
0
NAVAL POSTGRADUATE SCHOOL

Monterey, California

AD-A257 339 DsoSADT.Ic
ELECTE

l o STTNOV 2 3 1992

NO D
£C

THESIS

A Relational/Object-Oriented Database Management System:
R/OODBMS

by

Ronald L. Spear

September 1992

Thesis Advisor: Dr. Michael L. Nelson

Approved for public release; distribution is unlimited.

92-29902
- 111 111111 11 ll ! 111 l i Illill

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
la. REPORT SECURITY CLASSIFICATION lb. RESTRICTIVE MARKINGSUNCLASSIFIED

2a SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

2b. DECLASSIFICATION/DOWNGRADING SCHEDULE Approved for public release;
distribution is unlimited

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Computer Science Dept. (if applicable)

Naval Postgraduate School 37 Naval Postgraduate School

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (if applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS
PROGRAM PROJECT TASK WORK UNIT
ELEMENT NO. NO. NO. ACCESSION NO.

11. TITLE (Include Security Classification)

A Relational/Object-Oriented Database Management System: R/OODBMS (U)

12. PERSONAL AUTHOR(S)

Spear, Ronald L.
13a. TYPE OF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT

Master's Thesis FROM 8/90 TO 9/92 1992 September 24 226
16. SUPPLEMENTARY NOTATION The views expressed in this thesis are those of the author and do not reflect the official

policy or position of the Department of Defense or the United States Government.

17. COSATI CODES 18. SUBJECT TERMS (Continue on reverse if necessary and identify by block number)

FIELD GROUP SUB-GROUP database, relational model, object-oriented model, object-oriented program-
ming, heterogeneous database

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

During the last decade, the business sector has become increasingly reliant upon information management. This
trend will most likely continue. Deficiencies/constraints in conventional database management systems continue to
become more apparent as this reliance continues to grow. Primary areas of deficiency are in modeling, storing, and
managing increasingly complex information as in CAD and CASE among others.

The purpose of this thesis is to implement a combined relational/object-oriented database management system that
will overcome these deficiencies/constraints. Three possible approaches to such a system exist: build the system from
scratch, build object-oriented capabilities on top of an existing relational system, or build relational capabilities on
top of an existing object-oriented system. The last approach is the one chosen for this work. This thesis expands pre-
vious work in this area and uses a commercial object-oriented database management system, IDB, in its implemen-
tation.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT1 21. ABSTRACT SECURITY CLASSIFICATION
[3 UNCLASSIFIED/UNLIMITED [] SAME AS RPT. [] DTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVID.UAL 22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL
Dr. Michael L. Nelson (408) 646-2026 CS/Ne

DD FORM 1473, 84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE

All other editions are obsolete UNCLASSIFIED
i

Approved for public release; distribution is unlimited

A Relational/Object-Oriented Database Management System:
R/OODBMS

by
Ronald L. Spear

Captain, United States Army
B. A., Concordia College, 1983

Submitted in partial fulfillment of the

requirements for the degree of

MASTER OF SCIENCE IN COMPUTER SCIENCE

from the

NAVAL POSTGRADUATE SCHOOL
September 1992

Author: 2 26
Ronald L. -ear

Approved By:
Dr. Michael L. Nelson, Thesis Advisor

Prof. C. TWu, Second Reader

Robert B. McGhee, Chairman,
Department of Computer Science

ii

ABSTRACT

During the last decade, the business sector has become increasingly reliant upon

information management. This trend will most likely continue. Deficiencies/constraints in

conventional database management systems continue to become more apparent as this

reliance continues to grow. Primary areas of deficiency are in modeling, storing, and

managing increasingly complex information as in CAD and CASE among others.

The purpose of this thesis is to implement a combined relational/object-oriented

database management system that will overcome these deficiencies/constraints. Three

possible approaches to such a system exist: build the system from scratch, build object-

oriented capabilities on top of an existing relational system, or build relational capabilities

on top of an existing object-oriented system. The last approach is the one chosen for this

work. This thesis expands previous work in this area and uses a commercial object-oriented

database management system, IDB, in its implementation.

=rC QUtamLz mns-: -L .4 4

oLosessnm Fop 0ll4t: tAs

J'L; t I A"at i•

Distrib •t •on/

Avalldbility odes-Aail and/or

Dlst Special

TABLE OF CONTENTS

I INT RODUCTION ... 1

A. M OTIVATION ... I

B. OBJECTIVES OF A RELATIONAL/OBJECT-ORIENTED

DATABASE SYSTEM ... 2

C. RESEARCH OVERVIEW .. 3

II. SURVEY OF THE LITURATURE .. 4

A. GENERAL ... 4

B. OBJECT-ORIENTED PROGRAMMING CONCEPTS 4

1. Classes/Objects .. 5

2. M ethods .. 7

3. Inheritance .. 8

4. Encapsulation ... 12

C. RELATIONAL DATABASE MANAGEMENT SYSTEMS 13

1. Relational M odel Concepts .. 14

a. Relations ... 14

b. Schemas and Constraints .. 17

C. Operations .. 18

2. Formal Query Languages ... 19

a. Relational Algebra .. 19

b. Relational Calculus .. 24

3. Other Query Languages ... 25

a. SQL ... 25

b. QUEL ... 26

c. QBE .. 27

iv

D. OBJECT-ORIENTED DATABASES ... 27

1. Object-Oriented Model Concepts ... 28

2. Object-Oriented Database Systems ... 29

3. IDB Object Database Overview .. 31

a. General Information .. 31

b. Clusters and Structures .. 32

c. Nodes, References and Attributes 35

d. Transactions .. 38

4. Other Systems ... 39

a. ONTOS/Vbase ... 39

b. GemStone ... 40

c. POSTGRES .. 42

E. PREVIOUS WORK ... 43

1. ROOMS ... 43

2. Implementing Relational Operations in Prograph 44

HIL. DETAILED PROBLEM STATEMENT ... 45

A. GENERAL ... 45

B. RELATIONAL DATABASE LIMITATIONS 45

1. Simple Data Types .. 45

2. Tuple Function ... 47

3. Inheritance .. 48

4. Impedance Mismatch ... 49

C. OBJECT-ORIENTED DATABASE LIMITATIONS 49

1 Mathematical Foundation 50

2. Standardization ... 50

3. Relational Operations .. 51

v

4. O ther Problem s ... 52

D . A CO M BINED SY STEM .. 52

1. D esirable Properties ... 52

2. Possible A pproaches ... 53

E. W H Y TH IS A PPRO A CH ... 53

IV. IMPLEMENTATION OF AN R/OODBMS IN IDB 55

A . TH E SY STEM D ESIG N ... 55

B. ORIENTATION TO R/OODBMS .. 58

1. The D atabase D irectory .. 58

2. Inside a R/OODBMS Database ... 59

C. RELATIONAL METH ODS ... 62

1. U nion .. 64

2. Difference ... 66

3. Selection ... 68

4. Cartesian Product ... 70

5. Projection ... 74

D . TH E D A TA BA SE CLA SS .. 76

1. A ttributes ... 76

2. M ethods .. 77

E. TH E RELA TIO N CLA SS .. 78

1. A ttributes ... 78

a. Relationnam e .. 78

b. A ttributenam es ... 78

c. A ttributetypes .. 79

d. Tuples .. 79

e. Tuple-type ... 80

vi

f. Key ... 82

2. M ethods .. 82

F. THE TUPLE CLASS .. 82

1. Attributes .. 83

2. M ethods .. 83

a. Initializetuple .. 83

b. Insertfields and Insertjtuples 83

c. Comparison methods .. 85

3. User Definitions .. 87

V. ALTERNATIVE PROJECT AND CARTESIAN PRODUCT

IM PLEM ENTATIONS ... 88

A. GENERAL ... 88

B. IDB TYPES ... 89

C. THE RESULTTUPLE SUBCLASS ... 90

D. THE M ODIFIED OPERATIONS .. 91

1. Project .. 91

2. CARTESIAN PRODUCT ... 95

E. CONCLUSIONS .. 97

VI. CONCLUSION .. 99

A. SUM M ARY .. 99

B. CONCLUSIONS ... 100

C. FUTURE RESEARCH SUGGESTIONS .. 100

APPENDIX A : EXAMPLE IDL SCHEMA ... 104

APPENDIX B : DATABASE DIRECTORY SOURCE CODE 105

APPENDIX C : R/OODBMS SOURCE CODE .. 110

vii

APPENDIX D : A SAMPLE R/OODBMS DATABASE ASCII '

CLUSTER FILE 178

APPENDIX E : MODIFIED R/OODBMS SCHEMA .. 186

APPENDIX F : MODIFIED PROJECT .. 190

APPENDIX G : MODIFIED CARTESIAN PRODUCT .. 199

LIST OF REFERENCES .. 206

BIBLIOGRAPHY .. 211

INITIAL DISTRIBUTION LIST ... 212

viii

LIST OF FIGURES

Figure 1 Class Definition Example .. 7

Figure 2 A Class and Its Subclass ... 9

Figure 3 A Simple Inheritance Hierarchy ... 9

Figure 4 A More Complex Inheritance Hierarchy ... 10

Figure 5 A Multiple Inheritance Lattice ... 11

Figure 6 Sample Relational Database ... 15

Figure 7 Reordered Officer Relation .. 16

Figure 8 Sample Relational Database Schema .. 17

Figure 9 Example Result of a Select Operation ... 21

Figure 10 Example Result of a Project Operation .. 22

Figure 1 Union Compatible Relations and Result of Union 23

Figure 12 Result of Difference Operation on Relations in Figure 11 24

Figure 13 OODBMS Manifesto ... 30

Figure 14 An Example of a Directed Attribute Graph [NMSW83, p. 8] 35

Figure 15 A Class Hierarchy .. 36

Figure 16 Universal Types [Pe91c, p. 361 ... 37

Figure 17 IDB Browser Interface ... 56

Figure 18 Entering a Database ... 59

Figure 19 The Relational Address DB ... 60

Figure 20 The Relation pt1 ... 61

Figure 21 Union Query .. 65

Figure 22 Difference Query .. 67

Figure 23 Select Query ... 69

Figure 24 Cartesian Product Query ... 71

ix

Figure 25 IDL Schema for Employee and Assigned Project Relations 72

Figure 26 Example Resultant Relation Schema for a

Cartesian Product Operation .. 72

Figure 27 The Relation r3 and One of its Tuples ... 73

Figure 28 The Relation ptI ...1..................................... 74

Figure 29 Cartesian Product of r3 and ptl ... 74

Figure 30 Project Query .. 75

Figure 31 Example Resultant Relation Schema for a Project Operation 76

Figure 32 Person, Addr, Phone-number Class Definitions 86

Figure 33 IDL Types [Pe91c, p. 621 ... 90

Figure 34 Resultant Relation Schema for Project and Cartesian Product 91

Figure 35 Modified Project Query ... 92

Figure 36 Template for Overriding Insertfieldsb Method 95

Figure 37 Modified Cartesian Product Query .. 96

x

ACKNOWLEDGEMENTS

I would like to take this opportunity to thank Dr. Nelson, my advisor, for his support

and guidance. When I would get bogged down in the coding of our R/OODBMS, Dr.

Nelson provided much needed focus which l ad to a working system. Throughout the entire

thesis process, his thoughtful questions provoked my thinking which helped me to consider

more carefully what I was doing and what I needed to do. He could always be counted on

to provide timely and constructive feedback.

Thanks also goes to my second reader, Dr. Wu, for his time in effort in assisting with

my thesis. He was also quite helpful in the conducting the research necessary for the survey

of the literature.

Ellen Borison and John Nestor, of Persistent Data Systems, were of great assistance

in making the IDB learning curve a little less steep by providing excellent support. Thank

you both for your patience in answering my sometimes trivial questions.

A special thanks goes to my fellow Army officers of class CS 11: CPT Walter, CPT

(P) Rothlisberger, CPT Nash, CPT Warren, CPT Tharpe, CPT Hoppe, CPT(P) Reese, and

CPT Weigeshoff. Without their fellowship, camaraderie, and assistance, I would never

have made it to the last quarter with a completed thesis. Their support was invaluable

during the first quarter of the curriculum when I had unfortunately missed a third of the

quarter.

Finally, I would like to thank my lovely wife Karin whose support has been

unwavering throughout our entire time here. Even during my longest days of studying, she

never complained and only supported my efforts to succeed here. I could not have done it

without her. Bryan and Devin could always be counted on to take my mind off studies when

we were together, thank you both.

xi

I. INTRODUCTION

A. MOTIVATION

The popularity of Object-Oriented Programming (OOP) is steadily increasing. As

more and more people develop an interest in the additional capabilities that arise from using

the object-oriented paradigm, they realize the flexibility and power that OOP provides for

representing real world objects in an intuitive and natural manner. This flexibility and high

level of abstraction provided by OOP constructs has lead many database professionals to

consider object-oriented concepts as they relate to database management systems (DBMS).

During the last decade, the business sector has become increasingly reliant upon

information. Information rmanagement and control pays dividends to businesses in terms of

increased power and revenue. In the coming decade, this reliance will surely increase. The

requirement to manage very large quantities of data more efficiently and to perform queries

on them rapidly is only part of the problem. The data that businesses wish to store and

manage is becoming increasingly complex.

Some specific areas that have an immediate need for a database to store and manage

complex data are computer aided design (CAD), computer aided software engineering

(CASE), computer-integrated manufacturing (CIM), and computer aided engineering. Data

representing images and text is applicable to virtually all large businesses. In the medical

field, for example, a patient's medical file could be managed by a database that keeps track

of not only the textual records from an appointment, but also x-rays, lab results, cat scan

pictures, and other non-textual information. [Me90]

The relational data model has existed for many years. It was developed by Codd in

1970 [Co70J. This model quickly gained widespread acceptance and use commercially.

I

Much of the business sector has a heavy investment in relational databases, and the

relational model is credible and familiar. Therefore, there is a reluctance to change to

another model/system, even when there is a need.

Vendors have realized the need for modeling complex information (visual, textual,

audible, etc.). In response, several object-oriented databases management systems

(OODBMS) are now available in the commercial market. Some businesses with a need for

managing complex data are using them. Many of these businesses have expressed a desire

for an interface that can access both object-oriented databases and relational databases

[St9 Ia].

B. OBJECTIVES OF A RELATIONAL/OBJECT-ORIENTED DATABASE

SYSTEM

In general, conventional database models are designed to meet the requirements of a

specific need. As Hsiao states, "this is the notion of application specificity, i.e., being

specific to a kind of database application."[Hs91, p. 3] The general areas that the

conventional data models, relational, hierarchical, network, and functional data models, are

used for are record keeping, product assemblies, inventory controls, and inference making,

respectively. [Hs9 1]

The main objective of this research is to determine if a single DBMS can be realized

that would serve the needs of both relational and object-oriented users. A relational DBMS

(RDBMS) has many advantages over non-relational systems. There are, however, some

constraints on relations, such as the type of real world entities that it can represent.

An OODBMS has a more robust capability for representing real world entities as

objects. The restriction on types of relations in a RDBMS can be lifted in an OODBMS.

Both RDBMSs and OODBMSs have their own set of advantages, but they are not the same

set of advantages. It is desirable to have a DBMS that has the advantages found in both of

2

these sets, plus any additional advantages that may arise from having a combined relational/

object-oriented database management system (R/OODBMS).

The user of a R/OODBMS should be able to implement a relational schema and query

the database using either 'standard' relational queries or an object-oriented type query.

Thus, there would be a very low learning curve for users already accustomed to relational

systems. Additionally, they would not have to abandon the relational approach that they are

already familiar with for this new object-oriented paradigm. Yet, they would also gain the

capability to manage complex data/objects with the same system.

A secondary objective is to determine if any OODBMS can be the basis for a R/

OODBMS. That is, are there certain requirements that must be met by a commercial

OODBMS so that a R/OODBMS can be successfully constructed? Also, are there any

characteristics of these systems that would facilitate this construction more than others?

C. RESEARCH OVERVIEW

This is a feasibility study which continues previous work done in the area by Nelson

[Ne88] and Filippi [Fi92]. Implementing relational operations in IDB is the primary thrust

of this research. Additionally, assessing the capabilities and advantages of using both

RDBMSs and OODBMSs falls within the scope of this research. A comparison of these

assessments with that of a single R/OODBMS will follow so that it can be determined

whether the needs of a RDBMS and an OODBMS can be satisfied by a single R/OODBMS.

IL SURVEY OF THE LITURATURE

A. GENERAL

The focus of this chapter is the fundamental terms and concepts in the areas of object-

oriented programming (OOP), relational database management systems (RDBMS), and

object-oriented database management systems (OODBMS). The discussion of these topics

is not intended to be a complete work on them, but rather an introduction to present those

concepts and terms necessary as a foundation for this thesis.

B. OBJECT-ORIENTED PROGRAMMING CONCEPTS

"I have a cat named Trash. In the current political climate, it would seem that if I were

trying to sell him (at least to a Computer Scientist), I would not stress that he is gentle to

humans and is self-sufficient, living mostly on field mice. Rather, I would argue that he is

object-oriented" [Kin89, p. 23].

What does it mean for something to be object-oriented? Since the advent of Simula-

67 in the 1960s and later Smalltalk in the 1970s [Mi88][Mo89], object-oriented

programming languages (OOPLs) and the object-oriented paradigm have been increasingly

great topics for discussion and debate. Different products are advertised as object-oriented,

the hot buzzword, however there is no universally accepted definition

[Kin89][Ne9l][Ne90b][SB86].

"What is needed is a definition general enough to encompass all of the current views

of OOP, yet strong enough to stand up as the basis for the underlying theory of OOP"

[Ne9 l, p. 4]. The broad definition used in this paper is object-oriented = objects + classes

+ inheritance + encapsulation. This is a slight modification of the definition in [We87]. 1

4

Currently, there is also much debate about the design process for an OOP program.

In conventional languages, several approaches have been formalized such as the top-down,

bottom-up, structured, etc. These approaches are, in general, 'action' approaches while

OOP uses an 'object' approach [GH91b]. However, the OOP community lacks any

established methodology to their 'object' approach [PN91b]. This subject is considered to

be beyond the scope of this paper, however, and as such will not be discussed any further.

1. Classes/Objects

A class may be defined as "a description of one or more similar objects" [SB86,

p. 43]. An object is an instantiation of a class [Mo89]. Clearly, this is a circular definition

which can be avoided by defining an object as the fundamental element of OOP. That is,

an object is a self-contained set of variables (which may be thought of as attributes in

database terms), and responds only to messages to execute specific defined procedures

(also called methods in OOP terms) [BM9l][Ne9l1[SB86]. An object's method(s) are the

only means by which manipulation of its variables can occur. 2

The description of an object/class is composed of variables/attributes and the

procedures/methods that operate on them. These variables and methods describe general

characteristics that all instances of a class have. The only way to communicate with an

object is through messages to execute its methods. Thus, an object's messages are the

interface to a particular object. An important point is that the variables of an object may

1. [We87] defines OOP as "object-oriented = objects + classes + inheritance". It may be argued that
this equation is the same as our slightly modified equation since some definitions of class imply en-
capsulation. For a more detailed discussion, see [Ne9 1]

2. Thus, a class may be thought of as an abstract data type (ADT) or as the implementation of an
ADT [Da84][Ne91]. The interface to the data type is defined solely by the methods defined for the
class. The implementation of these methods is contained within the class which allows the interface
to be implementation-independent.

5

themselves be objects. In this case, the object is called a composite object that has at least

one variable which is a previously defined object [EN89][Ne90b]. The composition of

composite objects can be compared with inheritance where composition is a form of part

inheritance the later is concerned more with behavior inheritance [Ne90b].

Most OOP languages provide for both class and instance variables, although it is

not required for a language to be considered object-oriented [Ne9l][Ne9Ob]. The

difference is that a class variable will have the same value for all instances of the class. If

a method in any of the instances of that class change the value of a class variable, then the

value is changed for every instance of the class. Thus, it is a variable shared by all instances

of the class. In contrast, an instance variable has a local value for a particular instance. A

change to the value of an instances instance variable of one object has no effect on the

corresponding variable in another instance of the class.3

Consider a military officer as an example of an entity that might be described in

a class definition. The class name could be Officer with several variables that further

characterize an officer. A possible class variable could be the number of company grade

officers (0-1 through 0-3) that exist: CompanyGradeCount. Thus, every instance of the

Officer class would have the same value for CompanyGradeCount. Each officer has a

name, grade, social security number, and an assigned unit that may be represented by the

instance variables Name, Grade, SSN, and Unit, respectively. These variables would be

instance variables since each instance of an officer will not necessarily have the same

values for each of these variables. This officer class definition is presented in Figure 1.

3. IDB, the OODBMS used in this thesis, does not provide the capability to define class variables.
However, in our discussions with Persistent Data Systems, they have mentioned that later versions
of IDB may contain this capability.

6

Class: Officer
Superclass: none
Class Variables: CompanyGradeCount
Instance Variables: Name, Grade, SSN, Unit
Methods: Promote, Retire, Relocate

Figure 1 Class Definition Example

2. Methods

As previously mentioned, methods are the means by which an objects variables

are manipulated [Ne9Ob]. They define the only legal actions/operations that characterize an

object. A method is invoked by sending an object a message to invoke one of its methods.

A message can be likened to a procedure call in a conventional programming language.4

Changing the implementation details for any method should have no effect on messages

needed to invoke that method [Ne90b]. Thus, code that uses message passing for method

invocation is implementation independent. It is in this sense that the description/definition

of class may imply encapsulation (also called information hiding).

In our military officer example, it may be desirable to be able to promote, retire,

or relocate an officer. Therefore, these three actions might be implemented as methods for

the Officer class (see Figure 1). The Promote method would change the Grade instance

variable and could change the CompanyGradeCount class variable; Relocate would change

4. The exact implementation for the message passing concept may vary among different OOP lan-
guages.Value operations (idl-vop) and type operations (idl-top) are the means by which IDB imple-
ments message passing.

7

the Unit instance variable; and Retire would change the Unit and Grade instance variables,

and possibly the CompanyGradeCount class variable.

3. Inheritance

Inheritance allows further specialization of a class (called the superclass) by

exploiting class similarities [Ni89]. That is, a subclass inherits the variables and methods

of its ancestors and adds its own variables and methods. 5 In this way, it is a specialization

of its ancestors and its ancestors are a generalization of the subclass

[BM91][CY90][HO87][Hs9l][Mi88][Mo89]. In more fundamental terms, it is a form of

code sharing [Ne9Ob] that facilitates and encourages code reuse [Ni89][Mi88]. As you

travel down an inheritance hierarchy6 , classes become more specialized. As you travel up,

they become more generalized.

In Figure 2, the class Human is the superclass of the subclass ServiceMember. A

simple inheritance hierarchy of these two classes is shown in Figure 3. Any ServiceMember

will have Species as a class variable; Weight, Height, Sex, and Ssn as instance variables;

and the methods Born, Die, EnterService, and DepartService. A ServiceMember is a

specialization of a Human, while a Human is a generalization of a ServiceMember.

5. Inheritance of methods is sometimes called behavioral inheritance while inheritance of variables
is called structural inheritance [Da90].

6. An inheritance hierarchy is simply a graphical representation of the inheritance relationship be-
tween classes [Ne9ObI.

8

Class: Human

Superclass: none

Class Variables: Species

Instance Variables: Weight, Height, Sex

Methods: Born, Die

Class: ServiceMember

Superclass: Human

Class Variables: none

Instance Variables: Ssn

Methods: EnterService, DepartService

Figure 2 A Class and Its Subclass

HumanI
ServiceMember

Figure 3 A Simple Inheritance Hierarchy

Consider the inheritance hierarchy in Figure 4, Officer 7 is now a subclass of

ServiceMember. The ancestors of Officer are Human and ServiceMember, while its

descendents are the subclasses CompanyGrade, FieldGrade, and FlagGrade. Thus, the class

Officer inherits all the variables and methods from both Human and ServiceMember.

Again, you can see that as you travel down the inheritance hierarchy the classes become

more specialized while the classes higher in the hierarchy are more general.

7. The Officer class definition in Figure 1 would have to be modified to reflect that ServiceMember
is now its superclass.

9

Human

ServiceMember

Enlisted Officer

Company Field Flag
Grade Grade Grade

Figure 4 A More Complex Inheritance Hierarchy

Methods that are inherited by a class may have their implementation overridden

(or redefined) while still maintaining the same method name [HO87][Mi88]. This allows

methods to be overloaded (also called polymorphism) [Ne90bJ[Ni89J[SB86]. That is, the

same message may be sent to different objects, invoking different implementations of the

same method depending on the object which receives the message. A common example of

polymorphism is that of the binary arithmetic operations on integers and real numbers.

When we want to add two integers, we write 2+39; the same operator name '+' is also used

for the real numbers, 3.4+2.1.

In the example hierarchy (Figure 4), the subclasses of Officer all inherit the

method Promote (along with the other methods of the Officer class). However, each of the

subclasses (except for CompanyGrade) require a different implementation for the Promote

method since promoting a FlagGrade or FieldGrade officer would not change the Officer

class variable CompanyGradeCount. 8 A method that has been overwritten by a subclass is

a polymorphic method.

10

Up to this point, our discussion of inheritance has focused only on single

inheritance: a class inherits from only one superclass. 9 However, some languages allow for

multiple inheritance: a class inherits from two or more superclasses [Ne91][Ne90b]. The

relationship between classes when multiple inheritance is allowed can be shown

graphically in a multiple inheritance lattice10 (see Figure 5) [SB86][Ne9Ob].

Human

ServiceMember Student

Enlisted Officer

Nps
Student

Figure 5 A Multiple Inheritance Lattice

Inheritance is not without its own special problem which must be mentioned; that

of name conflicts [Ki9 1][Mi88][Ne88][NMO90]. In Figure 5, assume that the Human class

8. This assumes that in the Officer class definition the Promote method has the implementation pre-
viously described. Promote changes the value of the CompanyGradeCount class variable. Thus, if
the method's implementation is not overwritten a message sent to any of Officer's subclasses would
invoke this implementation causing undesirable results.

9. Generally, the term inheritance by itself means only single inheritance [Ne9Ob].

10. The term lattice by definition allows more than one superclass [SB86] while an inheritance hi-
erarchy does not. This is in contrast to a hierarchy which is represented as a tree. However, it is fairly
common practice to refer to a multiple inheritance lattice more simple as a multiple inheritance hi-
erarchy [Ne9Ob].

11

has a Print method that has been overridden in both the Officer and Student subclasses.

Now, consider the class NpsStudent; which implementation of Print does it inherit?

In the case of single inheritance, a subclass may inherit a method X or variable Y

from its ancestors but also have a different method X or variable Y defined locally for the

subclass [Ni89][NMO90]. That is, the subclass also has in its class definition a method X

and a variable Y. How are the two different methods or variables differentiated? Usually

locally defined methods and variables override any inherited methods and variables with

the same name. However, some systems allow the overridden method/variable in the

superclass to be accessed by prefacing the name with super; for example, superX or superY.

Multiple inheritance has a similar name problem, however it is complicated since

there is more than one superclass involved. It is not as simple to just preface a redefined

name with super since more than one of the superclasses may have the same method/

variable name. In general, the possible solutions include making a choice between them

using some default criteria [SB86] (such as a class precedence [Mo89][SB86]), by

distinguishing among them [Ne88] (possibly by using their parent class name as a prefix

[Ni89]), by combining them [Mo89][Ne88], or by requiring the programmer to make an

explicit choice [Ki9l][Mi88][Ni89].

4. Encapsulation

"An OOPL supports encapsulation if it allows users of objects to access them only

via their external interfaces" [Mi88, p. 151. The external (public) interfaces to an object are

its methods and these are the only means that a user has for accessing/manipulating an

object. The user is not allowed direct access to the object and its inner workingslDa90].

Thus, encapsulation is a method of information hiding [Da90J[Ne90b][Ne91] and offers

protection to objects from unauthorized/illegal operations on its variables [Mo891.

Additionally, hiding implementation details provides a separation (or decoupling) from the

12

code that defines and implements an object from that of the program code using the object

[Da90]. This point is quite important since it allows changes to an object's implementation

without having to change the user's program code and vice-verse [Da90I[Mo89I][Ne9 I].

C. RELATIONAL DATABASE MANAGEMENT SYSTEMS

Prior to discussing the relational model specifically, it is worth giving a few moments

to the definition of a database management system (DBMS). A DBMS is a collection of

general-purpose software programs that allow maintenance of and access to a collection of

interrelated data [EN89][KS861. A collection of interrelated data is called a database.

However, when discussed in terms of specific DBMSs, the definition of database is a

little more restrictive and has the following properties[EN891:

"* the collection of data has some inherit meaning and is logically coherent;

"* the database is created for a specific purpose, an intended group of users, and

some preconceived applications; and

"* the database models and reflects some real world aspect.

The maintenance of and access to the data include facilities to define, create, and

manipulate (i.e., query and update) it.

There are numerous considerations for using a DBMS. Controlling redundancy: as the

number of times the same data is stored increases, there is a corresponding increase in

duplication of effort to update it; additionally, it is more likely that inconsistencies among

the data may arise (update anomalies). Sharing of data: in a multiuser DBMS concurrency

control of updates is critical to the correctness of updates. Restricting unauthorized access:

the DBMS should allow restrictions to be placed on access to database data. Representing

complex relationships among data: this includes easy and efficient retrieval and update of

related data. Enforcing integrity constraints: database designers must be allowed to specify

data constraints which the DBMS can enforce automatically or which can be enforced by

13

update programs. Provide backup and recovery: recovery from hardware and software

failures is the DBMS's responsibility. [EN89][KS86]

1. Relational Model Concepts

In 1968, Dr. Edgar F. Codd had the idea that "predicate logic could be applied to

maintaining the logical integrity of the data" in a DBMS [CD90, p. 35]. This was the

conception of the relational data model. Two years later, Codd introduced his model in a

paper published in the Communications of the ACM [Co70]. It was a departure from what

had until that time been the conventional models (hierarchical data model and the network

data model) since his model allowed for a more abstract representation of the database

[OV91][KS86][Fi92j. This simplistic yet complete model has evolved into a kind of

defacto standard in the database industry.

The relational model is firmly founded in strong mathematical concepts and

theory. Predicate logic and set theory are the primary foundation upon which the relational

model rests. This allows a formalism in the way that data is represented and manipulated

in the context of the model.

a. Relations

The relational model represents a database as a collection of relations.

Relations, the fundamental building block of the model, are represented by the intuitive

notion of a table (or flat file) of values [Da84][EN89][KS86][OV91][SSU91]. Each row of

the table represents a tuple of the relation. A tuple is a collection of data values that are

related. The columns of the table represent attributes of the relation (see Figure 6). In the

sample relational database, there are two relations: Officer and Military Unit. Each tuple is

interpreted as a fact that describes a relation instance. Every attribute value within a tuple

must be atomic. That is, it is not constructed of other components; it is indivisible.11

14

Officer

Name SSN Unit

Spear 550-34-2453 3BDE

Walter 233-45-3423 2BDE

Nash 241-4500974 IBDE

Rothlisberger 123-45-6789 3BDE

MilitaryUnit

UnitName Location CdrSSN

IBDE Grafenwohr 123-45-6789

2BDE Erlangen 550-34-2453

3BDE Bamberg 233-45-3423

Figure 6 Sample Relational Database

However, it must be understood that there is a subtle but important difference

between a relation and a table. A relation is a set of tuples. On the other hand, tuples of a

relation are represented as the rows of a table. A set by definition is unordered, but clearly

the rows of a table are ordered (from top to bottom)[EN89]. Thus, the relation Officer in

Figure 7 is the same as the Officer relation in Figure 6.

11. This requirement for atomic attributes is called the first normal form. Normalization is a process
of decomposing relational schemas into smaller relations that conform to several criteria: first, sec-
ond, and third normal forms. The goal of normalization is to aid database designers in analyzing a
database schema and developing a database with a 'good' design that avoids update anomalies.
[EN89]

15

By the same token, the order of the columns is not important since a tuple can

be thought of as a set of (<attribute>,<value>) pairs[EN89][Da84]. The value in each pair

must fall within the domain of its associated attribute. Thus, the first tuple in Figure 7 could

be written: (Name,Rothlisberger), (SSN, 123-45-6789), (Unit,3BDE); or (Unit,3BDE),

(Name,Rothlisberger), (SSN, 123-45-6789); etc.

Officer

Name UN Unit

Rothlisberger 123-45-6789 3BDE

Nash 241-4500974 IBDE

Spear 550-34-2453 3BDE

Walter 233-45-3423 2BDE

Figure 7 Reordered Officer Relation

The reason this subtle difference between relations and tables is important

will become more apparent later. As will be discussed, all of the relational algebra operators

take relations as parameters and yield results that are also relations [Da84]. Thus, they are

set operations and they have firm foundations in mathematical set theory. Consequently, if

someone has a good understanding of mathematical set theory, then they are well on their

way to understanding relational algebra.

Another consequence of a relation being defined as a set of tuples, is that, by

definition, each element in a set is unique. Therefore, all tuples in a relation must be unique.

This implies that there are no two tuples in a relation that have the same combination of

values for all attributes [EN89]. Thus, there is some combination of attributes that allows

each tuple of a relation to be uniquely identified; this combination is called a primary key

(the primary key of each relation in Figure 6 and Figure 7 is underlined). In the worst case,

16

the primary key is the set of all attributes of the relation [Da84][EN89]. A detailed

discussion of keys (including superkeys, minimal superkeys, candidate keys, primary keys,

and foreign keys) can be found in [EN89].

b. Schemas and Constraints

When discussing databases, it is important to differentiate between the

database schema and database instance. A database schema is a set of relation schemas and

a set of integrity constraints while an instance is a snap-shot of the data in the database at

a given instant in time[KS86][EN89]. A relational schema can be thought of as a template

for the relation. The type definition in programming language notation bears a close

correspondence to a relation schema [KS86]. The schema is known, in database terms, as

intention of the relation while the instance is the extension [EN89].

In the previous examples (Figure 6 and Figure 7), the Officer relation and the

Military Unit relation are both examples of a relation instance. Figure 8 shows the relational

schemas for the Officer and Military Unit relations. Another notation for a schema is a

listing of the relation's attributes and their corresponding domains[KS86]:

"* Officer-scheme = (Name: string, SSN: integer, Unit: string)

"• Military Unit-scheme = (UnitName: string, Location: string, CdrSsn : integer)

Officer

Name SSN unit

MilitaryUnit

UnitName Location CdrSSN

Figure 8 Sample Relational Database Schema

17

In general, integrity constraints are defined for a database schema and should

hold for every instance of the schema [EN89]. There are several types of integrity

constraints: key constraints, entity integrity constraints, and referential integrity constraints

[Da84] [EN891[OV9 11. Key constraints are concerned with ensuring the uniqueness of key

values for every tuple in any relation instance of a schema. Entity integrity constraints

restrict primary key values to be non-null [OV91]. Finally, referential integrity constraints

maintain consistency between tuples of two relations [OV91]. That is, if a tuple in one

relation refers to another relation, then it must refer to a tuple that exists in that relation. An

additional general constraint that is sometimes needed is called a semantic integrity

constraint [EN89]. In our military example, a semantic integrity constraint would be that

'an officer in a unit cannot outrank the commander of his unit'.

c. Operations

Three fundamental update operations exist for relations: modify, delete, and

insert. Delete and insert do what is expected - insert and delete tuples, respectively. Modify

allows values of some or all attributes of a tuple to be changed. The most important aspect

in performing these operations is to ensure that the integrity constraints defined for the

schema are not violated. Therefore, if any integrity constraints would be violated by the

update operation, then either the operation can be rejected or the system may attempt to

correct the reason that the operation violates integrity constraints. [EN89]

It is possible for an insert operation to violate all three of the integrity

constraints: key constraints, entity integrity constraints, and referential integrity

constraints. However, the delete operation can only violate the referential integrity

constraint. Both key constraints and referential integrity constraints can possibly be

violated by a modify operation. [EN89]

18

2. Formal Query Languages

Along with Codd's initial presentation of the relational model in 1970, he also

proposed two formal query languages: relational algebra and relational calculus [Co70].

Before discussing the fundamental differences in the two, it should be noted that it has been

shown that they are equivalent in expressive power [EN89][OV91]. Thus, any query that

can be specified in one language can also be specified in the other. Query languages can

therefore be compared against either of these two to determine if they are relationally

complete [EN89].

Relational algebra, in contrast to relational calculus, is more closely related to the

underlying system instructions that perform the operations [KS86]. This is the primary

reason that relational algebra was chosen over relational calculus for use in this thesis.

Since the two are logically equivalent, it is sufficient to implement only one. Thus, in the

discussion that follows, relational algebra will be discussed in more detail than relational

calculus.

The fundamental difference between the two languages is that of a procedural

language verses a nonprocedural (or declarative) language. In a procedural language, such

as relational algebra, the query specifies the sequences of instructions necessary to obtain

the result. This is in contrast to nonprocedural language, such as relational calculus, which

specifies a query by delineating what information is desired rather than how it is to obtain

the information (i.e., the procedure to be followed). [EN89][KS861

a. Relational Algebra

Relational algebra is a procedural language. Therefore, it more directly

corresponds to the operations necessary to satisfy a query. The set of operations that

constitute relational algebra are derived from the mathematical theory of sets [OV9 1]. Each

operation has as its parameter(s) a relation and returns a result that is also a relation [Da84I.

19

Codd proposed eight operations in his presentation of the relational model in 1970: union,

intersection, difference, Cartesian product, select, project, join, and divide [Da84].

However, it can be shown that of the eight only five are primitive operations: select, project,

union, difference, and Cartesian product [Da84][EN891[KS86][NMO90]. The other three

non-primitive operations can be formed by some combination of the five primitive ones.

(1) Select is a unary operation, taking a relation as its parameter and

yielding a subset of tuples from that relation as its result. The resultant relation has the same

relational schema as the input parameter relation. To identify the tuples that are to be in the

resultant relation, a selection condition (predicate) is specified in the select expression on

the specified relation. All tuples in the resultant relation will satisfy the selection condition.

[EN89][KS861

The selection condition is a boolean expression consisting of clauses of

the form:

<name of attribute><comparison operator><constant value>;

or

<name of attribute><comparison operator><name of attribute>

where <name of attribute> is the name of an attribute of the input parameter relation;

<comparison operator> is either =, <, <, _>, >, or -*, and <constant value> is any arbitrary

number of clauses may be connected with the AND, OR, and NOT operators to form the

selection condition expression [EN89].

