBMS is to perform properly.

The designer of the coinparison operator methods has many decisions to
make regarding their implementation. If the tuple type is complex with attributes that have
a type that is a user defined object, then deciding at which level comparisons will be made
may be difficult. For example, in Figure 25 the schema for an emp_tuple class is shown.
An instance of this class has four attributes: person, address, phone, and widget. Each of

these attributes is a user provided/defined class. Figure 32 shows the definition for these

classes (except for widget23). Which level do the comparison operators compare at? When
the person attribute of an emp_tuple is compared with another, are the object IDs (OIDs)
of the objects that they reference compared? Or is every attribute of the person object:
fname, mname, Iname, ... compared? Or maybe the comparison should be made at a more

detailed level?

person => fname : string,
mname : string,
lname : string,
bdate : string,
ssn : integer,
spouse : string,
sptr : person_nil;

addr => street : string,
city : string,
state : string,
zip : string;

phone_number => number : string;

Figure 32 Person, Addr, Phone_number Class Definitions

23, The attribute widget is an arbitrarily complex attribute that has yet to be defined by the user.

86

As the attributes of a relation become more complex, it is easy to see how

many variations there are for implementations of comparison operator methods. By the
same token, it is also easy to see that one default implementation could never hope to be
functional for more than just the simplest of attributes. Without user provided
implementations for the comparison operator methods, user defined tuple types in R/

OODBMS will not work properly.

3. User Definitions
The relations that can be formed within RFOODBMS are limitéd only by what the
user can define within an IDL schema. However, it is critical that specific implementations
for methods inherited fro.n the IDB strict class tuple be written for all user defined tuple
types. The implementation of the relational algebra operations for the IDB node class

relation depend on them.

87

V. ALTERNATIVE PROJECT AND CARTESIAN PRODUCT
IMPLEMENTATIONS

A. GENERAL

Of the five fundamental relational algebra operations (union, difference, select,
Cartesian product, and project), Cartesian product and project are considered to be the most
difficult. As discussed in Chapter IV, this is because the resultant relation yielded by these
two operations have a different structure from the operand relation(s). For this reason, both
ROOMS [Ne88] and our R/OODBMS require that the resultant relation structure for these
two operations be defined by the user prior to the execution of the operation. This chapter
deals with an IDB specific alternative solution to this approach.

Recall that an attribute that has a type that is of an IDB strict class type can reference
any object that is a descendent of that strict class type. Thus, an attribute that is of type tuple
can reference any object that is an instantiation of an IDB node class type which is a
descendent of class tuple. In both ROOMS and R#OODBMS, the user is required to provide
the definition of the resultant tuple. In Chapter IV, the only two resultant relation tuple
types for Cartesian product and project operations that are defined are cartl_result_tupie
and projectl_result_tuple respectively. Hence, any result of either of these two operations
(in the database as defined in the schema of APPENDIX C) must have the structure of
cartl_result_tuple and projectl_result_tuple. That is, the Cartesian product operation can
only be executed on two relations where the first relation has tuples of type emp_tuple and
the second relation has tuples of type proj_tuple. Similarly, the project operation can only
project the hours and essn attributes of relations that have type proj_tuple.

Say that you wanted to perform a project operation on a relation with tuples of type

proj_tuple for the attributes proj_num and hours. Or, that yo w~anted to take the Cartesian

88

product of a relation with proj_tuple types and another with emp_tuple types. In both cases,
new tuple subclasses for the resultant relations would have to be defined prior to run-time.

However, there is an alternative in IDB: the use of the type ‘any’.

B. IDB TYPES

An attribute in an IDL schema can have any of the types listed in Figure 33. A R/
OODBMS relation has an attribute called tuples that has type sequence of tuple where tuple
is a IDB strict class type. Thus, any subclasses of tuple may be referenced by the class
relation’s attribute tuples. Therefore, a relation’s schema is defined by the structure (tuple
subclass definitions) of its tuples. In our RZOODBMS, the user must provide these subclass
definitions to define their relations. In other words, the subclasses of class tuple are all user-
defined classes. Fpr example, in Chapter IV two tuple subclasses were used: emp_tuple and
proj_tuple. Consider an Employee relation, it would have tuples that are of type emp_tuple.

Our R/OODBMS relation’s attribute tuples would then reference a sequence of

emp‘,tuple.l

Another way to gain the same effect as having the relation’s attribute tuples reference
a different tuple subclass differing Cartesian product and project queries is to define one
subclass that has the flexibility to dynamically reference varying number of tuple attributes
and differing types of attributes with each instantiation. A tuple can be thought of as a
sequence of attribute values, so if a linked list is used to allow the flexibility required in the
sequence size then we simply need a type (this equates to the domain of an attribute) that

can reference any object within the database. That is, each attribute in the resultant relation

1. It is important to note that emp_tuple and all other subclasses of tuple must be IDB node class
types. That is, node class types may be instantiated into objects whereas strict class types cannot.

89

T ST T

could have any domain that is already defined in the database. Any attribute that is of type

‘any’ can reference any object within the database.

string

array

linked)
any

class user-defined

sequence

reference

nil

boolean
embedded primitive integer

rational

Figure 33 IDL Types® [Pe91c, p. 62]

C. THE RESULT_TUPLE SUBCLASS

In this alternative implementation, only one resultant relation tuple type is needed. It

has been called result_tuple and has one attribute, values, which has type sequence of any

(see Figure 34 and APPENDIX E3). Thus, this attribute can reference any object within the
database. Since we cannot anticipate how many attributes any particular resultant relation
will have, the sequence of any is a linked list of any which allows the number of attributes
(values) within a result_tuple to vary from one result_tuple to another. Hence, this one tuple

type can be used as the resultant tuple type for any operation in R#OODBMS.

2. The difference between reference and embedded types is important to note. Attributes that are ref-
erence types are pointers to an independent object that contains the attribute value. In contrast, at-
tributes that are embedded types have their value imbedded within the object that it belongs.[Pe91c]

3. Changes from the original RFOODBMS schema (APPENDIX C) are in bold in APPENDIX E.

resulc_tuple => values : seq of any:

Figure 34 Resultant Relation Schema for Project and Cartesian Product

Both the modified project operation and the modified Cartesian product operation
create the resultant relation using a function that initializes all of the class relation attributes
to initial values before the tuples are inserted into the relation. In both cases, the relation
attribute tuples is initialized to reference an empty linked list of type resﬁlt_tuple. A pointer
to the new resultant relation is passed back to the calling function so that the tuples can be
inserted into the relation. This initialization function differs for the two operations and will
be discussed in further detail in the sections below. Each of these initialization functions
(init_proj_result_rel and init_Cart_result_rel) is a variation of the init_temp_rel used by the

simple operations (union, difference, and select).
D. THE MODIFIED OPERATIONS

1. Project

There are a number of functions used by the modified project operation that also
required modification. These functions along with the modified project operation,
project_op are listed in APPENDIX E. Note that these are only the functions from the
original RZOODBMS shown in APPENDIX C. In order to have a working R/OODBMS
with this alternative approach, the functions in APPENDIX E must be inserted into the code
in APPENDIX C. Functions in the two appendices that have the same name indicate that
the newer modified function replace the identically named function in APPENDIX C. All

other functions in APPENDIX E that have unique names should simply be inserted.

91

The project query syntax is changed to that shown in Figure 35. The project_op
function still implements the project operation. The difference between this
implementation and the original begins with a modified function that parses the project
query: Project_parse_action. There are fewer tokens to parse than in the original

implementation.

X IDB Browser

Cluster View Options Commands Current Context Heap Help
COrEROR. 05 Bee— 1)

Please input the Project query (Rl project Attr_list):

Help: command input lihe
Error:
LIET U E B -1 oo ject Address,Phone Nunber

Figure 35 Modified Project Query

An additional data structure is required by this implementation since there is a
need to pass an array of indexes as a parameter to the insert_fields_b function. This

structure, index_array, is defined in the IDL schema in APPENDIX E; however, since it is

not reachable from the root, it can never be written to the database * Index_array has one
attribute that is a sequence of integers that are used to indicate which attributes will be

projected.

4. Remember that for an object to be written to secondary storage in IDB it must be reachable from
the root.

92

Insert_fields_b is the workhorse of the function project_op. This modified
function requires an additional parameter, index_array, that was not required by
insert_fields. Otherwise, it stll accepts two other parameters: the operand relation and
resultant relation. The user must provide certain methods that override inherited methods
during the construction of their relations. For example, the user must provide overriding
implementation for the comparison operators for each relation. In the same vein, the user
must provide an overriding implementation for the insert_fields_b method that they all
inherit. The reason for this is that each relation has a different list of attributes that may be
projected; thus one generic field (attribute) insertion method will not suffice. In the
modified R/OODBMS schema only emp_tuple had an overriding implementation
provided. Thaus, project operations may only be done on relations with tuples that are of
type emp_tuple type. The resultant relation from a project operation of a relation with
proj_tuple types would yield meaningless results since no overriding implementation for
insert_fields_b is provided in the schema.

Each wuser provided overriding implementation can be a copy of
insert_emp_fields_b with a few modifications. Each attribute must have its own case that
inserts that particular attribute into the resultant relation tuple (its index is in index_array).
In Figure 36, insert_emp_fields_b has been modified to indicate the portions of the function
that need to be changed for each relation within the database. Note that a new object is not
created for each attribute that is inserted into the resultant relation; instead each attribute of
the operand relation that is to be projected is referenced by the resultant relation tuple. This
issue of creating an independent object for the resultant relation’s attributes versus simply
referencing the attributes of the operand relation(s) was discussed in Chapter IV and
therefore it will not be discussed again here.

It should be noted that in this implementation the resultant relation from a project

operation cannot itself be used as the operand relation for another projcct operation. This

93

could be done but would require a general overriding implementation of the insert_fields_b
method that would not conform to the template shown in Figure 36. The fundamental
difference between all user provided tuple subclass definitions and the result_tuple
definition is that the user provided subclasses all have no attributes that are of a sequence
types while the only attribute of the result_tuple is a sequence type. This difference will
require that the attribute values are inserted into the resultant relation by use of
idl_linked_for which will iterate through each of the attributes within the operand relation’s
tuples to find the appropriate attributes to insert. This is in contrast to using a case statement
to insert the appropriate attributes.

The insert_fields_b method returns the resultant relation to project_op with all of
the correct tuples inserted. Finally, the function project_op inserts the pointer to the new
resultant relation into the sequence of relations that make up the database. Again, the
resultant relation is not written to secondary storage until a transaction is opened that allows

writing and is subsequently committed.

N

idl_routine relational_relation insert_xxxx_,fields_b(rel, result_rel, index_array)

relational_relation rel, result_rel;
relational_index_array index_array;

idl_transaction tr = idl_get_transirel);
relationai_result_tuple new_tuple;

result_rel->tuples = idl_empty_linkeditr,relational_tupie);

idl_linked_for (relational_tuple,rel--tuples,rel_tuple)

{

iterate through each tuple and £5r each tuple iterate through
the index_array and use a r-ase statement to reference cobjects for
fields to be entered into the resuilt relation */

new_tuple = idl_new(tr,relarional_result_ruple);
new_tuple->values = idl_emprty_linkedttr,relational_any);

idl_linked_for (reliational_index, index_array-.-.indexes, index)

{
switch {index-»>i}]

{

case 1:
idl_insert_back(relational_iny,new_tuple—>va1ues,rel_tupie->atﬂ‘l);
break;

case
idl_insert_back(relativnal_any,new_tuple->values,rel_cuple->ath'2);
break;

case
idl_insert_back(rela:i:nai_any,new_tuple->values,rei_cuple—>ﬂtﬂ‘3l;
break;

case BD:
idl_insert_back(relatiznal_any,new_tuple->values,rel_tuple->attr n);
break;

default:
id!l_raise{IDL_ERRCR,
“There is a pr-kiem in the employee insert field b
function!”*);
break;
}
} idl_end_for

idl_insert_back(relational_tuple,result_rel--tuples,new_cuple);

} idl_end_for

Figure 36 Template for Overriding Insert_fields_b Method

2. CARTESIAN PRODUCT

into APPENDIX C also applies to those modified funcﬁons listed in APPENDIX F for

The discussion in the previous section regarding modified function’s insertion

Cartesian product. The Cartesian product query syntax is changed to that as shown in

95

Figure 37. The function cart_prcd_op implements the Cartesian product operation. As with
the project operation, the new query syntax dictates that there are fewer tokens to parse. As
such, the function Cartesian_parse_action has been modified to parse this new query

syntax.

Cluster View Opt.is Com\ands Current Context Heap Hel,

T

Please input the Cartesian product query (R1 X R2):

Help: command input line
Error:

Response >

CartesianProduct)

Figure 37 Modified Cartesian Product Query

The workhorse of the function cart_prod_op is the method insert_tuples_b.
Insert_tuples_b still takes the same number and type of parameters as the original
insert_tuples. In contrast to the insert_fields_b of the project operation, the insert_tuples_b
method as defined for the class tuple does not require a user provided overriding
implementation for each relation. Instead, the method insert_tuples_b is general enough
that overriding implementations are not needed. The function does not need to worry about
how many attributes each operand relation has. It simply iterates through every tuple in the
first operand relation and concatenates the one tuple at a time with each tuple of the second

operand relation (see code in APPENDIX F).

96

However, if the alternative approach to inserting tuples into the result relation is
taken, then the user would have to provide an overriding implementation of insert_tuples_b
for each relation as he must do for the insert_fields_b method of the project operation. The
reason for this is that after an object has been created to hold the tuple to be entered into the
resultant relation, the appropriate values must be explicitly copied into the newly created
object. Once this has been done, then the new object with the tuples attribute values can be
inserted into the resultant relation’s tuple.

Since, with this implementation of insert_tuples_b, there is no need for any other
redefinition of the method, the resultant relation yielded from a Cartesian product operation
may be used as one of the operand relations in a subsequent Cartesian product query. As

stated earlier, this is not possible with the project operation.

E. CONCLUSIONS

This alternative implementation of project and Cartesian product appears to be very
promising. The project operation functions in the manner expected from a relational
database perspective. That is, if you want to project attribute 3, attribute 5, and attribute 1
of a particular relation, then the resultant relation will have those three attributes only and
they will be in that particular order. If you project attribute 5, attribute 3, and attribute 1,
then the resultant relation will have three attributes that correspond to these three but in the
order specified in the query. Similarly, Cartesian product yields the resultant relation that
is expected.

There is one additional area that must be discussed, the displaying of the resultant
relation. The approach taken in our RZOODBMS implementation was to provide 2 specific
overriding implementation of the idl_print and idl_key methods for all relations. However,
when the resultant relation is displayed in this implementation, the system defined

implementations of idl_print and idl_key are used since a general overriding

97

implementation cannot be written for the resultant relation as each resultant relation may
differ in structure. This makes it somewhat difficult to view the tuples of the resuitant
relation. However, this can easily be overcome as demonstrated in Nelson’s
implementation of ROOMS [Ne88] by having a display (overriding implementation of
idl_print and idl_key in this implementation) implementation for every object in the
database. That is, if an attribute of a relation is itself an object, then that object would have

a specific implementation of the idl_print and idl_key methods.

98

VI. CONCLUSION

The purpose of this research was to implement a combined - elational/object-oriented
database management system, R/OODBMS, that will overcome the deficiencies/
constraints of separate relational and object-oriented systems. This thesis expands previous
work in this area that showed basic proof of concept by implementing relational operations
in an object-oriented programming language which did not provide for persistent objects
[Ne88][NMO90], and by implementing relational operations in an object-oriented
programming language which does provide for persistent objects [Fi92]. A R/OODBMS as
implemented in IDB, a commercially-available object-oriented database management
system, demonstrates the extension of previous work to a commercially-available object-

oriented database management system.

A. SUMMARY

A detailed literature review investigating object-oriented programming concepts,
relational database management systems, object-oriented database management systems
(including a detailed overview of IDB), and a brief discussion of previous work in the area
was accomplished. Limitations of conventional relational database management systems
and object-oriented database management systems were explored while identifying
desirable properties of a combined approach.

The R/OODBMS, as described in Chapter IV, is specific to an implementation of
ROOMS [Ne88][NMO90] in IDB. However, as with previous work in this area, this
research demonstrates the validity of the ROOMS concept and further completes and

strengthens the proof of concept started by Nelson [Ne88].

B. CONCLUSIONS

A combination of relational and object-oriented database management systems, a R/
OODBMS is a logical and viable solution in overcoming each individual system’s
limitations providing the best of both worlds within a single system. In a R/OODBMS, the
relational paradigm gains the ability to model and manage arbitrarily complex data that
traditional RDBMS are unable to handle. Additionally, the object-oriented paradigm gains
the acceptance, standardization, and firm theoretical fourdation that traditional RDBMSs
enjoy. Thus, a single system can satisfy the requirements of users of both traditional

systems and overcome many of their individual limitations.

C. FUTURE RESEARCH SUGGESTIONS

Future research in this area should generally be focused on the development of a
production system. The methods used to implement the five fundamental relational algebra
operations could be rewritten with efﬁciency and optimization in mind. During the
implementation of the R#OODBMS in IDB as presented in this thesis, neither efficiency nor
optimization were of great importance. Instead, the focus was on constructing an
implementation that was functional.

In constructing queries, the user of our R#FOODBMS does not have the option of
naming the resultant relation for those operations (union, difference, and select) that create
the resultant relation. The R#OODBMS creates a default name and assigns it to the resultant
relation. A production system should allow the user the option to provide a name for the
resultant relation if desired or to accept the default name provided by the system. For
example, a query of the form ‘R1 union R2’ would indicate that the user is willing to accept
the default name that the system provides. However, a query of the form ‘R3 = R1 union
R2’ would indicate that the user would like the relations R1 and R2 to be unioned together

and the result relation to be name R3.

100

There are several issues that will remain as design decisions for a production system.
One issue involves how objects of the same class are compared with one another. Are two
objects equal if they both reference the same OID? Or, should every attribute of the objects
be compared to determine if each corresponding attribute has the same value for each
object? A similar problem arises with the inequality comparison operators. When is one
object greater than another? Even for complex objects that have attributes which are simple,
this issue becomes difficult.

For example, consider an employee of a company that has a first name, middle name,
last name, phone number, and street address. When the relation is defined within the R/
OODBMS, the relation could be called Employee and have tuples of type employee_tuple.
An employee_tuple might have three attributes defined: full_name, phone_number, and
address where full_name and address are objects and phone_number is an integer (a local
phone number without area code). The object full_name has attributes first_name,
middle_name, and last_name where each attribute is a string. Address has attributes street,
city, state, and zip_code where street, city and state are strings and zip_code is an integer.
Now, consider the equal comparison operator. If we are trying to compare two employee
tuples from two different relations, it is easy to determine if the phone_number in one tuple
is equal to that of another. The value is simple an integer that may be compared directly.
However, what if it is desirable to compare the full_name attribute? Realizing that it is itself
an object, do we move to that object and consider each of its attributes (first_name,
middle_name and last_name) as a whole? Do we compare OIDs? Or, do we allow a single
attribute of full_name to be compared, such as only last_name? Or, do we allow any
combination of the attributes to be compared for equality? This example can be generalized
for any of the comparison operators whether they are equality or inequality comparison

operators.

101

The issue of comparison operator implementation is also of concern in the set
operations union and difference during the determination of union compatibility and the
determination of whether a tuple is a duplicate of another tuple within a relation. This issue
is also present in the select operation where attributes of different tuples are compared
during as part of the selection criteria.

The assumption was made during this implementation of a R#OODBMS that the user
made no errors. Therefore, limited error checking was built into the system. A production
system would require extensive error checking for all of the relational algebra operations.

Another issue is found in the insertion of tuples into resultant relations. Our R/
OODBMS uses two methods of insertion: by reference or by creation. That is, the tuples of
the resultant relation may have new tuples created and then the values that the tuple is to
have are copied into the attributes of ‘the tuple. Alternatively, the tuples of a resultant
relation can simply be a reference to the tuple that contains the values to be inserted.

In this second approach, two (or more) different relations can refer to the same tuple.
Thus, a change to the tuple in either relation is reflected in the other relation. This approach
is problematic since if there is a duplicate tuple in two relations that are being unioned
together, the resultant relation will only reference one of the two. Now, a change to the
tuple in the resultant relation will be reflected in only one of the two operand relations. This
is not very consistent and requires that the user be aware of how the system determines
which tuple is going to be referenced in the resultant relation. If the first approach is used,
the problem is alleviated since every tuple in the resultant relation is independent of every
tuple in any of the operand relations.

Finally, the project operation in a production system should allow the user to rename
the attributes being projected into the resultant relation. However, the issue of attributes
that are complex objects comes to light again. In our employee example, if a project

operation were used to project all the names of employees and to change the name of the

102

attribute in the resultant relation, is the user only allowed to change the attribute full_name
to some other name? Or, is the user allowed to change each of the attribute names (such as
first_name, middle_name, and last_name)? Or, is the user allowed to change any one or
more of these attribute names?

Additionally, our R/OODBMS requires the user to form a select query using the
syntax ‘R1 select <attribute name> <comparison operator> <comparison object>’ where
the comparison object has the same superclass as R1 and has only a single tuple. A
production system should also allow the user to construct a select query of the syntax ‘R1
select <attribute name> <comparison operator> <value>’ where value is the display form
<attribute name>. For example, in our employee example, the user should be allowed to

enter the query ‘R1 select phone_number = 3758619,

103

APPENDIX A: EXAMPLE IDL SCHEMA

structure vhc root dict is

dict => local fleet,
remote cross of fleet;
fleet => vehicles seq of vehicle;
vehicle ::= train | plane;
vehicle => location : city,
destination city_nil;

vehicle ->

move (*,city,city);

city => name string;

city_nil ::= city | nil;

train ::= ptrain | ftrain;

train => cars seq of car;
car => number integer;
ptrain =>; ftrain =>;

plane ::= pprlane | fplane;

plane => airborne boolean;
pplane =>; fplane =>;

passenger ::= ptrain ! pplane;

passenger => max integer,

passengers seq of person;

freight ::= ftrain | fplane;

freight => cargo_weight : rational;

person => name string;

for
for
for
for

for
for
for

for
for
for
for
for
for
for

end
proces

fleet.vehicles use linked;
train.cars use linked;

passenger.max use unsigned;
passenger.max use bytes(2);

vehicle.idl_print use bind(vehicle_print);
train.idl_print use bind(train_print);
vehicle.move use bind(vehicle_move);

vehicle.location use search;
vehicle.location use search_embed;

ptrain use description(“passenger train”);
ftrain use description(“freight train®);
pplane use description(“plane (passenger)”);
fplane use description(“air freight”);
passenger.max use
description(*maximum number of passengers”);
::= vhca end

s vhep is vhe access;

103

APPENDIX B: DATABASE DIRECTORY SOURCE CODE

PR R R R R R R R E R R R S R R R R R RS R AR R R AR R R SRR R R AR RS EER R SRR RSREERFEEEEEEEERRRE SRR RS

-- dbdir.idl

-- Schema for database directory

-- Description:

-- A directory cluster is used to group together other clusters into
-- a directory. In this directory, the clusters are databases.

S A 2R ERE SRR R AR SRR R R RS RS RS RERE RS R R R SRR S R Rl Rl R R R RRRRRRRARERREREERRREREREE]

structure dbdir root seq of database is

for root use linked;

database => dbname : string, -- database name
file : string, -- database file name
desc : string, -- description of database cluster
examine : boolean; -- default initial transaction

for database.dbname use description{”database structure name”);

for database.file use description{”database cluster file name”);

for database.desc use description(“description of the database cluster”);
for database.examine use description(“enter in examine mode?”);

for database.desc use search;

database -> enter(*,booclean) => boolean;

for database.enter use browser_cond_visible;
for database.enter use description{”enter this cluster”);

for database.idl_key use bind(dbdir_key);
for database.idl_print use bind(dbdir_print);
for database.idl_create use bind(dbdir_icreate);
for datapase.enter use bind(dbdir_enter);
end
process dbdirp is

dbdir ::= dbdira:access;

end

104

/***t*i’*tt**ttt********‘ltfi’**t*t*t*****t*ii*ﬁ'tt**t*t*i****t*****tt*t*t**tt*‘tt

dbdir.c

*
*
*
*
x
*
*
*
*x
*
*

#include
#include
#include
$include
#include
#include
#include

static char buff[100];

Description:

“stdio.h”
idlrt.h
*dbdira.h”
“dpy .h”
“brwa.h*
“brw.h”
“Drwl.u”

*'k******t***ti*t***t**Rttt*‘t**t*‘k**'k***t****y**tgt*t***g***'***ﬁ***gt*‘t*tgtt/

This module provides the operations for IDB database directories.
This module is considered to be part of the ILCB browser. It invckes
internal browser routines to enter and exit database clusters.

