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ABSTRACT

An Autonomous Underwater Vehicle (AUV) can combine a

Global Positioning System (GPS) receiver with an Inertial

Navigation System (INS) to navigate with a specified

accuracy level. The AUV would be required to surface

periodically to obtain a GPS fix. A computer simulation has

been developed using an AUV model and an INS error model to

generate noisy measurements. A Kalman filter is used to

estimate the simulated INS errors. Several runs were

executed to compare combinations of equipment with different

levels of accuracy.
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I. INTRODUCTION

An Autonomous Underwater Vehicle (AUV) is a submersible

designed to operate independently of real-time human

control. In order to carry on planned missions, such a

vehicle requires a navigation system to determine its

location at any time. For covert and long range operations,

passive navigation is preferable, and has to be designed to

provide sufficient accuracy during the entire mission.

A passive and accurate navigation system can be

developed by combining an Inertial Navigation System (INS)

with a Global Positioning System (GPS) receiver in a

complementary fashion. Since the errors in any INS grow

with time, they can be corrected by programming the AUV to

surface periodically to get a GPS fix.

The GPS uses satellites to determine position and

velocity. A measurement of the time-of-arrival of the GPS

signal at the receiver is combined with knowledge of the

satellite's position to estimate the range to the satellite

and the user's clock error. This measurement is referred to

as the "pseudorange". Another measurement, called the

"delta range", is used to determine the user's velocity from

the Doppler shift of the GPS carrier frequency. The

accuracy of velocity determined by GPS is based on knowledge
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of the orbital parameters of the satellites and the short

carrier wavelength, which is approximately 19 cm [Ref. 1].

The accuracy of GPS position data depends on several

factors, which are discussed in Chapter 2. There are

differences, in terms of accuracy, between military and

civilian applications, authorized and non-authorized users,

respectively. An independent authorized user can determine

position with a two-dimensional (2-D), horizontal accuracy

of better than 17.8 meters [Ref. 2). Non-authorized users

can obtain commercially available equipment that provides

independent position estimates with a 2-D accuracy on the

order of 100 meters. If a reference station is available,

then differential corrections can be used to provide

accuracy of better than five meters for any user.

An INS uses accelerometers to measure the forces actin7

on a vehicle, and gyroscopes ("gyros") to determine the

direction of those forces. Vehicle accelerations can be

derived from the measured forces. By integrating the

accelerations we can compute velocities, and with a second

integration we obtain the position relative to the initial

conditions. An INS also outputs the orientation of the

vehicle, because this attitude information is required when

determining the force directions.

The accuracy of INS data depends on the quality of the

equipment. The trade-offs for better accuracy typically

involve size, weight, and cost.
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An INS can be used to measure a vehicle's trajectory.

One problem with using an INS is the growth of errors over

time due to the integration of acceleration. This drawback

can be overcome by combining the INS with independent

position and velocity measurements, in order to estimate and

correct the INS errors.

This thesis addresses the use of a combination of INS

and GPS equipment for the navigation of an AUV. Since GPS

signals cannot be received underwater, GPS position and

velocity measurements are obtained by requiring the vehicle

to surface periodically. The integration of INS and GPS

data is implemented using Kalman filtering techniques.

The Kalman filter approach described in this research is

based on statistical models of the errors inherent to INS

and GPS measurements. In particular, the INS gives

measurements of position, velocity, and angular orientation

of the vehicle in different coordinate frames (inertial and

body fixed), while the GPS yields measurements of position

and velocity in an earth-fixed frame. The two systems are

combined as shown in Figure 1.1, where we can see that the

Kalman filter attempts to determine an optimal estimate of

the errors. The estimates are consequently used to correct

one of the measurement sets (the INS, for example). This

configuration is an open-loop implementation. The task of

determining error models is of fundamental importance in

this problem.

3



P + SIP P + ýp
V + 8v V + v

attitde +attitude +

P + epSp 
- e

~, Sp >• IV + ev •-e

AND COMPASS + error ILE

E- error

NOTATION: p = INS position error

ep = GPS position error

S = INS position error estimate

S= 8p- = estimate error

V = velocity

Figure 1.1: Open-loop aiding of Inertial Navigation
System (INS) measurements using Global Positioning System
(GPS) data. (After Ref. 3:p. 266)

The following approach can be used to determine the

attitude errors. To obtain the error in pitch angle, a

sample is taken when the depth rate sensor indicates zero

vertical velocity. Assuming the AUV is in transition from a

climb to a dive at this instant, the pitch angle is zero and

the angle indicated by the INS is the error. The roll angle

error is obtained by averaging samples of the roll angle

indicated while the vehicle is near the surface. This error

measurement is based on the assumption that the vehicle is

4



inherently stable and the roll angle will average zero

during this interval. The heading error can be obtained by

comparing a compass reading to the INS indication.

Figure 1.2 illustrates the alternative closed-loop

implementation, which feeds the error estimates back into

the INS. The INS then uses the error estimates to compute

corrected position, velocity, and attitude measurements.

This leads to a filter that linearizes about an estimated

trajectory that is updated with each aiding measurement.

This approach is called extended Kalman filtering and is the

preferred method for long duration missions on the order of

weeks or more [Ref. 3:pp. 356-379].

CORRECTED INS MEASUREMENTS

ANDEPTHcoPsMETER + ' FILEKALMAN

Figure 1.2: Closed-loop aiding of INS measurements using
GPS data. (After Ref. 3:p. 369)
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Both versions of GPS-aiding of an INS use position and

velocity estimates from a Kalman filter within the GPS unit.

The integration of GPS and INS measurements can be

accomplished with a single Kalman filter, as illustrated in

Figure 1.3 [Ref. 4].

forces and attitude
rotation rates MECHANIZATION position

EQUATIONS velocityINS

error

pseudoranges and estimates

lock error estimates

Figure 1.3: Integrated GPSIINS. (After Ref. 4)

This thesis focuses on using the open-loop approach to

aiding an INS with GPS. In this case the Kalman filter

linearizes about the reference trajectory provided by the

INS. Chapter II discusses GPS in terms of the available

levels of accuracy and the procedure for determining

position from the raw measurements. Some representative GPS

data is included in chapter II to illustrate the typical

errors inherent to the system.
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In chapter III, the various types of INS's are described

and background information is provided to clarify the

terminology. The INS error model is developed in chapter

IV, along with the Kalman filter equations.

The computer simulation is described in chapter V, and

the results of several runs are presented in chapter VI.

Finally, chapter VII provides conclusions and

recommendations for further work in this area. Software

listings are included in the appendices, along with a

bibliography, to assist with related research. The software

has not been verified beyond the results documented here and

further application is the responsibility of the user.

7



II. GLOBAL POSITIONING SYSTEM

A. LEVELS OF ACCURACY

The GPS is a Department of Defense (DOD) satellite

navigation system. The primary purpose of the GPS is to

support military navigation requirements. Two levels of

accuracy are being provided by the GPS in accordance with

DOD policy. Authorized users, mostly military, are allowed

to use the high-accuracy capabilities of the system. Some

applications outside the military have been granted

permission to use these capabilities. All other users are

referred to as non-authorized users, but they have unlimited

access to the low-accuracy capabilities.

Authorized users are provided with a high-accuracy

navigation system that is totally passive, i.e., it does not

require radiating signals from the user. The advantages of

non-radiating user equipment include less power required,

smaller size units, and the ability to operate covertly.

These advantages are all due to the absence of a

transmitter.

The use of the GPS by non-authorized users is being

permitted at reduced accuracy levels. The techniques used

for degrading the accuracy are referred tc as Selective

Availability (SA). The actual accuracy levels provided can

be adjusted by the DOD in accordance with policy. In fact,

8



SA can be turned off entirely. The current policy (April

1992), states that two times the standard deviation of

horizontal position will be less than or equal to 100 meters

[Ref. 2]. The Greek letter "sigma" is commonly used to

denote the standard deviation, so this measure of accuracy

is referred to as the "two sigma" (2a) level. The

horizontal position is the standard 2-D solution, because it

is the usual type of position required by ships at sea.

The authorized users will have access to the Precise

Positioning Service (PPS), whereas non-authorized users will

be limited to the Standard Positioning Service (SPS). The

accuracy levels associated with SPS and PPS are compared in

Table 2.1.

Table 2.1: ACCURACY LEVELS OF THE STANDARD POSITIONING
SERVICE (SPS) AND THE PRECISE POSITIONING SERVICE (PPS)
(After Ref. 2)

SPS PPS

HORIZONTAL POSITION (2a) 100 m 17.8 m

VERTICAL POSITION (2a) 156 m 27.7 m

RECEIVER CLOCK SYNCHRONIZATION (1a) 167 ns 100 ns

Another difference between SPS and PPS, in addition to

SA, is the signal structure. For authorized users, a

Precision code (P-code) is broadcast on two frequencies, L,

and 1. A Coarse/Acquisition code (C/A code ) on L, provides

a coarse navigation capability to SPS users, as well as a

quick acquisition capability for PPS users. The PPS's use

9



of two L-band frequencies, 1575.42 Mhz (LI) and 1227.6 Mhz

(L2), provides a means for correcting for ionospheric delays

[Ref. 1].

In addition to navigation, other applications are being

found for the GPS, including geodesy and synchronization.

Geodetic surveys usually require collecting data at a

stationary site for extended periods of time. Time

synchronization systems involve placing a GPS antenna at a

surveyed location and solving for the receiver clock error.

