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ABSTRACT

Subspace decomposition methods are a very useful technique to extract the signal information

via eigen-based estimators. Although those techniques are very accurate, they are usually expensive

to update, becoming difficult to implement for real-time applications. The Rank-Revealing QR

(RRQR) factorization introduced by Chan, offers an attractive alternative to perform the subspace

selection. In this work, we use the RRQR algorithm applied to the Direction of Arrival (DOA)

problem to track moving sources, using passive linear arrays. In addition to the regular RRQR

algorithm originally proposed by Chan, this thesis introduces an improvement. This refinement uses

the signal subspace information and requires very little additional computation. It takes advantage of

the Hermitian property of the signal correlation matrix and is implicitly equivalent to applying one

subspace iteration step to the estimated signal subspace. Simulations show that the performance

obtained is equivalent to that obtained using classical eigen-based techniques. Alternative algorithms

for finding an approximation of the smallest singular vector of the correlation matrix are discussed

and compared to the original method. The final product is an adaptive algorithm that allows for

tracking of DOA angles when moving sources are present. An analysis of the number of flops needed

to execute the adaptive algorithm based on the RRQR factorization to track the DOA of moving

sources has been included, showing its feasibility for being used in real-time implementations.
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I. INTRODUCTION

A. PROBLEM CONTEXT

Estimating the direction of arrival (DOA) of a signal is

a problem of great importance in the operation theater of a

task force at sea. The direction of arrival (DOA) vector may

be used to distinguish a friendly approaching aircraft from a

foe. If the aircraft is outside an expected bearing corridor,

then it is generally thought to be an enemy aircraft. This

expectation must be verified by other check points during the

target identification and classification process. Accurate

determination of the DOA of a signal is a very important issue

in the operation of weapon systems and should be completed

with extreme care.

The main goal of this work is to investigate the accuracy

and speed of high resolution DOA techniques. The technique of

choice will allow the DOA to be solved accurately in real time

by an on board computer.

Passive linear equispaced phased array sensors are used to

generate signals for the DOA determination. Initially, any

signal received by the sensors is processed to estimate signal

direction with consecutive samples tracking potentially moving

targets.
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B. THEORETICAL BACKGROUND

Consider the case of a linear equispaced array of n

sensors receiving signals emitted from m sources.

Furthermore, let us assume that the signal may b'.- represented

by a narrowband signal embedded in additive Gaussian white

noise. The resulting signal received at the array is

x=s+n ,(i)

where s, represents all narrowband components emitted by the

source(s) and n is the additive noise.

The output at the q1 array element may be expressed [Ref.

i] as

m di

yt.q= Aiexp [j[wct- 2n (q-l) 'd'sin OiYt +@i]ex [j] +n,,,
1=1 ' (2)

for 1 g q g n

where Oi represents the ih signal arrival angle, w, represents

the center frequency of the narrowband sources, d represents

the array element spacing, A, is the amplitude of each incoming

signal, X is the wavelength related to the traveling wave

movement, 0i represents the random phase of each incoming

signal, assumed uniformly distributed over [0,27]. Finally,

1tq is a zero mean random variable representing the noise at

the qc array element. The output vector at time t is a n-

dimensional column vector

2



xt= [Y.t, •1', Yt. n] . (3)

The mode vector me is

m=[1, exp (-2nj dsin(6) /1) . exp (-2nj d(n-1) sin (8) /)) 7. ( 4)

The noise vector is

Equations 3-5 may be used to write the received signal vector

as

1

M exp(-27cjdsin(0O))/I)
x Aiexp [j [w, t+i]] +n, (6)

1=1

exp (-27jd (n-1) sin(0j) /X)

where the vector 2 is defined for continuous time. The

estimated received signal correlation matrix is given by the

following equation:

nest

R=ie k= k-XXV (7)nest nest

3



The vector, &, is the expression defined in Equation (6), for

each discrete time interval. The quantity nest is the number

of estimates used to compute the autocorrelation matrix, Rn.

The autocorrelation matrix, R., may be used to extract the

signal information by using high resolution techniques such

as: Multiple Signal Classification (MUSIC) [Ref. 2] or

Minimum Norm [Ref. 3]. These high-resolution techniques use

the singular vector decomposition (SVD) or the eigenvalue

decomposition (EVD) of the received signal autocorrelation

matrix to estimate the DOA information. A new SVD (or EVD)

decomposition is needed for each update when tracking moving

sources. Since the SVD (or EVD) decomposition is

computationally expensive, good results are not obtainable for

real time systems. The goal of this work is to find a good

approximation of the signal and the noise subspaces and to be

able to use these approximations to find the desired signal

information. To allow their use in real-time algorithms, it

is anticipated that these approximations will be a compromise

between accuracy and processing speed.

The method to be used is the Rank Revealing QR

Factorization (RRQR). Assuming that AH=QR is the classical QR

factorization of A, where Q is orthonormal, R is upper

triangular, and H is an orthonormal permutation matrix, this

method provides a matrix of the form

4



R=1R11 R12

to R 2 2'

where the norm two of R. ., IIR22112, is small when A is ill-

conditioned. This is accomplished by means of a special

pivoting scheme following the cited QR factorization. From

the dimension of the block R22 of this matrix, its rank may be

deduced. This method also provides the means to find

approximations for the signal and noise subspaces of the

matrix A. It will be shown that this information is contained

in the orthogonal matrix Q, generated from the RRQR. Details

about the method follow in Section A of Chapter 2.

The RRQR will be used to decompose the noise-free

autocorrelation matrix. This matrix is obtained by

subtracting a21 from the signal autocorrelation matrix defined

in (7), where a2 is the Gaussian white noise variance and I is

the identity matrix. The need for the noise-free

autocorrelation matrix is due to the special pivoting scheme

developed by Chan (Ref. 4]. This scheme works for rank

deficient or ill conditioned matrices. However, the

autocorrelation matrix, RX, does not present this

characteristic. Therefore, no accurate signal subspace

information can be obtained from the RRQR decomposition of R,.

To correct this deficiency of the algorithm, information about

the Signal to Noise Ratio (SNR) is needed.

5



It is possible to update the classical QR decomposition of

the noise-free autocorrelation matrix. The possibility of

updating the RRQR will also be investigated, as this technique

allows tracking of moving targets. The rank-one modification

of a matrix will be used to update the matrices Q and R

without accessing the updated noise-free autocorrelation

matrix.

6



II. THE RANK-REVEALING QR (RRQR) FACTORIZATION ALGORITHM

This chapter introduces the theoretical background

necessary to understand the RRQR algorithm presented by Chan

[Ref. 4]. This decomposition will then be used to estimate

the signal information.

A. THE RANK-REVEALING QR ALGORITHM

The QR factorization is a decomposition of a given m by n

matrix A into three other matrices, Q, R and II, so that AII=QR.

The matrix, H E R•, is an orthonormal permutation matrix, Q

E C" is orthonormal, i.e., QHQ=I,, and R E Cum is upper

triangular. The QR decomposition, using a fixed permutation

H, provides a unique pair of matrices Q and R. [Ref. 4]

When A is full rank, R is non-singular. However, if A is

rank deficient with rank deficiency r, we may choose 11 so that

the rank deficiency of R is exhibited in the form of a small

lower right block R22WO, as shown in Equation (9). Note that

since Q and [I are orthonormal matrices, their singular values

are equal to one. Therefore, A and R have the same rank.

The matrix R may be defined as

JR11 R12  (9)=r- R 2 21'

where R22 is r by r [Ref. 41.

7



Let us assume that ai is the il singular value of A, where

aZ72- ... - It is possible to show that -,_,+i(A)!IIRI22I 2  [Ref.

4] . Thus, if the norm two of the matrix R22, 11R 22112, is small,

A has at least r small singular values. The converse is not

true, that is, it is not guaranteed that, if A has r small

singular values, its QR factorization will yield a small

11R22 112.
Thus, it is necessary to find an algorithm that is able to

reveal the matrix rank via a small R22 block. The Rank-

Revealing QR (RRQR) factorization algorithm [Ref. 41 provides

such a decomposition of A.

In this section, a brief discussion and the theoretical

background of the method is provided. The main purpose here

is to identify the characteristics which are important to the

Direction of Arrival (DOA) problem. A thorough theoretical

treatment of the RRQR factorization has been written by Chan

[Ref. 41.

This proof starts from a rank-one deficient matrix. It

will be extended later for a rank-r deficient matrix. Let us

assume that a given matrix A is nearly rank-one deficient.

The Theorem 2.1 of [Ref. 41 is reproduced here, adapted to the

complex case.

THEOREM 2.1 Suppose that we have a vector x E C with
11x112=l such that IIAxH 2=E, and let U be a permutation matrix
such that if llEx=y, then lynI=I1yIj.. Then if AHI=QR is the
QR factorization of Al, then

8



Proof: First we note that since iyoI=IIyIjm and jtyjj2=tixjj2=i,
we have

1(10)

Next, we have

HAx QAIIIITx = Ry (

Therefore,

e lA4l2 = IIQ'Axll = IIRyH•>Ir•y~i, (12)

and from (10) and (12) we have the desired relationship.m

Now, assume that v, e Ca with jiv.jiI=1 is the smallest right

singular vector of A, then we have

IAv112 =un. (13)

If we define

I (I Tv) In=1ivIL, (14)

where H is the permutation as defined in Theorem 2.1, we see

that All has a QR factorization with pivot r, and that the

magnitude of r., is less or equal to la.V~n[. In other words,

the (n,n)' element of R is small. Therefore, it is possible

to make r, small with an adequate choice of the permutation

matrix.

9



Since we need only an adequate permutation matrix H, an

approximation of the SVD of A for the smallest singular

vector, v, is adequate. This point shows the advantage of the

RRQR algorithm over the SVD. An approximation of v may be

computed much faster than the true singular vector. In

Chapter 3, methods to find a good approximation for v is

demonstrated.

The above results serve as the foundation to compute any

QR factorization of A. An approximation of the smallest right

singular vector of A is found. Then we determine 11, as in

(14), and compute the QR factorization of All. Alternatively,

the eigenvector corresponding to the eigenvalue closer to zero

[Ref. 5] may be found, rather than the smallest right singular

vector v. The proof that this algorithm is valid for the

eigenvector case is trivial, as a is replaced by lxi

throughout the proof.

The above one-dimensional algorithm may be extended to the

case when A is nearly rank-r deficient, with r>1. We want to

find a permutation H, such that

All QR iR12 (15)
10o R221

is the QR factorization of A. The submatrix Rn is (r x r)

dimensional and 11R,,112 is small. We apply the one dimensional

algorithm presented above to R,,, for r=1,2, ... , where R11 is

10



the leading principal (n-r x n-r) dimensional submatrix of R.

After isolating a (r x r) dimensional R22 block, we may use

this one-dimensional algorithm to compute a permutation P such

that R11P=Q1 R1, is the QR factorization of R11P. Next, we

isolate a (r+1 x r+l) block. This guarantees the (n-r,n-r)h

element of R is small, leading to:

AnI= 1Q , (16)
10 R 22

where
(17)

and

We notice that Equation (16) is the QR factorization of Ad.

The complete algorithm is summarized below in steps 0 to 9.

An implementation of this subroutine using the MATLABTm

software may be found in Appendix A.

0. Compute a first QR decomposition of the noise-free
autocorrelation matrix.

"For i=n,n-1,...,n-r+1, do:

1. Let R,, be the leading i x i block of R.

2. Compute the singular vector v e C' of R,,, corresponding
to the minimum singular value om(Rj1 ) with 1v112=i.

11



3. Compute a permutation P e C"6 such that I (PHv),I=IIPjvII..
(This means find the maximum absolute value element of the
smallest right singular vector and swap it with the i*
element of the same vector).

4. Assign =10 E Cn to the ih column of W.

5. Let W=PHW, where P-

6. Compute Q 1Ru, the QR factorization of R11P.

7. Let H=fI.

8. Let Q=Q o

9. Let R= F1 QITR 12

10, R22 I

For this algorithm to provide the desired R2 block of R

small in norm, we must have a R11 block at step two with a

small singular value to insure that the (i,i)* element of Rl

is small. At step nine, the (n-i)l (last) row of QHIRI2 must

be small in norm. If these two assertions are true, then the

lower (n-i+l x n-i+l) block R2 in step 9 is small in norm and

the desired QR factorization exists. To prove the first

assertion, we reproduce the Lemma 3.1 of [Ref. 4]. Chan's

derivation for the case of a real valued matrix is adapted

here for the complex matrix case.