/******i’t***‘k!**t****i'********************i’t****t******t*t**f**‘k****t**i*it*!*

OPERATIONS

_brw_dbdir_key (*)

_brw_dbdir_icreate(tr)

=> *

_brw_dbdir_enter(*,boolean)

*
*
*
*
* _brw_dbdir_print(*, mode)
*
*
*
>

=> boolean

print short form db description
print full display

create database object

enter cluster

t*********t*******************'k**t**t*************t******t********t*****t***/

idl_routine void _brw_dbdir_key (db)

dbdir_database db;

{
}

dpy_cstring (db->desc) ;

105

idl_routine void _brw_dbdir_print (db, mode)
dbdir_database db;
dpy_dmode mode:;

if (mode.expand > 0)
{
idl_top(idl_any, idl_print, (db,mode));
return;
}
dpy_open(““,false);
dpy_attr({dbdir_database,db,desc, mode) ;
if (idl_get_display (dbdir_database, dbname))
{
dpy_eol ()
dpy_cstring{(”type:*);
dpy_attr(dbdir_database,db, dbname,mede) ;

}
if (idl_get_display(dbdir_database, file))
{
dpy._.eol(};
dpy_cstring(“file:");
dpy_attr(dbdir_database,db, file,mode) ;

}
if (idl_get_display(dbdir_databas=,examine))

{
dpy_eol();
dpy_cstring(“examine:”);
dpy_attr (dbdir_database,db,examine,mode)} ;

}
dpy_close();

106

static dbdir_database new_db;

idl_routine void _brw_dbdir_daction{(check)
integer check;
{
~idl_not_used (dummy) ;
if (check == 1)
{

integer fd;
string full_name = _brw_map_dbinew_db->dbname);
if (idl_string_size(new_db->dbname) == 0)

{
dpy_error(*no database name specified”);
return;
}
(void) sprincf(buff,”%s.bst”, full_name);
if (£d > 0)
{
{void) close{fd);

else

(void) sprintf(buff,”unable to find symbol table file %s.bst~,

full_name);
dpy_error (buff) ;
return;
)
if (idl_string_size(new_db->file) == 0)

{
dpy_error {"no structure name specified”);
return;

}

if (idl_string_size(new_db->desc) == 0)

{
new_db->desc = new_db->file;
dpy_error(#“defaulting description”);
return;

}

}
dpy_quit();

idl_routine void _brw_dbdir_sscreen(a,x,y)
integer a,x,y;
{
dpy_dmode mode;

_idl_not_used{a};
mode = dpy_dmode_default;

dpy_open{”Define New Database”,true);

dpy_open(“New Database”,true);

brw_cmd (“Check”, "check and exit if correct”,_brw_dbdir_daction, 1L,BRW_SCREEN);
dpy_spacex(SL);

brw_cmd (*Nocheck”, "exit without checking”,_brw_dbdir_ daction, OL,BRW_SCREEN) ;
dpy_eol () ;

dpy_spacey (2L) ;

dpy_eol () ;

mode.expand = 1;

idl_vop (new_db,dbdir_database, idl_print, (new_db,mode) };

dpy_close();

brw_input_area(y-3, falee);

dpy_close(};
dpy_boxed (x,Y) ;

107

idl_routine dbdir_database _brw_dbdir_icreate(tr}
idl_transaction tr;

{
string empty = idl_copy_string(tr,””);
new_db = idl_new(tr,dbdir_database);
new_db->dbname = empty;
new_db->file = empty:;
new_db--desc = empty;
new_db->examine = true;
dpy_active(_brw_dbdir_sscreen,dl);
return new_db;

idl_routine boolean _brw_dbdir_enter . db, test)
dbdir_database db;
bcolean test;
{
1f (! test)
{
integer tkind = BRW_READ;
idl_if (brw_tr,_brw_dict-—-curr_tr,btr)
{
(void) sprintf(buff,*$s/%s3%,brtr->name,db- -desc);
}
idli_else

(void) sprintf(buif,”**unkncwn**/%s%,db->desc);
} idl_end_if

/* open new transaction */
if (db->examine) tkind = BRW_EXAMINE;
{void) _brw_topen(idl_copy_string(brw_static,buff),
db->dbname, db->file,
0oL,
BRW_NORMAL, tkind, true);
}
return true;
) .

idl_define_ops dbdir_opbind()

£
idl_bind_root (dbdir) ;
idl_bind(*dbdir_key”, _brw_dbdir_key);
idl_bind(“dbdir_print”, _brw_dbdir_print);
idl_bind("dbdir_icreate”, _brw_dbdir_icreate);
idl_bind(*dbdir_enter”, _brw_dbdir_enter);

108

APPENDIX C: ROODBMS SOURCE CODE

Contents
IDL SCHEMA 111
Database SChema............occcovimiiiiiiiiicitct e st 111
Relation SChEMAcouviiiiiiiiiii ettt et st ene e 111
TUple SChEMAcoviiiiiiciiicii ettt et ss et s e ss e e sneens 112
TUPIE SUDCIASSES....ocuviviiiiiciiiiiiiiie ettt et e sttt ce e e st b 112
Employee Tuple SChema ..ottt secestes et cte e naens 113
Project Tuple SCREMAcouoieiiiiiiececrre ettt ceecaee e e saseseaesene e e sananans 114
Cartesian] Result Tuple Schema.........cccooviiiiirnnniicnerteeceet et 114
Project] Result Tuple Schema......c.c.coiririeioiniiiiciietcereerecnecteen e e s 114
R/OODBMS FUNCTIONS 116
Class Database Methodsc.cooeveeoiiiriicireneescnireeecene e eseeseereeneceeaesenesessessessesessenns 118
Class Relation Methods ..ottt sessss e e e e sasnenns 122
Union Method 151
Difference Method 135
Cartesian Product Method 140
Project Method 145
Select Method 152
Class Tuple MEthOdscoceveeueemeveriiieiceeinerecerse st tsterne e saesenssessensessesassssesscssanesaes 155
Class Emp_Tuple Methods.........c.ccovumrnirirenciniciciictctin et seseees e e e snsesnes 158
Class Proj_tuple Methodscccouiirinieieninrenieirceeceteriine et ettt sses e sessssse sassns 167
Class Cart]_Result_Tuple Methodscccceourrerermrecirncnenenienueseneesernenseessessescssessssasses 170
Class Project] _Result_Tuple Methods...........ccoeriiiiiicnnnccccineneeeesicisisenenenes 173

110

LI 0707 7770077777700 0 707007007 70770771070700707077077077077777770707077/777

IDL SCHEMA
LETELELELL L0000 00000 E0 0070 iiiiiiliitrizididieiriiiitiiriiiriiliiririrsiy

--Title : A Relational/Object-Crientad Database Management System

--File name : relational.idl

--Associated

-- files : relational.c relationala.h relational.bst relational.so

--Author : Ronald L. Spear -
--Date : 24 September 1992

- : Master’s Thesis

--Advisor : Maj Mike Nelson

--Second .
-- Reader : Prof. Thomas Wu

--System : Sun 4/60 Workstation, Unix Cperating System

--Compiler : AT&T C

--Translator : IDL vl1.1, Persistent Data Systems

--Description : This file contains the IDL schema for the implementation of
-- A Relational/Object-Oriented Database Management System.

structure relational root database is

B TR EE R R R R R R R R R R EE R R E R RS RS R S A R R R RS R R RS R R R R R RS

/////////////////////(//

Database Schema
L1771 7007707070777 707777707777707707777777070077077707070700107007770777071107717010777777

database => name : string,
relations : seqg of relation;
database -> new_relation(*);

LI11007 7077007007070 00 00077707070 07770077700070070700000070777070771707077700100770717777

Relation Schema
L7007 707777777777777707777707777777770777707707770777000707777770777777777777777777

relation => relation_name : string,
attribute_names : seq of name,
attribute_types : seq of name,
tuples : seq of tuple,
tuple_type : tuple,
key : string;
relation -> new_tuple(*), -

check_union_compatability(relation, relation) => boolean;

relation -> union(*), -
projection(*),
difference(*),
Cartesian_product (*),
selection(*);

name => name : string;

110

JI77100117700700070777770770777707777777770077007007077070770007777077777707777777717777

Tuple Schema

P21 TETTE7 0700070007077 7070 E i HEi 7777007777000 070000000007 1077077777117

tuple ->

equal_to(tuple, tuple, integer) => boolean,
less_than(tuple,tuple, integer) => boolean,
greater_than(tuple, tuple, integer) => boolean,
initialize_tuple(tuple) => tuple,
insert_fields(relation, relation) => relation,
insert_tuples(relation, relation,relation) => relation;

LELETLLLL7 0700000077000 0000000000007 7777777 070777077 770000 071700070007147707177

Tuple Subclasses

LEETELTII0LI 000 E7 0770007700707 77000777700 077 707000707 0777070107710777

tuple ::=

emp_tuple |

proj_tuple |
cartl_result_tuple |
projectl_result_tuple |
nil;

e A A AR R R AR RS RS R EEEEREEEREREEEERRRRRRSRSREREEEESllRs R R RS R RS RERRRRERR RS EEEES]

for

for
for
for
for
for
for

for
for

database.new_relation use browser_visible;

relation.new_tuple use browser_visible;
relation.union use browser_visible;
relation.Cartesian_product use browser_visible;
relation.difference use browser_visible;
relation.projection use browser_visible;
relation.selection use browser_visible;

database.relations use linked;
relation.tuples use linked;

__kkkkk kX XTh KT hkok kX kk Kk Database, Relathn, and Tuple Methods LA RS R AR AR SRR EEE SR

for database.idl_key use bind(database_key);
for database.idl_print use bind(database_print);
database.new_relation use bind(create_relation);

for

for
for
for
for

for
for
for
for
for

for
for

for
for
for

for
for
for

relation.idl_key use bind(relation_key);

relation.idl_print use bind(relation_print);

relation.new_tuple use bind(create_tuple);
relation.check_union_compatability use bind(ck_union_compatability);

relation.union use bind(union_op);
relation.Cartesian_product use bind(cart_prod_op);
relation.difference use bkind(set_diff_op);
relation.projection use bind(project_op);
relation.selection use bind(select_op);

name.idl_key use bind(name_key);
name.idl_print use bind(name_print};

tuple.
tuple.
tuple

tuple.
tuple.
tuple.

equal_to use bind(equal_to);
less_than use bind(less_than};

.greater_than use bind(greater_than);

initialize_tupie use bind(initialize_tuple};
ingert_fields use bind{insert_fields);
insert_tuples use bind(insert_tuples);

111

__**ii**t*!’***'k**f*'k***t*****t*t**t****emp tuple************t*tt*******t*tt**i*i

LILLLIIIET 7007070720000 70 0707770000007 0000077777707 077707707707101077000707777/777

Employee Tuple Schema

LILT000000000007 0707070077707 70777770700 70700707 007077007777 70777170707077717707770707177

emp

_tuple => person : person,
address : addr,
phone : phone_number,
widget : idl_univ;
person => fname ¢ string,
mname : string,
lname : string,
bdate : string,
ssn ¢ integer,
spouse : string,
sptr : person_nil;
person_nil ::= person | nil;
addr => street : string,
city ¢ string,
state : string,
zip : string;
phone_number => number : string;

__tttt******t*************ttt********emp—tuple methods*********t***i‘*i***t****it

for
for
for
for
for
for

for
for

for
for

for

emp_tuple.
emp_tuple.
emp_tuple.
emp_tuple.
emp_tuple.
emp_tuple.

idl_key use bind(emp_tuple_key);

idl_print use bind(emp_tuple_print);

equal_to use bind{emp_equal_to);

less_than use bind{(emp_less_than);

greater_than use bind(emp_greater_than);
initialize_tuple use bind(initialize_emp_tuple);

person.idl_key use bind(person_key);
person.idl_print use bind(person_printj;

addr.idl_key use bind(addr_key);
addr.idl_print use bind(addr_print);

phone_number.idl_print use bind(phone_number_print);

112

__******!****tit***t*************'kt**tproj tuple***tf**ttt***t***t**tt*t*t!t****

PIETTTLIT I 0000072000 70770 707000707 000700700070770717771707701777777777777

Project Tuple Schema
JILLLITI77 00770072007 0777000 77007777777 700077 0070707777007 007777077007700877777077727177

proj_tuple => essn : integer,
proj_num : linteger,
hours : rational;

__‘kt**********************t*******tproj tuple mehods*******t***t*****t*t*t'!ttt*

for proj_tuple.idl_key use bind(proj_tuple_key);

for proj_tuple.idl_print use bind{proj_tuple_print);

for proj_tuple.equal_to use bind(preoj_equal_to);

for proj_tuple.less_than use bind{proj_less_than);

for proj_tuple.greater_than use bind(proj_greater_than);

for proj_tuple.initialize_tuple use bind(initialize_proj_tuple);

__'kt******************‘k*t**********cartl result tuple*******************t****t**

LHLLLLTIT L7070 0000000077007 7000700000 70700777070 777707770 007000770771070747010707777777

Cartesianl Result Tuple Schema
JIITT007 2700000077000 0707707077777 777777777077777777777777777707777707770777777777

cartl_result_tuple => person - : person,
address : addr,
phone : phone_number,
widget : idl_univ,
essn : integer,
proj_num : integer,
hours : rational;

-_***************‘k*************cartl result tu:)le methods*******t************t**

for carti_result_tuple.idl_key use bind(cartl_result_tuple_key);

for cartl_result_tuple.idl_print use bind(cartl_result_tuple_print);

for cartl_result_tuple.initialize_tuple use
bind(initialize_cartl_resul_tuple);

for cartl_result_tuple.insert_tuples use bind(insert_cartl_result_tuples);

e A EE RS E RS SRS R R R EEEERRREREEEE R R RS RS RESERE R RS R EREER RS RS RRRRRRRR R RSSRXR R R RSN

LITPTTE0070 1000070000000 00 7000770000770 7700707710077 0770707007170717777777171771

Projectl Result Tuple Schema
L1777 00 7000077700070 0007707070777 777777777777 77777770777777077777777777777710777777

projectl_result_tuple => hours : rational,
essn : integer;
__.***i*t*********t********‘***projectl result tuple methodst***it**ttt*****t!**t*

for projectl_result_tuple.idl_key use bind(projecti_result_tuple_key]);

for projectl_result_tuple.idl_print use bind(projectl_result_tuple_print);

for projectl_result_tuple.initialize_tuple use
bind(initialize_projecti_resul_tuple);

for projectl_result_tuple.insert_fields use bind{insert_projectl_ result _flds);

e A EEEA R SRR RS R R R R R R R R RS EREEERERREREE SRR ERERRE R RS AR ERRERRER R RR R R R 2RSSR SN

end

113

it A AR R R AR LSRR AR R R R REXER R RARR R R R E R BEEEE R R R 2 2 AT T

process relationalp is
relational ::= relationala:access;

end

114

IR S RSP REEZEEEEFEEIEEEFEEEEEEAEAESRERREE RS RS R AR SRR RE R R R EREREE R ERE IR B LR AR AR L R E R R

R/OODBMS FUNCTIONS

B R EEEEREEESREERERERRE RS R R AR R SRR RR R RS S R R RS R RRRRERERERERZTEE R EIRIIRIEEI I S L IR I I IR

/*
* Title : A Relational/Object-Oriented Database Management System
* File name : relational.c
* Author : Ronald L. Spear
* Date : 24 September 1992
* : Master’s Thesis
* Advisor : Maj Mike Nelson
* Second
* Reader : Prof. Thomas Wu
* System : Sun 4/60 Workstation, Unix Operating System
* Compiler : AT&T C
* Translator : IDL vl.1l, Persistent Data Systems
* Description : The functions in this file run with the IDB Object Database
* system version 1.1. The file containing the schema for these
* methods is relaitonal.id]l. The relational.idl file was
* translated using the IDL translator and produced the
* relationala.h header file which is included for use with
* this file.
K e o e . e o e o . m = oo e e e o = T e e e = o= e v ot e A e e e e e = A e o . —n o = A o o e~ o o — —
*/
#include <string.h>
#include ~idlrt.h”
#include “relationala.h”
#include *“dpy.h”
#include “brw.h*

/*******
*

* Mac

*

Tk kkhkkxR

#define

4¢define

#define

#define

#define

EEE R SR RS SR RRRERERERE R SRR R R SRR RS EREE R SRS ESEERER AR RERER RS R R R

ros defined for Class person
*r*******************************-k****'k****'k******t****t**t**t*i*****/
exigts(v) idl_string size{v}) != 0
rexists(node,attr) (idl_get_display(relational_person,attr) && \
{node->attr != 0 && \
exists (node->attr)))

dexists(node,attr) (mode.expand > 0 |l rexists(node,attr))

prexists(node,attr) (idl_get_display(relational_person,attr) && \
(node->attr !'= 0})

pdexists(node,attr) {mode.expand > 0 ||\
prexists(node,attr))

115

/!’**i'l‘t****l**i‘.*‘.**'*********‘.t**‘i***i‘k'ki*i*t*****i****t****t*t***i’***t*?***t

*

* Forward References for 1ll functions other than _print and _key

*

******'t'k‘l'l‘k'k'kt*'.*i'*t***i**t******i*ttt‘l’***i'**tt*****tt*t*t*ttt*'t*tttlt*it'/

idl_routine
idl_routine
idl_routine
idl_routine
idl_routine
idl_routine
idl_routine
idl_routine
idl_routine
static void
idl_routine

void
void
void

init_rel_screen(
create_relation(
init_action();
void init_tuple_screen();

void create_tuple();

boclean ck_union_compatability({);
void exit_action();

void char_screen{();

void integer_screen():
union_parse_action();
relational_relation init_temp_rel ();

) 7’
)i

void report_union_error{();

static void

difference_parse_action(});

void report_difference_error();

static void

Cartesian_parse_action();

void report_Cart_product_error();
static void Project_parse_action();
void report_project_error();

static void Select_parse_action();

void report_select_error{);

idl_routine
idl_routine
idl_routine
idl_routine
idl_routine

void union_op();
void cart_prod_op();
void set_diff_op();
void project_op();
void select_opl);

idl_routine boolean equal_to();
idl_routine boolean less_than();
idl_routine boolean greater_than();

boolean
boolean
boolean
boolean

idl_routine
lur_routine
idl_routine
idl_routine
idl_routine
idl_routine
idl_routine
idl_routine
idl_routine
idl_routine
idl_routine
idl_routine
idl_routine
idl_routine
idl_routine

emp_equal_tol();

emp_less_than();

emp_greater_than();

proj_equal_to();

boolean proj_less_than();

boolean proj_greater_than();

relational_relation insert_£fields(};
relational_relation insert_tuples();
relational_tuple initialize_emp_tuple(};
relational_tuple initialize_tuple();
relational_tuple initialize_proj_tuple();
relational_tuple initialize_cartl_resul_tuplel();
relational_relation insert_cartl_result_tuples();
relational_tuple initialize_projectl_resul_tuple();
relational_relation insert_projecti_result_£flds();

116

/*t***********t*****t*************ttt***ttttﬁ**f***!*it**ii**tt*ti****t*ttfi*t

*

* Class database methods
*

* database_key

* database_print

* create_relation

*

*

**************************************tt*!******t*****t*t*************t**tt*/

IZEEE2 R EE R EEEE R R REREE R R AR R AR EER R R R R RS R RS RREE R AR RRRERRREREESEESESERE R EERJIEI

Class Database Methods

IEE R E RS SRR EEEEEER S SRR RS RRRARRREREERERERSRSRERERRERRER R RRREEERE R SRR EEEEEEIFRSNE]

/* displays a short description of a database object */

idl_routine void database_key (database)
relational_database database;
{

idl_univ u;
if (idl_string_size(database->name) == Q)
(
dpy_cstring(“** Unnamed Database **”7);

else
{
u = idl_to(idl_univ,database->name);
idl_vop(u, idl_univ, idl_key, (u)};

117

/* diplays a database object =*/

idl_routine void database_print (database, mode)
relational_database database;
dpy_dmode mode;

idl_transaction tr = idl_get_trans(database);
boolean can_write = idl_trans_write_count(tr) > 0;
dpy_dmode model;

model = mode;
model .embed = 1;

if (can_write)
{
model .expand = 1;
mode.expand =1;
}

if (model.expand > 1)

idl_top(idl_any, idl_print, (database,mode)) ;
}

dpy_attr(relational_database, database, name, mode);
dpy_eol () ;

dpy_spacey (2L) ;

dpy_eol () ;

dpy_attr(relational_database,database, relations,model);
dpy_ecl () ; :

118

static relational_relation init_relation; /* global ptr to new rel to

be initialized */

/* this function provides the user a pop-up screen in the browser from which

he may edit/initialize the values of a new relation. It is called by
create_relation. */

idl_routine void init_rel_screen(a,x.,y)

{

integer a,x,vy:
dpy_dmode mode;

mode = dpy_dmode_default;

dpy_open(”Initialize New Relation”,true);

dpy_open (“New Relation”,true);

brw_cmd (“EXIT”,”exit initialization screen”,init_action, OL,BRW_SCREEN) ;
dpy_=0l();

dpy_spacey (2L} ;

dpy_eol();

mode.expand = 1; /* forces the display of all attributes */

/* execute the print method for the database class/type */
idl_vop(init_relation, relatiocnal_database, idl_print, (init_relation,mode));
dpy_close();

brw_input_area(y-3, false);

dpy_close();
dpy_boxed (x,V);

119

/* Create Relation creates a new relation within a database.*/

idl_routine void create_relation{database)
relational_database database;
{
relational_relation new_relation;
idl_transaction tr = idl_get_trans{database);
string empty = idl_copy._string(tr,””);
boolean is_writable = (idl_trans_write_count(tr) > 0);

new_relation = idl_new(tr,relaticnal_relation); /* must still assign

legal values,which is
done below. */
new_relation->relation_name = empty;

/* this is only done to make attribute names valid. An array with a different
size can be created while in the browser and new_relation->attribute_names
can be switched to reference it if a larger array is needed. */

new_relation->attribute_names = idl_new_array(tr,relational_name,1);

new_relation->attribute_names{0] = idl_new(tr,relational_name);
new_relation->attribute_names[0]->name = empty;

new_relation->attribute_types = idl_new_array(tr,relational_name,0);

new_relation->tuples = idl_empty_linked(tr,relational_tuple);

new_relation->tuple_type = NULL;

new_relation->key = empty;

/* set global pointer to new relation so that the attributes of the new
relation may be initialized by the user. Note: that dpy_active does
not allow other parameters to be passed, thus a global pointer is used
so that init_rel_screen can access the new relation */

init_relation = new_relation;
dpy_active(init_rel_screen,OL);

/* if a write transaction is open, then add the new relation to the database */

if (is_writable)
idl_insert_back(relational_relation,database->relations,new_relation);

120

/**********'*******i****************tt*****t**tt?*****i****tttttt**f"**tttt:i

Class relation methods

relation_key
relation_print
create_tuple
ck_union_compatability

*
*
*
*
*
x
*
*
* union_op

* cart_prod_op
* set_diff_op
* project_op

* select_op

*

*

t************t********************t**'******t********t*ttt******tti***t*it**/

AR EEREREREREERREREEREEEERERRERRSRSRRRA RS R SRRRRRERRERRRR SRR RR SRR ERREEESRS SRS R

Class Relation Methods

LR R E SRR EE R R R R AR AR S R R R R RS R R S R R R R R R R R R R R R RS RS R E SRS R R R ER R R AR R RS RRR R R R R

/* Displays a short description of a relation */

idl_routine void relation_key (relation)
relational_relation relation;
(
idl_univ u;
if (idl_string_size(relation->relation_name) == 0)
{
dpy_cstring(“** Unnamed Relation **”);

}
else

u = idl_to(idl_univ,relaticn->relation_name);
idl_vop (u, idl_univ, idl_key, (u));

121

/* Displays a relation */

idl_routine void relation_print(relation,mode)
relational_relation relation;
dpy_dmode mode;

idl_transaction tr = idl_get_trans(relation);
boolean can_write = idl_trans_write_counti(tr) > 0;
dpy_dmode model;

model = mode;
model.embed = 1;

if (can_write)
{
model .expand = 1;
mode.expand = 1;
}

if (model.expand > 1)
{

idl_teop(idl_any,idl_print, (relation,mode)) ;

dpy_attr(relaticnal_relation, relation, relation_name,mode) ;

dpy_eol ():

dpy_spacey (2L) ;

dpy_eol (};

dpy._attr(relational_relation,relation,tuples,model);

dpy_eol () ; . :

if (can_write) /* Don’t want to display all of these attributes unless
there is a transaction open which allows writing to the
database. This information is needed for the implementation
of the R/OODBMS but is not needed by the user. However,
these attributes must be assigned appropriate values if
the relational algebra operations of the system are to
function properly. */

dpy_spacey (2L} ;

dpy_eol () ;
dpy_attr(relational_relation,relation,attribute_names,model);
dpy_eol (};

dpy_spacey (2L) ;

dpy_eol () ;
dpy_attr(relational_relation,relation,attribute_types,model);
dpy_eol ()

dpy_spacey (2L) ;

dpy_eol ();
dpy_attr(relational_relation,relation,tuple_type,model);
dpy_eol () ;

dpy_spacey (2L} ;

dpy_eol () ;

dpy_attr(relational_relation, relation,key,model);

122

static relational_tuple init_tuple; /* ptr toc new tuple to be initialized *~/

/* Init action allows init_xxxxx_action functions to exit if EXIT is selected
in the pop up screen for injtialization */

idl_routine void init_action(val)
boolean val;
{

}

dpy_quit (};

/* init_tuple_screen called by create_tuple. It allecws the user to initialize
the attributes of a new tuple. */

idl_routine void init_tuple_screen(a,x,y)
integer a,Xx,y;

{
dpy_dmode mode;

mode = dpy_dmode_default;

dpy_open(“Initialize New Tuple”,true);

dpy_open{“New Tuple”,true);

brw_cmd(“EXIT¥,”exit initialization screen”, init_action,OL,BRW_SCREEN);
dpy_eol();

dpy_spacey (2L} ;

dpy_eol();

mode.expand = 1; /* forces all attributes to be displayed */

/* executes print method for relation class/type */

idl_vop(init_tuple,relational_relation,idl_print,(init_tuple,mode));
dpy_close();

brw_input_area(y-3,false);

dpy_close();
dpy_boxed(x,y) ;

123

/* create_tuple creates and inserts a new tuple into a relation. It calls
tuple method initialize_tuple for the tuple type of the current relation.
Each subclass of tuple must have a redefinition of the class tuple’s
method initialize_tuple. If there is no redefinition, then the function
initialize_tuple is <calied and causes an IDL error to be raised. */

idl_routine void create_tuple(relatiocn)
relational_relation relation;
{

relational_tuple new_tuple;

idl_transaction tr = 1idl_get_trans(relation);

string empty = idl_copy_string(tr,””);

boolean is_writable = (idl_trans_write_count{tr) > 0); .

new_tuple = idl_vcp(relation->tuple_type,relational_tuple,initialize_tuple,
(relation->tuple_type));

/* uses global ptr to new tuple so it can be initialized in function
init_tuple_screen */

init_tuple = new_tuple;
dpy_active(init_tuple_screen,OL;;

/* check to see if a write transaction is open before inserting the new
tuple into the relation. If there is not one open, then the new tuple
is lost */

if (is_writable)

idl_insert_back(relational_tuple, relation->tuples,new_tuple);

124

.