In Figure 9, ResultRelation is the resultant relation from performing a

select operation on the relation Officer (Figure 7) where Unit = 3BDE. The original Officer

relation had 4 tuples while the resultant ResultRelation has only 2. The selection condition

can be arbitrarily complex.

20

ResultRelation

Name SSN Unit

Rothlisberger 123-45-6789 3BDE

Spear 550-34-2453 3BDE

Figure 9 Example Result of a Select Operation

(2) Project is also a unary operation. The project operation uses an attribute

list to select the attributes that will appear in the resultant relation. The attribute list must

be a subset of the attributes of the input parameter relation. The schema of the resultant

relation in this case is not the same as the input parameter relation. The attributes are a

subset of the attributes in the input parameter relation. However, the attributes in the result

will be listed in the order that the attributes are listed in the attribute list. However, the

resultant relation will have the ý.ame number of tuples. [EN891

In Figure 10, ResultRelation is the resultant relation from a projection

operation of the Name and SSN fields of the Officer relation (Figure 7). The original

Officer relation has three attribute fields while the resultant ResultRelation only has two.

However, both relations have the same number of tuples.

21

ResultRelation

Name

Rothlisberger 123-45-6789

Nash 241-4500974

Spear 550-34-2453

Walter 233-45-3423

Figure 10 Example Result of a Project Operation

(3) Union, in contrast to the first two operations, is a binary operation. It

along with the operations difference and Cartesian product are the standard mathematical

set operations [Da84][EN89]. Thus, the union of two relations is a resultant relation that is

the set of all tuples that belong to either relation or to both. This operation, along with the

difference operation, can only be executed if the two input parameter relations are union

compatible. That is, they must have the same number of attributes (the same degree) and

the corresponding attribute must be based on the same domain (although they need not have

the same name) [Da84]. As an example, two union compatible relations are shown in

Figure 1I. The resultant relation has the same degree as the input relations. Note that the

order of the attributes in the relations is important for checking union compatibility.

22

OfficerReserve

FirstName LastName

Ron Spear

James Schledorn

Leonard Tharpe

EnlistedActive

Fname Lname

James Justice

John Walter

Luther Moen

Jane Pauli

James Schledorn

ResultRelation

first-name last_name

Ron Spear

James Schledom

Leonard Tharpe

James Justice

John Walter

Luther Moen

Jane Pauli

Figure 11 Union Compatible Relations and Result of Union

23

(4) Difference, given two input parameter relations, A and B, produces a

resultant relation which is comprised of all tuples in A that are not in B. As with the union

operation, the input parameter relations A and B must be union compatible. Therefore, the

difference of relations OfficerReserve and EnlistedActive (from Figure 11) is shown in

Figure 12. However, the difference of EnlistedActive and OfficerReserve would be a

resultant relation that contains all of the tuples in relation EnlistedActive except for the last

tuple which contains James Schledorn and no tuple from OfficerReserve.

OfficerEnlisted

first-name last-name

Ron Spear

Leonard Tharpe

Figure 12 Result of Difference Operation on Relations in Figure 11

(5) Cartesian Product, the last of the set operations, differs from the

previous two operations, union and difference, in two main ways. First, if the Cartesian

product operator is operating on relations A and B which have 2 tuples with 3 attributes and

5 tuples with 4 attributes respectively, then the resultant relation will have 10 (2 * 5) tuples

and 7 (3 + 4) attributes. In our previous example (Figure 11), the Cartesian product of the

two relations would have a resultant relation with 15 (3 *5) tuples and 4 (2 + 2) attributes.

Secondly, the two input parameters to this operation need not be union compatible.

b. Relational Calculus

While relational algebra is founded on the mathematical principles of set

theory, relational calculus (a procedural language) is founded on first order predicate

calculus [EN89]. Two well-know forms comprise the relational calculus: tuple relational

24

calculus and domain relational calculus. There is a strong similarity between the two forms.

As their names imply, tuple relational calculus is the form in which variables represent

tuples while domain relational calculus uses variables to represent attribute domain values

[KS86]. In tuple relational calculus, the database is viewed as a set of tuples, while in

domain relational calculus it is viewed as a set of domains. Thus, meaning is given to

queries by interpreting variables as assertions on the database [OV9 1].

3. Other Query Languages

SQL, QUEL, and QBE are three commercial query languages that expand on the

formal languages previously discussed, relational algebra and relational calculus. Both

SQL and QUEL are relationally complete languages, however, some implementations of

QBE are not (they lack explicit universal and existential quantifiers)[EN89]. In general,

they provide a higher level, more friendly user interface along with other facilities for data

definition (a data definition language function, DDL), data manipulation (data

manipulation language facilities, DML), and security constraint specification 12 [KS86]. It

is considered beyond the scope of this thesis to discuss these other areas. However, each of

these languages will be reviewed very briefly in this section to give the reader a feel for

considerations in implementing a commercial query language. All of these languages are

more declarative than procedural.

a. SQL

The Structured Query Language, SQL, is still referred to as Sequel

(Structured English QUEry Language) by many people and is probably the most well

known of the three. SQL combines constructs from both relational algebra and calculus

12. Although, each language does not necessarily provide for all of these facilities.

25

[EN89][KS86]. It has become somewhat of a defacto standard relational database

language. Queries in SQL can be interactive or embedded in an application [Da84].

The basic format for a SQL query is:

SELECT <list of attributes>

FROM <list of tables>

WHERE <condition>

where <list of attributes> is a list of names for which values are desired (corresponds to the

relational algebra project operation), <list of tables> is a list of required relations necessary

to satisfy the query, and <condition> identifies the tuples desired by evaluation of a boolean

expression (corresponds to the relational algebra selection condition in a select operation

[EN89].

One departure from the formal relational models is that SQL allows tuples

within a relation to be repeated. Thus, a relation in SQL is not a set of tuples but a multiset

(or bag) [EN89].

Some current work in the area of query languages is being done using the idea

of a graphical interface for constructing queries. One such effort attempts to overcome the

difficulties in forming SQL queries (ease-of-use) by designing and implementing a

relationally complete graphical dataflow query language (DFQL) [C191].

b. QUEL

QUEL has similar functionality to SQL; however, instead of combining

constructs from both of the formal languages, it closely parallels tuple relational calculus

[KS861. Three types of clauses are generally used to construct most QUEL queries: range

of, retrieve, and where [KS86]. Range of explicitly declares the tuple variables, retrieve

declares the attribute to retrieve (corresponds to projection attribute list), and where

specifies the selection condition [EN89].

26

c. QBE

Query by Example, QBE, is most closely related to domain relational

calculus. It is unique in that it is a two dimensional language: skeleton tables (displaying

the relation schema) are displayed pictorially, and queries are then expressed by filling in

an example row(s). When looking at a QBE query, constant values appear without any

special markings or indicators while domain variables (which do not have to match any

specific database values and are completely arbitrary) are indicated by being preceded by

an underscore (''). To specify that the values of a certain column are to be retrieved, the

prefix 'P.' (for print) is used. [EN89][KS86]

D. OBJECT-ORIENTED DATABASES

As with object-oriented programming, the relatively new area [Ne9Oa] of object-

oriented databases (OODBMS) does not as yet have a formal definition/specification or

even an agreed upon informal definition/specification [Ed91l][US90]. "Object-oriented

databases = object orientation + database capabilities" [Kh9l, p. 31] is one attempt to

define OODBMSs where the database capabilities alluded to include persistence,

transactions, concurrency control, recovery, querying, versioning, integrity, security, and

performance issues [Kh9l]. This could be rewritten as object-oriented databases = object-

oriented + database capabilities13.

This section provides a general description of OODBMS concepts along with a

discussion on several OODBMSs currently available: IDB, Ontos, Vbase, Gemstone, and

POSTGRES. Of the systems looked at, only IDB will be given more than a cursory look

13. (Kh91l defines object orientation as abstract data types + inheritance + object identity, which is
essentially the same definition previously used in this paper for object-oriented. For a more in-depth
discussion of OODBMS concepts see [US901.

27

since it is the system used to implement the Relational/Object-Oriented Database

Management System in this thesis.

1. Object-Oriented Model Concepts

The most well known data modeling model is the Entity-Relationship (ER) data

model. Until the late 1970s, this model was sufficient for supporting th. modeling needs of

conventional DBMSs (hierarchical, network, and relational systems) that meet traditional

business data processing requirements [EN891. The ER data model is a high-level model

used prior to actually developing a database schema in a specific DBMS. As modeling

needs have become more complex, the ER data model has become increasingly inadequate.

To meet the needs for complex data models, many data models have been proposed. Of

those proposed, they generally fall into three categories: semantic data models 14, functional

data models, and object-oriented models [EN89].

In conventional DBMSs, data is modeled using the classical record-oriented ER

model. Here data is looked at as a group of relations (or record types) that are comprised of

a group of tuples (or records) which are all stored in a file [EN891. Thus, the ER model must

be converted into a DBMS specific model (or schema) which may lose its resemblance to

any real world entities (or objects) during the conversion process. A good example is that

of an ER model for a relational database application which is converted to a group of

relations that are then normalized. In the normalization process, the original model may be

distorted to such an extent that any relationship to the original real world entities being

represented in the database application is lost as information is scattered among relations

[EN891.

14. [EN89] provides an detailed discussion of what they term the enhanced-ER model (EER) which
encompasses what they consider the most important concepts of the semantic data model.

28

Of the models mentioned above, we focus on the object-oriented data model.

With an object-oriented model, a database is considered group of objects that represent real

world entities [EN89]. In OODBMSs, objects are represented directly by database objects

[EN89]. Thus, there is no loss of the original model as with the ER model; as more complex

real-world entities are modeled using complex objects, there is a direct correspondence

between a real-world entity and its database representation. This direct correspondence

allows objects to maintain their integrity and identity which in turn allows the objects to be

identified and operated upon [EN89]. Some have gone so far as to question whether it is

meaningful to talk about an object-oriented data model [Ki90] since object-oriented data

model concepts and the object-oriented paradigm are for all practical purposes the same.

Fundamental object-oriented data model concepts include data abstraction,

encapsulation, object identity [Mc9l], inheritance, complex objects, message passing, and

operator overloading (or polymorphism) [Ki90]. All of these concepts, with the exception

of object identity, were specifically addressed previously in this chapter under object-

oriented programming concepts. Generally, each object is represented by an object

identifier that is system generated. The identifier is independent from any key attributes

which allows atributes to be modified without destroying the objects identity. [EN89]

2. Object-Oriented Database Systems

Persistence of objects is considered the primary difference between OOPLs and

OODBMSs [EN89]. Objects used in an OOPL program exist only during program

execution whereas those in OODBMSs must exist permanently in secondary storage from

session to session. Thus, the OODBMSs and OOPLs are quite similar except for additional

facilities provided by the OODBMS system. By the same token, OODBMSs have similar

advantages as those of OOPLs: expressibility, reusability, etc.

29

"'The Object-Oriented Database System Manifesto" 15 written in 1989 by M.

Atkinson, F. Bancilhon, D. DeWitt, K. Kittrick, D. Maier, and S. Zdonik for the First

International Conference on Deductive and Object-oriented Databases, Kyoto, Japan,

describes 13 mandatory characteristics, listed in Figure 13, for a database system to be

considered an OODBMS [Ed9l].

1. supports complex objects

2. supports object identity

3. encapsulates objects

4. supports either types or classes

5. classes or types inherit from their ancestors

6. do not bind prematurely

7. are computationally complete

8. are extensible

9. data is persistent

10. manages very large databases

11. allow concurrent users

12. recover from software and hardware failures

13. have a simple way to query data

Figure 13 OODBMS Manifesto

15. This does not contain an agreed upon set of characteristics, rather, it is an attempt to offer char-
acteristics for agreement within the database community.

30

There are some correlations that may be made between RDBMS and OODBMSs

that help to conceptualize how some of the object-oriented paradigm relates to the

relational paradigm. A row in a relation may be thought of as an object in an OODBMS.

The set of rows of a relation may be equated to a class. Other concepts in OODBMSs that

have no correlation to anything in a relational system include: methods, object identifiers,

inheritance, and encapsulation. However, OODBMSs do not have a mathematical

foundation to stand on as relational systems do. [Ed9l]

3. IDB Object Database Overview

a. General Information

IDB [Pe9la][Pe9lb][Pe9lc][Pe9ld] is a new OODBMS that first entered the

commercial market in 1990. However, it could be considered to have been in development

for over a decade with the design and architecture of the Interface Description Language

(IDL), a subset of which is a fundamental component of the IDB system. IDB was built

from the ground up as an object database management system. This is in contrast to some

other database management systems that claim to be object-oriented but are not 'real'

object-oriented systems. Some of these are systems that have as their kernel or core a

relational system that has object-oriented extensions added on top. Others claim to be

object-oriented but fall short in fully implementing the concepts that comprise the object-

oriented paradigm: inheritance, encapsulation, polymorphism, and abstract data types.

The current version of IDB is 1.1. Version 1.0 ran on several platforms:

Domain OS (680X0), Sun 3 (680X0), Sun SPARC and Windows 3.x. Version 1.1 extends

this list to include the Macintosh, NeXT, and HP-UX (680X0 and PA-RISC). Other key

differences between the version 1.0 and 1.1 include: supported platforms that are

networked together can now share data over the network; attributes may be removed from

a schema without having to modify the ASCII form file; ease of access to menu facilities

31

has increased; development tools may be used with Windows 3; and bugs have been

removed that existed in version 1.0. [Pe91 b]

Persistent Data Systems, the designer and developer of IDB, describe IDB as

"an object database for software developers who build applications that must manage

complex shared data"f[Pe9ld, p. 31. Applications suited for use with 1DB include CASE,

CAD, image management systems, hypertext systems, hypermedia systems and geographic

information systems. This list is not intended to be all inclusive, but rather to give the reader

an idea of the types of applications with requirements to model, manage, and store complex

and unconventional data. [Pe9 ld]

The data definition language (or schema language), IDL, extends Kernighan

and Ritchie (K&R) C [KR78] to include object-oriented capabilities. Polymorphism,

multiple inheritance, and dynamic binding and loading are among these capabilities.

Because IDB uses K&R C, tools available for working with C (such as the C compiler and

on-line debugger) on each supported platform may be used in the development of IDB

applications. [Pe9 Id]

IDL facilitates the interface between C and IDB. The interface can be thought

of as consisting of three parts: core interface, display manager interface, and browser

interface. The core interface allows IDB applications to have object-oriented capabilities.

Display management for stand alone applications uses the display manager interface. This

interface is not exclusive to stand alone applications since its features can also be accessed

from within the browser. The browser interface has the features of the display manager

interface in addition to other special features only available in the browser. [Pe91d]

b. Clusters and Structures

A key concept in 1DB is that of a 'cluster'. This term is used in both the

logical and physical sense. That is, the term cluster when used in the context of computer

32

science generally brings to mind clustering in memory. However, the word cluster in the

strict sense means to gather things together. In IDB, a cluster is a gathering of objects or a

group of objects. An object cannot be in more than one cluster. Since IDB is built as a multi-

user system, it also includes facilities for concurrent access control. Clusters are important

in maintaining the access control. "The cluster is the unit of data transfer and the unit of

locking for control of concurrent access" [Pe91d, p. 3].

Persistent Data Systems describes an IDB database as "a set of objects

connected by references" [Pe91c, p. 6]. Since a cluster is a group of objects, then an IDB

database is simply a set of clusters connected by references. There are two kinds of

references in IDB: local references and cross references. The names themselves are quite

descriptive. Local references are those references between objects of the same cluster.

Cross references, on the other hand, are between objects belonging to different clusters.

[Pe91d]

Access to clusters is gained by opening a transaction on the cluster. It is at this

time that the cluster is read in from secondary storage into main memory. Local references

are made by using pointers to the object being referenced. Cross references may also use

pointers if the cluster containing the object they reference is already present in memory

(i.e., a transaction is also open on that cluster). The other possibility is that the object being

cross referenced is not in main memory. This case is resolved by using unique identifiers

that IDB issues to every object. [Pe9ld]

IDB guarantees that every object created will have a unique identifier. This

identifier is not only unique to the cluster, system, platform, etc.; it is unique universally.

That is, an object created by IDB on any platform can be ported to any other platform and

still be guaranteed that the identifier is unique. This allows different platforms networked

together to share IDB files without object identification problems. Thus, "no two objects

33

will ever have the same identity and an object will maintain its identity even when moved

from place to place" [Pe9ld, p. 41.

Several identifiers are needed to accomplish this: master identifiers (MID),

cluster identifiers (CID), object identifiers (OID), and local identifiers (LID). During

installation, a unique MID is set up that is assigned to each copy of IDB by Persistent Data

Systems. When a cluster is created, the MID is combined with further numerical identifiers

to form the CID. Finally, the OID is composed of the CID and the LID which uniquely

identifies the object within the cluster. [Pe9Id]

Each cluster is described by an Interface Description Language (IDL)

structure. The structure contains all the necessary types to describe the objects of a cluster.

In other words, it contains the schema for the cluster specified in IDL. The IDL structure is

really the "description of structural constraints on data" [NMSW83, p. 7]. The fundamental

IDL model is predicated upon the directed attribute graph. An example of a directed

attribute graph is given in Figure 14.

A directed attribute graph is composed of a set of typed nodes that possess a

set of attributes. The type of a node determines the particular set of attributes it will contain.

The attributes are either a primitive value (the value is embedded in the node and is either

boolean, integer, or rational) or a node-value (a pointer to another node). In Figure 14, the

attributes with node-values have pointers which are the directed edges in the graph pointing

to other nodes. Each graph must have a root node that allows all other nodes to be reached

by following some path along different attribute edges from the root to the nodes. "An IDL

structure specifies a related class of attributed directed graphs by listing the set of node

types, the attributes of each node type, and the type of the root" [NMSW83, p. 7].

34

root t inner

left

right

op

level = 2

depth =0

inner mult leaf

left [Ival [7

right level = 0

op depth = I

level = 1

depth = 1 plus

leaf 1 leaf

val =2 val 3
level = 0 level = 0

depth = 2 depth = 2

Figure 14 An Example of a Directed Attribute Graph [NMSW83, p. 8]

c. Nodes, References and Attributes

Every 1DB object must have a type and can only be in one cluster. The types

that an object may have are defined through the class structure that is delineated in the

cluster schema. In IDB, only classes which have no subclasses can be instantiated as

objects. These classes are called nodes and have the type node type. In the class hierarchy,

the nodes are the leaves of the class structure. This is something of a departure from the

standard object-oriented concept of a class since only leaf classes can be instantiated.

35

However, any class that is not a leaf can always be made a leaf (in a logical way) by

instantiating a subclass of the class to only inherit all attributes and methods of its

superclass. That is, it is a leaf which is a copy of its superclass except that the superclass

has subclasses and the leaf (by definition) does not. Other class types that are not node types

are said to be strict class types.

Consider the graph presented in Figure 15, which is derived from the example

IDL schema (included as APPENDIX A) from the IDB User's Manual [Pe9ld, p. 321. It is

clear from the graph that the leaf nodes are ptrain, ftrain, fplane, and pplane. These classes

are IDB node types and may be instantiated to IDB objects. The other classes are used to

build the attributes and methods of the node types but may not be instantiated into objects.

These strict class types delineate attributes and methods that are common to all of their

descendants [New86]. IDB also supports the idea of multiple inheritance. Thus, in our

example, ptrain inherits all of the attributes and methods of class types passenger and train.

vehicle

-freight .passenger

ptrain ftrain fplane pplane

Figure 15 A Class Hierarchy

Newcomer likens the IDL node type to the idea of a record type in other

languages[New86]. Record fields are similar to a node's attributes[New86]. There are two

kinds of references which connect objects: local references and cross references. All

36

references must also have a type; however, unlike objects which can only have node types,

references can have the type of any class in the cluster. A references of a certain type can

point to any class of that type or any of its descendants (if the class is not a node). Thus, a

reference of type train, in Figure 15 above, could point to a train, a ptrain, or a ftrain.

From the root reference of any cluster, all objects within that cluster must be

reachable by following some path along references in the cluster. Two objects may have

attributes that reference the same object. In this way, references facilitate sharing.

References are also allowed to create cycles within a cluster.

There is another possibility for the type of a reference: universal types. The

types discussed up to this point have all been associated with a particular cluster. Universal

types allow references to refer to an object in any cluster. The universal types and their

relation to each other is shown in Figure 16. [Pe91c]

idluniv

idlany idl-univ.seq string

idl-univ~array idl-univlink

any any ... any
(cluster.1) (cluster_2) (cluster._n)

Figure 16 Universal Types [Pe9lc, p. 361

37

d. Transactions

Since IDB is a multi-user system, concurrency control must be maintained.

Transactions are used to implement concurrent access control to clusters. Additionally,

transactions guarantee that cluster updates are all or nothing. That is, the entire cluster is

updated or nothing in the cluster gets updated. Thus, cluster modifications are 'atomic'.

[Pe91c][Pe9ldJ

Transactions allow users to read and write clusters. Access to a cluster is

determined by one of four types of transactions: write, create, read, and examine. To

modify an object, a write transaction must be open. Examine and read transactions allow

different forms of parallel access to a cluster by one or more user. New cluster values are

created by the create transaction. A series of 'roll-back' points may be established by nested

write transactions. An arbitrary number of write transactions may be nested within other

create or write transactions. Large and complex modifications are facilitated in this manner.

[Pe91d]

Reading and traversal of cluster objects and the ability to use those objects

and their associated attributes to set values of browser variables is possible during read

transactions. While a read transaction is open on a cluster, no write or create transaction on

that cluster is allowed. Similarly, only while no write or create transaction is open, may a

read transaction be opened. This guarantees that the cluster being viewed in memory is the

same as that cluster on secondary storage.

Examine transactions are similar to read transactions except that it does not

stop a write transaction from being opened and/or committed on the same cluster. Thus, the

cluster being viewed in memory may be different (older) than that cluster on secondary

storage. This transaction can be opened at any time. It allows a greater amount of

38

concurrent use of the system. Clearly, this kind of transaction should only be used when

viewing the most current instance of the database is not necessary.

Modification of cluster objects and their associated attributes is accomplished

using either a create or write transaction. Modifications made to the cluster are not written

back to secondary storage until the transaction is committed. If after modifying the objects

of a cluster in memory, it is determined that the modifications are unwanted, then the

transaction may be aborted. In this case, that cluster in secondary storage remains

unchanged. It is important to note that during a write or create transaction, one or more

examine transactions may be open on the same cluster.

A special case of the write transaction is the create transaction. Create

transactions may only be opened during entry to a cluster. They are used if no cluster file

exists on secondary storage or if the cluster file that does exist is no longer wanted. The

create transaction creates a legal value to which the cluster root is set. Once the create

transaction is committed, then the created cluster and any other objects created during the

open transaction are written to the cluster file on secondary storage.

4. Other Systems

a. ONTOS/Vbase

Vbase, a single-user system, a product of Ontologic Inc. (now named Ontos

Inc.) released in 1988, had several problems that caused it to flop. First, it had several

language problems. The Type Definition Language (TDL) was a nonstandard language

which was plagued by many inherent problems associated with nonstandard languages.

TDL was used for schema definition and abstract object interface specification [HW91].

Their object manipulation language was an object-oriented extension of the C language,

called a compiled procedural language (COP) [HW91]. In addition to impedance

mismatch 16 problems produced by these languages, Ontologic had to do everything to

39

support the languages and the languages had not passed the test of time. Additionally, there

was a lack of tools needed to work with the languages. [In891

ONTOS is the successor to Vbase [AHS9 1]. It runs under UNIX, AIX, or OS/

2 [In891. The design goal of ONTOS is that the system should allow trade-off decisions

between performance, formalism, and safety to be made by the user [AHS91]. The system

allows the user to directly access objects through direct references. In this manner, the user

may bypass system mechanisms, controlling low-level detail to enhance performance if

deemed critical to performance. ONTOS also supports C++, overcoming the nonstandard

language problem of Vbase[In89]. Additionally, it provides a class library to enhance its

modeling power. It also has no need for a schema definition language since it operates on

class definitions in C++ directly. Versioning, an alternative mechanism, a graphical

browser, an integrated object SQL, and a multi-user capability on a homogeneous network

also exist in ONTOS. [AHS91]

b. GemStone

The Servio Logic Corporation produces GemStone17 [BM089][HW911, a

disk-based storage manager designed for commercial and engineering markets [BOS911.

The designers of GemStone surveyed object-oriented extensions to C, Pascal, and the

OOPL Smalltalk before deciding to develop their own OOPL, OPAL, a modified version

of Smalltalk-80 [HW9 1]. OPAL is GemStone's data definition language/data manipulation

language, which is also used for general computations/queries [BM089]. Since it only uses

16. When information must pass between two structurally and semantically different languages im-
pedance mismatch may occur [HW9 1]. Database systems that use two different languages in their
implementation often have one that is a procedural language (conventional) and the other a more de-
clarative, higher-level language which results in a mismatch of two language paradigms [Kh9 1].

17. The current version of GemStone is Release 4.0

40

one language, OPAL, for programming, it bypasses the problem of impedance mismatch

[HW9]. GemStone provides an interface to several procedural languages: C, C++, and

Smalitalk [BOS91].

Visual Schema Designer (GS Designer) and Tool Suite are two graphical

tools which are included with GemStone. The GS Designer allows GemStone class

definitions to be modified, deleted, and created using a keyboard and mouse interface along

with bitmapped graphics in a windows environment. The class graph18 is the primary

organizing principle of the GS Designer. Both a high-level application development

environment and a visual programming environment are integrated by the graphical tool

'tool suite'. Motif and OpenLook are both supported by tool suite. [BOS91]

Recently, Servio Corp. introduced a collection of development tools that

facilitate object-oriented financial, scientific, and manufacturing systems construction by

application developers. This tool collection is called the GemStone Object Database

Development Environment, Geode. Geode is comprised of four components: the forms

designer, the visual program designer, the application designer, and the system

programmer tools. The forms designer facilitates the construction of screens for database

information display, update, and insertion. The visual program designer comes with a set

of basic libraries, which may be extended by the user, and applications to be developxI

graphically without writing code. The products of both the forms designer and the visual

program designer are combined into complete applications by the application designer.

Finally, debuggers, cross-reference tools, graphical browsers, and performance profilers

comprise the system programmer tools. [Sc91]

18. A named group of classes interrelated by various types of relationships (including generalization.
association, and aggregation) is called a class graph. All GemStone class graphs have the predefined
Object class as its root. [BOS911

41

GemStone supports several relational gateways. That is, it supports SQL

access to the external databases Sybase, Ingres, Oracle, and Informix. SQL query results

may be viewed as objects using these gateways which provides interoperability with

relational databases. The translation between the systems is facilitated using generic row

(tuple/record) and relation classes that may be specialized by the user hy defining

subclasses these generic classes. (BOS91]

c. POSTGRES

POSTGRES 19 is the successor to the INGRES relational DBMS, and has

been under development since 1986 under the leadership of Professor Stonebraker at the

University of California, Berkeley [St9lb][SK911. POSTGRES is often listed under the

heading of OODBMSs. However, it is more than that since it also supports knowledge

management. Actually, it is an extension of the traditional RDBMS that supports complex

objects; inheritance; methods and functions in the database; and contains both a complete

rule system and an abstract data type system [St9lb]. POSTGRES 11, the successor to

POSTGRES is in the design process and will try to manage main-memory data, disk-based

data, and archive-based data in a unified, elegant manner [BOS911.

The objectives of the designers of POSTGRES are to [Da90]:

"* provide better support for complex objects,

"* provide user extendability for data types, operators, and access methods,

"* provide active database facilities (alerters and triggers) and inferencing

support,

"* simplify the DBMS code for crash recovery,

19. POSTGRES stands for Post INGRES and its current version is 3.0 [RK][SK91].

42

"• produce a design that can take advantage of optical disks, multiple-processor

workstations, and custom-designed VLSI chips, and

"• make as few changes as possible (preferably none) to the relational model.

E. PREVIOUS WORK

In 1988, Michael L. Nelson completed the fundamental work in this area. Nelson's

primary goal was to design a Relational Object-Oriented Management System (ROOMS)

that could be implemented in almost any commercial object-oriented database or any

object-oriented programming language [Ne88]. Stephen C. Filippi expanded the work done

by Nelson with the completion of his Master's Thesis, Implementing Relational Operations

In An Object-Oriented Database, in 1992 [Fi92].

1. ROOMS

ROOMS is the foundation upon which this thesis is built. ROOMS is a feasibility

study to show that the relational data model need not be discarded in moving to object-

oriented systems, and to allow the additional capabilities of the object-oriented paradigm

realization within conventional applications by removing limitations on data types

[Ne88][NMO90].

The fundamental structure of ROOMS is almost as simple as the relational system

it imitates. An object that is a collection of tuples (records) is a relation. An object that is a

collection of fields is a record. Objects that are user-defined class instantiations are fields.

In ROOMS, all records of a relation must have identical format. Distinction between

complex and simple objects are not made: no data type limitations. [Ne88][NMO90]

To show that ROOMS is feasible, the five fundamental relational algebra

operations (selection, union, set difference, Cartesian product, and projection), which

constitute the basis for all other relational operations, were implemented in a LISP-based

43

OOPL, PC Scheme (PCS). However, PCS has no facilities for object persistence so the data

in this implementation is lost from one session to another. [Ne88]

2. Implementing Relational Operations in Prograph

This work continues the concepts of ROOMS by implementing the five

fundamental relational algebra operations in Prograph, an OOPL. The fundamental

contribution of this work is that of object persistence. Even though Prograph is not an

OODBMS, it contains primitive operations that allow for reading and writing database files

to secondary storage and for complex data type manipulation [Fi92]. The natural step that

follows is to actually implement ROOMS in a commercially available OODBMS, which is

the thrust of this thesis.

44

HL DETAILED PROBLEM STATEMENT

A. GENERAL

The focus of previous chapters has been to provide the reader with a very brief

introduction to the motivation and topic of this work, a discussion of fundamental concepts

necessary for a more complete understanding of this thesis, and a point of departure for this

and future chapters. The purpose of this chapter is to provide an overview of some

limitations associated with RDBMSs and OODBMSs, along with a discussion of the

rationale for a combined R/OODBMS approach. In general, the limitations of RDBMSs

tend to be the strengths of OODBMSs and the limitations of OODBMSs the strengths of

RDBMSs.

B. RELATIONAL DATABASE LIMITATIONS

RDBMSs use a very simple data structure, the idea of a table (rows and columns), and

are based upon a strong mathematical foundation, predicate logic and set theory. Primarily

because of these two factors, RDBMS became widely accepted for business applications

over the older and more awkward hierarchical and network database technologies.

However, RDBMSs have a severe limitation: the inability to deal with complex data. It is

the RDBMS's simplicity, along with its mathematical foundation and its complex data

limitation, that are basis for this thesis.

1. Simple Data Types

For years, RDBMS have provided excellent performance for traditional, well

established business data processing applications. Their standard fixed collection of data

types (integers, rationals, strings, etc.) were sufficient to allow RDBMSs to function well.

Now, as more complex data nec-s have developed within the business sector, particularly

45

in the engineering arena, it has become clear that this simple collection of data types is no

longer adequate. Although relational systems have not outgrown their usefulness as

traditional business database needs will always exist, there is definitely a need for

something to overcome their limited data types.

Some current RDBMSs provide the ability to include digitized pictures in their

database applications. However, none provide the ability to include more complex data

structures such as sounds, animated graphics, and extremely large and complicated inter-

relationships among relations within a database, to name some of the primary ones.

Although some relational systems have been extended to include some of these complex

data types, they generally do not include inheritance, encapsulation, and other

characteristics of the object-oriented paradigm.

As RDBMSs attempt to maintain more complicated data relationships,

performance of the system is degraded. The normalization process used in designing the

database schema to represent complex data cause many small relations to exist within the

database. As queries are made of the database, many join operations are then needed to

answer the query. Since join operations are very expensive in terms of performance, the

system tends to provide poor performance. However, in OODBMS this problem is avoided

since these complex relationships can be represented with complex objects that have an

explicit link between component objects. Thus, the need for numerous joins is avoided and

performance is increased.

When modeling real world entities, the relational model uses relations (flat

objects) to represent them. During the normalization process, the relations in a database

schema are further flattened out into a number of smaller relations. This decomposition of

real world entities into smaller flat relations represents a loss of abstraction. For example,

in the previous chapter there was a real world entity that was represented by the relation

Officer in a military database. A database containing the Officer relation might also have a

46

relation called Dependents to represent the real world entities that are dependents of

military officers. However, this is not a very good abstraction. A better abstraction for these

two real world entities in a military database is to have the Officer relation contain one more

attribute: Dependents. But, this attribute would be multi-valued which is not consistent

with the requirement that all attributes in a relational database be atomic. Therefore, multi-

valued attributes are not supported in RDBMSs.

Continuing with the previous example, it can be seen that when an Officer tuple

is retrieved there is direct access to the dependent data also. However, if two relations were

used, then a join operation would be needed to associate an Officer tuple with that officer's

associated dependents. This is a very simple example; however, the reader can imagine that

if the complexity of this type of situation is increased several orders of magnitude, then

surely a RDBMS would provide poor performance in responding to queries of this nature.

2. Tuple Function

As stated previously, relational databases are based on the simple data structure

of a table of values of simple types. Displaying the values of a tuple in a relational database

system is generally straight forward since the values are generally simple text or numbers

that the database can easily handle with ASCII characters. For traditional business data

processing applications, this is certainly sufficient. However, databases that contain more

complex attribute values (such as sounds, graphics, video, etc.) are not so simple.

Consider a database of machine parts that contains as an attribute a 3-D image of

each part along with more traditional attributes, cost, part number, size, weight, quantity on

hand, etc. If a user wants to display a the 3-D image of a particular part, then the part tuple

retrieved requires some method of displaying this attribute since a general RDBMS that

was not designed for this specific application will not be able to display this attribute.

However, an OODBMS could handle this situation by having a Display method for Part

47

objects which would display the 3-D image. Since OODBMSs1 allow objects to have

methods defined for them, any OODBMS would suffice to construct and maintain this

machine parts database. This is in contrast to a RDBMS that would have to be developed

specifically for this application since the data does not contain any functionality that could

be used to determine how to handle it.

3. Inheritance

Relations in a relational database lack the ability to define a new relation based on

an existing relation. That is, a new relation cannot be created that has a schema that only

lists new attributes to be added to the schema for an already existing relation. For example,

assume that a relational database has a relation called Person that has the following

attributes: name, weight, birthdate, color eyes, and color hair. Now we wanted to add a new

relation, Officer, that has all the characteristics (attributes) of Person but also has attributes

rank, branch of service, and unit. It is desirable to allow Officer to inherit the attributes of

Person. The usefulness of inheritance is more evident if we consider that we also want to

have another new relation, Enlisted, that has the characteristics of Person along with

enlistment date, rank, ETS, etc. Now we have two relations that have the characteristics of

Person but do not have to redefine the common Person attributes in each of the new

relations. In a relational system, these common attributes cannot be inherited but each new

relation has to have them explicitly included in their schema.

Using the object-oriented paradigm, inheritance is included by definition and

supports code/schema reuse by allowing an object to be further specialized by the definition

1. It is realized that there is no standard definition for an OODBMS however, in all cases it is gen-
erally agreed that for a DBMS to be considered object-oriented that it must manage objects that have
attributes and methods associated with them.

48

of a subclass that inherits all of the attributes of its superclass. In our example, both Officer

and Enlisted would be subclasses of the class Person. Now, any instance of an Officer or

an Enlisted will include the common Person attributes without having them explicitly

defined in the class definition for Officer or Enlisted.

4. Impedance Mismatch

With many conventional database systems (relational, hierarchical, and network),

there is generally the problem of impedance mismatch. That is, they generally have one

language for data queries and another for data manipulation. In the relational case, a query

language like SQL may be used but then the actual data in the database is manipulated using

a conventional programming language. Thus, there is a mismatch by mixing the generally

procedural conventional language with the more declarative query language along with

their differing data structures [Kh9 1]. In OODBMSs, there is a closeness between data and

programs where a single language has the expressive power and flexibility to allow both

data queries and manipulation.

C. OBJECT-ORIENTED DATABASE LIMITATIONS

Many feel that OODBMSs are here to stay and that they are the next logical step in

the evolution of database technology. However, there still exist two primary drawbacks to

them which limit their acceptance as the answer to tomorrow's database requirements: (1)

the lack of a theoretical basis and (2) no universally accepted standard definition. Neither

of these limitations exist in relational database model which has played a large role in the

overall acceptance of relational model. Thus, there is no reason why a more expressive and

powerful model that can easily have relational databases mapped onto it and overcomes

these limitations cannot become widely accepted for tomorrow's applications.

49

1. Mathematical Foundation

Any query language in a relational system must be relationally complete2. Thus,

RDBMS users are guaranteed that their queries will be answered correctly by any RDBMS

system since relational algebra is based on mathematical set theory and relational calculus

is based on mathematical predicate logic [EN89]. Queries in any language can be reduced

to a mathematical premise and be mathematically shown to be true. This is not the case with

OODBMSs which have no such theoretical basis.

2. Standardization

Possibly more serious than the non-existence of a formal theoretical basis is the

lack of a universally accepted standard definition, which may be considered one of the

relational model's stronger features. Since relational databases have a universally agreed

upon definition and underlying theoretical foundation, different commercial RDBMSs are

functionally equivalent. Standardization leads to many advantages such as better support,

portability among different systems, greater acceptance, common evaluation criteria, etc.

The OODBMS community lacks anything close to a standard or even a generally accepted

definition.

Not only is there no standard definition or specification, but the object-oriented

community cannot even agree upon terminology [Ed9l][Ne9l]. It is even more difficult to

define something when people cannot even agree on the terminology that is used to

describe it. Thus, when a database or any other software product is said to be object-

oriented, the user cannot be sure what that means. Since 'object-oriented' is a hot

2. Recall that relational calculus and relational algebra are equivalent. Thus, it is also correct to say
any query language must have the expressibility of relational calculus or relational algebra. In either
case, a language that satisfies this requirement is said to be relationally complete.