12



"Lemma 3.1: Let B e Ck be a matrix containing any subset

of k columns of A. Then

om,(B) - 0k(B) o rk(A).

The submatrix R11 is the subset of QHAII, composed of its

first i columns. QH and II are orthonormal and therefore their

singular values are one. Using this observation and the Lemma

3.1 of [Ref. 4], we have

a• n(RI ) < ri (QHAH) = ai(A).

The above inequality guarantees that R11 has a small singular

value if u1(A) is small.

To prove that R22 is small in norm, we reproduce here the

Lemma 3.2 and Theorems 3.1 and 3.2 of [Ref. 4].

Lemma 3.2: The matrix W -[wnr+i, . .. , w.] E C"'x computed by
the algorithm RRQR satisfies the following properties: For
i=n,n-l,...,n-r+l,

2) (wi)j=O for j>i,

3) I (w,),l=IlwII0. t 1/,

4) IIA IwI2=6i S u,(A), where (8,-au,(R,,))j.

Theorem 3.1: Let the matrix W e C' as computed by the
algorithm RRQR be partitioned as WH (WIH,W 2H), where WH E
CT' is upper triangular and non-singular. Then the QR
factorization of AU as computed by the algorithm RRQR
satisfies:

13



Proof: Denote the columns of W by {w,-,+l,..., wj. Define
YnQHAUW E Cu. From property (4) of Lemma 3.2, we have

1 Y12 5 I11Y = E ij 6i g• rl~n-z÷i g F _r•n , (23)
i=n

where 6i = (ua(R 1 1 ))i and 11- 11 denotes the Frobenius norm. Next
the matrix Y can be expressed as:

Y = QTAIIW = RW=Pý111R12W21 (24)

which leads to

11Y1•2•>lIR2W 12;-> R 22 12  (25)1lw2 -112

Combining Equations (23), (24) and (25), we get

JR 2 2 12  (26)

from which the desired result follows.M

Theorem 3.2: The algorithm RRQR computes a permutation
H and a QR factorization of A, given by AU=QR where the
elements of the lower (r x r) upper triangular block of R
satisfy

"i -1

IrijI •Ojr+E 2j-1-k okV (27)
k-i (7

S 2 jioiaV for n-r <i jin

Proof: Using Lemma 3.2, we have, for n-r<isj s n

14



J

o3 ;Iw]Iwji 2=IRwj1 2 ZI (Rwj) 1I=I r k(Wj)kI.
k-i

Isolating the k=j term in the sum and rearranging terms, we
get

j-1

k=i

From Lemma 3.2, I (w)•I=I (w)I10  1 /vg. we have
j-1Iraqi :5 CyoVJ_ +, I r i l.
k-i

Solving this recurrence in the index j, we get the bound given
in the first inequality in Equation 27. Using the bound -k-
s Lv/ny in each term of the sum in the desired result, we get
the second bound.m

Equation (27) in Theorem 3.2 shows the bounds for the

elements of the matrix R generated by the RRQR algorithm. The

second inequality states the bounds for the elements of the

block R22. The factor 2j' indicates that one element in R2

increases with its distance from the main diagonal. There-

fore, for large values of the rank deficiency r, the bounds

may be quite large, as it grows exponentially. Numerical

simulation cases will be shown later to demonstrate that these

bounds are overconservative.

This algorithm was originally proposed to be iterated from

n until n-r+l, where n is the number of sensors in the array

and r is the noise-free autocorrelation matrix rank deficien-

cy. Alternatively, Prasad and Chandna (Ref. 5] proposed to

15



iterate the recursion until n-m+l, where m is the number of

sources. A faster algorithm is the result of this technique

as generally there are fewer sources than sensors. The

drawback of this approach, however, is a loss of precision in

the estimated signal information, as the algorithm might not

capture all the rank deficiency of the matrix to be decom-

posed. This problem will be investigated in Chapter 4.

B. USING THE RRQR ALGORITHM TO FIND THE NOISE AND SIGNAL

SUBSPACES OF THE NOISE-FREE AUTOCORRELATION MATRIX

Assume that we have a linear equispaced array composed of

n sensors and m sources, with n > m. The theoretical noise

free autocorrelation matrix, (R,), is r (=n-m) rank deficient.

However, the practical noise-free autocorrelation matrix is

nearly rank deficient.

It is possible to find the signal and noise subspaces of

an incoming signal using the RRQR algorithm shown in Section

A. After applying the complete RRQR algorithm, the matrix R

reveals the rank deficiency of R,. Consequently, the norm of

R22 is small compared to the norm of the rest of the matrix R.

Note that R is upper triangular. Here, R11 has dimension (n-

r(=m) x n-r), R12 has dimension ((n-r) x r), and R2 has

dimension (r x r). The signal subspace is contained in the

first m columns, and the noise subspace is contained in the r

last columns of the matrix Q. The matrix, W, of the RRQR

16



algorithm is not used here as an approximation of the noise

subspace, as originally proposed by Chan [Ref. 4]. The use of

this matrix to approximate the noise subspace yielded poor

results, as shown by Fargues [Ref. 3].

C. USING THE GIVENS ROTATION TO REFACTOR R11P

A new QR factorization of the R11P term is presented in

step six of the RRQR algorithm. In step one, it is reasonable

to run a complete QR algorithm for the first QR factorization.

But as R11 is already upper triangular and P is only a permuta-

tion that changes the position of two rows, we can use

inclusive Givens Rotations to zero out the few non-zero

elements of R11P below its main diagonal. These rotations

yield a more efficient algorithm to deal with the special

structure of the problem.

The complex Givens Rotation matrix is defined as

G1 c j (31)
G -conj(s) (

where c is real, s is complex and such that 1c1 2+1s1 2 -=.

The Givens Rotation matrix is defined such that the

following equality is satisfied [Ref. 6]:

G~d =101(32)

Suppose we have a matrix, A, and we want to zero out a

given element a(k,i), below the main diagonal, i.e., k>i. If

17



we multiply this matrix by the matrix J defined below, we will

make the element a(k,i) equal to zero. If we repeat this

procedure for all elements of A below the main diagonal and

different from zero, the matrix A is transformed into an upper

diagonal matrix. This is the essence of the Givens Rotation.

1 0 0
0- ' to

= 0 0 100

O-0 n s~ 0 .....C-.0 .... k

0 0 1

I k

The subroutine GIVENS1 used to compute the complex Givens

Rotation matrix J and the subroutine QRGIV used to perform the

QR factorization using the Givens rotation may be found in

Appendices B and C.
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III. METHODOLOGY FOR APPROXIMATING THE SMALLEST RIGHT

SINGULAR VECTOR

Chapter 2 presented the RRQR algorithm and indicated that

a procedure is needed to find reliable approximations of the

smallest right singular vector of a matrix. The inverse

iteration method and the Incremental Condition Estimator are

introduced to address this problem. The inverse iteration

method is used to find the smallest singular vectors of a

matrix. It may also be used to find the smallest eigenvector

in absolute value. The Incremental Condition Estimator is

used to find a reliable approximation of the smallest singular

value and the corresponding singular vectors of a matrix.

A. THE INVERSE ITERATION METHOD TO FIND THE SMALLEST SINGULAR

VECTOR

Step two of the RRQR algorithm is a computationally expen-

sive part of the procedure [Ref. 7]. It is therefore desir-

able to find an algorithm that finds the minimum singular

value and its corresponding right singular vector quickly and

accurately.

The algorithm implemented is the inverse iteration method.

Starting with an initial guess, v0 (in this case a vector

composed of ones), the following algorithm is iterated until

convergence [Ref. 8].
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1. Solve Aa+1 ==v for uai+ 1,

2. Let ui+ 1 /=ai+j/11Qi11]2,

3. Solve A"V1 +1=ui+1 for V+1,

4. Let VH."= 1/B +1H2-
Let the converged vi be v, and compute u,, and ad, by:

The above algorithm computes the right (v,) and left (uJ)

singular vectors as well the minimum singular value of the

matrix A. This algorithm yields good results for a small

number of iterations, as shown by the numerical simulations

presented below. Three iterations were used here to estimate

the singular vectors.

To evaluate the results achieved with the inverse itera-

tion algorithm, we examined four different test cases. One to

three iterations were run on each test case. In each case,

the right singular vector was compared to the corresponding

vector generated by the SVD decomposition computed with the

MATLABTM software. This procedure was followed for 1000

different random matrices.

Comparisons between approximated and computed singular

vectors were obtained by evaluating the magnitude of the

projection of the estimate over the true smallest right

singular vector. If the two vectors are parallel, the

projection is maximum and equal to one. If they are perpen-

dicular, the projection is zero. The projections were
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distributed among ten bins, ranging from 0 to 1, as shown in

Tables 1-4. The mean and standard deviation for each one of

the iteration steps were computed.

The first test case used a 10x10 dimensional random matrix

generated using MATLABTM. The second one used a 10xl0 random

matrix, with the lower triangle was imposed as zero. The

third test case, used an upper triangular matrix R, obtained

from the QR decomposition without pivoting of a 10xl0 random

matrix. Finally, the fourth test case used an upper triangu-

lar matrix R obtained from the QR decomposition with pivoting

of a 10xl0 random matrix. These cases were evaluated in terms

of performance to verify the adequacy of the method within

different and perhaps more demanding contexts. The test

results are summarized in Tables 1 through 5.

Table 1: INNER PRODUCT MAGNITUDE BETWEEN ESTIMATED AND TRUE
SMALLEST SING. VECTORS, RANDOM MATRIX, 1000 TRIALS.

Percentage One Two Three
of Projec- Itera Itera Itera
tion lying tion tions tions
between

0 and .1 .6 .1 .1
.1 and .2 1.4 .6 .2
.2 and .3 .7 .2 .1
.3 and .4 .5 .7 .4
.4 and .5 .8 .7 .1
.5 and .6 .9 .4 .3
.6 and .7 1.1 0 .4
.7 and .8 2.4 1.0 .6
.8 and .9 3.9 .7 .8
.9 and 1 87.7 95.6 97.0
Average .9441 .9756 .9867
Standard .1645 .1121 .0802
Deviation
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Table 2: INNER PRODUCT MAGNITUDE BETWEEN ESTIMATED AND TRUE
SMALLEST SING. VECTOR, RANDOM MATRIX WITH LOWER TRIANGLE
PORTION EQUAL TO ZERO, 1000 TRIALS.

Percentage One Two Three
of Projec- Itera Itera Itera
tion lying tion tions tions
between

0 and .1 0 0 0
.1 and .2 0 0 0
.2 and .3 .1 0 0
.3 and .4 .1 0 0
.4 and .5 0 .1 0
.5 and .6 .1 0 0
.6 and .7 .1 0 0
.7 and .8 .3 0 0
.8 and .9 .5 .4 .1

.9 and 1 98.8 99.5 99.9
Average .9960 .9988 .9996
Standard .0399 .0184 .0071
Deviation

Table 3: INNER PRODUCT MAGNITUDE BETWEEN ESTIMATED AND TRUE
SMALLEST SING. VECTORS, UPPER TRIANGULAR MATRIX RESULTING FROM
QR FACT. W/O PIVOTING, 1000 TRIALS.

Percentage of One Two Three
Projection Iterat Iterat Iterati
lying between ion ions ons

0 and .1 .7 .2 .2
.1 and .2 .5 .6 .1
.2 and .3 .7 .2 .4
.3 and .4 .6 .5 .4
.4 and .5 1.2 0 .1
.5 and .6 .6 .1 .1
.6 and .7 .9 .7 .1
.7 and .8 2.0 1.1 .2
.8 and .9 2.8 1.4 .9
.9 and 1 90.0 95.2 97.5
Average .9528 .9781 .9868
Standard De- .1480 .1044 .0843
viation
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Table 4: INNER PRODUCT MAGNITUDE BETWEEN ESTIMATED AND TRUE
SMALLEST SING. VECTORS, UPPER TRIANGULAR MATRIX RESULTING FROM
QR FACT. W/ PIVOTING, 1000 TRIALS.