/* ck_union_compatability takes two relations and determines if they are union
compatible. This means that the two relations have the same number
of attributes and that the corresponding attribute types are the same -
in the same order. That is, they are the of the same order and
Ri_attr(i) = R2_attr(i) for 1 less than or equal to i and i less
than or equal to n. */

idl_routine boolean ck_union_compatability(ptr_R1,ptr_R2)
relational_relation ptr_R1l,ptr_RZ;
{

boclean same_order, types_equal;
idl_transaction tr;
integer R1_degree,R2_degree,i,R1_types,R2_types;

tr = idl_get_trans(ptr_R1l);
types_equal = true;

R1_degree idl_array_size(ptr_Rl-»attribute_names);
R2_degree idl_array_size(ptr_R2->attribute_names) ;
Ri_types = idl_array_size({ptr_Rl-»attribute_types);
R2_types = idl_array_size(ptr_R2->attribute_types);

Won

/* check to make sure attribute types have legal values */
if ((Rl_types == Q) && (R2_types == 0))
idl_raise(IDL_ERROR,
*Both R1 and R2 have illegal values for their attribute_types
attributes!”);
else
(
if (Rl_types == 0)
idl_raise{IDL_ERROR,
“R1 has an illegal value for its attribute_types attribute!*);

if (R2_types == 0)
idl_raise (IDL_ERROR,

“R2 has an illegal value for its attribute_types attribute!”);
}

/* check to make sure attribute names have legal values */
if ((Rl_degree == 0) && {R2_degree == 0)})

idl_raise (IDL_ERROR,
“Both R1 and R2 have illegal values \nfor their attribute_names
attributes!”);

else

(
if (Rl_degree == 0)
idl_raise{IDL_ERROR,
“R1 has an illegal value for \nits attribute_names attribute!”);

if (R2_degree == 0)
idl_raise (IDL_ERROR,

“R2 has an illegal value for \nits attribute_names attribute!”);
}

/* check the order of each relation */
same_order = (Rl_degree == R2_degree);

/* each attribute must be of some type. Thus, there must be the same number of

of elements in the attribute_names array as there are in the attribute_types
array. */

if ({(Rl_degree '= Rl_types) && (R2_degree !'= R2_types))
idl_raise (IDL_ERROR,

“Neither R1 and R2 have the a one-to-one correspondence\nbetween the
number of attributes and types listed in their\nattribute_names and
attribute_types attibutes!”);

else

125

{
if (Rl_degree != Rl_types)
idl_raise (IDL_ERROR,
“R1 does not have a one-to-one correspondence\nbetween its
nattribute_names and attribute_types attibutes!”);

if (R2_degree != R2_types)
idl_raise (IDL_ERROR,
“R2 does not have a one-to-one correspondence\nbetween its
nattribute_names and attribute_types attibutes!”);
}

if (same_order)

/* check the corresponding types of each */
for (i = 0; 1 < R2_degree; ++1i)
{
types_equal = ((strcmp(ptr_Rl->attribute_types(i]->name,
ptr_R2->attribute_types[i]->name)) == 0);
if (!types_equal)
break;

if (same_order && types_equal)

{
return true; /* the two relations are union compatable */

else
{
if (!same_order)
idl_raise(IDL_ERROR,
"The.two relations are not union compatible!\nThey are not of
the same order.”);
else
idl_raise(IDL_ERROR,
“The two relations are not union compatible!\nThey do not have
equal corresponding types.”);

return false;

126

char *R1, *R2,*R3; /* global ptrs to the parameters for the union operation.
R1 union R2 */

/* union_parse_action is called by the brw_input operation within the union_op
function. Union parse action takes the query string and parses it into the
two operand relations R1 and R2. */

static void union_parse_action(query)
char* query:;
{
char *Rl_ptr, *char_ptr;
integer size,i;
boolean done = false;

char_ptr = query;

/* allocate room for parse of the union op parameters
Rl will hold the first parameter and R2 the second */
size = strlen(query):
R1 = (char*)calloc((size+l),sizeof(char));
R2 = (char*)calloc((size+l),sizeof(char));

Rl_ptr = R1;
char_ptr = query;

/* note: if size gets decremented all the way to zero, then there is a
problem with the query because the delimeter ‘ union ‘ could not be
found */

while (!done && size > 0)

{

if (*char_ptr !'= * ‘) /* if not a space copy the char into R1 */
(
*R1_ptr=*char_ptr;
++char_ptr;
++R1_ptr;
--size;

}
else /* we may have hit the delimeter for the first parameter */
{
/* check to see if next char is a “u” - the first letter of union
which is the delimeter between the two parameters */
if (strncmp(char_ptr,” union “,7) == 0) /* then it is union sentinal */

for (i = 0; 1 < 7;++1) /* jump past the delimeter */
{
++char_ptr;
--gize;

}
strcpy (R2,char_ptr); /* copy second parameter into R2 */
done=true;

else /* the space is part of the first parameter, so put in R1 */
{ N
/* space is part of first relation name so keep it */
*Rl_ptr=*char_ptr;

++char_ptr;
++R1_ptr;
--gize;
}
}
}
if (size !'= 0) /* size only = 0 if union was not found in the query */
NULL;
else

idl_raise(IDL_ERROR,
“There is an error in your union query! Try Again.”);

127

/* init_temp_rel is called by union_op, set_diff_op and select_op since they
are the three simple relational algebra operations that have a resultant
relation that is of the same structure as the operand relations. Init temp
rel creates a new relation that is to be the resultant relation of one of
the three listed operations. It assigns default values and then passes a
reference to the new relation to the caller. */

idl_routine relational_relation init_temp_rel (ptr_R1l,ptr_R2)
relational_relation ptr_R1,ptr_R2;
{
relational_relation temp_relation;
static integer temp_rel_num = 0;
idl_transaction tr;
string temp_rel_name;
char temp_name(801];
integer degree = 0,1i;

tr = idl_get_trans(ptr_R1l);
degree = idl_array_size(ptr_Rl->attribute_names);

temp_relation = idl_new(tr,relational_relation); /* must still assign
legal values */

/* set up a unique name for resultant relation */

sprintf (temp_name, "%$1dTEMP_%c%c.%c%c”,
++temp_rel_num,
ptr_Rl->relation_name(0],
ptr_Rl->relation_name(l],
ptr_R2->relation_name (0],
ptr_R2->relation_name(1]};

temp_rel_name = idl_copy_string(tr,temp_name) ;

temp_relation->relation_name = temp_rel_name;
temp_relation->attribute_names = idl_new_array{(tr,relational_name,degree);

/* assign default values for attribute names to be the same as those in
R1 relation */
for (i=0; i<degree; ++1i)

temp_relation->attribute_names([i] = ptr_Rl->attribute_names[i];
}

temp_relation->attribute_types = ptr_Rl->attribute_types;
temp_relation->tuples = idl_empty_linked(tr,relational_tuple);

/* assign a default tuple type that is the same as the first relations */
temp_relation->tuple_type = ptr_Rl->tuple_type;

/* default key is the key of relation R1 */
temp_relation->key = ptr_Rl->key;

return temp_relation;

128

/* report_union_error reports errors as the name implies. It was taken out
of union_op and made into a separate function to make union_op more
readable. This has also been done with the other four operations in
the R/OODBMS. */

void report_union_error (foundl, found2)
boolean foundl, found2;
{

if (!foundl && !found2)
{
idl_raise (IDL_ERRCR,
“Neither relation is in this database!”);

else
{
if (!'foundl)
{
idl_raise(IDL_ERROR,
“R1 (the first parameter) is not in this database!”);

}
if (!found2)
{

idl_raise (IDL_ERROR,
“R2 (the second parameter) is not in this database!”};
}

}
if (foundl && found2)
{
idl_raise (IDL_ERROR,
“A SERIOUS ERROR HAS OCCURED IN THE UNION OPERATION!");

129

/* union_op is executed when Union is selected within the browser. The
syntax for the operation allows the user to input the two relations
to be unioned and then creates the resultant relation (with an assigned
default name). It calls union_parse_action, init_temp_rel,
cneck_union_compatapbility and report_union_error. */

R A R R R R R R R R R R R R R A RS RS SRR R R R R R R R RS RS RS R R RRE SRS RS RS R E R R E R R EEEEE RS SRR R E RS B R R R X

Union Method

R R R R R R R R R R R R R E R R R R S R R R R E R RS RS R RS R R R R R R R R SRR RS RS RS E R AR R R RS R EEEE XS

idl_routine void union_op(relation)
relational_relation relation;
{
relational_relation ptr_R1,ptr_R2,temp_relation;
relational_database database;
idl_trans_mode tmode;
idl_univ root;
string parameterl,parameter2; /* references to the parameters R1 and R2 */
static integer temp_rel_num = 0,index = 0;
idl_transaction tr;
boolean foundl, found2,is_writable = false,duplicate = true,compatible = false;

tr = idl_get_trans(relation);

tmode = idl_trans_mode_default;

root = idl_trans_get_root(tr);

database = idl_to(relational_database,root);
foundl = false;

found2 = false;

is_writable = (idl_trans_write_count(tr) > 0);

brw_input (*Union Query”,
“Please input the union query (Rl union R2): ~,
0L, 0L, 0L, false,)
union_parse_action);

/* copy the C strings R1 and R2 into IDL strings */
parameterl = idl_copy_string(tr,R1);
parameter2 = idl_copy_string(tr,R2);

/* gsearch the database for the two relations: R1 and R2 */
idl_linked_for (relational_relation,database->relations,rel)

{
if (strcmp (rel->relation_name,parameterl) == 0) /* found relation 1 */

{
ptr_R1l = rel; /* point at relation 1 */
foundl =

}

if (strcmp (rel->relation_name,parameter2) == 0) /* found relation 2 */
{
ptr_R2 = rel;
found2 = true;
}
} idl_end_for
if {foundl && found2)
/* check for union compatability */
compatible = idl_vop{(ptr_R1l,relational_relation,check_union_compatability,
{ptr_R1,ptr_R2});
if (compatible)
{
temp_relation = init_temp_rel (ptr_R1,ptr_R2);

/* insert the tuples from R1 and R2 into Temp relatjion. First

130

all the tuples from Rl are inserted into Temp relation. */

idl_linked_for (relational_tuple,ptr_Rl-»tuples,tuple)
{
idl_insert_back (relational_tuple, temp_relacion->tuples, tuplej;
} idl_end_for

/* don’t insert any duplicate tuples into the resultant relation.
Thus, have to check the tuple key with each tuple already in the
result (or in R1l) before entering another tuple into the
resultant relation */

idl_linked_for (relational_tuple,ptr_R2->tuples,r2_tuple)
{
idl_linked_for (relational_tuple,ptr_Rl->tuples,rl_tuple)
{

/* duplicate check takes the two tuples and
determines if they have the same attribute values. If yes,
then they are duplicates. It returns a boolean. */

duplicate = idl_vop(rl_tuple,relational_tuple,equal_to,
(r1_tuple,r2_tuple, index)};

if (duplicate)
{
break;
/* get out of loop cuz found tuple was a duplicate */
}
} idl_end_for

if (!'duplicate)
{
idl_insert_back(relational_tuple,
temp_relation->tuples, r2_tuple);

}
} idl_end_for

/* If a write transaction is open when this command is executed then
if it becomes committed the temp relation will be written to the
database. However, if a read or examine transaction is open, then
the temp relation will be in the database in memory but will not
be written back to secondary storage. */

idl_insert_back(relational_relation,database->relations,
temp_relation);
}
else /* else part of if (compatible)*/

(

idl_raise (IDL_ERROR,

“The two relations are not union compatible!”);

}

}
else /* else part of if (foundl && found2) */

{
report_union_error (foundl, found2) ;

131

/* difference_parse_action is called by the brw_input operation within the
set_diff_op function. Difference parse action takes the query string and
parses it into the two operand relations R1 and R2. */

3tatic void difference_parse_action(query)
char* query:
{
char *R1_ptr, *char_ptr;
integer size,i;
boolean done = false;

char_ptr = query:;

/* allocate room for parse of the union op parameters
Rl will hold the first parameter and R2 the second */
size = strlen{(query);
R1 = (char*)calloc((size+l),sizeof(char));
R2 = (char*)calloc((size+l),sizeof(char});

Rl_ptr = R1;

/* do the parse */
char_ptr = query;

/* note: if size gets decremented all the way to zero, then there is a
problem with the query because the delimeter ’ union ‘ could not be
found */

while (!done && size > 0)

if (*char_ptr '= * *) /* if not a space copy the char into R1 */
(
*R1_ptr=*char_ptr;
++char_ptr;
++R1_ptr;
--size;

else /* we may have hit the delimeter for the first parameter */
{
/* check to see if next char is a “-* which is the delimeter between
the two parameters */
if (strncmp{char_ptr,” - *,3) == 0) /* then it is difference sentinal */
{
for (i = 0; i < 3;++i) /* jump past the delimeter */
{
++Cchar_ptr;
--gize;

}
strcpy (R2,char_ptr); /* copy second parameter into R2 */
done=true;
}
else /* the space is part of the first parameter, so put in R1 */
{
/* space is part of first relation name so keep it */
*Rl_ptr=*char_ptr:;

++char_ptr;
++R1_ptr;
--size;
}
}
}
if (size '= 0) /* gize only = 0 if union was not found in the query */
NULL;
else

idl_raise(IDL_ERROR,
“There is an error in your difference query! Try Again.*);

132

/* report_difference_error reports errors as the name implies. It was taken out
of set_diff_op and made into a separate function to make set_diff_op more
readable. This has also been done with the other four operations in
the R/OODBMS. */

void report_difference_error(foundl, found2)
btoolean foundl, foundZ;

{
if ('foundl && !found2)

idl_raise(IDL_ERROR,
“Neither relz*tion is in this database!”);

else
(if (tfoundl)
(idl_raise(IDL_ERROCR,
“R1 (the first parameter) is not in.this database!”);
ifi(!found2)

idl_raise(IDL_ERROCR,
*R2 (the zoccond parameter) is not in this database!”};
}
}
if (foundl && found2)

idl_raise (IDL_ERROR,
“A SERIOUS ERROR HAS OCCURED IN THE DIFFERENCE OPERATION!”);

133

/* set_diff_op is executed when Difference is selected within the browser.
The syntax for the operation allows the user to input the two relations
to be operated on and then creates the resultant relation. It calls
difference_parse_action, init_temp_rel, check_union_compatability
ard report_43iflerence_error. */

AR E RS REEEAREEESEEEE SR SRR RS R ERERRRRREREERRRRERRRERERRRERERRRRREERERERERERERERE S B BRI R IR

Difference Method

IEE R RS XA S REE A SRR SRS R EERERERRRRERRRRREERERREsR RS Rl RERRRRERREEEREREEEREERERSE B R ER IR EI I

idl_routine void set_diff_op(relation)
relational_relation relation;
{
relational_relation ptr_R1l,ptr_R2,temp_relation;
relational_database database;
idl_trans_mode tmode;
idl_univ root;
string parameterl,parameter2; /* references to the parameters Rl and R2 */
static integer temp_rel_num = 0,index = 0;
idl_transaction tr;
boolean foundil, found2,is_writable = false,duplicate = true,compatible = false;

tr = idl_get_trans(relation);

tmode = idl_trans_mode_default;

root = idl_trans_get_root(tr);

database = idl_to(relational_database, root);
s foundl = ifalse;

found2 = false;

is_writable = (idl_trans_write_count(tr) > 0);

brw_input (“Difference Query*,
“Please input the Difference query (Rl - R2): *,
OL,0L,0L, false,
difference_parse_action);

/* copy the C strings Rl and R2 into IDL strings */
parameterl = idl_copy_string(tr,R1);
parameter2 = idl_copy_string(tr,R2);

/* search the database for the two relations: R1 and R2 */
idl_linked_for (relational_relation,database->relations,rel)

{
if (strcmp (rel->relation_name,parameterl) == 0) /* found relation 1 */

{
ptr_Rl1 = rel; /* point at relation 1 */
foundl = true;

if (strcmp (rel->relation_name,parameter2) == 0) /* found relation 2 */

{
ptr_R2 = rel;
found2 = true;

}
} idl_end_for
if (foundl && found2)
/* check for union compatability */
compatible = idl_vop(ptr_R1l,relational_relation,check_union_compatability,
(ptr_R1,ptr_R2});
if (compatible)

(
temp_relation = init_temp_rel (ptr_R1,ptr_R2);

134

/* don’t insert any tuples from R1 that are in R2 into the
resultant relation. Thus, have to check the tuple key with each
tuple in R2 before entering a tuple into the resultant relation */

idl_linked_for (relational_tuple,ptr_Rl->tuples,rl_tuple)

idl_linked_for (relational_tuple,ptr_R2->tup1es,r2_tuple)
{

/* equal_to takes the two tuples and determines if
they have the same attribute values. If ves,
then they are equal. It returns a boolean. */

duplicate = idl_vop(rl_tuple,relational_tuple,equal_to,
(r1_tuple,r2_tuple, index));

if (duplicate) /* then don’t insert tuple into result */

{
break;
/* get out of loop cuz fou-1 tuple was a duplicate */

}
} idl_end_for

if (!'duplicate)

{
idl_insert_back(relational_tuple,
temp_relation->tuples,ri_tuple):

}
} idl_end_for

/* If a write transaction is open when this command is executed then
if it becomes committed the temp relation will be written to the
database. However, 1f a read or examine transaction is open, then
the temp relation will be in the database in memory but will not

be written back to secondary storage. */

idi_insert_back({relational_relation,database->relations,
temp_relation);

}
else /* else part of if (compatible}*/

{
idl_raise(IDL_ERRCR,
“The two relations are not union compatible!”);

}
}
else /* else part of if (foundl && found2) */

{
report_difference_error(foundl, found2);

}

135

/* Cartesian_parse_action is called by the brw_input operation within the
cart_prod_op function. Cartesian parse action takes the query string and
parses it into the two operand relations Rl and R2 along with the name
of the resultant relation, R3. */

static void Cartesian_parse_action{query)
char* query;
(
char *Rl_ptr, *char_ptr, *R3_ptr;
integer size,i;
boolean done = false,delimeterl = false;

char_ptr = query:;

/* allocate room for parse of the Cartesian product op parameters
R1 will hold the first parameter and R2 the second */

size = strlen(query);

Rl = (char*)calloc((size+l),sizeof (char));

R2 = (char*)calloc((91ze+1),s1zeof(char)),

R3 = (char*)calloc{(size+l),sizeof(char));

/* set pointers to move along R1 and R3 as characters are copied in one
at a time. */

R3_ptr = R3;

R1l_ptr = R1;

/* do the parse */
char_ptr = query;

/* note: if size gets decremented all the way to zero, then there is a
problem with the query because the delimeter ' = ’/ or ' X ‘ could not be
found */

while (!'done && size > 0)

if (*char_ptr != * ‘) /* 1f not a space copy the char into R3 */
{
if (!delimeterl)
{

*R3_ptr=*char_ptr;
++char_ptr;
++R3_ptr;
--size;

else

*R1_ptr=*char_ptr;
++char_ptr;
++R1_ptr;
--gize;
}
}
else /* we may have hit the a delimeter */

if (!delimeterl)

/* check to see if next char is a “=" - which separates the
resultant relation name from the other relations in the query -
which is the delimeter between the first two parameters */

if (strncmp(char_ptr,” = #,3) == 0) /* then it is = sentinal */

{

delimeterl = true;
for (i = 0; i < 3;++i) /* jump past the delimeter */
{
++char_ptr;
--gize;
}

else /* the space is part of the first parameter, so put in R1 */

136

/* gpace is part of first rclazicn name so keep it */
*R3_ptr=*char_ptr;

++char_ptr;

++R3_ptr;

--size;

}
else

/* check to see if next char is a “ X ” - which separates the
two coperands of the operation - which is the delimeter
between the last two parameters */

if (strncmp(char_ptr,” X #,3) == 0) /* then it is X sentinal */

{
for (i = 0; 1 < 3;++1) /* jump past the delimeter */

(
++char_ptr;
--size;
}
strcpy (R2,char_ptr); /* copy second parameter into R2Z */
done=true;

}
else /* the space is part of the first parameter, so put in R1 *

{
/* space is part of first relation name so keep it */

*R1l_ptr=*char_ptr;
++char_ptr;
++R1_ptr;

--size;

if (size t'= 0) /* size only = 0 if union was not found in the query */

NULL;
else
idl_raise (IDL_ERROR, "There is an error in your query! Try Again.”);

137

/

/* report_Cart_product_error reports errors. It was taken out
of cart_prod_op and made into a separate function to make cart_prod_op more
readable. This has also been done with the other four operations in
the R/OCODBMS. */

void report_Cart_product_error (foundl, found2, found3)
boolean foundl, found2, found3;
{
if (!'foundl && !found2 && !found3)
{
idl_raise (IDL_ERROR,
“None of the three relaticns are in this database!”);

else
(
if (tfoundl)
{
idl_raise (IDL_ERRCR,
“Rl1 is not in this database!”);
}
if (!found2)
{
idl_raise(IDL_ERROR,
“R2 is not in this database!”);
}
if (!found3)

{
idl_raise (IDL_ERROR,
“R3 is not in this database!”};

}
if (foundl && found2 && found3)
{ .
idl_raise (IDL_ERROR,
“A SERIOUS ERROR HAS OCCURED !!!!!t Regroup. Try Again.”);

138

/* cart_prod_op is executed when CartesianProduct is selected within the
browser. The syntax for the operation allows the user to input the two
relations to be operated on along with the name of the resultant relation.
It calls Cartesian_parse_action, report_Cart_product_error, and
insert_tuples. */

IR R R A RERREEEEAZEZEAS R R R R R ARSRR RS SRRRSRRlElS Rl Rl Rl Rl XR A AR RSl EERRRE R

Cartesian Product Method

IR A R R R R R R R R RS R R R R R R R R R AR R R R R R R RE SRR R R R R RRRRRE Rl SR E RS RRRRESRRERRRRRRRSREREEE R

idl_routine void cart_prod_op(relation)
relational_relation relation;
{
relational_relation ptr_R1,ptr_R2,ptr_R3,temp_relation;
relational_database database;
idl_trans_mode tmode;
idl_univ root;
string parameterl,parameter2, result_rel; /* references to the parameters
R1, R2 and R3 resgpectively */
idl_transaction tr;
boolean foundil, found2, found3;
booclean is_writable = false,duplicate = true,compatible = false;

tr = idl_get_trans(relation);

tmode = 1dl_trans_mode_default;

root = idl_trans_get_root{(tr);

database = idl_to(relational_database,root);
foundl = false;

found2 = false;

found3 = false;

is_writable = (idl_trans_write_count(tr) > 0);

brw_input {“Cartesion Product Query”,
“Please input the Cartesian product query (R3 = R1 X R2): ¥,
0L, O0L,OL, false,
Cartesian_parse_action);

/* copy the C strings R1 and R2 intg IDL strings */
parameterl idl_copy_string(tr,R1);
parameter2 idl_copy_string{(tr,R2);
result_rel idl_copy_string(tr,R3);

o

/* don’t do anything if the resultant relation is one of the two operands.
However, the resultant relation can be one that exists in the data.
In this case, the specified résultant relation will be over written. */

if (!(strcmp (result_rel,parameterl)==0
! (strcmp (result_rel,parameter2)==0
{
/* gsearch the database for the three relations: R1, R2 and R3 */
idl_linked_for (relational_relation,database->relations,rel)
{
if (strcmp (rel->relation_name,parameterl) == 0)
/* found relation 1 */
{
ptr_R1 = rel; /* point at relation 1 */
foundl = true;
}

if (strcmp (rel->relation_name,parameter2) == 0)
/* found relation 2 */
{
ptr_R2 = rel;
found2 = true;

139

if (strcmp (rel->relation_name,result_rel) == 0)
/* found relation 3 */
{
ptr_R3 =
found3 = true;

}
} idl_end_for

if {(foundl && found2 && found3)

{
/* perform concatenation of tuples for Cartesian product.