50

buzzword, it is found in advertising for products that may have little to do with the object-

oriented paradigm. This brings to mind a quote used earlier: "I have a cat named Trash. In

the current political climate, it would seem that if I were trying to sell him (at least to a

Computer Scientist), I would not stress that he is gentle to humans and is self-sufficient,

living mostly on field mice. Rather, I would argue that he is object-oriented" [Kin89, p. 231.

The bottom line is that the object-oriented community suffers from definition overloading.

This lack of standardization has also been problematic in that there are no

standard benchmarks upon which to evaluate OODBMS performance [St9lc]. Portability

between systems is poor since no single OODBMS data model exists along with a standard

core set of operations [Ed91]. OODBMSs differ among themselves on whether they have

a class library available and what classes are provided in the library if it exists. This puts

the consumer in a quandary since a decision must be made based on terminology that has

different meanings depending on who wrote it to select from very different available

OODBMSs that may be very costly. Since each OODBMS is so different and the computer

software industry is so volatile, the consumer may lose all support and have to turn to

entirely new system if the company that produced his system goes under. Clearly, if

OODBMSs had a consistent terminology and definition, then it would be much more

widely accepted.

3. Relational Operations

Companies that produce OODBMSs generally think in terms of managing objects

and not relations with their database. Thus, there are not any commercial OODBMSs that

support relations and relational operations 3. However, an OODBMS that does support

3. Some do support an object-SQL interface.

51

relational operations would be valuable in terms of increased compatibility and

completeness. It has been shown that relational operations can and should be made a part

of an object-oriented database [Fi92][Ne88][NMO90]. An OODBMS that incorporates

these operations would benefit from increased credibility along with acceptability among

relational database developers.

4. Other Problems

Other problem areas that cannot be overlooked include the inability for most

commercial OODBMSs to interface with relational systems [St91a]. A better solution is the

integration of both object-oriented and relational systems. However, in the absence of an

integrated approach, some interface should be available. Finally, along with the powerful

modeling capabilities of the object-oriented data model comes an increased difficulty in

making changes to the database as requirements change in addition to design difficulties

[Ed9I].

D. A COMBINED SYSTEM

1. Desirable Properties

A combined relational/object-oriented system will eliminate limita rns that each

of these systems possess as a system by itself. It would allow a relationally modeled system

to naturally model and define complex objects along with their behavior which would

facilitate better performance in complex applications. This ability is not found in simple

extended relational systems. Generally, they allow for the definition of complex objects but

not for their behavior.

Relational classes as part of a combined systems class library are needed:

database, relation, and tuple (or record) classes. Additionally, the five fundamental

relational algebra operations (select, project, Cartesian product, difference, and union)

52

should be a part of all OODBMSs. Credibility and standardization of combined systems

will be enhanced as a result.

2. Possible Approaches

Two primary approaches to a combined relational/object-oriented system exist

The first is to take an existing RDBMS and extend the system to include all of the concepts

in the object-oriented paradigm. Once this has been done, the underlying system is still

relational so the system should still have all of the functionality of a purely relational

system along with the advantages of the object-oriented paradigm. This would be a difficult

and arduous task. Additionally, since the underlying system is relational, it may not be as

efficient as an object-oriented system at managing objects. The other approach is to take an

existing OODBMS system and construct classes and associated methods that would allow

the OODBMS to provide relational functionality within the system. Thus, the relational

model could be used with this system. This approach is much simpler since it requires the

construction of three classes and their associated methods as compared with trying to

implement all of the complex and powerful c.oncepts of the object-oriented paradigm.

E. WHY THIS APPROACH

"The relational model is a viable approach to organizing persistent objects in an

object-oriented database" [NMO90, p. 319]. The real world consists of complex entities/

objects that are easily modeled with an object-oriented paradigm. A R/OODBMS exists

with the best of both worlds; it reduces the limitations that the individual systems realize

by themselves. Conventional applications in a R/OODBMS can be extended to include

complex data, and new non-conventional applications may also be developed in the same

system.

Original work done in the development of the ROOMS paradigm [Ne88J and later

work done with a R/OODBMS as implemented in Prograph [Fi92] is extended in this

53

thesis. ROOMS was not a full R/OODBMS since it lacked the ability to store persistent

objects. A R/OODBMS in Prograph was a logical next step in the extension of ROOMS to

a full database system.4 This work completes the proof of concept that began with ROOMS

and culminates in its extension into a commercially available OODBMS, IDB. The system

implemented in this thesis is a single R/OODBMS that can fulfill the requirements of both

relational and object-oriented users.

4. This is because Prograph is an object-oriented programming language that supports the storage
and retrieval of persistent objects in secondary storage through its built-in database primitives
[Fi92].

54

IV. IMPLEMENTATION OF AN R/OODBMS IN IDB

An R/OODBMS in IDB, as implemented in this thesis, is the culmination of a proof

of concept that began with ROOMS [Ne88]. In that respect, it is not intended to be a

production/commercial system. This chapter describes the fundamental design and detail

of the implementation of an R/OODBMS in IDB. Although, there may be 'better' or more

efficient implementations, the system as described is functional and does provide a proof

of concept. It should also be noted that the author has worked exclusively with the

commercially available IDB system. That is, there were no special/trade tools provided by

Persistent Data Systems for this effort.

A. THE SYSTEM DESIGN

As described in [Ne88], the fundamental design of ROOMS is quite simple. This

thesis is modeled after that design. A database is comprised of a group of relations. A

relation is comprised of a group of tuples. A tuple is comprised of a group of attributes.

Database, relation, and tuples are all implemented as classes. Both database and relation

classes are IDB node class types while the tuple class is a strict class type.1 Thus, tuples

have as descendents user-defined classes that, when instantiated, become the tuples

comprising a relation. In this manner, relations differ by the type of tuples they contain.

While it is possible to create stand-alone applications in IDB, the R/OODBMS was

created for use within the IDB browser. Thus, the IDB core, display, and browser interface

were used in the implementation of the R/OODBMS. The R/OODBMS user interacts with

1. Recall that in IDB a strict class type has one or more descendents while a node class type has no
descendents.

55

the IDB browser to view the relations of a particular database and to perform relational

algebra operations on relations within a particular database.2

Figure 17 shows a picture of the IDB Browser Interface. Pull down menus are listed

along the top of the window. Within the browser, the programmer/application developer

may introduce their own menus. We opted not to use this feature; instead the commands

that the R/OODBMS user needs are displayed in the Menus pane.3

I I Browser ý
Cluster View Options Connands Current Context Heap Help

Rddress Database
Hisslonar/Cannibal Database

Relational Rddress 002

*> dbdir:dlbdlr [E] /None Current First
root : linked seq => [Address Database,...] Last
current : linked seq 0> [Cddress Database,,..]
context : nil 0> nil

Help: sequence element
Error:
nornal >

Figure 17 1DB Browser Interface

2. A database directory was developed to allow the R/OODBMS to manage more than one database.
APPENDIX B contains the source code, the IDL schema and C implementation of the methods for
the database directory cluster. APPENDIX C contains the [DL schema and C method implementa-
tions for R/OODBMS.

3. There are four panes within the browser window as shown in Figure 17: Current Object, Context
Object, Browser State, and Menus. The user may have none, all, or any combination of these panes
displayed at any time by making appropriate menu selections from the View menu commands.

56

Since the R/OODBMS is irr Jlemented as a proof of concept, it is not designed to have

all of the facilities that are expected in a production system. Therefore, several assumptions

are made about the R/OODBMS. It is assumed that the user will input correct information,

in the correct syntax, for the R/OODBMS relational algebra operations and that the

relations named as operands in the operation actually exist within the databn 3e.

Additionally, all tuples within a relation must be instances of the same tuple descendent

class. Thus, error checking is not provided consistently in all relational algebra operations.

That is, different amounts of error checking have been provided among the operations in

the hope of demonstrating the feasibility of detailed error checking without the overhead of

implementing it for every operation. In two cases, detailed error checking has been

implemented to demonstrate the feasibility of doing it for all operations, as will be

described shortly.

By the same token, the relational operations, as implemented in this thesis, are

implemented in the simplest manner possible while still demonstrating the feasibility/proof

of concept of a R/OODBMS. For example, you may recall from Chapter II that the

selection condition of a selection operation is a boolean expression consisting of clauses of

the form:

<name of attribute><comparison operator><constant value>;

or

<name of attribute><comparison operator><name of attribute>

where <name of attribute> is the name of an attribute of the input parameter relation;

<comparison operator> is either >, <, _,> or #; and <constant value> is any arbitrary

number of clauses may be connected with the AND, OR, and NOT operators to form the

selection condition expression [EN89]. In this implementation of R/OODBMS, only one

57

clause is allowed for the selection condition since allowing an arbitrary number of clauses

is just repeated applications of one clause in its simplest form.4

B. ORIENTATION TO R/OODBMS

This section is intended to familiarize the reader with using the R/OODBMS. It is not

intended to be a complete user's guide. However, it should provide sufficient information

so that a user could use the source code in APPENDIX B and APPENDIX C on a platform

supported by IDB, translate the IDL schema, compile, and run the R/OODBMS.

1. The Database Directory

The database directory allows multiple R/OODBMS databases to be managed in

IDB. If IDB is run with the following command line entry, then IDB will open the database

directory cluster and display the browser window shown in Figure 17: 'idb -c dbdir -t

dbdir'. 5 In Figure 17, there are four databases in the directory: Address Database,

Missionary/Cannibal Database, Relational Address DB, and Relational Address DB2. If

one of the databases is selected, say the Relational Address DB, then the browser window

would appear as shown in Figure 18. Here the Relational Address DB object is the current

object and the directory (sequence) of databases becomes the context object. To enter this

database, select the enter commaind from the Menus pane.

4. Of course, there are more efficient methods of implementation than just repeated applications.

5. The name following the -c flag (dbdir in this case) in the command indicates the home cluster that
will be used when IDB begins running. The name following the -t flag (dbdir) indicates the home
cluster type. In this case, the home cluster is dbdir.c and its type is dbdir.

58

IM rN Brovser

Cluster View Options Commands Current Context Heap Help

Relational flddress OB Address Database
tgpe:relational Nissionarg/Cannibal
file:rel.addr Relational Address 0
exanine:true Relational Address 0

=> dbdir:dbdir [E] /Hone Current
root : lInked seq 0 [Flddress Database,...] Context First
current : database 0> Relational Address 08 Last
context : linked seq 0> [Address Database,.. Forward

Backuard

Kelp: enter this cluster

Error:
normal)

Figure 18 Entering a Database

2. Inside a R/OODBMS Database

Entering the Relational Address DB database, IDB opens the database cluster and

displays the relations within the database in the Current Object pane as shown in Figure

19.6 Now, any of the relations can be opened. For example, if the ptl relation is selected

then the Context Object pane will display the list of all relations within the database and the

Current Object pane will display short form of the tuples within the relation ptl (see Figure

20). Since each tuple within a relation is also an object, a tuple can be selected in which

6. In the interest of saving space and enhancing readability, interesting panes only will be shown in
Figures.

59

case the list of tuples would move to the Context Object pane and the particular tuple

selected is displayed in the Current Object pane.

] DIB Browser 81
Cluster Vieu • Coands Current Context, Heap Help

Relational Rddress D0 Current NeuRelatlon

> ri
r2
r3
test2
TEHP1
r4
r5
ptl
pt2
Cart Resultl
project resultl
conp obj

Help: select this nenu
Error:
nornal >

Figure 19 The Relational Address DB

Notice that as different objects are displayed in the Current and Context Object

panes, the commands available in the Menus pane change. At any time, the Menus pane

will display those methods associated with the objects being displayed in either of the

object panes as long as the application programmer has specified them to be browser

visible; there may be methods that are required by an object for interaction with other

objects only that the application programmer decides the application user should not have

access to (i.e., they are not browser visible).

60

IEB Brovser

View Options Connands Current Context ap Help

ptl Relational Address D

:> 550926190 2 10 z> rl
999999999 1 45.200 r2
123456789 2 51.5 r3
987654321 30 4 test2

TEMIPI
M4

Current HeuTuple
Union
Projection
Difference
CartesianPro
Selection

Context NeuRelation

Help: select this nenu
Error:
nornal >

Figure 20 The Relation ptl

When any of the relations within a database is displayed in the Current Object

pane, the Menu pane commands associated with the Current Object include the five

fundamental relational algebra operations that are implemented within the R/OODBMS.

Selecting any of the relational algebra operations brings up an associated pop-up window

that allows the particular operation to be expressed in a query. The details of each of the

relational algebra operations are discussed in the next section.

61

C. RELATIONAL METHODS

As discussed in Chapter II, there are five fundamental relational algebra operations

from which all other relational algebra operations can be constructed: union, difference,

selection, Cartesian product, and projection. These five operations are implemented as

methods for the node class relation in the R/OODBMS. The difficulty in implementing

these operations is directly related to the structure of the resultant relation as compared to

that of the operand relation(s).

With the union, difference, and selection operations, the resultant relation has the

same structure as the operand relation(s). Thus, the resultant relation's structure is already

defined within the database and can be used to construct the resultant relation. In this sense,

these operations may be considered simple. Cartesian product and projection, on the other

hand, both yield resultant relations that have a different structure from the operand

relation(s). Thus, the resultant relation's structure may not already exist within the database

and either must be explicitly defined in the schema or dynamically constructed at run-time.

Thus, these two operations may be considered difficult.

The details of each operation are discussed below along with difficulties encountered

in their implementation and special implementation notes. Once one of the simple

operations (i.e., result relation has the same structure as the operand) was completed, the

other simple operations followed relatively quickly in their implementation. Selection,

however, was more difficult than the other two since it required the implementation of

default comparison operations: equal to, less than, and greater than.7

7. As discussed in Chapter II. there are six comparison operators: , •. <,>, •. and :. The last
two are a combination of = and < and = and >, respectively. # is just the inverse of =. Thus, it is
sufficient to implement only =, <, and >.

62

Before continuing, it is important to discuss the two possibilities for inserting tuples

into the resultant relations: (1) a new tuple object can be created and then the values of the

tuple can be copied into this new tuple, or (2) a reference to the tuple to be inserted can be

used.8 If the first approach is used, then the relations are independent of each other. That

is, an update to any of the relations (operand or resultant) will have no effect on the other

relations.

In the second approach, the relations become interdependent since they reference the

same tuple relation. Thus, a change to the tuple in one relation will also be reflected in the

corresponding referenced tuple in the other. This may or may not be desirable. A problem

associated with this approach is the resolution between duplicate tuples in a binary

operation. For example, there are two relations A and B, and we would like to perform the

union operation. Relation A contains a tuple that is identical to one in B. Thus, it is a

duplicate and must not be duplicated in the resultant relation, call it C. But, which tuple

does C reference: the tuple in A or the tuple in B? They are both identical.

It would be best to allow the user to indicate in their query which of the two

approaches is desired for a particular query. To show the feasibility of both approaches,

some operations in the R/OODBMS were implemented using the reference approach while

others used the copy approach. However, no operation was implemented with both

approaches left for the user to choose from. It is clear, however, that if they can be

implemented separately, then it is just a matter of additional programming and fine-tuning

the user interface to add the ability to let the user choose.

The persistence of the resultant relation for these operations should also be

considered. The resultant relation is not initially written to the database in secondary

8. That is, either make a copy of attributes in existing tuples or provide pointers to them.

63

storage, although it does appear in the list of relations for the database in the browser

window (it only exists in main memory). If a write transaction is entered and committed,

then the resultant relation will be written to secondary storage. If a write transaction is not

entered and subsequently committed, then the resultant relation is lost when the transaction

on the database is closed. Additionally, if a write transaction is entered and subsequently

aborted, then the database cluster is read from disk again and any relation not previously

stored on secondary storage is lost.9

Although a resultant relation only exists in main memory, it may be used in other

queries just as any other relation within the database. It does not matter whether the

temporary resultant relation has been committed to secondary storage, as far as the

relational algebra operations are concerned - the resultant relations may be operated on as

any other relation. For example, if relation RI were unioned with R2 and the resultant

relation TEMPR3 were yielded, then a subsequent difference operation could be executed

using TEMPR3. It should be remembered, however, that even though these relations may

be used in other queries, they are not written to secondary storage until a write transaction

has been entered and subsequently committed. 10

We will now discuss each of the 5 basic operations individually.

1. Union

The union operation is performed by the function union-op. It takes two relations,

R1 and R2, and computes their union. The resultant relation is created by the function

9. Naturally, if a query is made during a write transaction, then the persistence of the resultant rela-
tion depends solely upon whether the write transaction is aborted or committed.

10. All resultant relations will be saved when the commit is executed. By the same token, if the write
transaction is aborted then all of the resultant relations will be lost since a new transaction is entered
after the abort which causes the database to be read from secondary storage.

64

initctemp-rel which takes R I and R2 as its parameters and returns a relation with a unique

name and some default values taken from R 1. The syntax of the union operation (shown in

the center of the pop-up window within the parentheses) is shown in Figure 21. Notice that

there is no resultant relation listed in the query. This operation creates and names a resultant

relation that will appear in the list of relations for the current database (this is in contrast to

the project and Cartesian product operations where the resultant relation is named in the

query, as will be discussed shortly). As previously noted, it would be desirable, in a

production system, to have the ability to phrase a query with the option of providing a

relation name or having a default name generated.

[] IM Broewer

Cluster Viesw Options Connands Current. Cont~ext. Heap Help

r2 WINO dreMS: O

Z> fcCI
Thar
Nash

Please input. the union querg (RI union R2):

pie

ction
rence
sianPro

Help: connand input. line t~ion
Error: lation
Response >

II
Help*
Error:
Union >

Figure 21 Union Query

65

The union operation, in contrast to the other operations1", has extensive error

checking in its implementation. The R/OODBMS first checks to make sure that the operand

relations exist within the database. If both relations are found in the database, then they are

checked for union compatibility. Provided that the relations exist and are compatible, a

temporary relation is created by the initjtemp-jel function and subsequently its tuples are

inserted, ensuring no duplicate tuples. Tuples are inserted by reference and in the case of

inserting a duplicate tuple, a reference is made to the tuple from relation RI.

The function used to check for duplicate tuples is the equal-to method which is

defined for the class tuple. As such, it has a default implementation that only checks to see

if the tuples reference the same object. This method will most likely have an over-riding

user-supplied implementation for each tuple type. The prototype/signature for the method

is boolean equal-to(tuple, tuple, index)12. That is, the function takes three parameters, two

tuples and an index, and returns a boolean. Each of the tuples must be of the same type.

When the value of the index is 0, then the equal-to function compares the each entire tuple,

all the attribute values. Otherwise, index is greater than zero and is an index to the attribute

within the tuples that is to be compared (selection operation). This function is also used in

the selection operation.

2. Difference

The difference operation is implemented in a manner similar to that of the union

operation. The function set_diffop takes two relations and computes their difference. The

resultant relation is created in exactly the same manner as in union-op. Setdiff op also has

11. The difference operation has the same level of error checking as the union operation.

12. This is the actual C function signature/prototype that shows the function equal_to has three pa-
rameters (tuple, tuple, and index) and returns a boolean to the caller of the function.

66

the same level of error checking as unionop. The main difference between its

implementation and that of union-op is in the insert decision for tuples that will comprise

the resultant relation.

In the union-op function, all of the tuples from RI are inserted into the resultant

relation. Afterwards, the tuples from R1 are compared with those already in the resultant

relation and if they are not duplicates, then the tuple from R2 is inserted into the resultant

relation. In the setdiff op, each tuple in R 1 is checked to see if it exists in R2; if it does

not, then the tuple is inserted into the resultant relation. Insertion is by reference here as in

the unionop function. Figure 22 shows the difference query pop-up window with the

correct syntax for the query.

I2 B I Browser

Cluster Vieu Options Connands Current Context Heap Hel

ptl dress OB

0> 5509
9999
1234 Please input the Difference querg (RI - R2):
9876

ction

Help: conmand input line sianProd
Error: Lion
Response > U lation

Help:
Error:
Difference)

Figure 22 Difference Query

67

3. Selection

Of the three simple operations, selection was the most difficult to implement. It is

a more complex operation since, even in its simplest form, it operates on a single attribute

of a relation (which can be any one of the attributes in the relation's schema) and compares

the value of that attribute for every tuple in the relation with a specified value to determine

which tuples should be included in the resultant relation. Again, the resultant relation is

created using the function initjtemp-rel. This implementation, select-op, has the

functionality necessary to demonstrate the feasibility of implementing a fully functional

selection operation.

The general syntax for the R/OODBMS selection operation is:

<relation name> select <attribute name> <comparison operator> <attribute value>

where <relation name> is the name of the relation to be operated on, <attribute name> is

the name of the attribute within the relation upon which selection will be based,

<comparison operator> is a user-defined comparison operator (equal_to, greater-than, or

less-than), and <attribute value> is the value to be compared with. Figure 23 shows the

select query syntax. The particular query listed selects all tuples of ptl where the attribute

value of Hours Worked is greater than the Hours Worked attribute in Comp Object.

68

$Browser

er View Options Connands Current Context Heap Help

Ip obj w i-' J s DD

550926

Please input the Select query (RI select attr conp.op object):

n
e

Help: connand input line
Product

Error: on
Response > . .•.!rsQ

II

1tion >

Figure 23 Select Query

It would be desirable to be able to list just a value for the <attribute value>;

however, at a minimum it is necessary to be able to compare the same attributes of two

objects. In R/OODBMS, the <attribute value> is a comparison object of the same type as

the operand relation, R 1. This comparison object can only have one tuple in it and may must

have at least one of the attribute values entered, the one to be used for comparison. In Figure

23, Comp Object has the same type as pt I, thus it has the same attributes. The one tuple in

Comp Object has 20 ab the value for Hours Worked. Thus, the query is equivalent to select

all tuples in ptl where Hours Worked is greater than 20.

Selectop checks the database to ensure that both the relation to be operated on

and the comparison object are both in the system. If they are, then the attribute name is used

69

to determine the index into the relation schema. If either of these conditions is not met, then

the system brings up a pop-up window explaining that an error has occurred, what the error

is, and allows the user to continue without crashing. Again, initjtemp-rel is used to create

and name the resultant relation for this operation. Finally, based on the comparison operator

specified in the query, the appropriate comparison method is executed. The tuples of the

operand relation are iterated through and those meeting selection criteria are inserted into

the resultant relation by reference.

4. Cartesian Product

Of the two more difficult operations, Cartesian product is the simpler to

implement as it operates on all attributes of the tuples in eaLh of the operand relations.1 3

Since the resultant relation has a different structure than either of the operand relations, the

inittemp-rel function cannot be used. Instead, the user must provide the definition of the

resultant relation witnin the database IDL schema beforehand. Now, a relation can be

created within the database to hold the result of the operation. As a logical comequence,

the relation that is to hold the result of the operation must be named in the query. Figure 24

shows the Cartesian product query pop-up window with the required syntax.

13 This is in contrast to the project operation where only a subset of the attributes will end up in the
resultant relation. In a Cartesian product operation all of the attributes from each operand relation
will be in the resultant relation.

70

[] InS Browser

Cluster View Options Confands Current Cont.ext Heap Help

r3 trwdp)u*t w

> Kelly
Spear

Please input the Cartesian product query (R3 = R1 X R2):

on
ce

Help: connand input line ' ,
Error: n
Response > . ' - -ion

II

Help:
Error:
CartesianProduct > Cart Resulti = r3 X ptl

Figure 24 Cartesian Product Query

Defining the resultant relation's IDL schema is not difficult since we know that

its schema is simply the concatenation of the two operand relation's schemas. No matter

how complex the two operand relation's schemas are, the Cartesian product resultant

relation will simple include the attributes as defined in both of the operand relations. 14 For

example, suppose there are two relations, Employee and Assigned Project, with their

respective tuple types defined with the IDL schema shown in Figure 25.

14. If muir~pie inheritance were available, the resultant relation could simply he defined as a subclass
of each of the operand relations. As such, it would inherit the attributes of each of superclasses.

71

emptuple => person person,
address addr,
phone phonenumber,
widget idl_univ;

projtuple => essn integer,
proijnum integer,
hours rational;

Figure 25 IDL Schema for Employee and Assigned Project Relations

In our example, the attribute types of each of the tuples in the Assigned Project

relation are simple: integers and rational. However, in tuples in the Employee relation,

attributes have user defined (and provided) types and are, therefore, more complex. But, it

is still a simple matter to create the schema for the resultant relation for a Cartesian product

operation since all of the types (person, ad,' -'. ne_number, idl_univ, integer, and

rational) are already defined within the database IDL schema (see Figure 26).

cartlresult tuple :> person person,
address addr,
phone phonenumber,
widget : idluniv,
essn integer,
proj.num integer,
hours rational;

Figure 26 Example Resultant Relation Schema for a Cartesian Product Operation

Cart-prod-op implements the Cartesian product operation by first determining if

the two operand relations and the resultant relation are in the database. If they do exist, then

it is a fairly simple matter to take one tuple at a time from the first operand relation,

concatenate it with each tuple of the second, and insert each resultant tuple into the resultant

relation. The function insert_tuples is used by cart-prod-op to insert the tuples into the

resultant relation.

72

In the query shown in Figure 24, r3 is a relation with emp-tuple type tuples, ptl

has proj-tuple type tuples, and Cart Resultl has cart Iresult-tuple type. Figure 27 shows

the relation r3 with its two tuples, Kelly and Spear. In the left side of Figure 27, all of r3's

tuples are shown in their abbreviated form. 15 In the right side, a single tuple is shown in its

entirety.

=> Ronald L. M. (29 Dec 62) [Karin]SSN: 120926190

=> (408)375-8619
=> Kelly

=> Spear
0-) 3978 RickeLLs Road

..................... ontereg, CR

The Relation r3

The Spear tuple of relation r3

Figure 27 The Relation r3 and One of its Tuples

The relation ptl is less complex and as such its abbreviated version has all of the

information of each tuple. Therefore, there is no need to include a single tuple of ptl in the

Figure 28. If a single tuple were shown, there would be three values: an employee ssn,

project number, and hours worked. However, these values would then be listed sequentially

in a vertical fashion.

15. The abbreviated form only shows the last name of the person attribute. The predefined IDB func-
tions idl-print and idl-key can have their implementations over-ridden by the user to present the re-
lation and its separate tuples in any desired fashion. Figure 27 shows one such display.

73

0> 120926190 2 10
999999999 1 45.200
123456789 2 51.5
987654321 30 4

Figure 28 The Relation ptl

The result of the Cartesian product of relations r3 and ptl is shown in Figure 29.

The left side of the figure shows the abbreviated display of the relation Cart Resultl tuples,

while the other side shows one entire tuple from the relation.

=l Ronald L. W (29 Dec 62)
SSN: 120926190

:) Kelly 120926190 2 10 0> (408)375-8619
Kelly 999999999 1 45.200
Kelly 123456789 2 51.5 0> 3979 RicketLts Road
Kelly 987654321 30 4 M:onterey, CR

0 Spear 120926190 2 10 93940
Spear 999999999 1 45.200 120926190
Spear 123456789 2 51.5 2
Spear 987654321 30 4 10.0

: °........ I •......

The Relation Cart Result1 The Spear tuple of Cart Result 1

Figure 29 Cartesian Product of r3 and ptl

5. Projection

Although the projection operation has a resultant relation with the same number

of tuples as the operand relation, it is complicated by the fact that any combination of the

attributes of the operand relation can constitute the schema of the resultant relation. As with

Cartesian product, since the resultant relation has a different structure than that of the

74

operand relation, the user must provide the definition for the resultant relation in the IDL

schema beforehand. Again, this is not a difficult task since the schema of the resultant

relation is a subset of the attributes of the operand relation. Thus, all of the attribute types

must already be defined in the database schema. Parsing the query is more difficult since

any combination of the attributes can be specified in the query to be projected into the

resultant relation. Figure 30 shows the browser pop-up window that accepts the project

query and also specifies the query syntax for this operation.

[] 1DB Browser

Cluster Vieu Options Connands Current Context Heap Help
LW

project 1

=> 20.399
3.2000
67.25

Please input the Project querg (R2 * R1 project At~r.list):

ce

Help: coumand input line nFre
Error: n
Response) nio

II

Help:
Error:
Projection > project 1 = ptl project Hours MorkedEnplogee SSN

Figure 30 Project Query

Consider a relation with tuples of type proj-tuple as defined in Figure 25. If the

user wanted to project the hours worked and employee ssn of each tuple, then a schema for

the resultant relation would look like the one in Figure 31. The function projecLop

75

implements the operation. Once it has checked to ensure that the operand relation and the

resultant relation exist, it calls the function insertfields to insert the appropriate attributes

into the resultant relation.

projectlresulttuple => hours rational,
essn integer;

Figure 31 Example Resultant Relation Schema for a Project Operation

D. THE DATABASE CLASS

The database class is an IDL node class and is actually quite simple. Its sole purpose

is to keep track of the relations within the database. As mentioned in Chapter U, each IDB

cluster must have a root class from which all other classes can be reached. For the R/

OODBMS, the database class is the root. Thus, all functions that implement the relational

algebra operations start their search for the relations from this class. This coincides with the

idea of a database being a collection of relations.

1. Attributes

The database class has only two attributes: name and relations. The name attribute

is included so that when a database is entered users can see the name of the database that

they are in. However, none of the operations in the R/OODBMS require this attribute. The

relations attribute is very important since it is the means by which all relations in the

database are reached. Its type is a sequence of relations where relation is another IDL node

class. The sequence is a doubly-linked list. 16 All of the R/OODBMS relational algebra

operations use the relations attribute to iterate through when trying to locate a particular

relation within the database.

76

2. Methods

As with all objects in R/OODBMS, the predefined IDB core interface methods

idl-key and idl-print are over-written.17 Simply stated, idLprint displays an object while

idl-key displays a short description of the object [Pe9la]. Their predefined

implementations are functional but, of course, cannot anticipate the types of objects that

will be displayed, much less the most pleasing format to display them in. In the following

discussion of other classes these methods will not be discussed again although each has its

own implementation for the idl-key and idl-print methods.

The only other method defined for the database class is newrelation which, as

the name implies, creates a new relation and inserts it into the database. To create a new

relation using the newrelation method, the user must first enter a write transaction.

Otherwise, when this method is selected from the Menus pane, an initialize new relation

pop-up window will appear but the user will not be able to view and edit all of the relation

attributes necessary. If a write transaction is open when new_relation is selected, then the

pop-up window will display all attributes of a relation ready for editing. 18 The user is

responsible for initializing the relation attributes to valid values.

16. Sequences in IDB are either arrays (the default) or doubly-linked lists. Arrays are convenient for
sequences with a static number of entries. However, every time the size of the sequences changes
there is a great amount of overhead involved. Linked lists support sequences whose number of en-
tries varies dynamically.

17. Both idl key and idlprint can only be used with the display manager. An exception will be
raised if attempts are made to invoke these methods without the display manager. [Pe91a]

18. The idl-print implementations for relations do not display all attributes during read and examine
transactions. However, since the user needs the ability to edit all attributes, they are visible during
write and create transactions.

77

E. THE RELATION CLASS

Codd's relational model is simple, representing databases as a collection of relations

(or tables). Hence, relations are the fundamental building block of the model and as such

the relation class of our R/OODBMS is the fundamental building block of the system. As

with the database class, the relation class is an IDB node class type. Since a relation is a

collection of tuples, it stands to reason that the attribute tuples is the most important

attribute in this class.

1. Attributes

a. Relation-name

This attribute plays a greater roll in the R/OODBMS than does the database

classes' attribute name. The relationname allows different relations within a database to

be easily differentiated. Of course, the database name within the database directory plays

as great a role. The type of this attribute is an 1DB string.19

b. Attribute-names

The relational schema is specified by the relation's attributes which are listed

in attribute names. This attribute has a type that is a sequence of name where name is an

object/class (an 1DB node class) that has a single attribute, name. The name attribute of the

name object is a string type. Thus, attribute-names is simply a sequence of strings. Since

the schema of a relation is static, the default array sequence is used here.

19. An 1DB string differs from a C string in that it has an additional null character at the end of the
string. That is. there are two null characters at the end of an IDB string. IDB strings can generally be
used in the same manner as C strings.

78

The degree of a relation is simply determined by the number of attributes.

This is easily done by checking the size of the array that comprises attributename. Two

relations are said to be union compatible if each is of the same degree and if corresponding

attributes have common domains. Thus, attributenames is used by both the union and

difference operations to determine if the two operand relations are union compatible.

The project and select operations are the only other R/OODBMS relational

algebra operations that require the attribute attributenames since they operate on a subset

of the attributes and single attribute of the operand relation, respectively. Specifically,

attributenames is used to determine if an attribute(s) in a query is in the operand relation

or not. Additionally, it is used to determine the index (position within the relational schema)

of an attribute.

c. Attribute types

Attribute-types is of the same type as attribute-names, however, it is used

only in support of the union and difference operations to determine if operand relations are

union compatible. As stated above, union compatible relations have corresponding

attributes with a common domain. Having a common domain means that the attributes have

the same types. Thus, once two relations are determined to be of the same order, their

attribute types are checked to ensure that they have a common domain.

d. Tuples

The tuples attribute within a relation is a sequence of tuples where tuple is an

IDB strict class type. Thus, tuple has subclasses which are referenced by this attribute.20

Thus, IDB allows a relation to have a sequence of tuples where some of the tuples reference

20. An attribute in IDB that has a strict class type can reference that class or any of its descendents.

79

one subclass type of the IDB strict class tuple while others reference a different subclass.

However, if allowed in an R/OODBMS, then this sequence of tuples should not be called

a relation, as this would allow various tuples to have a different number of attribute values

and/or have different domains for corresponding attributes. Thus, all tuples within a

relation must be of the same subclass of the IDB strict class tuple.

It is the tuples attribute that allows one relation to differ from another in

structure. All of the descendents of the IDB strict class tuple are user defined. The user may

define a subclass of tuple to have any desired structure. For example, the user may with to

have an employee relation and a project relation where the employee relation contains

personal information about the employee while the project relation contains information

about different projects that the company has worked on. A relation should be constructed

to model each. To create each relation, the user must first define the type of tuple that will

comprise each relation: an employee tuple and a project tuple. Now, the newrelation

method of the database class is used to create the new relations. Each relation should be

given a descriptive name. Only employee tuples should be inserted into the employee

relation and project tuples into the project relation. This restriction must be enforced by a

production system; however, our proof of concept system assumes that the user will do this.

Since the number of tuples within a relation varies with time, the size of the

tuple sequence is dynamic. Database updates, insertions, deletions, etc. generally

necessitaLe a modification to the number of tuples within a relation. Therefore, the sequence

of tuples that comprise the tuples attribute is a doubly-linked list which allows the sequence

to dynamically grow and shrink at run-time.

e. Tuple type

Tuple-type is of the IDB strict class type tuple. Thus, it can reference any of

the user defined tuples that comprise relations within the database. When a relation is

80

created, the tuple-type attribute must reference an object that is of the same type as all

tuples within the relation. Therefore, an object should be created solely for that purpose and

then the tuple-type attribute needs to reference it.

As discussed in Chapter II, IDB invokes methods by the use of two different

operations: idlvop and idl-top. Idltop is used to invoke a specific method implementation

within the class hierarchy while idl-vop invokes the implementation of a method that is

most closely defined for an object. For example, idl-print has a default implementation that

is inherited by all classes. Consider the two tuple types employee tuple and project tuple,

both of which have specific implementations for the idl-print method. 2 1 Both of these

classes have tuple as their superclass and tuple also has a specific implementation defined

for idl-print. Thus, there are now four implementations for the one method, idl-print: the

default, the strict class tuple's, employee tuple's and project tuple's. Idl-top allows us to

explicitly indicate which implementation of idl-print is invoked regardless of which object

is being printed while idl-vop invokes the specific implementation closest in the hierarchy

to the object that is to be printed. Thus, using idl-top, an employee tuple could be printed

using the strict class tuple's implementation. However, if idl-vop were instead used to

invoke the idl-print method, then the employee tuple's implementation would be invoked.

Tuple-type is used in an idl-vop operation to indicate which implementation

of a method to invoke. This is used most often within the method new.tuple (create.tuple

is its C implementation) to invoke the correct implementation of initializetuple. Each

descendent of the strict class tuple must have its own user defined and specified

implementation for initializetuple.

21. That is, along with their IDL schema definitions, both classes have redefined the implementation
for the idlprint method.

81

f. Key

The default key used in the R/OODBMS is to check the value of every

attribute within a tuple. Each relation has at least one superkey: the key that is all of the

attributes of the relation. By definition, each tuple within a relation must be unique. Since

a tuple is comprised of all its attributes, the set of all its attributes is therefore a key.22 When

this implementation is over-ridden the user may use this attribute to specify some other key

to be used when comparing tuples.

2. Methods

Other than the relational algebra operations, idl-key method, and idl-print

method that have already been discussed, the IDB node class relation has two other

methods defined: new.tuple and checkunioncompatability. Their names are quite

descriptive of their function. As mentioned earlier, create.tuple is the C implementation of

the method new-tuple. As with all of the node class relation's methods, new.tuple requires

no user defined methods. However, it does invoke a user defined and provided method:

initializetuple (a method of the strict class tuple). The function of

checkunionscompatability has already been discussed in the sections pertaining to the

attributes attribute_names and attribute_types.

F. THE TUPLE CLASS

User defined tuples must be subclasses of the strict class type tuple. Of the three

required classes that comprise the R/OODBMS, tuple is the only one that is not an IDB

node type. As such, it cannot be instantiated into tuples (objects) that can be inserted into

22. This is not to say it is the only key. There usually exists other keys that are a subset of attributes
comprising a relation.

82

relations. Instead, the user must provide the definition for tuples that are descendents of this

class.

1. Attributes

Tuple, as a strict class type, has no attributes defined for it. There are no attributes

that are common to tuples of every relation. Thus, it makes no sense to define attributes at

this level since they would be inherited by all descendents.