Percentage One Two Three
of Projec- Itera Itera Itera
tion lying tion tions tions
between

0 and .1 0.1 .1 .1
.1 and .2 .6 .3 0
.2 and .3 .5 .1 .3
.3 and .4 .7 .2 .1
.4 and .5 .7 .6 .2
.5 and .6 .7 .6 .4
.6 and .7 .4 .6 .5
.7 and .8 .7 .5 .4
.8 and .9 3.0 .1 .6
.9 and 1 92.6 96.9 97.4
Average .9660 .9823 .9887
Standard .1225 .0922 .0743
Deviation

Table 5: COMPARISON BETWEEN THE FOUR CASES EXAMINED IN TABLES
1 THROUGH 4.

Totally Imposed Resulting Resulting
Random upper from QR from QR
Matrix triangul decomp. decomp. w/

ar w/o pivot- pivoting
ing

Percentage of
projections 97 99.9 97.5 97.4
between .9 and
1.0
Average of
projections .9867 .9996 .9868 .9887
Standard Devi-
ation of Pro- .0802 .0071 .0843 .0743
jections
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Table 5 shows that the best result was obtained from the

imposed triangular matrix experiment. However, all of the

experiments show good results. These results justify the use

of the inverse iteration method as a low cost alternative to

approximate the smallest right singular vector in step two of

the RRQR algorithm. The important point is to find a permuta-

tion so that the element of the least dominant singular vector

that presents the largest magnitude be positioned at the i±

row [Ref. 41. Therefore, it is not necessary to find the

exact singular vector for the RRQR algorithm. The source code

implemented to approximate the smallest singular vector by the

use of inverse iteration method is shown in Appendix J.

B. THE INVERSE ITERATION METHOD TO FIND THE SMALLEST

EIGENVECTOR

Prasad [Ref. 51 states that the RRQR-based algorithm works

when using an EVD (Eigenvector Decomposition) rather than a

SVD (Singular Vector Decomposition) of the noise-free

autocorrelation matrix. The validity of this approach is

investigated here. Theoretically, it is correct to only

replace a by JlJ in the RRQR factorization proof presented in

Chapter 2.

The inverse iteration method may be used to find the least

dominant eigenvector (the one with a magnitude closer to

zero). Again, we find an initial guess v0 , which may be a
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vector composed solely of ones. The following algorithm

should be iterated until convergence of v.

1. Solve Ayk=vk:l, for y,.

2. Normalize vk=yk/Ilykll2.

Comparing the two algorithms, we note that this inverse

iteration algorithm uses the same initial two steps as the one

used for the minimum singular value. To compare the

performance of these two algorithms, the same test cases were

run as in previous section. However, six iterations were run

to provide a viable comparison. The results are shown in

Tables 6 through 9.
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Table 6: INNER PRODUCT MAGNITUDE BETWEEN ESTIMATED AND TRUE
SMALLEST EIGENVECTORS, RANDOM MATRIX, 1000 TRIALS.

Percentage One TWO Three Four Five Six
of Projec- Iterati Iterati Iterati Iterati Iterati Iterat
tion lying on ons ons ons ons ions
between

0 and .1 4.0 2.1 2.0 0.6 0.9 0.6
.1 and .2 4.4 2.3 1.3 1.4 1.3 1.2
.2 and .3 3.6 2.6 1.7 1.4 1.8 1.0
.3 and .4 5.3 3.4 2.5 2.3 1.4 0.6
.4 and .5 6.8 4.0 4.0 2.6 2.8 3.0
.5 and .6 7.3 6.7 5.7 4.1 3.4 4.1
.6 and .7 9.3 7.0 5.0 6.8 4.7 6.0
.7 and .8 11.2 11.1 7.5 6.7 7.7 7.5
.8 and .9 17.2 13.0 10.6 11.0 9.6 9.3
.9 and 1 30.9 47.8 59.7 63.1 66.4 66.7
Average .6964 .7861 .8353 .8586 .8694 .8775
Standard .2758 .2491 .2347 .2124 .2116 .1986
Deviation I I___11

Table 7 : INNER PRODUCT MAGNITUDE BETWEEN ESTIMATED AND TRUE
SMALLEST EIGENVECTORS, RANDOM MATRIX WITH LOWER TRIANGLE
PORTION EQUAL TO ZERO, 1000 TRIALS.

Percentage One Two Three Four Five Six
of Projec- Itera Itera Itera Itera Itera Itera
tion lying tion tions tions tions tions tions
between

0 and .1 0.9 0.5 0.4 0.3 0.5 0.3
.1 and .2 0.7 0.7 0.5 0.3 0.4 0.2
.2 and .3 1.5 0.6 0.4 0.2 0.1 0.2
.3 and .4 0.7 0.6 0.4 0.4 0.4 0.2
.4 and .5 1.3 1.0 0.7 1.1 0.5 0.7
.5 and .6 1.9 1.5 0.6 0.9 0.5 0.3
.6 and .7 1.4 1.4 1.1 1.1 0.4 0.9
.7 and .8 3.5 2.9 1.1 0.8 0.9 0.4
.8 and .9 5.7 4.2 2.5 2.6 1.7 2.1
.9 and 1 82.4 86.6 92.3 92.3 94.6 94.7
Average .9217 .9445 .9634 .9662 .9740 .9774
Standard .1787 .1473 .1280 .1201 .1134 .1019
Deviation =A
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Table 8: INNER PRODUCT MAGNITUDE BETWEEN ESTIMATED AND TRUE
SMALLEST EIGENVECTOR, UPPER TRIANGULAR MATRIX RESULTING FROM
QR FACT. W/O PIVOTING, 1000 TRIALS.

Percentage of One Two Three Four Five Six
Projection Iterat Iterat Iterat Iterat Iterat Iterat
lying between ion ions ions ions ions ions

0 and .1 3.1 2.0 0.8 1.0 0.3 1.2
.1 and .2 2.3 1.0 11.5 1.4 1.4 0.9
.2 and .3 3.1 1.3 1.0 1.2 0.9 0.7
.3 and .4 3.3 1.8 1.5 1.2 1.3 0.6

.4 and .5 4.9 3.7 1.8 1.9 1.3 2.0
.5 and .6 6.1 3.5 1.7 1.8 11.2 1.0

.6 and .7 6.9 4.1 3.1 1.1 1.5 0.8

.7 and .8 8.9 6.6 4.4 2.5 2.3 1.8

.8 and .9 17.3 10.6 6.0 6.0 3.9 3.2

.9 and 1 44.1 65.4 78.2 81.9 85.9 87.8
Average .7654 .8562 .9018 .9158 .9328 .9379
Standard De- .2579 .2227 .1943 .1945 .1728 .1767
viation

Table 9: INNER PRODUCT MAGNITUDE BETWEEN ESTIMATED AND TRUE
SMALLEST EIGENVECTORS, UPPER TRIANGULAR MATRIX RESULTING FROM
QR FACT. W/ PIVOTING, 1000 TRIALS.

Percentage One Two Three Four Five Six
of Projec- Itera Itera Itera Itera Itera Itera
tion lying tion tions tions tions tions tions
between

0 and .1 1.3 0.4 0.3 0.0 0.2 0.1
.1 and .2 0.8 0.7 0.4 0.4 0.0 0.1
.2 and .3 1.1 0.5 0.2 0.3 0.0 0.0
.3 and .4 1.5 0.4 0.5 0.2 0.4 0.0
.4 and .5 3.1 0.8 0.4 0.2 0.3 0.2
.5 and .6 3.7 1.2 0.8 0.4 0.3 0.3
.6 and .7 5.6 2.2 0.8 0.7 0.5 0.4
.7 and .8 9.8 3.2 1.7 2.0 1.1 1.0
.8 and .9 16.9 7.1 5.0 3.1 2.6 2.4
.9 and 1 56.2 83.5 89.9 92.7 94.6 95.5
Average .8451 .9344 .9611 .9734 .9807 .9856
Standard .1969 .1432 .1167 .0949 .0803 .0668
Deviation I I i_
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The results found in Tables 1 through 4 and 6 through 9

are summarized in Table 10 below. Again, the case for imposed

triangular matrices showed the best performance.

Table 10: COMPARISON BETWEEN THE FOUR CASES CONSIDERED FOR THE
SVD VERSUS THE EIGENVECTOR INVERSE ITERATION METHOD.

Totally Imposed Resulting Resulting
Random upper tri- from QR from QRtrix ngular decomp. decomp. w/

w/o pivot- pivoting
ing

SVD EIGV SVD EIGV SVD EIGV SVD EIGV
Percentage of
projections 97.0 66.7 99.9 94.7 97.5 87.8 97.4 95.5
between .9
and 1.0
Average of
projections .9867.8775.9996.9774.9868.9379.9887.9856
Standard De-
viation of .0802.1986 .0071.1019 .0843 .1767.0743 .0668
Projections

The SVD columns show the results of three iterations of

the inverse iteration method to find the singular vector

corresponding to the minimum singular value. The columns EIGV

are the results of six iterations of the inverse iteration

method to find the least dominant eigenvector.

A cursory look at these results show that the eigenvector

approximation is worse than those for the singular vectors

approximation. A hypothesis test based on the two samples is

therefore tested for each case. An assumption is made that

each sample came from different populations with each group of
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1000 projections considered to be one sample. The assumptions

are

1. The first sample, for the eigenvector case, is a random
sample from a population with mean A, and standard
deviation a,.

2. The second sample, for the SV case, is a random sample
from a population with mean A2 and standard deviation a2.

3. Both samples are independent of one another.

4. The samples are large enough to apply the Central Limit
Theorem.

The hypothesis test can be described by [Ref. 9]

HO: AlI=#2
Hl: II1<$2

One hypothesis test will be conducted for each one of the

four test cases. At a level of significance of 1%, H0 will be

rejected if z s -2.33, where

Z= avg(x) -avg(y)

2 2 (33)

n n

If H0 is false, we may decide that A, is smaller than 2.

In Equation (33), n is the sample size of 1000, avg(x) and

avg(y) are the averages to be compared and s, and 82 are the

standard deviations computed from the samples. For example,

the first test case avg(x)=.8775, avg(y)=.9867, s,=.1986 and

S2=.0802 from Table 10. Applying these values to Equation

(33), we find z=-16.12.
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Table 11: RESULTS FOR THE HYPOTHESIS TEST CONDUCTED
ON THE COMPARISON BETWEEN THE SVD VERSUS THE
EIGENVECTOR INVERSE ITERATION METHOD.

Test Case Value of z Conclusion
1 -16.12 Reject H. => l < A2
2 -6.87 e ject HO => Al < A2
3-7.90 Reject _- => it < A2
4 1 -. 98 Cannot Reject H0

As can be seen in Table 11 above, the first average A is

significantly smaller than 112 (at 1% of level of significance,

z<-2.33), for all cases but case four. Hence, we reject H0

for the first three cases. These results justify the choice

of using the singular vector approximated by the inverse

iteration method for use with the algorithm. Note that there

is no theoretical reason for not using the smallest eigenvec-

tor rather than the smallest right singular vector in the RRQR

algorithm. They span the same subspace. The reasons for

choosing the singular vector relies solely on the fact that

the inverse iteration method yields better results. The

source code implemented to approximate the smallest eigenvec-

tor by the inverse iteration method is shown in Appendix M.

C. THE INCREKM3TAL CONDITION ESTIMATOR

A third method tested here to estimate the singular vector

corresponding to the minimum singular value is the Incremental

Condition Estimator (ICE) [Ref. 10]. Suppose that
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A=[a1 ,...,aj] is a (m x n) dimensional matrix and let a, •-.-•

ai a 0 be its singular values. The minimum singular value of

A measures how close this matrix is to rank deficiency. The

condition number becomes

k A (34)Gain

Now, suppose we take the QR factorization of A. This

algorithm is intended to work from a lower triangular matrix

L. Since R is upper triangular let us define L=RT. There

will be no loss of generality here because the singular values

of any matrix and its transpose are the same (Ref. 10].

If we have a n dimensional lower triangular matrix L

generating one row at a time with an approximate singular

vector x such that omm(L)-1/jxII 2 and a new row (vT,y) of L , we

can obtain

L'= L (35)
VY

such that ac7 (L')-.1/IlyIj without having to access L again [Ref.

10].

Given x such that Lx=d with I1d1 2=l1 and .c'(L)-l/llxll,, let

us find s=sin(O) and c=cos(O) such that Ilyll, is maximized,

where y solves

L'yY= L y d= (3.
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The solution for the above equation is

y= __ (37)

Y

where -=VTx and ld' 2 =-11 d112--1.