Note, in this implementation, the resultant relation already
exists in the database. Thus, there is no need to insert any
new relations into the database. We only have to fill in the
resultant relation structure that already exists. */

ptr_R3 = idl_vop(ptr_R3->tuple_type,relational_tuple, insert_tuples,
(ptr_R1,ptr_R2,ptr_R3));

else
(

}

} /* if result relation is one of operands */

else

{
idl_raise (IDL_ERROR,
“R3, the resultant relation is one of the two operand relations.\nIt

must be a relation in the database but not\none of the two operands!”);
}

report_Cart_product_error {(foundl, found2, found3) ;

}

140

char *Atcr_list; /* allows global access to the attribute list for the project
operation */

/* Project_parse_action is called by the brw_input operation within the
project_op function. Project parse action takes the query string and
parses it into the single operand relation R1l, the result relation R2
along with the attribute list that is to be projected. */

static void Project_parse_action(query)
char* query;
{

char *R1_ptr, *char_ptr, *R2_ptr;
integer size, i;
boolean done = false,delimeterl = false;

char_ptr = query;

/* allocate room for parse of the project op parameters
Rl will hold the relation being operated on,
Attr_list the list of attr to be projected, and
R2 the resultant relation */

size = strlen(query);

Rl = (char*)calloc((size+l),sizeof{char)); /* R1 is globali */
Attr_list = (char*)calloc{(size+l),sizeof(char));
R2 = (char*)calloc((size+l),sizeof(char)); /* R2 is global */

/* set pointers to move along R1 and R2 as characters are copied in one
at a time. */

R2_ptr R2;

Rl_ptr R1;

/* do the parse */
char_ptr = query;

/* note: If size gets decremented all the way to zerc, then there is a
problem with the query because the delimeter ‘ = ‘ or ' project '’
could not be found */

while (!done && size > 0)

{
if (*char_ptr !'= * ‘) /* if not a space copy the char into R2 */
{
if (!'delimeterl)
{
*R2_ptr=*char_ptr;
++char_ptr;
++R2_ptr;
--size;
}
else
{
*R1_ptr=*char_ptr;
++char_ptr;
++R1_ptr;
--size;
}
}
else /* we may have hit a delimeter */

if (!delimeterl)
{

/* check to see if next char is a “=" - which separates the
resultant relation name from the other relation in the query -
which is the delimeter between the first two parameters */

if (strncmp{char_ptr,” = *,3) == 0) /* then it is = sentinal */

delimeterl = true;

for (i = 0; 1 < 3;++1) /* jump past the delimeter */
{

141

++char_ptr;
--gize;
}

else /* the space is part of the first parameter, the resultant
relation name, so put in R2 */

{
*R2_ptr=*char_ptr;
++char_ptr;
++R2_ptr;
--gize;

}

else /* we have already found the first delimeter */
{
/* check to see if next char is a * p * - which is
part of the delimeter * project “between -he last
two parameters */

if (strnemp(char_ptr,” project *,9) == 0)
/* then it is project */
(
fer (1 = 0; 1 < 9;++41) /* jump past the delimeter */
{
++char_ptr;
--size;
}
strcepy (Attr_list,char_ptr);
/* copy list of attributes into Attr_list and now parse the
list of attributes */

done=true;
}
else /* the space is part of the first parameter, so put in R1 */
{
/* space is part of first relation name so keep it */
*Rl_ptr=*char_ptr;

++char_ptr;
++R1l_ptr;
--size;
}
}
}
}
if (size != 0) /* size only = 0 if union was not found in the query */
NULL;
else

idl_raise(IDL_ERROR, "There is an error in your query! Try Again.”);

142

/* report_project_error reports errors. It was taken out
of project_op and made into a separate function to make project_op more
readable. This has also been done with the other four operations in
the R/CODBMS. */

void report_project_error(foundl, found2,attr_found)
boolean foundl, found2, attr_found;

if (tfoundl && !found2)

idl_raise(IDL_ERRCR,
“Nejther of the two relations are in this database!”);
}
else
{
if (rtattr_found)
{ .
idl_raise(IDL_ERRCR,
“All of the attributes in the attribute list \nare not in R1!'7);

}
if (!foundl)
{
idl_raise (IDL_ERROR,
"#R1 is not in this database!”);
}
if (!found2)
{
idl_raise (IDL_ERROR,
*R2 is not in this database!”);

if (foundl && found2)
{
idl_raise (IDL_ERROR, -
“A SERIOUS ERROR HAS OCCURED !i!!!! Regroup. Try Again.”);

143

/* project_op is executed when Projection is selected within the
browser. The syntax for the operation allows the user to input the single
relation to be operated on along with the name of the resultant relation and
the attribute list to be projected. It calls Project_parse_action,
report_project_error, and insert_fields. */

I ZEEEXZ2XE X2 2 RS R AR R RR SRR S RER s R RERR SR RRlE RS Rtalt i iR RRRRRAR AR RERRRRR RS S R X X

Project Method

I EEEEEEREEREAS RS EE R AR SRR R R R RS RR R R R EREE ARl ARl Sl s RERERRRARERRRRERRR R RS R

idl_routine void project_op(relation)
relational_relation relation;
{

relational_relation ptr_R1,ptr_Attr_list,ptr_R2,temp_relation;
relational_database database;
idl_trans_mode tmode;
idl_univ root;
string parameterl,attr_string,result_rel; /* references to the parameters
R1, attr list and result
relation respectively */
idl_transaction tr;
boolean foundl, found2,done,attr_found;
boolean is_writable = false,duplicate = true,compatible = false;
char *attr_ptr,*delimeter = #,*; /* delimeter between elements
in attribute list */

string *attr_lisc[1G0};
integer i=1,count,size, index, index_array{100]1,1i=0;
idl_linked_elem(relational_tuple) result_tuple;

tr = idl_get_trans(relation);

tmode = idl_trans_mode_default;

root = idl_trans_get_root (tr);

database = idl_to(relational_database,root);
foundl = false;

found2 = false;

done = false;

is_writable = (idl_trans_write_count(tr) > 0);

brw_input (*Project Query”,
“Please input the Project gquery (R2 = R1 project Attr_list): *,
OL,0L,0L, false,
Project_parse_action);

/* copy the C strings R1l, R2 and Attr_list into IDL strings */
parameterl = idl_copy_string{(tr,R1);

result_rel = idl_copy_string(tr,R2);

attr_string = idl_copy_string(tr,Attr_list);

/* parse tokens in attribute string */
if {(attr_ptr = strtok(attr_string,delimeter)) == NULL)
{
/* error, no token */

idl_raise (IDL_ERRCR,
*You did not list any attribute/field names in\nyour project query!
Try again, meathead!”);
)

else
{
attr_list{0]
attr_list{0])
}

idl_new_string(tr,80);
idl_copy_string(tr,attr_ptr);

144

while ((attr_ptr strtok (NULL,delimeter)) != NULL)

idl_new_string(tr,80);

attr_list(i}] =
= idl_copy_string{tr,attr_ptr);

attr_list(i]
++i;

}

/* don’t do anything if the resultant relation is the operand relation.
However, the resultant relation can be one that exists in the data.
In this case, the specified resultant relation will be over written. */

if (t{strcmp (result_rel,parameterl}==0))

{
/* search the database for the two relations: R1 and R2 */
idl_linked_for (relational_relation,database->relations,rel)

{

if (strcmp (rel->relation_name,parameterl) == 0)
/* found relation 1 */
{
ptr_R1 = rel; /* point at relation 1 */
foundl = true;
}
if (strcmp (rel->relation_name,result_rel) == 0)
/* found relation 2 */
{
ptr_R2 = rel;
found2 = true;

}
} idl_end_for

count = i; /* count is the number of tokens - 1 */
/* check each attr name in the attr list of the project operation to

ensure that the field exists in the relation R1 */
for(i=0;i<count;++1i)

attr_found = false;
1i=0;

idl_array_for(relational_name,ptr_Rl->attribute_names,aname)
{
ii++; /* position in attribute list */

if (strcmp (aname->name,attr_list(i]) == 0) /* attr name in attr
list is a field

of R1 */
attr_found = true;
index_array([i)=ii;
break;
}
} idl_end_for
if (tattr_found)
break; /* an attr in the project attr list is not

in the relation R1. Thus, the operation
cannot be performed */

}

if (foundl && found2
(.

&& attr_found)

/* everything is
Note, in this
exists in the
new relations

ok, perform projection operation on relation R1.
implementation, the resultant relation already
database. Thus, there is no need to insert any
into the database. We only have to fill in the

145

resultant relation structure that already exists. */

/* iterate through every tuple of Rl and copying only the desired
fields into R2. Note: R1 and R2 will have the same number of
tuples but the relations will be of differing degree. */

ptr_R2 = idl_vop(ptr_R2->tuple_type,relational_tuple, insert_fields,
(ptr_R1l,ptr_R2}));
}
else

{
}

report_project_error(foundl, found2, attr_found);

}
else /* end of if (!(strcmp (result_rel,parameterl)==0}) */

idl_raise (IDL_ERROR,

“R2, the resultant relation is also the operand.\nlIt must be a
relation in the database but not the operand!”);

146

char *Attr, *Obj,*Comp_opr; /* allows global access to three stings: an attribute

name used for the select condition, the name of
the object created that contains the select values
for comparison, and the comparison operator name. */

/* Select_parse_action is called by the brw_input operation within the

select_op function. Select parse action takes the query string and
parses it into the single operand relation R1l, the attribute that is
going to be used to select upon, the comparison operator to be used,
and the name of the object that contains the attribute value to be
compared with.*/

static void Select_parse_action({query)

{

char* query;

char *R1_ptr,*char_ptr, *Attr_ptr, *Comp_oOpr_ptr;
integer size,i;
boolean done = false,delimeterl = false;

char_ptr = query;

/* allocate room for parse of the select op parameters
Rl will hold the relation being operated on,
Attr the attr that selection will be made on,
Comp_opr the comparison operator (=,<,>), and
Obj holds the values to be compared with */

size = strlen(query);

Rl = (char*)calloc((size+l),sizeocf{char)); /* Rl is global */

Attr = (char*)calloc((size+l),sizeof(char)); /* Attr is global */

Obj = (char*)calloc({{size+l),sizeof(char)); /* Obj is global */
Comp_opr = (char*)calloc((size+l),sizeof(char)); /* Compariscon Operator

is global */

/* set pointers to move along R1 and Obj as characters are copied in one
at a time. */

Attr_ptr = Attr;

Rl_ptr = R1;

Comp_opr_ptr = Comp_opr;

/* do the parse */
char_ptr = query:

/* note: if size gets decremented all the way to zero, then there is a
problem with the query because tt delimeter ' select
could not be found */
while (!done && size > 0)
{
if (*char_ptr != * *) /* if not a space copy the char into R1 */
{
if (tdelimeterl)
{
*R1_ptr=*char_ptr;
++char_ptr;
++R1l_ptr;
--gsize;
}
else

*Attr_ptr=*char_ptr;
++char_ptr;
++Attr_ptr;
--gize;

}

else /* we may have hit a delimeter */

{
if (!'delimeterl)

147

{

}

/* check to see if next char is a “select” -
which is the delimeter between the first two parameters */
if (strncmp(char_ptr,” select “,8) == 0) /* then it is select */

delimeterl = true;
for (1 = 0; 1 < 8;++1i) /* jump past the delimeter */
{
++char_ptr;
--gize;
}

else /* the space is part of the first parameter, the operand
relation name, so put in R1 */
{

*R1l_ptr=*char_ptr;
++char_ptr;
++R1_ptr;

--gize;

}

else /* we have already found the first delimeter */

/* check to see if the next token is a comparison operator */

if (strncmp(char_ptr,”
strncmp (char_ptr, ”
strncmp (char_ptr, ”

o000

v AN

”I3)
”13)
013)

)

++char_ptr;
~--size;
for (i = 0; 1 < 1;++1i) /* copy comparison operator */
(
*Comp_opr_ptr=*char_ptr;
++Comp_opr_ptr;
++char_ptr;
--size;

++char_ptr;
--size;
strcpy (Obj, char_ptr);
done=true;

}

else if (strncmp{char_ptr,” /= *,4) == 0 ||
strncmp (char_ptr,” <= *,4) == 0 ||
strncmp{char_ptr,” >= #,4) == 0)
{
++char_ptr;
--size;

for (i = 0; 1 < 2;++1i) /* copy comparison operator */
{
*Comp_opr_ptr=*char_ptr;
++Comp_opr_ptr;
++char_ptr;
~--gize;
}
++char_ptr;
--gize;
strcpy (Obj,char_ptr);
done=true;

else /* the space is part of the first parameter, so put in R1 */
{
/* space is part of first relation name so keep it */
*Attr_ptr=*char_ptr;
++char_ptr;
++Attr_ptr;
--size;

148

}
if (size != 0) /* size only = 0 if union was not found in the query */
NULL;

else
idl_raise(IDL_ERROR, "There is an error in your query! Try Again.”):;

149

/* report_select_error reports errors. It was taken out
of select_op and made into a separate function to make select_op more
readable. This has also been done with the other four operations in
the R/OODBMS. */

void report_select_error(foundl, found2,attr_found)
boolean foundl, found2, attr_found;

{
if (tfoundl && !found2)

idl_raise{IDL_ERROR,
“Neither of the two relations are in this database!”};

else

{
if (lattr_found) .

idl_raise(IDL_ERROCR,
The attribute specified for comparison is not in R1!');

}
if (!foundl)
{
idl_raise (IDL_ERRCR,
“R1 is not in thils databaset!”);
}
if (!'found2)
{
idl_raise (IDL_ERROR,
“The object for comparison is not in this database!”);

if (foundl && found2)
(.
idl_raise (IDL_ERROR,
“A SERIOUS ERROR HAS OCCURED !t!!!!'! Regroup. Try Again.”);

150

/* select_op is executed when Selection is selected within the browser. The
sytax for the operation allows the user to input the single relation to be
operated on, attributed name to select upon, the comparison operator, and
the name of the object that contains the attribute value for comparison.
The comparison object must be an instantiation of an existing relation in
the database. It must have only one tuple that has one attribute filled
with values, the attribute that you want to use for comparison. Then, the
relation being operated on is found and each tuple has the specified at:or
comparied with the comparison objects attr value using that relations
comparison operator that was specified in the query.

Select_op calls the functions: Select_parse_action, report_select_error,
and init_temp_rel. */

IR R R RS AR R R AR AR EEERAERSERREERREEEERERER SRR R R R NS R R A R R R R R R RN SRS R R A E

Select Method

IA R R A RS SRS ELARRERRERRSREEERRREEEREEERER R SR RS R EEERER R R EEEEREEEEREEEREREREREEEIIE IR

idl_routine void select_op(relation)
relational_relation relation;
{
relational_relation ptr_Ri1,ptr_Attr,ptr_Obj,temp_relation;
relational_database database;
idl_trans_mode tmode;
idl_univ root;
integer operator;
string parameterl,attr,comp_obj,comp_opr; /* references to the parameters
R1l, attr,comparison object,
and comparison operator
respectively */
idl_transaction tr;
poolean foundil, found2,attr_found;
boolean is_writable = false,select = false;
char *attr_ptr,*delimeter = “,”; /* delimeter between elements
in attribute list - no spaces allowed */

integer i=1,count,size, index=0,1i=0;
idl_linked_elem(relational_tuple) comp_tuple;

tr = idl_get_trans(relation);

tmode = idl_trans_mode_default;

root = idl_trans_get_root(tr);

database = idl_to(relational_database,root);
foundl = false;

found2 = false;

attr_found = false;

is_writable = (idl_trans_write_count{tr) > 0};

brw_input (“Select Query”,
“Please input the Select query (Rl select attr comp_op object): *,
oL, 0L,0OL, false,
Select_parse_action);

/* copy the C strings R1, Obj and Attr into IDL strings */
parameterl = idl_copy_string(tr,R1};

comp_obj = idl_copy_string(tr,0bj);

attr = idl_copy_string(tr,Attr);

if (strcmp(Comp_opr,”=*) == 0)
operator = 1;

else if (strcmp(Comp_opr,”>") == 0)
operator = 2;
else if (strcmp(Comp_opr,”<“) == 0)

operator = 3;
else if (strcmp(Comp_opr,”/=") == 0)
operator = 4;

151

else if (strcmp(Comp_opr,“>=*) == 0)
operator = 5;

else if (strcmp(Comp_opr,”"<=") == 0)
operator = 6;
else

idl_raise (IDL_ERROR,
*It is hard to believe that this error could occure!”);

/* search the database for the two relations: R1 and Obj */
idl_linked_for (relational_relation,database->relations,rel)
{
if (strcmp (rel->relation_name,parameterl)} == 0)
/* found relation 1 */
{

ptr_R1 = rel; /* point at relation 1 */
foundl =
}

if (strcmp (rel->relation_name,comp_obj) == 0)
/* found the comparison object */
(
ptr_Obj = rel;
found2 = true;
}
} idl_end_for

/* check the attr name in the of the select operation to
ensure that the field exists in the relation R1 */

idl_array_for(relational_name,ptr_Rl->attribute_names,aname)

{
ii++; /* keep track of positior of attribute in the relation schema -

that is, the attribute list */

if (strcmp (aname->name,attr) == 0) /* attr name in attr list is a field

of R1 */

attr_found = true;
index = ii;
break;
}
} idl_end_for

if (foundl && found2 && attr_found)

{
/* Everything is ok, perform select operation on relation R1.

Iterate through every tuple of R1 and compare the field named in
tae ‘attr’ variable with the values of the object specified in
comp_obj. using the specified comparison operator in Comp_opr. */

temp_relation = init_temp_rel (ptr_R1,ptr_Obj):

idl_linked_for(relational_tuple,ptr_Obj->tuples,ctuple)
{
idl_linked_for(relaticnal_tuple,ptr_Rl->tuples,ri_tuple)
({
select = false;
switch (operator)
{
case 1: /* = */
select = idl_vop{rl_tuple,relational_tuple,equal_to,
(r1_tuple,ctuple,ii));
break;
case 2: /* > */
select = idl_vop(rl_tuple,relational_tuple,greater_than,
(rl_tuple,ctuple,ii));
break;
case 3: /* < */

152

select = idl_vop(rl_tuple,relational_tuple, less_than,
(ri_tuple,ctuple,ii});
break;
default:
idl_raise(IDL_ERROR,
“Problems with operator in select operation”);
break;
}

if (select)
idl_insert_back{relational_tuple,
temp_relation->tuples,ri_tuple);

} idl_end_for
} idl_end_for

idl_insert_back(relational_relation,database->relations, temp_relation);

}
else

{
report_project_error (foundl, found2,attr_found);

}

153

/*tt*'I*'k*************************‘kt**t***************i***’i***‘k**ﬁ*****'*i***i

Class tuple methods

*

*

*

* equal_to

* less_than

* greater_than
*

* initialize_tuple
* insert_fields
* insert_tuples
*

*

*i’******************t********t*******t’k***t*****************t***ttt*t**i*t*i/ -

I EZES RS AR RERERRREEEER SR RR S RRER RS R EREE ARl ARl aR Rl Rttt llRllsERlSE S]

Class Tuple Methods

I R R R R R R R R R R RS R R R E R R SRR R R E R

/* this is the default duplicate tuple check function */

idl_routine boolean équal_to(rl_tuple,r2_tuple,index)
relational_tuple rl_tuple,r2_tuple;
integer index;

idl_transaction tr = idl_get_trans(rl_tuple);

/* both of these are pointers, so if they point to the same
object, then they are identical tuples. However, two tuples
that don’t point to the same objects may have the same values
for the values of each of their individual objects. */

if (rl_tuple == r2_tuple)
return true;

else
return false;

/* this function is called by create_tuple of class relation if there has been
no redefinition of this method by a subclass of tuple. If this function is
executed, then there is an error since it must be over-written. */

idl_routine relational_tuple initialize_tuple{tuple_type)
relational_tuple tuple_type;
{

relational_tuple new_tuple;
idl_transaction tr = idl_get_trans(tuple_type);

idl_raise(IDL_ERROR,

“There is no method for initializing a tuple of\nthe type that this
relation contains.”);

/* the default insert field inserts all fields of tuple into result_tuple
by reference */

idl_routine relational_relation insert_fields(relation, result_rel)
relational_relation relation,result_rel;
{
idl_transaction tr = idl_get_trans(relation);

return result_rel = relation;

154

/* the default insert tuple inserts a tuple into result_tuple by reference */

idl_routine relational_relation insert_tuples(relation,result_rel)
relational_relation relation,result_rel;
(
idl_transaction tr = idl_get_trans(relation);

return result_rel = relation;

idl_routine boolean less_than(ri_tuple, r2_tuple, index)
relational_tuple rl_tuple, r2_tuple;
integer index;
{
idl_transaction tr = idl_get_trans(rl_tuple);

idl_raise(IDL_ERROR,
“No less than method has been specified for these relations.\nThe user
must provide them. No default can be provided.”);

idl_routine boolean greater_than(rl_tuple,r2_tuple, index)
relational_tuple rl_tuple,r2_tuple;
integer index;
(
idl_transaction tr = idl_get_trans(rl_tuple);

idl_raise (IDL_ERROR,
“No greater than method has been specified for these relations.\nThe
user must provide them. No default can be provided.”);
}

155

/***t**********t*********t*t*****t*t****'****ti********tt*t**tt**i*'**ttt***t*

Class name methods

*
*
*
* name_key
* name_print
*
*

**************t***********t***********t*****tt*****t*******t******t****tt*tf/

idl_routine void name_key (name)
relational_name name;
{

idl_univ u;
if (idl_string_size(name->name) == 0)
{
dpy_cstring(“** Unnamed/No Attributes **7);

else

u = idl_to(idl_univ, name->name

)i
idl_vop(u,idl_univ, idl_key, (u))

’

idl_routine void name_print (name,mode)
relational_name name;
dpy_dmode mode;

idl_transactioh tr = idl_get_trans(name);
boolean can_write = idl_trans_write_count(tr) > 0;
dpy_dmode model;

model = mode;
model .embed = 1;

if (can_write) model.expand = 1;
if (model.expand > 1)

{
idl__top(idl_any, idl_print, (name,mode));

dpy_attr{relational_name, name, name,model) ;
dpy_eol () ;

156

/i*******************ti**********t*****i**********tt****t*tt***t***tt**tt*t*tt

Class emp_tuple methods

*

*

*

* emp_tuple_key

* emp_tuple_print

* emp_equal_to

* initialize_emp_tuple
*
*

**********t******t*****t*******************t**t*******t*****t****ﬁ**t*******/

I E R R R R R R R R R R R R R R E R R R S R R R S AR R R R R R R RS R R R S S RS R R R R R R R R I R T R R RS R EEE R R R R

Class Emp_Tuple Methods

I ZE R R E R E R R A E RS RS EEEE R R RS REREERRR AR ERRERREERSERE R Rl AR RS RRRRRRRR RS RSN EEXERS?

idl_routine void emp_tuple_key(tuple)
relatjonal_emp_tuple tuple;
({
idl_univ u;
if (idl_string_size(tuple->person->lname) == 0)
{
dpy_cstring(“** Unnamed Tuple **”);
}
else
{
u = idl_to(idl_univ,tuple->person->lname);
idl_vop(u,idl_univ, idl_key, (u));

idl_routine void emp_tuple_print(emp_tuple,mode)
relational _emp_tuple emp_tuple;
dpy_dmode mode;

idl_transaction tr = idl_get_trans(emp_tuple);
boolean can_write = idl_trans_write_count(tr) > 0;
dpy_dmode model;

model = mode;
model .embed = 1;

if (can_write) model.expand = 1;
if (model.expand > 1)

idl_top(idl_any, idl_print, (emp_tuple,mode));
}

dpy_attr(relational_emp_tuple,emp_tuple,person,model};
dpy_eol {);

dpy_spacey (2L) ;

dpy_eol () ;
dpy_attr(relational_emp_tuple,emp_tuple,phone,model);
dpy_eol (};

dpy_spacey (2L);

dpy_eol () ;
dpy_attr(relational_emp_tuple,emp_tuple,address,model});
dpy_eol () ;

/* add widget in later */

157

/* this function returns true if r1 tuple is identical to r2 tuple and
returns false otherwise. */

idl_routine boolean emp_equal_to(rl_tuple,r2_tuple, index)
relational_emp_tuple ri_tuple,r2_tuple;
integer index;

idl_transaction tr = idl_get_trans(rl_tuple);

/* both of these are pointers, so if they point to the same
object, then they are identical tuples. However, two tuples
that don’t point to the same objects may have the same values
for the values of each of their individual objects. */

if (index == 0) /* compare the entire tuple - all attributes */
{
i1f (ril_tuple == r2_tuple) -
return true;
else /* not the same objects but need to check attribute values */

/* need to check each attr value. The first time one is found
that does not have the same value, the function stops and
returns not dulicate (false). Only if all attr are identical
does the function return duplicate (true). */

if (tstrcmp(rl_tuple->person->fname, r2_tuple->person->fname) &&
!'strcmp (rl_tuple->person->mname, r2_tuple->person->mname) &&
!'strcemp (ri_tuple->person->lname, r2_tuple->person->lname) &&
!strcemp (ri_tuple->person->bdate, r2_tuple->person->bdate) &&
rl_tuple->person->ssn == r2_tuple->person->ssn &&
!stremp (rl_tuple->person->spouse, r2_tuple->person->spouse) &&
!stremp(rl_tuple->address->street,r2_tuple->address->street) &&
!strcemp{rl_tuple->address->city,r2_tuple->address->city) &&
!strcmp(rl_tuple->address->state, r2_tuple->address->state) &&
!'strcmp (ri_tuple->address->zip, r2_tuple->address->zip) &&
!stremp (ri1_tuple->phone->number, r2_tuple->phone->number))
return true;
else
return false;
}
) .
else /* compare only the attribute specified by the index */
{
switch (index)
{
case 1:
if (tstrcmp(rl_tuple->person->fname,r2_tuple->person->fname) &&
!stremp(rl_tuple->person->mname, r2_tuple->person->mname) &&
!'strcmp(rl_tuple->person->lname, r2_tuple->person->lname) &&
!strcmp(rl_tuple->person->bdate,r2_tuple->person->bdate) &&
rl_tuple->person->ssn == r2_tuple->person->ssn &&
!strcmp (r1_tuple->person->spouse, r2_tuple->person->spouse))
return true;
else
return false;
break;
case 2:
if (!stremp(rl_tuple->address->street,r2_tuple->address->street) &k
!stremp (rl_tuple->address->city, r2_tuple->address->city) && -
Istremp(rl_tuple->address->state, r2_tuple->address->state) &&
!stremp (r1_tuple->address->zip, r2_tuple->address->zip))
return true; .
else
return false;
break;
case 3:
if (!stremp(rl_tuple->phone->number, r2_tuple->phone->number))
return true;

158

else
return false;
break:
case 4:
idl_raise (IDL_ERROR,
“Widget is not defined and thus can’t be compared!*);
break;
default:
idl_raise (IDL_ERROR,
“An ugly error has occured in emp_equal_to”);
break;

/* this function returns true if rl tuple is less than r2 tuple and
returns false otherwise. */

idl_routine boolean emp_less_than(rl_tuple, r2_tuple, index)
relational_emp_tuple ril_tuple,r2_tuple;
integer index;
{
idl_transaction tr = idl_get_trans(rl_tuple);

switch (index)
{
case 1:
if ((strcmp(ril_tuple->person->fname,r2_tuple->person->fname) < 0) &&
(strcmp (rl_tuple->person->mname, r2_tuple->person->mname) < 0) &&
(strcmp (r1_tuple->person->lname, r2_tuple->person->lname) < 0) &&
(stremp (ri_tuple->person->bdate,r2_tuple->person->bdate) < 0) &&
rl_tuple->person->ssn < r2_tuple->person->ssn &&
(strcmp (r1_tuple->person->spouse, r2_tuple->person->spouse) < 0))
return true;
else
return false;
break;
case 2:
if ((stremp(rl_tuple->address->street,r2_tuple->address->street) < 0) &&
(strcemp (ri_tuple->address->city,r2_tuple->address->city) < 0) &&
(stremp (rl_tuple->address->state, r2_tuple->address->state) < 0) &&
(strcmp(rl_tuple->address->zip,r2_tuple->address->zip) < 0))
return true;
else
return false;
break:
case 3:
if ((strcmp(ri_tuple->phone->number, r2_tuple->phone->number) < 0))
return true;
else
return false;
break;
- case 4:
idl_raise(IDL_ERROCR,
“Widget is not defined and thus can’t be compared!”);
break;
default:
idl_raise(IDL_ERROR,
“An ugly error has occured in emp_less_than”);
break;
}

/* this function returns true if rl tuple is greater than r2 tuple and

159

returns false otherwise. */

idl_routine boolean emp_greater_than(rl_tuple,r2_tuple, index)
relational_emp_tuple rl_tuple, r2_tuple;
integer index;
{
idl_transaction tr = idl_get_trans(rl_tuple);

switch (index)
{
case 1:
if ((strcmp(rl_tuple->person->fname,r2_tuple->person->fname) > 0) &&
(strcmp (rl_tuple->person->mname,r2_tuple->person->mname) > 0) &&
(strcmp(rl_tuple->person->lname,r2_tuple->person->lname) > 0) &&
{(strcmp(rl_tuple->person->bdate, r2_tuple->person->bdate) > 0) &&
rl_tuple->person->ssn > r2_tuple->person->ssn &&
(strcmp (ri_tuple->person->spouse, r2_tuple->person--spouse) > 0))
return true;
else
return false;
break;
case 2:
if ((strcmp(rl_tuple->address->street,r2_tuple->address->street) > 0) &&
(strcmp (rl1_tuple->address->city,r2_tuple->address->city) > 0) &&
(strcmp(rl1_tuple->address->state, r2_tuple->address->state) > 0) &&
(strcmp(ri_tuple->address->zip, r2_tuple->address->zip) > 0))
return true;
else
return false;
break;
case 3:
if ((strcmp(rl_tuple->phone->number, r2_tuple->phone->number) > 0))
return true;
else
return false;
break;
case 4:
idl_raise (IDL_ERROR,
“Widget is not defined and thus can’t be compared!”);
break;
default:
idl_raise(IDL_ERRCR,
“An ugly error has occured in emp_greater_than”);
break;
}
}

/ *:::::::::::::::===:=====:::::::::=:===:==:==:::::::::::::::::::=:===::==:=*/

/* this function is called from create_tuple. It redefines the implementation
for the class tuples method initialize_tuples. Specifically, a new employee
tuple is created and given initial values (all of which are legal).