2. Methods

Each method defined for this class has a default implementation that is very

general. As a whole, most of the default implementations are so general that they tend not

to be very useful. Users must provide their own implementation for each method defined

for this class. Clearly, the implementation of the method initializejtuple must be different

for an employee tuple than for a project tuple since they likely have different orders and

differing domains corresponding to their attributes.

a. Initialize-tuple

As the name implies, the function of this method is to return a newly created

and initialized tuple. It has a tuple as its only parameter, creates a new tuple, initializes the

tuple with valid values, and returns the new tuple.

b. Insert-fields and Insert tuples

The first approach attempted in implementing these insertfields and

insert_tuples, which support the project operation and Cartesian product operation

respectively, was unsuccessful. Consider the Cartesian product operation: to form the

resultant relation each tuple of the first operand relation is concatenated with each tuple in

the second. This concatenation process is continued for every tuple in the first relation. It

therefore seemed logical to create a function called inserttuple that would take as its

83

parameters two operands, the tuple to be inserted and the resultant tuple. Each user defined

tuple used within a relation in the database would have their own particular implementation

of the method.

For example, recall the tuple types defined by the schemas in Figure 25 and

Figure 26. To insert the resultant tuples into the resultant relation for the operation Cart

Resultl = r3 X ptl (where the relation Cart Resultl has tuples of type cartl_result-tuple,

relation r3 bus type emp-tuple, and ptl has type proj-tuple). the relation r3 would be

iterated through a tuple at a time. The insertjtuple method for r3 would then be invoked to

insert the r3 tuple values into the resultant relation tuple. Subsequently, insert-tuple would

be invoked again however, this time for ptl which would insert its tuple's values into the

resultant relatior. tuple. Thus, one complete tuple of the resultant relation is complete. This

would continue with the first tuple in r3 and every tuple in ptl. Subsequently, the same

process would be done for the rest of r3's tuples.

It is clear that the resultant tuple, sent as a parameter to the insertjtuple

method, will always have correct attributes to have values filled in; however, it will also

have other attributes that will change from one invocation to the next. Additionally, the

tuple to be entered into the resultant tuple will always be a constant type belonging to the

class for which the particular inserttuple implementation is specified. That is, the

insert-tuple implementation for emp-.tuple will always have a parameter tuple that is of

type emp-tuple, with attributes person, address, phone, and widget, I-) be inserted into the

resultant tuple. The resultant tuple parameter sent to this implementation of insert-tuple

will always have attributes person, address, phone, and widget in addition to the attributes

essn, proj-num, and hours.

Now the same operation is executed again except with ptl replaced by a

relation called R2 that has the attributes sponsor-ssn and dependentname. An appropriate

resultant tuple type, cart2_resultjtuple, is created with the attributes person, address,

84

phone, widget, sponsorssn, and dependentname. This time when insert_tuple is invoked

for r3 it will receive two tuples: one of type emp-tuple and the other of type

cart2_resulttuple. Again the resultant relation has the attributes that this implementation

will requires, person, address, phone, and widget, but this time the resultant tuple also has

the attributes sponsor-ssn and dependent-name. Thus, each implementation of insertjtuple

must be able to handle differing structures for the resultant relation. This proved to be

problematic for both the inserttuple method and insertfield method.

The solution used in our R/OODBMS is to have two methods called

insertjtuples and insertfields. Instead of having every tuple type that belongs to some

relation in the database, each resultant tuple type requires its own implementation. That is,

in our example involving the Cartesian product operation, cart lresultjuple and

cart2_resulttuple would both have their own implementation of the method. There are

now three parameters to the method: the two operand relations and the resultant relation.

The entire concatenation process is completed within these methods and the resultant

relation is returned from the method after completion. The method insertfields works in a

similar manner; however, it requires only two parameters, the operand relation and

resultant relation.

c. Comparison methods

The comparison methods implemented in the R/OODBMS are equal-to,

less-than, and greater-than. The equal-to method is used by the check union compatibility

function and select operation. Although there are default implementations for these within

the R/OODBMS, they have very limited applicability since the possible tuple types are

limitless and each generally requires specific implementation for comparing tuples of the

same type. Thus, the default implementations are a point of departure, but users must

h55

provide their own implementations for each tuple type that is user defined if the R/

OODBMS is to perform properly.

The designer of the comparison operator methods has many decisions to

make regarding their implementation. If the tuple type is complex with attributes that have

a type that is a user defined object, then deciding at which level comparisons will be made

may be difficult. For example, in Figure 25 the schema for an emp-tuple class is shown.

An instance of this class has four attributes: person, address, phone, and widget. Each of

these attributes is a user provided/defined class. Figure 32 shows the definition for these

classes (except for widget 23). Which level do the comparison operators compare at? When

the person attribute of an emp-tuple is compared with another, are the object IDs (OlDs)

of the objects that they reference compared? Or is every attribute of the person object:

fname, mname, lname, ... compared? Or maybe the comparison should be made at a more

detailed level?

person => fname string,
mname string,

miname string,
bdate string,
ssn : integer,
spouse string,
sptr person-niln;

addr => street string,
city string,
state string,
zip string;

phone_number => number string;

Figure 32 Person, Addr. Phone-number Class Definitions

23. The attribute widget is an arbitrarily complex attribute that has yet to be defined by the user.

86

As the attributes of a relation become more complex, it is easy to see how

many variations there are for implementations of comparison operator methods. By the

same token, it is also easy to see that one default implementation could never hope to be

functional for more than just the simplest of attributes. Without user provided

implementations for the comparison operator methods, user defined tuple types in R/

OODBMS will not work properly.

3. User Definitions

The relations that can be formed within R/OODBMS are limited only by what the

user can define within an IDL schema. However, it is critical that specific implementations

for methods inherited frum the IDB strict class tuple be written for all user defined tuple

types. The implementation of the relational algebra operations for the IDB node class

relation depend on them.

87

V. ALTERNATIVE PROJECT AND CARTESIAN PRODUCT
IMPLEMENTATIONS

A. GENERAL

Of the five fundamental relational algebra operations (union, difference, select,

Cartesian product, and project), Cartesian product and project are considered to be the most

difficult. As discussed in Chapter IV, this is because the resultant relation yielded by these

two operations have a different structure from the operand relation(s). For this reason, both

ROOMS [Ne88] and our R/OODBMS require that the resultant relation structure for these

two operations be defined by the user prior to the execution of the operation. This chapter

deals with an IDB specific alternative solution to this approach.

Recall that an attribute that has a type that is of an IDB strict class type can reference

any object that is a descendent of that strict class type. Thus, an attribute that is of type tuple

can reference any object that is an instantiation of an IDB node class type which is a

descendent of class tuple. In both ROOMS and R/OODBMS, the user is required to provide

the definition of the resultant tuple. In Chapter IV, the only two resultant relation tuple

types for Cartesian product and project operations that are defined are cartlresultjtuple

and projectl result-tuple respectively. Hence, any result of either of these two operations

(in the database as defined in the schema of APPENDIX C) must have the structure of

cart Iresulttuple and project lresultjtuple. That is, the Cartesian product operation can

only be executed on two relations where the first relation has tuples of type emp-tuple and

the second relation has tuples of type proj-tuple. Similarly, the project operation can only

project the hours and essn attributes of relations that have type proj-tuple.

Say that you wanted to perform a project operation on a relation with tuples of type

proj-tuple for the attributes proj-num and hours. Or, that yoi ,vanted to take the Cartesian

88

product of a relation with proj_tuple types and another with emp-tuple types. In both cases,

new tuple subclasses for the resultant relations would have to be defined prior to run-time.

However, there is an alternative in IDB: the use of the type 'any'.

B. IDB TYPES

An attribute in an IDL schema can have any of the types listed in Figure 33. A R/

OODBMS relation has an attribute called tuples that has type sequence of tuple where tuple

is a IDB strict class type. Thus, any subclasses of tuple may be referenced by the class

relation's attribute tuples. Therefore, a relation's schema is defined by the structure (tuple

subclass definitions) of its tuples. In our R/OODBMS, the user must provide these subclass

definitions to define their relations. In other words, the subclasses of class tuple are all user-

defined classes. For example, in Chapter IV two tuple subclasses were used: emptuple and

proj-tuple. Consider an Employee relation, it would have tuples that are of type emptuple.

Our R/OODBMS relation's attribute tuples would then reference a sequence of

emp-tuple.
1

Another way to gain the same effect as having the relation's attribute tuples reference

a different tuple subclass differing Cartesian product and project queries is to define one

subclass that has the flexibility to dynamically reference varying number of tuple attributes

and differing types of attributes with each instantiation. A tuple can be thought of as a

sequence of attribute values, so if a linked list is used to allow the flexibility required in the

sequence size then we simply need a type (this equates to the domain of an attribute) that

can reference any object within the database. That is, each attribute in the resultant relation

1. It is important to note that emp-tuple and all other subclasses of tuple must be IDB node class
types. That is, node class types may be instantiated into objects whereas strict class types cannot.

89

could have any domain that is already defined in the database. Any attribute that is of type

'any' can reference any object within the database.

string
array

sequence arnke

reference linked

any
class user-defined

nil

boolean
embedded primitive integ,,r

rational

Figure 33 IDL Types2 [Pe91c, p. 62]

C. THE RESULTTUPLE SUBCLASS

In this alternative implementation, only one resultant relation tuple type is needed. It

has been called result_tuple and has one attribute, values, which has type sequence of any

(see Figure 34 and APPENDIX E3). Thus, this attribute can reference any object within the

database. Since we cannot anticipate how many attributes any particular resultant relation

will have, the sequence of any is a linked list of any which allows the number of attributes

(values) within a result_tuple to vary from one result-tuple to another. Hence, this one tuple

type can be used as the resultant tuple type for any operation in R/OODBMS.

2. The difference between reference and embedded types is important to note. Attributes that are ref-
erence types are pointers to an independent object that contains the attribute value. In contrast, at-
tributes that are embedded types have their value imbedded within the object that it belongs.[lPe9lc]

3. Changes from the original R/OODBMS schema (APPENDIX C) are in bold in APPENDIX E.

90

resuictuple => values : seq of any;

Figure 34 Resultant Relation Schema for Project and Cartesian Product

Both the modified project operation and the modified Cartesian product operation

create the resultant relation using a function that initializes all of the class relation attributes

to initial values before the tuples are inserted into the relation. In both cases, the relation

attribute tuples is initialized to reference an empty linked list of type result-tuple. A pointer

to the new resultant relation is passed back to the calling function so that the tuples can be

inserted into the relation. This initialization function differs for the two operations and will

be discussed in further detail in the sections below. Each of these initialization functions

(init-projjresultrel and initCartresult_rel) is a variation of the initjtemp-rel used by the

simple operations (union, difference, and select).

D. THE MODIFIED OPERATIONS

1. Project

There are a number of functions used by the modified project operation that also

required modification. These functions along with the modified project operation,

project-.op are listed in APPENDIX E. Note that these are only the functions from the

original R/OODBMS shown in APPENDIX C. In order to have a working R/OODBMS

with this alternative approach, the functions in APPENDIX E must be inserted into the code

in APPENDIX C. Functions in the two appendices that have the same name indicate that

the newer modified function replace the identically named function in APPENDIX C. All

other functions in APPENDIX E that have unique names should simply be inserted.

91

The project query syntax is changed to that shown in Figure 35. The project-op

function still implements the project operation. The difference between this

implementation and the original begins with a modified function that parses the project

query: Project-parse-action. There are fewer tokens to parse than in the original

implementation.

[] 33B Browser
Cluster Vleu Options Connands Current Context Heap Help.......... • . .

rl ess 092

0> Spear Please input, the Project. querg (R1 project Rttr.list.):
Davis

0> reL-a
root. : d Help: connand input. line a
current Error:
context Response >

Help:
Error:
Projection >

Figure 35 Modified Project Query

An additional data structure is required by this implementation since there is a

need to pass an array of indexes as a parameter to the insertfieldsb function. This

structure, index-array, is defined in the IDL schema in APPENDIX E; however, since it is

not reachable from the root, it can never be written to the database.4 Index-array has one

attribute that is a sequence of integers that are used to indicate which attributes will be

projected.

4. Remember that for an object to be written to secondary storage in IDB it must be reachable from
the root.

92

Insert_fieldsb is the workhorse of the function project-op. This modified

function requires an additional parameter, index-array, that was not required by

insertfields. Otherwise, it still accepts two other parameters: the operand relation and

resultant relation. The user must provide certain methods that override inherited methods

during the construction of their relations. For example, the user must provide overriding

implementation for the comparison operators for each relation. In the same vein, the user

must provide an overriding implementation for the insertfields_b method that they all

inherit. The reason for this is that each relation has a different list of attributes that may be

projected; thus one generic field (attribute) insertion method will not suffice. In the

modified R/OODBMS schema only emp-tuple had an overriding implementation

provided. Thas, project operations may only be done on relations with tuples that are of

type empjtuple type. The resultant relation from a project operation of a relation with

proj-tuple types would yield meaningless results since no overriding implementation for

insertfieldsb is provided in the schema.

Each user provided overriding implementation can be a copy of

insertsemp-fieldsb with a few modifications. Each attribute must have its own case that

inserts that particular attribute into the resultant relation tuple (its index is in indexarray).

In Figure 36, insertsemp_fields b has been modified to indicate the portions of the function

that need to be changed for each relation within the database. Note that a new object is not

created for each attribute that is inserted into the resultant relation; instead each attribute of

the operand relation that is to be projected is referenced by the resultant relation tuple. This

issue of creating an independent object for the resultant relation's attributes versus simply

referencing the attributes of the operand relation(s) was discussed in Chapter IV and

therefore it will not be discussed again here.

It should be noted that in this implementation the resultant relation from a project

operation cannot itself be used as the operand relation for another project operation. This

93

could be done but would require a general overriding implementation of the insertfields_b

method that would not conform to the template shown in Figure 36. The fundamental

difference between all user provided tuple subclass definitions and the resulttuple

definition is that the user provided subclasses all have no attributes that are of a sequence

types while the only attribute of the resulttuple is a sequence type. This difference will

require that the attribute values are inserted into the resultant relation by use of

idllinkedfor which will iterate through each of the attributes within the operand relation's

tuples to find the appropriate attributes to insert. This is in contrast to using a case statement

to insert the appropriate attributes.

The insertfieldsb method returns the resultant relation to project-op with all of

the correct tuples inserted. Finally, the function project-op inserts the pointer to the new

resultant relation into the sequence of relations that make up the database. Again, the

resultant relation is not written to secondary storage until a transaction is opened that allows

writing and is subsequently committed.

94

idi-routine relational-relation insertXXXX~fi~eids-brel, result-rel, indJex-arrays
relational-relation rel, result-rel;
relational-index_array index-array;

idl-transaction tr =idi-get-transtrell;
relationai _result _tup~le new_tUple;

result _rel-~tupies =iJl~empty_ Linkedý,ltr, relatioDnal_:upiP);

idi_- linked_ for (relational_tuple,rel-*t~uples,reltupl~e)

/I iterate through each tupl-e and 'Dr each tuple iterate through
the index-array arid use -a case statement to reference objects fcr
fields to be entered into the result relation1

new_ tuple zdnwt~ea~a ~utu~3
newý_tuple-~values =iiepy l~'rrltoaay

idi linked_ for (rel~ational-index. i.dex-array-4-ndexe-s,index)

switch ý.nj~ex-stj

case 1:
iidl-nsert-back(relatic-nalsr'.y,new~tuple-,vaiues,rel-tuple-,atr 1);
break;

case 2:
idli ins ert_backý re a ti Dnal _ ny, new-tup! e-~vaues, reIt up le->attr2)
break;

case 3:
idi _ insert-back~relarlzýnal-an~y,new-tupie->vaiues,rel-ruple->attr3l;
break;

case IM:
idi-_ nsert-back (relat lcral _-any,nrew-tuple- >values, rel~tuple->attr D);
break;

default:
idl 1raiseU1DL_ERROR,

'There is a prcblern~ in the employee insert field b
function!');

break;

idllend_ for

idl-insert-back~relatio~nal-uple, result_rel- .tuples,new-tuple);

idl~end_for

Figure 36 Template for Overriding Insert_fields_b Method

2. CARTESIAN PRODUCT

The discussion in the previous section regarding modified function's insertion

into APPENDIX C also applies to those modified functions listed in APPENDIX F for

Cartesian product. The Cartesian product query syntax is changed to that as shown in

95

Figure 37. The function cart.prod.op implements the Cartesian product operation. As with

the project operation, the new query syntax dictates that there are fewer tokens to parse. As

such, the function Cartesian-parseaction has been modified to parse this new query

syntax.

] iBrotmer I9D
Cluster View Options Conands Current Context Heap Help

rl dress OB

0> Spea Please input t.he Cartesian product quers (RI X R2):
Davi

z) rel_
root. : Help: comand input line on
current Error: ce
context Response >

Help:
Error:
CartesianProduct >

Figure 37 Modified Cartesian Product Query

The workhorse of the function cart-prod-op is the method insertjtuplesb.

Insertjtuples.b still takes the same number and type of parameters as the original

insertjtuples. In contrast to the insertfieldsb of the project operation, the insert tuples_b

method as defined for the class tuple does not require a user provided overriding

implementation for each relation. Instead, the method inserttuples-b is general enough

that overriding implementations are not needed. The function does not need to worry about

how many attributes each operand relation has. It simply iterates through every tuple in the

first operand relation and concatenates the one tuple at a time with each tuple of the second

operand relation (see code in APPENDIX F).

96

However, if the alternative approach to inserting tuples into the result relation is

taken, then the user would have to provide an overriding implementation of inserttuples-b

for each relation as he must do for the insert fieldsb method of the project operation. The

reason for this is that after an object has been created to hold the tuple to be entered into the

resultant relation, the appropriate values must be explicitly copied into the newly created

object. Once this has been done, then the new object with the tuples attribute values can be

inserted into the resultant relation's tuple.

Since, with this implementation of inserttuples-b, there is no need for any other

redefinition of the method, the resultant relation yielded from a Cartesian product operation

may be used as one of the operand relations in a subsequent Cartesian product query. As

stated earlier, this is not possible with the project operation.

E. CONCLUSIONS

This alternative implementation of project and Cartesian product appears to be very

promising. The project operation functions in the manner expected from a relational

database perspective. That is, if you want to project attribute 3, attribute 5, and attribute 1

of a particular relation, then the resultant relation will have those three attributes only and

they will be in that particular order. If you project attribute 5, attribute 3, and attribute I,

then the resultant relation will have three attributes that correspond to these three but in the

order specified in the query. Similarly, Cartesian product yields the resultant relation that

is expected.

There is one additional area that must be discussed, the displaying of the resultant

relation. The approach taken in our R/OODBMS implementation was to provide a specific

overriding implementation of the idl-print and idlkey methods for all relations. However,

when the resultant relation is displayed in this implementation, the system defined

implementations of idLprint and idl-key are used since a general overriding

97

implementation cannot be written for the resultant relation as each resultant relation may

differ in structure. This makes it somewhat difficult to view the tuples of the resultant

relation. However, this can easily be overcome as demonstrated in Nelson's

implementation of ROOMS [Ne88] by having a display (overriding implementation of

idl-print and idlikey in this implementation) implementation for every object in the

database. That is, if an attribute of a relation is itself an object, then that object would have

a specific implementation of the idl-print and idlkey methods.

98

VI. CONCLUSION

The purpose of this research was to implement a combined .elational/object-oriented

database management system, R/OODBMS, that will overcome the deficiencies/

constraints of separate relational and object-oriented systems. This thesis expands previous

work in this area that showed basic proof of concept by implementing relational operations

in an object-oriented programming language which did not provide for persistent objects

[Ne88][NMO90], and by implementing relational operations in an object-oriented

programming language which does provide for persistent objects [Fi92]. A R/OODBMS as

implemented in IDB, a commercially-available object-oriented database management

system, demonstrates the extension of previous work to a commercially-available object-

oriented database management system.

A. SUMMARY

A detailed literature review investigating object-oriented programming concepts,

relational database management systems, object-oriented database management systems

(including a detailed overview of IDB), and a brief discussion of previous work in the area

was accomplished. Limitations of conventional relational database management systems

and object-oriented database management systems were explored while identifying

desirable properties of a combined approach.

The R/OODBMS, as described in Chapter IV, is specific to an implementation of

ROOMS [Ne88][NMO90] in IDB. However, as with previous work in this area, this

research demonstrates the validity of the ROOMS concept and further completes and

strengthens the proof of concept started by Nelson [Ne88].

99

B. CONCLUSIONS

A combination of relational and object-oriented database management systems, a R/

OODBMS is a logical and viable solution in overcoming each individual system's

limitations providing the best of both worlds within a single system. In a R/OODBMS, the

relational paradigm gains the ability to model and manage arbitrarily complex data that

traditional RDBMS are unable to handle. Additionally, the object-oriented paradigm gains

the acceptance, standardization, and firm theoretical foundation that traditional RDBMSs

enjoy. Thus, a single system can satisfy the requirements of users of both traditional

systems and overcome many of their individual limitations.

C. FUTURE RESEARCH SUGGESTIONS

Future research in this area should generally be focused on the development of a

production system. The methods used to implement the five fundamental relational algebra

operations could be rewritten with efficiency and optimization in mind. During the

implementation of the R/OODBMS in IDB as presented in this thesis, neither efficiency nor

optimization were of great importance. Instead, the focus was on constructing an

implementation that was functional.

In constructing queries, the user of our R/OODBMS does not have the option of

naming the resultant relation for those operations (union, difference, and select) that create

the resultant relation. The R/OODBMS creates a default name and assigns it to the resultant

relation. A production system should allow the user the option to provide a name for the

resultant relation if desired or to accept the default name provided by the system. For

example, a query of the form 'R I union R2' would indicate that the user is willing to accept

the default name that the system provides. However, a query of the form 'R3 = RI union

R2' would indicate that the user would like the relations RI and R2 to be unioned together

and the result relation to be name R3.

100

There are several issues that will remain as design decisions for a production system.

One issue involves how objects of the same class are compared with one another. Are two

objects equal if they both reference the same OlD? Or, should every attribute of the objects

be compared to determine if each corresponding attribute has the same value for each

object? A similar problem arises with the inequality comparison operators. When is one

object greater than another? Even for complex objects that have attributes which are simple,

this issue becomes difficult.

For example, consider an employee of a company that has a first name, middle name,

last name, phone number, and street address. When the relation is defined within the R/

OODBMS, the relation could be called Employee and have tuples of type employeejtuple.

An employee-tuple might have three attributes defined: full-name, phonenumber, and

address where fullname and address are objects and phone-number is an integer (a local

phone number without area code). The object full-name has attributes first-name,

middle-name, and last_name where each attribute is a string. Address has attributes street,

city, state, and zip-code where street, city and state are strings and zip_code is an integer.

Now, consider the equal comparison operator. If we are trying to compare two employee

tuples from two different relations, it is easy to determine if the phone-number in one tuple

is equal to that of another. The value is simple an integer that may be compared directly.

However, what if it is desirable to compare the fullname attribute? Realizing that it is itself

an object, do we move to that object and consider each of its attributes (first-name,

middle-name and last-name) as a whole? Do we compare OlDs? Or, do we allow a single

attribute of fullname to be compared, such as only last-name? Or, do we allow any

combination of the attributes to be compared for equality? This example can be generalized

for any of the comparison operators whether they are equality or inequality comparison

operators.

101

The issue of comparison operator implementation is also of concern in the set

operations union and difference during the determination of union compatibility and the

determination of whether a tuple is a duplicate of another tuple within a relation. This issue

is also present in the select operation where attributes of different tuples are compared

during as part of the selection criteria.

The assumption was made during this implementation of a R/OODBMS that the user

made no errors. Therefore, limited error checking was built into the system. A production

system would require extensive error checking for all of the relational algebra operations.

Another issue is found in the insertion of tuples into resultant relations. Our R/

OODBMS uses two methods of insertion: by reference or by creation. That is, the tuples of

the resultant relation may have new tuples created and then the values that the tuple is to

have are copied into the attributes of the tuple. Alternatively, the tuples of a resultant

relation can simply be a reference to the tuple that contains the values to be inserted.

In this second approach, two (or more) different relations can refer to the same tuple.

Thus, a change to the tuple in either relation is reflected in the other relation. This approach

is problematic since if there is a duplicate tuple in two relations that are being unioned

together, the resultant relation will only reference one of the two. Now, a change to the

tuple in the resultant relation will be reflected in only one of the two operand relations. This

is not very consistent and requires that the user be aware of how the system determines

which tuple is going to be referenced in the resultant relation. If the first approach is used,

the problem is alleviated since every tuple in the resultant relation is independent of every

tuple in any of the operand relations.

Finally, the project operation in a production system should allow the user to rename

the attributes being projected into the resultant relation. However, the issue of attributes

that are complex objects comes to light again. In our employee example, if a project

operation were used to project all the names of employees and to change the name of the

102

attribute in the resultant relation, is the user only allowed to change the attribute fullname

to some other name? Or, is the user allowed to change each of the attribute names (such as

first-name, middle_name, and last-name)? Or, is the user allowed to change any one or

more of these attribute names?

Additionally, our R/OODBMS requires the user to form a select query using the

syntax 'R1 select <attribute name> <comparison operator> <comparison object>' where

the comparison object has the same superclass as RI and ha• only a single tuple. A

production system should also allow the user to construct a select query of the syntax 'RI

select <attribute name> <comparison operator> <value>' where value is the display form

<attribute name>. For example, in our employee example, the user should be allowed to

enter the query 'R I select phone-number = 3758619'.

103

APPENDIX A: EXAMPLE IDL SCHEMA

structure vhc root dict is
dict => local : fleet,

remote : cross of fleet;
fleet => vehicles : seq of vehicle;

vehicle ::= train I plane;
vehicle => location : city,

destination : city nil;
vehicle -> move(*,city,city);

city => name : string;
city..nil city I nil;

train ::= ptrain I ftrain;
train => cars : seq of car;

car => number : integer;
ptrain =>; ftrain =>;

plane ::= pplane I fplane;
plane => airborne : boolean;

pplane =>; fplane =>;
passenger ptrain ! pplane;
passenger => max : integer,

passengers : seq of person;
freight ftrain I fplane;
freight => cargo-weight : rational;
person => name : string;

for fleet.vehicles use linked;
for train.cars use linked;
for passenger.max use unsigned;
for passenger.max use bytes(2);

for vehicle.idlprint use bind(vehicleprint);
for train.idlprint use bind(trainprint);
for vehicle.move use bind(vehicle_move);

for vehicle.location use search;
for vehicle.location use searchembed;
for ptrain use description("passenger train");
for ftrain use description("freight train,);
for pplane use description("plane (passenger)');
for fplane use description(Cair freight');
for passenger.max use

description('maximum number of passengers');
end
process vhcp is vhc vhca : access; end

103

APPENDIX B: DATABASE DIRECTORY SOURCE CODE

-- dbdir.idl

-- Schema for database directory

-- Description:

-- A directory cluster is used to group together other clusters into
-- a directory. In this directory, the clusters are databases.

structure dbdir root seq of database is

for root use linked;

database => dbname string, -- database name
file : string, -- database file name
desc : string, -- description of database cluster
examine : boolean; -- default initial transaction

for database.dbname use descriptiont'database structure name');
for database.file use description("database cluster file name");
for database.desc use description("description of the database cluster');
for database.examine use description("enter in examine mode?");
for database.desc use search;

database -> enter(*,boolean) => boolean;

for database.enter use browsercondvisible;
for database.enter use description('enter this cluster");

for database.idl-key use bind(dbdir key);
for database.idlprint use bind(dbdir-print);
for database.idlcreate use bind(dbdiricreate);
for dataoase.enter use bind(dbdir_enter);

end

process dbdirp is

dbdir ::= dbdira:access;

end

104

* dbdir.c

Description:

"This module provides the operations for IDB database directories.
* This module is considered to be part of the IDB browser. It invokes

internal browser routines to enter and exit database clusters.

#include 'stdio.h"
#include 'idlrt.h'
#include "dbdira.h*
#include "dpy.h"
#include "brwa.h"
#include 'brw.h"
winclude "brwi.1,"

static char buff[100];

OPERATIONS

* _brwdbdir-key(*) -- print short form db description
* _brwdbdirprint(*,mode) -- print full display
* _brwdbdiricreate(tr) => * -- create database object
* _brw_dbdirenter(*,boolean) => boolean -- enter cluster

idlroutine void _brw_dbdir_key(db)
dbdirdatabase db;

dpy-cstring(db->desc);

105

idi-routine void _brw -dbdir~print(db,mode)
dbdir-database db;
dpy~dmode mode;

if (mode.expand > 0)

idi_top(idil~any,idl~print,)db,mode));
return;

dpy~open("",false);
dpy~attr(dbdir_database,db,desc,mocle);
if (idl~gerdcisplay~dbdir~database,dbname))

dpy..eol ();
dpy_.,cstring('type:");
dpy.attr (dbdi rdatabase, db, dbname,mode);

if (idl-get-display(dbdir~database, file))

dpy-eoi);
dpy...cstring (file:");
dpy-attr(dbdir..database,db, file,mode);

if (idl~get~display(dbdir-darabase-,examine))

dpy_cstring ("examine:");
dpy~attr(dbdir_database,db,examine,mode);

dpy~close()

106

static dbdir database new-db;

idi-routine void _brw_dbdir_daction(check)
integer check;

idi_not_used(durnmy);
it (check == 1)

integer fd;
string full_name = _brw-map~dbinew-db->dbname);
if (idli-string_size(new-db->dbname) == 0)

dpy~error(Ino database name specified');
return;

(void) sprincf(buff,"%s.bst',fuil~name);
if (fd > 0)

(void) close(fd);

else

(void) sprintf(buff,'unable to find symbol table file %s.bst',
full~name);

dpy....error(buff);
return;

if (idl-string~size(new-db->file) == 0)

dpy~error(Ino structure name specified');
return;

if (idl~..string-size(new-db->desc) ==0)

new_db->desc = new .db->file;
dpy...error(lde-faulting description');
return;

idi-routine void _ýbrw_dbdir_sscreen(a..x~y)
integer a,x,y;

dpy~dmode mode;

-idl_not-used(aI;
mode =dpy-dinode_default;

dpy...pen('Define New Databasel,true);

dpy~open('New Databasel,true);
brw~cmd(*Checkl,'check and exit if correct',-brwý_dbdir _daction, lL,BRW..SCREEN);
dpy~..spacex(5L);
brw~cmd('Nocheckl,*exit without checking',..brw_dbdir_daction,OL,BRW _SCREEN);
dpy..eol);
dpy..spacey(2L);
dpy..eoi);
mode.expand = 1;
idl -vop (newý_.db,dbdir~database, idl...print, (new...db,mode));
dpy-clIose H ;

brw...input area (y-3, faI--);

dpy__close();
dpy~boxed(x,y);

107

idi-routine dbdir~database _brw_dbdir_icreace~tr)
;dl-transaction tr;

s~tring empty =idl~copy string(tr'",);
new~db = idl~new(tr,dbdir..Aatabase);
niew-db-'>dbname = empty;
new -db->file = empty;
niew-db--,desc = empty;
new -db- ,exarmune = true;
dpy-activec _brd-_dbdir-sscreen,OL);
return new ib;

il-routine boolean _brw dbdir_enter ijb, test)
dibdir-database 3b;
boolean test;

it test)

integer tkind = BRWREAD;
Lii _if (brw-.tr, _brw-dict--,cýurr-tr,btr)

vboid) spriýntt(buff,'%s/%s3,bt.r--name,db--desc);

Lii _else

(void) sprintf~buff,***unkncwn**/%s',db->desc);
I il-end-if

/* open new transaction '
if (db--=examine) tkind = BRWEXAMINE;
(void) _brwtopen~idl-opy_3trinoibrw~static,butf),

db->dbname, db->-file,
CL,
BRW_NORMAL. tkind,true);

return true;

idl define_ops dbdir..opbind()

idi_bind_root (dbdir);
idl...bind('dbdir~..key',_.brw dbdir key);
idl~bind('dbdir~print',brw_dbdir~print);
;dl-~bind(odbdir~icreatel,brw dbdir-icreate);
idl-.bind~ldbdir_enter ,_brw_db~dir_...enter);

108

APPENDIX C: R/OODBMS SOURCE CODE

Contents

IDL SCHEM A .. 111

Database Schem a ... 111

Relation Schem a .. 111

Tuple Schem a .. 112

Tuple Subclasses .. 112

Em ployee Tuple Schem a ... 113

Project Tuple Schem a .. 114

Cartesian I Result Tuple Schem a ... 114

Project 1 Result Tuple Schem a ... 114

R/OODBMS FUNCTIONS 1

Class Database M ethods .. 118

Class Relation M ethods ... 122

Union M ethod 131

Difference Method .. 135

Cartesian Product M ethod 140

Project M ethod ... 145

Select M ethod 152

Class Tuple M ethods ... 155

Class Em pTuple M ethods .. 158

Class Proj tuple M ethods .. 167

Class Cart 1_ResultTuple M ethods .. 170

Class Project _ResultTuple M ethods .. 173

110

// / //////////// !//

IDL SCHEMA

-- Title A Relational/Object-Oriented Database Management System
-- File name relational.idl
-- Associated
-- files relational.c relationala.h relational.bst relational.so
-- Author Ronald L. Spear
-- Date 24 September 1992
-- :Master's Thesis
-- Advisor Maj Mike Nelson
-- Second
-- Reader Prof. Thomas Wu
-- System Sun 4/60 Workstation, Unix Operating System
-- Compiler AT&T C
-- Translator IDL vl.l, Persistent Data Systems
-- Description This file contains the IDL schema for the implementation of
-- A Relational/Object-Oriented Database Management System.

structure relational root database is

//////////// ///*

Database Schema

database => name string,
relations seq of relation;

databa.se -> newrelation(*);

Relation Schema

relation => relation_name string,
attributenames seq of name,
attribute_types seq of name,
tuples seq of tuple,
tupletype tuple,
key : string;

relation -> new...tuple(*),
checkunion compatability(relation,relation) => boolean;

relation -> union(*),
projection(*),
difference(*),
Cartesianproduct(*),
selection(*);

name => name string;

110

/ I I II I I II I III / // // // / // // 11/ / /I // // / // // // / // // // / // // // / // // //

Tuple Schema

tuple -> equal~to(tuple, tuple, integer) -~boolean,

less_than(tuple,tuple,integer) => boolean,
greater than(tuple, tuple, integer) => boolean,

insert_fields(relation,relation) => relation,
insert_tuples~relatiofl,relation,relation) => relation;