Another application of receiving GPS signals at a

surveyed site is for using differential corrections to

improve the accuracy of a mobile unit's position solution.

Using differential techniques, the accuracy available for

all users can be better than five meters.

The use of interferometric techniques have proven to

further improve the accuracy available, but continuous

tracking of the signal carriers is required. Continuous

tracking is difficult for maneuvering aircraft and is

unfeasible for submersibles.

For both SPS and PPS, the accuracy of the GPS data is also

dependent on the relative positions of the satellites and

the user. The relationship of satellite geometry to

position accuracy is explained in the next section.

B. POSITION DETERZINATION

This section develops the equations used to determine

10



position based on GPS measurements. For more detailed

information, the reader is referred to [Ref. 1] and [Ref.

3:pp. 409-423]. The notation used in the following

development is consistent with [Ref. 3:pp. 409-423].

The measurement used for the determination of a

receiver's position is the GPS signal's time-of-arrival.

This observable is referred to as the pseudorange, because

it includes a bias due to the receiver's clock offset. The

pseudorange measurement, p, includes the noiseless

pseudorange, *, along with the measurement noise, v., and

time-correlated errors, P. [Ref. 3:p.412].

The GPS satellites broadcast information that includes

orbital parameters, referred to as ephemerides. These

ephemerides are used to calculate the satellite's position,

[1, y,, Z,]T for satellite i. Four measurements are required

to solve for the user's position, A = [x, y, z]T, and the

receiver's clock offset, At. From (Ref. 3:p. 410]

*1 = V(X_-x) 2 + (y_-y) 2 + (ZJ-z) 2 + cAt
*2 = V(X 2 -x) 2 + (y _y) 2  (Z2-z)2 + C At2 2 2 +(2.1)
*3 = V (X3 -x) 2 + (y -y) 2 + (Z3-Z)2 + C At

= V(X -x) 2 + (yy) 2 + (Z4 _z) 2 + c At,

where c is the speed of light. If the altitude is known,

e.g., a vessel is on the sea's surface, than only three

pseudorange measurements are required.

Most GPS receivers use Kalman filtering, which requires

11



the linearization of Equation 2.1. Linearizing about an

approximate position, 2,• = (x,, Yo, Zo]T, requires the partial

derivatives:

8ax O - (x+-x)
8x V(X_-Xo) 2 + (yyo)2 + (Z_-Zo) 2

8*1 _ - (Y-Y 0o)

ax /(XXo) 2 + (y'-yo) 2 + (Z_-Zo) 2  (2.2)
80i + (Zi-Zo)2 +(-z)

for i = 1,...,4 [Ref. 3:p. 421]. These partial derivatives

are the direction cosines from the satellite to the

approximated user's position.

Subtracting the predicted pseudorange, #, from the

measured pseudorange gives the noiseless measurement

equation:

8*1 81 1 8 1 1

4~*C~) 82 8*2 8*2 [ AX1
*2 - #21o) =N -8y 8Z Ay (2.3)
*3 *3(0o) 8*3 8 3 83 1 AZ
*4j1t *4( 0) ax 83 8Z C cAt]

8#4 8*4 8*4 1
8x 'y 8z

where (Ax, Ay, Az] T =x-x 0 [Ref. 3:p. 422].

These measurements are based on the direction cosines.

Therefore, the accuracy of the position estimates is

dependent on the satellite geometry.

12



C. REPRESENTATIVE GP8 DATA

Data was collected with a GPS receiver to determine the

statistics of position and velocity measurements. A C/A

code receiver was used and therefore a comparison can be

made with the published SPS position accuracies.

The specific GPS receiver used was a Magnavox model MX

4200 purchased by the Naval Postgraduate School. The data

was stored on a laptop computer and software programs were

written in FORTRAN to unpack the position and velocity

measurements. Source code listings of these programs are

provided in appendix A. A Microsoft FORTRAN compiler was

used and these programs were run on IBM-compatible personal

computers (XT and AT).

The GPS antenna was located on a surveyed antenna mount

at Pt. Mugu, California. The surveyed position was

subtracted from the measurements to obtain GPS errors. To

convert from degrees of latitude and longitude to meters,

correction factors were obtained from (Ref. 5].

The horizontal position errors are shown in Figure 2.1,

and Figure 2.2 shows the vertical position errors. As seen

in Figure 2.2, the vertical position error is constant for a

period between sample 500 and sample 1000, this is due to

the GPS receiver switching to an altitude-hold mode where

only three satellites are used to determine the position.

Figure 2.3 shows the velocity errors, which were converted

from knots to meters per second.
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The standard deviation of the horizontal position errors

was computed to be 43.1 meters, which is close to the

expected value of 50 meters based on the DOD policy. For

the vertical position errors, the standard deviation was

computed to be 81.7 meters, which again is close to the

expected value of 78 meters. The velocity errors had a

standard deviation of 0.9 meters per second.

OPS doat collected 31 DEC 91
160

140-

120

~100.
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Figure 2.1: Horizontal errors in GPS position measurements.
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Figure 2.2: Vertical errors in GPS position measurements.
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Figure 2.3: Errors in GPS velocity measurements.
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III. INERTIAL NAVIGATION SYSTEMS

A. GIMBALLED SYSTEMS

An INS measures accelerations and rotations in order to

compute position, velocity, and orientation of a platform,

usually a moving vehicle. A typical INS uses a triad of

accelerometers, mounted on orthogonal axes, to measure the

specific forces, f, experienced by a vehicle. Early systems

mounted these accelerometers on a platform within an

arrangement of gimbals. Sets of gyroscopes and servos were

used to keep the platform stable within a reference

coordinate system. Any rotation of the platform was sensed

by the gyros and the servos would rotate the gimbal axes as

required to counter the sensed rotation. These gimballed

systems are still used and provide satisfactory accuracy at

the expense of size, weight, and the low reliability

associated with mechanical systems.

A typical reference coordinate frame used for gimballed

systems is the local-level frame ("n-frame") as illustrated

in Figure 3.1. The coordinate axes are aligned with the

local north, east, and down directions. The advantage of

using this system is that the force of gravity is registered

on only one of the accelerometers. This means that the

forces sensed by the horizontal accelerometers are directly

related to the vehicle accelerations in the familiar
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directions of latitude, 4, and longitude, A. These

accelerations can be integrated once to give velocities and

again to provide changes in position from some starting

location.

GRENWIH Z/ý NORTH POLE

GREENW ICHZe
MERIDIAN •;-'

Xe

Z Xn Y n

Xe X_---••- Ye

EQUATOR Local-level frame:

xn = north
0 = latitude
• = longitude "n = east

Zn = down

Figure 3.1: Reference frames used for inertial navigation
systems. (After Ref. 6)
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3. STRAPDOWN SYSTEMS

With the development of the digital computer, an

alternative configuration has become practical. By hard-

mounting the accelerometers to the vehicle and using

gyroscopes to measure rotations, (, a large part of the

mechanical complexity can be reduced. The computer is

required for keeping track of the orientation of the

instrumentation package, so that the directions of the

measured accelerations are known. Transformation matrices

are used to convert vectors from one reference frame to

another. For example, RWb transforms a vector in body frame

("b-frame") coordinates to n-frame coordinates.

With these strapdown systems, the measurements are made

in the b-frame, defined by the forward, right, and down

directions [Ref. 7]. Thus, the rotation measurements give

roll, pitch, and yaw directly. The problem is that, in

addition to vehicle motion, each accelerometer measures

components of other forces due to gravity and Coriolis,

caused by the earth's rotation. These forces have to be

estimated and subtracted, in order to obtain the

accelerations due to vehicle motion.

Figure 3.2 illustrates the process of converting the

inertial measurements into attitude, position (,, A, h), and

velocity (v). The results are in the local-level frame if

the proper transformations from the b-frame to the n-frame

are included in the processing.
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It has been shown in [Ref. 8] that the processing of

measurements using the e-frame can be accomplished faster

than when using the n-frame. When using the e-frame, less

computing time is required for the mechanization equations

and the Kalman filter. More time is required for the

computation of normal gravity, but the net result is faster

processing with the e-frame algorithm.

In this section we develop the equations for position

and velocity estimates in the e-frame in terms of the forces

acting on the vehicle. The equations are based on the

developments in (Ref. 8) and [Ref. 9]. The reference frames

used are the body frame (b), the earth-fixed frame (e), the

local-level frame (n), and the inertial frame (i). Vectors

and matrices are annotated with subscripts and superscripts

depending on which frame or frames they reference. For

instance, position and velocity in e-frame coordinates are

denoted K! and v* respectively. Similarly, Obh is the skew-

symmetric matrix of hi•, which is the angular velocity

vector of the body frame with respect to the e-frame, given

in b-frame coordinates.

The skew-symmetric matrices are used to execute the

cross-product operation. For instance, the Coriolis

acceleration is two times the earth's rotation rate, w.,

crossed with the vehicle's velocity,
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(W...) x (vIt. + v* , + v¶*) , -2z v w ,e Y20 +2.v*. , (3.1)

where the A denotes a unit vector. The skew-symmetric

matrix serves to simplify the notation

2 QPjO 2wO 0 0~ ve y3 2 e= (3.2)0 0 00 Ve 0.l~ =

where DO,* is the skew-symmetric matrix of the angular

velocity of the earth's rotation, W.!1 .