It returns a tuple to create_tuple which then allows the user to initialize
this tuple with values. Each subtype of tuple needs to have a function
like this. */

idl_routine relational_tuple initialize_emp_tuple(tuple_type)
relational_tuple tuple_type;
{
relational __emp_tuple new_tuple;
idl_transaction tr = idl_get_trans(tuple_type);
string empty = idl_copy_string(tr,”*);

new_tuple = idl_new(tr,relational_emp_tuple); /* must still assign
legal values*/

new_tuple->person = idl_new(tr,relational_person);
new_tuple->person->fname = empty;

160

new_tuple->person->mname = empty;
new_tuple->person->1lname = empty;
new_tuple->person->bdate = empty;

new_tuple->person->ssn = 0;
new_tuple->person->spouse = empty;

new_tuple->address = idl_new(tr,relational_addr);:
new_tuple->address->street = empty:
new_tuple->address->city = empty;
new_tuple->address->state = empty;
new_tuple->address->zip = empty;

new_tuple->phone = idl_new(tr,relational_phone_number) ;
new_tuple->phone->number = empty;

return idl_to(relational_tuple,new_tuple);

161

/*****i*****i**fi*t***********i*t***********tt*i**i*t**!t**tt*t*itt*tt*tt**i*!

Class person methods

*
*
*
* person_key
* person_print
*
*

ttt**************t****************************t*******tt***i*ii***tt**/

idl_routine void person_key (person)
relational_person person;
{

boolean bl,b2,b3; .
bl rexists(person, fname) ;

b2 ; rexists(person,mname) ;
b3 = rexists{person, lname); -
if (bl)
{
dpy_cstring(person->fname);
if (b2 (I b3)
{
dpy_spacex(1L);
}
if (b2)
{
dpy_cstring(person->mname) ;
if (b3)
{
dpy_spacex{1L);
}
if (b3)

{
dpy_cstring(person->lname) ;

}
if (! bl && ! b2 && ! b3)
{
dpy_cstring(“** No name **“);

idl_routine void person_print (person,mode)
relational_person person; '
dpy_dmode mode;
{
boolean bl,b2,b3;

if (mode.expand > 1)

idl_top(idl_any,idl_print, (person,mode)});

return;
) -
bl = dexists(person, fname);
b2 = dexists(person,mname);
b3 = dexists(person, lname); .
if (mode.expand > 0) dpy_spacey (1L);
if (bl)
(
dpy_attr{relational_person, person, fname,mode) ;
if (b2 11 b3)
{
dpy_spacex(1L);
}
if (b2)

162

]

{
dpy_attr{relational_person, person,mname, mode) ;
if (b3)
{
dpy_spacex{(1L);

}
if (b3)
{
dpy_attr(relational_person, person, lname,mode) ;

}
if (! bl && ! b2 && ! b3)
{
dpy_cstring{(*** No name **"};

if (dexists(person,bdate))
{
dpy _spacex(1L);
dpy_cstring (¥ (*);
dpy_attr(relational_person, person,bdate,mode) ;
dpy_cstring(*)*);

else
{

}
if (dexists(person,spouse) || pdexists(person,sptr))
{

dpy_cstring(” ** No Birth Date Entered ***);

if (mode.expand > 0 || ! pdexists(person,sptr))
{
dpy_cstring(* [*);
dpy_attr{relational_person, person, spouse,mode) ;
dpy_cstring(*]”);
}
if (pdexists(person,sptr))

if (idl_get_display_embed(relational_person,sptr))
{
dpy_eol();
dpy_attr(relational_person, person, sptr,mode);

else
(
dpy_cstring(* [");
dpy_attr(relational_person, person, sptr,mede) ;
dpy_cstring(#}”);
}
}
}
dpy._eol () ;
dpy_spacey (1L);
dpy_cstring(*SSN: “);
dpy_attr(relational_person, person, ssn,mode) ;
dpy_eol ()} ;

163

/******k*******ﬁ*i’t**************t**i’*******t*"t***i’fti’*‘l*t*tttt**‘l’*t*t***tt*

Class addr methods

*
*
*
* addr_key
* addr_print
*
*

****x*****i***********tttt*****‘k***********tttttt*****tt!*t*i***‘k*ttk**t*t**/

idl_routine void addr_key (address)
relational_addr address;
{

if (idl_string_size(address->state) == 0)
{
dpy_cstring(*** No Street Address **7);
dpy_eol () ;
else
{
dpy_cstring(address->street);
dpy_eol () ;
}
}
/ *:::::::::========::::::::::::::::::::::::::::::=============:===::::==::::* /

idl_routine void addr_print (address,mode)
relational_addr address;
dpy_dmode mode;

idl_transaction tr = idl_get_trans(address);
boolean car_write = idl_trans_write_count(tr) > 0;

if (can_write) mode.expand = 1;

dpy_attr({relational_addr, address, street,mode) ;
dpy_eol () ;

dpy_spacey (1L);

dpy_attr(relational_addr, address,city,mode) ;

if ((mode.expand > 0 ||
(idl_get_display(relational_addr,state) &&
(address->state '= 0 &&
(idl_string_size(address->state)) !'= 0))))
dpy_cstring(*,”);

dpy_spacex(1L);
dpy_attr(relational_addr, address, state, mode) ;
dpy_ecl () ;

dpy_spacey (1L);

dpy_spacex(15L);
dpy_att-r(relational_addr, address, zip,mode);
dpy_eol () ;

164

/*2*!*******‘k***********************‘k**************'k*tt**it**i!***!“kt**tt*t*tt

Class phone_number methods

*
*
* phone_number_print
*®
*

I E R E RS E R R SRR EE R SRR SR RS R R R R R AR R R R RS R R R R R RS RRRRER R R R AR EREREEEREEEREEREESEES I
/

idl_routine void phone_number_print (pnumber,mode)
relational_phone_number pnumber;
dpy_dmode mode;
{
dpy_attr(relational_phone_number, pnumber, number,mode) ;
dpy_eol ();
}

165

/*****************t*****t************t****t****t*t**t****tti**t*t**tt********ﬁ

Cians proj_tuple methods

*

*

*

* proj_tuple_key

* proj_tuple_print

* initialize_proj_tuple
* proj_equal_to

* proj_less_than

* proj_greater_than

*
*

*****t**t*****************t*********t**t*t*************t****t*****t****tt**t/

I EEZ RS RS R A SRR SRR ERE AR R RRRER R R AR RR RS RS RSR RN EEEEESEERERSESESEREERZE R

Class Proj_tuple Methods

2SR SRR AR SR EREREREREREREEERERE RS R RERERRREEERRRERR SRR ERRRRRYY AL RS EERERE SRR R EEREES BT

idl_routine void proj_tuple_key (proj_tuple)
relatioral_proj_tuple proj_tuple;

{
dpy_integer {(proj_tuple-»essn,9);
dpy_spacex (4L} ;
dpy_integer (proj_tuple->proj_num,3);
dpy_spacex(4L);
dpy_rationa.i(proj_tuple->hours,6);
dpy_eol () ;

idl_routine void proj_tuple_print(proj_tuple,mode)
relational_proj_tuple proj_tuple;
dpy_dmode mode;

idl_transaction tr = idl_get_trans{proj_tuple);
boolean can_write = idl_trans_write_count{tr) > 0;

if (can_write) mode.expand = 1;

dpy_attr(relational_proj_tuple,proj_tuple,essn,mode);
dpy_eol () ;

dpy_spacey (1L);
dpy_attr(relational_proj_tuple,proj_tuple,proj_num,wode);
dpy_eol () ;

dpy_spacey (1L) ;
dpy_attr(relational_proi_tuple,proj_tuple,hours,mode);
dpy_eol (};

/* this function is called from create_tuple. It redefines the implementation
for the class tuples method initialize_tuples. Specifically, a new project
tuple is created and given initial values i(ail of which are legal).

It returns a tuple to :reate_tuple which then allows the user to initialize
this tuple with values. Each subtype of tuple needs to have a function
like this. */

idl_routine relational_tuple initialize_proij_tuple(tuple_type)
relational_tuple tuple_type:;
{
relational_prej_tuple new_tuple;
idl_transaction tr = idl_get_trans(tuple_type;;
string empty = idl_copy_string(tr,*”

new_tuple = idl_new(tr,relaticnal_proj_tuple);
/* orust still assign legal vraluesz+

166

new_tuple->essn = 0;
new_tuple->proj_num = 0;
new_tuple->hours = 0.0;

return idl_to(relatiocnal_tuple,new_tuple):;

/* this function returns true if rl tuple is equal to r2 tuple and
recurns false otherwise. */

idl_routine boolean proj_equal_to(rl_tuple,r2_tuple, index)
relational_proj_tuple rl_tuple,r2_tuple;
integer index;
{
idl_transaction tr = idl_get_trans(ri_tuple);

switch (index)
{

case 1:
if (ri_tuple->»essn == r2_tuple->essn)
return true;
else
return false;
break;
case 2:
if - e->proj_num == r2_tuple->proj_num)
retu... crue;
else .
return false;
break;
case 3:
if (ri_tuple->hours == r2_tuple->hours)
return true;
else
return false;
break;
default:

idi_raise(IDL_ERROR,
“An ugly erior has occured in proj_equal_to”);
break;

/* this function returns true if rl tuple is less than r2 tuple and
returns false otherwise. */

idl_routine boolean proj_less_than(rl_tuple,r2_tuple, index)
relational_proj_tuple rl_tuple,r2_tuple;
integer index:
{
idl_transaction tr = idl_get_trans(ri_tuple);

switch (index)
{
case 1:
1f (r1_tuple->essn « r2_tuple--—essn)
return true;
else
return false;
break;
case 2:
if (rl_tuple-»proj_num « rI_tuple->proj_num)
return true;

167

else
return false;
break;
case 3:
if (rl_tuple->hours < r2_tuple->hours)
return true;
else
return false;
break;
default:
idl_raise(IDL_ERRCR,
“An ugly error has occured in proj_less_than”};

break;

/* this function returns true if rl tuple is greater than r2 tuple and
returns false otherwise. */

idl_routine boolean proj_greater_than(rl_tuple,r2_tuple, index)
relational_proj_tuple rl_tuple,r2_tuple;
integer index;

{
idl_transaction tr = idl_get_trans(rl_tuple);

switvh (index)
{
case 1:
if (rl_tuple-»essn > r2_tuple->essn)
return true;
elge
return false;
break;
case 2:
if (ri_tuple->proj_num > r2_tuple->proj_num)
return true;
else
return false;
break;
case 3:
if (ri_tuple->hours > r2_tuple->hours)
return true;
else
return false;
break;
default:
idl_raise(IDL_ERRCR,
“An ugly error has occured in proj_greater_than”);
break;
}

168

/*************'****t***i***********t***********t*****!****tt******i*t**t******

Class cartl_result_tuple methods

*

*

*

* cartl_result_tuple_key

* cartl_result_tuple_print

* initialize_cartl_resul_tuple
* insert_cartl_result_tuples

*
*

**********************************t*******i*it**i*****t**t*tt******t******tt/

IR E R E R R R R R R R R R R R R R S R R R RS E RS R E R RS R R RS R R AR R R R R R REER R R R A RERER R R R R R R RE RS EEREXEES

Class Cartl_Result_Tuple Methods

IR R EE SRR EEER RS S RS SRR R R R R RRRERRRERRRRRRRS Rt RS R il st R R R R RERRRRRRRRRSREERENER]

idl_routine void cartl_result_tuple_key(carti_tuple)
relational_cartl_result_tuple cartl_tuple;
{

idl_univ u;

u = idl_to(idl_univ,cartl_tuple->person->lname);
idl_vop(u,idl_univ, idl_key, (u));

dpy_spacex(4L);
dpy_integer(cartl_tuple->essn,9);

dpy_spacex (4L);
dpy_integer(cartl_tuple->proj_num,3);
dpy_spacex (4L) ;

dpy_rational (cartl_tuple->hours,6);

dpy_eol () ;

idl_routine void cartl_result_tuple_print(cartl_tuple,mode)
relational_cartl_result_tuple cartl_tuple;
dpy_dmode mode;

idl_transaction tr = idl_get_trans(cartl_tuple);
boolean can_write = idl_trans_write_count(tr) > 0;

if (can_write) mode.expand = 1;
mode.embed = 1;

if (mode.expand > 1)
{
idl_top(idl_any,idl_print, (cartl_tuple,mode));
}

dpy_attr(relational_emp_tuple,cartl_tuple,person,mode);
dpy_eol ();

dpy_spacey (1L) ;

dpy_eol () ;
dpy_attr(relational_emp_tuple,cartl_tuple,phone,mode) ;
dpy_eol () ;

dpy_spacey (1L} ;

dpy_eol (};
dpy_attr{relational_emp_tuple,cartl_tuple,address,mode);
dpy_eol () ;

dpy_spacey (1L);

/* add widget in later when it is defined as something */
dpy_actr(relational_cartl_result_tuple,cartl_tuple, essn,mode) ;
dpy_eol();

dpy_spacey (1L);
dpy_attrirelational_cartl_result_tuple,cartl_tuple,proj_num,mode};

169

dpy_eol ();

dpy_spacey (1L} ;
dpy_attr(relational_cartl_result_tuple,cartl_tuple, hours,mode);
dpy_eol () ;

/* this function is called from create_tuple. It redefines the implementation
for the class tuples method initialize_tuples. Specifically, a new project
tuple is created and given initial values (all of which are legal).

It returns a tuple to create_tuple which then allows the user to initialize
this tuple with values. Each subtype of tuple needs to have a function
like this. */

idl_routine relational_tuple initialize_cartl_resul_tuple(tuple_type)
relational_tuple tuple_type;
{
relational_cartl_result_tuple new_tuple;
idl_transaction tr = idl_get_trans(tuple_type);
string empty = idl_copy_string(tr,””);

new_tuple = idl_new(tr,relational_cartl_result_tuple);
/* must still assign legal values*/

new_tuple->person = idl_new(tr,relational_person);
new_tuple->person->fname = empty;

new_tuple->person->mname = empty;
new_tuple->person->lname = empty;
new_tuple->pers:n->bdate = empty;

new_tuple->person->ssn = 0;
new_tuple->person->spouse = empty;

new_tuple->address = idl_new(tr,relational_addr);
new_tuple->address->street = empty;
new_tuple->address->city = empty;
new_tuple->address->state = empty;
new_tuple->address->zip = empty;

new_tuple->phone = idl_new(tr,relatiocnal_phone_number);
new_tuple->phone->number = empty;

/* new_tuple->widget needs to have widget defined first */

new_tuple->essn = 0;
new_tuple->proj_num = 0;
new_tuple->hours = 0.0;

return idl_to(relational_tuple,new_tuple);

static relational_relation insert_cartl_result_tuples(rl,r2,r3)
relational_relation r1,r2,r3;
{
relational_cartl_result_tuple new_tuple;
relational_emp_tuple rell;
relational_proj_tuple rel2;
idl_transaction tr = idl_get_trans(rl);

/* get rid of any tuples that may be in the resultant relation structure
prior to inser. the new result */

r3->tuples = idl_empty_linked(tr,relational_tuple);

idl_linked_for (relational_tuple,rl->tuples,ri_tuple)
{

170

idl_linked_for (relational_tuple,r2->tuples,r2_tuple)

/* send message Lo get a new tuple created with valid default
values. */

new_tuple = idl_to(relational_cartl_result_tuple,
idl_vop(r3->tuple_type,relational_tuple, initialize_tuple,
(r3->tuple_type)));

rell = idl_to(relational_emp_tuple,rl_tuple);
rel2 = i1dl_to(relational_proj_tuple,r2_tuple);

new_tuple->person->fname
new_tuple->person->mname
new_tuple->person->lname rell->person->lname;
new_tuple->person->bdate rell->person->bdate;
new_tuple->person->ssn = rell->»person->ssn;

rell->person->fname;
rell->person->mname;

w d n

new_tuple->address->street = rell->address->street;
new_tuple->address->city = rell->address->city;
new_tuple->address->state = rell->address->state;
new_tuple->address->zip = rell->address->zip;
new_tuple->phone->number = rell->phone->number;

/* new_tuple->widget needs to have widget defined first */
new_tuple->essn = rel2->essn;

new_tuple->proj_num = rel2->proj_num;

new_tuple->hours = rel2->hours;
idl_insert_back(relational_tuple, r3->tuples,new_tuple);

} idl_end_for
} idl_end_for

return r3;

171

/*t**k*itt*tt**************f*******t**f******tt*t*****t*t**tff**t*t!*ii*****tt

Class projectl_result_tuple methods

*

*

*

* projectl_result_tuple_key

* projectl_result_tuple_print

* initialize_projectl_resul_tuple
* insert_projectl_result_flds

*
*

*****t***i********!******t*t*****tt**t****t****t**tt***t****t*t***t***t**ttt/

LA R A AR R RS RS R R RRE RS RRERERELEEEREERERRRRRRREREEREEREREERERRII I I E I K IR IP U GPgpgeg

Class Projectl_Result_Tuple Methods

A A A AR EERSEEELREREEREER R RS RERERERERERR RSl R REREEEEREEREEETEEEREERER TR B J T I FIEI I I G IPrgrgpegey

idl_routine void projectl_result_tuple_key (projectli_result_tuple)
relational_projectl_result_tuple projectl_result_tuple;
{
dpy_rational (projectl_result_tuple->hours,6);
dpy_spacex(4L) ;
dpy_integer (projecti_result_tuple->essn,9);
dpy_eol () ;

idl_routine void projectl_result_tuple_print (projectl_result_tuple,mode)
relational_projectl_result_tuple projectl_result_tuple;
dpy_dmode mode;

idl_transaction tr = idl_get_trans(projectl_result_tuple);
boolean can_write = idl_trans_write_count(tr) > 0;

if (can_wiite) mode.expand = 1;

dpy_attr(relational_projectl_result_tuple,projectl_result_tuple, hours,mode);
dpy_eol () ;

dpy_spacey (1L);
dpy_attr(relational_projectl_result_tuple,projectl_result_tuple,essn,mode);
dpy_eol () ;

idl_routine relational_tuple initialize_projectl_resul_tuple(tuple_type)
relational_tuple tuple_type:;
{
relational_projectl_result_tuple new_tuple;
idl_transaction tr = idl_get_trans(tuple_type);

new_tuple = idl_new(tr,relational_projectl_result_tuple);
/* must still assign legal values*/

new_tuple->essn = 0;
new_tuple->hours = 0.0;

return idl_to(relational_tuple,new_tuple);

idl_routine relational_relation insert_projectl_result_flds(rel,result_rel)
relational_relation rel,result_rel;
{
relational_projectl_result_tuple new_tuple;
relational_proj_tuple rell;

172

idl_transaction tr = idl_get_trans(rel);

result_rel->tuples = idl_empty_linked(tr,relational_tuple);
new_tuple = idl_new(tr,relational_projectl_result_tuple);
/* must still assign legal values*/

idl_linked_for (relational_tuple,rel->tuples,rl_tuple)

/* send message tc get a new tuple created with valid default
values. */

new_tuple = idl_to(relational_projectl_result_tuple,
idl_vop(result_rel-
>tuple_type,relational_tuple,initializeatuple,(result_rel—>tuple,type)));
rell = idl_to(relational_proj_tuple,rl_tuple);

new_tuple->essn = rell->essn;
new_tuple->hours = rell->hours;

idl_insert_back(relational_tuple, result_rel->tuples,new_tuple);
} idl_end_for

return result_rel;

173

(B RS RS RS R R RS R ERESRERER R REEERRRREEs SRRl SRl Rl SRR REREEREEEEREEEEEREEEERRS

General functions to display a character string and an integer

/
*
*
*
* exit_action

* char_screen

* integer_screen
*

*

tt**************************i*********t*********t*************t*******t*/

/* called by char_screen and integer_screen to exit the pop up window */

idl_routine void exit_action(i)
integer i;

(
dpy_quit () ;

/* display the string s on a pop-up screen using dpy_active(char_screen,s)
Note: the browser restricts s to 80 characters */

idl_routine void char_screen(s,X,y)
string s;
integer x,y;

dpy_open (“Display String”,true);
dpy_open(“format”, true);

brw_cmd (“Exit”,”exit this screen”,exit_action, 0, BRW_SCREEN});
dpy_eol () ;

dpy_spacey {2);

dpy_eol();

dpy_cstring(s);

dpy_spacey (2} ;

dpy_eol{};

dpy_close();
brw_input_area(y-3,true);
dpy_close(};

dpy_boxed(x,y);

/* display the integer s cn a pop-up screen */
idl_routine void integer_screen(s,Xx,y)

integer s;

integer x,y;

dpy_open(“Display Integer”,true);
dpy_open(“format”, true);
brw_cmd(”Exit”,*exit this screen”,exit_action, 0, BRW_SCREEN) ;
dpy_eol();

dpy_spacey (1) ;

dpy_eol();

dpy_integer(s,5);

dpy_spacey (2} ;

dpy_eol (};

dpy_close();
brw_input_area(y-3,true);
dpy_close();

dpy_boxed(x,vy) ;

174

R K R K R R R KK R K R R K R A Rk A K A AR A AR A F A AL AN A AN R A AR R KA XA AR A A NS A A AT I AR AN
*

* Binding and Initialization

*
*‘***t*ttt**************t**‘kt"k***t******t**t*‘kt***t*kttttt*********f‘*tt*tt*/

idl_define_ops relational_opbind()
{
idl_bind_root (relational);

idl_bind(“database_key” . ,database_key);
- idl_bind(“database_print”,database_print);
idl_bind(“create_relation”,create_relation);

idl_bind(”relation_key”,relatiocn_key);
idl_bind(”relation_print”,relation_print);
idl_bind(”create_tuple”,create_tuple);
idl_bind{*ck_union_compatability”,ck_union_compatability);

idl_bind(*union_op”.,union_op);
idl_bind(*cart_prod_op“,cart_prod_op);
idl_bind(”set_diff_op”,set_diff_op);
idl_bind(“project_op”,project_op)};
idl_bind{“select_op”,select_op);

idl_bind(*equal_to”,equal_to);
idl_bind(“less_than”, less_than);
idl_bind(*greater_than”,greater_than);

idl_bind(”initialize_tuple”,initialize_tuple);
idl_bind(”insert_fields”, ingert_fields);
idl_bind(“insert_tuples”, insert_tuples):;

idl_bind(”name_key” ,name_key) ;
111_bind(”name_print”,name_print);

idl_bind(”emp_tuple_key”,emp_tuple_key);
idl_bind(“emp_tuple_print”,emp_tuple_print);
idl_bind(“emp_equal_to”,emp_equal_to);
idl_bind{”emp_less_than”,emp_less_than):
idl_bind(“emp_greater_than”,emp_greater_thanj;
idl_bind{(“initialize_emp_tuple”,initialize_emp_tuple);

idl_bind(“person_key”,person_key)};
idl_bind(“person_print”,person_print);

idl_bind!*”addr_key”,addr_key);
idl_bind(*addr_print”,addr_print);

idl_bind(“phone_number_print”,phone_number_print);

idl_bind(*proj_tuple_key”,proj_tuple_key);
idl_bind{*proj_tuple_print”,proj_tuple_print);
idl_bind{*proj_equal_to”,proj_equal_to);
idl_bind(*proj_less_than”,proj_less_than);
idl_bind(*proj_greater_than”,proj_greater_than);
idl_bind(*initialize_proj_tuple”,initialize_proj_tuple);

idl_bind{“cartl_result_tuple_key”,cartl_result_tuple_key);
idl_bind(*cartl_result_tuple_print”,cartl_result_tuple_print);
idl_bind(*initialize_cartl_resul_tuple”,initialize_cartl_resul_tuple);
idl_bind(”insert_cartl_result_tuples”,insert_cartl_result_tuples);

idl_bind(*projectli_result_tuple_key”,projectl_result_tuple_key);
idl_bind(“projecti_result_tuple_print”,projectl_result_tuple_print);

175

idl_bind(“initialize_projectl_resul_tuple”,initialize_projectl_resul_tuple);
idl_bind(*insert_projectl_result_flds*, insert_projectl_result_flds);

176

APPENDIX D: A SAMPLE R/OODBMS DATABASE ASCII CLUSTER FILE

-- Generated by IDB System Version 1.1
@[cid < 16#e6842701 16400000000 16#00000036 > ;