Now define

Bj13cc (38)

where I=y2xTx+cy2 _-. In this case, we have

2 = 1 f(9-A27Is clB11(9

Assuming ^MO0 the optimal pair (s,c)T is the eigenvector

corresponding to the largest eigenvalue X,. of B [Ref. 10].

Also assuming or40, we may define

q= and p=¶q+sign(a) ýI2+l (40)

to obtain X.,=ct+1. Finally the optimal pair (s,c)T is given

as

After computing the optimal pair (s,c)T, a new approximate

singular vector, y, may be computed as defined in Equation

(37) and the smallest singular value of L' by
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amin WL) (42)IIYIL2 (42)

Using the above estimator we ran the same cases as for the

inverse iteration presented in Sections A and B above. The

results are summarized in Tables 12 through 15.

Table 12: INNER PRODUCT MAGNITUDE BETWEEN ESTIMATED AND TRUE
SMALLEST SING. VECTORS, RANDOM MATRIX, 1000 TRIALS.

Percentage of
Projection
lying between

0 and .1 0.6
.1 and .2 0.2
.2 and .3 0.5
.3 and .4 1.1
.4 and .5 0.7
.5 and .6 0.6
.6 and .7 0.9
.7 and .8 2.1
.8 and .9 5.6
.9 and 1 87.7
Average .9015
Standard De- .2041
viation
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Table 13: INNER PRODUCT MAGNITUDE BETWEEN ESTIMATED AND TRUE
SMALLEST SING. VECTORS, RANDOM MATRIX WITH LOWER TRIANGLE
PORTION EQUAL TO ZERO, 1000 TRIALS.

Percentage of
Projection
lying between

0 and .1 0.0
.1 and .2 0.0
.2 and .3 0.0
.3 and .4 0.0
.4 and .5 0.2
.5 and .6 0.3
.6 and .7 0.3
.7 and .8 0.3
.8 and .9 0.5
.9 and 1 98.4
Average .9929
Standard De- .0441
viation

Table 14: INNER PRODUCT MAGNITUDE BETWEEN ESTIMATED AND TRUE
SMALLEST SING. VECTORS, UPPER TRIANGULAR MATRIX RESULTING FROM
QR FACT. W/O PIVOTING, 1000 TRIALS.

Percentage of
Projection
lying between

0 and .1 0.3
.1 and .2 0.3
.2 and .3 0.4
.3 and .4 0.1
.4 and .5 0.5
.5 and .6 0.5
.6 and .7 0.9
.7 and .8 0.7
.8 and .9 2.7
.9 and 1 93.6
Average .9705
Standard De- .1079
viation

34



Table 15: INNER PRODUCT MAGNITUDE BETWEEN ESTIMATED AND TRUE
SMALLEST SING. VECTORS, UPPER TRIANGULAR MATRIX RESULTING FROM
QR FACT. W/ PIVOTING, 1000 TRIALS.

Percentage of
Projection
lying between

0 and .1 0.3
.1 and .2 0.2
.2 and .3 0.0
.3 and .4 0.2
.4 and .5 0.1
.5 and .6 0.1
.6 and .7 0.2
.7 and .8 0.7
.8 and .9 1.3
.9 and 1 96.9
Average .9859
Standard De- .0797
viation

Table 16 summarizes the results found for each one of the

four test cases, comparing the inverse iteration method to

find the smallest right singular vector and the Incremental

Condition Estimator. As before, those numbers represent the

percentage of projections lying between .9 and 1 of the

corresponding vectors found via the corresponding approxima-

tion method over the true smallest right singular vector found

via SVD.
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Table 16: CCOPARISON BETWEEN THE FOUR CASES CONSIDERED FOR THE
SVD INVERSE ITERATION VERSUS THE INCREMENTAL CONDITION
ESTIMATOR METHOD.

otally Imposed Resulting esulting
Random upper tri- from QR from QR
Matrix angular decomp. decomp. w/

w/o pivot- pivoting
ing I

INV. ICE INV. ICE INV. ICE INV. ICE
ITER. ITER. ITER. ITER.

Percentage of
projections 97.0 87.7 99.9 98.4 97.5 93.6 97.4 96.9
between .9
and 1.0
Average of
projections .9867.9015.9996.9929 .9868.9705.9887i.9859
Standard De-
viation of .0802 .2041.0071.0441.0843 .1079 .0743 .0797
Projections II

Table 16 shows the magnitude of the projections of the

estimated smallest right singular vectors obtained using

inverse iteration (INV. ITER.) method and the ICE, onto the

smallest singular vector computed via EVD.

A hypothesis test was again performed on these results.

Table 17 presents the results obtained for the hypothesis

test.

Table 17: RESULTS FOR THE HYPOTHESIS TEST CONDUCTED
ON THE COMPARISON BETWEEN THE SV INVERSE ITERATION
AND THE INCREMENTAL CONDITION ESTIMATOR.

Test Case Value of z Conclusion
1 -12.29 Reject H0 => li

(INV.ITER.) < g2 (ICE)
2 -4.74 Reject H0 => A, < A2
3 -3.76 Reject H0 => ji < i2
4 -. 81 Cannot Reject H0
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Tables 12 through 17 show that the results using the

incremental condition estimator are not as good as those for

the SV inverse iteration. Therefore, the inverse iteration

used to find the least dominant singular vectors is preferred.

The source code implemented to approximate the smallest

singular value and its corresponding singular vectors via ICE

is shown in Appendix I.
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IV. COMPARISON BETWEEN THE PERFORMANCE OF THE RRQR ALGORITHM
ITERATED FROM DIMENSION n UNTIL n-m+1 AND FROM DIMENSION n
UNTIL n-r+1

Prasad [Ref. 51 states that the RRQR-based algorithm may

be used to estimate the DOA information when the algorithm is

iterated from n until n-m+l rather than until n-r+l as in

Chan's work [Ref. 41. The relative efficiency of the RRQR

algorithm using both approaches is compared by running 1000

trials. The scenario is m=2 fixed sources at 300 and 320 with

n=10 sensors. Therefore, the theoretical noise-free

autocorrelation matrix is of size 10 x 10 and has rank two

(m=2). The near rank deficiency is (r=n-m) 8. Three SNR

cases are tested (-10, 0 and 10 dB) for each one of the

situations, resulting in six simulations.

In the first situation, n-r+1 equals three. In the

second, n-m+1 equals nine. It is intuitively obvious that the

second one is much faster than the first, as it will be

iterated only twice, from ten to nine. On the other hand, the

smaller number of iterations, the less probable that the upper

triangular matrix R will capture the near rank deficiency of

the noise-free autocorrelation matrix (R.).

For each run, the largest principal angle between the

signal subspace computed via the eigenvector decomposition and

the approximated signal subspace computed via the RRQR

algorithm is used for comparison. The same is done for the
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noise subspace. A vector of ones is expected if the subspace

generated by the RRQR algorithm is parallel to its correspond-

ing subspace generated by the true eigenvector. In the case

that the two subspaces are perpendicular, a vector of zeros is

expected.

Recall that the cosines of the principal angles between

two subspaces F and G are defined as the singular values of

the product QFTQ, [Ref. 7], where the matrices Q1 and Q. are the

orthonormal matrices obtained from F and G. To find the SVD

decomposition of this product, the inverse cosine of the

singular values is taken using the largest angle. The largest

angle represents a measure of the distance between the two

subspaces. This measure is used for noise and signal subspa-

ces.

Tables 18-20 present means and standard deviations

obtained for the largest principal angle for signal and noise

subspaces using the RRQR algorithm where the first QR decompo-

sition, in step 0, is performed with pivoting. This computa-

tion is done for SNR -10, 0 and 10 dB.
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Table 18: COMPARISON BETWEEN THE RRQR ALGORITHM ITERATED FROM
n THROUGH n-r+1 AND FROM n THROUGH n-m+1 FOR SNR--10 dB. QR
DECOMPOSITION IN STEP 0 PERFORMED W/ PIVOTING, 1000 TRIALS.

Iteration from n=10 Iteration from n=10
until n-r+1=3 until n-m+1=9 (# of
(# of flops=837,515) -
flops=1,301,732) - Angle in degrees.
Angle in degrees.
Mean (A,) Std Dev Mean (A2) Std Dev

Signal 46.80 13.65 47.05 14.11
Subspace

Noise 46.80 13.65 47.05 14.11
Subspace ______

Table 19: COMPARISON BETWEEN THE RRQR ALGORITHM ITERATED FROM
n THROUGH n-r+1 AND FROM n THROUGH n-m+l FOR SNR=0 dB. QR
DECOMPOSITION IN STEP 0 PERFORMED W/ PIVOTING, 1000 TRIALS.

Iteration from n=10 Iteration from n=10
until n-r+1=3 until n-m+1=9 (# of
(# of flops=837,515) -
flops=l,301,732) - Angle in degrees.
Angle in degrees.
Mean (AL) Std Dev Mean (A2) Std Dev

Signal 17.53 5.71 26.95 12.55
Subspace
poise 17.53 5.71 26.95 12.55
Sub space __- I- -- II

Table 20: COMPARISON BETWEEN THE RRQR ALGORITHM ITERATED FROM
n THROUGH n-r+1 AND FROM n THROUGH n-m+1 FOR SNR-10 dB. QR
DECOMPOSITION IN STEP 0 PERFORMED W/ PIVOTING, 1000 TRIALS.

Iteration from n=10 Iteration from n=10
ntil n-r+1=3 until n-m+1=9 (# of

(# of flops=837,515) -
flops=1,301,732) - Angle in degrees.
Angle in degrees.
Mean (A,) Std Dev ean (A2) Std Dev

Signal 2.24 0.69 4.85 4.09
Subspacer
poise 2.24 0.69 4.85 4.09
Subspace_
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Tables 18-20 show that the noise and signal subspaces

yield identical means and standard deviations. This was to be

expected as the noise and signal subspaces contain the same

information.

Table 21 shows the results obtained for the hypothesis

test performed to compare the two methods of iteration.

Table 21: RESULTS FOR THE HYPOTHESIS TEST CONDUCTED ON THE
COMPARISON BETWEEN THE RRQR ALG. ITERATED FROM n THROUGH n-r+1
AND FROM n THROUGH n-m+l. QR DEC. IN STEP 0 W/ PIVOTING

SNR value Value of z Conclusion
in dB
-10 -. 40 Cannot reject H0

0 -21.6 Reject H0 => g1 < A2
10 1-19.9 [Reject H0 => A, <f 2

The results show that for SNR 0 and 10 dB, the null

hypothesis is rejected. Therefore, the larger number of

iterations yield better results. However, for the case of -10

dB the results are meaningless due to the small signal to

noise ratio. They do not lead to detection of the signal

embedded in the noisy environment.

Tables 22-24 present means and standard deviations

obtained for the largest principal angle for signal and noise

subspaces using the RRQR algorithm where the first QR decompo-

sition, in step 0, is performed without pivoting. An hypothe-

sis test is not necessary in this case due to the clear

difference in results found for the different method of

iterations.
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Table 22: COMPARISON BETWEEN THE RRQR ALGORITHM ITERATED FROM
n THROUGH n-r+1 AND FROM n THROUGH n-m+l FOR SNR=-10 dB. QR
DECOMPOSITION IN STEP 0 PERFORMED W/O PIVOTING, 1000 TRIALS.

Iteration from n=10 Iteration from n=10
until n-r+1=3 until n-m+1=9 (# of
(# of flops=837,515) -

flops=1,301,732) Angle in degrees.
Angle in degrees.

Mean (A,) Std Dev Mean (A2) Std Dev
Signal 46.76 13.58 59.59 13.79Subspace

Noise 46.76 13.58 59.59 13.79
Subspace,

Table 23: COMPARISON BETWEEN THE RRQR ALGORITHM ITERATED FROM
n THROUGH n-r+1 AND FROM n THROUGH n-m+1 FOR SNR=0 dB. QR
DECOMPOSITION IN STEP 0 PERFORMED W/O PIVOTING, 1000 TRIALS.

Iteration from n=10 Iteration from n=10
nntil n-r+1=3 until n-m+1=9 (# of

(# of flops=837,515) -
flps=1,301,732) - Angle in degrees.
Angle in degrees.

