
AD--A257 311

NAVAL POSTGRADUATE SCHOOL
Monterey, California

0DTIC,

THESIS
X WINDOW APPLICATION EXTENSION

WITH
THE ANDREW TOOLKIT

by

Jeffrey J. Stenzoski
September, 1992

Thesis Advisor: Balasubramaniam Ramesh

Approved for public release; distribution is unlimited

92-29910
11111 1l1 1111 1111 11111fl!11111 Ill'

UNCLASSIFIED
SE(URITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE
1 a. REPORT SECURITY CLASSIFICATION 1 b. RESTRICTIVE MARKINGS
UNCLASSIFIED

2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTION/AVAILABILITY OF REPORT

Approved for public release; distribution is unlimited.
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE

4. PERFORMING ORGANIZATION REPORT NUMBER(S) 5. MONITORING ORGANIZATION REPORT NUMBER(S)

6a. NAME OF PERFORMING ORGANIZATION 6b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION
Naval Postgraduate School (If applicable) Naval Postgraduate School

37

6c. ADDRESS (City, State, and ZIP Code) 7b. ADDRESS (City, State, and ZIP Code)

Monterey, CA 93943-5000 Monterey, CA 93943-5000

8a. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL 9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION (If applicable)

8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS

Program Element No. Project NO Tak No. Work Unit Acce•oni

Number

11. TITLE (Include Security Classification)

X WINDOW APPLICATION EXTENSION WITH THE ANDREW TOOLKIT (UNCLASSIFIED)

12. PERSONAL AUTHOR(S)

13a. TYPE OF REPORT 113b. TIME COVERED 14. DATE OF REPORT (year, month, day) 15. PAGE COUNT
Master's Thesis I From To September, 1992 55
16. SUPPLEMENTARY NOTATION
The views expressed in this thesis are those of the author and do not reflect the official policy or position of the Department of Defense or the US.
Government.
17. COSATI CODES 18. SUBJECT TERMS (continue on reverse if necessary and identify by block number)

FIELD GROUP SUBGROUP X Windows, Andrew Toolkit, REMAP, ConceptBase, GraphBrowser

19. ABSTRACT (continue on reverse if necessary and identify by block number)

This thesis investigates the extension of an X1I Windows-based application using the high-level Andrew Toolkit to permit direct
knowledge base access via a graphical user interface (GUI). Programming with Andrew Toolkit is relatively straightforward, once initial
familiarity with the toolkit structure and methodology is achieved.

20. DISTRIBUTION/AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION
Is UNCLASSIFIEDIUNLIMITED 3SAME AS REPORT 3 OTIC USERS UNCLASSIFIED

22a. NAME OF RESPONSIBLE INDIVIDUAL 22b. TELEPHONE (Include Area code) 22c. OFFICE SYMBOL
B. Ramesh (408) 646-2439 AS4RA

DD FORM 1473,84 MAR 83 APR edition may be used until exhausted SECURITY CLASSIFICATION OF THIS PAGE
All other editions are obsolete UNCLASSIFIED

i

Approved for public release; distribution is unlimited.

X Window Application Extension

with
The Andrew Toolkit

by

Jeffrey J. Stenzoski
Lieutenant Commander, United States Navy

B.S., United States Naval Academy

Submitted in partial fulfillment
of the requirements for the degree of

MASTER OF SCIENCE IN INFORMATION SYSTEMS

from the

NAVAL POSTGRADUATE SCHOOL
September 1992

Author:

71fey J. Stenzoski

Approved by: . .
B. R.•esis Advisor

Roger StKý, Thesis Co-advisor

David R. Whi'pple, Jr., Cha•

Department of Administrative es

ii

ABSTRACT

This thesis investigates the extension of an X11 Windows-based application using

the high-level Andrew Toolkit to permit direct knowledge base access via a graphical user

interface (GUI). Programming with Andrew Toolkit is relatively straightforward, once

initial familiarity with the toolkit structure and methodology is achieved.