1id_seed 3566)@
x355”
xl: 1063@ name[name 1064€@ “person” |
x2: 1065@ name{ name 1066@ “address”]
x3: 1067@ name(name 1068@ “phone” |
x4: 1069@ name| name 1070@ *“widget”]
x5: 1257@ name[name 1267@ “perszon” |
Xx6: 1259@ name(name 1266@ “addr” |
X7: 1261@ name(name 1268@ “phone_number” |
x8: 1272@ name[name 1275@ “idl_univ”]
x9%: 1072@ personl fname x176”~ ; mname x177" ; lname x178~ ; bdate x179" ; szn
122121212 ; spouse 3015@ “Lisa” ; s3ptr nil)
x10: 1074@ addr(street x181" ; city x182" ; state x183”™ ; zip x184" |
x11: 1075@ phone_number| number x186" |
x12: 1076@ emp_tuplel person x9” ; address x10™ ; phone x11” ; widget nil]
x13: 1078@ person{ fname x201" ; mname x202"~ ; lname x203" ; bdate x204" ; ssn
110121212 ; spouse 3024@ ”“Stephanie” ; sptr nil]
x14: 1080@ addr| street x206” ; city x207" ; state x208" ; zip x209"]
x15: 1081@ phone_number | number x211" |
x16: 1082@ emp_tuple{ person x13” ; address x14~ ; phone x15" ; widget nil]
x17: 1084@ person(fname x226" ; mname x227" ; lname x228” ; bdate x229” ; ssn
220121212 ; spouse 3033@ “Joan” ; sptr nil |
x18: 1086@ addr| street x231" ; city x232" ; state x233”~ ; zip x234"]
x19: 1087@ phone_number | number x235" |
x20: 1088@ emp_tuple[person x17"~ ; address x18" ; phone x19™ ; widget nil]
x21: 1030@ perscn{ fname x251" ; mname x252" ; lname x253" ; bdate x254” ; ssn
120926190 ; spouse 3040@ “Karin” ; sptr nii |
x22: 1094@ addr| street x256" ; city x257" ; state x258" ; zip x259")
x23: 1095@ phone_number[number xZ61"]
x24: 1096@ emp_tuple(person x21"~ ; address x22" ; phone x23”~ ; widget nil
x25: 1098@ person{ fname x276” ; mname x277~ ; lname x278~ ; bdate x279" ;
123456789 ; spouse 1097@ *“ ; sptr nil |
X26: 1102@ addr{ street x281" ; city x282" ; state x283"~ ; zip x284" }
x27: 1105@ phone_number | number x286" |
x28: 1106@ emp_tuple(person x25” ; address x26”~ ; phone x27”~ ; widget nil |
x29: 1348@Q person| fname x301”" ; mname x302” ; lname x303" ; bdate x304” ; ssn
991221234 ; spouse 3053@ “Lesa” ; sptr nil |}
x30: 1349@ addr{ street x306”" ; city x307" ; state x308" ; zip x309"]
x31: 1350@ phone_number{ number x311"]
x32: 1347@ emp_tuple[person x29" ; address x30" ; phone x31" ; widget nil]
x33: 1354@ person| fname 1355@ ““ ; mname 1356@ ”“ ; lname 1382@ “* ; bdate 1358@
““ ; ssn 0 ; spouse 1359@ "* ; sgptr nil |
x34: 1360@ addr[street 1361@ *~ ; city 1362@ 7“ ; state 1363@ "% ; zip 1364@ ** |
x35: 1365@ phone_number{ number 13663 “”
%36: 1353@ emp_tuplel person x33”~ ; address x34” ; phcne x35° ; widget nil)
%x37: 1107@ relation{ relation_name 1108@ “rl” ; attribute_names x38" ;
attribute_types x39~ ; tuples 1110@ < x12” x16™ x20" x24”~ x28”™ x32" > ; tuple_type
x36”~ ; key x353~])
x38: 1113@ < x1~ x2™ x3" x4* >
x39: 12548 < x5~ x6"~ x7° X8~ >
x40: 1239@ person| fname 1240@ “Nancy” ; mname 3059@ *J.” ; lname 1241@ “McClellan”
; bdate 3060@ "14 Feb S7” ; ssn 990124444 ; spouse -1238@ ** ; sptr nil |
x41: 1242@ addr(street 3062@Q ”2331 Long St.” ; city 3063@ “Monterey” ; state 3064@
“CA” ; zip 3065@ #93940")
x42: 1243@ phone_number({ number 3061@ ”(203)999-9991" |
x43: 1244@ emp_tuple| person x40~ ; address x41" ; phone x42” ; widget nil]
x44: 1221@ person{ fname 3066@ “Leonard” ; mnhame 3067@ “H.” ; lname 1222@ “Tharpe”
; bdate 3068@ 12 Aug 58" ; =3n 115121212 ; spouse 3063@ “Stephanie” ; sptr nil |

W) -
0
=]

177

x45: 1223@ addr[street 3071@ *432 Caldwell Drive” ; city 2779@ “Monterey” ; state
3072@ “CA* ; zip 3073@ “393940” |
x46: 12248 phone_number[number 3070@ “(408)452-1234" |
x47: 1225@ emp_tuple| person x44” ; address x45" ; phone x46~ ; widget nil
x48: 1227@ person{ fname 3074@ “David” ; mname 3075@ “M.~* ; lname 1228@ “Nash” ;
bdate 3076@ *21 Jul 65" ; ssn 23551324 ; spouse 3077@ “Tammy” ; sptr nil]
X49: 1229@ addr! street 3079@ #2112 Leidig Circle” ; city 2778@ "Monterey” ; state
3080@ “CA” ; z.p 3081@ “93940* !
x50: 1230@ phore_number ([number 3078@ “(408)123-4567")
x51: 1231€@ emp_tuple[person x48” ; address x49” ; phone x50~ ; widget nil]
x52: 1368@ person| fname 1369@ ““ ; mname 1370@ “* ; lname 1371@ “* ; bdate 1372@
“# . sgssn 0 ; spouse 1373@ ** ; sptr nil |
x53: 1374@ addr| street 1375@ *” ; city 1376@ ** ; state 1377@ “” ; zip 1378@ **) -
x54: 1379@ phone_number{ number 1380@ **
x55: 1367@ emp_tuple{ person x52” ; address x53" ; phone x54” ; widget nil]
x56: 1132@ relation{ relation_name 1133@ “r2” ; attribute_names x38" ;
attribute_types x39" ; tuples 1135@ <« x43” x47~ X51~ > ; cuple_type x55" ; key
1137@ “person -> ssn” |
x57: 1279@ name{ name 1288@ “person” |
x58: 1281@ name[name 1289@ *“addr” |
x59: 1283@ name| name 1290@ “phone_number” |
x60: 1285@ name[name 1291@ “diff_type”]
x61: 1139@ person| fname 1140@ “Tim” ; mname 3089@ “J.” ; lname 1141@ “Kelly” ;
bdate 3090@ “4 Jul 627 ; ssn 22121212 ; spouse 1138@ *” ; sprtr nil]
x62: 1142@ addr(street 1143@Q “345 Bergin” ; city 1144@ “Monterey” ; state 1145@
“CA” ; zip 3092@ *93940”"]
x63: 1146@ phone_number| number 3091@ “(408)123-4567"]
X64: 1148@ emp_tuple[person x61”~ ; address x62” ; phone x63" ; widget nil]
X65: 1150@Q person[fname 1151@ “Ronald” ; mname 1152@ “L.” ; lname 1153@ ~“Spear”
; bdate 3082@ *29 Dec 62" ; ssn 120926190 ; spouse 3083@Q “Karin” ; sptr nil]
x66: 1154@ addr[street 3085@ “397B Ricketts Road” ; city 3086@ “Monterey” ; state
3087@ “CA”* ; zip 3088@ *“93940" |
x67: 1155@ phone_number|{ number 3084@ *“ (408)375-86193" |
x68: 1156@ emp_tuple[person x65~ ; address x66”~ ; phone x67~ ; widget nil |
X69: 1384@ person| fname 1385@ “* ; mname 1386@ “¥ ; lname 1387@ ** ; bdate 1388¢
“# ; ssn 0 ; spouse 138%@ “* ; sptr nil |
x70: 1390@ addr| street 1391@ “~ ; city 1392@ "* ; state 1393@ ** ; zip 1394@ *~* |}
X71: 1395@ phone_number{ number 1396@ #~# | :
x72: 1383@ emp_tuple[person x69”~ ; address x70” ; phone x71” ; widget nil |
x73: 1157@ relation(relation_name 1158@ “r3” ; attribute_names x38" ;
attribute_types 1276@ < X577 x58”" x59” x60" > ; tuples 1160@ < X64”~ X68"~ > ;
tuple_type x72" ; key 1162@ *“person -> s3n” |
X74: 1163@ name| name 1164@ “person -> fname”
x75: 1165@ name[name 1166@ “person -> mname”
x76: 1167@ name[name 1168@ “person -> lname”
X77: 1169@ name(name 1170@ “person -> bdate”
x78: 1171@ name[name 1172@ *“person -> spouse” |
x79: 1173@ name[name 1174@ “addr -> street]
x80: 1175@ name’ name 1176@ *addr -> city” |
x81: 1177@ name|{ name 1178@ “addr -> state”]
x82: 1179@ name{ name 1180@ *addr -> zip” |
X83: 1181@ name(name 1182@ “phone -> number” |
x84: 1310@ name(name 1330@Q “string”]
x85: 1312@ name(name 1331@ “string” |

]

]

]
]
)
]

x86: 1314@ name[name 1332@ *string”

x87: 1316@ name[name 1333@ “string”

x88: 1318@ name(name 1340@ “integer” |

x89: 1320@ name[name 1335@ “string”]

x90: 1322@ namel name 1336€ *string” |

x%1: 1324@ name(name 1337@ *string”)

x92: 1326@ name[name 1338@ *string” |

x93: 1328@ name{ name 1339@ *“string” |

x94: 1183@ »~

x95: 1184@ person{ fname x94”~ ; mname x94~ ; lname 1185@ “Larson” ; bdate x94" ;
ssn 0 ; spouse x94*~ ; sptr nil]

*.96: 118b@ addr{ street x94” ; city x94~ ; state x94”~ ; zip x94" |

x97: 1187@ phone_number [number x%24")

x38: 1188@ emp_tuple[person x95" ; address x96” ; phone x97" ; widget nil |

178

x99: 118%9@ **

x100: 1190@ person{ fname x99” ; mname x99” ; lname 1191@ “Johnson” ; bdate x99~°
; ssn 0 ; spouse x99~ ; sptr nil |

x101: 1192@ addr([street x99~ ; city x99” ; state x99” ; zip x99"]

x102: 1193@ phone_number(number x39"]

x103: 1194@ emp_tuple(person x100~ ; address x101™ ; phone x102" ; widget nil |
x104: 1195@ “*

x105: 1196@ person| fname x104” ; mname x104” ; lname 1197@ “Lombardo” ; bdate
x104~ ; ssn 0 ; spouse x104” ; sptr nil |

x106: 1198@ addr(| street x104” ; city x104”~ ; state x104™ ; zip x104"]

x107: 1199@ phone_number|[number x104"]

x108: 1200@ emp_tuple[person x105" ; address x106”~ ; phone x107" ; w'dget nil]
x109: 1440@ person| fname 1441@ ““ ; mname 1442@ “* ; lname 1443@ “* ; bdate 1444@
“# . gsn 0 ; spouse 1445@ “* ; sptr nil |

x110: 1446€ addr(street 1447@ “* , city 1448@ “* ; gtate 1449@ ** ; zip 1450@ “* |
x111: 1451@ phone_number| number 1452@ “* |

x112: 1439@ emp_tuple(person x109~ ; address x110" ; phone x111" ; widget nil]
x113: 1201@ relation| relation_name 1202@ “test2” ; attribute_names x114" ;
attribute_types x115" ; tuples 1204@ < x98” x103” x108” > ; tuple_type x112" ; key
1206@ “person -> ssn”]

x114: 1207@ < xX74" x75" x76" X77"~ x78” x79” x80" x81" x82" x83" >

x115: 1307@ < x84" x85" x86" x87~ x88~ x89” x90™ x91” x92~ x93~ >

x116: 1426@ person{ fname 1427@ ”“ ; mname 1428@ “* ; lname 1429@ “* ; bdate 1430@
“# , 3gn 0 ; spouse 1431@ “* ; sptr nil |

x117: 1432@ addr| street 1433@ ““ ; city 1434@ “” ; state 1435@ *“ ; zip 1436@ “* |
x118: 1437@ phone_number| number 1438@ ”“ |

%x119: 1425@ emp_tuple| person x116”~ ; address x117" ; phone x118" ; widget nil]
x120: 1208@ relation| relation_name 120%@ “TEMP1l” ; attribute_names x114" ;
attribute_types x115”° ; tuples 1211@ < x98" x103” X108~ x64" > ; tuple_type x119"
; key 1213@ *“person -> ssn” |

x121: 1295@ name[name 1303@ “person” |}

x122: 1297@ name(name 1304@ “addr” |

x123: 1299@ name(name 1305@ “phone_number”

x124: 1301@ name{ name 1306@ “idl_univ” |

x125: 1215@ person{ fname 3093@ ”“James” ; mname 3094@ “S.” ; lname 1216@ *Baumann”
; bdate 3095@ #12 Jan 85” ; ssn 550121212 ; spouse 1214@ “* ; sptr nil |

x126: 1217@ addr![street 3097@ “41112 Lost Lane” ; city 2780@ *Fayetteville” ;
state 3098@ “NC” ; zip 3099@ ~“32212”"]

x127: 1218@ phone_number[number 3096@ “(231)222-3333" |

x128: 1219@ emp_tuple[person X125~ ; address x126” ; phone x127” ; widget nil |
x129: 1398@ person| fname 1399@ ”” ; mname 1400@ ““ ; lname 1401@ *~ ; bdate 1402@
“# ; ssn 0 ; spouse 1403@ "” ; sptr nil |

x130: 1404@ addr|[street 1405@ ““ ; city 1406@ “* ; state 1407@ ”* ; zip 1408 ** |
x131: 1409@ phone_number| number 1410@ ““ |

x132: 1397@ emp_tuple[person x129” ; address x130" ; phone x131" ; widget nil]
x133: 1232@ relation([relation_name 1233@ “r4” ; attribute_names x38" ;
attribute_types 1292@ < x121~ X122~ x123”™ x124”~ > ; tuples 1235@ < x128" x47" x51~°
> ; tuple_type x132"~ ; key 1237@ ”"person -> ssn” |

x134: 1412@ person(fname 1413@ ”* ; mname 1414@ "~ ; lname 1415@ ** ; bdate 1416@
** ; g3n 0 ; spouvse 1417@ “* ; sptr nil |

x135: 1418@ addr{ street 1419@ “* ; city 1420@ ** ; state 1421@ "* ; zip 1422@ **]
x136: 1423@ phone_number{ number 1424@ ”* |

x137: 1411@ emp_tuple[person X134~ ; address x135" ; phone x136”~ ; widget nil |}
x138: 1245@ relation{ relation_name 1246&@ “r5” ; attribute_names x38" ;
attribute_types x39” ; tuples 1248@ < x43” > ; tuple_type x137" ; key 1250@ “person
-> gsn” |

x139: 1501@ name[name 1518@ “Employee SSN*]

x140: 1503@ name{ name 1519@ “Project Number”]

x141: 1505@ name[name 1520@ “Hours Worked” |

x142: 1510@ name[name 1521@ “integer” |

x143: 1512@ name| name 1522@ *integer”)

x144: 1514@Q name’ name 1%523@ “raticnal” |

x145: 1526@ proj_tuple| essn 120926190 ; proj_num 2 ; hours 10.0]
x146: 1529@ proj_tuple(essn 999999999 ; proj_num 1 ; hours 45.2)
x147: 1532@ proj_tuple{ essn 123456789 ; proj_num 2 ; hours 51.5 |
x148: 1535@ proj_tuple| essn 987654321 ; proj_num 30 ; hours 4.0)

x149: 1497@ proj_tuple(essn 0 ; proj_num O ; hours 0.0]

179

x150: 1490@ relation| relation_name 1495@ “ptl” ; attribute_names 1498@ < x139*
x140” x141”~ > ; attribute_types 1507@ < x142” x143” x144”~ > ; tuples 1494@ < x145"
X146~ x147" x148" > ; tuple_type x149”~ ; key 1496@ *essn,proj_num”]

x151: 1554@ name{ name 1575@ “Employee SSN”]

x152: 1556@ name[name 1576@ “Project Number~”]

x153: 1558@Q name|[name 1578@ *Hours Worked” |}

x154: 1560@ name[name 1579@ “integer” |

x155: 1562@ name(name 1580@ “integer” |

x156: 1564@ name(name 1581@ *rational” |

x157: 1568@ proj_tuple(essn 550926190 ; proj_num 23 ; hours 34.4]

x158: 1571@ proj_tuple(essn 666666666 ; proj_num 2 ; hours 15.0]

x159: 1574@ proj_tuplel essn 123456789 ; proj_num 1 ; hours 24.0]

x160: 1547@ proj_tuplei essn 0 ; proj_num 0 ; hours 0.0] -
x161: 1540@ relation{ relation_name 1545@ <“pt2” ; attribute_names 1548@ < x151"
x152” X153~ > ; attribute_types 1551@ < x154" x155" x156” > ; tuples 1544@ < x157"
x158~ X159~ > ; tuple_type x160”~ ; key 1546@ “essn,proj_num” |

x162: 1618@ name[name 1658@ “Person” | -
x163: 1620@ name(name 1659@ “Address”]

x164: 1622@ name{ name 1660@ “Phone”]

x165: 1624@ name{ name 1661@ “Widget” |

X166: 1626@ name{ name 1655@ “Employee SSN* |

x167: 1628@ name| name 1657@ “Project Number”]

x168: 1630@ name[name 1656@ *“Hours Worked*]

x169: 1635@ name[name 1662@ “person” |

x170: 1637@ name[name 1663@ *addr” |

x171: 16392 name[name 1664@ “phone_number”]

x172: 1641@ name[name 1665@ “idl_univ”]

x173: 1643@ name[name 1666@ “integer” |

X174: 1645@ name(name 1667@ *integer” |

x175: 1647@ name[name 1668@ *“rational”]

Xx176: 3012@ *Mathew”

x177: 3013@ ~James”

x178: 1073@ “Rothlisberger”

X179: 3014@ “23 Feb 60"

x180: 3210@ person({ fname x176” ; mname x177~ ; lname x178" ; bdate x179” ; ssn
122121212 ; spouse 3208@ “* ; sptr nil |

x181: 3017@ “231 Bergen”

X182: 3018@ “Monterey”

x183: 3019@ “CA~”

x184: 3020@ “93940”"

x185%5: 3211@ addr[street x181"~ ; city x182~ ; state x183" ; zip x184"]

x186: 3016@ ~(408)375-1234"

%x187: 3212@ phone_number(number x186")

x188: 3209@ cartl_result_tuple[person x180" ; address x185”~ ; phone x187” ; widget
nil ; essn 550926190 ; proj_num 2 ; hours 10.0]

x189: 3225@ person| fname x176” ; mname x177”~ ; lname x178" ; bdate x179" ; ssn
122121212 ; spouse 3223@ *” ; sptr nil] :

x190: 3226@ addr| street x181” ; city x182" ; state x183" ; zip x184"]

%x191: 3227@ phone_number[number x186" |

x192: 3224@ cartl_result_tuple[person x189” ; address x190”~ ; phone x191~ ; widget
nil ; essn 999999999 ; proj_num 1 ; hours 45.2]

x193: 3240@ person{ fname x176” ; mname x177”~ ; lname x178”~ ; bdate x179” ; ssn
122121212 ; spouse 3238@Q ** ; sptr nil |

xX194: 3241@ addr{ street x181" ; city x182”~ ; state x183~ ; zip x184"]

x195: 3242@ phone_number|[number x186"]

x196: 3239@ cartl_result_tuple{ person x193~ ; address x194” ; phone x195~ ; widget
nil ; essn 123456789 ; proj_num 2 ; hours 51.5]

x197: 3255@ person{ fname x176” ; mname x177”~ ; lname x178” ; bdate x179” ; ssn
122121212 ; spouse 3253@ ** ; sptr nil | -
x198: 3256@ addr(street x181" ; city x182” ; state x183" ; zip x184"]

x199: 3257@ phone_number{ number x186" |

x200: 3254@ cartl_result_tuple[person x197"~ ; address x198~ ; phone x199” ; widget
nil ; essn 987654321 ; proj_num 30 ; hours 4.0]

x201: 3021@ “Leonard”

x202: 3022@ *H.~*

x203: 1079@ *“Tharpe”

x204: 3023@ “12 Aug 58"

180

]

x205: 3270@ person| fname x201” ; mname X202~ ; lname X203~

110121212 ; spouse 3268@ “* sptr nil]

x206: 3026@ “432 Caldwell Drive~

X207: 3027@ *Monterey”

x208: 3028@ ~“CA*

x209: 3029@ +*93940*

x210: 3271@ addr([street x206" ; city x207~ ; state x208" ;
x211: 3025@ +*(408)452-1234"

x212: 3272@ phone_number[number x211"]

x213: 3269@ cartl_result_tuple(person x205” ; address x210" ;

nil ; essn 550926190 ; proj_num 2 ; hours 10.0]
x214: 3285@ person(fname x201”~ ; mname x202" ;
110121212 ; spouse 3283@ “* ; gptr nil |
x215: 3286@ addr(street x206~ ; city x207" ;
x216: 3287@ phone_number|[number x211"]
x217: 3284@ cartl_result_tuple(person x214” ; address x215" ;

lname x203"

state x208"~ ;

nil ; essn 999999999 ; proj_num 1 ; hours 45.2]

Xx218: 3300@ person{ fname x201" ; mname x202”~ ; lname x203"
110121212 ; spouse 3298@ “* ; sptr nil |

x219: 3301@ addr{ street x206~ ; city x207~ ; state x208" ;
x220: 3302@ phone_number{ number x211"]

x221: 3299@ cartl_result_tuple(person x218” ; address x219" ;

nil ; essn 123454789 ; proj_num 2 ; hours 51.5]

X222: 3315@ person| fname x201~ ; mname x202" ; lname x203"
110121212 ; spouse 3313@ “* ; gptr nil]

x223: 3316@ addr| street x206" ; city x207" ; state x208" ;
x224: 3317@ phone_number[number x211"]

x225: 3314@ cartl_result_tuple(person x222" ; address x223" ;

nil ; essn 987654321 ; proj_num 30 ; hours 4.0 |
x226: 3030€@ “Charles”
x227: 3031@ “L.”
x228: 1085@ “Baumann”
x229: 3032@ 723 Jun 54~ .
x230: 3330@ person(fname x226” ; mname x227” ; lname x228%
220121212 ; spouse 3328@ “” ; gptr nil)
x231: 3035@ “12345 General Lane”
x232: 3036@ ”"Ft Bragg”
233: 3037@ “NC”
x234: 3038@ “16234”"
x235: 3331@ addr| street x231" ; city x232" ; state x233" ;
x236: 3034@ ~(122)324-9876"
x237: 3332@ phone_number[number x236"]
x238: 3329@Q cartl_result_tuple(person x230" ; address x235" ;
nil ; essn 550926190 ; proj_num 2 ; hours 10.0]
x239: 3345@ person(fname x226” ; mname x227" ; lname x228"
220121212 ; spouse 3343@ “~ sptr nil |}
x240: 3346@ addr(street x231" ; city x232” ; state x233" ;
x241: 3347@ phone_number|[number x236"]

X242: 3344@ cartl_result_tuple(person x239” ; address x240" ;

nil ; essn 999999999 ; proj_num 1 ; hours 45.2 |

X243: 3360@ person{ fname x226” ; mname x227" ; lname x228"
220121212 ; spouse 3358@ ** ; sptr nil |

x244: 3361@ addr(street x231”~ ; city x232"~ ; state x233" ;
x245: 3362@ phone_number| number x236" |

x246: 3359@ cartl_result_tuple(person x243”" ; address x244" ;

nil ; essn 123456789 ; proj_num 2 ; hours 51.5]

x247: 3375@Q person|[fname x226” ; mname x227" ; lname x228"
220121212 ; spouse 3373@ *“* ; sptr nil]

x248: 3376@ addr[street x231"™ ; city x232" ; state x233" ;
x249: 3377@ phone_number| number x236"]

x250: 3374@ cartl_result_tuple(person x247~ ; address x248" ;

nil ; essn 987654321 ; proj_num 30 ; hours 4.0]

x251: 10%91@ “Ronald”

x252: 10%92@ “L.”

x253: 1093@ “Spear”

x254: 3039@ “29 Dec 62~

x255: 3390@ person(fname x251” ; mname x252” ; lname x253%
120926190 ; spouse 3388@ ** ; sptr nil |

181

; bdate x204~ ; ssn

zip x209" |

phone x212" ; widget

bdate x204” ; ssn
zip x209"]
phone x216” ; widget
; bdate x204~ ;
zip x209")
phone x220" ;
; bdate x204~ ;
zip x209" |

phone x224* ;

; bdate x229”~ ; ssn

zZip x234" |

phone x237” ; widget
; bdate x229" ; ssn
zip x234")
phone x241” ; widget
; bdate %229~ ; ssn
zip x234")
phone x245" ; widget
; bdate x229~ ; ssn
zip x234™]

phone x249” ; widget

; bdate x254” ; ssn

x256: 3042@ ~“397B Ricketts Road~”

x257: 3043@ *Monterey”

X258: 3044@ ~CA”

%259: 3045@ *93940”"

x260: 3391@ addr! street x256~ ; city x257”~ ; state x258~ ;
x261: 3041@ ~(408)375-8619"

x262: 3392@ phone_number[number x261"]

X263: 3389@ cartl_result_tuple! person x255" ; address x260" ;
nil ; essn 550926190 ; proj_num 2 ; hours 10.0 }

X264: 3405@ person(fname x251° ; mname x252” ; lname x253"
120926190 ; spouse 3403@ ** sptr nil)

X265: 34068 addr| street x256”~ ; city x257~ ; state x258”~ ;
x266: 3407@ phone_number[number x261"]

X267: 3404@ cartl_result_tuple{ person x264" ; address x265" ;

nil ; essn 999999999 ; proj_num 1 ; hours 45.2 |

X268: 3420€@ person| fname x251” ; mname x252” ; lname x253°
120926190 ; spouse 3418@ “* ; sptr nil]

X269: 3421@ addr[street x256” ; city x257" ; state x258~ ;

x270: 3422@ phone_number{ number x261"] .
x271: 3419@ cartl_result_tuple| person x268”" ; address x269" ;

nil ; essn 123456789 ; proj_num 2 ; hours 51.5)
X272: 3435@ person(fname 251" ; mname x252% ; lname x253"
120926190 ; spouse 3433@ ** ; sptr nil |

x273: 3436Q@ addr[street x256~ ; city x257"~ ; state x258" ;
X274: 3437@ phone_number{ number x261"]

X275: 3434@ cartl_result_tuplel] person x272” ; address x273" ;
nil ; essn 987654321 ; proj_num 30 ; hours 4.0 |

x276: 1099@ “Jon”

x277: 1100@ *Lewis”

x278: 1101@ “Spear”

x279: 3046@ *16 Sep 58”7

x280: 3450@Q person| fname x276” ; mname x277” ; lname x278"
123456789 ; spouse 3448@ “* sptr nil |

x281: 3043@ #3122 Apt B Sunset Strip”

¥282: 1103@ “Redondo Beach”

x283: 1104@ ~“CA~

xX284: 3049@ *99812”"

X285: 3451@ addr{ street x281" ; city x282"~ ; state x283" ;
X286: 3047@ *(301)322-2341"

x287: 3452@ phone_number{ number x286"]

x288: 3449@ cartl_result_tuple(person x280" ; 2ddress x285" ;
nil ; essn 550926190 ; proj_num 2 ; hours 10.0]

xX289: 3465@ person{ fname x276” ; mname x277" ; lname x278"
123456789 ; spouse 3463@ “* ; sptr nil |

x290: 3466@ addr(street x281"~ ; city x282"~ ; state x283" ;
x291: 3467@ phone_number|[number x286" |

X292: 3464@ cartl_result_tuple(person x289” ; address x290" ;
nil ; essn 999999999 ; proj_num 1 ; hours 45.2 |
X293: 3480@ person{ fname x276” ; mname x277" ;
123456789 ; spouse 3478@ *“* sptr nil |
x294: 3481@ addr[street x281~ ; city x282" ;
x295: 3482@ phone_number[number x286"]
X296: 3479@ cartl _result_tuple{ person x293” ; address x294" ;
nil ; essn 123456789 ; proj_num 2 ; hours 51.5]
x297: 3495@ person| fname x276" ; mname x277" ;
123456789 ; spouse 3493@ “* ; sptr nil |}
X298: 3496@ addr!| street x281" ; city x282" ;
X299: 3497@ phone_number{ number x246"]
x300: 3494@ cartl_result_tuple[person x297~ ; address x298" ;
nil ; essn 987654321 ; proj_num 30 ; hours 4.0)

lname x278"

state x283" ;

lname x278"

state x283" ;

x301: 3050@ “Jon”

x302: 3051@ *K.”

x303: 1352@ *“Walter”

x304: 3052@ *24 Dec 61"

x305: 35108 person{ fname x301” ; mname x302" ; lname x303"
991221234 ; spouse 3508 ~~ sptr nil]

x306: 3055@ ~3321 City st.”