The INS measurements are the specific force vector, fb,

and the angular rotation rate of the body with respect to

the inertial frame, I . Subtracting the earth's angular

velocity vector, , from m gives

b b b'..b = Icib - io , (3.3)

which is used to build the skew-symmetric matrix

S0 -(Wb b) 3 (W b O) 2I(3 4
Q•,b=(°,)30 (go'b) 1
a =o (Gb b) 3 0 .. (Wb b) 1(3.4)

- (wbob) 2 (wbob) o0

where (wb•) 1 is the roll rate, (cobe) 2 is the pitch rate,

and (wb6b) 3 is the yaw rate.
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Accelerations are found by transforming the force

measurements and subtracting the acceleration due to gravity

and the Coriolis effect. The change in the transformation

matrix from body to earth coordinates is given by

= Rb ~Qb (3.5)

The earth's angular velocity vector in body coordinates,

is obtained from •i, according to

W±10 = R bo , 1&%(3.6)

where the transformation matrix Rb. is the inverse of Rb.

Transformation matrices involved are orthogonal, and

therefore their inverses are equal to their transposes:

Rb a= = [R-b]T . (3.7)

We can relate different transformation matrices as (Ref. 6]:

Reb = R0. Rnb . (3.8)

where the transformation matrix, R4., is obtained from

initialization and the time history of body rotations.

Using the geometry of Figure 3.1, and unit vectors

along the e-frame and n-frame coordinate axes:
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in sin °s sin* sinl + cos4 R

Rn-b-ikI+cos).j , (3.9)

A -cos4 COS), - cosi sin) ', - sin ok..

where * denotes latitude and I denotes longitude.

Therefore,

-sin4 cosl -sin* sin) cos•]

Rn -sin) cos) 0 (3.10)
-cos•cosl -cos• sinl -sinaij

and

"-sin~cosl -sin) -cosicosl
RO = [Rnt] T=-sinisinl cosl -cos4sinl (3.11)

cosO 0 -sin# I

After initialization, Ra., is obtained by integrating

Aeb = Rb Gbb, i.e.,

k
R¶b(k) -Rb(O) + Reb Qbb (At) , (3.12)

0

where k is the number of the current sample and At is the

sampling interval.

In summary, the mechanization equation is given by

.t2 = IRebf± - 2 Qley + 9!j (3.13)A * Ij R O Q b"•

where _t is the gravity vector.
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C. GYROSCOPE PERFORMANCE CHARACTERISTICS

The performance characteristics used for comparing gyros

include gyro drift, scale factor error, and random walk

noise. Other parameters of importance are the size, weight,

cost, and dynamic range. The dynamic range is the range of

input rotation rates that can be measured correctly.

The gyro drift is also referred to as bias error or bias

stability and is given in units of angle per unit of time

(e.g., deg/sec). It is also common to describe a gyro's

performance in terms of nautical miles (nmi) per hour. This

measure is based on how the gyro would perform in an INS.

Figure 3.4 shows how the position error grows with time for

a given gyro drift. This plot shows that for a gyro bias of

0.01 deg/hr, in combination with an accelerometer with a

bias of 0.0001 m/s 2, the performance is on the order of 1

nmi/hr.

0pooultion .errr .. . time

I2000-
0

0 0.9 1 .5 2 2.5

hours

Figure 3.4: Errors in an INS with a gyro drift of 0.01
deg/hr and an accelerometer bias of 0.0001 M/82.
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Figure 3.4 is based on a model given in [Ref. 10]. This

model is valid for mission times of less than three hours.

For missions of this duration, the Schuler oscillation is

important, but the 24 hour effects can be neglected. The

model is given by

p(t) -a 2(1-coswst) + gR*(t--lsinost)
0.2 WO ( 3.14)

v(t) = -- sino(t + gR,(1-cosost)Ws

where p(t) is the position (given as a function of time),

v(t) is the velocity as a function of time, a is the

accelerometer bias, g is the gyro drift, R, is the earth's

radius, and w, is the frequency of the Schuler oscillation.

The scale factor is the resolution of the system. The

scale factor error is given in parts per million (ppm) or

percent (%). Gyroscope noise is primarily due to random

walk and is given in units of degrees per square root hour.

System requirements are different depending on the

application. A submarine for launching ballistic missiles

can carry a large instrument package and requires high

accuracy navigation. Since submarines remain submerged for

extended periods of time, they cannot tolerate large error

growth. Fortunately, these characteristics are compatible,

i.e., for higher accuracy and smaller error growth, a large

volume is required.
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For commercial aircraft a medium-grade system is

sufficient and usually preferred, due to the reduced cost.

Such a system, with medium-level accuracy, is commonly

referred to as an Attitude Heading Reference System (AHRS).

For a tactical missile with a short flight time, a low

accuracy instrument is acceptable.

Very high accuracy gyroscopes are used for scientific

experiments related to geophysics and relativity.

Geodesists and surveyors routinely use INS's, including

those with Ring Laser Gyros (RLG's). Table 3.1 summarizes

the main performance characteristics and provides typical

value ranges for gyros of different levels of accuracy.

Table 3.1: FAMILY OF GYROSCOPE APPLICATIONS (After Ref. 11)

PERFORMANCE LOW-GRADE MEDIUM-GRADE HIGH-GRADE
PARAMETER (munitions) (missiles) (submarines)

Bias 0.5 - 1 0.1 - 1 0.001 - 0.01
Stability deg/sec deg/hr deg/hr

Random Walk 0.1 - 1 0.02 - 0.25 0.001
(deg/root hr)

Scale Factor 0.1 - 5 % 100 - 5000 < 10
Linearity ppm ppm

D. OPTICAL GYROSCOPES

1. Advantages of Optical Gyroscopes

Prior to the development of the laser, mechanical

gyroscopes were used extensively. These mechanical gyros

consist of a spinning mass along with a motor to provide the
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torque required to keep the mass spinning. Great care is

taken during manufacturing to produce a balanced mass and

reduce friction, but there is always some residual imbalance

and friction contributing to measurement error. These

mechanical devices are sensitive to large accelerations

(g's) and have larger errors in a high-dynamic environment.

The idea of using interferometry to measure rotation

rates dates back to before the turn of the century, and

Sagnac demonstrated this capability in 1913 during ether

experiments [Ref. 12]. The first experiments with a laser

gyro were performed in 1962 [Ref. 12]. Since that time the

Ring Laser Gyro (RLG) has been developed into a practical

instrument and is operational on aircraft ranging from the

commercial Boeing 757/767 series [Ref. 13] to the military

F-15 and UH-60 (Ref. 14]. Research and development of an

operational Fiber Optic Gyro (FOG) is ongoing and flight

tests have been conducted [Ref. 14).

The major advantage of optical gyroscopes is the

large reduction in the number of moving parts. In fact,

FOG's are completely solid-state [Ref. 15]. This primary

advantage provides several secondary benefits. With fewer

moving parts, optical gyroscopes are easier to maintain, are

more reliable, and are more rugged. In addition, for a

given level of accuracy, optical gyros can be smaller and

lighter, and have a lower total parts count. Components for

FOG's are readily available due to the increased use of

27



fiber optics in communication systems. All of these factors

contribute to lower costs.

Additional advantages are the large reductions in

both warm-up time and sensitivity to high-dynamic maneuvers.

According to [Ref. 15], FOG's are being developed for "smart

munitions" which experience up to 20,000 g's when fired from

a cannon.

Optical gyros can be used to support navigation of

platforms ranging from space vehicles to submarines. Indeed,

this technology is currently replacing the traditional

mechanical implementation.

2. Theory of Operation: Sagnac Effect

The Sagnac effect can be described [Ref. 16] in

terms of the transit times of counter-propagating beams

traveling in a circular optical cavity of radius R, as

illustrated in Figure 3.5. The light enters the system from

point A and the beam splitter diverts some of the light into

the clockwise path and some of the light into the counter-

clockwise path. If there is no rotation, then the beam

splitter will not move and the two beams will recombine and

return to point A. In this case, the transit time v is the

same in both directions and is given by

_ 2zR (3.15)
C
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SAGNAC EFFECT

8

x

beam splitter

Figure 3.5: Illustration of the Sagnac effect.

When the sensor rotates at a rate of Q rad/sec, the

beam splitter moves a distance X from point A to point B,

where

X=R . (3.16)

For the beam traveling in the direction of the rotation, the

transit time is

S- 2%R +X - 2wR +RQ T (3 .17)
C C

For the oppositely directed beam, the transit time is

_ 2ixR-ROT (3.18)
C
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Factoring out the transit time and combining the two

equations:

- 27CR (3.19)

The difference in transit times is

A21tR 2=R (3.20)
c-R• - c+R'-(.2Q

Placing the two terms over a common denominator gives

A•r 41R 2Q (3.21)
c 2 -R 2 Q2

Since c 22R 2 CO2 :

A- 4%R 2Q (3.22)
C

2

The optical path length difference is

AL = C (3.23)
C

For a circle of area A = %R2 :

AL- 4AQ (3.24)

It can be shown that Equation 3.24 is valid for any

geometric shape of area A. This equation shows how a

rotation causes a change in optical path length. It also

shows that increasing the area of the optical path will
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increase the optical path length difference. For rotation

rates of interest in most applications, an impractical area

would be required if no alternatives were available.

Fortunately, by using N turns of a fiber optic cable, the

area is multiplied by N and practical systems can be built.

The FOG is a passive interferometer and using a coil

of N turns of cable provides the required sensitivity. A

RLG is an active interferometer and its ability to provide

the necessary sensitivity is described in the next section.