Tuple Subclasses

tuple emp-tuple I
proj-tuple I
cartl_result-tuple I
projectl-result_tuple I
nil;

for database.new-relation use browser-Visible;

for relation.new -tuple use browserý_visible;
for relation.union use browser-visible;
for relation.Cartesian~product use browser-visible;
for relation.difference use brows~r-visible;
for relation.projection use browser~jiisible;
for relation.selection use browser_visible;

for database.relations use linked;

for relation.tuples use linked;

~~~~ ~~Database, Relation, and Tuple Methods *********

for database.idl~key use bind(database~key);
for database.idl~print use bind(database~print);
for database.new-relation use bind(create relation);

for relation.idl..key use bind(relation~key);
for relation.idl..print use bind(relation..print);
for relation.new~tuple use bind(create~tuple);
for relacion.check-union~compatability use bind(ck-union-compatabiliry);

for relation.union use bind(union~op);
for relation.Cartesian~product use bind(cart~proctop);

- .for relation.difference use bind(set_diff_op);
for relation.projection use bind~project~op);
for relation.selection use bind(select-op);

for name.idl_key use bind(name~key);
for name.idl~print use bind(name~print);

for tuple.equal_to use bind(equal~to);
for tuple.less-than use bind(less~than);
for tuple.greater-than use bind(greaterý_than);

for tuple.initialize~tuple use bind(initialize~tuple);
for tuple.insert-fields use bind(insert_fields);
for tuple.insert.tuples use bind(insert_tuples);



Employee Tuple Schema

emp~tuple => person person,
address addr,
phone phone_ number,
widget idl_ýuniv;

person => fname string,
mname string,
1aime string,
bdate string,
ssn integer,
spouse string,
sptr person-nil;

person_nil :=person I nil;

addr => street string,
city string,
state string,
zip string;

phone__number => number string;

** * ***** ***** ***** **emptulemethods* ******** **** **** ****** ** *

for emp...tuple.idl-key use bind(enp~tuple~key);
for emp~tuple.idl-print use bind(emp~tuple..print);
for emp~tuple.equal_to use bind(emp...equal-to);
for emp tuple.less-than use bind~empjless...than);
for emp...tuple.greater_than use bind(emp~greater_than);
for emp tuple.initialize tuple use bind(initialize_ýeip..tuple);

for person.idl_key use bind(person...key);
for person.idl~print use bind(person..print);

for addr.idl -key use bind(addr~key);
for addr.idl~print use bind(addr~print);

for phone-number.idl~..print use bind(phone~number~print);

112



Project Tupie Schema

proj-tuple => essn integer,
proj~num integer,
hours rational;

for proj~tuple.idl-key use bind(proj~tuple key);
for proj-tuple.idl..print use bind(proj~tuple~print);
for proj~tuple.equal-to use bind(proj~equal.to);
for proj-tuple.less Tthan use bind~proj less than);
for proj-tuple.greater-than use bind(proj~greaterý_than);
for proj..tuple.initialize.Suple use bind(initialize--roj-tuple);

Cartesiani Result Tuple Schema

cartl-result-tuple => person person,
address addr,
phone phone~number,
widget idi-univ,
essn integer;
prot-num integer,
hours rational;

-- *************************~** **cartl_result-tuple methods***********************

for cartl-result~tuple.idl~key use bind(cartl-result~tuple~key);
for carti-result~tuple.idl~print use bind(cartl_result tuple~print);
for c-artl-resuit~tuple.initialize-tuple use

bind(initialize-carti-resul-tuple);
for carti-result~tuple.insert~tuples use bind(insert_cartl-result...tuples);

Projecti Result Tuple Schema

projecti result_tuple => hours rational,
essn integer;

-******* *****************w***projectl-result_tuple methods**********************

for projectl..result...tuple.idl~key use bind(projectl~result tuple~..key);
for projectl-result-tuple.idl~print use bind(projectl_result_tuple..print);
for projectl~result-tuple. initialize~tuple use

bind(initialize~projectl_resul..tuple);
for projectl result-tuple.insert_fields use bind(insert-projectl_result..flds);

end

113



process relationalp is

relational ::= relationala:access;

end

114



R/OODBMS FUNCTIONS

/*

* Title A Relational/Object-Oriented Database Management System
* File name relational.c
* Author Ronald L. Spear
* Date 24 September 1992
* :Master's Thesis
* Advisor Maj Mike Nelson
* Second

Reader Prof. Thomas Wu"* System Sun 4/60 Workstation, Unix Operating System
"* Compiler AT&T C
"* Translator IDL vl.l, Persistent Data Systems
"* Description The functions in this file run with the IDB Object Database
* system version 1.1. The file containing the schema for these
* methods is relaitonal.idl. The relational.idl file was
* translated using the IDL translator and produced the
* relationala.h header file which is included for use with
* this file.

*/

#include <string.h>
#include "idlrt.h"
Oinclude "relationala.h"
#include "dpy.h"
#include "brw.h"

* Macros defined for Class person

#define exists(v) idlstringsize(v) 0

#define rexists(node,attr) (idlgetdisplay(relational__person,attr) && \
(node->attr != 0 && \
exists(node->attr)))

#define dexists(node,attr) (mode.expand > 0 11 rexists(node,attr))

#define prexists(nodeattr) (idl_get display(relational__person,attr) && \
(node->attr != 0))

#define pdexists(node,attr) (mode.expand > 0 II\
prexists(node,attr))

115



* Forward References for ill functions other than _print and _key

idi-routine void init-rel-screen();
idi-rout-ine void create -relation();
idi-routine void initaction();
idi-routine void init..tuple-.screen();
idi-routine void create~tupleo);
idi-routine boolean ck_union-compatability();
idi-routine void exit..action();
idi routine void char -screeno;
idi routine void integer~screen();
static void union-parse-actiono;
idi-routine relational-relation mnit_temp~rel();
void report -union-erroro;
static void difference~parse-action();
void report difference erroro;
static void CartesialL~parse~actionU;
void report.Cart~product erroro;
static void Project_ýparse..actiono;
void report~project~errorU;
static void Select-parse_action()
void report_select-erroro;
idi-routine void union..op();
idl-routine void cart~prod-op();
idl-routine void set-diff~opo;
idi_routine void project~op();
idi-routine void select~opo;
idi-routine boolean equal~to();
idl-routine boolean less_thano;
idi-routine boolean greacer~than();
idi-routine boolean emp-_equailto();
iu,._routine boolean ernp less thanW;
idi-routine boolean emp..greater~thanH;
idl-routine boolean proj~equal~to();
idi-routine boolean projjless-thano;
idi -routine boolean proj~greater_thank;
idi-routine relational -relation insert.Jields();
idl-routine relational-relation insert..tuples();
idi-routine relational~tuple initialize...emp-tuple();
idi-routine relational...tuple initialize~tupleo;
idl -routine relational~tuple initialize~proj~tupleo;
idi-routine relational~tuple initialize_cartl_resul-tuplefl;
idl-routine relational-relation insert-carti-result-tuples();
idi-routine relational~tuple initialize~projectl resul_tupleo;
idl-routine relational-relation insert-projectl_result_fldso;

116



* Class database methods

*databaseicey

*databasesprint

*create-relation

Class Database Methods

i* displays a short description of a database object ~

idl-routine void database~key (database)
relational_database database;

idl_univ u;
if (idl..string~size(database->name) == 0)

dpy__cstring(u** Unnamed Database *f)

else

u = idl-to(idl-univ,database->name);
idl__vop(u,idl~univ, idi~key, (u) 1;

117



/* diplays a database object */

idi-routine void database-print(database-,mode)
relational_ýdatabase database;
dpy~dxode node;

idi-transaction tr =idl-.get~trans(database);

boolean can_write idi-trans-write-count(tr) > 0;
dpy~dmode model;

model = mode;
model.embed = 1;

it (can-write)

model.expand = 1;
mode.expand =1;

if (model.expand > 1)

idl_top(idl..any,idl~print, (database,mode));

dpy~attr(relational database,database,name,mode);
dpy~eol );
dpy~spacey(2L);
dpy-eoi );
dpy-attr(relational database,database,relations,model);
dpy...eol()

118



static relationalrelation initrelation; /* global ptr to new rel to
be initialized */

/* this function provides the user a pop-up screen in the browser from which
he may edit/initialize the values of a new relation. It is called by
createrelation. */

idlroutine void init_relscreen(a,x,y)
integer a,x,y;

dpydmode mode;

mode = dpy_dmode.default;
dpyopen("Initialize New Relation",true);
dpyopen("New Relation",true);
brw-cmd("EXIT","exit initialization screen",initaction,0L,BRWSCREEN);
dpy_eol();
dpyspacey(2L);
dpy-eol();
niode.expand = 1; /* forces the display of all attributes */

/* execute the print method for the database class/type */
idl vop(init_relation, relationaldatabase, idl_print,(init_relation,mode));
dpy.close);

brw.inputarea(y-3,false);

dpyclose );
dpyboxed(x,y);

119



/* Create Relation creates a new relation within a databaze.*/

idlroutine void create_relation(database)
relational_database database;

relationalrelation new-relation;
idltransaction tr = idl gettrans(database);
string empty = idl copy string(tr,");
boolean is_writable = (idl_transwritecount(tr) > 0);

newrelation = idl-new(tr,relationalrelation); /* must still assign
legal values,which is
done below. */

newrelation->relation name = empty;

/* this is only done to make attribute names valid. An array with a different
size can be created while in the browser and newrelation->attribute_names
can be switched to reference it if a larger array is needed. */

newrelation->attributenames = idl_newarray(tr,relational-name,l);
new_relation->attribute_names[0J = idl_new(tr,relationalname);
newrelation->attr.ibute_names[0]->name = empty;

newrelation->attribute-types = idlnewarray(tr,relational name,0);

newrelation->tuples = idlempty_linked(tr,relationaltuple);

newrelation->tupletype = NULL;

new_relation->key = empty;

/* set global pointer to new relation so that the attributes of the new
relation may be initialized by the user. Note: that dpy-active does
not allow other parameters to be passed, thus a global pointer is used
so that init_rel_screen can access the new relation *I

init relation = newrelation;dpy__•active(init-rel-screen, 0L);

/* if a write transaction is open, then add the new relation to the database */
if (is-writable)

idl_insertback(relational_relation,database->relationsnew.relation);

120



* Class relation methods

* relation-key
* relationsprint

*create-tuple

*ck_union_compatability

* union~op
*cart~prod -op
* ~sec-diff..op

*project-op

* select-op

Class Relation Methods

/* Displays a short description of a relation *

idl-routine void relation~key (relation)
relational-relation relation;

idl__univ u;
if (ldl~string~size(relation->relation~name) 0)

dpy-cstring(t** Unnamed Relation *f)

else

u = idl to(idl~univ,relation->relation_name);
idi-vop(u,idliuniv,idljzey, (u));

121



/* Displays a relation */

idl-routine void relation~print(relation,mode)
relational-relation relation;
dpy-dmode mode;

idi-transaction tr =idl..get~trans(relation);

boolean can_write =idi_trans-write_count itr) > 0;
dpy-dmode model;

model = mode;
model.embed = 1;

if (can-write)

model.expand =I

mode.expand =1

if (model.expand > 1)

idl_top(idl..any,id1..print, Crelation,mode));

dpy~attr(relational-relation,relation,relation-namE,mode);
dpy~eol();
dpy...spacey(2L);
dpy..eol();
dpy...attr(relational_relation,relation~tuples,model);
dpy~eol();
if (can~write) /* Don't want to display all of these attributes unless

there is a transaction open which allows writing to the
database. This information is needed for the implementation
of the R/OODSMS but is not *needed by the user. However,
these attributes muist be assigned appropriate values if
the relational algebra operations of the system are to
function properly ~

dpy~spacey (2L);
dpy-eol();
dpy..attr(relational_relation, relation,attribute_names,model);
dpy-eol();
dpy..spacey(2L);

dpy__attr(relational relation,relation,attribute~types,model);
dpy..eol();
dpy..spacey(2L);

dpy...attr(relational_relation,relation,tuple-type,model);

dpy...spacey(2L);
dpy...eol H;
dpy...attr(relational_relation,relation,key,model);

122



static relational_tuple init-tuple; /* ptr to new tupjle to be initialized

/* Iit action allows init-xxxxx-action functions to exit if EXIT is selected
in the pop up screen for initialization *

idi-routine void init-action(val)
boolean val;

dpy_quilto;

1* init~tuple_screen called by create-tuple. It allows the user to initialize
* ~the attributes of a new tuple. ~

idi routine void init..tuple-ocreen(a,x,y)
integer a,x,y;

dpy-dmode mode;

mode = dpy~dxnode..default;
dpy~open(,Initialize New Tuple",true);
dpy~open("New Tupele,true);
brw-cmd(,EXIT'~,"exit initialization gcreen",init_action,OL,BRWSCREEN);
dpy~eol();
dpy~spacey (2L);
dpy..eol );
mode.expand = 1; /* forces all attributes to be displayed ~

/* executes print method for relation class/type *

idl..vop(init~tuple,relationai relation,idl..print, (mit-tuple,mode) )
dpy..close o;

brw-input area (y-3,false);

dpy~closeo;
dpy~boxed(x,y);

123



/* create_tuple creates and inserts a new tuple into a relation. It calls
tuple method initializetuple for the tuple type of the current relation.
Each subclass of tuple must have a redefinition of the class tuple's
method initialize-tuple. If there is no redefinition, then the function
initialize-tuple is called and causes an IDL error to be raised. */

idlroutine void createtuple(relation)
relational-relation relation;

relational tuple new tuple;
idltransaction tr = idlget_trans(relation);
string empty = idlcopystring(tr,"");
boolean iswritable = (idl_trans_write_count(tr) > 0);

new tuple = idl_vop(relation->tuple-type, relational_tuple,initializetuple,
(relation->tuple-type));

/* uses global ptr to new tuple so it can be initialized in function
inittuplescreen */

init-tuple = newtuple;
dpyactive(init-tuple-screen, OL);

/* check to see if a write transaction is open before inserting the new
tuple into the relation. If there is not one open, then the new tuple
is lost */

if (is writable)
idl_insert_back(relational-tuple, relation->tuples,new-tuple);

124



/* ckunion_compatability takes two relations and determines if they are union
compatible. This means that the two relations have the same number
of attributes and that the corresponding attribute types are the same -
in the same order. That is, they are the of the same order and
Rlattr(i) = R2-attr(i) for 1 less than or equal to i and i less
than or equal to n. */

;dlroutine boolean ckunion-compatability(ptrRl,ptrR2)
relationalrelation ptrRl,ptrR2;

boolean sameorder, typesequal;
idltransaction tr;
integer Rl_degree,R2_degree,i,Rltypes,R2_types;

tr = idl_get_trans(ptrRl);
types equal = true;

Rl degree = idl_arraysize(ptrRl->attributenames);
R2_degree = idlarraysize(ptrR2->attribute-names);
Rltypes = idlarraysize(ptr_Rl->attribute_types);
R2_types = idlarraysize(ptrR2->attributetypes);

/* check to make sure attribute types have legal values */
if ((Rl_types == 0) && (R2_types == 0))

idl_raise(IDLERROR,
"Both R1 and R2 have illegal values for their attribute-types

attributes!");
else

if (Rltypes == 0)
idlraise(IDL ERROR,

"RI has an illegal value for its attributetypes attribute!');

if (R2_types == 0)
idl-raise(IDLERROR,

"IR2 has an illegal value for its attribute-types attribute!');

/* check to make sure attribute names have legal values */
if ((Rl-degree == 0) && (R2 degree == 0))

idl_raise(IDLERROR,
"Both R1 and R2 have illegal values \nfor their attributenames

attributes!");
else

if (Rl.degree == 0)
idl_raise(IDL_ERROR,

"Ri has an illegal value for \nits attribute names attribute!,);

if (R2_degree == 0)
idl-raise(IDLERROR,

"R2 has an illegal value for \nits attribute_names attribute!');

/* check the order of each relation */
same_order = (Rldegree == R2_degree);

/* each attribute must be of some type. Thus, there must be the same number of
of elements in the attribute_names array as there are in the attribute-types
array. */

if ((Rl.degree != Rl_types) && (R2_degree != R2_types))
idl_raise(IDLERROR,

"Neither R1 and R2 have the a one-to-one correspondence\nbetween the
number of attributes and types listed in their\nattribute_names and
attributetypes attibutes!");

else

125



if (Rl-degree != Rltypes)
idl_raise(IDLERROR,

"RI does not have a one-to-one correspondence\nbetween its
nattribute_names and attribute-types attibutes!N);

if (R2_degree != R2_types)
idl_raise(IDLERROR,

"R2 does not have a one-to-one correspondence\nbetween its
nattribute-names and attributetypes attibutes!");

if (same-order)

/* check the corresponding types of each */
for (i = 0; i < R2_degree; ++i)

types-equal = ((strcmp(ptrRl->attribute-types[i]->name,
ptrR2->attribute-types[i]->name)) 0);

if (!typesequal)
break;

if (sameorder && types-equal)
I

return true; /* the two relations are union compatable */

else

if (!same_order)
idl_raise(IDL_ERROR,

"The.two relations are not union compatible!\nThey are not of
the same order.');

else
idlraise(IDL_ERROR,

"The two relations are not union compatible!\nThey do not have
equal corresponding types.N);

return false;

/............................/

126



char *Rl,*R2,*R3; /* global ptrs to the parameters for the union operation.
R1 union R2 */

/* unionparse_action is called by the brw_input operation within the union op
function. Union parse action takes the query string and parses it into the
two operand relations R1 and R2. */

static void unionparseaction(query)
char* query;

char *Rlptr,*charptr;
integer size,i;
boolean done = false;

charptr = query;

/* allocate room for parse of the union op parameters
R1 will hold the first parameter and R2 the second */

size = strlen(query);
R1 = (char*)calloc((size+l),sizeoffchar));
R2 = (char*)calloc((size+l),sizeof(char));

Rlptr = RI;
rhar-ptr = query;

/* note: if size gets decremented all the way to zero, then there is a
problem with the query because the delimeter union ' could not be
found */

while (!done && size > 0)

if (*char__ptr != ' ') /* if not a space copy the char into R1 */

*Rlptr=*cha.r_ptr;
++char_ptr;
++Rlptr;
-- size;

else /* we may have hit the delimeter for the first parameter */

/* check to see if next char is a "u" - the first letter of union
which is the delimeter between the two parameters */

if (strncmp(charptr," union ",7) == 0) /* then it is union sentinal */

for (i = 0; i < 7;++i) /* jump past the delimeter */

++char_.ptr;
-- size;

strcpy(R2,char_.ptr); /* copy second parameter into R2 */
done=true;

else /* the space is part of the first parameter, so put in RI */

/* space is part of first relation name so keep it */
*RIptr=*charptr;
++charptr;
++Rlptr;
-- size;

if (size != 0) /* size only = 0 if union was not found in the query */
NULL;

else
idlraise(IDLERROR,

"There is an error in your union query! Try Again.");

127



1* inittemp-rel is called by unionop, set.diff-op and select_op since they
are the three simple relational algebra operations that have a resultant
relation that is of the same structure as the operand relations. Init temp
rel creates a new relation that is to be the resultant relation of one of
the three listed operations. It assigns default values and then passes a
reference to the new relation to the caller. */

idlroutine relationalrelation init-temprel(ptrRl,ptrR2)
relationalrelation ptrRl,ptr.R2;

relationalrelation temp.relation;
static integer temprel_num = 0;
idl-transaction tr;
string temp.rel..name;
char temp__.name[80];
integer degree = 0,i;

tr = idlgettrans(ptr._Rl);

degree = idl_arraysize(ptr Rl->attribute_names);

temp-relation = idlnew(tr,relational relation); /* must still assign
legal values */

/* set up a unique name for resultant relation */
sprintf(tempname,"%ldTEMP_%c%c.%c%c",

++temprel_num,
ptrRl->relationname(0J,
ptr._Rl->relationname[l],
ptrR2->relationname[0],
ptr_- R2->relationname[l]);

temprel_name = idl copy.string(tr, tempname);

temp.relation->relationname = temprelname;
temp.relation->attributenames = idlnewarray(tr,relational-name,degree);

/* assign default values for attribute names to be the same as those in
R1 relation */

for ( i=O; i<degree; ++i)

temprelation->attribute_names[i] = ptrRl->attributenames[i];

temp.relation->attributetypes = ptrRl->attribute_types;

temprelation->tuples = idl.emptyjlinked(tr,relationaltuple);

/* assign a default tuple type that is the same as the first relations */
temp.relation->tuple.type = ptrRl->tupletype;

/* default key is the key of relation R1 */
temp.relation->key = ptrRl->key;

return temprelation;

128



/* report.union_error reports errors as the name implies. It was taken out
of union.op and made into a separate function to make unionop more
readable. This has also been done with the other four operations in
the R/OODBMS. */

void reportunion_error(foundl,found2)
boolean foundl,found2;

if (!foundl && !found2)

idlraise(IDLERROR,
"Neither relation is in this database!,);

else

if (!foundl)

idlraise(IDLERROR,
"RI (the first parameter) is not in this database!');

if (!found2)

idl_raise(IDLERROR,
"R2 (the second parameter) is not in this database!');

if (foundl && found2)

idl-raise(IDLERROR,
"A SERIOUS ERROR HAS OCCURED IN THE UNION OPERATION!');

129



/* unionop is executed when Union is selected within the browser. The
syntax for the operation allows the user to input the two relations
to be unioned and then creates the resultant relation (with an assigned
default name). It calls union-parse-action, init-temprel,
cneckunion.compatability and report union_error. "/

Union Method

idlroutine void unionop(relation)
relationalrelation relation;

relationalrelation ptrRl,ptrR2,temprelation;
relationaldatabase database;
idltransmode tmode;
idluniv root;
string parameterl,parameter2; /* references to the parameters R1 and R2 */
static integer temprelnum = Oindex = 0;
idl-transaction tr;.
boolean foundl,found2,is.writable = false,duplicate truecompatible false;

tr = idlget-trans(relation);
tmode = idltransmodedefault;
root idltrans-get-root(tr);
database = idl_to(relational_databaseroot);
foundl = false;
found2 = false;
is_writable = (idltrans_write_count(tr) > 0);

brwjinput('Union Query',
"Please input the union query (RI union R2): ,
0L,0L,OL, false,
union_parse_action);

/* copy the C strings R1 and R2 into IDL strings */
parameterl = idl_copystring(tr,Rl);
parameter2 = idlcopy-string(tr,R2);

/* search the database for the two relations: R1 and R2 */
idllinked.for (relationalrelationdatabase->relations,rel)

if (strcmp (rel->relationname,parameterl) == 0) /* found relation 1 */

ptr_Rl = rel; /* point at relation 1 */
foundl = true;

if (strcmp (rel->relation-name,parameter2) == 0) /* found relation 2 */

ptrR2 = rel;
found2 = true;

idl_..endfor

if (foundl && found2)

/* check for union compatability */
compatible = idl_vop(ptr._Rl,relationalrelationcheckunion.compatability,

(ptrRl,ptrR2));

if (compatible)

temp-relation = init-temp-rel(ptrRl,ptrR2);

/* insert the tuples from R1 and R2 into Temp relation. First

130



all the tuples from R1 are inserted into Temp relation. "/

idllinked-for (relationaltuple,ptr._Rl->tuples,tuple)

idlinseit_back(relationil tupl•,5emp-reIation-•aupies,tupleý;
} idlend-for

/* don't insert any duplicate tuples into the resultant relation.
Thus, have to check the tuple key with each tuple already in the
result (or in RI) before entering another tupie into the
resultant relation */

idllinkedcfor (relationaltuple,ptr_R2->tuples,r2_tuple)

idllinkedfor (relational tuple,ptrRl->tuples,rltuple)

/* duplicate check takes the two tuples and
determines if they have the same attribute values. If yes,
then they are duplicates. It returns a boolean. */

duplicate = idl-vop(rl tuple, relationaltuple,equal to,
(ri-tuple,r2_tuple, index));

if (duplicate)

break;
/* get out of loop cuz found tuple was a duplicate /

idl_endfor

if (!duplicate)

idlinsert back(relationaltuple,
temprelation->tuples,r2_tuple);

idl_end_for

/* If a write transaction is open when this command is executed then
if it becomes committed the temp relation will be written to the
database. However, if a read or examine transaction is open, then
the temp relation will be in the database in memory but will not
be written back to secondary storage. */

idl_insertback(relationalrelation,database->relations,
temprelation);

else /* else part of if (compatible)*/

idl_raise(IDLERROR,
"The two relations are not union compatible!');

else /* else part of if (foundl && found2) */

report-unionerror(foundl,found2);

131



/* difference parse-action is called by the brw input operation within the
set_diffop function. Difference parse action takes the query string and
parses it into the two operand relations R1 and R2. */

s-.atic void difference._parseaction(query)
char* query;

char *Rlptr,*charptr;
integer size,i;
boolean done = false;

charptr = query;

/* allocate room for parse of the union op parameters
R1 will hold the first parameter and R2 the second */

size = strlen(query);
RI = (char*)calloc((size+l),sizeof(char));
R2 = (char*)calloc((size+l),sizeof(char));

Rl-ptr = R1;

/* do the parse */
charptr = query;

/* note: if size gets decremented all the way to zero, then there is a
problem with the query because the delimeter ' union ' could not be
found */

while (!done && size > 0)

if (*char_.ptr ') /* if not a space copy the char into RI */

•Rlptr=*char-ptr;
++char_ptr;
++Rlptr;
-- size;

else /* we may have hit the delimeter for the first parameter */

/* check to see if next char is a '-' which is the delimeter between
the two parameters */

if (strncmp(char ptr,l - ",3) == 0) /* then it is difference sentinal */

for (i = 0; i < 3;++i) /* jump past the delimeter */

++charptr;
-- size;

strcpy(R2,charptr); /* copy second parameter into R2 */
done=true;

else /* the space is part of the first parameter, so put in R1 */

/* space is part of first relation name so keep it *1
* Rl__pt r=*char__ptr;
++char-ptr;
++Rlptr;
-- size;

if (size 0) /* size only = 0 if union was not found in the query.*/
NULL;

else
idlraise(IDLLERROR,

"There is an error in your difference query! Try Again.');

132



/* reportdifferenceerror reports errors as the name implies. It was taken out
of set_diff op and made into a separate function to make set_diff_op more
readable. This has also been done with the other four operations in
the R/OODBMS. */

void reportdifferenceerror(foundl,found2)
boolean foundl,found2;

if (!found'. && !found2)

idl_raise(IDLERROR,
'Neither relation is in this database!*);

else

if (!foundl)

idlraise(IDL_ERROR,
"Rl (the first parameter) is not in this database!,);

if (!found2)

idlraise(IDLERROR,
"R2 (the c(cand parameter) is not in this database!');

if (foundl && found2)

idl_raise(IDLERROR,
"A SERIOUS ERROR HAS OCCURED IN THE DIFFERENCE OPERATION!");

133



1* set_ditff..op is executed when Difference is selected within the browser.
The syntax for the operation allows the user to input the two relations
to be operated on and then creates the resultant relation. It calls
difference...parse_action, init..temp-rel, check_union-comparability
and report- fif~erence-error. ~

Difference Method

idl-routine void set diff~op(relation)
relational-relation re~lation;

relational-relation ptrRl,ptr...R2,temp..relation;
relational-database database;
idl_trans_mode tmode;
idl_univ root;
string parameterloparameter2; /* references to the parameters R1 and R2 ~
static integer temp rel num = O,index =0;
idl Ttransaction tr;
boolean foundl,found2,is_.qritable = false,duplicate =true,compatible false;

tr =idl~get-trans(relation);
tmode =idi-trans-mode_default;

root =idl-trans-get~root (tr);
:Iatabase =idl_to(relational_database,root);
*foundl = falspe;
tound2 = false;
is-writable = (idl-trans_write_count(tr) > 0);

brw-input("Difference Query',
"Please input the Difference query (R1 R2):
OL.,OL., 0., false,
difference~parse action);

/* copy the C strings RI and R2 into IDL strings ~
parameteri = idl_copy~string(tr,Rl);
parameter2 = idl_copy..string(tr,R2);

1* search the database for the two relations: RI and R2 ~
idl linked for (relational_relation,database->relations,rel)

if (strcmp (rel->relatiorL~name,parameterl) ==0) /* found relation 1 *

ptr..Rl = rel; /* point at relation 1I*
foundl = true;

if (strcmp (rei->relationjiame,parameter2) ==0) /* found relation 2 *

ptr...R2 = rel;
found2 = true;

Iidl~end-for

if (foundl && found2)

/* check for union compatability "
compatible = idl..vop(ptr...Rl,relational relation,check-ýunion...compatability,

(ptr..Rl,ptr..R2) )

if (compatible)

temp..relation =init..temp~rel (ptr...Rl,ptrR2);

134



/* don't insert any tuples from R1 that are in R2 into the
resultant relation. Thus, have to check the tuple key with each
tuple in R2 before entering a tuple into the resultant relation 3/

idllinked-for (relationaltupleptrRl->tuples,rl-tuple)

idl_linkedfor (relational.tuple,ptrR2->tuples,r2_tuple)

/* equal-to takes the two tuples and determines if
they have the same attribute values. If yes,
then they are equal. It returns a boolean. */

duplicate = idl_vop(rl tuple, relational tuple,equal to,
(rl_tuple,r2_tuple, index));

if (duplicate) /* then don't insert tuple into result *1

break;
/* get out of loop cuz fou-1 tuple was a duplicate */

I idlendfor

if (!duplicate)

idl_insertback(relationaltuple,
temp-relation->tuples,rl_tuple);

} idl.end_for

/* If a write transaction is open when this command is executed then
if it becomes committed the temp relation will be written to the
database. However, if a read or examine transaction is open, then
t1- temp relation will be in the database in memory but will not
be written back to secondary storage. */

idlinsertback(relationalrelationdatabase-•relations,
temp-relation);

else /* else part of if (compatible)*/

idl_raise(IDL ERROR,
"The two relations are not union compatible!');

else /* else part of if (foundl && found2) */

report_differenceerror(foundl,found2);

*................................................................................*

135



/* Cartesian-parse-action is called by the brwjinput operation within the
cartprodcop function. Cartesian parse action takes the query string and
parses it into the two operand relations RI and R2 along with the name
of the resultant relation, R3. */

static void Cartesian-parse-action(query)
char* query;

char *Rl-ptr,*charptr,*R3_ptr;
integer sizei;
boolean done = falsedelimeterl = false;

charptr = query;

/* allocate room for parse of the Cartesian product op parameters
R1 will hold the first parameter and R2 the second •/

size = strlen(query);
R1 = (char*)calloc((size+l),sizeof(char));
R2 = (char*)calloc((size+l),sizeof(char));
R3 = (char*)calloc((size+l),sizeof(char));

/* set pointers to move along R1 and R3 as characters are copied in one
at a time. */

R3_ptr = R3;
Rl-ptr = RI;

/* do the parse */
char_ptr = query;

/* note: if size gets decremented all the way to zero, then there is a
problem with the query because the delimeter ' = ' or ' X ' could not be
found */

while (!done && size.> 0)

if (*charptr ) /* if not a space copy the char into R3 */

if (!delimeterl)

*R3_ptr=*char-ptr;
++charptr;
++R3_ptr;
-- size;

else

* Rl_pt r=*charp tr;
++charptr;
++Rlptr;
-- size;

else /* we may have hit the a delimeter */

if (!delimeterl)

/* check to see if next char is a = - which separates the
resultant relation name from the other relations in the query -
which is the delimeter between the first two parameters */

if (strncmp(charptr," = ",3) == 0) /* then it is = sentinal */

delimeterl = true;
for (i = 0; i < 3;++i) /* jump past the delimeter */

++char_pt r;
-- size;

else /* the space is part of the first parameter, so put in R1 */

136



/* space is part of first r.la:icrn name so keep it "/
*R3_ptr=*charptr;

++char-ptr;
++R3__ptr;
-- size;

else

/* check to see if next char is a I X " - which separates the
two operands of the operation - which is the delimeter
between the last two parameters */

if (strncmp(charptr," X ",3) == 0) /* then it is X sentinal */

for (i = 0; i < 3;++i) /* jump past the delimeter */

+ +charptr;
- -size;

strcpy(R2,charptr); /* copy second parameter into R2 /
done= true;

else /* the space is part of the first parameter, so put in R1 '/

/* space is part of first relation name so keep it *1
*Rl-ptr=*charptr;
++char_ptr;
++Rl_ptr;
- -size;

if (size 0) /* size only 0 if union was not found in the query */
NULL;

else
idl_raise(IDLERROR,"There is an error in your query! Try Again.');

137



/* reportCart_product_error reports errors. It was taken out
of cartprodop and made into a separate function to make cart_prod-op more
readable. This has also been done with the other four operations in
the R/OODBMS. */

void report_- Cart-producterror(foundl,found2,found3)
boolean foundl,found2,found3;

if (!foundl && !found2 && !found3)

idlraise(IDLERROR,
"None of the three relations are in this database!");

else

if (!foundl)

idl_raise(IDLERROR,
"R1 is not in this database!");

if (!found2)

idlraise(IDLERROR,
"R2 is not in this database!");

if (!found3)

idlraise(IDLERROR,
"R3 is not in this database!");

if (foundl && found2 && found3)

idlraise(IDLERROR,
"A SERIOUS ERROR HAS OCCURED !!!!!! Regroup. Try Again.");

138



/* cart_.prodop is executed when CartesianProduct is selected within the
browser. The syntax for the operation allows the user to input the two
relations to be operated on along with the name of the resultant relation.
It calls Cartesianparseaction, reportCart_.product-error, and
insert-tuples. */

Cartesian Product Method
******* *************t******** ************ ******t*****t*********************t***t**

idlroutine void cart prod.op(relation)
relationalrelation relation;

relationalrelation ptrRl,ptrr.R2,ptrR3,temprelation;
relationaldatabase database;
idl_trans_mode tmode;
idluniv root;
string parameterl,parameter2,resultrel; /* references to the parameters

R1, R2 and R3 respectively */
idl-transaction tr;
boolean foundl,found2,found3;
boolean is_writable = false,duplicate = true,compatible = false;

tr = idl-get-trans(relation);
tmode idltransmodedefault;
root idltrans-getroot(tr);
database = idl_to(relational_database,root);
foundl = false;
found2 = false;
found3 = false;
iswritable = (idltranswritecount(tr) > 0);

brw_input("Cartesion Product Query",
"Please input the Cartesian product query (R3 = R1 X R2): ,
OL,OL,OL, false,
Cartesianparse action);

/* copy the C strings R1 and R2 into IDL strings */
parameterl = idl_copy-string(tr,Rl);
parameter2 = idl.copy.string(tr,R2);
resultrel = idl-copy-string(tr,R3);

/* don't do anything if the resultant relation is one of the two operands.