A cocession For
NTIS GRA&I
DTIC TAB 5
Unannounced
Just ification

By
Dist_.ibution/

Availability Codes
VAail end/or

ill Det Speool"1

TABLZ OF CONTENTS

I. INTRODUCTION 1

A. GENERAL 1

B. BACKGROUND 2

C. THESIS OBJECTIVES 3

D. SCOPE 3

E. ORGANIZATION OF THE STUDY 3

II. X WINDOW BASICS 5

A. GENERAL. 5

B. ARCHITECTURE 5

1. The Window Manager 7

C. TOOLKITS 8

III. THE ANDREW TOOLKIT 10

A. INTRODUCTION 10

B. THE OBJECT-ORIENTED ENVIRONMENT 11

C. DYNAMIC LOADING 13

1. runapp 13

2. Benefits of Dynamic Loading 13

D. BASIC TOOLKIT OBJECTS: DATA OBJECT AND VIEW 14

1. Inset Data Storage 14

E. EVENT PROCESSING 15

iv

1. The Interaction Manager 15

2. The View Tree 15

IV. THESIS PROJECT ENVIRONMENT 18

A. THESIS OBJECTIVE 18

B. THE REMAP PROJECT 18

1. REMAP Model Prototype Environment 20

a. GraphBrowser 21

V. EXTENDING THE GRAPHBROWSER INSET 23

A. GraphBrowser Inset Components 23

B. WRITING NEW ANDREW CLASS FILES 24

1. Class Header File 24

2. Class C File 25

C. MODIFICATION OF .graphbrowserinit FILE . . . 26

1. Menu Item Description 27

2. Graphical Type Description 30

D. MODIFICATION OF REMAP MODEL 32

E. COMPILATION OF THE ANDREW CLASS 35

1. Setting Environment Variables 36

2. Creating the Imakefile 36

3. Installation of Project Files 37

4. Makefile Generation and Code Compilation . 38

VI. CONCLUSIONS AND RECOMMENDATIONS 39

A. HIGH-LEVEL VERSUS LOW-LEVEL TOOLKITS 39

v

B. SELECTION OF THE ANDREW TOOLKIT 39

C. LEARNING ANDREW 40

1. Prerequisite Skills 40

2. Andrew-specific Skills 41

D. CLOSING REMARKS 42

APPENDIX 43

LIST OF REFERENCES 46

BIBLIOGRAPHY 47

INITIAL DISTRIBUTION LIST 48

vi

I. INTRODUCTION

A. GENERAL

The advent of bit-mapped graphics workstations, from the

Macintosh to the Sun, has changed the face of interactive

computing. The overwhelming user acceptance of windowed

graphics and point-and-click command entry has spurred the

development of hardware-specific graphical user interface

(GUI) application software. The need to develop a different

graphical interface for each hardware vendor was overcome by

the X Window system (Jones, 1989, p. 1). The virtue of X is

its portability across hardware, software, and network

boundaries.

Graphical applications which intermix various methods of

data representation--bit mapped images, text, video,

animation, etc. - are typically costly to build, hard to

debug, or slow to run, depending on the tools used to build

them (Borenstein, 1990, p. 1). Andrew Toolkit (ATK) is a C-

based, object-oriented, user-interface toolkit designed

specifically to support the development of stand alone multi-

media applications. Running under the X Windows environment,

ATK allows the development of exciting multi-media

applications which can be seamlessly ported across hardware,

software, and networks.

1

This thesis research is based on programming experience

gained while converting an application from the Sun View

window environment to X Windows using Andrew Toolkit.