¥307: 3056@ *“Marina”

182

zip x259~ |

phone x262” ; widget
; bdate x254~ ; ssn
zip x259~]
phone x266" ; widget
; bdate x254"~ ; ssn
zip x259°]
phone x270" ; widget
; bdate x254” ; ssn
zip x259"]

phone x274" ; widget

; bdate x279~ ; ssn

zip x284"]

phone x287" ; widget
; bdate x279" ; ssn
zip x284" |
phone x291~ ; widget
; bdate x279~ ; ssn
zip x284"~]
phone x295* ; widget
; bdate x279”~ ; ssn
zip x284")

phone x299" ; widget

; bdate x304" ; ssn

x308: 3057@ “ca-~

x309: 3058@ ~93940”

x310: 3511@ addr| street x306" ; city x307" ; state x308"
x311: 3054@ ~(408)122-4253"

x312: 3512@ phone_number|[number x311" |

x313: 3509@ cartl_result_tuple[person x305”" ; address x310~ ; phone x312" ; widget
nil ; essn 550926190 ; proj_num 2 ; hours 10.0 }

x314: 3525@ person(fname x301" ; mname x302” ; lname x303"
991221234 ; spouse 3523@ “* ; gsptr nil |

x315: 3526@ addr[street x306~ ; city x307" ; state x308" ; zip x309" |

x316: 3527@ phone_number(number x311" |}

x317: 3524@ cartl_result_tuple(person x314" ; address x315" ; phone x316" ; widget
nil ; essn 999999999 ; proj_num 1 ; hours 45.2]

x318: 3540@Q person{ fname x301” ; mname x302" ; lname x303~ ; bdate x304"™ ; ssn
991221234 ; spouse 3538@ “* ; sptr nil]

x319: 3541@ addr(street x306”~ ; city x307~ ; state x308~ ; zip x309")

x320: 3542@ phone_number|[number x311"])

x321: 3539@ cartl_result_tuple[person x318~ ; address x319" ; phone x320” ; widget
nil ; essn 123456789 ; proj_num 2 ; hours 51.5] .

x322: 3555@ person| fname x301” ; mname x302”~ ; lname x303" ; bdate x304"
991221234 ; spouse 3553@ "7 ; sptr nil)

x323: 3556@ addr[street x306” ; city x307~ ; state x308~ ; zip x309"]
x324: 3557@ phone_number[number x311"]

x325: 3554@ cartl_result_tuple| person x322" ; address x323" ; phone x324" ; widget
nil ; essn 987654321 ; proj_num 30 ; hours 4.0]

x326: 1670@ person| fname 1671@ ““ ; mname 1672@ “* ; lname 1673@ "~
“% . 3sn 0 ; spouse 1675@ “* ; gptr nil]

x327: 1676@Q addr(street 1677@ “” ; city 1678@ “* ; state 1679@ “* ; zip 1680@ “~]
x328: 1681@ phone_number{ number 1682@ “* |

X329: 1669@ cartl_result_tuple[person x326~ ; address x327" ; phone x328" ; widget
nil ; essn 0 ; proj_num 0 ; hours 0.0 |

x330: 1605@ relation|[relation_name 1610@ “Cart Resultl” ; attribute_names 1615@
< x162” x163"™ x164~ x165~ %166~ x167" X168~ » ; attribute_types 1632@ < x169" x170"
x171" x172~ X173~ x174” x175~ > ; tuples 3197@ < x188~ x192~ x196~ x200~ x213*
X217" x221" x225" x238" x242" x246" x250" x263" x267" %271~ x275" X288~ x292" x296"
x300™ x313" X317~ x321” x325” > ; tuple_type x329" ; key 1611@ *ssn,essn,proj_num”
]

x331: 2793@ name[name 2797@ “Hours Worked” |

x332: 2795@ name(name 2798@ “Employee SSN”)

x333: 2800@ name[name 2804@ “rational” |}

x334: 28022 name[name 2805@ “integer” |

x335: 2809@ projectl_result_tuple(hours 20.4 ; essn 550926190)

x336: 2815@ projectl_result_tuple[hours 3.2 ; essn 123456789)

x337: 2818@ projectl_result_tuple(hours 67.25 ; essn 987654321]

x338: 2806@ projectl_result_tuple{ hours 0.0 ; essn 0]

x339: 2784@ relation{ relation_name 2887@ “project 1” ; attribute_names 2792@ <
x331" X332~ > ; attribute_types 2799@ < x333” x334~ > ; tuples 2788@ < x335” x336"
x337" > ; tuple_type x338”" ; key 2791@ “essn”]

x340: 2830@ proj_tuple[essn 550926190 ; proj_num 2 ; hours 20.0]

x341: 2826@ proj_tuple[essn 0 ; proj_num 0 ; hours 0.0]

x342: 2819@ relation(relation_name 282528 “comp obj” ; attribute_names 2821@ < >
; attribute_types 2822@ < > ; tuples 2823@ < x340” > ; tuple_type x341" ; key 2824@
N n]

x343: 2838@ name{ name 2839@ ** |

x344: 2842@ addr| street 2843@ ** ; city 2844@ ** ; state 2845@ ** ; zip 2846@ **)
x345: 2848@ person(fname 2849@ “* ; mname 2850@ “* ; lname 2851@ “~ ; bdate 28%52@
“o ssn 0 ; spouse 2853@ *” ; sptr nil]

24A: 2854@ addr(street 2855@ ** ; city 2856@ “* ; state 2857@ ** ; zip 2858@ ~* |
x347: 2859@ phcne_number[number 2860@ ~+ |

%348: 2847@ emp_tuple[perscn k245" ; address x346”~ ; phone x347" ; widget nil]
%x349: 2861@ proj_tuplel essn 0 ; proj_num G ; hours nN.9]

x350: 2840@ result_tuple| values 28418 < x344”~ x348" x349" > |

x351: 2862@ result_tuple| values 2863@ <« >)

x352: 2832@ relation(relation_name 2837@ “result test” ; attribute_names 2833@ <
x343"~ > ; attribute_types 2835@ <« > ; tuples 2836@ < x350” x351" > ; tuple_tvpe
nil ; key 2831@ ~~)

x353: 1112@ “person -> ssn”

; zip x309"]

; bdate x304™ ; ssn

; ssn

; bdate 16748

183

x354: 3563@ relation({ relation_name 3564@ “1TEMP_rl.r4” ; attribute_names 3565@ <
X1™ X2~ X3™ x4” > ; attribute_types x39" ; tuples 3566@ < x12~ x16~ x20~ x24~ x28"
x32" x128” x51" > ; tuple_type x36" ; key x353"]

x355: 1251@ database({ name 2864@ “Relational Address DB* ; relations 1253@ < x37~
x56" %73~ x1137 x120” x133~ x138~ x150” x161"~ x330”" x339”~ x342”~ %352~ x354" > |

184

APPENDIX E: MODIFIED R/OODBMS SCHEMA

R R R R R R E R R R R R E R R R 2 R A R R EE R R R R R R R R AR E R R RS R RS R LSS R SRR R R R SRR R RS RRRRE R R EREEXERY

A Modified Relational/Object-Oriented Database Management System

I EEE R SRR R EEEEREESEREEREERRREEEE R R R R SRR R R RS RE RS R ARl RERERREEERR iRl il sl RE R X R R

--Description : This file contains the IDL schema for the implementation of

-- A Modified Relational/Object-Oriented Database Management

-- System. Of the five primitive relational algebra operations

-- (union, difference, proiect, select, and Cartesian product),

-~ the project and Cartesian product operations have been modified
-~ from the original R/CODBMS implemented in IDB.

structure relatiocnal root database is

PR R A R R R S R R R R R R R R R R R SRR R R RS RS R SR SRS RE R R ERRRERERRRERERERE SRS RRERRRERRERE SRS

database => name : 3tring,
relations : zeq of relation;

database -> new_relation(*);

relation => relation_name : 3tring,
attribute_names : seq of name,
attribute_types : seq of name,
tuples : seq of tuple,
tuple_type : tuple,
key : string;

relation -> new_tuple(*),

check_union_compatability(relation, relation) => boolean;

relation -> union(*),
projection(*),
difference(*),
Cartesian_product (*),
selection(*);

name => name ¢ string;
tuple -»> equal_to(tuple, tuple, integer) => boolean,
less_than(tuple, tuple, integer) => boolean,
greater_than(tuple, tuple, integer) => boolean,
initialize_tuple(tuple) => tuple,
insert_fields(relation, relation) => relation,

insert_fields_b(relation,relation,index_array) => relation,
-- the b extension indicates Mmodified methods used in this
-- implementation.
insert_tuples(relation, relation,relation) => relation,

insert_tuples_b(relation,relation,relation) => relation;

185

tuple ::= emp_tuple |
proj_tuple |
cartl_result_tuple |
projectl_result_tuple |
result_tuple |
nil;
-- in this implementation, result_tuple is the only tuple
-- that needs to be defined for creating resultant relations
-- in both the project and Cartesian product operations. Thus,
~- cartl_result_tuple and projectl_result_tuple are not needed
-- in this implementation. However, they have been left in so
-- the reader could more easily compare this schema with that
-- of the standard R/OODBMS schema.

e R R 2 R E SRR RS R R R R AR R R R R R R R RAE SRR ERERE SRS ERE R R RS RARREEERRRERRERRR SRR R R R R R K]

for database.new_relation use browser_visible;

for relation.new_tuple use browser_visible;

for relation.union use browgser_visible;

for relation.Cartesian_product use browser_visible;
for relation.difference use browser_visible;

for relation.projection use browser_visible;

for relation.selection use browser_visible;

for database.relations use linked;
for relation.tuples use linked;

R R E R E R R R E R AR RS AR R R R R R RS RS R ERS R R R RRRERERR R R R RS RRRRERRERRRRERRas Rl RRRRRRRRE SR

for database.idl_key use bind(database_key):
for database.idl_print use bind(database_print);
for database.new_relation use bind(create_relation);

for relation.idl_key use bind(relation_key);

for relation.idl_print use bind(relation_print);

for relation.new_tuple use bind(create_tuple);

for relation.check_union_compatability use bind(ck_union_compatability);

for relation.union use bind(union_op);

for relation.Cartesian_product use bind(cart_prod_op);
for relation.difference use bind(set_diff_op);

for relation.projection use bind(project_op):;

for relation.selection use bind(select_op);

for name.idl_key use bind(name_key);
for name.idl_print use bind(name_print);

for tuple.equal_to use bind(equal_to);

for tuple.less_than use bind(less_than);

for tuple.greater_than use bind(greater_than);

for tuple.initialize_tuple use bind(initialize_tuple);
for tuple.insert_fields use bind(insert_fields):

for tuple.insert_tuples use bind(insert_tuples);

for tuple.insert_fields_b use bind(insert_fields_b);
for tuple.insert_tuples_b use bind(insert_tuples_b);

__**'k‘k*t*****t*******************t*****emp cuple***t**t*******ii**’*i*****i***f*

emp_tuple => person : person,
address : addr,

186

phone : phone_number,

widget : idl_univ;
person => fname : string,
mname : string,
lname : string,
bdate : string,
ssn : integer,
spouse : string,
sptr : person_nil;

person_nil ::= person | nil;

addr => street : string,
city : string,
state : string,
zip : string;
phone_number => numbper : string;

. 2222 AR AR R A S SRR R R R EREERERERREEERREE R R R RS R R R XEEE AR AR YR A RERRRRS RS R R RS RE XX ER LR

for emp_tuple.idl_key use bind(emp_tuple_key);

for emp_tuple.idl_print use bind(emp_tuple_print);

for emp_tuple.equal_to use bind(emp_equal_to);

for emp_tuple.less_than use bind(emp_less_than);

for emp_tuple.greater_than use bind(emp_greater_than);

for emp_tuple.initialize_tuple use bind(initialize_emp_tuple);

for emp_tuple.insert_fields_b use bind(insert_emp _fields_b);

for person.idl_key use bind(person_key);
for person.idl_print use bind(person_print);

for addr.idl_key use bind(addr_key);
for addr.idl_print use bind(addr_print);

for phone_number.idl_print use bind(phone_number_print);

__*************t************t*********proj tuple************************t******i

proj_tuple => essn : integer,
proj_num : integer,
hours : rational;

PR SEEEE R RS EEL R RS SRR R RS REERE SRR RREERERRES SRR RERERRRRR2RRRRERRRRERRE R R R

for proj_tuple.idl_key use bind(proj_tuple_key);

for proj_tuple.idl_print use bind(proj_tuple_print);

for proj_tuple.equal_to use bind(proj_equal_to);

for proj_tuple.less_than use bind(proj_less_than);

for proj_tuple.greater_than use bind(proj_greater_than);

for proj_tuple.initialize_tuple use bind(initialize_proj_tuple);

__**********t**t**'****************cartl result tuple****************t**********

cartl_result_tuple => person : person,
address : addr,
phone : phone_number,
widget : idl_univ,
essn : integer,
proj_num : integer,
hours : rational;

s A A AR SRS AR R LSS ES RS R R R SR R R R R R R R E R R R R R R R R R R R TR EEE YRR R R ERE R R R

for cartl_result_tuple.idl_key use bind(carti_result_tuple_key);

187

for cartl_result_tuple.idl_print use bind(cartl_result_tuple_print);

for cartl_result_tuple.initialize_tuple use
bind(initialize_cartl_resul_tuple!;

for cartl_result_tuple.insert_tuples use bind(insert_cartl_result_tuples);

S R L EZE2 RS RS REE SR AR RS ERRRRRRSREREERSRRlSREREE Rl Rl RRRERRRR AR R R RARREEEARRRERRRERSE S X R R

projectl_result_tuple => hours : rational,
essn : integer;

e L YRR EEERESEEE SRR R R R E AR R R AR R SR RERARERER SRR R AR R RREREERRRRRRRRRS R EEEEERSEE)

for projectl_result_tuple.idl_key use bind(projectil_result_tuple_key);

for projectl_result_tuple.idl_print use bind(projectl_result_tuple_print};

for projectl_result_tuple.initialize_tuple use
bind(initialize_projectl_resul_tuple);

for projectl_result_tuple.insert_fields use bind(insert_projecti_result_£fids);

e S S A2 RS AR SRR SR ER R R LRSS RERRREEREEEERERREEEREERRER SR ERRERERRRRRRERRRSR R R RERESSSEET

result_tuple => values : seq of any;

e A A EE R SRS R LS EEEE R ERERRRREEEREREEREERRERRRERRRRRRERRSES SRR RERRREREEEERESEERSES]

for resuit_tuple.values use linked;

__******i’***********************l’t!****Misc************i**t**tttt*****t*'k*#*'!!i’

-- index_array is used Ly the project operation to hold a list of indexes
-~ to the attributes of a relation that are to be projected. It cannot be
-- reached from the database root and therefore can never be stored in the
-- database by accident. It is purely set up as a data structure to allow
-- the indexes to be passed as a parameter in the modified functicn
-- prcject_op. .
index_array => indexes : seq of index;

index => i : integer;

for index_array.indexes use linked;

R e R R R L R R R R R RS S X R R R R R S R R R RS RS R R R AR AR R RS RS RS R RS ARERR R R R R RESE]

end

S R S EEE R RS S R R R R R E SRR R R RS R R R R R R R R AR RERR RS RS R R R R R RRS SRR R R R R AR RS EERERE]

process relationalp is
relational ::= relationala:access;

end

188

APPENDIX F: MODIFIED PROJECT

IR EESREEEEEEERERERER SR AR R R E R R R R R RS R R R R AR SRR R Rl EREREE R RRRERRRRERRERRE RS R R R R R R IR ER

Project_parse_action

IR EEERER R EEERREERRS SRR ER R R RS R ERES RS RS R R RS RREERERRS AR R ERERREEEEREEESEERE RRE N R TR SR TR

static void Project_parse_action(query)
char* query;
{
char *R1_ptr, *char_ptr, *R2_ptr;
integer size, i;
boolean done = false,delimeterl = false;

char_ptr = query;

/* allocate room for parse of the project op parameters
Rl will hold the relation being operated on,
Attr_list the list of attr to be projected, and
R2 the resultant relation */

size = strlen(query);
R1 = (char*)calloc((size+l),sizeof(char)); /* Rl is global */
Attr_list = (char*)calloc((size+1l),sizeof(char));

/* set pointers to move along Rl and R2 as characters are copied in one
at a time. */
R1l_ptr = R1l;

/* do the parse */
char_ptr = query;

/* note: if size gets decremented all the way to zero, then there is a
problem with the guery because the delimeter ' = ‘' or ‘' project
could not be found */

while (!done && size > 0)

{

if (*char_ptr != ’ ’) /* if not a space copy the char into R1 */
{
*Rl_ptr=*char_ptr;/*parameter relation*/
++char_ptr;
++R1_ptr;
--gize;

}
else /* we may have hit a delimeter */
{
/* check to see if next char is a * p * - which is
part of the delimeter * project *between the last
two parameters */

if (strncmp(char_ptr,” project #,9) == 0)
/* then it is project */
{
for (i = 0; i < 9;++1) /* jump past the delimeter */
{
++char_ptr;
--gize;
}
strcpy (Attr_list,char_ptr);
/* copy list of attributes into Attr_list and now parse the
list of attributes =*/
done=true;

189

}
else /* the space is part of the first parameter, so put in Rl */
{
/* space is part of first relation name so keep it */
*Rl_ptr=*char_ptr;

++char_ptr;
++R1_ptr;
--31ze;
}
}
}
1f (size !'= 0) /* size only = 0 if union was not found in the query */
NULL;
else

idl_raise(IDL_ERROR, "There is an error in your query! Try Again.”);

190

AR R R R A EEEE R E RS R SRR E R R RER S SRR R E SR EREAERARRRRREARERARER R EEEERERE R NS AR LR]

report_project_error

tEE S E R R R EAREEEEREES SRR SR AR SRRl SRR ERER RS SRS REERERlR R Rl EEER SRR AR ERERERENEEEEE TR

void report_project_error(foundl, found2,attr_found)
boolean foundi, found2, attr_found;
{
if (!foundl && !found2)
{
+dl_raise(IDL_ERROR,
“Neither of the two relations are in this database!”);
}
else
{
if (laztr_found)
{
idl_raise(IDL_ERROR,
“All of the attributes in the attribute list \nare not in R1t”7);
}
if (tfoundl)
{
idl_raise¢{IDL_ERROR,
“R1 i not in this database!”):

}
if (!found2)
{
idl_raise (IDL_ERROR,
“R2 is not in this database!*);

it (foundl && found2)
{
idl_raise (IDL_ERROR,
“A SERIOUS ERROR HAS OCCURED t!'tittt Regroup. Try Again.”);

191

'*t‘l*l‘tf*t'*ttii*t*t*it*******kt*****t**‘k**t*l**t***i***it** I EEERESSEEEEREREREREXRES

project_op

LRSS ERE AR R LR AR ERRS R R N R T I T T T

idl_routine void project_op{relation)
relational_relation relation;
{
relational_relation ptr_R1,ptr_Attr_list,ptr_result_rel,temp_relation;
relatjional_database database;
relational_index_array array_index; /*beta project*/
relational_index attr_index; /*beta project*/
idl_trans_mode tmode;
idl_univ root;
string parameterl,attr_string; /* references to the parameter
Rl,and attr list
relations respectively =*/
idl_transaction tr;
koolean foundl, found2,done, attr_found;
boolean is_writable = false,duplicate = true;
char *attr_ptr, *delimeter = *,*; /* delimeter between elements
in attribute list */

3tring *attr_list{100};

integer i=1,count,size, index, index_array(100],1ii=0;

/* index array of size 100 allows a relation to have 100 attributes */
idl_linked_elem(relational_tuple) result_rtuple;

tr = idl_get_trans(relation);

tmode = idl_trans_mode_default;

root = idl_trans_get_root(tr);

database = idl_to(relational_database, root);

foundl = false; .

found2 = true;/* not needed for beta version, thus changed to true*/
done = false;

is_writable = (idl_trans_write_count(tr) > 0);

array_index = idl_new(tr,relaticnal_index_array);/*creates the index array
to be used in the beta
version of this op*/

array_index->indexes = idl_empty_linked(tr,relational_index);

brw_input (*Project Query”,
“please input the Project query (Rl project Attr_list): ¢,
0L,0L,0L, false,
Project_parse_action);

/* copy the C strings R1, R2 and Attr_list into IDL strings */
parameterl = idl_copy_string(tr,Rl); /*relation being operated on*/
attr_string = idl_copy_string(tr,Attr_list);

/* parse tokens in attribute string */
1f ((attr_ptr = strtok(attr_string,delimeter)) == NULL)
{
/* error, no token */

idl_raise(IDL_ERROR,
“You did not list any attribute/field names in\nyour project query!
Try again, meathead!”);
}
else
({
attr_list (0]
attr_list {0}

idl_new_string(tr,80);
idl_copy_string(tr,attr_ptr);

}

192

while ((attr_ptr strtok (NULL,delimeter)) '= NULL)

{
attr_list([i}
attr_list([i]
i++;

}

idl_new_string(tr,80);
idl_copy_string(tr,attr_ptr);

/* search the database for the relation R1 */
idl_linked_for (relational_relation,database->relations,rel)
{
if (strcmp (rel->relation_name,parameterl) == 0)
/* found relation 1 */
{
ptr_R1 = rel; /* point at relation 1 */
foundl = true;
}
} idl_end_for

count = i; /* count is the number of tokens - 1 */

/* check each attr name in the attr list of the project operation to
ensure that the field exists in the relation R1 */

for(i=0;i<count;++i)
{
attr_found = false;
ii=0;

idl_array_for(relational_namé,ptr_R1—>attribute_names,aname)
{
ii++; /* position in attribute list */
if (strcmp (aname->name,attr_list([i]) == 0) /* attr name in attr
list is a field
of R1 */

attr_found = true;
attr_index = idl_new(tr,relational_index);
attr_index->i = 1i;
idl_insert_back(relational_index,
array_index->indexes, attr_index);
break;
}
} idl_end_for

if (tattr_found)

break; /* an attr in the project attr list is not
in the relation R1. Thus, the operation
cannot be performed */

if (foundl && attr_found)
{
/* everything is ok, perform projection operation on relation R1.
Note, in this implementation, the resultant relation doesn’t
already exists in the database. */

ptr_result_rel = init_proj_result_rel (ptr_R1,array_index);

ptr_result_rel=idl_vop(ptr_Rl->tuple_type,relational_tuple, insert_fields_b,
(ptr_R1l,ptr_result_rel,array_index));

idl_insert_back(relational_relation,database->relations,ptr_result_rel);

else
{

193

report_project_error (foundl, found2, attr_found):
}

194

IR E R R R A AR EEEREREAREERRERE RS R AR RS R R R R R R REREEERES Rl Rl il R R R R RS SRR SRR R R R RSN

insert_fields_b

IEEEEREREREEEZEEERE RN EEEESS SRR R R AR RS ARE R EERRR R Rl SRl s R XX R G AR RS RSRREEE SN

idl_routine relational_relation insert_fields_b(rel,result_rel, index_array)
relational_relatijon rel, result_rel;
relational_index_array index_array;
{
return result_rel;

195

AR S SRR RS RS R R SRR R R ERSREERRREERRSERRERERERERREERREE R R g R L A A R R R]

insert_emp_fields b

I E R E SRR EEEEA RS SRR R R R R R R R R R R R R E R EE SR SRR RS B EE R R R R R R R R L R 2 R R R 2R T

idl_routine relational_relatiocn insert_emp_fields_b(rel,result_rel, index_array)
relational_relation rel, result_rel;
relational_index_array index_array;

idl_transaction tr = idl_get_trans(rel);
relational_result_tuple new_tuple;

result_rel->tuples = idl_empty_linked(tr, relational_tuple);

idl_linked_for (relational_tuple,rel->tuples,rel_tuple)

{
/* iterate through each tuple and for each tuple iterate through

the index_array and use a case statement to reference objects for
fields to be entered into the result relation */

new_tuple = idl_new(tr,relational_result_tuple);
new_tuple->values = idl_empty_linked(tr,relational_any);

idl_linked_for (relational_index, index_array->indexes, index)
{
switch (index->i)