However, the resultant relation can be one that exists in the data.
In this case, the specified resultant relation will be over written. */

if (!(strcmp (result rel,parameterl)==0) &&
!(strcmp (resultrel,parameter2)==0))

/* search the database for the three relations: R1, R2 and R3 */
idl_linked_for (relational relation,database->relationsrel)

if (strcmp (rel->relationname,parameterl) == 0)
/* found relation I */

ptr_Rl = rel; /* point at relation 1 */
foundl = true;

if (strcmp (rel->relation_name,parameter2) == 0)
/* found relation 2 */

ptrR2 = rel;
found2 = true;

139



if (strcmp (rel->relation_name,resultrel) == 0)
/* found relation 3 */

ptrR3 = rel;
found3 = true;

} idl_end_for

if tfoundl && found2 && found3)

/* perform concatenation of tuples for Cartesian product.
Note, in this implementation, the resultant relation already
exists in the database. Thus, there is no need to insert any
new relations into the database. We only have to fill in the
resultant relation structure that already exists. */

ptrR3 = idlvop(ptrR3->tuple-type,relational_tuple,insert-tuples,
(ptrRl,ptrR2,ptr_R3));

else

reportCar.t_product error(foundl,found2,found3);I

/* if result relation is one of operands */
else

idl_raise(IDLERROR,
"R3, the resultant relation is one of the two operand relations.\nit

must be a relation in the database but not\none of the two operands!,);

140



char *Attr_list; /* allows global access to the attribute list for the project
operation */

/I Project_parseaction is called by the brw_input operation within the
project_op function. Project parse action takes the query string and
parses it into the single operand relation Ri, the result relation R2
along with the attribuce list that is to be projected. */

static void Projectparseaction(query)
char* query;

char *Rlptr,*charptr,*R2 ptr;
integer size,i;
boolean done = false,delimeterl = false;

charptr = query;

/* allocate room for parse of the project op parameters
R1 will hold the relation being operated on,
Attrlist the list of attr to be projected, and
R2 the resultant relation */

size = strlen(query);
R1 = (char*)calloc((size+l),sizeof(char)); /* R1 is global *
Attr-list = (char*)calloc((size+l),sizeof(char));
R2 = (char*)calloc((size+l),sizeof(char)); /* R2 is global *

/* set pointers to move along RI and R2 as characters are copied in one
at a time. */

R2_ptr = R2;
R1_ptr = RI;

/* do the parse */
char-ptr = query;

/* note: if size gets decremented all the way to zero, then there is a
problem with the query because the delimeter ' ' or ' project
could not be found */

while (!done && size > 0)

if (*char ptr ') /* if not a space copy the char into R2 */

if (!delimeterl)

*R2_ptr=*char-ptr;
++char-pt r;
+÷R2_ptr;
-- size;

else

*Rl-ptr=*char-ptr;
++char-ptr;
++Rlptr;
-- size;

else /* we may have hit a delimeter */
f

if (!delimeterl)

/* check to see if next char is a =" - which separates the
resultant relation name from the other relation in the query -
which is the delimeter between the first two parameters */

if (strncmp(char__ptr," = ',3) == 0) /* then it is = sentinal */

delimeterl = true;
for (i = 0; i < 3;÷+i) /* jump past the delimeter */

141



++charptr;
-- size;

else /* the space is part of the first parameter, the resultant
relation name, so put in R2 */

*R2_ptr=*charptr;
++char_ptr;
+÷R2_ptr;
-- size;

else /* we have already found the first delimeter "/

/* check to see if next char is a " p - which is
part of the delimeter I project "between -he last
two parameters */

if (strncmp(charptr," project ",9) == 0)
I* then it is project */

f-r (i = 0; i < 9;-+i) /* jump past the delimeter */

++charptr;
-- size;

strcpy(Attrlist,charptr);
/* copy list of attributes into Attrlist and now parse the

list of attributes */

done=true;

else /* the space is part of the first parameter, so put in R1 */

/* space is part of first relation name so keep it */
*Rlptr=*charptr;
++char_pt r;
++Rlptr;
-- size;

if (size '= 0) /* size only = 0 if union was not found in the query */
NULL;

else
idl_raise(IDLERROR,"There is an error in your query! Try Again.');

142



/* report project.error reports errors. It was taken out
of project.op and made into a separate function to make project-op more
readable. This has also been done with the other four operations in
the R/OODBMS. */

void reportproject error(foundl,found2,attrfound)
boolean foundl, found2, attrfound;

if (!foundl && !found2)

idl raise(IDLERROR,
"Neither of the two relations are in this database!');

else

if (!attr_found)

idl_raise(IDLERROR,
"All of the attributes in the attribute list \nare not in RI!");

if (!foundl)

idl_raise(IDLERROR,"Rl is not in this database!");

if (!found2)

idl_raise(IDLERROR,
"R2 is not in this database!");

if (foundl && found2)

idlraise(IDLERROR,
"A SERIOUS ERROR HAS OCCURED !HH! Regroup. Try Again.");

143



/* project.op is executed when Projection is selected within the
browser. The syntax for the operation allows the user to input the single
relation to be operated on along with the name of the resultant relation and
the attribute list to be projected. It calls Project~parseaction,
reportproject-error, and insertfields. */

Project Method

idl_routine void project-op(relation)
relationalrelation relation;

relationalrelation ptrRl,ptr._Attrlist,ptrR2,temprelation;
relationaldatabase database;
idl_trans_mode tmode;
idl_univ root;
string parameterl,attrstring,resultrel; /* references to the parameters

R1, attr list and result
relation respectively */

idltransaction tr;
boolean foundl,found2,done,attr-found;
boolean iswritable = false,duplicate = true,compatible = false;
char *attrptr,*delimeter = ",; /* delimeter between elements

in attribute list */

string ÷attr_list[iGOJ;
integer i=l,count,size,index,indexarraytlOO1,ii=O;
idllinked.elem(relational-tuple) result-tuple;

tr = idl-gettrans(relation);
tmode = idltrans_mode_default;
root = idltransgetroot(tr);
database = idl_to(relational_database,root);
foundl = false;
found2 = false;
done = false;
iswritable = (idltranswrite_count(tr) > 0);

brwinput(,Project Query",
"Please input the Project query (R2 = R1 project Attr-list):
OL,OL,OL, false,
Projectparse.action);

/* copy the C strings R1, R2 and Attrlist into IDL strings */
parameterl = idlcopy-string(tr,Rl);
resultrel = idlcopy-string(tr,R2);
attr_string = idlcopystring(tr,Attrlist);

/* parse tokens in attribute string */
if ((attrptr = strtok(attr-string,delimeter)) == NULL)

/* error, no token */

idl_raise(IDLERROR,
"You did not list any attribute/field names in\nyour project query!

Try again, meathead!");

else

attrlist[O] = idlnew..string(tr,80);
attr list[01 = idl_copystring(tr,attrptr);

'44



while ((attr-ptr = strtok(NULL,delimeter)) != NULL)

attr -listii] = idl_new.string(tr,80);
attr,_list[i] = idlcopystring(tr,attr__ptr);
++i;

/* don't do anything if the resultant relation is the operand relation.
However, the resultant relation can be one that exists in the data.
In this case, the specified resultant relation will be over written. */

if (!(strcmp (resultrel,parameterl)==O))

/* search the database for the two relations: R1 and R2 */
idl_linkedfor (relationalrelation,database->relations,rel)

if (strcmp (rel->relation_nameparameterl) ==0)
/* found relation 1 */

ptrRl = rel; /* point at relation 1 */
foundl = true;

if (strcmp (rel->relation_name,result_rel) == 0)
/* found relation 2 */

ptrR2 = rel;
found2 = true;

I idl_endfor

count = i; /* count is the number of tokens - I */

/* check each attr name in the attr list of the project operation to
ensure that the field exists in the relation R1 */

for(i=0;i<count;++i)

attrfound = false;
ii=0;

idl_arrayfor(relational-name,ptrRl->attributenames,aname)

ii++; /* position in attribute list */
if (strcmp (aname->name,attr-list[il) == 0) /* attr name in attr

list is a field
of R1 */

attrfound = true;
indexarray[i]=ii;
break;

I idl.end for

if (!attr-found)

break; /* an attr in the project attr list is not
in the relation Ri. Thus, the operation
cannot be performed */

if (foundl && found2 && attrfound)

/* everything is ok, perform projection operation on relation R1.
Note, in this implementation, the resultant relation already
exists in the database. Thus, there is no need to insert any
new relations into the database. We only have to fill in the

145



resultant relation structure that already exists. /

/* iterate through every tuple of Rl and copying only the desired
fields into R2. Note: R1 and R2 will have the same number of
tuples but the relations will be of differing degree. */

ptrR2 = idlvop(ptr_R2->tuple-type,relationaltuple,insert_fields,
(ptrRl,ptrR2));

else

reportproject error(foundl,found2,attr_found);

else /* end of if (!(strcmp (result-rel,parameterl)==O)) */

idl_raise(IDLERROR,
"R2, the resultant relation is also the'operand.\nIt must be a

relation in the database but not the operand!');

146



char *Attr,*Obj,*Comp-opr; /* allows global access to three stings: an attribute
name used for the select condition, the name of
the object created that contains the select values

for comparison, and the comparison operator name. ',

/* Selectparse action is called by the brwinput operation within the
select_op function. Select parse action takes the query string and
parses it into the single operand relation RI, the attribute that is
going to be used to select upon, the comparison operator to be used,
and the name of the object that contains the attribute value to be
compared with.*/

static void Selectparse-action(query)
char* query;

char *Rlptr,*char__ptr,*Atr__ptr,*Comp-oprptr;
integer size,i;
boolean done = false,delimeterl = false;

charptr = query;

/* allocate room for parse of the select op parameters
RI will hold the relation being operated on,
Attr the attr that selection will be made on,
Compopr the comparison operator (=,<,>), and
Obj holds the values to be compared with */

size = strlen(query);
RI = (char*)calloc((size+l),sizeof(char)); /* R1 is alobal */
Attr = (char*)calloc((slze+i),sizeof(char)); /* Attr is global */
Obj = (char*)calloc((size+l),sizeof(char)); /* Obj is global */
Compopr = (char*)calloc((size+l),sizeof(char)); /* Comparison Operator

is global */

/* set pointers to move along R1 and Obj as characters are copied in one
at a time. */

Attr-ptr = Attr;
Rlptr = R1;
Comp-oprptr = Comp-opr;

/* do the parse */

charptr = query;

/* note: if size gets decremented all the way to zero, then there is a
problem with the query because tý delimeter select
could not be found */

while (!done && size > 0)

if (*char_.ptr ' /* if not a space copy the char into Rl */

if (!delimeterl)

*Rlptrr=*charptr;
++charptr;
++Rlptr;
-- size;

else

*Attrptr=*charptr;
++char__ptr;
++Attr_ptr;
-- size;

else /* we may have hit a delimeter */

if (!delimeterl)

147



/* check to see if next char is a "select -

which is the delimeter between the first two parameters
if (strncmp(char__ptr," select ",8) == 0) /* then it is select */

delimeterl = true;
for (i = 0; i < 8;++i) /* jump past the delimeter */

++char_ptr;
-- size;

else /* the space is part of the first parameter, the operand
relation name, so put in R1 */

*Rlptr=*charptr;
++charptr;
++Rlptr;
-- size;

else /* we have already found the first delimeter */

/* check to see if the next token is a comparison operator */

if (strncmp(charptr," = ",3) == 0 II
strncmp(char-ptr," < ",3) == 0 II
strncmp(char-ptr," > ",3) == 0)

++charptr;
-- si.ze;
for (i = 0; i < l;++i) /* copy comparison operator */

*Compoprptr=*charptr;
++Compoprptr;
++charptr;
-- size;

++char_ptr;
-- size;
strcpy(Obj,charptr);
done=true;

else if (strncmp(charptr, = 1,4) == 0 I1
strncmp(char ptr," <= ",4) == 0 I1
strncmp(charptr,' >= ",4) == 0)

++charptr;
-- size;
for (i = 0; i < 2;++i) /* copy comparison operator */

*Comp-oprptr=*char-ptr;
++Comp-oprptr;
++charptr;
-- size;

++char_ptr;
-- size;
strcpy(Obj,charptr);
done=true;

else /* the space is part of the first parameter, so put in R1 */

/* space is part of first relation name so keep it */
*Attrptr=*charptr;
++charptr;
++Attrptr;
-- size;

148



if (size 0) /* size only = 0 if union was not found in the query */
NULL;

else
idl-raise(IDLERROR,"There is an error in your query! Try Again.');

149



/* report.selecterror reports errors. It was taken out
of select-op and made into a separate function to make selectop more
readable. This has also been done with the other tour operations in
the R/OODBMS. */

void reportselect-error(foundl,found2,attrfound)
boolean foundl, found2, attrfound;

if (!foundl && !found2)

idlraise(IDLERROR,
"Neither of the two relations are in this database!');

else

if (!attr_found)

idlraise(IDL.ERROR,
"The attribute zpecified for comparison is not in Rl!');

if (!foundl)

idlraise(IDLERROR,
"Rl is not in this database!');

if (!found2)

idlraise(IDLERROR,
"The object for comparison is not in this database!");

if (toundl && found2)

idlraise(IDLERROR,
"A SERIOUS ERROR HAS OCCURED Regroup. Try Again.");

150



/* selectop is executed when Selection is selected within the browser. The
sytax for the operation allows the user to input the single relation to be
operated on, attributed name to select upon, the comparison operator, and
the name of the object that contains the attribute value for comparison.
The comparison object must be an instantiation of an existing relation in
the database. It must have only one tuple that has one attribute filled
with values, the attribute that you want to use for comparison. Then, the
relation being operated on is found and each tuple has the specified at~r
comparied with the comparison objects atztr value using that relations
comparison operator that was specified in the query.

Selectop calls the functions: Selectparseaction, report-select-error,
and inittemprel. */

Select Method

idlroutine void selectop(relation)
relationalrelation relation;

relationalrelation ptrRl,ptrAttr,ptrobj,temprelation;
relationaldatabase database;
idltransmode tmode;
idl_univ root;
integer operator;
string parameterl,attr,comp..obj,comp-opr; /* references to the parameters

R1, attr,comparison object.,
and comparison operator
respectively */

idl _transaction tr;
boolean foundl,found2,attrfound;
boolean iswritable : false,select = false;
char *attr-ptr,*delimeter = ","; /* delimeter between elements

in attribute list - no spaces allowed */

integer i=l,count,size,index=O,ii=O;
idl_linkedelem(relationaltuple) comptuple;

tr = idl-get-trans(relation);
tmode = idltransmode_default;
root : idltrans-get-root(tr);
database = idlto(relational_database,root);
foundl = false;
found2 = false;
attr found false;
is_writable = (idl_transwritecount(tr) > 0);

brw.input("Select Query",
"Please input the Select query (RI select attr comp-op object): ,
OL,OL,OL, false,
Selectparseaction);

/* copy the C strings R1, Obj and Attr into IDL strings */
parameterl = idl_copy string(tr,Rl);
comp_obj = idl_copy-string(tr,Obj);
attr = idl_copy_string(tr,Attr);

if (strcmp(Comp opr,"=") == 0)
operator = 1;

else if (strcmp(Compopr,">") == 0)
operator = 2;

else if (strcmp(Compopr,"<") == 0)
operator = 3;

else if (strcmp(Compopr,"/=") == 0)
operator = 4;

151



else if (strcmp(Compopr,7>=") == 0)
operator = 5;

else if (strcmp(Compopr,"<=") == 0)
operator = 6;

else
idl_raise(IDLERROR,

"It is hard to believe that this error could occure!");

/* search the database for the two relations: R1 and Obj */
idl-linked for (relational-relationdatabase->relations~rel)

if (strcmp (rel->relation-nameparameterl) == 0)
/* found relation 1 */

ptrRl = rel; /* point at relation 1 */
foundl = true;

if (strcmp (rel->relation_name,comp obj) == 0)
/* found the comparison object /

ptrObj = rel;
found2 true;

I idl_end_for

/* check the attr name in the of the select operation to
ensure that the field exists in the relation R1 */

idl_arrayfor(relationalname,ptrRl->attributenames,aname)

ii++; /* keep track of position of attribute in the relation schema -

that is, the attribute list */
if (strcmp (aname->name,attr) == 0) /* attr name in attr list is a field

of R1 */

attr found = true;
index = ii;
break;

I idlendfor

if (foundl && found2 && attr_found)

/* Everything is ok, perform select operation on relation R1.
Iterate through every tuple of R1 and compare the field named in
tci 'attr' variable with the values of the object specified in
comp-obj. using the specified comparison operator in Comp-opr. */

temprelation = init temp-rel(ptrRl,ptrObj);

idl_linked_for(relationaltuple,ptrjObj->tuples,ctuple)

idl-linkedjfor(relational_tuple,ptr_Rl->tuples,rrl_tuple)

select = false;
switch (operator)

case 1: /* = */
select = idlvop(rltuple,relational tuple,equalto,

(rl-tuple,ctuple,ii));
break;

case 2: /* > */

select = idlvop(rltuple,relational-tuple,greater_than,
(rl_tuple,ctuple,ii));

break;
case 3: /* < •/

152



select. = idl-.vop(r-t~uple, relat~ional~tuple, less~than,
(rl-.t~uple,ctuple,ii);

break;
default.:

idl-raise (IDL..ERROR,
'Problems with operator in select operation*);

break;

if (select.)
idi_insert..back(relat~ional-tuple,

temp-relat~ion->tuples, rl~tuple);

Iidl-end-for
idl~end_for

idl-insert-back(relat~ional-relation,database->relations,temp...reiation);

else

report~project~error(foundl, found2,attr~found);

153



* Class tuple methods
* equal_to

* lessthan
* greaterthan

* initializetuple
* insertfields
* insert-tuples

Class Tuple Methods

/* this is the default duplicate tuple check function */

idlroutine boolean equal_to(rl_tuple,r2_tuple,index)
relational-tuple rl_tuple, r2_tuple;
integer index;

idltransaction tr = idlgettrans(rltuple);

/* both of these are pointers, so if they point to the same
object, then they are identical tuples. However, two tuples
that don't point to the same objects may have the same values
for the values of each of their individual objects. */

if (rltuple == r2_tuple)
return true;

else
return false;

/*...................................................... ./

/* this function is called by create.tuple of class relation if there has been
no redefinition of this method by a subclass of tuple. If this function is
executed, then there is an error since it must be over-written. */

idlroutine relationaltuple initializetuple(tuple-type)
relationaltuple tupletype;

relational_tuple newtuple;
idltransaction tr = idlgettrans(tuple_type);

idl_raise(IDLERROR,
"There is no method for initializing a tuple of\nthe type that this

relation contains.");

/*...................................................

/* the default insert field inserts all fields of tuple into resulttuple
by reference */

idlroutine relationalrelation insertfields(relation,result-rel)
relationalrelation relation,result-rel;

idltransaction tr = idl_get.trans(relation);

return resultrel = relation;

154



/* the default insert tuple inserts a tuple into result~tuple by reference ~

idl-routine relational-relation insert~tuples(relatlon,result~rel)
relational-relation relation, result~rel;

lidiitransaction tr =idi-get..trans(relation);

return result-rel =relation;

idi-routine boolean less_than(rl~tuple,r2-Suple,index)
relational_tuple rl..tuple, r2_tuple;
integer index;

idl-transaction tr = idl-get..sranscrl~tuple);

idl-raise(IDLERROR,
"No less than method has been specified for these relations. \nThe user

must provide them. No default can be provided.,);

idl-routine boolean greater~than(rl...tuple, r2...tuple, index)
relational-tuple rl...tuple, r2_..uple;
integer index;

idl-transaction tr = ldl_get...trans(r1..tuple);

idl_raise (IDLERROR,
"No greater than method has been specified for these relations.\nThe

user must provide them. No default can be provided.");

155



* Class name methods

*name-.key

*name-.print

idi-routine void namejcey(name)
relational-name name;

idi__univ u;
if (idi-string-size(name->name) = 0)

dpy...cstring(*** Unnamed/No Attributes *)

else

u = idl~to(idl__univ,name->name);
idi-vop (u, idl__univ. idl. key, (u));

idl-routine void name~print(name,mode)
relational_name name;
dpy~dmode mode;

idl-transaction tr idl get_trans(narne);
boolean can_write =idl-trans-write count(tr) >0;

dpy__dmode model;

model = mode;
model.embed = 1;

if (can~write) model.expand = 1;

if (model.expand > 1)

idl_top(idl-any,idl..print, (name,mode));

dpy...attr(relational~name,name,name,model);

156



* Class emp..tuple methods

*emp...tuple...key

*emp-tuple~print

*emp..equal_to

* ~initialize_ernp-tuple

Class EmpTuple Methods

idi-routine void enp~tuple~key(tuple)
relational-emp-tuple tuple;

idlUniv u;
if (idl~string..size(tuple->person->lnaxne) ==0)

dpy-cstrlng('** Unnamed Tuple *~)

else

u = id1.to(idl~univ, tuple->person-->lname);
idl-vop(u,idluniv,idl-key, (u));

idl-routine void emp~tuple-print(emp-tUp~le,mode)
relational-emp~tuple emp~tuple;
dpy..Amode mode;

idl transaction tr =idl-get-trans(empD~tuple);

boolean can -write =idl_trans_write-count(tr) > 0;
dpydmode model;

model = mode;
model.embed = 1;

if (can..write) model.expand = 1;

if (model.expand > 1)

idl~top(idl..any,idl~print, (emp-tuple,mode));

dpy_.attr(relational~emp~tuple,emp~tuple,person,model);
dpy..eol();
dpy~spacey(2L);
dpy__.eol ();
dpy~attr(relatlonal-emptuple,emp~tuple,phone~rnodel);

dpy~spacey(2L);
dpy--eol ();
dpy~attr(relationalemp~tuple,enp~tuple,address,model);
dpy~eol (I;

/* add widget in later ~

157



/* this function returns true if ri tuple is identical to r2 tuple and
returns false otherwise. */

idl-routine boolean emp~equal~to(rl..tuple, r2..tuple, index)
relational_,emp..tuple rl..tuple, r2-tuple;
integer index;

idl-transaction tr = idl~get~trans(rl..tuple);

/* both of these are pointers, so if they point to the same
object, then they are identical tuples. However, two tuples
that don't point to the same objects may have the same values
for the values of each of their individual objects. */

if (index == 0) 1* compare the entire tuple - all attributes *

if (r1..tuple ==r2_tuple)
return true;

else /* not the same objects but need to check attribute values ~

/* need to check each attr value. The first time one is found
that does not have the same value, the function stops and
returns not dulicate (false). Only if all attr are identical
does the function return duplicate (true). .

if (!strcmp(rl~tuple->person->,fname, r2..tuple->person->fname) &
!strcmp(rl..tuple->person->mname, r2-.tuple->person->mname) &
!strcmp(rl..tuple->person-ý.lname,r2_..tuple->person->lname) &&
!strcmp (r1..tuple->person->bdate, r2-tuple->person->bdate) &&
ri_tuple->person->ssn == r2_tuple->person->ssn &&
I strcmp (rl-tuple->person-->spouse, r2-tuple->person->spouse) &
!strcmp(rl-tuple->address->street,r2...tuple->address-->street) &&
!strcmp(rl...tuple->address->city, r2_tuple->address->city) &&
!strcmp (rl~tuple->address->state, r2..tuple->address->state) &&
!strcmp(rl..tuple->address->zip, r2-tuple->address->zip) &&
!strcmp (rl-.tuple->phone->number, r2..tuple->phone->number))

return true;
else

return false;

else /* compare only the attribute specified by the index ~

switch (index)

case 1:
if (!strcmp(rl...tuple->person->fname, r2-tuple->person->f name) &

!strcmp (rl..tuple->person->mname, r2-tuple->person->mname) &
!strcmp(rl...tuple->person->lname, r2_tuple->person->lname) &&
!strcmp(rl...tuple->person->bdate, r2_tuple->person->bdate) &&
rl-tuple->person->ssn == r2-tuple->person->ssn &&
!strcmp (rl...tuple->person->spouse, r2..Suple->person->spouse))

return true;
else

return false;
break;

case 2:
if (!strcmp(rl-.tuple->address->street,r2_tuple->address->street) &

!strcmp(rl...tuple->address->city, r2-.tuple->address->city) &&
!strcmp (rl..tuple->address->state, r2..tuple->address->state) &&
!strcnp(rl...tuple->address->zip, r2..tuple->address->zip))

return true;
else

return false;
break;

case 3:
if (!strcmp (rl...tuple->phone->number, r2_tuple->phone->number))

return true;

158



else
return false;

break;
case 4:

idi raise (IDL-ERROR,
*Widget is not defined and 'thus can't be comnpared!');

break;
default:

idi-raise (IDL-ERROR,
'An ugly error has occured in emp~egual~tol);

break;

/* this function returns t~rue if rl tuple is less than r2 tuple and
returns false otherwise. */

idi-routine boolean empiless~than(rl~tuple, r2-tuple, index)
relational_emp~tuple rl-tuple, r2-tuple;
integer index;

idi-transaction tr = idi_get~trans(rl~tuple);

switch (index)

case 1:
if ((strcmp(rl~tuple->person->fname,r2-tuple->person->fname) < 0) &&

(strcmp(rl~tuple->person->mname,r2_tuple->person->mname) < 0) &&
(strcmp (r1.tuple->person->lname, r2-tuple->person-->lname) < 0) &
(strcmp(rl~t~uple->person->bdate, r2-tuple->person->bdate) < 0) &
rl~tuple->person->ssn < r2_tuple->person->ssn &&
(strcmp(r1.tuple->person->spouse, r2-tuple->person->spouse) < 0))

return true;
else

return false;
break;

case 2:
if ((strcmp(rl..tuple->address->street,r2...tuple->address->street) < 0) &&

(strcmp(rl~tuple->address->city,r2-tuple->address->city) < 0) &&
(strcmp (rl~tuple->address->state, r2-tuple->address->state) < 0) &&
(strcmp(rl-tuple->address->zip,r2-tuple->address->zip) < 0))

return true;
else

return false;
break;

case 3:
if ((strcmp(rl~tuple->phone->number,r2-tuple->phone->number) < 0))
return true;

else
return false;

break;
case 4:

idl-raise (IDL-ERROR,
'Widget is not defined and thus can't be coinpared!o);

break;
default:

idi raise (IDLERROR,
"An ugly error has occured in emp-less~thanj);

breaK;

/* this function returns true if ri tuple is greater than r2 tupie and

159



returns false otherwise. */

idi-routine boolean emp..greater...than(rl~tupie, r2...tuple, index)
relational...ernp..tuple rl~tuple, r2_tuple;
integer index;

idl-transaction tr = idi-get...trans(rl~tuple);

switch (index)

case 1:
if ((strcmp(rl~tupie->person->fname,r2_tuple->person->fname) > 0) &&

(strcmp(rl~tuple->person->mname, r2-tupie->person->mname) > 0) &&
(strcmp(rl...tupie->person->lnarne,r2-tuple->person->lname) > 0) &&
(strcmp(rl~tuple->person->bdate,r2-tuple->person->bdate) > 0) &&
rl~tuple->person->ssn > r2_tuple->person->ssn &&
(strcmp(r1.tuple->person->spouse, r2-tuple->person-,>spouse) > 0))

return true;
else

return false;
break;

case 2:
if ((strcmp(rl...tuple->address->street,r2_tupie->address->street) > 0) &

(strcmp(rl~tuple->address->city,r2_tuple->address->city) > 0) &&
(strcmp(rl...tuple->address->state, r2_tuple->address->state) > 0) &&
(strcmp(rl~tuple->address->zip,r2-tuple->address->zip) > 0))

return true;
else

return false;
break;

case 3:
if ((strcmp (rl~tuple->phone->number,r2_tuple->phone->number) > 0))

return true;
else

return false;
break;

case 4:
idi_raise(IDL...ERROR,

"Widget is not defined and thus can't be compared!');
break;

default:
idl_raise (IDLERROR,

"An ugly error has occured in emp...greater than');
break;

1* this function is called from create-tuple. It redefines the implementation
for the class tuples method initialize~tupies. Specifically, a new employee
tuple is created and given initial values (all of which are legal).
It returns a tupie to create..tuple which then allows the user to initialize
this tuple with values. Each subtype of tupie needs to have a function
like this. */

idl-routine relational tupie initialize~emp-tuple(tupie type)
relational-tuple tupie-type;

relational...enp-tuple new-tupie;
idi Ttransaction tr = idl~get trans(tuple..type);
string empty = idl..copy string(tr,0);

new tuple = idl_new(tr,reiationai_emp...tuple); 1* must still assign
legal values*/

new-tuple->person = idl-new(tr,relationai-person);
new~tuple->person->fname = empty;

160



new..tuple->persofl->mname =empty;
new..tuple->person->lnaxne = empty;
new...tuple->person->bdate =empty;
new-tuple->persofl->ssfl = 0;
new~tuple->persofl->spouse = empty;

new-tuple->addresG = idi_new(tr,relational-addr);
new~tuple->address->Street = empty;
newstuple->address->city= empty;
new..tuple->address->state =empty;

new~tuple->address->zip = empty;

new~tupie->phone = idi_new(tr,relationai~phofle_number);
new-tuple->phone->nunlber = empty;

return idl...to(reiational-tuple,new..tuple);

161



* Class person methods

*person-key

*person...print

idi_routine void person-key (person)
relational~person person;

boolean bl,b2,b3;
bi = rexists(person,fname);
b2 = rexists(person,mname);
b3 = rexists(person..lname);
if (bi)

dpy...cst ring (person->f name);
if (b2 11 b3)

dpy~spacex(lL);

if (b2)

dpy-cst ring (person->mname);
if (b3)

dpy~spacex(iL);

if (b3)

dpy-cstring (person-flname);

if (Ibi b2 && b3)

dpy~cstring('~** No name *~)

idi-routine void person-print(person,mode)
relational-.Person person;
dpy~dniode mode;

boolean bl,b2,b3;

if (mode.expand > 1)

idi-top(idl-any..idl..print, (person..mode));
return;

bi = dexists(person,fname);
b2 = dexists(person,mnarne);
b3 = dexists(person,lname);
if (mode.expand > 0) dpy...spacey(1L);
if (bi)

dpy~attr(relational~person,person, fname,rnode);
if (b2 11 b3)

dpy..spacex(lL);

if (b2)

162



dpy_...attr(relational-person,person,mname,mode);
if (b3)

dpy-spacex(lL);

if (b3)

dpy~attr(relational-person,persofl,lname,mode),

if (! I && ! b2 && b3)

dpy~cstring('** No name *)

if (dexists(person,bdate))

dpy~spacex(lL);

dpyattr relational-person, person, bdate,mode);
dpy~cstringV)")')

else

dpy~cstring(" * No Birth Date Entered *)

if (dexists(person,spouse) 11 pdexists(person,sptr))

if (mode.expand > 0 11 pdexists(person,sptr))

dpy...cstring('[I
dpy~attr(relational-.person,person,spouse,mode);
dpy~cstringU']");

if (pdexists(person..sptr))

if (idl-get-display~embed(relational~person,sptr))

dpy~eol );
dpy~attr(relational..person,person,sptr,mode);

else

dpy~cstring(" [)

dpy~attr(relational~person,person,sptr,mode);

dpy..eol U;
dpy spacey(IL);
dpy-cstring(VSSN: 1);
dpy..attr(relational~person,person,ssn,mode);
dpy-eol (1;

163



* Class addr methods

*addr-key

addr-print

idl-routine void addr~key (address)
relational-addr address;

if (idl~string~size(address->state) ==0)

dpy~cstring('** No Street Address *)
dpy~eol );

else

dpy~cstring(address->street);
dpy_.eo1 l

idl-routine void addr~print(address,mode)
relational-addr address;
dpy~dmode mode;

idi -transaction tr = idl get trans(address);
boolean car-write = idl-trans-write~count(tr) > 0;

if (can-write) mode.expand = 1;

dpy~attr(relational~addr,address,street,mode);
dpy~eol );
dpy~spacey(lL);
dpy~attr(relational~addr,address,city,mode);

if ((mode.expand > 0 11
(idl-get -display (relational_addr~state) &
(address->state != 0 &&
(idl-string..size(address->state)) != 0))))

dpy~cstring (',*);

dpy~spacex(lL);
dpy...attr(relational...addr, address, state,mode);
dpy-eol );
dpy~spacey(1L);
dpy~spacex(15L);
dpy-attr(relational~addr,address,zip,mode);

164



* Class phona..number methods

*phone..numbersprint

idi-routine void phone_number-srincipnumber,mode)
reiationaisphone_number pnumber;
dpy~dmade mode;

dpy-attr(reiariionalsphone number,pnurnher,number,mode);
dpy--ecU)

165



* Ciaf~s proj~tuple methods

*proj~tuple_ýkey

*proj~tuple~print

* initialize~proj-tuple
proj~equal -to

*projjless-than

*proj~greater-than

Class Proj tuple Methods

idi-routine void proj~tuple-key(proj-tuple)
relational-proj~tuple proj~tuple;

dpy.Jnteger )proj~tuple->essn, 9);
dpy~spacex(4L);
dpyjinteger (proj-tuple->proj~num, 3);
dpy~spacex(4L);
dpy~rationaitprojrtuple->hours,6);
dpy~eol );

idl-routine void proj-tuple~printtproj~tuple,mode)
reiational-proj~tuple proj~tuple;
dpy~dmode mode;

id! transaction tr =idi get~trans(proj~tuple);
boolean can-write =idi--trans-write-count(tr) > 0;

if (can-write) mode.expand =1;

dpy~attr(relational-proj~tuple,proj-tuple,essn,mode);
dpy..eol ));
dpy~spacey(lL);
dpy~attr (relational-projLtuple,proj tuple,ptojinum,mtode);
iJpy~eol ();
dpy..spacey(lL);
dpy~attr(relational-prol-tuple, proj~tuple,hours,mode);
dpy~eol C);

/* this function is called from create~tuple. It redefines the implementation
for the class tuples method initialize_tuples. Specifically, a new project
tuple is created and given initial values ýail of which are legal).
It returns a tuple to ::reate~tuple which then allows the user to initialize
this tuple with values. Each subtype of tuple needs to have a function
like this. */

iii _routince relar-ional~tuple initia1±ize~projtuple~tuple-type)
relational-tuple tuple-type;

relational-prcj-tuple new~tuple;
181 _ trans~action tr = idi _gettýrans~tuple-type,;
string empty d.pytigr,

new_tuple = 181 _new(tr,rel~aticnialjpr-)j-ýtple);
/I 71rt St1ill assign logal ;au.

166



new-tuple->essn = 0;
new~tuple->proj...num = 0;
new tuple->hours = 0.0;

return idl-to (relational_tuple,new_tuple);

1* this function returns true if ri tuple is equal to r2 tuple and
returns false otherwise. ~

idl-routine boolean proj~equal~to (rl-tuple, r2-tuple, index)
relational-prolituple rl-tuple, r2_tuple;
integer index;

idi-transaction tr = idi-get-trans~rl-tuple);

switch (index)

case 1:
if (rltuple->essn == r2_tuple->essn,)

return true;
else

return false;
break;

case 2:
if !=->proj..num ==r2_t~upl-->proj~num)

ret... Lcrue;
else

return false;
break;

case 3:
if (rl~tuple->hours ==r2_tuple->hours)

return true;
else

return false;
break;

default:
idl'raise )IDL.YRROR,

"An ugly ertor has occured in proj~equal..to');
break;

I" this function returns true if rl tuple is less than r2 tuple and
returns talse other-wise. */

idi-routine boolean proj...less..than(rl_tuple,r2_tuple,index)
relational..proj~tuple rl..tuple, r2-tuple;
integer index;

idl-transaction tr = idi-get~trans(rl~tuple);

switch (index)

case 1:
if (rI.tuple->e~ssn r2_tuplte-.essn)

return true;
else

return false;
break;

case 2:
if (rl~tuple->-pr,.j_num -- rZ_"t4.;.e--proj _nurn)

return true;

167



else
return false;

break;
case 3:

if (rl_tuple->hours < r2_tuple-->hours)
return true;

else
return false;

break;
default:

idl-raise(IDLERROR,
"An ugly error has occured in projiless-than");

break;

* this function returns true if rl tuple is greater than r2 tuple and
returns false otherwise. */

idl_routine boolean prot-greater-than(rl-tuple,r2_tuple,index)
relational_.proj-tuple rl_tuple,r2_tuple;
integer index;

idltransaction tr = idlget-trans(rl-tuple);

switch (index)
I
case 1:

if (rltuple->essn > r2_tuple--essn)
return true;

else
return false;

break;
case 2:

if (r1_tuple-->proj_num > r2_tuple->proj~num)
return true;

else
return false;

break;
case 3:

if (rltuple->hours > r2_tuple->hours)
return true;

else
return false;

break;
default:

idl-raise(IDLERROR,
"An ugly error has occured in projgreaterthan,);

break;

168



*Class carti-result~tuple methods

*carti-result_tuole-key