Mean (A,) Std Dev Mean (A2) Std Dev
Signal 17.45 5.70 50.81 23.62Subspacle

oise 17.45 5.70 50.81 23.62
Subspace

Table 24: COMPARISON BETWEEN THE RRQR ALGORITHM ITERATED FROM
n THROUGH n-r+1 AND FROM n THROUGH n-m+1 FOR SNR-10 dB. QR
DECOMPOSITION IN STEP 0 PERFORMED W/O PIVOTING, 1000 TRIALS.

Iteration from n=10 Iteration from n=10
until n-r+1=3 until n-m+1=9 (# of
(# of flops=837,515) -

flops=1,301,732) Angle in degrees.
gle in degrees.

Mean (A,) Std Dev Mean ($2) Std Dev
ignal 2.21 0.63 14.47 8.72

fubspaceNoise 2.21 0.63 14.47 8.72subspace
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Tables 22 to 24 show that better performance is obtained

when using a larger number of iterations. Note that no

difference in performance is found using a QR decomposition

with or without pivoting in step 0 of the RRQR algorithm in

the case using more iterations. This result is not true for

the second case. This is clear when Tables 18-20 are compared

to their correspondent Tables 22-24. A hypothesis test is not

needed to verify this, due to the proximity of the results.

Therefore, the QR decomposition without pivoting is preferred.

This method is less computationally intensive when the origi-

nal algorithm is used, performed with the total number of

iterations. Note that the option using only two iterations

does not present the same performance regarding the pivoting.

Therefore, if one chooses this option, care should be

exercised when evaluating the pivoting needs.
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V. COMPARING THE PERFORMANCE OF THE MINIMUM NORM AND MUSIC

SPECTRAL ESTIMATORS

This Chapter investigated the computation of estimates of

the direction of arrival of signals obtained using the RRQR.

Two high-resolution techniques, the MUSIC (Multiple Signal

Classification) [Ref. 2] and the Minimum Norm [Ref. 11] are

evaluated to verify their adequacy when used with the RRQR

algorithm for DOA estimation.

Rao [Ref. 12] shows that the Mean Square Error (MSE) of

the Minimum Norm estimator is smaller than the MSE of the

MUSIC estimator. The MUSIC spectral estimator is based on

the orthogonality principle. Therefore, the principal

eigenvectors {vvII...,vmI span the same subspace as the

signal vectors {eu,e 2,...,e,}[Ref. 21. Thus, the signal

vectors are orthogonal to all vectors in the noise subspace.

The power density corresponding to the sources DOA information

is given by:

p~sc (@) _ 1e(hvImui e n2 (43)

where vj is the singular vectors of the autocorrelation matrix,

m is the number of signals, n is the number of sensors or the

size of R,, and e(0) is the mode vector as defined in (4).
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The angle 0 is varied in fine steps from 0 to 2w. When it

corresponds to one of the source DOA angles, e 0) will be

equal to ej, i=l,2,..,m. Since the sum in the denominator of

(43) is over m+1 through n, we have the singular vectors

corresponding to the noise subspace. By the orthogonality

principle, the product in the denominator of PMUSlc will tend

to zero and Pmuslc will tend to infinity [Ref. 2]. The result

is a peak at the source DOA angles.

The Minimum Norm estimator is based on the estimation of

61, the source DOA angles, from the eigenstructure of the

autocorrelation matrix. Suppose we have a vector d so that

d=[dl,d2,...,dj, where n is the number of sensors in the

array. If this vector has the property that ,"d=O,

i=1,2,...,m, where m is the number of sources present and x

the data snapshot vector at instant i, then we can find a

polynomial D(z) as

nD(z)-=iiz (44)
1=0

so that the zeros of the polynomial lie at the elements of the

mode vector corresponding to the source DOA angles.

The polynomial roots corresponding to the DOA angle

locations lie on the unit circle for the autocorrelation

matrix when additive noise is not present. However, the m

roots of the polynomial D(z), corresponding to the m sources,
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lie near but not on the actual unit circle when the estimated

noise free autocorrelation matrix R. is used.

The Minimum Norm Spectral Estimator presents the following

advantages:

1. The estimates of Oj, the source DOA angles, are more
accurate even at relative low SNR values when compared with
other procedures.

2. The n-m extraneous zeros of D(z) tend to be uniformly
distributed within the unit circle and have less tendency
for false sources. [Ref. i]

By less tendency to false sources we mean that the zeros

of D(z) corresponding to noise are much smaller in magnitude

than the ones corresponding to sources. The method imposes

di, the first element of vector d, to be equal to 1 and

requires that the quantity Q in Equation (45) be minimum.

nC), dI (4S)
k=1

The effect of this minimization forces the extraneous n-m

zeros to be uniformly distributed inside the unit circle [Ref.

11].

Next, let E, be the matrix constructed with the signal

subspace generated by EVD or SVD. We partition E, as follows:
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E = 'l (46)

where g=[e,,, e21, ... , e]T has the first elements of the signal

subspace eigenvectors and E, is the matrix E, with the first

row deleted. It can be shown that in order to satisfy the

desired minimization and forcing d1=1 [Ref. 11], we have:

d= (47)
-Eg*/ (1g g)

Once the vector d, representing the coefficients of the

polynomial D(z), is determined via (47), the roots are

computed. There are m roots corresponding to the sources that

present a large magnitude compared to the ones corresponding

to noise. These roots reveal the desired DOA angles in their

phase angles.

Results for both, MUSIC and Minimum Norm spectral estima-

tors are shown in Figures 1-4, for two fixed sources at 300

and 320. It can be seen from these examples that the Minimum

Norm spectral estimator starts to resolve the two sources for

a SNR of 5 dB, while MUSIC starts to resolve only for a SNR of

7 dB. This agrees with the results shown in [Ref. 12].
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Figure 2: Comparison between the DOA estimated by MUSIC and
MINNORM for two standing sources located at 300 and 320 for
SNR=3 and 4 dB.
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Figure 3: Comparison between the DOA estimated by MUSIC and
MINNORM for two standing sources located at 300 and 320 for
SNR=5 and 6 dB.
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Figure 4: Comparison between the DOA estimated by MUSIC and
MINNORM for two standing sources located at 300 and 320 for
SNR=7 dB.
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VI. USING THE ADAPTIVE RRQR ALGORITHM TO TRACK A MOVING

SIGNAL

In a real case, we are interested in being able to detect

and track a moving source. In this case, the moving source

information was sampled every t, interval to provide an update

of the source information. The array of sensors will receive

the signals from the sources leading to the data vector

x= [xIX 2 , ... ,xj. From vector x, we compute the

autocorrelation matrix, R,, from (7) and form the noise-free

autocorrelation matrix, R,, by subtracting the noise informa-

tion, a2I. Next we apply the RRQR algorithm for each update

to identify the signal or noise subspaces. Finally, the

Minimum Norm estimator may be applied which leads to the

identification of the m source DOA angles from the n-m

extraneous noise zeros. This algorithm is presented in this

chapter.

A. THE ALGORITHM

In order to track the DOA of a moving signal, a noise-free

autocorrelation matrix must first be generated. Next, we

compute a first RRQR factorization and find the matrices Q, R

and 11. The noise-free autocorrelation matrix, R.=R.-c_ 2I, may

then be updated for each one of the next signal positions in

time, according to Equation (48) below
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new old (8
R. =R,_ oXHd In.w-'XIIold (48)

where x is a (n x 1) dimensional vector containing the input

signals at each one of the n array sensors. The update of the

noise-free autocorrelation matrix is achieved using a moving

window where the number of snapshots used to compute the

noise-free autocorrelation matrix is constant. The new vector

x is incorporated in the autocorrelation matrix information

for each snapshot update, while the oldest snapshot

information is discarded.

A possible approach in updating the information is to find

the updated noise-free autocorrelation matrix using (48).

Next we apply a QR decomposition followed by Chan's [Ref. 4]

pivoting scheme, i.e., a complete RRQR algorithm.

However, it is possible to update directly the existing QR

factorization [Ref. 3] for each new time sample. Suppose we

want to add a rank-one matrix C=x'xH to the matrix R=Id, whose

QR factorization is known as QRWIT. The new matrix

R.n•=R•°ld+x'xH will have a QR factorization QRIEF, where x'x-1

is the desired rank-one modification.

The rank-one QR factorization update may be computed as

follows:

R=r = Ruaod+x• xH = Q (R+QHx" xHxH) ET = Q1 RFIJ

Let w=QH'x. Complex Givens rotations can be used to zero

out all elements of w except for the first component, leading

to
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iH H = ao.OT(49)
J1 ... Jz2.w = [a 0 0 ... o](

If the same Givens rotations are applied to R, it can be shown

that H=JH... j.IHR is upper Hessenberg. Consequently, we have

(j1 H ... j.IH) (R.oId+w.xH)=H+[a 0 ... o]T-xH=H1 , also upper

Hessenberg.[Ref. 7]

Next, we use complex Givens rotations to compute

GI... G.GHH,=R,, where R, is upper triangular. Combining all of

the above, we have the desired new QR factorization

Rew-=ROId+x'xH=Q1 "R'nFY, where

Q, =Q'_.Jn-I " • J "G1• ... Gn-,. (50)

The reader should refer to Golub [Ref. 7] for additional

detail.

We apply two successive rank-one modifications to update

the noise-free autocorrelation matrix for the current time

sample, finding a new set of matrices Q, R and I. The first

rank-one modification incorporates the new data vector to the

autocorrelation matrix. The second accounts for removing the

old information. Then, we apply Chan's [Ref. 4] pivoting

scheme to insure a correct estimation of the noise and/or

signal subspaces.

Next, we identify the signal and noise subspaces. The

first m columns of Q constitute the signal subspace, where m

is the number of sources present. The last n-m=r columns

constitute the noise subspace, where n is the number of
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sensors. Note that it is usually more efficient to use the

signal subspace, rather than the noise subspace as it is

smaller. Finally, the Minimum Norm algorithm is applied to

estimate the source locations.

A total of m out of the n roots of the polynomial whose

coefficients form the vector "d" in the MINORM algorithm

corresponds to the source locations. It is expected that the

m roots corresponding to the sources lie near the unit circle

and the remaining ones have smaller magnitudes. Some sort of

filtering must be applied to separate the m source zeros and

the remaining n-m extraneous zeros. Filtering may be achieved

either by sorting the expected range of source angles and/or

by sorting the magnitude. Thus, the algorithm corresponding

to the adaptive case becomes [Ref. 31:

1) Initialization

R,=X'XH-wa 2I (note that the noise-free autocorrelation
matrix is unnormalized) where X is defined in Equation
(7), Chapter 1 and w is the number of snapshots used to
compute the correlation matrix.

RRQR factorization of R, (R21=QR)

2) Start updating. For k=l to number of updates do:

a) R,(k+l)=R,(k)+x(k+l) xH(k+1)-x(k+l-w)-xH(k+l-w).

b) Update the above QR factorization applying two succes-
sive rank-one modifications to R,(k), leading to:
R,(k+l)=QIRR]7 (Alternatively we may find a new complete
RRQR decomposition of the updated noise-free
autocorrelation matrix. In this case, the next two steps
should be skipped).
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C) Apply Chan's Pivoting scheme (steps 1 through 9 of the

RRQR algorithm) to 1, Q, and R1, finding [12, Q2 and R2 .

d) Let 11=112, Q=Q 2 and R=R2 .

e) Identify the signal or noise subspace (Option to use a
refinement as explained in Section B below).

f) Apply the Minimum Norm to find the estimated source
angles.

g) Filter and store the source angles.

The source code implemented to generate the

autocorrelation matrix is shown in Appendices K and L. The

source code implemented to generate the adaptive algorithm is

shown in Appendix D and the code corresponding to the rank-one

modification shown in Appendix E. Appendix F presents the

Minimum Norm algorithm. Finally, Appendix H presents the

Minimum Norm identification procedure needed to isolate the

signal source locations.

The adaptive algorithm presented above is an alternative

to the identification of the signal/noise subspaces via SVD or

EVD decomposition. Note that steps 4 to 6 in Chan's algorithm

are only needed when the element of maximum magnitude of the

smallest right singular vector is not in the last position.

Thus, additional reduction in computation time is obtained

when no pivoting is needed.