3. Ring Laser Gyros

An active interferometer improves the sensitivity

because the laser frequency depends on the cavity length

[Ref. 16]. With a gain medium within the optical cavity,

the condition for oscillation is that an integral number of

wavelengths fits within the cavity length. In a ring laser

the two oppositely traveling waves can have different

amplitudes and frequencies. A small change in the optical

path length leads to a small change in frequency given by

Av -_AL (3.25)

v L

Since the optical frequency, v, is on the order of

1014 Hz, small differences in length lead to changes in

frequency that are large enough to be measured. From the

Sagnac effect,

AL= 4AQ (3.26)
c

31



and the definition of optical frequency (v-c/l), the

frequency difference is given by

4AG
Av - Av = AL = (3.27)
V c~) L L

Therefore, the beat frequency is:

Av =4AQjc. _ 4A(LA •••/ - (3.28)

The net number of accumulated counts is found by

integration:

N = fAvdt = fI4AQ dt 4Af dt 4Ae (3.29)

NJ dt LX I (3.29)

where e is the net angle through which the gyro has turned.

For example: given L = 39.6 cm, A = 75.45 cm2 , and a He-Ne

laser with a wavelength of 0.633 Am, setting N = 1 gives a

resolution (scale factor) of @mn = 8.3 x 104 rad = 1.7

arcsec. This is equivalent to 7.6 x 105 counts per

revolution or 2118 counts/deg.

The read-out is obtained by using a prism behind one

of the RLG's mirrors. The intensity of the resulting fringe

pattern is given by

I = I[1+cos(2we/1+AW t+#] (3.30)

where Aw is the angular beat frequency, I/e is the fringe
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spacing, x is the distance along the pattern, and * is an

arbitrary phase angle [Ref. 16]. The fringes can be counted

by using detectors smaller than the fringe spacing. Two

detectors, separated by a quarter fringe, can be used to

sense the direction of rotation.

For an ideal RLG, the output N is a linear function

of the input e. The relationship between the input and

output is referred to as the characteristic curve. Any

deviation from the ideal case is considered a scale-factor

error. The scale factor determines the slope of the

characteristic curve. A phenomenon, referred to as mode

pulling, changes the slope of the characteristic curve.

Mode pulling is due to changes in the index of refraction

within the gain medium.

Another problem in RLG's is the lock-in due to back-

scattering from the mirrors. At low rotation rates, a RLG

will not respond. The typical method of overcoming lock-in

is to mechanically dither the RLG, or its mirrors, using

piezo-electric transducers so that the RLG operates outside

of the problem area. The characteristic curve can also be

shifted up or down so that a non-zero reading is obtained

without any rotation. This effect is called null shift.

Anything besides a rotation that influences the oppositely

directed beams in an unequal manner will contribute to the

null-shift effect. Such phenomena are known as

nonreciprocal effects.
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In order to get three RLG's with the largest area

possible for a given volume, the three optical cavities can

be combined within a single block [Ref. 16]. With this

configuration, each mirror is shared by two of the optical

paths, thus reducing the parts count (Ref. 17].
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IV. INS ERROR ESTIMATION

A. INS ERROR MODEL

The following development uses the techniques in [Ref.

8] and [Ref. 18] to derive the equations governing the INS

error dynamics. This INS error model is used in the Kalman

filter to estimate the INS errors. There are 15 states

based on five vectors. The first three states are the e-

frame components of the attitude error, .. The next six

states are the e-frame components of the position error,

Ap, and the velocity error, Am. The last two vectors are

the gyro drift, 4, and the accelerometer bias, 2, given in

b-frame coordinates.

The state vector has been augmented with the drift and

bias terms, because they are modeled as Gauss-Markov

processes. This augmentation has been done so that the

system noise, X is white.. The gyro drift noise and the

accelerometer noise will have standard deviations of ad,

and ab, respectively. The resulting state vector [Ref. 8]

for the error signal can then be written as

z- (1A Am, d' h) (4.1)
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and it is modeled as a standard state space equation

S- [F] X + x , (4 .2)

where (F] is the dynamics matrix, determined on the basis of

the system error equations.

In particular, the misalignments are modeled as

k IQ + R *bd (4.3)

The position errors are only dependent on the velocity

errors:

=• [I] Av, (4.4)

where [I] is the identity matrix.

The velocity errors can be affected by the normal

gravity error. However the height of the AUV at the time of

the measurement will be known to be sea level. Therefore,

according to [Ref. 18], this error source can be neglected.

We are left with the effects of the attitude errors coupled

into the force measurements, the velocity errors coupled

into the Coriolis force calculations, and the accelerometer

biases. This is expressed by the equation

A•= -F*1-2 Q'if &Y + bb (4.5)

where F is the skew-symmetric matrix of the measured

forces, f!, transformed into earth-fixed coordinates.

36



Modeling the gyro drifts and the accelerometer biases as

first-order Gauss-Markov processes with C= 1 / (drift

correlation time) and 0= 1 / (bias correlation time):

a--C + w ,(4.6)

and

(4.7)

The resulting model for the system errors then yields a

dynamics matrix

-130i [0] (0] Re, [0]

[0] [o0 [1] to] [o0
[P] = -Fe (0] -200is [0] Reb (4.8)

[o0 [o]- (0] -C[ [0]
[0] [0] [0] [0] -P[I]

where [0] is a three-by-three null matrix.

B. KALNAN FILTER EQUATIONS

Kalman filtering techniques can be used to estimate the

INS errors based on the model given by Equations 4.1, 4.2,

and 4.8. For the given AUV scenario, Equation 4.2 can be

rewritten as

M= (] Z+ Gi , (4.9)

where G is the system noise matrix, and, from Equations 4.3

through 4.7,
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[0] [0]
[0] [0]

G= [0] [0] (4.10)

[I] Oa [0]
[0] [11]

Standard techniques, such as those described in [Ref.

3], can be used to discretize Equation 4.9. The resulting

discrete version is

2(k+1) = •(k)z(k) + r(k)it(k) (4.11)

where 1(k) is the discrete version of G, and M(k) is the

white system noise vector. The transition matrix, 4(k),

relates the state vector at time t., X(k), to the state

vector at the next sampling time, N(k+l), under noiseless

conditions.

Estimates of the state vector, 2(k), are obtained by

filtering the measurements, _q(k). At each sample time, tk,

a new measurement is taken, which can be represented by

z(k) = H(k) x(k) + x(k) , (4.12)

where H(k) is the observation matrix, and M(k) is the

measurement noise.

For GPS-aiding, the measurements are the errors in

attitude, position, and velocity. Therefore,
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[I] (0] [0] [0] [0]
[0] [I] [0] (01 [0]

H= [0] [0] (1 [0] [(01] (4.13)

[0] [0] [0) [0] [0]
[0] [01 [0] [0] (0]

and X(k) consists of the noise on the aiding systems,

including GPS, the depth meter, and the compass.

In order to use a Kalman filter, the noise processes,

W(k) and y(k), must be uncorrelated. In addition, the non-

zero, diagonal components of the system and measurement

noise covariance matrices, Q(k) and R(k), must be known.

For AUV applications, these conditions are met, but the

covariances differ depending on the conditions and equipment

used. The best accuracy is obtained with a high-grade INS

aided by differential GPS.

The recursive Kalman filter algorithm is (Ref. 3:p. 235]

K(k) = P-(k)HT[HP-(k)HT+R(k)]l-

2(k) = &(k) +K(k) [z(k) -14.(k) ]

P(k) = [[I]-K(k)H]P-(k) (4.14)

P- (k+l) = • (k) P(k) T (k)+Q(k)

-(k+l) =*(k)2(k) ,

where the minus sign superscript refers to conditions just

prior to incorporating the measurement. The K(k) matrices

are the Kalman gains and the P(k) matrices are the error

covariance matrices, based on the estimation errors given by

2(k) =z(k)-2(k) (4.15)
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This algorithm requires an initial estimate of F(0) and

i-(O). Since the INS errors are zero mean, the initial

estimates of the state variables, 1-0), are zeros. The

values used for the initial variances in the error

covariance matrix, p.(0), are based on a commercially

available INS. This particular INS was designed for

civilian aircraft and measures position with an accuracy of

two nautical miles per hour (2a = 2 nmi/h) (Ref. 18:p.24].

The initial variances are listed in Table 4.1.

Table 4.1: INITIAL VARIANCES IN THE ERROR COVARIANCE MATRIX

(After Ref. 18:pp. 63-64)

STATE VARIABLE INITIAL ERROR VARIANCE

S2.35 x 104 (radians) 2

A2 400 (meters) 2

AY 10_4 (meters/second) 2

42.35 x 10-15 (radians/second) 2

b 103 (meters/second2) 2
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V. COMPUTER SIMULATION

A computer simulation has been conducted to verify the

theory explained in the preceding sections. As illustrated

in Figure 5.1, this simulation included three main parts:

an AUV model, an INS error model, and a Kalman filter. The

simulation software includes sections that perform

additional functions, such as providing control inputs to

the AUV model, and adding noise to the measurements. This

software was developed using the MATLAB applications

package.

COMPUTER SIMULATION

CONTROL FORCES AND NOISY INS ERROR
INPUTS ROTATION RATES MEASUREMENTSESIAS

MODEL ERROR FILTER>

MODEL

Figure 5.1: Block diagram of computer simulation.

An existing, nonlinear AUV model [Ref. 19:pp. 18-34] was

used to create realistic sequences of forces and rotations.