B. BACKGROUMD

The problem and expense of developing a different

graphical interface for each hardware vendor's product was

tackled by two large users of workstations from multiple

vendors: Project Athena and the Laboratory for Computer

Science, both at the Massachussets Institute of Technology

(Jones, 1989, pp. 1-2). This research led to the development

of the X Window system. Early versions of X were designed and

implemented primarily by Robert Scheifler and Ron Newman of

MIT, as well as Jim Gettys from the Digital Equipment

Corporation (Young, 1990, p. 1). In January 1987, a dozen

computer manufacturers agreed to support the standardization

of the X Window system by forming the X Consortium. Today,

the X Consortium consists of hundreds of members and provides

a forum to facilitate the development of X extensions that

meet various emergent needs. The current MIT X Windows

distribution, XIIR5 (release 5), contains the Andrew Toolkit,

developed by Carnegie Mellon University and the IBM

Corporation at the Information Technology Center (Borenstein,

1990, p. xiii).

2

C. THESIS OBJECTIVES

This thesis examines the extension of an X-based

application, GraphBrowser, using the object-oriented, high-

level Andrew Toolkit. This extension will permit the direct

editing of objects from the REMAP (REpresentation and

MAintenance of Process knowledge) model using a graphical user

interface (GUI). Specific techniques for extending Andrew

applications in the X usage environment are discussed.

D. SCOPE

The scope of this thesis is limited to a brief overview of

the X Window system's structure and a more detailed

description of a high-level toolkit application extension.

Low-level toolkits, such as Xlib, are neither discussed nor

demonstrated.

Z. ORGANIZATION OF THE STUDY

Beyond this introduction and the later conclusions, this

thesis consists of four major chapters. Chapter II contains

a brief introduction to the X Window system, providing a basic

understanding of the underlying windowing environment.

Chapter III examines peculiar aspects of the Andrew Toolkit,

including the object-oriented environment. Chapter IV

discusses the various elements of the REMAP project that form

the context of this thesis. The REMAP project is introduced

along with the ConceptBase knowledge base management system

3

(in which the REMAP prototype system is implemented) and the

GraphBrowser application. Finally, Chapter V focuses on the

specific steps necessary to develop and integrate the Andrew

extension into the X usage environment.

4

II. X WINDOW BASICS

A. GZNZRAL

The emergence of X Window as the de facto user interface

standard is traceable to a number of vendor-relevant factors:

1. The industry is eager for standards

2. X is distributed by a neutral source (MIT)

3. The source code is free

4. X is restricted to defining windowing mechanisms,

not policies for interface styles, (Upton 1990).

The X Window interface enables the workstation world to

transition from sole command-line prompt entry to the WIMP

(windows, icons, menus, and pointers) model while creating a

particular look and feel for their application. One important

difference between X and other windowing systems is that X

does not define nor enforce any one interface style, but

instead simply provides the mechanisms to support a variety of

user-designed interface styles (Young, 1990, p. 2). In other

words, X concentrates on the skeleton and leaves the clothing

to the customer (Upton 1990).

B. ARCHITZCTURE

The architecture of the X Window system is based on the

client-server model. Unfortunately the definition of "client"

and "server" in the X world are exactly the reverse of the

5

terminology used in the mini computer and LAN environments

(Upton 1990).

REMOTE X CLIENTS
VAX 11/780 Sun 3/260 HP 9000/300

AP 065 i plicatio

Toolkit
Xiib Xbib XlibI- I

Network Local
Connection * mWorkstatior

S............ S R E
X SERVER

Figure 1. The X client-server model (Young 1990).

In X jargon, the server is a single process running

typically on a workstation or personal computer with a

graphics display. The server provides a portable layer

between all applications and the display hardware and is

responsible for creating and manipulating windows, producing

text and graphics, and handling input events from the keyboard

and mouse. An application that utilizes the display and input

handling capabilities of the X server is known as a client.

The client and server communicate via a network connection

with one of many network protocols, such as TCP/IP, DECnet and

6

Chaos. Any client can communicate with any server, provided

they both obey the X protocol (Young, 1990, p. 2). Figure 1

depicts the X Window client-server relationship.