Next, we investigate how often pivoting is needed in

Chan's algorithm. To test that effect, we ran two test cases

with two sources (m=2). One of the sources is fixed, the

other is time varying. Ten sensors are used to compute the
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correlation matrix with 100 snapshots used to form the noise-

free autocorrelation matrix and 200 updates are computed. The

value of the SNR varies to try to identify correlation between

the SNR and the need for pivoting during the RRQR decomposi-

tion (step 4 of Chan's algorithm). In our test cases, if the

Chan's pivoting scheme were applied blindly, steps 4 through

9 would be executed for a total of 1600 times. (Because n-

r+l=10-8+i=3 and the algorithm is iterated from n to n-r+l, a

total of eight times for each one of the updates is needed.

Since we have 200 updates in our test case, we get

8*200=1600).

First, we update Q and R directly using two successive

rank-one modifications. Next, we update the noise-free

autocorrelation matrix using Equation (48) and perform a new

complete RRQR decomposition (steps 0 through 9). Figures 5

and 6 show the percentage of times that a pivoting is needed

out of the 1600 tests as a function of the SNR (dB) of the

source.

Figure 5 shows that the percentage of pivoting steps

needed lies between 18% and 32% when two successive rank-one

modifications are used to update the noise-free correlation

matrix. This means that no pivoting is needed for every

iteration.

For the second test case, where a complete RRQR algorithm

is applied in the updated noise-free autocorrelation matrix,

the percentage of pivoting steps needed remains between 70%
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Figure 5: Percentage of times that a pivoting is needed out of
1600 iterations on the adaptive algorithm, using two rank-one
modifications.
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Figure 6* Percentage of times that pivoting is needed out of
1600 iterations on the ada~ptive alg. updating the noise-free
correlation matrix and applying a complete RRQR algorithm.

and 88%. The two successive rank-one modifications are more

computationally expensive than the complete RRQR algorithm.

On the other hand, they require less pivoting. In Section D

below, we analyze the implications of this on the processing

time for the two approaches. Furthermore, Figures 5 and 6
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indicate that there is no correlation between the magnitude of

the SNR and the need for pivoting.

B. REFINEMENT ON THE RESULTS OF THE ADAPTIVE CASE

This section presents an improvement to the signal

subspace estimation procedure which is applied to the adaptive

algorithm. The basic idea behind the improvement is based on

the fact that the noise-free autocorrelation matrix, R,=QRIff

is Hermitian, and therefore R,=RH. So, R.H=IIRHQH. Recall that

the signal and noise subspaces, Q, and Q. are contained in the

matrix Q. Thus,

I T0H H : (51)
H _ IQS= IIR H HI, 01 = H 01 -1 1110
RSQ JllRH 11R' 10 0I 0R2 2  0 12l

and therefore

R5 5  11 112 0 = Hj1R H IIR H ~ (52)
V120

The matrix resulting by the product RQ, may be viewed as

an one-step subspace iteration applied to the signal subspace

Q,. This iteration scheme improves the results obtained as

shown in the next section. The drawback is that the resulting

iterated signal subspace R,Q, is no longer orthonormal. An

additional orthonormalization step needs to be applied to the

iterated signal subspace in order to use the Minimum Norm

algorithm. Note that no reorthonormalization is needed when

the MUSIC estimator is used.
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C. SIMULATION RESULTS

We now present the results generated by the simulation

carried out for SNRs of 6, 10 and 20 dB. The noise is assumed

to be zero-mean Gaussian and uncorrelated from sensor to

sensor. We consider the case of two sources impinging on the

ten-element array. The first source is assumed to be fixed at

a normalized angle 01=400, the second source location 02 is

linear time-varying. Movement starts at 300 and stops at

22.50, after 100 snapshots are used to form the correlation

matrix and 200 updates are used to simulate the movement.

Figures 7, 8 and 9 present the estimated DOA information

obtained using the Eigenvector decomposition (EVD), the

initial RRQR approximation, and the "refined" RRQR algorithm.

The EVD decomposition is used for convenience instead of the

SVD decomposition, as both span the same subspace. The

results obtained for the refined RRQR technique are nearly

identical to those obtained using the EVD technique. Table 25

below shows means and standard deviations for the magnitude of

the difference between the RRQR approximation for the signal

DOA angle in degrees with/without refinement and the DOA

generated by the EVD decomposition.
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Table 25: MEAN AND STD. DEV. FOR THE MAGNITUDE OF THE DIFFER-
ENCE BETWEEN THE RRQR APPROX. FOR THE SIGNAL DOA ANGLE IN DEG.
FOR THE MOVING SOURCE WITH/WITHOUT REFINEMENT AND THE EVD.

SNR=6 dB SNR=10 dB SNR=20 dB
Average w/o 1.2346 .4530 .0525
refinement
(degrees)
Standard Devi- .7569 .2853 .0302
ation w/o re-
finement (de-
grees)
Average w/ .0542 .0079 8.6930 E-5
refinement
(degrees)
Standard Devi- .0323 .0061 6.2626 E-5
ation w/ re-
finement (de-
grees)

The results are excellent even for the approximation without

refinement. The refinement improvement becomes better as the

SDR increases.

Results found for the largest principal angle between the

projection of the signal subspace found via RRQR and the true

signal subspace found via EVD are shown next. Figures 10, 11

and 12 depict the results found for SNR values equal to 6, 10

and 20 dB.
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Figure 10: Largest principal angle between the signal subspace
found via RRQR and the true signal subspace found via EVD for
SNRm6 dB.
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Figure 11: Largest Principal angle between the signal subspace
found via RROR and the true signal subspace found via EVD for
SNR-10 dB.
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PRINC. ANGLE FOR THE SIG. SBSP-SNR=20 dl
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Figure 12: Largest principal angle between the signal subspace
found via RRQR and the true signal subspace found via EVD for
SNR=20 dB.

As can be seen, the results for the cases with refinement are

much better than those without refinement. Table 26 shows the

means and standard deviations obtained for the largest

principal angle between the RRQR and EVD for both cases, with

and without refinement.
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Table 26: MEAN AND STANDARD DEVIATION FOR THE LARGEST
PRINCIPAL ANGLE IN DEGREES BETWEEN THE RRQR APPROXIMATION AND
THE EVD FOR THE SIGNAL SUBSPACE WITH/WITHOUT REFINEMENT.

SNR=6 dB SNR=10 dB SNR=20 dB
Average w/o .81707 3.4087 .3442
refinement
(degrees)
Standard Devi- 1.5944 .6502 .0595
ation w/o re-
finement
(degrees)
Average w/ 1.2878 .2252 .0023
refinement
(degrees)
Standard Devi- .4368 .0737 6.9273-4
ation w/ re-
finement
(degrees)

Last, Figures 13, 14 and 15 present the behavior of the

RRQR approximation for the estimation of the DOA of the second

source that remained constant at 40Q. Table 27 presents mean

and standard deviation values for the magnitude of the

difference between the DOA estimated by the RRQR with/without

refinement and the EVD. As can be seen, the RRQR results

agree closely with EVD results.

66



0)
C)

a3
. ........ ...... ......................................... ...... a

4:d
rid

Zj a
N"3

nou . n.-.. ......

IxI

V Z)
00

61) C,) CL.

L---------------------

CO

C') 0 0 ml~ ) C3

.~ ~ ~ ~ N I ~ O ....... ........9........ ........4...... .... ................O...............

Figure .... 13: ......... in.. degee for ...... the ...... fixed..... .ource. for.each

update......equa to 6....... .........

67A



a3

z .a
40

0 U)

* Ln::

C- ---------

00
ID3 .......... .......... ........

o; in ai i , 6 i

NO- :OI. man(0

Fiur 1: O i dgresforth fixdsouc fo.ec

updat, SN equa to 0 dB

68a



C14

zbi-

CD 
)

w .. .......... ...

C

n i

CLL
th

CO
z0

SNR eqal to20 to

........................ ............ .................... .............69........



Table 27: MEAN AND STD. DEV. FOR THE MAGNITUDE OF THE DIFFER-
ENCE BETWEEN THE RRQR APPROX. FOR THE SIG. DOA ANGLE IN DEG.
WITH/WITHOUT REFINEMENT AND THE EVD FOR THE FIXED SOURCE.

SNR=6 dB SNR=I0 dB SNR=20 dB
Average w/o re- .8970 .3623 .0418
finement (degrees)
Standard Deviation .4603 .1619 .0184
w/o refinement
(degrees)
Average w/ re- .0226 .0049 7.0319E-5
finement (degrees)
Standard Deviation .0201 .0047 6.4206E-5
w/ refinement
(degrees)

D. COMPUTATIONAL EFFICIENCY OF THE RRQR APPROXIMATION

This section presents a basic estimation of the number of

floating-point-operations (flops) needed to compute the RRQR

approximation. The n-dimensional noise-free autocorrelation

matrix is square and is not considered complex valued for flop

computation. This fact will be taken into account later. The

number of flops necessary to perform one SVD decomposition is

6n 3 [Ref. 4]. Every time a new sample arrives, we need an

0(n 3) operation to recompute the SVD [Ref. 13].

The RRQR algorithm is composed of three distinct parts.

The computation of the initial QR factorization without

pivoting, computed only once in the beginning of the algo-

rithm; the computation of the least dominant right singular

vector v of R,, by inverse iteration, at each iteration; and

the new QR factorizat4 .on of R,,P, also at each iteration.
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The first part takes 2n3/3 flops using the Householder

algorithm if we do not need to accumulate Q. If Q is needed,

as in our case, it takes 4n 3/3 flops [Ref. 7]. The Modified

Gram-Schmidt algorithm is preferred, since it takes only n3

flops when the accumulation of Q is performed [Ref. 7].

Ignoring lower order terms, the second part of the RRQR

factorization takes In 2r flops to be iterated [Ref. 4], where

r is the noise-free autocorrelation matrix rank-deficiency and

I is the number of iterations used in the inverse iteration

method. Our case uses I=3, therefore, the second part takes

3n 2r flops to be performed.

In the third part of the RRQR algorithm, 2n 2r flops are

needed when Givens rotations are used [Ref. 4]. However, note

that not all elements below the main diagonal of the matrix

R1 IP needs to br ihilated because they are already zero.

Therefore, a conditional "IF" statement may be used to verify

if the element is already zero to save additional flops.

Thus, the RRQR algorithm totals n3+5n 2r flops at most.

Following the first RRQR decomposition, we have two

options. The first option updates the autocorrelation matrix,

as in Equation (48) and performs a new QR decomposition. This

update is followed by the pivoting scheme, as in steps 0

through 9 of Chan's algorithm. The second option updates the

already obtained QR decomposition directly, using two

successive rank-one modifications. A new Q, and R, is found
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and the Chan's pivoting scheme is applied. An analysis of the

number of flops necessary to perform the two options is made.

Recall that in the adaptive case, a double upcLate must be

perf ormed for each sample. One update adds the new sample and

the other subtracts the old one. If the rank-one modification

option is used, the updates take 13n 2 f lops each for each

snapshot, totaling 26n2 flops [Ref. 71. This does not include

the number of flops necessary to proceed the pivoting scheme.

If the complete RRQR factorization option is used, the QR

decomposition using the Modified Gram-Schmidt algorithm takes

n3 f lops. Note that in such a case, the autocorrelation

matrix must be updated as R,,,=Rld+(x-x H) (X.XH).Idl which takes

4n2 f lops (n 2 for each multiplication and n2 for each

addition). The total is n3+4n2 for each snapshot.

2comparing n'+4n2 with 26n, we see that to update the

noise-free autocorrelation matrix (finding R., as in Equation

(48)) and to take its QR decomposition is more economical than

to perform two rank-one modifications for 0 < n < 22.

Therefore, a complete RRQR algorithm including a Modified

Gram-Schmidt QR decomposition and the pivoting scheme is

preferable when compared to the two rank-one modification

updates, for a number of sensors smaller than 22. This method

does not take into consideration the difference of pivoting

schemes needed after the update. Table 28 presents a

comparison for the number of flops needed for both processes.
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Table 28: COMPARISON OF THE NUMBER OF FLOPS NEEDED TO THE
SNAPSHOT UPDATE OF THE ADAPTIVE ALGORITHM VIA A COMPLETE RRQR
FACTORIZATION AND TWO RANK-ONE MODIFICATIONS.

Snapshot update Number of Snapshot update Number of
via complete flops need- via two rank- flops need-
RRQR algorithm ed one modif. ed
Computation of 4n" First rank-one 13n"

a. nodif.
QR Factoriz. of nj Second rank-one 13n"
R ___ ___modif.