*carti-result~tupie..print

* initialize-carti-resul-tuple
insert-cartl-result~tuples

Class CartiResultTuple Methods

idl-routine void cartl_result tuple key Ccartl-tuple)
relational-cartl_result tuple cartl~tuple;

idl_-Univ u;

u= idl~to~idl-univ,cartl~tuple->person->lname);
idl_ývop Cu, idl-univ, idl key, (U));
dpy-spacex(4L);
dpy..Jnteger~cartl~tuple->essn,9);
dpy~spacex(4L);
dpy-integer~cartli-tuple->proj~num,3);
dpy-spacexC4L);
dpy..rational Ccartl~tuple->hours, 6);
dpy-eol C);

idl-routine void cartl_result-tuple~print~cartl..tuple,mode)
relational-cartl-resUlt~tUple cartl~tuple;
dpy_ýdmode mode;

idl-transaction tr = idl_get-trans~cartl-tuple);
boolean can__write = idl_trans-write count Ctr) > 0;

it (can..write) mode.expand =1;

mode.enbed = 1;

if Cmode.expand > 1)

idl-top~idl-any,idl~print, (cartl~tuple,mode));

dpy-attr~relational__emp~tuple,cartl~tuple,person,mode);
dpy-eolC);
dpy..spacey(lL);
dpy-eol C);
dpy-attr~relational-emp..tuple,cartl~tuple,phone,mode);
dpy-eol C);
dpy~spacey~lL);
dpy~eol C);
dpy~attr~relational-emp-tuple,c:artl~tuple,address,mode);
dpy-eol C);
dpy-spacey~lL);

/* add widget in later when it is defined as something '

dpy~actr~relational cart1_result-tuple,cartl-tuple,essn,mode);
dpy-eol C);
dpy..spacey(lL);
dpy..attr~relatiional cartl_result-tuple,cartl~tuple,proj-num,modeC;

169



dpy__.eol ~
dpy...spacey(lL);
dpy..attr(relational carti-result_tuple,cartl...tuple,hours,mode);

/ - - - - - - - - - - - - - - - - - - - - - - -

/* this tunction is called from create-tuple. It redefines the implementation
for the class tupies method initialize...tuples. Specifically, a new project
tuple is created and given initial values (all of which are legal).
It returns a tuple to create...tuple which then allows the user to initialize
this tuple with values. Each subtype of tupie needs to have a function
like this. */

il-routine relational..tuple initialize-carti-resul-tuple(tuple..type)
relational~tuple tuple...type;

relational-carti-result-tuple new~tuple;
idl Ttransaction tr = idl~get trans(tuple...type);
string empty = idl..copy-string(tr,"");

new..tuple = idl -new(tr,relational-cartl_result tuple);
/* must still assign legal values*/

new..tuple->person = idi-new(tr,relational~person);
new..tuple->person->fname = empty;
new..tuple->person->mname = empty;
new-tuple-.person->1name = empty;
new~.tuple->pers rn->bdate = empty;
new..tuple->person->ssn = 0;
new~tuple->person->spouse = empty;

new...tuple->address =idi -new(tr,relational_addr);
new...tuple->address->street = empty;
new...tuple->address->city =empty;

new..tuple->address->state =empty;

new...tuple->address->zip =empty;

new~tuple->phone = idi new(tr,relational..phone_number);
new..tuple->phone->numb-er = empty;

1* new-tuple->widget needs to have widget defined first ~

new~tuple->essn = 0;
new...tuple->proj-num =0;
new-.tuple->hours = 0.0;

return idl~to(relational-tuple,new...tuple);

static relational-relation insert -cartl-result...tuples(rl,r2,r3)
relational-relation rl,r2,r3;

relational-carti_result_tuple new..tuple;
reiational...emp...tuple rell;
relational...projituple rei2;
idi-transaction tr = idl...get_trans(rl);

1* get rid of any tuples that may be in the resultant relation s tructure
prior to inser- the new result */

r3->tuples = idi_empty~jinked(tr,relational~tuple);

idi-linked...for (relational...tuple, rl->tuples, rl...tuple)

170



idl_linked~for (relational tuple,r2->tuples,r2_tuple)

1* send message to get a new tuple created with valid default
values. */

new..tuple = idi-to(relational-cartl_result_tuple,
idi-vop(r3->tuple-type,relational tuple, initialize tuple,

(r3->tuple-type)));

rell = idl-to(relational_emp-tuple,rl~tuple);
rel2 = idl-to(relational-proi-tuple,r2_tuple);

new-tuple->person->fnanie =rell-->person->fname;
new-tuple->person->mnarne = rell->person->mname;
new~tuple->person->lname = rell->person->lnarne;
new-tuple->person->bdate = rell->person->bdate;
new..tuple->person->ssn = rell-->person->ssn;

new-tuple->address->street =rell ->address->street;
new~tuple->address->city = rell->address->city;
new-tuple->address->state =rell->address->state;
new~tuple->address->z ip = rell1->address->zip;

new..tuple->phone->number = rell->phone->nurnber;

/* new_-tuple->widget needs to have widget defined first ~

new..tuple->essn =rel2->~essn;
new-tuple->proj-num =re12->proj~num;
new~tuple->hours = rel2->hours;

idl-insert-back(relational~tupie,r3->tuples,new-tuple);

Iidl_end-for
idl~end_for

return r3;

171



* Class projecti_result-tuple methods

*projectl...result-tuple~key

*projectl..result-tuple...print

* ~initialize..~projectl-resul_tuple
* insert-projectl~resuit_fids

Class Projectl_ResultTuple Methods

idl_routine void projectl-result~tuple~key(projectl result tuple)
relational-Projectl-result~tupie projecti_result-tuple;

dpy~rational(projectl_result~tupie->hours,6);
dpy~spacex(4L);
dpy..integer(projectl-result-.tuple->essn,9);
dpy~eol();

idl-routine void projectl-result...tuple~print(projectl-result-tuple,mode)
relational~projectl-result~tuple projectl_result-tuple;
dpy~dmode mode;

idl -transaction tr = idl..get trans(projectl-result_tuple);
boolean can-write = idi-trans-write-count(tr) > 0;

if (can-wiite) mode.expand =1;

dpy~attr(relational~projectl resuit-tuple,projectl-result-tuple,hours,mode);
dpy~eol();
dpy-spacey(lL);
dpy-attr(relational~projectl result~tuple,projectl result tuple,essn,mode);
dpy~eol );

idl-routine relational-tuple initialize~projectl-resul-tuple(tuple~type)
relational~tuple tuple~type;

relational-projectl-result-tuple new tuple;
idi-transaction tr = idl~get trans(tupie..type);

new~tuple = idi-new(tr, relational~projectl-result-tuple);
/* must still assign legal values*/

new tuple->essn =0;

new-tuple->hours =0.0;

return idl.So(relational-tuple,new-tuple);

idl-routine relational-relation insert-projectl-result flds(rel,result re-l)
relational-relation rel,result-rel;

relational..projectl result~tuple new...tuple;
relational~proj~tupie rell;

172



idi_transaction tr =idl~get.trans(rel);

result_rel->tuples =idl~empty..linked(tr, relational-tuple);

new..tuple = idlnew(tr,relational..projectl~result tupie);

/* must still assign legal values*/

idi_linked-for (relatioflal.Suple,rel->tuples,rl-tuple)

/* send message to get a new tupie created with valid default
values. *

new tuple = idl-to(relational~rjc~eUttpe
idl -vop (result_rel-

>tuple-type,relatianal-tuple, initialize..tuple, (resuityrel->tuple..type)));

rell = idl_to(relational~proj..tuple,rl~tUple);

new~tuple->essn =rell->essn;

new~tupie->hours rell->hour2;

idl_insert_back(relational tuple, result..rel->tuples,new-tuple);

I idl-end-for

return result-rel;

173



* General functions to display a character string and an integer

*exit-action

*char-screen

* integer-screen

/* called by char~screen and integerý_screen to exit the pop up window ~

idl -routine void exi4t-action(i)
integer i;

dpy~quito;

/* display the string s on a pop-up screen using dpy~active(charscreen,s)
Note: the browzer restricts s to 80 characters *

idi-routine void char-screen(s~x,y)
string s;
integer x,y;

dpy~open ('Display String", true);
dpy~open("format",true);
brw-crnd("Exit","exit this screen",exit action,0,BRW SCREEN);
dpy..eol();
dpy~spacey (2);
dpy~eol();
dpy~cstring(s);
dpy~spacey(2);
dpy__eol ();
dpy~close o;
brwý_input~area(y-3,true);
dpy~close o;
dpy~boxed(x,y);

/* display the integer s on a pop-up screen ~
idi-,routine void integer~screen(s,x,y)

integer s;
integer x,y;

dpy..open("Display Integerl,true);
dpy~open("~formnat*,true);
brw-crnd("Exit","exit this screenl,exit~action,0,BRWSCREEN);

dpy~spacey (1);

dpy~integer(s, 5);
dpy...spacey (2);
dpy-eol();
dpy..close H;
brw_input~area(y-3,true);
dpy..close H;
dpy-boxed(x,y);

174



* Binding and Initialization

id _define~ops relhcýional_.opbind))

idl_bind~root (relational);

idi -bind("database-key",database-key);
idi-bind("database~print",database~print);
idlbind("create-relation",create-relation);

idlbind("relation..key',reiatic~n_key);
idi -bind("relation~print*,reiation~print);
idi_bind(*create~tuple*~,create_tuole);
idi-bind) *ck-union-comnatability",ck-union_compatability);

idi-bind)"union-op',union-op);
idi-bind("cart-prod-opm,cart-croi-op);
id _bind("set diff-op",set_diff_on);
idi bind) project-op',project--op);
idl-bind)"seiect~op",select~op);

idi-bind("equal-to",equal-to);
idlbind("less~than", less than);
idi-bind(*greater_than"s,greater_than);

id _ýbind("initialize tuple",initialize..tuple);
idi-bind("insertjfields",insert_fields);
idi-bind ("insert-tuples", insert_tuples);

idi-bind)"name-key",name..key);
iRl_bind("name-print",narne~print);

idi-bind("emp-tuple-key",emp..tuole~key);
idi-bind("emp~tuple-print,emp~tuple~print);
idi_bind('emp~eqai~to",emp~equai~to);
idi-bind("emp-less-rhan",emp-less_than);
idi_bind)('emp~greater than",emp..greater than);
idl-bind)"initialize~emp.Suple",initialize emp..tuple);

idi-bind("person~key",person~key);
idi-bind("person~print",person~print);

idi-bind1"addr_key',addr~key);
idl-bind("addr-.print",addr~print);

idl-bind)"phone-number-print",phone_number~print);

idl-bind(lproj-tuple-keyl,proj..tuple~key);
idi-bifld)*proj-tuple~prjnt*,proj~tupýe~prjnt);
idl-bind("proj~equal~to",projiequai~to);
idi-bind)lproj-less than",projiless than);
idi-bind(*proj-greater than",proj~greater.Shan);
idl-bind)*initialize~projtuple*,irIrialize~proj..tuple);

idi_bind("cartl-result-tuple-key",carrl result~tuple~key);
idi _bind("cartl-result-tuple-print*,cartl~result~tuple~print);
idi _bind)"initialize-carti-resul-tuple",initialize-cartl-resul-tuple);
idl-bind)"insert-cartl-result-tuples',insert_carti-resuit~tuples);

idl_bind)"projectl-result~tuple..key*,prolectI Tresult tuple-key);
idi-bind)"projectl-result-tuple~print",projectl-result~tuple~print);

175



idl-bindV'initiaiize~prajeceJ._resul-tupie",initiaiize..projectl_resul_tuple);
idi_bind('insert...projecti-resuit-flds,',insert..projectl-result_fids);

176



APPENDIX D: A SAMPLE R/OODBMS DATABASE ASCH CLUSTER FILE

-- Generated by 1DB System Version 1.1
@[ cid < 16#e6842701 16#00000000 16*00000036 >

lidseed 3566 ]@
x355^
xl: 1063@ name[ name 1064@ "person"
x2: 1065@ name[ name 1066@ "address" I
x3: 1067@ name[ name 1068@ "phone"
x4: 1069@ name[ name 1070@ "widget"
xS: 1257@ name[ name 1267@ "person"
x6: 1259@ name[ name 1266@ "addr" ]
x7: 1261@ name[ name 1268@ "phone-number" J
x8: 1272@ name[ name 1275@ "id!_univ" I
x9: 1072@ person[ fname x176^ ; mname x!77^ ; lname x178^ ; bdate x179- ; ssn
122121212 ; spouse 3015@ "Lisa" ;sptr nil ]
xl0: 1074@ addr[ street xl81^ ; city xi82^ state x183' ; zip x184^
xli: 1075@ phone-number[ number x136' I
x12: 1076@ emptuple[ person x9- ; address xl0^ ; phone xll^ ; widget nil
x13: 1078@ person( fname x201^ ; mname x202- ; Iname x203^ ; bdate x204^ ssn
110121212 ; spouse 3024@ "Stephanie" ;sptr nil ]
x14: 1080@ addr[ street x206^ ; city x207^ ; state x208^ ; zip x209^
x1S: 1081@ phonenumber[ number x2!l^ I
x16: 1082@ emptuple[ person x13^ ; address x14^ ; phone x15^ ; widget nil ]
x17: 1084@ person( fname x226^ ; mname x227^ ; iname x228^ ; bdate x229^ ; ssn
220121212 spouse 3033@ "Joan" ; sptr nil I
x18: 1086@ addr[ street x231^ ; city x232^ ; state x233^ ; zip x234^ ]
x19: 1087@ phonenumber[ number x236^ ]
x20: 1088@ emptuple[ person x17^ ; address x18^ ; phone x19^ ; widget nil I
x21: 1090@ person[ fname x25l^ ; mname x252^ ; lname x253^ ; bdate x254^ ; ssn
120926190 spouse 3040@ "Karin" ;sptr nil ]
x22: 1094@ addr[ street x256^ ; city x257^ ; state x258^ ; zip x259^]
x23: 1095@ phone number[ number x261^ I
x24: 1096@ emp tuple[ person x21' ; address x22^ ; phone x23^ ; widget nil ]
x25: 1098@ person( fname x276^ ; mname x277^ ; iname x278^ ; bdate x279^ ; ssn
123456789 spouse 1097@ "" ;sptr nil ]
x26: 1102@ addrf street x281^ ; city x282^ ; state x283^ ; zip x284^ I
x27: 1105@ phone number[ number x286^ I
x28: 1106@ emptuple[ person x25^ ; address x26^ ; phone x27- ; widget nil I
x29: 1348@ person[ fname x301^ ; mname x302^ ; iname x303^ ; bdate x304^ ; ssn
991221234 ; spouse 3053@ "Lesa" ; sptr nil ]
x30: 1349@ addrf street x306^ ; city x307^ ; state x308^ ; zip x309^
x31: 1350@ phone number[ number x311^ ]
x32: 1347@ emp tuple[ person x29^ address x30^ ; phone x31^ ; widget nil I
x33: 1354@ person[ fname 1355@ "" mname 1356@ "" ;name 1382@ bdate 1358@
". ; ssn 0 ; spouse 1359@ " ; sptr nil I
x34: 1360@ addr[ street 1361@ "" ; city 1362@ "; state 1363@ "" zip 1364@ --

x35: 1365@ phonenumberf number 1366@ "1 1
x36: 1353@ emp tuplef person x33^ ; address x34^ phone x35^ ; widget nil I
x37: 1107@ relation[ relation_name 1108@ "rl" ; attribute_names x38^ ;
attribute-types x39^ ; tuples 11109 < x12^ x16^ x20^ x24^ x28^ x32^ > ; tuple-type
x36^ ; key x35S^ I
x38: 1113@ < xl^ x2^ x3^ x4^ >
x39: 1254@ < x5^ x6^ x7' x8' >
x40: 1239@ person[ fname 1240@ "Nancy" ; mname 3059@ 'J.1 ; iname 1241@ 'McClellan,
; bdate 3060@ "14 Feb 57" ; ssn 990124444 ; spouse 1238@ "" ; sptr nil I
x41: 1242@ addr[ street 3062@ "2331 Long St." ; city 3063@ 'Monterey" ; state 3064@
"CA" ; zip 3065@ "93940" 1
x42: 1243@ phonenumberf number 30619 "(203)999-9991" 1
x43: 1244@ emp tuple[ person x40^ ; address x41^ ; phone x42^ ; widget nil ]
x44: 1221@ person( fname 3066@ "Leonard" ; mname 3067@ "H.1 ; lname 1222@ 'Tharpe'

bdate 3068@ "12 Aug 58" ; ssn C1,121212 ; spouse 3069@ 'Stephanie' ; sptr nil

177



x45: 1223@ addr[ street 3071@ "432 Caldwell Drive" ; city 2779@ "Monterey" ; state
3072@ "CA" ; zip 3073@ "93940" ]
x46: 1224@ phone number[ number 3070@ "(408)452-1234"
x47: 1225@ emptuple[ person x44' ; address x45^ ; phone x46^ ; widget nil
x48: 1227@ person[ fname 3074@ "David" rmname 3075@ "M." ; !name 1228@ "Nash"
bdate 3076@ "21 Jul 65" ; ssn 23551324 spouse 3077@ "Tammy" ; sptr nil ]
x49: 1229@ addrf street 3079@ "2112 Leidig Circle" ; city 2778@ "Monterey" ; state
3080@ "CA" ; zip 3081@ "93940" !
xSO: 1230@ phone-number[ number 3078@ "(408)123-4567"
x51: 1231@ emp tuple[ person x48^ ; address x49^' phone x50^ ; widget nil
x52: 1368@ person[ fname 1369@ "" ; mname 1370@ "" ; miname 1371@ "" bdate 1372@

"ssn 0 ; spouse 1373@ "" ; sptr nil ]
x53: 1374@ addr[ street 1375@ "" ; city 1376@ "" state 1377@ "" zip 1378@
x54: 1379@ phone.number[ number 1380@ "" ]
x55: 1367@ emptuple[ person x52^ ; address x53^ phone x54^ ; widget nil ]
x56: 1132@ relation[ relation_name 1133@ "r2" ; attributenames x38^ ;
attribute types x39^ ; tuples 1135@ < x43^ x47- x51^ > ; tupletype x55^ ; key
1137@ "person -> ssn" I
x57: 1279@ name[ name 1288@ "person" I
x58: 1281@ name( name 1289@ "addr" I
x59: 1283@ name[ name 12908 "phonenumber" I
x60: 1285@ name[ name 1291@ "diff_type" I
x61: 1139@ person[ fname 1140@ "Tim" ; mname 3089@ "J." ; lname 1141@ "Kelly"
bdate 3090@ "4 Jul 62" ; ssn 22121212 spouse 1138@ "" ; sptr nil I
x62: 1142@ addr[ street 1143@ "345 Bergin" ; city 1144@ "Monterey" ; state 1145@
"CA" ; zip 3092@ "93940" ]
x63: 1146@ phone-number[ number 3091@ "(408)123-4567"
x64: 1148@ emp tuplet person x61^ ; address x62" ; phone x63^ ; widget nil
x65: 1150@ person[ fname 1151@ "Ronald" ; mname 1152@ "L." ; iname 1153@ "Spear"
; bdate 3082@ "29 Dec 62" ; ssn 120926190 ; spouse 3083@ "Karin" ; sptr nil I
x66: 1154@ addr[ street 3085@ "397B Ricketts Road" ; city 3086@ "Monterey" ; state
3087@ "CA" ; zip 3088@ "93940" )
x67: 1155@ phonenumber[ number 3084@ "(408)375-8619"
x68: 1156@ emptuple[ person x65^ address x66^ phone x67^ ; widget nil I
x69: 1384@ person[ fname 1385@ "" r;name 1386@ "" ; lname 1387@ -" ; bdate 1388@".. ; ssn 0 ; spouse 1389@ "" ; sptr nil I
x70: 1390@ addr[ street 1391@ "" ; city 1392@ "" ; state 1393@ "" ; zip 1394@ -e I
x71: 1395@ phone-number[ number 1396@ "" ]
x72: 1383@ emp tuple[ person x69^ ; address x70^ phone x71^ ; widget nil ]
x73: 1157@ relation[ relation_name 1158@ "r3" attributenames x38^ ;
attribute_types 1276@ < x57^ x58- x59^ x60^ > tuples 1160@ < x64^ x68^ >
tupletype x72^ ; key 1162@ "person -> s3n" I
x74: 1163@ name[ name 1164@ "person -> fname"
x75: 1165@ name) name 1166@ "person -> mname"
x76: 1167@ name[ name 1168@ "person -> iname"
x77: 1169@ name) name 1170@ "person -> bdate"
x78: 1171@ name) name 1172@ "person -> spouse" '
x79: 1173@ name[ name 1174@ "addr -> strept ]
x80: 1175@ name' name 1176@ "addr -> city"
x81: 1177@ name) name 1178@ "addr -> state" '
x82: 1179@ name( name 1180@ "addr -> zip" I
x83: 1181@ name[ name 1182@ "phone -> number" ]
x84: 1310@ name) name 1330@ "string" ]
x85: 1312@ name[ name 1331@ "string" '
x86: 1314@ name[ name 1332@ "string" ]
x87: 1316@ name[ name 1333@ "string" ]
x88: 1318@ name) name 1340@ "integer"
x89: 1320@ name) name 1335@ "string"
x90: 1322@ name) name 1336@ "string" ]
x9l: 1324@ name) name 1337@ "string"
x92: 1326@ name) name 1338@ "string"
x93: 1328@ name) name 1339@ "string" ]
x94: 1183@ ""
x95: 1184@ person) fname x94^ ; mname x94^ iname 1185@ "Larson" ; bdate x94^
ssn 0 ; sDouse x94^ ; sptr nil ]
".96: 118b@ addr) street x94^ ; city x94^ ; state x94^ ; zip x94^ ]
x97: 1187@ phonenumber[ number x94^ I
x98: 1i88@ emptuplet person x95'- address x96^ phone x97^ ; widget nil 1

178



X99: 1189@
xlO0: 1190@ person[ fname x99^ ; mname x99^ ; iname 1191@ "Johnson" ; bdate x99^
; ssn 0 ; spouse x99^ ; sptr nil I
xl01: 1192@ addr( street x99^ ; city x99^ ; state x99- ; zip x99^ I
x102: 1193@ phonenumber( number x99^ I
x103: 1194@ emp-tuple[ person xi00^ ; address xlO1^ ; phone :<102^ ; widget nil ]
x104: 1195@ 8"
xl05: 1196@ person[ tname xl04^ ; mname x104^ ; iname 1197@ "Lombardo" bdate
x104^ ; ssn 0 ; spouse xl04^ ; sptr nil I
x106: 1198@ addr[ street x104^ ; city x!04^ ; state xl04^ ; zip x104^ 1
x107: 1199@ phonenumber[ number x104- I
x108: 1200@ emp tuple[ person xlO5^ ; address x106^ ; phone xl07; w'dget nil I
x109: 1440@ person[ fname 1441@ "" mname 1442@ "" iname 1443@ ; bdate 1444@"I ; ssn 0 ; spouse 1445@ "- ;sptr nil ]
xllO: 1446@ addr[ street 1447@ "" , city 1448@ "" ; state 1449@ zip 1450@ "" I
xll: 1451@ phonenumber[ number 1452@ "" I
xl12: 1439@ emp_tuple[ person xl09^ ; address xll0^ ; phone xll1^ widget nil ]
xl13: 1201@ relation[ relationname 1202@ "test2" ; attribute_names xl14^ ;
attributetypes x1l5^ tuples 1204@ < x98^ x103^ xl08^ > ; tuple-type xl12^ ; key
1206@ "person -> ssn"
xl14: 1207@ < x74^ x75^ x76^ x77^ x7 8- x79^ x80^ x8l^ x82^ x83^ >
xll: 1307@ < x84^ x85^ x86^ x87- x88^ x89^ x90^ x9l^ x92- x93^ >
x116: 1426@ person[ fname 1427@ "" ; mname 1428@ "" ; iname 1429@ "" ; bdate 1430@". ; ssn 0 ; spouse 1431@ "" ;sptr nil I
x117: 1432@ addr[ street 1433@ "" ; city 1434@ "" ; state 1435@ "" ; zip 1436@ "" ]
x118: 1437@ phonenumber[ number 1438@ "" I
x119: 1425@ emp-tuple[ person x116^ ; address xl17^ ; phone x118^; widget nil
x120: 1208@ relation[ relation_name 1209@ "TEMPI" ; attributenames xl14^ ;
artribute-types xll5^ ; tuples 1211@ < x98^ x103^ xl03^ x64^ > ; tuple-type xl19^
; key 1213@ "person -> ssn" I
x121: 1295@ name[ name 1303@ "person" I
x122: 1297@ name[ name 1304@ "addr" I
x123: 1299@ name[ name 1305@ "phonenumber" '
x124: 1301@ name( name 1306@ "idluniv" I
x125: 1215@ person[ tname 3093@ "James" ; mname 3094@ "S." ; iname 1216@ "Baumann"
; bdate 3095@ "12 Jan 85" ; ssn 550121212 ; spouse 1214@ "; sptr nil I
x126: 1217@ addr[ street 3097@ "41112 Lost Lane" ; city 2780@ "Fayetteville"
state 3098@ "NC" ; zip 3099@ "32212" ]
x127: 1218@ phonenumber[ number 3096@ "(231)222-3333" 1
x128: 1219@ emptuple[ person x125- ; address x126^ ; phone xl27^ ; widget nil ]
x129: 1398@ person( fname 1399@ "" ; mname 1400@ "i iname 1401@ ; bdate 1402@
". ; ssn 0 spouse 1403@ "" ; sptr nil I
x130: 1404@ addr[ street 1405@ "" ; city 1406@ "" state 1407@ "" zip 1408@ -- I
x131: 1409@ phonenumber[ number 1410@ "" 8
x132: 1397@ emp tuple[ person x129- ; address x130^ ; phone x131^ widget nil
x133: 1232@ relation[ relation_name 1233@ 'r4" ; attributenames x38^ ;
attribute-types 1292@ < x121^ x122^ x1231 x124^ > tuples 1235@ < x128^ x47- x51^
> ; tuple-type x132^ ; key 1237@ "person -> ssn" I
x134: 1412@ person[ fname 1413@ "" ; mname 1414@ 'in iname 1415@ ; bdate 1416@
"i ; ssn 0 ; spouse 1417@ "" ;sptr nil I
x135: 14188 addr[ street 1419@ "" ; city 1420@ n; state 1421@ "" zip 1422@ -]

x136: 1423@ phonenumber[ number 1424@ "" 1
x137: 1411@ emptuple[ person x134- ; address x135^ ; phone x136^ widget nil
x138: 1245@ relation[ relationname 1246@ "r5" ; attributenames x38^ ;
attributetypes x39^ ; tuples 1248@ < x43- > ; tupletype x137^ ; key 1250@ "person
-> ssn" I
x139: 1501@ name[ name 1518@ "Employee SSN" I
x140: 1503@ name[ name 1519@ "Project Number" I
x141: 1505@ name[ name 1520@ "Hours Worked" I
x142: 1510@ name[ name 1521@ "integer" )
x143: 1512@ name[ name 1522@ "integer" I
x144: 1514@ name' name 1523@ "rational" ]
x145: 1526@ projtuple[ essn 120926190 proj_num 2 hours 10.0 1
x146: 1529@ projtuple[ essn 999999999 projnum I hours 45.2 ]
x147: 1532@ projtuple[ essn 123456789 proj_num 2; hours 51.5 1
x148: 1535@ proj_tuple[ essn 987654321 proj-num 30 hours 4.0 1
x149: 1497@ proj tuple[ essn 0 ; proj_num 0 ; hours 0.0 ]

179



x150: 1490@ relation[ relationname 1495@ "ptl" ; attributenames 1498@ < x139^
x140^ x141^ > ; attribute_types 1507@ < x142^ x143^ x144^ > ; tuples 1494@ < x145^
x146^ x147^ x148^ > ; tupletype x149^ ; key 1496@ "essn,projnum" ]
x151: 1554@ name[ name 1575@ "Employee SSN" I
x152: 1556@ name[ name 1576@ "Project Number" '
x153: 1558@ name[ name 1578@ "Hours Worked"
x154: 1560@ name[ name 1579@ "integer" '
x155: 1562@ name[ name 1580@ "integer" '
x156: 1564@ name[ name 1581@ "rational" '
x157: 1568@ proj_tuple[ essn 550926190 ; proj-num 23 ; hours 34.4 1
x158: 1571@ projtuple[ essn 666666666 ; proj_num 2 ; hours 15.0 ]
x159: 1574@ projtuplef essn 123456789 ; proj-num 1 ; hours 24.0 1
x160: 1547@ projtuple( essn 0 ; proj.num 0 ; hours 0.0 1
x161: 1540@ relation[ relationname 1545@ "pt2" ; attributenames 1548@ < x151^
x152^ x153^ > ; attribute .. types 1551@ < x154^ x155^ x156^ > ; tuples 1544@ < x157^
x158^ x159^ > ; tupletype x160^ ; key 1546@ "essn,projnum" '
x162: 1618@ name[ name 1658@ "Person" ,
x163: 1620@ name[ name 1659@ "Address" ,
x164: 1622@ name( name 1660@ "Phone" ,
x165: 1624@ name( name 1661@ "Widget" ,
x166: 1626@ name[ name 1655@ "Employee SSN" I
x167: 1628@ name[ name 1657@ "Project Number" ,
x168: 1630@ name[ name 1656@ "Hours Worked" ,
x169: 1635@ name[ name 1662@ "person' ]
x170: 1637@ name[ name 1663@ "addr" ]
x171: 1639@ name[ name 1664@ "phone number"
x172: 1641@ name[ name 1665@ "idluniv"
x173: 1643@ name[ name 1666@ "integer"
x174: 1645@ name[ name 1667@ "integer"
x175: 1647( name[ name 1668@ "rational" I
x176: 3012@ "Mathew"
x177: 3013@ "James"
x178: 1073@ "Rothlisberger"
x179: 3014@ "23 Feb 60"
x180: 3210@ person[ fname x176^ ; mname x177^ ; miname x178- ; bdate x179- ; ssn
122121212 ; spouse 3208@ "" ;sptr nil I
x181: 3017@ "231 Bergen"
x182: 3018@ "Monterey"
x183: 3019@ "CA"
x184: 3020@ "93940"
x185: 3211@ addr[ street x181^ ; city x182^ ; state x183^ ; zip x184^
x186: 3016@ "(408)375-1234"
x187: 3212@ phonenumber[ number x186^ ]
x188: 3209@ cartiresulttuple( person xl80^ ; address x185- ; phone x187^ ; widget
nil ; essn 550926190 ; proj-num 2 ; hours 10.0 1
x189: 3225@ person[ fname x176^ ; mname x177^ ; miname x178^ ; bdate x179^ ; ssn
122121212 ; spouse 3223@ "" ; sptr nil ]

x190: 3226@ addr[ street x181^ ; city x182^ ; state x183^ ; zip x184^
x191: 3227@ phonenumber[ number x186^ I
x192: 3224@ cartl_result_tuple[ person x189^ ; address x190^ ; phone x191^ ; widget
nil ; essn 999999999 ; proj.num 1 ; hours 45.2 1
x193: 3240@ person[ fname x176^ ; mname x177^ ; miname x178^ ; bdate x179- ; ssn
122121212 ; spouse 3238@ "" ; sptr nil I
x194: 3241@ addr[ street x181^ ; city x182^ ; state x183^ ; zip x184^]
x195: 3242@ phonenumber[ number x186^ I
x196: 3239@ cartl_result.tuplef person x193^ address x194^ ; phone x195^ ; widget
nil ; essn 123456789 ; proj.num 2 ; hours 51.5 1
x197: 3255@ person[ fname x176^ ; mname x177^ ; miname x178^ ; bdate x179^ ; ssn
122121212 ; spouse 3253@ "" ; sptr nil I
x198: 3256@ addr( street x181^ ; city x182^ ; state x183^ ; zip x184^
x199: 3257@ phonenumber[ number x186^ ]
x200: 3254@ cartlresult-tuple[ person x197^ ; address x198^ ; phone x199^ ; widget
nil ; essn 987654321 ; projnum 30 ; hours 4.0 1
x201: 3021@ "Leonard"
x202: 3022@ "H."
x203: 1079@ "Tharpe"
x204: 3023@ "12 Aug 58"

180



x205: 3270@ person[ fname x201^ ; mname x202^ ; iname x203^ ; bdate x204^ ; ssn
110121212 ; spouse 3268@ - ; sptr nil I
x206: 3026@ "432 Caldwell Drive"
x207: 3027@ 'Monterey"
x208: 3028@ "CA"
x209: 3029@ "93940"
x210: 3271@ addr[ street x206^ ; city x207^ ; state x208- ; zip x209^ I
x211: 3025@ "(408)452-1234"
x212: 3272@ phonenumber[ number x211^J
x213: 3269@ cartiresult.1.tuple[ person x205^ ; address x210^ ; phone x212^ ; widget
nil ; essn 550926190 ; proj-num 2 ; hours 10.0 1
x214: 3285@ person[ fname x201^ ; mname x202^ ; iname x203^ ; bdate x204^ ; ssn
110121212 ; spouse 3283@ "" ; sptr nil I
x215: 3286@ addr[ street x206^ ; city x207^ ; state x208^ ; zip x209^ ]
x216: 3287@ phonenumber[ number x211^ I
x217: 3284@ carti_result.tuple[ person x214^ address x215- ; phone x216^ ; widget
nil ; essn 999999999 ; proj_num 1 ; hours 45.2 1
x218: 3300@ person[ tname x201^ ; mname x202^ ; lname x203^ ; bdate x204^ ; ssn
110121212 ; spouse 3298@ "" ; sptr nil I
x219: 3301@ addr[ street x206' ; city x207/ ; state x208^ ; zip x209^ ]
x220: 3302@ phonenumber[ number x211^ I
x221: 3299@ cartiresulttuple[ person x218^; address x219^ phone x220^ ; widget
nil ; essn 123456789 ; proj_num 2 ; hours 51.5 1
x222: 3315@ person[ fname x201^ ; mname x202^ ; iname x203^ ; bdate x204^ ; ssn
110121212 ; spouse 3313@ "" ; sptr nil )
x223: 3316@ addr[ street x206^ ; city x207^ ; state x208^ ; zip x209^]
x224: 3317@ phone..number[ number x211^ I
x225: 3314@ cart _result.tuple( person x222^ ; address x223^ phone x224^ ; widget
nil ; essn 987654321 ; projnum 30 ; hours 4.0 1
x226: 3030@ "Charles"
x227: 3031@ "L."
x228: 1085@ "Baumann"
x229: 3032@ "23 Jun 54"
x230: 3330@ person[ fname x226^ ; mname x227^ ; iname x228^ ; bdate x229^ ; ssn
220121212 ; spouse 3328@ "" ; sptr nil ]
x231: 3035@ "12345 General Lane"
x232: 3036@ "Ft Bragg"
x233: 3037@ "NC"
x234: 3038@ "16234"
x235: 3331@ addr[ street x231^ ; city x232^ ; state x233^ ; zip x234^ ]
x236: 3034@ "(122)324-9876"
x237: 3332@ phonenumber( number x236^ ]
x238: 3329@ cartl_resulttuple[ person x230^ ; address x235^ ; phone x237^ ; widget
nil ; essn 550926190 ; projnum 2 ; hours 10.0 1
x239: 3345@ person[ fname x226^ ; mname x227^ ; iname x228^ ; bdate x229^ ; ssn
220121212 ; spouse 3343@ "" ; sptr nil I
x240: 3346@ addr[ street x231^ ; city x232- ; state x233^ zip x234^ ]
x241: 3347@ phone.number[ number x236^ ]
x242: 3344@ cart _resulttuple[ person x239^ ; address x240^ ; phone x241^ ; widget
nil ; essn 999999999 ; projnum 1 ; hours 45.2 1
x243: 3360@ person[ fname x226^ ; mname x227^ ; Iname x228^ ; bdate x229^ ; ssn
220121212 ; spouse 3358@ "" ; sptr nil I
x244: 3361@ addr[ street x231^ ; city x232^ ; state x233^ ; zip x234^
x245: 3362@ phonenumberf number x236^ I
x246: 3359@ cartl_result.tuple[ person x243^ ; address x244^ ; phone x245^ ; widget
nil ; essn 123456789 ; proj.num 2 ; hours 51.5 ]
x247: 3375@ person[ fname x226^ ; mname x227^ ; iname x228^ ; bniate x229^ ; ssn
220121212 ; spouse 3373@ "" ; sptr nil I
x248: 3376@ addr[ street x231^ ; city x232^ ; state x233^ ; zip x234^
x249: 3377@ phone.number[ number x236^ I
x250: 3374@ cartl_result_tuple( person x247^ ; address x248^; phone x249^ ; widget
nil ; essn 987654321 ; projnum 30 ; hours 4.0 ]
x251: 1091@ "Ronald"
x252: 1092@ "L."
x253: 1093@ "Spear"
x254: 3039@ "29 Dec 62"
x255: 3390@ person[ fname x251^ ; mname x252^ ; iname x253^ ; bdate x254^ ; ssn
120926190 ; spouse 3388@ "" ;sptr nil 1

181



x256: 3042@ '397B Ricketts Road,
x257: 3043@ 'Monterey'
x258: 3044@ ICA'
x259: 3045@ 0939401
x260: 3391@ addr[ street x256^ ; city x257^ ; state x258^ ; zip x259^ ]
x261: 3041@ 1(408)375-8619'
x262: 3392@ phonenumber[ number x261^
x263: 3389@ cartl_result tuple[ person x255^ ; address x260^ phone x262^ ; widget
nil ; essn 550926190 ; proj_ium 2 ; hours 10.0 1
x264: 3405@ person[ fname x251^ ; mname x252^ ; miname x253^ ; bdate x254^ ; ssn
120926190 ; spouse 3403@ "1 ; sptr nil ]
x265: 3406@ addr[ street x256^ ; city x257^ ; state x258- ; zip x259^ I
x266: 3407@ phone.number[ number x261^ I
x267: 3404@ cartiresult tuplef person x264^ ; address x265^ ; phone x266^ ; widget
nil ; essn 999999999 ; proj-num 1 ; hours 45.2 1
x268: 3420@ person[ fname x251^ ; mname x252^ ; Iname x253- ; bdate x254^ ; ssn
120926190 ; spouse 3418@ -' ; sptr nil ]
x269: 3421@ addr[ street x256^ ; city x257^ ; state x258^ ; zip x259^ ]
x270: 3422@ phone.number( number x261^ I
x271: 3419@ cartl_result tuple[ person x268^ ; address x269^ phone x270^ ; widget
nil ; essn 123456789 ; projhnum 2 ; hours 51.5 )
x272: 3435@ person[ fname :c251^ ; mname x252^ ; miname x253^ ; bdate x254^ ; ssn
120926190 ; spouse 3433@ 11 ; sptr nil ]
x273: 3436@ addr[ street x256^ ; city x257^ ; state x258^ ; zip x259^ ]
x274: 3437@ phone-number[ number x261^ I
x275: 3434@ cartl_resulttupleI person x272^ ; address x273^ ; phone x274^ ; widget
nil ; essn 987654321 ; proj-num 30 hours 4.0 1
X276: 1099@ 'Jon'
x277: 1100@ "Lewis'
x278: 1101@ "Spear'
x279: 3046@ '16 Sep 58'
x280: 3450@ person[ fname x276^ ; mname x277^ ;name x278^ ; bdate x279^ ; ssn
123456789 ; spouse 3448@ 11 ; sptr nil
x281: 3043@ '3122 Apt B Sunset Strip'
x282: 1103@ 'Redondo Beach"
x283: 1104@ 'CA'
x284: 3049@ '99812'
x285: 3451@ addr[ street x281" ; city x282^ ; state x283^ ; zip x284^ ]
x286: 3047@ "1(301)322-2341"
x287: 3452@ phone_number[ number x286^ I
x288: 3449@ cartl_result.1._tuple[ person x280^ ; ?ddress x285^ ; phone x287^ ; widget
nil ; essn 550926190 ; projnum 2 ; hours 10.0 ]
x289: 3465@ person[ fname x276^ ; mname x277^ ; miname x278^ ; bdate x279^ ; ssn
123456789 ; spouse 3463@ 11 ; sptr nil I
x290: 3466@ addr! street x281^ ; city x282^ ; state x283^ zip x284^ ]
x291: 3467@ phonenumber[ number x286^ I
x292: 3464@ cartlresulttuple! person x289^ ; address x290^ ; phone x291^ ; widget
nil ; essn 999999999 ; projnum I ; hours 45.2 1
x293: 3480@ person[ fname x276^ ; mname x277^ ; iname x278^ ; bdate x279^ ; ssn
123456789 ; spouse 3478@ "' ; sptr nil I
x294: 3481@ addr[ street x281^ ; city x282^ ; state x283^ ; zip x284^ ]
x295: 3482@ phonenumber[ number x286^
x296: 3479@ cartl result tuplef person x293^ ; address x294^ ; phone x295^ ; widget
nil ; essn 123456789 ; proj__num 2 ; hours 51.5 ]
x297: 3495@ person! fname x276^ ; mname x277^ ; miname x278^ ; bdate x279^ ; ssn
123456789 ; spouse 3493@ 1., ; sptr nil 1
x298: 3496@ addr! street x281^ ; city x282^ ; state x283^ ; zip x284^
x299: 3497@ phone_.number[ number x286^ ]
x300: 3494@ cartiresulttuple[ person x297^ ; address x298^ ; phone x299^ ; widget
nil ; essn 987654321 ; projnum 30 ; hours 4.0 I
x301: 3050@ 'Jon'
x302: 3051@ "K.,
X303: 1352@ 'Walter'
x304: 3052@ '24 Dec 61'
x305: 3510@ person! fname x301^ ; mname x302^ ; miname x303^ ; bdate x304^ ; ssn
991221234 ; spouse 3508@ '' ; sptr nil I
x306: 3055@ '3321 City St.'
x307: 3056@ 'Marina'

182



x308: 3057@ ICA"
x309: 3058@ "93940
x310: 3511@ addr[ street x306^ ; city x307^ ; state x308^ ; zip x309^ I
x311: 3054@ "(408)122-4253"
x312: 3512@ phonenumber[ number x311^ ]
x313: 3509@ cartiresult-tuple[ person x305^ ; address x310^ ; phone x312^ ; widget
nil ; essn 550926190 ; proj_.num 2 ; hours 10.0 ]
x314: 3525@ person[ tname x301^ ; mname x302^ ; miname x303^ ; bdate x304^ ; ssn
991221234 ; spouse 3523@ 9 ; sptr nil I
x315: 3526@ addr[ street x306^ ; city x307^ ; state x308^; zip x309^ I
x316: 3527@ phonenumber[ number x3ll^ I
x317: 3524@ cartiresult_tuple[ person x314^ ; address x315^ phone x316^ ; widget
nil ; essn 999999999 ; proj num 1 ; hours 45.2 ]
x318: 3540@ person[ tname x301^ ; mname x302^ ; Iname x303^ ; bdate x304^ ; ssn
991221234 ; spouse 3538@ "" ; sptr nil ]
x319: 3541@ addr( street x306^ ; city x307- ; state x308^; zip x309^ ]
x320: 3542@ phonenumber[ number x311^ I
x321: 3539@ cartl _resulttuple[ person x318^ address x319' ; phone x320^ ; widget
nil ; essn 123456789 ; proj,_.num 2 ; hours 51.5 1
x322: 3555@ person[ fname x301^ ; mname x302^ ; lname x303^ ; bdate x304^ ; ssn
991221234 ; spouse 3553@ " ; sptr nil I
x323: 3556@ addr[ street x306^ ; city x307^ state x308^ ; zip x309^ ]
x324: 3557@ phonenumber[ number x31! ]
x325: 3554@ cartiresult.tuple[ person x322- ; address x323^ ; phone x324^ ; widget
nil ; essn 987654321 ; proj.num 30 hours 4.0 1
x326: 1670@ person[ fname 1671@ "" ; mname 1672@ lname 1673@ "" ; bdate 1674@
". ; ssn 0 ; spouse 1675@ "" ;sptr nil ]
x327: 1676@ addr( street 1677@ 9'll ; city 1678@ -, ; state 1679@ -; zip 1680@
x328: 1681@ phonenumber[ number 1682@ "" 1
x329: 1669@ carti_result_tuple[ person x326^ ; address x327^ ; phone x328^ ; widget
nil ; essn 0 ; proj.num 0 ; hours 0.0 1
x330: 1605@ relation[ relationname 1610@ "Cart Resultl" ; attribute_names 1615@
< x162^ x163' x164- x165^ x166^ x167^ x168^ > ; qttributetypes 1632@ < x169- x170^
x171^ x172^ x173^ x174^ x175^ > ; tuples 3197@ < x188^ x192^ x196^ x200^ x213^
x217^ x221^ x225- x238^ x242^ x246^ x250^ x263^ x267^ x271^ x275^ x288- x292^ x296^
x300^ x313^ x317^ x321^ x325^ > ; tuple.type x329^ ; key 1611@ Issn,essn,proj.numl

x331: 2793@ name[ name 2797@ "Hours Worked"f
x332: 2795@ name( name 2798@ "Employee SSN"
x333: 2800@ name[ name 2804@ "rational"
x334: 28029 name[ name 2805@ "integer" ]
x335: 2809@ projectl_result_tuple[ hours 20.4 ; essn 550926190
x336: 2815@ projectlresulttuple[ hours 3.2 ; essn 123456789 ]
x337: 2818@ projectl_result_tuple[ hours 67.25 ; essn 987654321 1
x338: 28069 projectl_result_tuple[ hours 0.0 ; essn 0 ]
x339: 2784@ relation[ relationname 2887@ "project I" ; attributenames 2792@ <
x331^ x332^ > ; attributetypes 2799@ < x333^ x334^ > ; tuples 2788@ < x335^ x336^
x337^ > ; tupletype x338^ ; key 2791@ "essn" I
x340: 2830@ proj_tuple[ essn 550926190 ; proj_num 2 hours 20.0 ]
x341: 2826@ proj_tuple[ essn 0 ; projnum 0 ; hours 0.0 )
x342: 2819@ relation[ relation_name 2825@ "comp obj" ; attributenames 2821@ < >
;attribute-types 2822@ < > ; tuples 2823@ < x340^ > ; tupletype x341^ ; key 2824@

x343: 2838@ name[ name 2839@ "" ]
x344: 2842@ addr[ street 2843@ "" ; city 2844@ " ; state 2845@ zip 2846@ -" ]
x345: 2848@ person[ fname 2849@ "" ; mname 2850@ "" ; iname 2851@ -" ; bdate 2852@
".. ; ssn 0 ; spouse 2853@ "" ; sptr nil I
x<A r: 2854@ addr[ street 2855@ "" ; city 2856@ "" state 2857@ " ; zip 2858@
x347: 2859@ phcnejnumber[ number 2860@ "" I
x348: 2847@ emptuple[ person x245^ ; address x346^ ; phone x347^ ; widget nil ]