1. The Window Manager

The window manager is a special client application

which controls the placement, sizing and appearance of the

windows on the server terminal. Window managers typically ask

the server to redirect requests involving the structure of an

X window to the window manager rather than letting the server

act on the request directly (Young, 1990, p. 10).

Additionally, window managers may provide a distinct "look and

feel" by decorating windows with three-dimensional frames

complete with titles, scroll bars and push buttons (Jones,

1989, p. 10).

Another important responsibility of the window manager

is to act as an intermediary between clients which coexist on

the same screen (Barkakati, 1991, p. 32). Coordination

between the clients and between the clients and the server is

facilitated by the protocol defined in the Inter-client

Communication Conventions Manual (ICCCM), prepared by David

Rosenthal of Sun Microsystems (Barkakati, 1991, p. 36).

The most popular commercial window managers are

OSF/Motif and OPEN LOOK. The OSF/Motif window manager, mwm,

was derived from work done by Hewlett-Packard and Microsoft,

and has a look and feel similar to Microsoft Windows

7

(Barkakati, 1991, p. 34). The Xll distribution comes with

several window managers, including uwm, based on popup menus,

or wm, a window manager that decorates windows with banners

and buttons (Jones, 1989, p. 10). Xll also co'aes with the

Tabbed Window Manager, twm, formerly known as "Tom's Window

Manager."

C. TOOLKITS

The X application generally communicates with the X

network protocol through one or more levels of toolkits. X

toolkits are pre-packaged libraries of C language subroutines

designed to aid the developer by hiding the details of

implementing graphical objects such as buttons, slide bars and

menus. Toolkits exist at three distinct levels. The most

widely used low-level interface to X is the standard C

language library known as Xlib. Xlib defines a set of

functions that provide access and control over the display,

windows and input devices (Young, 1990, p. 11). Built on top

of Xlib is a middle level toolkit known as Xt Intrinsics, or

simply "Xt." Also known as the "X Toolkit," Xt was developed

primarily by Digital Equipment Corporation and MIT's project

Athena (Jones, 1989, pp. 2-3). Xt Intrinsics is designed to

support a set of user interface components known as widgets.

Widget sets such as Motif and Andrew are considered high-level

toolkits and provide a rich collection of GUI design objects

from which to develop an application. Figure 2 depicts the

8

general structure of an X application. As mentioned earlier,

the X protocol assures device independence and provides an

interface between client and server.

X CLIENT APPLICATION
Widget Set

(Toolkit)

Axt Intrinsics

Xiib C Language Interface
Network I X Protocol

Connection
I

I X SERVER

Figure 2. Structure of an X application
(adapted from Young 1990).

9

II1. THE ANDREW TOOLKIT

A. INTRODUCTION

In 1982, an organization known as the Information

Technology Center at Carnegie Mellon University set out to

develop what is known as the Andrew System, named after the

university's two major benefactors, Andrew Carnegie and Andrew

Mellon. The Andrew System consists of three main components:

1) The Andrew Message System, 2) The Andrew Help System, and

3) The Andrew Toolkit and Application Programs. This chapter

will focus on The Andrew Toolkit specifically.

The Andrew Toolkit (ATK) is a user interface toolkit with

two main goals: (1) to support the development of stand-alone

applications that integrate text, graphics, and all images in

a standard, efficient user interface, and (2) to support the

development of multi-media editors. The ATK was built using

an object-oriented system called the Andrew Class System, and

was designed to provide a foundation on which a large number

of diverse user-interface applications can be developed

(Palay, 1988, p. 1). The Toolkit is written in the C

language, using a preprocessor to provide an object-oriented

environment and dynamic linking of code. The major thrust of

the ATK design has been to simplify the creation of multimedia

applications which allow entirely different types of

10

independently generated media to be intermingled fluidly in a

single application (Borenstein, 1990, p. 2).

B. THE OBJECT-ORIENTED ENVIRONMENT

The ATK is built using the Andrew Class System (Class).