Smallest right 3n~r Smallest right 3n~r
SV SV

R Factoriz. of 2nfr R Factoriz. of 2n~r
lip lip
otal ni+(5r+4)n' lotal (5r+26)n"

As seen earlier, using two successive rank-one

modifications leads to pivoting for at most 32% of the 1600

iterations used to perform the 200 updates. This is compared

to the maximum of 88% pivoting when updating the noise-free

autocorrelation matrix and applying a complete RRQR algorithm.

These numbers are used to compare the two approaches.

For the third part of the RRQR algorithm, we need 2n 2r

flops. Using the first approach, two rank-one modifications

over Q and R requires a total of 26n 2+(3+0.32x2)n 2r flops for

each update. In the second approach, the updating of the

noise-free autocorrelation matrix and the application of a

complete RRQR algorithm requires n3+4n 2+(3+0.88x2)n 2r flops for

each update. Figure 16 depicts the results showing the

regions when the complete RRQR or the update approaches might

be preferred.
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Regions of best use for the RROR and Direct update approaches
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RANK DEFICIENCY (r)

Figure 16: Graph showing the regions where the RRQR or the two
rank-one modifications approach is preferred.

The MINNORM algorithm takes roughly a number of flops

equals to 2nr plus the flops necessary to compute the

polynomial roots. The root finding routine is iterative.

Thus, it is impossible to obtain a specific expression to

evaluate the number of flops necessary to run it. However,

for the scenario simulated in the previous section, we were

able to compute the mean and standard deviation of the number

of flops spent by the MATLABTM software to find the ten roots

for each one of the 200 updates.

To evaluate the sensitivity of the root finding routine to

the SNR, we tested for SNR=-100, 6 and 100 dB. The results

are shown in Table 29.
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Table 29: MEAN AND STD. DEV. FOR THE NUMBER OF FLOPS NECESSARY
TO FIND TEN ROOTS OF THE POLYNOMIAL FORMED BY THE MINIMUM NORM
ALGORITHM. SNR=-100, 6, 100 DB.

SNR(dB) Mean of Std.
# flops Dev. #

flops

-100 63159 3042

6 61007 2168

100 64420 148

According to Table 29, the number of flops necessary to

the root finding routine presents a smaller standard deviation

for SNR equals to 100 dB. This happens because at such a high

SNR, the zeros are at more or less fixed locations. Thus, one

can expect about the same number of iterations needed to

identify them. The study of the polynomial root algorithm

sensitiveness to the number of sources at different locations

deserves further research and is out of the scope of this

work.

The REFINEMENT algorithm spends a total of 3n3+(l-2r)n2-rn

flops, including the orthonormalization necessary to be used

in conjunction with the MINNORM. When the problem is located

under the line depicted in Figure 16, the updating via a

complete RRQR algorithm is preferred in the most probable

case. Totalizing, the RRQR, the MINNORM and the REFINEMENT

algorithms take a total number of flops of 4n 3+(2.76r+5)n 2+rn
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for each update. This value was developed for a real valued

noise-free autocorrelation matrix. To cope with future growth

of the program, we might multiply the number of flops by a 4

to 1 factor when implementing it operationally and by a

roughly 4 to 1 factor to estimate the case of a complex

matrix.

E. INTEGRATING THE RRQR ALGORITHM INTO A REAL-TIME CASE

Suppose we have a signal being received by a linear phased

array on the earth surface from a moving object located at 10

NM from the sensors at an angle of 800 from the sensors

vertical (see Figure 17).

m sources

800

* .... *Passive Unear.... '6.. • 0 Equispaced

n sensors My.

m<n

Figure 17: Situation of a signal being received by linear
phased array sensors.
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Also suppose that this signal is moving at an horizontal

velocity v. Based on the simulations run in this thesis, the

moving signal changed 50 in its DOA with respect to the array

vertical. This was done in 200 snapshots. Each snapshot is

taken at an interval of t, seconds. Therefore, the angular

speed of this moving signal is defined as

5.
180 xd (53)

200.ts s

The signal velocity is

v= w'R (54)
cos(e)

where R is the distance between the signal and the array.

Using (53) and (54) leads to:

5-7R (55)s 36000"v'cos(0)

Assuming a signal is moving at sound speed as in Figure 18,

0=800, R=10 NM, a t. of 136.87 ms would be needed.

For the scenario simulated in the previous section where

n=10 and r=8, the number of flops needed for each update would

be 16x6788=108.6 Kflops per update. This value is equivalent

to 108,600/136.87 ms - 790 Kflops per second of microprocessor

computing power. Assuming a reasonable computing power of one

flop per clock pulse at 32 bits, a microprocessor would have

to operate at approximately 790 KHz. Current commercial
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microprocessors sold with a clock of 50 MHz would be able to

implement this algorithm in real-time. Note that there is

enough room to accommodate the root finding procedure

neglected in the MINNORM algorithm flops computation.
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VII. CONCLUSIONS

We have presented a fast algorithm to isolate signal and

noise subspaces without performing the eigenvector

decomposition of the autocorrelation matrix. This method is

called the Rank-Revealing QR factorization.

We have investigated the possibility of using the least

dominant eigenvector instead of using the least dominant

singular vector in step two of the RRQR algorithm.

Simulations have shown that the minimum singular vector

generated by the inverse iteration method gives better results

than those obtained with the approximate smallest eigenvector

generated by the same method. The Incremental Condition

Estimator algorithm for finding an approximation for the

smallest singular vector has also been tested. Simulations

have demonstrated that the inverse iteration again yields

better results.

The possibility of using a faster RRQR algorithm than the

original algorithm with fewer iterations has been

investigated. Simulations have shown that reducing the number

of iterations worsens the signal/noise subspace estimations.

Therefore, the original algorithm is preferred.

Two spectral estimators have been tested to be used with

the RRQR algorithm, the MUSIC and the Minimum Norm. A limited

number of simulations have indicated that the Minimum Norm
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resolved two signals for a lower SNR than the MUSIC method, in

agreement with Rao (Ref. 12].

A relatively inexpensive computational refinement

algorithm has been presented for the estimation of the RRQR

signal subspace. Simulations have shown that improvements at

least as high as a factor of 20 are possible to be obtained

for the signal angle of arrival, as compared with the original

RRQR-based DOA results. Note that this refinement improvement

becomes better as the SNR increases.

An adaptive RRQR-based algorithm has been introduced to

track the DOA of moving signals. Two options have been

evaluated to compute correlation updates. The more adequate

option may be determined depending upon the particular problem

set up, e.g., the noise-free autocorrelation matrix rank

deficiency (r) and the number of sensors (n).

An evaluation of the number of flops required by the

adaptive algorithm to find the DOA for two sources present has

been determined. The results have shown the feasibility of

the algorithm to solve a real-time problem.
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Appmndix A

% This function implements Chan's RRQR algorithm.
% Milton P. Ferreira, Sep/1992.

% Input parameters:

t r= matrix to which we want to apply the RRQR factorization
t (noise-free autocorrelation matrix.
t rl= rank deficiency of the matrix "r".
%
t Output parameters:
I

t Q= orthonormal matrix resulting from the RRQR factorization
% of "r".
t R- upper triangular matrix resulting from the RRQR
t factorization of "r".
t e= permutation matrix (PI) resulting from the RRQR
% factorization of "r".
% nsbsp= noise subspace.
% ssbsp= signal subspace.

function (Q,R,e,nsbsp,ssbsp]=rrqr(r,rl)
n=size (r) ;n=n(l, );
dd=n-rl;
wl=zeros (n);
[Q R]=qr(r);
e=eye (n);
coun=O;
for i=n:-l:n-rl+l;

Rll=R(l:i,l:i); t FIND THE THE LEADING ixi BLOCK (STEP 1)
[u,sigmin,v]=ssvd(RII,3); t FIND THE LEAST DOMINANT

%SINGULAR VECTORS AND SINGULAR VALUE (STEP 2)
pt=eye(i);

vinf=norm(v,inf); % FIND THE MAXIMUM ABSOL. VALUE
% ELEMENT OF THE LEAST DOMINANT SINGULAR VECTOR
vauxl=abs (v) ;
ind=find (vauxl==vinf);
if ind~=i, % FIND THE POSITION OF THE MAX ELEMENT

vaux=pt(ind,:); t MAKE THE PERMUTATION TO PUT THE
% MAXIMUM ELEMENT AT THE i th POSITION (STEP 3)

pt(ind, :)=pt(i, :);
pt(i, :)=vaux;

wl(:,i)=[v;zeros(n-i,l)]; ! ASSIGN v TO THE ith COLUMN
%OFw (STEP 4)

p=pt';
ptill2=zeros(i, (n-i));
ptil21=zeros((n-i) ,i);
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ptil22=eye( (n-i));
ptil=(p ptill2 ; ptil2l ptil22];
w=ptil *w1; % STEP 5
(Q1 Rlltil]=qrgiv(R11*p); t STEP 6
e=e*ptil; t STEP 7
R12=R(1:i, (i+1) :n);
if (n-i)==O,

R22= [];
else
R22=R( (i+l) :n, (i+l) :n);

end;
R=[Rlltil Q1'*R12 ;zeros((n-i),i) R22];
Q12=zeros (i, (n- i) )
Q21=zeros ( (n- i) , i)
Q22=eye( (n-i)) ;
Q=Q*[Ql Q12 ; Q21 Q22];

end;
end;
nsbsp=Q(: ,n-rl+1:n);
ssbsp=Q(:,1:n-rl);
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Appendix B

function jik = givensl(x,y,n,i,k)
%GIVENS Givens rotation matrix.
% G = GIVENS(x,y) returns the complex Givens rotation
matrix
% c s x Ir
% G = I such that G* II

% 1-conj(s) cI Iyl,0

% where c is real, s is complex, and cA2 + is i2 - 1.

% Copyright (c) 1987-88 by The MathWorks, Inc.
% Modified by Milton P. Ferreira Sep/19920

% Input parameters:
8

% x= pivoting element [a(i,i)].
% y= element we want to zero out [a(k,i)].
% n= matrix dimension.
% i= column of the element we want to zero out.
% k= row of the element we want to zero out.%

% Output parameters:0

% jik= matrix "J". When multiplied by the matrix "a" will zero
% out the element a(i,k).
absx = abs(x);
if absx == 0.0

c = 0.0; s = 1.0;
else

nrm = norm([x y]);
c = absx/nrm;
s = x/absx*(conj(y)/nrm);

end
jik=eye(n);
jik(i,i) =c;
j ik (k, i)=---conj (s);
jik(i,k)=s;
jik(k,k) =c;
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Appnd C

t Computes Givens Rotations to zero out the elements of a
W matrix below its main diagonal. It is used at step 6 of
W the RRQR algorithm instead of a new QR factorization of
W R1l*P.
W Milton P. Ferreira Sep/1992.
I
t Input parameters:
I
t w= matrix whose elements below the main diagonal we want to
t zero out.
I

I Output parameters:
n

t ql= new matrix Q, after applying Givens Rotations.
% rl= new matrix R, after applying Givens Rotations.

function Cql, rl] =qrgiv(w)
i=size(w) ;i=i(1,1);
qt=eye(i);
for q=2:i;

for p=l:min([q-i,i]);
if w(q,p)-=O,

jpq=givensl(w(p,p) ,w(q,p) ,i,p,q);
qt=jpq*qt;
w=jpq*w;

end;
end;

end;
ql=-qt';
rl=-w;
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App-endix D

% Algorithm for the adaptive tracking of a moving source
W Main program.
W Milton P. Ferreira Sep/1992.
%
W Input parameters:
%
% db= SNR.%
W Output parameters:%
% RO= autocorrelation matrix.
t R1= noise-free autocorrelation matrix.
% Y= each column of Y is one output vector "x" from the "n"
% sensors.
% nest= # of snapshots used to compute the autocorrelation
% matrix.
W nupd= # of updates used to simulate the movement.
t ipp= autocorrelation matrix dimension.
t nsin= number of sources.
%
[RO,Rl,Y,nest,nupd,ipp,nsin]=cor4ml(db);
[Q,R,e,nsbsp,ssbsp]=rrqr(R1,ipp-nsin);
for i=nest+l:nest+nupd;

old=Y(:,i-nest);
[Q,R]=givqr(Q,R,e,old,-old);
new=Y(:, i);
[Q,R]=givqr(Q,R,e,new,new);
[Q,R,e,nsbsp,ssbsp]=rrqe(Q,R,e,nsin,ipp); W is the RRQR

% subroutine without the initial QR decomposition
[mags, angs] =minn (nsbsp, ssbsp, ipp);
[ma,an] =ident (mags,angs);
angupd(i-nest)=an(2,1);

end;
plot (i, angupd);
grid;
title( ['SIGNAL SUBSPACE - SNR=',int2str(db),' dB']);
ylabel ( 'SOURCE LOCATION');
xlabel('NB OF UPDATES');
text(.7,.5,'SOLID =UPDATE','sc');
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A- -endix E

t Computes the rank-one modification of a square matrix.%
W Input parameters:
%
% Q= orthonormal matrix resulting from the RRQR
% factorization.
% R= upper triangular matrix resulting from the RRQR
% factorization.
% e= permutation matrix (PI), resulting fron the RRQR
% factorization.
% u and v= u and v vectors that modify the matrix to be
% updated.%
W Output parameters:
%
% R1= matrix Q after modifying.% R1= matrix R after modifying.