{

case 1:

idl_insert_back(relational_any,new_tuple->values, rel_tuple->person);
break;

case 2:

idl_insert_back (relational_any,new_tuple->values, rel_tuple->address);
break;

case 3:
idl_insert_back({relational_any,new_tuple->values, rel_tuple->phone);
break;

case 4:
/* widget */
break;

default:
idl_raise(IDL_ERROR,

“There is a problem in the employee insert field beta
function!”);

break;

}

} idl_end_for

idl_insert_back(relational_tuple, result_rel->tuples,new_tuple);
} idl_end_for

return result_rel;
}

196

IR R R R R R PR E R R R R R R R R R R R R R AR R R SR R R R RS RS R SRR R RS R ERE R R R R R R EREEREE R R SRR R R EEE R

init_proj_resuit_rel

I EEEZEEEERXIEE RS EEEEEEEEA S AL RARER R RRR R A LRl Rl ERERERRERXXRRRRREXRR R RS S R R R XERRR?

relatiocnal_relation init_proj_result_rel(ptr_R1,index_array)
relational_relation ptr_R1;
relational_index_array index_array:

relational_relation result_relation;
static integer result_rel_num = 0;
idl_transaction tr;

string empty,result_rel_name;

char result_name(80];

integer degree = 0,1;

tr = idl_get_trans(ptr_R1);

i=0;
idl_linked_for (relational_index, indexXx_array->indexes, index)
{
I++;

}idl_end_for
degree = i;

result_relation = idl_new(tr,relational_relation); /* must still assign
legal values */

/* set up a unique name for resultant relation */

sprintf (result_name, “$1dRESULT_%c%c”,
++result_rel_num,
ptr_Rl->relation_name(0],
ptr_Rl->relation_name{l]);

result_rel_name = idl_copy_string(tr,result_name);

result_relation->relation_name = result_rel_pame;

result_relation-»attribute_names = idl_new_array(tr,relational_name,degree);

result_relation-»attribute_types = idl_new_array(tr,relational_name,degree);

/* assign default values for attribute names to be the same as those in
R1 relation */

i=0;

idl_linked_for (relational_index, index_array->indexes, index)
{

result_relation->attribute_names(i}=ptr_Rl->attribute_names|[(index->i)-1]
result_relation->attribute_types(i]=ptr_Rl->attribute_types|[(index->i)-1]

i++;
}idl_end_for
result_relation->tuples = idl_empty_linked(tr,relational_tuple);
/* assign a default tuple type that is the same as the first relations */
result_relation->tuple_type = idl_to{relational_tuple,
idl_new(tr,relational_result_tuple));

/* default key is the key of relation R1 */
result_relation->key = ptr_Rl->key;

return result_relation;

197

APPENDIX G: MODIFIED CARTESIAN PRODUCT

LEZ SRR SRR EERREREREERESE RS AR RS RLRRRRRERERERERREREERERE R E R R R E R R E R R R L R R R R R

Cartesian_parse_action

IR R AR ESS LSS REARESERERRRR R RRERlRSRRRERElRE SRS R R EEETEEREERERE R RB SR F ZIIPIIP I

static void Cartesian_parse_acticn{query!
char* query;
{
char *R1_ptr, *char_ptr;
integer size,i;
boolean done = false,delimeterl = false;

char_ptr = query;

/* allocate room for parse of the Cartesian product op parameters
R1 will hold the first parameter and R2 the second */

size = strlen(query);
Rl = (char*)calloc((size+l),sizeof(char));
R2 = (char*)calloc({(size+l),sizect(char));

/* set pointer to move along Rl as characters are copied in one
at a time. */
Rl_ptr = R1;

/* do the parse */
char_ptr = query;

/* note: if size gets decremented all the way to zero, then there is a
problem with the query because the delimeter ‘ X ’ could not be
found */

while (!done && size > 0)

{

if (*char_ptr !'= * *) /* if not a space copy the char into R3 */
{
*R1_ptr=*char_ptr;
++char_ptr;
++R1_ptr;
--size;

}
else /* we may have hit the a delimeter */
{
/* check to see if next char is a * X # - which separates the
two operands of the operation */

if (strncmp(char_ptr,” X *,3) == 0) /* then it is X sentinal */

for (i = 0; i < 3;++1) /* jump past the delimeter */
{
++char_ptr;
--size;
}
strcpy (R2,char_ptr); /* copy second parameter into R2 */
done=true;

}
else /* the space is part of the first parameter, so put in Rl */
(
/* space is part of first relation name so keep it */
*Rl_ptr=*char_ptr;
++char_ptr;

198

++R1_ptr;
~--gize;
}

199

R A R R R R R R R R 2 E R 222X R EEZ R AR R R A EER AR R AR R R RS R SRR AR R RERERRRRERE SRR ERSEEEXEEEESN]

report_Cart_product_error

I R R R R R R E2 22 R S R X Z XSS EXZE R 22 RS R R AR AR SR ER AR R RS At s R R A s R R REREERERERE R EER]

void report_Cart_product_error{foundl, found2, found3)
boolean foundil, found2, found3;
(
if (!foundl && !found2)
{
idl_raise (IDL_ERROR,
“Neither of the twc relations are in this database!”);

else

~_~)~

if (!foundl)
{
idl_raise(IDL_ERROR,
R1l is not in this database!”);
}
if (!found2)
{
idl_raise {IDL_ERROR,
“R2 is not in this database!”);
}
if (tfound3l3)
{
idl_raise(IDL_ERROR,
YR3 is not in this database!*};

}
if {(foundl && found2 && found2)
{
idl_raise (IDL_ERROR, -
#“A SERIOUS ERROR HAS OCCURED !!!!!! Regroup. Try Again.”);

200

IR R E R EEE R EEREE R R ERE RS R REE RS RS R RERER R RS R REARRlRER R RS RaEs REERREEERR R RERERRREER S

cart_prod_op

IEE RS RS R EREEEEEERESEEREESES SRR EERSRERRRRERRREE LR RS RRRERS R R RRE Rl Elsll Rl st SR

idl_routine void cart_prod_op{relation)
relational_relation relation;
{
relational_relation ptr_R1l,ptr_R2,resutl_rel,temp_relation;
relational_database database;
idl_trans_mode tmode;
idl_univ root;
string parameterl,parameter2,result_rel; /* references 7o the parameters
R1, R2 and R3 respectively */
idl_transaction tr;
boolean foundl, found2, found3;

boolean is_writable = false,duplicate = true;

tr = idl_get_trans(relation);

tmode = idl_trans_mode_default;

root = idl_trans_get_root(tr);

database = idl_to(relaticnal_database,root);

foundl = false;

tound2 = false;

found3 = true; /* beta version doesn’t use a predefined result rel */

is_writable = (idl_trans_write_count(tr) > 0);
brw_input (“Cartesion Product Query”,
“Please input the Cartesian product query
0L, O0L,0L, false,
Cartesian_parse_action);

(R1 X R2): 7,

/* copy the C strings Rl and R2 into IDL strings */
parameterl = idl_copy_string(tr,R1l);
parameter2 = idl_copy_string(tr,R2);

/* don’'t do anything if the resultant relation is one of the two operands.
However, the resultant relation can be one that exists in the data.

In this case, the specified resultant relation will be over written. */

/* search the database for the two relations: R1, and R2 */
idl_linked_for (relational_relation,database->relations,rel)
{
if (strcmp (rel->relation_name,parameterl) == 0)
/* found relation 1 */
{
ptr_R1 = rel; /* point at relation 1 */
foundl = true;
}
if (strcmp (rel->relation_name,parameter2) == 0)
/* found relation 2 */
{
ptr_R2 = rel;
found2 = true;

}
} idl_end_for

if (foundl && found2)

/* perform concatenation of tuples for Cartesian product.
Note, in this implementation, the resultant relation does not
already exists in the database. */

result_rel = init_Cart_result_rel (ptr_R1l,ptr_R2);

201

result_rel=idl_vop(result_rel->tuple_type,relational_tuple, insert_tupies_b,

(ptr_R1,ptr_R2,result_relj);

idl_insert_back(relational_relation,database->relaticns, result_rel};

else

{
report_Cart_product_error (foundl, found2, found3) ;

}

202

IR R EZEEEEREEEEEEAEEEASERERER R R EESER R R R ERS Rl lRREEElRERlERXENYRERRRREERRRRRE RSN

init_Cart_result_rel

IEE R E N RS R E R R R R R R ER LR R R R R R R RS RS E SRl R R R RS R R SRl R R R R R R ERRR R R EEES R RS

relational_relation init_Cart_result_rel(ptr_R1l,ptr_R2)
relational_relation ptr_R1l,ptr_R2;
(
relational_relation result_relation;
static integer result_rel_num = 0;
idl_transaction tr;
string result_rel_name;
char result_name(80]);
integer degreel = 0,degree2 = 0,result_degree,i;

tr = idl_get_trans(ptr_R1l};
degreel idl_array_size!ptr_Rl-rattribute_names);

degree2 = idl_array_size(ptr_RZ2->at:iribute_names);
result_degree = degrzel + degreel;

result_relation = idl_new(tr,relational_relation); /* must still assign
legal values */

/* set up a unique name for resultant relation */

sprintf (result_name, ”"%1dRESULT_%c%c.%c%c”,
++result_rel_num,
ptr_Rl->relation_name(0],
ptr_Rl->relation_name(1l}.
ptr_R2->relation_name{0],
ptr_R2->relation_name(l}};

result_rel_name = idl_copy_string(tr, result_name);

result_relation->relation_name = result_rel_name;

result_relation-»attribute_names = idl_new_array(tr,relational_name,
result_degree);

result_relation->attribute_types = idl_new_array(tr,relacional_name,
result_degree);

/* assign default values for attribute names to be the same as those in
R1 and R2 */

for (i=0; i<degreel; ++1)
{
result_relation->attribute_names(i]
result_relation->attribute_types(i]

ptr_Rl->attribute_names{i]:
ptr_Rl->attribute_types(i];

won

for (i=0; i<degree2; ++i)

result_relation->attribute_names{degreel+i]
result_relation->attribute_types{degreel+i]
}

ptr_R2->attribute_names[i];
ptr_R2->attribute_typesi{i];

result_relation->tuples = idl_empty_linked(tr,relational_tuple);

/* assign a default tuple type result tuple */

result_relation->tuple_type = idl_to(relational_tuple,
idl_new(tr,relational_result_tuple));

/* default key is the key of relation R1 */
result_relation->key = ptr_Rl-»key;

return result_relation;

203

I E R RAREFREEEEESES SR RAE SR RERRRRRRRERER SRR RERREERRRREREREERE R RIIIIEEREEREEEEEEEE X E R IR

insert_tuples_b

I EEERREREREEESEEEEEEEEREERERERERERESER R EERR AR SRR R ERERR RS R RS RREEIEREEERERRESRERZESRESJE BRI I

static relational_relation insert_tuples_b(rl,r2,result_rel)
relational_relaticn rl,r2,result_rel;
{

relaticnal_result_tuple new_tuple;
relational_tuple rell,rel2;
idl_transaction tr = idl_get_trans(rl);

/* -t rid of any tuples that may be in the resultant relation structure
pricr to insert the new result */

result_rel->tuples = idl_empty_linked(tr,relational_tuple;;
idl_linked_for (relational_tuple,rl-~tuples,ri_tuple)
idl_linked_for (relational_tuple,rl-»tuples,r2_tuple)
(/* send message to get a new tuple created with valid default
values. */

new_tuple = idl_new(tr,relational_result_tuple);
new_tuple->values = idl_empty_linked(tr,relational_any);

idl_insert_back(relational_any, new_tuple->values,rl_tuple);
idi_insert_back(relationali_any,new_tuple->values, r2_tuple);

idl_insert_back(relational_tuple,result_rel->tuples,new_tuple);

} idl_end_for
} idl_end_for

return result_rel;
}

204

[AHSO1]

[BK90]

[BM91]

[BMO89]

[BOS91]

[CI91]

[CY90]

[Co70]

[CD90]

[Da84]

[Da9%0]

LIST OF REFERENCES

Andrews, T., Harris, C., and Sinkel, K., “ONTOS: A Persistent Database
for C++,” in Gupta, R. and Horowitz, E. (Eds.), Object-Oriented
Databases with Applications to CASE, Networks, and VLSI CAD, Prentice
Hall, Inc., Englewood Cliffs, NJ, pp. 387-406, 1991.

Berri, C. and Kornatzky, Y., “Algebraic Optimization of Object-Oriented
Query Languages,” Lecture Notes in Computer Science, v. 470, S.
Abiteboul and P. C. Kanellakis (Eds.), International Conference on
Database3 Theory (ICDT) 90, Proceedings, pp. 72-88, Dec 1990.

Bertino, E. and Martino, L., “Object-Oriented Database Management
Systems: Concepts and Issues,” Computer, v. 24, no. 4, pp. 33-47, Apr
1991.

Bretl, R., Maier, D., Otis, A., Penney, J., Schuchardt, B., Stein, J.,
Williams, E. H., Williams, M., “The GemStone Data Management
System,” in Kim, W. and Lochavsky, F. H. (Eds.), Object-Oriented
Concepts; Databases, and Applications, Addison-Wesley Publishing
Company, Inc., Reading, MA, vp. 283-308, 1989.

Butterworth, P, Otis, A. and Stein, J., “The Gemstone Object Database
Management System,” Communications of the ACM, v. 34, no. 10, pp. 64-
77, Oct 1991.

Clark, G. J., DFQL: A Graphical Dataflow Query Language, Master’s
Thesis, Naval Postgraduate School, Monterey, CA, Sep 1991.

Coad, P. and Yourdon, E., Object-Oriented Analysis, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1990.

Codd, E. F, “A Relational Model for Large Shared Data Banks,”
Communications of the ACM, v. 13, no.6, pp. 377-387. Jun 1970.

Interview between E. F. Codd and DBMS, “Relational philosopher: the
creator of the relational model talks about his never-ending crusade,”
DBMS, v. 3, no. 13, pp. 34-42, Dec 1990.

Date, C. J., A Guide to DB2, Addison-Wesley Publishing Company, Inc.,
Reading, MA, 1984. '

Date, C. J., An Introduction to Database Systems, Fifth Edition, Volume 1,
Addison-Wesley Publishing Company, Readin, MA, 1990.

206

[Ed91]

[EN89]

[Fi92]

[GH91a]

[GH91b]

[HO87]

[HWOI1]

[Hs91]

[In89]
[KR78]

[Kh91]

[Ki91]

Edelstein, H., “Relational vs. Object-Oriented,” DBMS, v. 4, no. 12. pp.
68-74, Nov 1991.

Elmasri, R. and Navathe, S. B., Fundamentals of Database Systems, The
Benjamin/Cummings Publishing Company, Inc., Redwood City, CA, 1989.

Filippi, S. C., Implementing Relational Operations in an Object-Oriented
Database, Master’s Thesis, Naval Postgraduate School, Monterey, CA,
Mar 1992.

Gupta, R. and Horowitz, E. (Eds.), Object-Oriented Databases with
Applications to CASE, Networks, and VLSI CAD, Prentice Hall, Inc.,
Englewood Cliffs, NJ, 1991.

Gupta, R. and Horowitz, E., “A Guide to the OODB Landscape”, in Gupta,
R. and Horowitz, E. (Eds.), Object-Oriented Databases with Applications
to CASE, Networks, and VLSI CAD, Prentice Hall, Inc., Englewood Cliffs,
NJ, pp. 1-11, 1991.

Halbert, D. C. and O’Brien, P. D., “Using Types and Inheritance in Object-
Oriented Programming,” /EEE Software, v. 4, no. 5, pp. 71-79, Sep 1987.

Horowitz, E. and Wan, Q., “An Overview of Existing Object-Oriented
Database Systems,” in Gupta, R. and Horowitz, E. (Eds.), Object-Oriented
Databases with Applications to CASE, Networks, and VLSI CAD, Prentice
Hall, Inc., Englewood Cliffs, NJ, pp. 101-116, 1991.

Hsiao, D. K., “The Object-Oriented Database Management - A Tutorial on
its Fundamentals”, Naval Postgraduate School, Monterey, CA, Aug 1991
(draft).

“Instances,” Release 1.0, v. 89, no. 9, pp. 14-25, Sep 1989.

Kernighan, B. W. and Ritchie, D. M., The C Programming Language,
Prentice-Hall, Inc., Engelwood Cliffs, NJ, 1978.

Khoshafian, S., “Modeling with object-oriented databases”, Al Expert, v. 6,
no. 10, pp. 26-34, Oct 1991.

Kim, H., “Algorithmic and Computational Aspects of OODB Schema
Design,” in Gupta, R. and Horowitz, E. (Eds.), Object-Oriented Databases
with Applications to CASE, Networks, and VLSI CAD, Prentice Hall, Inc.,
Englewood Cliffs, NJ, pp. 26-61, 1991.

207

[Ki90]

[KL89]

‘ [Kin89]

[KS86]

[Mi88]

[Mc91]

[Me90]

% [Mo89]
[NMO90]

[Ne90a])

[Ne88]

Kim, W., “Research Directions in Object-Oriented Database Systems,” in
Proc. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, Nashville, Tennessee, pp. 1-15, Apr 1990.

Kim, W. and Lochavsky, E H. (Eds.), Object-Oriented Concepts,
Databases, and Applications, Addison-Wesley Publishing Company, Inc.,
Reading, MA, 1989.

King, R., “My Cat is Object-Oriented”, in Kim, W. and Lochavsky, F. H.
(Eds.), Object-Oriented Concepts, Databases, and Applications, Addison-
Wesley Publishing Company, Inc., Reading, MA, pp. 23-30, 1989.

Korth, H. F. and Silberschatz, A., Database System Concepts, McGraw-
Hill, Inc., New York, NY, 1986.

Micallef, J., “Encapsulation, Reusability and Extensibility in Object-
Oriented Programming Languages,” JOOP, v. 1, no. 1, pp. 12-34, Apr/May
1988.

McLeod, D., “A Perspective on Object-Oriented and Semantic Database
Models and Systems,” in Gupta, R. and Horowitz, E. (Eds.), Object-
Oriented Databases with Applications to CASE, Networks, and VLSI CAD,
Prentice Hall, Inc., Englewood Cliffs, NJ, pp. 12-25, 1991.

Meyer, P, “Are Object-Oriented Data Bases Ready For Business?,”
Mainframe Update Magazine, pp. 14-19, Autumn 1990.

Moon, D. A, “The COMMON LISP Object-Oriented Programming
Language Standard”, in Kim, W. and Lochavsky, F. H. (Eds.), Object-
Oriented Concepts, Databases, and Applications, Addison-Wesley
Publishing Company, Inc., Reading, MA, pp. 49-77, 1989.

Nelson, M. L., Moshell, J. M., and Orooji, A., “A Relational Object-
Oriented Management System,” "[EEE 1990 International Pheonix

Conference on Computers and Communications (IPPCCC’ 90), Scottsdale,
AZ, pp. 319-323, Mar 1990.

Nelson, M. L., Object-Oriented Database Management Systems, Naval
Postgraduate School, Monterey, CA, Report No NPS§52-90-025, May 1990.

Nelson, M. L., A Relational Object-Oriented Management System and an

Encapsulated Object-Oriented Programming System. Doctoral
Dissertation, University of Central Florida, Orlando, FL, Dec 1988.

208

o

[Ne90b]

[Ne9l]

[NMSW83]

[New86]

[Nig9]

[OV91]

[PN91b]

[Pe91a]

[Pe91b}

[Pe91c]

[Pe91d]

[RK]

[ScI1]

Nelson, M. L., An Introduction Td Object-Oriented Programming, Naval
Postgraduate School, Monterey, CA, Report No NPS52-90-024, Apr 1990.

Nelson, M. L., “An Object-Oriented Tower of Babel”, OOPS Messenger, v.
2, no. 3, pp. 3-11, Jul 1991.

Nestor, J. R., Mishra, B., Scherlis, W. L. and Wulf, W. A., Extensions to
Attribute Grammars, Tartan Laboratories Incorporated, Pittsburgh, PA,
Technical Report TL 83-36, Apr 1983.

Newcomer, J. M., “IDL: Past Experience and New Ideas”, Lecture Notes in
Computer Science, Vol. 244, Conradi, R., Didriksen, T. M., and Wanvik, D.
H. (Eds.), Advanced Programming Environments, Proceedings of an
International Workshop, Trondheim, Norway, pp. 257-289, Jun 1986.

Nierstrasz, O., “A Survey of Object-Oriented Concepts”, in Kim, W. and
Lochavsky, F. H. (Eds.), Object-Oriented Concepts, Databases, and
Applications, Addison-Wesley Publishing Company, Inc., Reading, MA,
pp. 3-21, 1989.

Ozsu, M. T. and Valduriez, P., Principles of Distributed Database Systems,
Prentice Hall, Englewood Cliffs, NJ, 1991.

de Paula, E. G. and Nelson, M. L., An Object-Oriented Design
Methodology, Naval Postgraduate School, Monterey, CA, Report No
NPSCS-91-007, Jan 1991.

Persistent Data Systems, Inc., IDB C Programmer’s Manual, IDB Version
1.0, Jan 1991.

Persistent Data Systems, Inc., IDB Release Notes, IDB Version 1.1, Nov
1991.

Persistent Data Systems, Inc., IDB Tutorial, IDB Version 1.1, Oct 1991.

Persistent Data Systems, Inc., IDB User’s Manual, IDB Version 1.0, Jan
1991.

Rhein, J. and Kemnitz, G. (Eds.) , The POSTGRES User Manual, EECS
Department, University of California, Berkeley.

Schwartz, K. D., “Geode tools build object-oriented systems,” Government
Computer News, v. 10, no. 23, p. 49, 11 Nov 1991.

209

[SSU91]

[SB86]

[SK91]

[St88]

[St91a]

[St91b]

[St9ic]

[US90]

[We87]

Silberschatz, A., Stonebraker, M. and Ullman, J., “Database Systems:
Achievements and Opportunities,” Communications of the ACM, v. 34, no.
10, pp. 110-120, Oct 1991.

Stefik, M. and Bobrow, D. G., “Object-Oriented Programming: Themes
and Variations,” The Al Magazine, v. 6, no. 4, pp. 40-62, Winter 1986.

Stonebraker, M. and Kemnitz, G., “The POSTGRES Next Generation
Database Management System,” Communications of the ACM, v. 34, no.
10, pp. 78-92, Oct 1991.

Stonebraker, M., “Future Trends in Data Base Systems,” 1988 IEEE Data
Engineering Conference, Proceedings, Los Angeles, CA, pp. 1-21, Feb
1988.

Strehlo, K., “OODBMS pays off. (interview with Mike DeSanti),” DBMS,
v. 4, pp. 48-54, Nov 1991.

Strehlo, K., “The world according to Stonebraker: from Ingres to Postgres
and the next generation of database management systems. (interview with
Ingres developer and Ingres Corp. cofounder Michael Stonebraker),”
DBMS, v. 4, no. 10, pp. 42-46, Sep 1991.

Strehlo, K., “The OODBMS cutting edge,” DBMS, v. 4, pp. 8-11, Nov
1991.

Unland, R. and Schlageter, G., “Object-Oriented Database Systems:
Concepts and Perspectives,” Lecture Notes in Computer Science, v. 466,
A. Blaser (Ed.), Database Systems of the 90s, Proceedings, pp. 154-191,
Nov 1990.

Wegner, P., “Dimensions of Object-Based Language Design”, Object-
Oriented Programming Systems, Languages and Applications
(OOPSLA’87) Conference Proceedings, Oct 1987, Orlando, FL; special
issue of SIGPLAN Notices, v. 22, no. 12, pp. 168-182, Dec 1987.

210

[Cop92]

[Gh90]

[LKM90]

[NWLS81]

[Nes86]

[PN91a]

[SS90]

[ZM90]

BIBLIOGRAPHY

Coplien, J. O., Advanced C++ Programming Styles and Idioms, Addison-
Wesley Publishing Company, Readin, MA, 1992.

Ghelli, G., “A class abstraction for a hierarchical type system,” Lecture
Notes in Computer Science, Vol. 470, S. Abiteboul and P. C. Kanellakis
(Eds.), International Conference on Database3 Theory (ICDT) '90,
Proceedings, pp. 56-71, Dec 1990.

Lockemann, P. C., Kemper, A., and Moerkotte, G., “Future Database
Technology: Driving Forces and Directions,” Lecture Notes in Computer
Science, v. 466, A. Blaser (Ed.), Database Systems of the 90s,
Proceedings, pp. 15-33, Nov 1990.

Nestor, J. R., Wulf, W. A,, and Lamb, D. A., IDL - Interface Description
Language - Formal Description, Department of Computer Science,
Camegie-Mellon University, Technical Report, Aug 1981.

Nestor, J. R., “Toward a Persistent Object Base”, Lecture Notes in
Computer Science, Vol. 244, Conradi, R., Didriksen, T. M., and Wanvik, D.
H. (Eds.), Advanced Programming Environments, Proceedings of an
International Workshop, Trondheim, Norway, pp. 372-394, Jun 1986.

de Paula, E. G. and Nelson, M. L., “Designing a Class Hierarchy,”
Technology of Object-Oriented Languages and Systems 5 (TOOLS 5),
Santa Barbara, CA, pp. 203-218, Jul 1991.

Scholl, M. H. and Schek, H., “A Relational Object Model”, Lecture Notes
in Computer Science, Vol. 470, S. Abiteboul and P. C. Kanellakis (Eds.),
International Conference on Database3 Theory (ICDT) 90, Proceedings,
pp- 89-105, Dec 1990.

Zdonik, S. B. and Maier, D. (Eds), Readings in Object-Oriented Database
Systems, Morgan Kaufamann Publishers, Inc., San Mateo, CA, 1990.

210

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
. Naval Postgraduate School
Monterey, CA 93943-5002

3. Chairman, Computer Science Dept. 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5002

4, MAJ M. L. Nelson, USAF, Code CS/Ne 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5002

5. C. Thomas Wu, Code CS/Wq . 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5002

6. Dr. A. Orooji 1
Computer Science Department
University of Central Florida
Orlando, FL 32816

7. CPT Ronald L. Spear, USA 4
161 Oakdale Drive
Zelienople, PA 16063

- 8. John Nestor and Ellen Borison 1
Persistent Data Systems, Inc.

. 75 West Chapel Ridge Road
Pittsburgh, PA 15238

9, LTC Robert Butler, USA 1

246 South Oakwood Drive
Novato, CA 94949

212

10. CPT (P) Matthew James Rothlisberger 1
P.O. Box 3362
Fort Leavenworth, KS 66027

213