This model, AUV2, was written in the C software language and

compiled for use with MATLAB. The AUV2 program is based on

the parameters of the Naval Postgraduate School's second

AUV.
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The flight profile for the AUV consisted of an initial

surface interval followed by a series of dives. The initial

surface interval was a two-minute period during which the

AUV remained near the surface for continuous GPS

measurements. This was done to allow the Kalman filter to

settle down. A reference depth of one half meter was used

because the AUV2 model is only valid when the vehicle is

submerged. The hydrodynamic equations are different for a

vehicle on the surface. The reference depth was used in a

feedback loop, along with a gain term, to set the angle of

the AUV's bow and stern planes. Several trial runs were

conducted to find a suitable value for the gain.

Following the initial surface interval, the AUV model

was given a sinusoidal input to simulate thirty dives. Each

dive lasted for two minutes, and a GPS measurement was made

at the end of each dive.

The forces and rotations output from AUV2 are used by an

INS error model to create noisy measurements. This error

model is based on the equations in Chapter 4 and is

illustrated in Figure 5.2.

To initialize the transformation matrix, R%, it is

assumed that the AUV is aligned with the local-level frame.

Thus the transformation matrix from body to local-level

coordinates, Rab, is reduced to the identity matrix, [I],

and, from Equation 3.7, we have Rb = R%. A latitude and
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Figure 5.2: Block diagram of INS error model.

longitude near Monterey, California was used to initialize

Re. in accordance with Equation 2.10. Equation 2.11, based

on the body rotations, is used to update R!.

The forces are used, along with RW, to update the error

dynamics matrix, (F). The system noise matrix, G, is then

used, along with (F], to form the discrete-time version of

the state equation. To convert Equation 4.9 into-Equation

4.11, the following approximations are useful [Ref. 3:p.224]

and [Ref. 20]:
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* = [I] + FAt + p 2 (At)2 +
21 (5.1)

= [[I] (At) + F(A t)2 + F 2 (At) 3

21 31

The MATLAB command "c2d" also converts the state

equation from the continuous to the discrete version. A

comparison was done that showed that the approximating

equations ran faster than the "c2d" algorithm. Several runs

were executed to find out how many terms were required in

Equations 5.1 to reduce the approximation errors to

negligible values.

Using MATLAB's random number generator, and specifying a

normal distribution with a given standard deviation, system

noise is added to create a simulated state vector.

Similarly, measurement noise is added and the observation

matrix is used to create a simulated measurement vector.

These noisy measurements are then fed into the Kalman filter

to estimate the simulated state vector.

The values used for the standard deviations of the

system noise were 0.01 deg/h for gyro drifts and 10 mgal for

accelerometer biases [Ref. 18:p. 64]. These values were

based on an INS that uses RLG's. Converting the units gives

'O (- 0~ 12 o hour) 5 xlO-Orad/s(5)hour 80* 600s(5.2)

Ob = (1Ox1O-3gal) (O.01m/s2) = 10'm/s2
gal
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For the measurement noise, the standard deviations were

based on GPS statistics for position and velocity, and two

levels of accuracy for attitude measurements. For

differential GPS, the standard deviations of position

measurement noise, ap, is 2.5 meters, and the standard

deviation of velocity measurement noise, a,, is 0.05 meters

per second. For the C/A code GPS simulation, ap = 50 m, and

av = 0.9 m/s.

A standard deviation of 104 radians was used to simulate

a high accuracy attitude measurement. A low accuracy

simulation was run using a value of 0.1 radian.

These standard deviations were squared to obtain the

variances required for the measurement noise covariance

matrix, R. Table 5.1 lists the system noise variances.

Table 5.1: STATE VARIABLE VARIANCES (After Ref. 18:p. 65)

STATE VARIABLE SYSTEM NOISE VARIANCE

attitude error 2.35 x 10-12 (radians) 2

position error 0 (meters) 2

velocity error 106 (meters/second) 2

gyro drift 3 x 10-12 (radians/second) 2

accelerometer bias 3.7 x 104 (meters/second2 ) 2

A correlation time of 40 hours was used for the Gauss-

Markov process, i.e., gyro drifts and accelerometer biases

[Ref. 18:p. 65].

Several MATLAB command files ("im-files") were generated

to perform the separate tasks of the computer simulation.
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These files are included in Appendix B. The file

"auv2surf.m" calls the AUV2 model with control inputs to

generate vehicle state outputs for the surface interval.

The control inputs are bow and stern plane angle commands

based on the difference between a reference depth of 0.5

meters and the fedback depth output from AUV2. The file

"auv2dive.m" calls AUV2 with a sinusoidal input to simulate

a series of dives. The file "plotdpth.m" graphs the depth

during the first five dives.

The files "simlsurf.m", "sim2surf.m", "sim3surf.m", and

"sim4surf.m" use AUV2 output states during the surface

interval to simulate the INS errors and to generate error

estimates with the Kalman filter. The only difference in

these four files are the values used for the standard

deviations of position, velocity, and attitude measurement

noise. The file "plotl.m" graphs the results from the

simulated surface interval runs.

The file "simdives.m" uses the results from the surface

runs and "auv2dive.m" to simulate the series of dives. The

file "plot2.m" graphs the results of the dive runs. The

file "esterr.m" calculates and plots the INS error estimate

errors following each simulated series of dives.

After the simulation software was debugged, and

observability was verified, four runs were executed to

compare the combinations of differential or C/A code GPS

with high-accuracy or low-accuracy attitude measurements.
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Table 5.2 lists the combinations used for the simulations.

The results of the four simulation runs are presented and

discussed in the next chapter.

Table 5.2: ACCURACY LEVELS DURING THE COMPUTER SIMULATIONS

RUN # GPS ATTITUDE MEASUREMENTS

1 differential high accuracy

2 differential low accuracy

3 C/A code high accuracy

4 C/A code low accuracy
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V1. RESULTS

The results from the four simulation runs have been

graphed using MATLAB plotting commands. The AUV depth

during the initial surface interval and the following series

of dives were the same for all four runs. Figure 6.1 shows

the depth during the surface interval. Figure 6.2 shows the

depth during the first five dives.
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................................. ..................................................

0 0.2 0.4 0.6 0.6 1 1.2 1.4 1.6 1.6 2
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Figure 6.2: AUV depth during fnirtfive divfaes.trvl
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Figures 6.3 through 6.17 show the results from the first

run. Figures 6.18 through 6.62 show the results from the

next three runs. The first five figures from each run show

the output states during the surface interval. The next

five figures show the output states during the dive series.

These output states include the modelled INS errors and the

INS error estimates from the Kalman filter. The dashed

curves are the error estimates. The last five figures in

each set show the error estimate errors.

X10O0 ATTITUDE ERROR 10-0~ ATTITUOE ER01ROR

0

1 '21 o 150 50 100o 150
0....TT.IT E. E..O... t... ..1 ....... ...........
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Figure 6.3 : First-run, surface-interval attitude error.
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Figure 6.4: First-run, surface-interval position error.
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Figure 6.5: First-run, surface-interval velocity error.
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Figure 6.6: First-run, surface-interval gyro drift.
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Figure 6.7: First-run, surface-interval accelerometer bias.
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Figure 6.8: First-run, dive-series attitude error.
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Figure 6.9: First-run, dive-series position error.
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Figure 6.10: First-run, dive-series velocity error.
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Figure 6.11: First-run, dive-series gyro drift.
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Figure 6.12: First-run, dive-series accelerometer bias.
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Figure 6.13: First-run attitude error estimate error.
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Figure 6.15: First-run velocity error estimate error.
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Figure 6.16: First-run gyro drift estimate error.
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Figure 6.17: First-run accelerometer bias estimate error.
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Figure 6.18: Second-run, surface-interval attitude error.
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Figure 6.19: Second-run, surface-interval position error.
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Figure 6.20: Second-run, surface-interval velocity error.
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Figure 6.21: Second-run, surface-interval gyro drift.
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Figure 6.22: Second-run, surf ace- interval accelerometer bias.
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Figure 6.23: Second-run, dive-series attitude error.
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Figure 6.24: Second-run, dive-series position error.
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Figure 6.25: Second-run, dive-series velocity error.
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Figure 6.26: Second-run, dive-series gyro drift.
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Figure 6.27: Second-run, dive-series accelerometer bias.

110-- ATT. ERROR EST. ERROR 2 lo-3 ATT. ERROR EST. ERROR

ILI1 s.............................. 2..................................

-10 A0 10 20 30 0 10 20 30

divo number dlve nrumber

5 x0-3 A11' ERRO2R EST. ERROR

IL
1 0 2 0 301dive nu0e

Figure 6.28: Second-run attitude error estimate error.
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Figure 6.29: Second-run position error estimate error.
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Figure 6.30: Second-run velocity error estimate error.
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Figure 6.31: Second-run gyro drift estimate error.
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Figure 6.32: Second-run accelerometer bias estimate error.
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Figure 6.33: Third-run, surface-interval attitude error.
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Figure 6.34: Third-run, surface-interval position error.
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Figure 6.35: Third-run, surface-interval velocity error.
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Figure 6.38: Third-run, dive-series attitude error.
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Figure 6.39: Third-run, dive-series position error.
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Figure 6.41: Third-run, dive-series gyro drift.
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Figure 6.42: Third-run, dive-series accelerometer bias.
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Figure 6.43: Third-run attitude error estimate error.
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Figure 6.44: Third-run position error estimate error.
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Figure. 6.45: Third-run velocity error estimate error.
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Figure 6.46: Third-run gyro drift estimate error.
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Figure 6.47: Third-run accelerometer bias estimate error.
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Figure 6.48: Fourth-run, surface-interval attitude error.
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Figure 6.49: Fourth-run, surface-interval position error.
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Figure 6.50: Fourth-run, surface-interval velocity error.
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Figure 6.51: Fourth-run, surface-interval gyro drift.
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Figure 6.52: Fourth-run, surface-interval accelerometer bias.
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Figure 6.53: Fourth-run, dive-series attitude-error.
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Figure 6.55: Fourth-run, dive-series velocity error.
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Figure 6.56: Fourth-run, dive-series gyro drift.
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Figure 6.57: Fourth-run, dive-series accelerometer bias.
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Figure 6.59: Fourth-run position error estimate error.