x349: 2861@ proj_tuple[ essn 0 ; proj num 0 ; hours 0.0 1
x350: 2840@ resulttuple) values 2841@ < x344^ x348^ x349^ > I
x351: 2862@ resulttuple[ values 2863@ < > )
x352: 2832@ relation[ relation_name 2837@ "result test" ; attribute_names 2833@ <
x343^ > ; attributetypes 2835@ < > ; tuples 2836@ < x350^ x351^ > ; tuple-type
nil ; key 2831@ "" 9
x353: 1112@ "person -> ssn"

183



x354: 3563@ relation( relation_name 3564@ '1TEMP_r1.r4' ; attribute_names 3565@ <
xl^ x2^ x3^ x4^ > ; attributetypes x39^ ; tuples 3566@ < x12^ x16^ x20^ x24^ x28^
x32^ x128^ x5l^ > ; tupletype x36^ ; keY x353^ ]
x355: 1251@ database[ name 2864@ 'Relational Address DB" ; relations 1253@ < x37^
x56^ x73^ x113^ x120^ x133^ x138^ x15O^ x161^ x330^ x339^ x342^ x352' x354^ > I

184



APPENDIX E: MODIFIED R/OODBMS SCHEMA

A Modified Relational/Object-Oriented Database Management System
** * * ** * *****•• * *t* •* t*** * * * ** * * * * ** * * *t** ************ *t********• t•

-- Description : This file contains the IDL schema for the implementation of
-- A Modified Relational/Object-Oriented Database Management
-- System. Of the five primitive relational algebra operations
-- (union, difference, project, select, and Cartesian product),
-- the project and Cartesian product operations have been modified
-- from the original R/OODBMS implemented in IDB.

structure relational root database is

database => name string,
relations seq of relation;

database -> newlrelation(*);

relation => relationname string,
attributenames seq of name,
attribute_types seq of name,
tuples seq of tuple,
tupletype tuple,
key string;

relation -> new tuple(*),
check_unioncompatability(relation,relation) => boolean;

relation -> union(*),
projection(*),
difference(*),
Cartesianproduct(*),
selection(*);

name => name string;

tuple -> equalto(tuple, tuple, integer) => boolean,
less_than(tuple,tuple,integer) => boolean,
greater-than(tuple, tuple, integer) => boolean,

initializetuple(tuple) => tuple,
insert_fields(relation, relation) => relation,

insert fields b(relation,relationjndex array) => relation,
-- the b extension indicates modified methods used in this
-- implementation.

inserttuples(relation,relation,relation) => relation,

iusert-tuples-b(relation,relation,relation) => relation;

185



tuple emp..tuple I
proj~tupie I
carti_result..tupleI
projectl..result~tuple I
result tuple
nil;

-- in this implementation, result-tuple is the only tupie
-- that needs to be defined for creating resultant relations
-- in both the project and Cartesian product operations. Thus,
-- carti-resuit-tuple and projectl-result tuple are not needed
-- in this implementation. However, they have been left in so
-- the reader could more easily compare this schema with that
-- of the standard R/OODBMS schema.

for database.new-relation use browser~visible;

for relation.new -tuple use browser-visible;
for relation.union use browser_.visible;
for relation.Cartesian-.product use browser_visible;
for relation.difference use browser-visible;
for relation.projection use browser-visible;
for relation.selection use browser-visible;

for database.relations use linked;
for relation.tuples use linked;

for *.**** ********* ******use bi d dt** ** *** * ** ** * ** * ** * ** ** *t* * **

for database.idl_keyn use bind(databasekey);t)

for database.new-relation use bind(create relation);

for relation.ldl-key use bind(relation~key);
for relation.idl..print use bind(relation~print);
for relation.new-tuple use bind(create~tuple);
for relation.check__union_compatability use bind(ck-union-compatability);

for relation.unlon use bind(union-op);
for relation.Cartesian~product use bind(cart..prod-op);
for relation.difference use bind(set-ýdiff-op);
for relation.projection use bind(project~op);
for relation.selection use bind(select~op);

for name.idl_key use bind(nama...key);
for name.idl~print use bind(name~print);

for tuple.equal -to use bind(equal..to);
for tuple.less-than use bind(less-than);
for tuple.greaterý_than use bind(greater_than);

for tuple.inltlallze~tuple use bind(initialize..tuple);
for tuple.lnsert_fields use bind(insert-fields);
for tuple.insert tuples use bind(insert-tuples);

for tuple.insert fields b use bind(insert fields b);
for tuple.insert tuples* b use bind(inseui tuples-b);

emp..tuple => person person,
address addr,

186



phone phone~number,
widget idl--univ;

person => fname string,
mname string,
iname string,
bdate string,
55fl integer,
spouse string,
sptr person-nil;

person_nil person I nil;

addr => street string,
city string,
state string,
zip string;

phone_number => number st ring;

for emp-tuple. idl..key use bind(emp-tuple~key);
for emp~tuple.idl..print use bind(emp-tuple~print);
for emp~tuple.equal_to use bind(emp~equal~to);
for emp-tuple.less -than use bind(emp-less than);
for emp-tuple.greater_than use bind(emp~greater _than);
for emp~tuple.initialize-tuple use bind(initialize_emp~tuple);

for emp tuple.insert fields b use bind(insert eip~fields b);

for person.idl_key use bind(person~key);
for person.idl~prirnt use bind(person-print);

for addr.idl -key use bind(addr~key);
for addr.idl~print use bind(addr~print);

for phone-number.idl~print use bind(phone-number-print);

proj..tuple => essn integer,
proj-num integer,
hours rational;

for proj-tuple.idl-key use bind(proj~tuple~key);
for proj~tuple.idl~print use bind(proj~tuple~print);
for proj~tuple.equal..to use bind(proj...equal-to);
for proj-tuple.less_than use bind(proj less-than);
for proj~tuple.greater_than use bind(proj~greater -than);
for proj-tuple.initialize-tuple use bind(initialize~proj~tuple);

carti-result-tuple => person person,
address addr,
phone phone~number,
widget idi_univ,
essn integer,
proj-num integer,
hours rational;

for cartl-result-tuple.idljkey use bind(cartl_result...tuple..key);

187



for cartl_resulttuple.idl_print use bind(cartlresulttuple-print);
for cartlresult_tuple.initialize_tuple use

b!nd(initialize cartl_resul_tupie1;
for cartlresulttuple.inserttuples use bind(insert_carti_result.tuples);

projectl resulttuple => hours rational,
essn integer;

for projectl_result-tuple.idlkey use bind(projectl resulttuplekey);
for projecti resuit.tuple.idlprint use bind(projectl_resulttupleprint);
for projectl_result-tuple.initializetuple use

bind(initializeprojectl-resul_tuple);
for projectl_result-tuple.insert-fields use bind(insert-projectlresultflds);

result.tuple => values : seq of any;

for result.tuple.values use linked;

-- index-array is used Ly the project Dperation to hold a list of indexes
-- to the attributes of a relation that are to be projected. It cannot be
-- reached from the database root and therefore can never be stored in the
-- database by accident. It is purely set up as a data structure to allow
-- the indexes to be passed as a parameter in the modified function
-- prcject-op.
index-array => indexes : seq of index;

index => i : integer;

for index array.indexes use linked;

end

process relationalp is

relational ::= relationala:access;

end

188



APPENDIX F: MODIFIED PROJECT

Project_parse action

static void Projectparse-action(query)
char* query;

- (
char *Rlptr,*charptr,*R2_ptr;
integer size,i;
boolean done = falsedelimeterl = false;

char_ptr = query;

/* allocate room for parse of the project op parameters
R1 will hold the relation being operated on,
Attrlist the list of attr to be projected, and
R2 the resultant relation */

size = strlen(query);
R1 = (char*)calloc((size+l),sizeof(char)); /* R1 is global */
Attrlist = (char*)calloc((size+l),sizeof(char));

/* set pointers to move along R1 and R2 as characters are copied in one
at a time. */

Rlptr = RI;

/* do the parse */
char__ptr = query;

/* note: if size gets decremented all the way to zero, then there is a
problem with the query because the delimeter ' = ' or project
could not be found */

while (!done && size > 0)

if (*char ptr ' ') /* if not a space copy the char into R1 */

*Rlptr=*charptr;/*parameter relation*/
++charptr;
++Rlptr;
-- size;

else /* we may have hit a delimeter */

/* check to see if next char is a " p - - which is
part of the delimeter " project "between the last
two parameters */

if (strncmp(charptr,' project ",9) == 0)
/* then it is project */

for (i = 0; i < 9;++i) /* jump past the delimeter */

++char_ptr;
-- size;

strcpy(Attr-list,charptr);
/* copy list of attributes into Attrlist and now parse the

list of attributes */
done=true;

189



else /* the space is part of the first parameter, so put in RI •/

/* space is part of first relation name so keep it */
*Rlptr=*charptr;
++char-pt r;
++Rl_ptr;
-- size;

if (size 0) /* size only = 0 if union was nct found in the query */
NULL;

elge
idl_raise(IDLERROR,,There is an erroL in your query! Try Again.*);

190



report_project error

void reportproject_error(foundl,found2,attrfound)
boolean foundi, found2, attr_found;

if (!foundl && !found2)

•dl raise[IDL ERROR,
"Neither of the two relations are in this database!");

else

if (!a:trfound)

idlraise(IDL ERROR,
"All of the attributes in the attribute list \nare not in Ri!");

if (!foundl)

idlraise(IDLERROR,
"R1 i.- not in this database!");

if (!found2)

idlraise(IDL ERROR,
"R2 is not in this database!");

if (foundl && found2)

idlraise(IDL ERROR,
"A SERIOUS ERROR HAS OCCURED !!!! Regroup. Try Again.");

191



piroject op

idl_routine void project~op(relation)
relational-relation relation;

relational-relation ptr-Rl,ptr -Attr list..ptr result_rel,temp relation;
relational-datýabase database;
relational-index-array array..Jndex; /*beta project*/
relational-index attr -index; /*beta project*/
idi trans_mode tmode;
idi univ root;
string parameterl,attr string; 1* references to the parameter

RI~and attr list
relations respectively ~

idl transaction tr;
toolean foundi, found2,done,attr found;
boolean is-writable = false,duplicate =true;
char *attr~ptr,*delimeter =";/* delimeter between elements

in attribute list ~
string *attr-list[lOO(;
integer i=l,count,size,index,index -array[1l0oi=O;
1* index array of size 100 allows a relation to have 100 attributes ~
idl-linked..elem(relatlonal..tuple) result-truple;

tr = idl~get..trans(relation);
tmode =idi-trans-mode_default;

root =idl_trans~get-root (tr);
database = idl-to~relational-,database,root);
foundl = false;
tound2 =true;/* n~ot needed for beta version, thus changed to true*/
done = false;
is-writable =(idl-trans_write_count(tr) > 0);

array.Jndex = idl~new(tr, relational-index_array);/*creates the index array
to be used in the beta
version of this op*/

array-index->indexes = idl-empty-linked(tr, relational-index);

br-w input ("Project Query',
"Please input the Project query (R1 project Attrý_list):-
OL. OL, OL, false,
Project..parse action);

I" copy the C strings R1, R2 and Attr~list into IDL strings *
parameterl = idl-copy-string(tr,Rl); /*relation being operated on*/
attr-:,tring = idl~copy..string(tr,Attr list);

/* parse tokens in attribute string *I
if ((attr~ptr = strtok(attr~string,deiimeter)) == NULL)

/" error, no token "

idi...raise (IDL-ERROR,
"You did not list any attribute/field names in\nyour project query!I

Try again, meathead!");

else

attr...list[0J = idl..new~string(tr,80);
attr..list[0I = idi_copy string(tr,attr-ptr);

192



while ((attr...ptr = strtok(NULL,delimeter)) !=NULL)

attr-list[iI = idi_new~string(tr,80);
attrj-ist[i] = idi_copy-string(tr,attr~ptr);
i ++;

/* search the database for the relation Ri1*
idl-linked-for (relational-relation,database->relations,rel)

if (strcmp (rel->relation_narne,parameterl) == 0)
/* found relation 1 *

ptr-RI rel; 1* point at relation 1 *

foundl = true;

Iidl~end_for

count = 1; 1* count is the number of tokens - 1 *

/* check each attr name in the attr list of the project ope=ration to
ensure that the field exists in the relation R1 *

for (1=0;i<count; ±+i)

attr -found = false;
ii=O;

idl_array...for(relational..name,ptr.Rl->attribute_names,aname)

ii++; 1* position in attribute list ~
if (strcmp (aname->name,attr-list~i]) == 0) 1* attr name in attr

list is a field
of Ri *

attr found = true;
attr index = idi new(tr, relational_index);
attr index->i = ii.;
idl-insert_back(relational-index,

array-index->indexes,attr index);
break;

Iidl-end-for

if H!attr-found)

break; 1* an attr in the project attr list is not
in the relation R1. Thus, the operation
cannot be performed ~

if (foundi && attrý_found)

1* everything is ok, perform projection operation on relation R1.
Note, in this implementation, the resultant relation doesn't
already exists in the database. *

ptr-result~rel = init..proj-result rel (ptr...Rl,array...index);

ptr-result-rel=idl-vop(ptr-Rl->tuple type, relational..tuple, inser't..fields...b,
(ptr-Rl, ptr result rel, array-index) )

idi insert back(relational relation,database->relations,ptr result..rel);

else

193



report~project-error Cfoundi, found2, attr-found);

194



insert-fields-b

idi-routine relational-relation insert_fields_b(rel,result rel,index array)
relational-relation rel, result~rel;
relational-index~array index-array;

return result-rel;

195



insert-empfieldsb

idi-routine relational-relation insert-emp fields-b(rel,result-rel,index array,)
relational-relation rel, result-rel;
relational-index-array index_array;

idl-transaction tr = idl-.get.Srans(rel);
relational-result-tuple new~tuple;

result_rel->tuples = idi-empty..linked(tr,relational-tuple);

idljlinkedjfor (relational~tuple,rel->tuples, rel-tuple)

/* iterate through each tuple and for each tuple iterate through
the index-array and use a case statement to reference objects for
fields to be entered into the result relation/

new_tuple = idl~new(tr, relational_result-tuple);
new_tuple->values = idl..emptyjlinked(tr,relational~any);

idl-linked-for (relational_index,inidex-array->indexes,index)

switch (index->i)

case 1:
idl insert~back (relational-any..new tuple->values, rel~tuple->person);

break;
case 2:
idi_insert~back (relationai...any,new tuple->values, rel..tuple->address);

break;
case 3:
idl_insert_back(relational..any,new tuple->values, rel~tuple->phone);
break;

case 4:
/* widget ~
break;

default:
idl_raise(IDLERROR,

"There is a problem in the employee insert field beta
function!,);

break;

Iidl-end-for

idl-insert-back (relational-tuple, result~rel->tuples,new~tuple);

I idl~end-for

return result-rel;

196



initproj result rel

relational-relation init~proj~result~rel~ptr-Rl,index-array)
relational-relation ptrRl;
relational'-index array index_array;

relational-relation result-.relation;
static integer result_rel_num = 0;
idl-transaction tr;
string empty,result_rel_name;
char result~name[801;
integer degree = O,i;

tr = idl~get~trans(ptr..Rl);

i=0;
idl_linked Ior (relational. ndex,index-array->indexes,index)

i ++;

lidl-end-for

degree = i

result-relation = idl~new(tr, relational_relation); /* must still assign

legal values ~
/* set up a unique name for resultant relation ~
sprintf (result_name,"%ldRESULT_%c%c",

++result-rel-num,
ptr-Rl->rela~tion_name[0J,
ptrRl->relation_name[lfl;

result-rel-name =idl-copy~string(tr, result name);

result-relation->relation-name = result_rel..name;
result-relation->attribute-names = idl_new_array(tr,relational~name,degree);
result-relation->attribute-types = idl_new_array(tr,relational~name,degree);

/* assign default values for attribute names to be the same as those in
R1 relation *

i=0;
idl -linked~for (relational..Jndex, index~array->indexes, index)

result-relation->attribute-names~iI=ptr..Rl->attribute -names[(index->i)-l];
result-relation->attribute~types(iJ=ptr_.31->attribute-types[ (index->i)-l];

)idl end_for

result-relation->tuples = idl..empty~jinked(tr,relational...tuple);

1* assign a default tuple type that is the same as the first relations ~
result-relation->tuple~type = idl_to(relational...tuple,

idl-new(tr,relational-result~..tuple));

/* default key is the key of relation Rl 1
result-relation->key = ptr..Rl->key;

return result-relation;

197



APPENDIX G: MODIFIED CARTESIAN PRODUCT

Cartesian_parse action

static void Cartesian-parse-acticn(quer'y)
char* query;

char *Rlptr,*charptr;
integer size,i;
boolean done = false,delimeterl = false;

char-ptr = query;

/* allocate room for parse of the Cartesian product op parameters
R1 will hold the first parameter and R2 the second */

size = strlen(query);
R1 = (char*)calloc((size+l),sizeof(char));
R2 = (char*)calloc((size+l),sizeof(char));

/* set pointer to move along R1 as characters are copied in one
at a time. */

Rlptr = RI;

/* do the parse */
charptr = query;

/* note: if size gets decremented all the way to zero, then there is a
problem with the query because the delimeter ' X ' could not be
found */

while (!done && size > 0)

if (*char-ptr 1= ' ) /* if not a space copy the char into R3 */

*Rlptr=*char-ptr;
++char_pt r;
++Rlptr;
-- size;

else /* we may have hit the a delimeter */

/* check to see if next char is a " X - which separates the
two operands of the operation */

if (strncmp(charptr,' X ",3) == 0) /* then it is X sentinal */

for (i = 0; i < 3;++i) /* jump past the delimeter *f

+ +charptr;
-- size;

strcpy(R2,charptr); /* copy second parameter into R2 */
done= true;

else /* the space is part of the first parameter, so put in R1 */

/* space is part of first relation name so keep it '/
*Rlptr=*char-ptr;
++char-ptr;

198



++Rl__ptr;
-- size;

199



report Cart_product error

void reportCartproducterror(foundl,found2,found3)
boolean foundl,found2,found3;

if (!foundl && !found2)

idlraise(IDLERROR,
"Neither of the two relations are in this database!");

else

if (!foundl)

idl_raise(IDLERROR,
"Rl is not in this database!");

if (!found2)

idlraise(IDLERROR,
"R2 is not in this database!");

if (!found3)

idl_raise(IDLERROR,
"R3 is not in this database!");

if (foundl && found2 && found3)

idl_raise(IDLERROR,
"A SERIOUS ERROR HAS OCCURED !!!!!! Regroup. Try Again.");

200



cartprod op

idl_routine void cart prod.op(relation)
relational-relation relation;

relational-relation ptr-Rl,ptr-R2,resutl rel,temp-relation;
relational-database database;
idl transmode tmode;
idl univ root;
string parameterl,parameter2,resultrel; /* references to the parameters

RI, R2 and R3 respectively *l
idl transaction tr;
boolean foundl,found2,found3;
boolean is-writable = false,duplicate = true;

tr = idl get-trans(relation);
tmode = idl transmode default;
root = idl transget root(tr);
database = idlto(relationaldatabase,root);
foundl = false;
found2 = false;
found3 = true; /* beta version doesn't use a predefined result rel */
is_writable = (idltrans writecount(tr) > 0);

brw input("Cartesion Product Query",
"Please input the Cartesian product query (R1 X R2):
0L,0L.OL, false,
Cartesian.parse.action);

/* copy the C strings R1 and R2 into IDL strings */
parameterl = idl copystring(tr,Rl);
parameter2 = idlcopy.string(tr,R2);

/* don't do anything if the resultant relation is one of the two operands.
However, the resultant relation can be one that exists in the data.
In this case, the specified resultant relation will be over written. */

/* search the database for the two relations: RI, and R2 */
idl linked for (relationalrelation,database->relations,rel)

if (strcmp (rel->relation name,parameterl) == 0)
/* found relation 1 */

ptr-R1 = rel; /* point at relation 1 */
foundl = true;

if (strcmp (rel->relation_ name,parameter2) = 0)
/* found relation 2 */

ptrR2 = rel;
found2 = true;

} idlend_for

if (foundl && found2)

/* perform concatenation of tuples for Cartesian product.
Note, in this implementation, the resultant relation does not
already exists in the database. */

result_rel = init_Cart_result_rel(ptrRl,ptrR2);

201



resulIt_rel=idl_vop(result_rel->tuple_ýýype, relIat iona !_up le, insert-: up!les-b,
(ptr-R1,ptr-R2,result~rel))

idl_insert_back(relational_relation,database-->relat-ions,resukltre1);

else

report..Zart-product__error(foundi, found2, found3);

202



init Cart-result-rel

relational-relation mnitCart-result_rel(ptr-Rl pt~r_R!-)
relational-relation ptr-Rl,ptr_R2;

relational-relation result-relation;
static integer result_rel__num = 0;
idi Ttransaction tr;
string result-rel-name;
char result -name[801;
integer clegreel = 0,degree2 = O,resulr._degree,i;

tr = idl_get~trans(ptrRl);

degreel = idl~array..size~ptr_Rl->,attribute..names);
degree2 = idl-array~size~ptrR2ý->at::ribute_names);
result-degree =degr'2el + degree2;

result-relation = idl new(tr, relatiýonal relation); /* must still assign
legal values

/* set up a unique name for resultant relation ~
sprintf (result_name, "%1dRESULT_%c%c.%~'

++result Trel~num,
ptrRl->relat-ionjiame[0],
ptrRl-->relation_name~lL.
ptrR2->relation_name[O],
ptrR2->relation~name(lj);

result-rel-name = idl~copy string(tr,result~name);

result-relation->relation-name = result-rel-name;
result-relation-'ýattribute_names =i~dl_new_array(tr,relýational-name,

result-degree);
result-relation->attribute-types = idl-_new-array~tr,relacional_name,

result_degree);

/* assign default values for attribute names to be the same as those in
R1 and R2 */

for ( i=0; i<degreel; ++i)

result-relation->attribute-names[iI = ptr_Rl->attribute_names(ij;
result-relation->attribute~types[iI ptr_Rl->attribute~types~iI;

for ( 1=0; i.-degree2; +4-i)

result-relation->attribute_names(degreel+i) = ptr_R2->attribute__names[i];
result-relation->at-tribute~typesldegreel+il = ptr_ R2->attribute~types[ij;

result-relation->tuples = idl..empty-linked(tr..relational...tuple);

/* assign a default tuple type result t.uple */
result-relation->tuple..type = idl_to~relational~tuple,

idl_new(tr,relational_result tuple));

/* default key is the key of relation R1 ~
result-relation->key = ptrRl->key;

return result-relation;

203



insert-tuples-b

static relational-relation insert_t:uples~b(rl,r2,result-r-elj
relational-relation ri, r2, result-rel;

relational-result-tupie new tuple;
relational-tuple rell,rel2;
idi-transaction tr =idl-get_trans(rl);

i* ~-t rid of any tuples that may be in the resultant relation structure
prior to insert the new result */

result_rel->tuples = idi-empty_.Jinked(tr, relational_tupie);

idi linked~for (relational_tuple rl-.tuples,rl t~uple)

idi-linked-for (relational tupi~e,r2->tuples,r2...tuple)

/* send message to get a new tuple created with valid default
values. */

new-tuple = idl_new(tr,relaticnnal_result-tuple);
new..tuple->values =idl~empty-linked(tr,relational~any);

idl_insert~back(relationai-any,new..tuple->values, rl~.tuple);
idl_insert~back(relationai -any,new-ýtuple->values, rZ..tuple);

idl_insert~back(relational_tuple,result rel->tuples,new..tuple);

Iidl_end_for
Iidi _end-tor

return result-rel;

204



LIST OF REFERENCES

[AHS91] Andrews, T., Harris, C., and Sinkel, K., "ONTOS: A Persistent Database
for C++," in Gupta, R. and Horowitz, E. (Eds.), Object-Oriented
Databases with Applications to CASE, Networks, and VLSI CAD, Prentice
Hall, Inc., Englewood Cliffs, NJ, pp. 387-406, 1991.

[BK90] Berri, C. and Kornatzky, Y, "Algebraic Optimization of Object-Oriented
Query Languages," Lecture Notes in Computer Science, v. 470, S.
Abiteboul and P. C. Kanellakis (Eds.), International Conference on
Database3 Theory (ICDT) '90, Proceedings, pp. 72-88, Dec 1990.

[BM91] Bertino, E. and Martino, L., "Object-Oriented Database Management
Systems: Concepts and Issues," Computer, v. 24, no. 4, pp. 33-47, Apr
1991.

[BM089] Brett, R., Maier, D., Otis, A., Penney, J., Schuchardt, B., Stein, J.,
Williams, E. H., Williams, M., "The GemStone Data Management
System," in Kim, W. and Lochavsky, F. H. (Eds.), Object-Oriented
Concepts, Databases, and Applications, Addison-Wesley Publishing
Company, Inc., Reading, MA, pp. 283-308, 1989.

[BOS911 Butterworth, P., Otis, A. and Stein, J., "The Gemstone Object Database
Management System," Communications of the ACM, v. 34, no. 10, pp. 64-
77, Oct 1991.

[C1911 Clark, G. J., DFQL: A Graphical Dataflow Query Language, Master's
Thesis, Naval Postgraduate School, Monterey, CA, Sep 1991.

[CY90] Coad, P. and Yourdon, E., Object-Oriented Analysis, Prentice-Hall, Inc.,
Englewood Cliffs, NJ, 1990.

[Co70] Codd, E. F., "A Relational Model for Large Shared Data Banks,"
Communications of the ACM, v. 13, no.6, pp. 377-387 Jun 1970.

[CD90] Interview between E. F. Codd and DBMS, "Relational philosopher: the
creator of the relational model talks about his never-ending crusade,"
DBMS, v. 3, no. 13, pp. 34-42, Dec 1990.

[Da841 Date, C. J., A Guide to DB2, Addison-Wesley Publishing Company, Inc.,
Reading, MA, 1984.

[Da90] Date, C. J., An Introduction to Database Systems, Fifth Edition, Volume 1,
Addison-Wesley Publishing Company, Readin, MA, 1990.

206



[Ed9l] Edelstein, H., "Relational vs. Object-Oriented," DBMS, v. 4, no. 12. pp.
68-74, Nov 1991.

[EN89] Elmasri, R. and Navathe, S. B., Fundamentals of Database Systems, The
Benjamin/Cummings Publishing Company, Inc., Redwood City, CA, 1989.

[Fi92] Filippi, S. C., Implementing Relational Operations in an Object-Oriented
Database, Master's Thesis, Naval Postgraduate School, Monterey, CA,
Mar 1992.

[GH91a] Gupta, R. and Horowitz, E. (Eds.), Object-Oriented Databases with
Applications to CASE, Networks, and VLSI CAD, Prentice Hall, Inc.,
Englewood Cliffs, NJ, 1991.

[GH91b] Gupta, R. and Horowitz, E., "A Guide to the OODB Landscape", in Gupta,
R. and Horowitz, E. (Eds.), Object-Oriented Databases with Applications
to CASE, Networks, and VLSI CAD, Prentice Hall, Inc., Englewood Cliffs,
NJ, pp. 1-11, 1991.

[H087] Halbert, D. C. and O'Brien, P. D., "Using Types and Inheritance in Object-
Oriented Programming," IEEE Software, v. 4, no. 5, pp. 71-79, Sep 1987.

[HW911 Horowitz, E. and Wan, Q., "An Overview of Existing Object-Oriented
Database Systems," in Gupta, R. aad Horowitz, E. (Eds.), Object-Oriented
Databases with Applications to CASE, Networks, and VLSI CAD, Prentice
Hall, Inc., Englewood Cliffs, NJ, pp. 101-116, 1991.

[Hs911] Hsiao, D. K., "The Object-Oriented Database Management - A Tutorial on
its Fundamentals", Naval Postgraduate School, Monterey, CA, Aug 1991
(draft).

[In89] "Instances," Release 1.0, v. 89, no. 9, pp. 14-25, Sep 1989.

[KR78] Kernighan, B. W. and Ritchie, D. M., The C Programming Language,
Prentice-Hall, Inc., Engelwood Cliffs, NJ, 1978.

[Kh9l] Khoshafian, S., "Modeling with object-oriented databases", Al Expert, v. 6,
no. 10, pp. 26-34, Oct 1991.

[Ki9l] Kim, H., "Algorithmic and Computational Aspects of OODB Schema
Design," in Gupta, R. and Horowitz, E. (Eds.), Object-Oriented Databases
with Applications to CASE, Networks, and VLSI CAD, Prentice Hall, Inc.,
Englewood Cliffs, NJ, pp. 26-61, 1991.

207



[Ki90] Kim, W., "Research Directions in Object-Oriented Database Systems," in
Proc. ACM SIGACT-SIGMOD-SIGART Symposium on Principles of
Database Systems, Nashville, Tennessee, pp. 1-15, Apr 1990.

[KL89] Kim, W. and Lochavsky, F H. (Eds.), Object-Oriented Concepts,
Databases, and Applications, Addison-Wesley Publishing Company, Inc.,
Reading, MA, 1989.

[Kin89] King, R., "My Cat is Object-Oriented", in Kim, W. and Lochavsky, F. H.
(Eds.), Object-Oriented Concepts, Databases, and Applications, Addison-
Wesley Publishing Company, Inc., Reading, MA, pp. 23-30, 1989.

[KS861 Korth, H. F. and Silberschatz, A., Database System Concepts, McGraw-
Hill, Inc., New York, NY, 1986.

[Mi88] Micallef, J., "Encapsulation, Reusability and Extensibility in Object-
Oriented Programming Languages," JOOP, v. 1, no. 1, pp. 12-34, Apr/May
1988.

[Mc9l] McLeod, D., "A Perspective on Object-Oriented and Semantic Database
Models and Systems," in Gupta, R. and Horowitz, E. (Eds.), Object-
Oriented Databases with Applications to CASE, Networks, and VLSI CAD,
Prentice Hall, Inc., Englewood Cliffs, NJ, pp. 12-25, 1991.

[Me90] Meyer, P., "Are Object-Oriented Data Bases Ready For Business?,"
Mainframe Update Magazine, pp. 14-19, Autumn 1990.

[Mo89] Moon, D. A., "The COMMON LISP Object-Oriented Programming
Language Standard", in Kim, W. and Lochavsky, F. H. (Eds.), Object-
Oriented Concepts, Databases, and Applications, Addison-Wesley
Publishing Company, Inc., Reading, MA, pp. 49-77, 1989.

[NMO90] Nelson, M. L., Moshell, J. M., and Orooji, A., "A Relational Object-
Oriented Management System," IEEE 1990 International Pheonix
Conference on Computers and Communications (IPPCCC'90), Scottsdale,
AZ, pp. 319-323, Mar 1990.

[Ne9Oa] Nelson, M. L., Object-Oriented Database Management Systems, Naval
Postgraduate School, Monterey, CA, Report No NPS52-90-025, May 1990.

[Ne88] Nelson, M. L., A Relational Object-Oriented Management System and an
Encapsulated Object-Oriented Programming System. Doctoral
Dissertation, University of Central Florida, Orlando, FL, Dec 1988.

208



[Ne90b] Nelson, M. L., An Introduction To Object-Oriented Programming, Naval
Postgraduate School, Monterey, CA, Report No NPS52-90-024, Apr 1990.

[Ne911 Nelson, M. L., "An Object-Oriented Tower of Babel", OOPS Messenger, v.
2, no. 3, pp. 3-11, Jul 1991.

[NMSW83] Nestor, J. R., Mishra, B., Scherlis, W. L. and Wulf, W. A., Extensions to
Attribute Grammars, Tartan Laboratories Incorporated, Pittsburgh, PA,
Technical Report TL 83-36, Apr 1983.

[New86] Newcomer, J. M., "IDL: Past Experience and New Ideas", Lecture Notes in
Computer Science, Vol. 244, Conradi, R., Didriksen, T. M., and Wanvik, D.
H. (Eds.), Advanced Programming Environments, Proceedings of an
International Workshop, Trondheim, Norway, pp. 257-289, Jun 1986.

[Ni89] Nierstrasz, 0., "A Survey of Object-Oriented Concepts", in Kim, W. and
Lochavsky, F. H. (Eds.), Object-Oriented Concepts, Databases, and
Applications, Addison-Wesley Publishing Company, Inc., Reading, MA,
pp. 3-21, 1989.

[OV91] Ozsu, M. T. and Valduriez, P., Principles of Distributed Database Systems,
Prentice Hall, Englewood Cliffs, NJ, 1991.

[PN91b] de Paula, E. G. and Nelson, M. L., An Object-Oriented Design
Methodology, Naval Postgraduate School, Monterey, CA, Report No
NPSCS-91-007, Jan 1991.

[Pe9la] Persistent Data Systems, Inc., IDB C Programmer's Manual, IDB Version
1.0, Jan 199 1.

[Pe9lb] Persistent Data Systems, Inc., 1DB Release Notes, IDB Version 1.1, Nov
1991.

[Pe9lc] Persistent Data Systems, Inc., IDB Tutorial, 1DB Version 1.1, Oct 1991.

[Pe91d] Persistent Data Systems, Inc., IDB User's Manual, JDB Version 1.0, Jan
1991.

[RK] Rhein, J. and Kemnitz, G. (Eds.) , The POSTGRES User Manual, EECS
Department, University of California, Berkeley.

[Sc91] Schwartz, K. D., "Geode tools build object-oriented systems," Government
Computer News, v. 10, no. 23, p. 49, 11 Nov 1991.

209



[SSU91] Silberschatz, A., Stonebraker, M. and Ullman, J., "Database Systems:
Achievements and Opportunities," Communications of the ACM, v. 34, no.
10, pp. 110-120, Oct 1991.

[SB861 Stefik, M. and Bobrow, D. G., "Object-Oriented Programming: Themes
and Variations," The Al Magazine, v. 6, no. 4, pp. 40-62, Winter 1986.

[SK91] Stonebraker, M. and Kemnitz, G., "The POSTGRES Next Generation
Database Management System," Communications of the ACM, v. 34, no.
10, pp. 78-92, Oct 1991.

[St88] Stonebraker, M., "Future t'rends in Data Base Systems," 1988 IEEE Data
Engineering Conference, Proceedings, Los Angeles, CA, pp. 1-21, Feb
1988.

[St9la] Strehlo, K., "OODBMS pays off. (interview with Mike DeSanti)," DBMS,
v. 4, pp. 48-54, Nov 1991.

[St9lb] Strehlo, K., "The world according to Stonebraker: from Ingres to Postgres
and the next generation of database management systems. (interview with
Ingres developer and Ingres Corp. cofounder Michael Stonebraker),"
DBMS, v. 4, no. 10, pp. 42-46, Sep 1991.

[St91cJ Strehlo, K., "The OODBMS cutting edge," DBMS, v. 4, pp. 8-11, Nov
1991.

[US90] Unland, R. and Schlageter, G., "Object-Oriented Database Systems:
Concepts and Perspectives," Lecture Notes in Computer Science, v. 466,
A. Blaser (Ed.), Database Systems of the 90s, Proceedings, pp. 154-191,
Nov 1990.

[We87] Wegner, P., "Dimensions of Object-Based Language Design", Object-
Oriented Programming Systems, Languages and Applications
(OOPSLA'87) Conference Proceedings, Oct 1987, Orlando, FL; special
issue of SIGPLAN Notices, v. 22, no. 12, pp. 168-182, Dec 1987.

210



BIBLIOGRAPHY

[Cop92] Coplien, J. 0., Advanced C++ Programming Styles and Idioms, Addison-
Wesley Publishing Company, Readin, MA, 1992.

[Gh90] Ghelli, G., "A class abstraction for a hierarchical type system," Lecture
Notes in Computer Science, Vol. 470, S. Abiteboul and P. C. Kanellakis
(Eds.), International Conference on Database3 Theory (ICDT) '90,
Proceedings, pp. 56-71, Dec 1990.

[LKM90] Lockemann, P. C., Kemper, A., and Moerkotte, G., "Future Database
Technology: Driving Forces and Directions," Lecture Notes in Computer
Science, v. 466, A. Blaser (Ed.), Database Systems of the 90s,
Proceedings, pp. 15-33, Nov 1990.

[NWL8l] Nestor, J. R., Wulf, W. A., and Lamb, D. A., IDL - Interface Description
Language - Formal Description, Department of Computer Science,
Carnegie-Mellon University, Technical Report, Aug 1981.

[Nes86] Nestor, J. R., "Toward a Persistent Object Base", Lecture Notes in
Computer Science, Vol. 244, Conradi, R., Didriksen, T. M., and Wanvik, D.
H. (Eds.), Advanced Programming Environments, Proceedings of an
International Workshop, Trondheim, Norway, pp. 372-394, Jun 1986.

[PN91a] de Paula, E. G. and Nelson, M. L., "Designing a Class Hierarchy,"
Technology of Object-Oriented Languages and Systems 5 (TOOLS 5),
Santa Barbara, CA, pp. 203-218, Jul 1991.

[SS90] Scholl, M. H. and Schek, H., "A Relational Object Model", Lecture Notes
in Computer Science, Vol. 470, S. Abiteboul and P. C. Kanellakis (Eds.),
International Conference on Database3 Theory (ICDT) '90, Proceedings,
pp. 89-105, Dec 1990.

[ZM90] Zdonik, S. B. and Maier, D. (Eds), Readings in Object-Oriented Database
Systems, Morgan Kaufamann Publishers, Inc., San Mateo, CA, 1990.

210



INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, CA 93943-5002

3. Chairman, Computer Science Dept. 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5002

4. MAJ M. L. Nelson, USAF, Code CS/Ne 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5002

5. C. Thomas Wu, Code CS/Wq 2
Computer Science Department
Naval Postgraduate School
Monterey, CA 93943-5002

6. Dr. A. Orooji
Computer Science Department
University of Central Florida
Orlando, FL 32816

7. CPT Ronald L. Spear, USA 4
161 Oakdale Drive
Zelienople, PA 16063

8. John Nestor and Ellen Borison
Persistent Data Systems, Inc.
75 West Chapel Ridge Road
Pittsburgh, PA 15238

9. LTC Robert Butler, USA
246 South Oakwood Drive
Novato, CA 94949

212



10. CPT (P) Matthew James Rothlisberger 1
P.O. Box 3362
Fort Leavenworth, KS 66027

213