W Milton P. Ferreira Sep. 1992.

function [Ql,Rl]=givqr(Q,R,e,u,v);
w=Q'*u;
Q1=Q;
H=R;
i=size(w);i=i(1,1);
for q=i-1:-1:1;

jpq=givensl(w(i,l),w(q,1),i,i,q);
w=jpq*w;
H=jpq*H;
Ql=Ql*jpq';

end;
Rl=H+w*v'*e;
for q=l:i-l;

jpq=givensl(RI(q,q),Rl(iq),i,q,i);
Rl=jpq*Rl;
Ql=Ql*jpq';

end;
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Appendix F

function (mags,angs] =minn (nsbsp, ssbsp, ipp)
* compute the noise and signal zero locations using the TK
% min-norm
W alg. (version 1.0 10/14/91), Monique P. Fargues.
%
W Input parameters:
%
W ipp= correlation matrix dimension
W nsbsp= noise subspace.
% ssbsp= signal subspace.
%
t Output parameters:

t mags= magnitude of the polynomial roots.
W angs= phase of the polynomial roots.
W

dn=zeros (1: ipp) ;ds=zeros (1: ipp);
clear g
g=nsbsp(1,:); *noise zeros
En=nsbsp(2:ipp,:);
dn(2:ipp)=En*g'/(g*g');
dn(1) =1;
clear g
g=ssbsp(l,:); %signal zeros
Es=ssbsp(2:ipp,:);
Kg=-I/(l-g*g' );

ds(2:ipp)=Kg*(Es*g');
ds (1) =1;
flops (0);
dnr=roots (dn);
dsr=roots (ds);
mags=abs (dsr);
angs=angle (dsr) *180/pi;
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Appendix G

* Computes the "refined" signal subspace
W Version 1.0 08/21/92, Monique P. Fargues.
%
% Input parameters
I
I R= upper triangular matrix resulting from the RRQR
I factorization.
% e= permutation matrix (PI) resulting from the RRQR
t factorization.
% nsin= # of sources.
W ipp= correlation matrix dimension.
%
% Output parameter:
%
% ref= "refined" and reorthonormalized signal subspace.
I

function ref=refine(R,e,nsin, ipp)
pil=e(:,l:nsin);
pi2=e(: ,nsin+l:ipp);
RII=R(l:nsin,1:nsin);
R12=R(1:nsin,nsin+l:ipp);
ref=orth (pil*Rll '+pi2*Rl2');
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Appendix H

% identify the signal magnitude and location of the roots
% version 1.0 10/13/91, Monique P. Fargues.
% Input parameters:
%I
t mag= magnitude of the polynomial roots
W ang= phase of the polynomial roots
%
t Output parameters:
W
% magr= vector containing the magnitude of the roots
t corresponding to the sources.
W ang-r= idem to the phases.
%
function [magr,angr] =ident (mag,ang)
[m,n] =size (ang)
k=1;
ang-rO(1:2,1)=[0;0];mag_rO(1:2,1)=[0;0];
for i=l:m
if mag(i)<l.3 & ang(i)<50 & ang(i)>10 %look at both

ang r0o(k,1)=ang(i)
mag r0(k,1)=mag(i);
k=k+l;

end
if k==3, break, end
end
% sort to insure proper separation of sines
[ang r(: ,l) ,1 i=sort (ang_rO (:,1));
mag_r(:,1)t(mag_rO(i,1));
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Appendix I

function [sigmin,x] =icest (R)
% 1/7/92 ******-*******-******
% version 1.0, Monique P. Fargues.
W incremental condition estimator (modified from Bischoff
%-paper)
% computes an estimate for minimum singular value and
%vector
% associated
% with an upper triangular matrix
% initial matrix gamma v'
%1 0 R
% Input parameters:

% R= matrix we want to estimate the smallest S. value and
% its S. vectors.
W

% Output parameters:

! sigmin: minimum singular value
% x: singular vector
I--------------------------------------------------------------
clear xx x v

[m, n] =size (R)
%if(m~=n), error ('R is not square'), end
%if(any(diag(R)==0)) % matrix is singular
% smin=0; vmin=zeros(n,l) ;vmin(min(find(diag(R)==0)))=l;
% return
%-end

x (n, 1) =1/R (n,n);

for i=n-l:-l:l
xx (1:n-i, 1) =x (i+l: n, 1);
v=R(i,i+l:n)'; gamma=R(i,i);
alpha=v' *xx;

if alpha~=0
beta=(abs(gamma)*norm(xx,2) )A2 + abs(alpha)A2 -1;
eta=beta/(2*abs (alpha));
sqr=sqrt (etaA2+1);
nu=eta + sqr ; % sqrt(eta^2+1);
temp=abs (alpha) *nu;
root=temp+1; sqr=sqrt(nuA2+1);
s=temp/(alpha*sqr) W sqrt(nu^2+l));
c=-1/sqr W I sqrt(nuA2+1);

else
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root= (abs (ganmma) *norln(xx,2) ) A2;
if(root>1), C=1, s=O;
else, c=O, s=l; end

end

end t of initial loop
xnorm=norm(x(i:n,1) ,2);
x (1: n, 1) =x (1:n, 1) /xnorm;
sigrnin=1/xnorm;
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AppendiJ

function [vsv, sigmin,usv]=ssvd(a,k)

% THIS FUNCTION IS THE IMPLEMENTATION OF THE INVERSE
%ITERATION
% TECHNIQUE TO FIND THE SINGULAR VECTORS AS SHOWN IN THE
%PAPER
W "DEFLATED DECOMPOSITION OF SOLUTIONS OF NEARLY SINGULAR
% SYSTEMS" - TONY F. CHAN - PG 746 - SIAM J. NUMER. ANAL.
W VOL 21 #4 AUG. 1984
t [vsv,sigmin,usv]=ssvd(a,k).
%
t Input parameters:
%
t a= matrix we are looking for the smallest singular
% vectors.
W k= number of iterations desired.
%
t Output parameters:%
% usv, vsv= right and left smallest S. vectors.
% sigmin= minimum singular value.%
t Milton P. Ferreira
%
n=size (a);
n=n(1,1);
v=ones (n, 1);
for i=l:k;

util=a\v;
u=util/norm(util);
vtil=a'\u;
v=vtil/norm(vtil);

end;
vsv=v;
util=a\vsv;
usv=util/norm(util);
sigmin=I/norm(util);
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Appendix K

function [RO,R1,Y,nest,nupd,ipp,nsinl]=cor4ml(db);W
% Monique P. Fargues.

% COMPUTE THE CORRELATION FUNCTION ONLY
% RO: Toeplitz correlation function

% Input parameters:

% db= SNR.

% Output parameters:

% RO= autocorrelation matrix.
% Rl= noise-free autocorrelation matrix.
% Y= each column of Y is one output vector "x" from the "n"
% sensors.
W nest= # of snapshots used to compute the autocorrelation
% matrix.
% nupd= # of updates used to simulate the movement.
k ipp= autocorrelation matrix dimension.
t nsin= number of sources.
0

clg;format compact
seedl=1042;rand('seed',seedl)

icor=0; %input('true/est correl 1/0: ');
itop=0; %input('toeplitz/non toeplitz 1/0: ');
nupd=200; %input('update nb nupd: ');
%nupd0=input('update nb nupdO (drop in angle): ');
del freq=5; t input('del_freq (in percen*freq(1): ');
%if icor==l
W fprintf('true cor. seq\n')
%else
% fprinuf('est. cor. seq\n')
%end
nest=100;
%gdb=input(' input gdb: [x x] ');
gdb= fdb, db] ;
ang=[30 40]; W source angles
freqt=[7.5 9]; % temporal frequencies
ipp=10; * number of sensors
nsin=2; t number of sources
ssig=l.; t ref. noise variance
jc=sqrt(-l) ;
sigma=1;
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for i=l:nsin V linear amplitude
A(i)=sqrt(2.)*(10A(gdb(i)/20.));

end
if icor==1
* compute the true correlation sequence
for k=1:ipp
res=0;
if k==1
res=ssigA2;

end
for i=1:nsin
res=res+(A(i)A2)*exp(jc*(k-l)*ang(i)*pi/180.)/2.;
end

R(k) =res;
end
RO=toeplitz (R);
else

% compute the estimated correlation seq
% based on nest data points
rand( 'normal')
%-sigm=sqrt (1oA((sigma) /10));
for i=1:nsin

A(i)=sqrt(2)*sigrna*(10A(gdb(i)/20));
end
for i=1:ipp

Y(i,l:nest+nupd)=sigma* (rand(l,nest+nupd)+jc*rand(1,nest+nup

end
freq=ang*pi/180;
rand('uniform') W create uniform variable dist.

W in (-pi,pi)
X1=pi*(rand(1,nsin*ipp*(nest~rinupd) ) -.5);

freqO=freq(l);
for j2=1:nest+nupd W j2: time
snapshot
%freq(l)=freqO - (pi/180)*(j2-1)*del-freq/nupd; Wdel -freq

W change in nupd samples
%if j2>nest+nupdO, freq(1)=freqo*del_freq; end %step f req.
t change

for i=1:nsin * i: number of sines
for jl=1:ipp W ji: sensor position

temp=(jl*freq(i)+j2*freqt(i)+X1(1,j2+(i-l)*ipp));
Y(jl,j2)=Y(jl,j2)+A(i)*exp(jc*temp-);

end
end

end
RO=Y(:,l:nest)*Y(:,l:nest)';
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end

%get the noise free version of RT & normalize the matrix
% compute the EVD of the noisy matrix for later computations
% for original correlation function
% [Ve,De] =eig (R0) ;
% sort the eigenvalues
% [Des,li=sort(diag(De)) ;12=flipud(l);
%Ves=Ve(:,12(:)); t sorting in descending order
%Vnoi=Ves(:,nsin+l:ipp); t isolate the noise vectors
%Vsig=Ves(:,1:nsin); % ------------- signal-------
Rl=RO-nest*ssigA2*eye(RO); t noise free correlation
matrix
%Rl=R1./RI(l,l); % potential matrix

t normalization

if icor==l,
Rl=RO-ssigA2*eye(RO); t noise free correlation

matrix
end;
if icor==O,

Rl=R0-nest*ssigA2*eye(RO);
end;
if itop==1,

Rl=toep (RI) ;
end
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Appendix L

% Transforms a matrix to a Toeplitz matrix. Used with
% "cor4ml.m" .

t Input parameter:

% Matrix to be transformed.

% Output parameter:

t sum= Toeplitz matrix after transformation.
%
t Milton P. Ferreira Sep/1992.
%
function sum=toep(Rl);
n=size (RI) ;n=n(l,l);
sum-zeros (Ri);
for i=-n+l:n-l;

a=diag(Rl,i);
s=mean (a);
sl=size (a);
sl=sl(1,1) ;
s2=ones (sl,1) *s;
sum=sum+diag (s2, i);

end;
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Appendix M

% Computes the smallest eigenvector by inverse iteration.

% Input parameters:

W a= matrix from which we want to compute an approximation
% of the smallest eigenvector.
% u= # of iterations.

% Output parameter:

t x= approximation for the smallest eigenvector.

% Milton P. Ferreira Sep/1992.

function x=eeig(a,u)
n=size (a);
n=n(l,1);
x=ones (n, );
for i=l:u;

t=a\x;
x=t/norm(t,inf);

end;
x=x/norm (x);
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