10 VE/OCII'• EmMOR ESTIMATE ERROR VI•LOCII"Y" ERMOR ESTIMATE ERROR1 ' .
0 .... ' . ... . ..

o ... .. • .. . .:- -| j o
-- 10 --20• '

o 1 o 20 •o o I o 20 •o
d|ve I'lun'lt:)er ¢l•vl r•uml=,llr"

10 VI•.OClI"•' I•'Rl•OIq •'ST1MATIr I¢'RI•OR

0 10 20 ,30

dive P'• •,1 m bo r

Figure 6.60: Fourth-run velocity error estimate error.
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Figure 6.61: Fourth-run gyro drift estimate error.
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Conclusions based on these results are included in the

next chapter.
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VII. CONCLUSIONS AND RECOMMENDATIONS

This research has produced a computer model of the

integration of GPS and INS measurements for the navigation

of an AUV. Noisy INS measurements were simulated with a

model based on a medium-grade INS that uses RLG's. Noisy

GPS and attitude measurements were simulated and subtracted

from the modeled INS measurements to simulate INS errors.

Kalman filtering was used to estimate those errors. Four

simulations were run using combinations of high and low

accuracy GPS and attitude measurements.

The results from the simulation runs matched the

expectations. This can be observed by comparing Figure 6.9

with Figure 3.4. The simulated position error after one

hour is on the order of one nautical mile, which is what is

predicted by the theoretical equations.

The simulation shows that Kalman filtering can estimate

the position and velocity errors to the expected accuracy

levels. Figures 6.14, 6.15, 6.29, and 6.30 .how that the

accuracy of the position and velocity error estimates is

independent of the accuracy of the attitude measurements.

The computer model can be used to compare combinations

of INS's and GPS equipment with different levels of

accuracy. These comparisons might include low-grade or

high-grade INS's and P-code GPS receivers.
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The recommended approach to continuing this research

would begin with a verification of the INS error model.

This could be accomplished using the AUV in the pool at the

Naval Postgraduate School. A trajectory measurement using

the AUV's sonars could be used as a standard to determine

typical INS errors. Simulations would need to be run with a

profile compatible with the dimensions of the pool.

Additional research could investigate implementation

with closed-loop utilization of state estimates and

smoothing for improved accuracy.
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APPENDIX A. GPS DATA PROCESSING SOFTWARE

unpaLkfor

c unpack mx4200 data
C

character *11 Rtype
character*14 f name, outfname
write (*,'(a\)') I What is the input file name?'
read (*,'(a)') fname
open (1, file=fname, access='sequential',

+status='old')
write (*,"(a\)") I What is the output file name?'
read (*,'(a)') outfnaine
open (2, file=outfname, status='new')
startTIME = 0
incH = 0
incLA2 = 0
incLONG =0

100 continue
read (1,'(a) ',end=500,err=lO0) Rtype

i~t %-.cype .eq. '$PI4VXG,00l,f) then
backspace 1
read (1,50,err=lOO) Rtype,ih,im,is,ideg,dmin,

+ideglong, dminlong, alt, isrc
50 format (a,3i2, lx,i2,f6.3,3x,i3,f6.3,3x,f7.1,1x,il)

seconds = im * 60 + is
if (startTlME .eq. 0) then
startTIME = seconds
ihO =ih

end if
if (ih .gt. iho) incH = 3600 * (ih-ihO)
itime = incH-+ (seconds - startTIME) + 1
if (ideg .ne. 34) incLAT = 60 * (ideg - 34)
delLAT = incLAT + (dmin - 6.733)
if (ideglong .ne. 119) incLONG =60*(ideglong -119)

delLONG =incLONG + (dminlong -6.9564)

delALT =alt - 12.71
write (2,60) itime,de1LAT,delLONG,delALT, isrc

60 format (lx, i6,5x, f6.3,5x,f6.3,5x,f6. 1,5x, il)
endif
goto 100

500 close (1)
close (2)
end
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unDkve .for:

c Steve Nagengast
c filename: unpkvel.for
C
c unpack mx4200 velocity data
c

character*11 Rtype
character*14 fname, outfname
write (*,'(a\)') ' What is the input file name? '
read (*,'(a)') fname
open (1, file=fname, access='sequential',

+status='old')
write (*,'(a\)') ' What is the output file name? '
read (*,'(a)') outfname
open (2, file=outfname, status='new')

100 continue
read (i,'(a)',end=500) Rtype
write(*,'(a)') Rtype
if (Rtype .eq. '$PMVXG,011,') then

backspace 1
read (1,50) Rtype,hdng,spd

50 format (a,f5.1,lx,f5.1)
write (2,60) hdng,spd

60 format (lx,f5.1,5x,f5.1)
endif

goto 100
500 close (1)

close (2)
end
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APPENDIX B. COMPUTER SIMULATION SOFTWARE

auv2surfg.:

% Steve Nagengast % simulates AUV2 for initial

% filename: auv2surf.m % two-minute surface interval

% Creates output file from AUV2 model

clear

% initial surface interval (120 seconds = two minutes)

desireddepth = 0.5;
planegain = 0.008;
idt = 1;
rpm = 550;
state(:,l) = zeros(12,1);
for k=1:120/idt

plane = planegain * (desireddepth - state(9,k));
if (plane > 0.7) plane = 0.7; end
if (plane < -0.7) plane = -0.7; end
inpt = [0; 0; plane; -plane; rpm];
oldstate = state(:,k);
state(:,k+l) = auv2(oldstate, inpt, idt);

end

% save and plot results from end of initial surface interval

save srfstate state

plot(-state(9,:))

auv2dive.z:

% Steve Nagengast % simulates AUV2 thru thirty dives

% filename: auv2dive.m %

% reload last state from initial surface interval

clear
load srfstate
stait(:,l) = state(:,121);
clear state
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%run through thirty dives

numbdives = 30; idt, = 1; T = 120;
rpm - 550; nfl = 0;
for k2=1:nuinbdives

for jj=l:T/idt
numb = (k2-1-nn)*T + jj;
plane = 0.02 * sin(pi*jj/60);
inpt = [0; 0; plane; -plane; rpm];
oldstate = stait(:,numb);
stait(:,numb+l) = auv2(oldstate, inpt, idt);

end
if (k2==5)

nn = k2; statemp=stait(:,numb+1);
save statel stait
clear stait
stait(:,1) = statemp;

end
if (k2==10)

nn = k2; statemp=stait(:,numb+l);
save state2 stait
clear stait
stait(:,l) = statemp;

end
if (k2==15)

nn = k2; statemp=stait(:,numb+l);
save state3 stait
clear stait
stait(:,1) = statemp;

end
if (k2==20)
nn = k2; statemp=stait(:,numb+l);
save state4 stait
clear stait
stait(:,l) = statemp;

end
if (kc2==25)

nn = k2; statemp=stait(:,nuiub+l);
save state5 stait
clear stait
stait(:,l) = statemp;

end
if (k2==30)

nn = k2; statemp=stait(:,numb+l);
save state6 stait
clear stait
stait(:,l) = statemp;

end
end
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1otadth.m:

% Steve Nagengast % plots the depth during first five dives
% filename: plotdpth.m

clear
load statel % from auv2dive.m
!del divedpth.met
numbdives = 5;
T = 120;
idt = 1;
for k2 = 1:numbdives

for jj = 1:T/idt
numb = jj + (k2-1) * T;
divedist(numb) = stait(7,numb);
divedepth(numb) = -stait(9,numb);

end
end

% plot results

clg
divemin =1/60:1/60:(numbdives)*120/60;
n=numbdives;
subplot(211), plot(divemin,divedepth);
title('DEPTH vs. TIME');
xlabel('time, minutes');
ylabel('depth, meters');
grid;
subplot(212), plot(divedist,divedepth);
title('DEPTH vs. DISTANCE');
xlabel('distance, meters');
ylabel('depth, meters');
grid
meta divedpth;

smlisurf.m:

% Steve Nagengast % simulates INS/GPS Kalman filter for
% filename: simlsurf.m % initial 2-minute surface interval

% Estimates gyro drift errors and accelerometer biases
% in body coordinates. Also estimates errors in attitude,
% position, and velocity in earth coordinates.

% initialize state, estimated state, and covariance matrices

clear
x = zeros(15,1);
xhat = zeros(15,1);
prexhat = zeros(15,1);

76



% initial variances in P(0) matrix
prep - zeros(15);
prep(I,1) = 2.35e-7; % radiansA2
prep(2,2) = 2.35e-7; % radiansA2
prep(3,3) = 2.35e-7; % radiansA2
prep(4,4) = 400; % metersA2
prep(5,5) = 400; % meters^2
prep(6,6) = 400; % metersA2
prep(7,7) = le-8; % (meters/second)A2
prep(8,8) = le-8; % (meters/second)A2
prep(9,9) = le-8; % (meters/second)^2
prep(10,10) = 2.35e-15; % (radians/second)A2
prep(11,11) = 2.35e-15; % (radians/second)A2
prep(12,12) = 2.35e-15; % (radians/second)A2
prep(13,13) = le-8; % (meters/secondA2)^2
prep(14,14) = le-8; % (meters/secondA2)A2
prep(15,15) = le-8; % (meters/secondA2)A2

H = zeros(9,15); % H matrix
for j=1:9

H(j,j) = 1;
end

% initial transformation matrix from body to earth
% coordinates
% (assuming body is aligned with local-level frame)

lat = 0.64; % radians north (vicinity Monterey)
long = pi - 2.13; % radians east (vicinity Monterey)

Rbe = (-sin(lat)*cos(long) -sin(long) -cos(lat)*cos(long)
-sin(lat)*sin(long) cos(long) -cos(lat)*sin(long)
cos(lat) 0 sin(lat)

% initialize noise

rand('normal');
w = zeros(6,1);
v = zeros(9,1);

% standard deviations

sigmadrift = 1.74e-6; % radians/second
sigmabias = 6.1e-4; % meters/second
sigmaatt = le-6; % radians
sigmaposit = 2.5; % meters
sigmavel = 0.05; % meters/second
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% variances

vardrift = sigmadrift^2;
varbias = sigmabias^2;
varatt = sigmaattA2;
varposit = sigmapositA2;
varvel = sigmavelA2;

% Q matrix

Q = zeros(15);
Q(1,1) = 2.35e-12;
Q(2,2) = 2.35e-12;
Q(3,3) = 2.35e-12;
Q(7,7) = le-6;
Q(8,8) = le-6;
Q(9,9) = le-6;
Q(10,10) = 3e-12;
Q(11,11) = 3e-12;
Q(12,12) = 3e-12;
Q(13,13) = 3.7e-7;
Q(14,14) = 3.7e-7;
Q(15,15) = 3.7e-7;

% R matrix

R = zeros(9);
R(1,1) = varatt;
R(2,2) = varatt;
R(3,3) = varatt;
R(4,4) = varposit;
R(5,5) = varposit;
R(6,6) = varposit;
R(7,7) = varvel;
R(8,8) = varvel;
R(9,9) = varvel;

% initialize submatrices for state dynamics matrix (F)

omegaE = 0.7292115e-4; % radians/second
skewE = ( 0 omegaE 0

-omegaE 0 0
0 0 0];

Tgyro = -eye(3) / (3600*40); % 1 / (correlation time)
Tacc = -eye(3) / (3600*40); % I / (correlation time)
null3 = zeros(3);
G = [null3 null3

null3 null3
null3 null3
eye(3)*vardrift null3
null3 eye(3)*varbias J;
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% initial surface interval (120 seconds = two minutes)

load srfstate % from auv2surf.m
for k=1:120

f = (state(:,k+l) - state(:,k));
dist(k) = state(7,k+l);
depth(k) = -state(9,k+l);

% update state dynamics matrix

sbx = state(4,k+l) - Rbe(3,1) * omegaE;
sby = state(5,k+l) - Rbe(3,2) * omegaE;
sbz = state(6,k+l) - Rbe(3,3) * omegaE;
skewb = [ 0 -sbz sby

sbz 0 -sbx
-sby sbx 0 ];

Rbe = Rbe + Rbe * skewb;
fb = f(1:3); fe = Rbe * fb;
skewf = [ 0 fe(3) -fe(2)

-fe(3) 0 fe(1)
fe(2) -fe(l) 0 ];

F = (skewE null3 null3 Rbe null3
null3 null3 eye(3) nu113 null3
skewf null3 2*skewE null3 Rbe
null3 null3 null3 Tgyro null3
null3 null3 null3 null3 Tacc ];

% approximate phi and gamma (idt = 1)

F2 = FA2;
F3 = F2 * F;
F4 = F3 * F;
phi = eye(15) + F + F2/2 + F3/6;
gamma=(eye(15) + F/2 + F2/6 + F3/24 + F4/120) *G;

% make some noise and create noisy measurements

for n=1:6
w(n) = rand;

end
v(1) = rand * varatt;
v(2) = rand * varatt;
v(3) = rand * varatt;
v(4) = rand * varposit;
v(5) = rand * varposit;
v(6) = rand * varposit;
v(7) = rand * varvel;
v(8) = rand * varvel;
v(9) = rand * varvel;
x(:,k+l) = phi * x(:,k) + gamma * w;
z = H * x(:,k) + v;
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SKalman filter

K = prep *H' * inv(H * prep *H' + R);
xhat(:,k) =prexhat + K * (z -H *prexhat);

p = (eye(15) - K * H) * prep;
prep = phi * p * phi' + Q;
prexhat = phi * xhat(:,k);
countdown = 120 - k

end

%save and plot results from end of initial surface interval

divex = x(:,121); stait = state(:,121);
save sni divex stait Rbe omegaE skewE Tgyro Tacc H prep R Q
prexhat G
save vars varatt varposit varvel
ploti

ploti..:

%Steve Nagengast %plots results of surface interval
%filename: plotl.m

!del meta?.met
time = 1:120; min = 1/60:1/60:120/60; clg

subplot(211), plot(min,depth); title('DEPTH vs. TIME');
xlabel(Itime, minutes'); ylabel( 'depth, meters'); grid
subplot(212), plot(dist,depth); title('DEPTH vs. DISTANCE');
xlabel'('distance, meters'); ylabel( 'depth, meters');
grid; meta metal; clg

subplot(221), plot(time,x(1,l:120),'-',time,xhat(1,:),' --')
title('ATTITUDE ERROR'); xlabel( 'time, seconds');
ylabel(tattitude error, radians'); grid
subplot(222), plot(time,x(2,1:120),'-',time,xhat(2,:),'--')
title( 'ATTITUDE ERROR'); xlabel('time, seconds');
ylabel('attitude error, radians'); grid
subplot(223), plot(time,x(3,l:120),'-',time,xhat(3,:),'--')
title('ATTITUDE ERROR'); xlabel( 'time, seconds');
ylabel('attitude error, radians'); grid; meta meta2; clg

subplot(221), plot(time,x(4,l:120),'-',time,ichat(4,:),#'--')
title('POSITION ERROR'); xlabel( 'time, second.');
ylabel ('position error, meters'); grid
subplot(222), plot(time,x(5,1:120),'-',time,xhat(5,:),'--')
title('POSITION ERROR'); xlabel( 'time, seconds');
ylabel('position error, meters'); grid
subplot(223), plot(time,x(6,l:120),'-',time,xhat(6,:),'--')
title('POSITION ERROR'); xlabel('time, seconds');
ylabel('position error, meters'); grid; meta meta3; cig
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subplot(221), plot(time,x(7,l:120),'-',time,xhat(7,:),'--')
title('VELOCITY ERROR'); xlabel('time, seconds');
ylabel ('velocity error, meters/second'); grid
subplot(222), plot(time,x(8,1:120),'-',time,xhat(8,:),'--')
title( 'VELOCITY ERROR'); xlabel( 'time, seconds');
ylabel('velocity error, meters/second'); grid
subplot(223), plot(time,x(9,1:120),'-',time,xhat(9,:),'--')
title( 'VELOCITY ERROR'); xlabel( 'time, seconds');
ylabel('velocity error, meters/second'); grid; meta meta4;
cig

subplot (22 1)
plot(time,x(lO,1:120),'-',time,xhat(lO,:),'.--')
title('GYRO DRIFT'); xlabel('time, seconds');
ylabel('gyro drift, radians/second'); grid
subplot(222),
plot(time,x(ll,1:120),'-',time,xhat(ll,:),'--')
title('GYRO DRIFT'); xlabel('time, seconds');
ylabel( 'gyro drift, radians/second'); grid
subplot(223),
plot(time,x(l2,1:120),'-',time,xhat(l2,:),'--')
title('GYRO DRIFT'); xlabel('time, seconds');
ylabel('gyro drift, radians/second'); grid; meta met5; clg

subplot (22 1)
plot(time,x(13,l:120),'-',time,xhat(13,:),'--')
title( 'ACCELEROMETER BIAS'); xlabel ('time, seconds');
ylabel('acc. bias, meters/secondA2 '); grid
subplot(222),
plot(time,x(14,1:120),'-',time,xhat(14,:),'--')
title( 'ACCELEROMETER BIAS'); xlabel( 'time, seconds');
ylabel( 'acc. bias, meters/second A2 '); grid
subplot(223),
plot(time,x(15,1:120),'-',time,xhat(15,:),'--')
title( 'ACCELEROMETER BIAS'); xlabel( 'time, seconds');
ylabel('acc. bias, meters/secondA2l); grid; meta met6;

siadives .m:

% Steve Nagengast %simulates INS/GPS thru thirty dives
% filename: simdives.m

% (uses average forces and rotation rates)

% reload data from initial surface interval

clear
load sni
load vars

81



% run through thirty dives

numbdives = 30; idt = 1; T = 120;
null3 = zeros(3);
w = zeros(6,1);
v = zeros(9,1);
Q = Q *T;
totalf = zeros(3,1);
totalrot = zeros(3,1);
load statel % from auv2dive.m
state = stait;
clear stait
clear statel
nn = 0;
for k2=l:numbdives

for jj=l:T/idt
numb = (k2-l-nn) * T + jj;
f = (state(:,numb+l) - state(:,numb)) / idt;
totalrot = totalrot + state(4:6,numb+l);
totalf = totalf + f(1:3);

end
if (k2==5)

nn = k2;
clear state
load state2
state = stait;
clear stait
clear state2
k2 = 5;
nn = k2;

end
if (k2==10)

nn = k2;
clear state
load state3
state = stait;
clear stait
clear state3
k2 = 10;
nn = k2;

end
if (k2==15)

nn = k2;
clear state
load state4
state = stait;
clear stait
clear state4
k2 = 15;
nn = k2;

end
if (k2==20)
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nnl = k2;
clear state
load state5
state = stait;
clear stait
clear state5
k2 = 20;
nn = k2;

end
if (k2==25)

nn = k2;
clear state
load state6
state = stait;
clear stait
clear state6
k2 = 25;
nn = k2;

end

% update transformation matrix and forces

averot = totairot /T;
aveforce = totalf /T;
sbx = averot(l) - Rbe(3,l) * omegaE;
sby = averot(2) - Rbe(3,2) * omegaE;
sbz = averot(3) - Rbe(3,3) * omegaE;
skewb [ 0 -sbz sby

sbz 0 -sbx
-sby sbx 0];

Rbe = Rbe + Rbe * skewb * T
fe = Rbe * aveforce;

% update state dynamics matrix

skewf =( 0 fe(3) -fe(2)
-fe(3) 0 fe(l)
fe(2) -fe(1) 0 ]

F = [skewE null3 null3 Rbe null3
null3 null3 eye(3) null3 null3
skewf null3 2*skewE null3 Rbe
null3 null3 null3 Tgyro null3
null3 null3 null3 null3 Tacc ]

I approximate phi and gamma (T = 120)

F2 = F A2;
F3 = F2 * F;
F4 = F3 * F;
phi ý- eye(15) + F*T + F2*(T A2)/2 + F3*(T A3)/6;
gamma=(eye(15) + F*T/2 + F2*(TA2)/6 + F3*(TA3)/24+

F4* (T-4) /120) *T*G;
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% make some system noise and update state

for n=l:6
w(n) = rand;

end
divex(:,k2+1) = phi * divex(:,k2) + gamma *w;

% make some measurement noise

v(1) = rand * varatt;
v(2) = rand * varatt;
v(3) = rand * varatt;
v(4) = rand * varposit;
v(5) = rand * varposit;
v(6) = rand * varposit;
v(7) = rand * varvel;
v(8) = rand * varvel;
v(9) = rand * varvel;

% create noisy measurements and run through Kalman filter

z = H * divex(:,k2) + v;
K = prep * H' * inv(H * prep * H' + R);
divexhat(:,k2) = prexhat + K * (z - H * prexhat);
p = (eye(15) - K * H) * prep;
prep = phi * p * phi' + Q;
prexhat = phi * divexhat(:,k2);
divecountdown = numbdives - k2

end

% save and plot results from dives

save sn2 divex divexhat numbdives
plot2

Dlot2.m:

% Steve Nagengast % plots results from one hour of
dives
% filename: plot2.m

clear; clg
pack
load sn2
!del met2?.met
divemin = 2:2:(numbdives)*2;
n=numbdives;
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subplot (221),
plot (divemin,divex(1, 1:n) ,'-',divemin,divexhat(1, :) ,,-
title('ATTITUDE ERROR'); xlabel('time, minutes');
ylabel('attitude error, radians'); grid
subplot (2 22),
plot(divemin,divex(2,1:n),,'-' ,divemin,divexhat(2,:) ,'-
title ('ATTITUDE ERROR'); xlabel('time, minutes');
ylabel ('attitude error, radians'); grid
subplot(223),
plot(divemin,divex(3,1:n),'-',divemin,divexhat(3,:),'--')
title( 'ATTITUDE ERROR'); xlabel( 'time, minutes');
ylabel('attitude error, radians'); grid; meta met22; cig

subplot (221),
plot(divemin,divex(4,1:n),'-',divemin,divexhat(4,:),'--')
title( 'POSITION ERROR'); xlabel( 'time, minutes');
ylabel('position error, meters'); grid
subplot(222),
plot(divemin,divex(5,1:n),'-',divemin,divexhat(5,:),'--')
title( 'POSITION ERROR'); xlabel( 'time, minutes');
ylabel('position error, meters'); grid
subplot(223),
plot(divemin,divex(6,1:n),'-',divemin,divexhat(6,:)I 1--1)
title( 'POSITION ERROR'); xlabel( 'time, minutes');
ylabel('position error, meters'); grid; meta met23; clg

subplot (2 21),
plot(divemin,divex(7,1:n),'-',divemin,divexhat(7,:),'--')
title( 'VELOCITY ERROR'); xlabel( 'time, minutes');
ylabel('velocity error, meters/second'); grid
subplot (2 22),
plot(divemin,divex(8,1:n),'-',divemin,divexhat(8,:),'-'
title('VELOCITY ERROR'); xlabel('time, minutes');
ylabel ('velocity error, meters/second'); grid
subplot (2 23),
plot(divemin,divex(9,1:n),'-',divemin,divexhat(9,:),'--')
title( 'VELOCITY ERROR'); xlabel( 'time, minutes');
ylabel('velocity error, meters/second'); grid; meta met24;
clg

subplot (22 1),
plot(divemin,divex(1O,1:n),'-',divemin,divexhat(1O,:),'--')
title('GYRO DRIFT'); xlabel('time, minutes');
ylabel('gyro drift, radians/second'); grid
subplot(222),
plot(divemin,divex(11,1:n),'-',divemin,divexhat(ll,:),'--')
title('GYRO DRIFT'); xlabel('time, minutes');
ylabel( 'gyro drift, radians/second'); grid
subplot (2 23),
plot(divemin,divex(12,1:n),'-',divemin,divexhat(12,:),'--')
title('GYRO DRIFT'); xlabel('time, minutes');
ylabel('gyro drift, radians/second'); grid; meta met25; clg
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subplot (22 1)
plot(divemin~divex(13,l:n),'-',divemin,divexhat(13,:),'--')
title('ACCELEROMETER BIAS'); xlabel(itime, minutes');
ylabel( 'acc. bias, meters/second A2 '); grid
subplot(2 22),
plot(divemin,divex(14,1:n),'-',divemin,divexhat(14,:),'--')
title( 'ACCELEROMETER BIAS'); xlabel( 'time, minutes');
ylabel('acc. bias, meters/second A21); grid
subplot(223),
plot(divemin,divex(15,l:n),'-',divemin,divexhat(15,:),'--')
title( 'ACCELEROMETER BIAS'); xlabal('time, minutes');
ylabel('acc. bias, meters/secondA21); grid; meta met26;

esterr.m:

% Steve Nagengast %plots error estimate errors
after dives
% filename: esterr.m

clear; clg
load sn2
!del sn?.met

divex = divex(:,l:numbdives);
ester = divex - divexhat;

subplot(221), plot(ester(1,:)); title(' ATT. ERROR EST.
ERROR');
xlabel('dive number'); ylabel('radians per second'); grid
subplot(222), plot(ester(2,:)); title(' ATT. ERROR EST.
ERROR');
xlabel('dive number'); ylabel('radians per second'); grid
subplot(223), plot(ester(3,:)); title(' ATT. ERROR EST.
ERROR');
xlabel('dive number'); ylabel('radians per second'); grid;
meta snl; cig

subplot(221), plot(ester(4,:)); title('POSITION ERROR
ESTIMATE ERROR');
xlabel('dive number'); ylabel( 'meters'); grid
subplot(222), plot(ester(5,:)); title('POSITION ERROR
ESTIMATE ERROR');
xlabel('dive number'); ylabel('meters'); grid
subplot(223), plot(ester(6,:)); title('POSITION ERROR
ESTIMATE ERROR');
xlabel('dive number'); ylabel('meters'); grid; meta sn2; clg
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subplot(221), plot(ester(7,:)); title('VELOCITY ERROR
ESTIMATE ERROR');
xlabel('dive number'); ylabel('meters per second'); grid
subplot(222), plot(ester(8,:)); title('VELOCITY ERROR
ESTIMATE ERROR') ;
xlabel('dive number'); ylabel('meters per second'); grid
subplot(223), plot(ester(9,:)); title('VELOCITY ERROR
ESTIMATE ERROR');
xlabel('dive number'); ylabel('meters per second'); grid;
meta sn3; cig

subplot(221), plot(ester(1o,:)); title(' GYRO DRIFT EST.
* ERROR');

xlabel('dive number'); ylabel('radians per second'); grid
subplot(222), plot(ester(11,:)); title(' GYRO DRIFT EST.
ERROR');
xlabel('dive number'); ylabel('radians per second'); grid
subplot(223), plot(ester(12,:)); title(' GYRO DRIFT EST.
ERROR');
xlabel('dive number'); ylabel('radians per second'); grid;
meta sn4; cig

subplot(221), plot(ester(13,:)); title(' ACC. BIAS EST.
ERROR');
xlabel('dive number'); ylabel('meters per second squared');
grid
subplot(222), plot(ester(14,:)); title(' ACC. BIAS EST.
ERROR');
xlabel('dive number'); ylabel('meters per second squared');
grid
subplot(223), plot(ester(15,:)); title(' ACC. BIAS EST.
ERROR');
xlabel('dive number'); ylabel('meters per second squared');
grid;
meta sn5;
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