Class was modeled after the C++ object-oriented environment

and permits the definition of object methods and class

procedures (Palay, 1988, p. 7). Class is a C language-based

system consisting of a small run-time library and

preprocessor. An Andrew Class is composed of two files: The

standard C file (".c") containing the class data and methods,

and a class header file (".ch") containing the class

specification (see Chapter V, section B for an example class

header file). The Andrew Class preprocessor generates two

files from the class header file, an exported header file

(".eh") used when defining a class, and an imported header

file (".ih") used by any other code that wants to use the

class (Borenstein, 1990, p. 18) . The .c source files are not

run through the preprocessor, and look similar to ordinary C

files. Next, from the ".c", ".eh", and ".ih" files, the

standard C-language compiler (cc) generates the usual object

file (".o"), which is processed by a program called makedo.

The output of makedo is the dynamic object file (".do"), which

is dynamically loaded on request at run-time. The entire

compilation process is shown in Figure 3 (Borenstein, 1990,

pp. 20-21).

11

S ource Files resmapnach
S I-- FI ,.-. 1 1

Figure 3. ATK compilation process (from Borenstein 1990).

The object-oriented nature of Andrew is generated by

this peculiar preprocessing and compilation procedure. The

object-oriented nature of ATK enables developers to benefit

from class inheritance when creating specialized objects from

the rich set of objects provided with the ATK distribution, as

well as from the application development environment. For

instance, RMAP uses objects developed by the ConceptBase

system on which it is based. The following paragraphs

describe the main elements of the rn drew object-oriented

environment.

12

C. DYNAMIC LOADING

In conventional C programs, a linking loader must be run

to create a single binary executable program. In contrast,

Andrew's dynamic loading feature allows the loading of

arbitrary objects that users request after the program has

started executing.

1. runapp

The main workhorse of ATK is a single binary program

called "runapp," consisting of all the main ATK objects.

Runapp can be thought of as an "upside-down library"; that is,

instead of dynamically loading the toolkit into the Andrew

application, the runapp binary is run first, then the

application dynamically loaded into it (Borenstein, 1990, pp.

23-24). When runapp executes, it first determines the name it

was called by; if other than "runapp" it will add the suffix

"app" to the application name ("remap-app," for example), and

try to dynamically load a class called "remap-app" found in

the dynamic object file, "remap.do." Finally, the compilation

process forms a symbolic link between the application name and

the Toolkit itself (see Figure 3).

2. Benefits of Dynamic Loading

The dynamic loading feature of ATK has three main

benefits. First, application development is streamlined by

the elimination of the linking process. Second, it promotes

code sharing and reuse, since new objects are readily

13

available to all developers without the need to recompile

them. Finally, it enhances the extensibility of ATK as a

whole by allowing significant modification to the system

without the need to recompile the Toolkit itself (Borenstein,

1990, p. 21).

D. BASIC TOOLKIT OBJECTS: DATA OBJECT AND VIEW

Two of the most important objects provided by the Andrew

Toolkit are data objects and views. A data object contains

the actual information to be displayed, while the view

contains the details of how the data is to be displayed and

how the user will be able to manipulate and interact with the

data. The basic ATK component is made up of a data object/view

pair known as an inset. In a window containing a raster

image, for example, the raster data object will contain the

lines that make up the image, shading, etc., whereas the

raster view will provide the exact methods for drawing the

image on the screen and for handling various input events such

as keyboard entry and mouse click.

1. Inset Data Storage

The storage of data associated with the data object

and view is handled differently. Unlike the data object, the

information associated with a view is considered useful only

while the application is running, and cannot be stored in a

file between sessions. Views do, however, provide print

capability within the Andrew Toolkit (Palay, 1988, p. 3).

14

The distinction between data object and view allows

multiple, simultaneous representations of the same data

object. Additionally, editing performed in one view will be

reflected in all views, since they all share the same data

object. This separation also provides a highly modularized

structure that facilitates application development (Palay,

1988, p. 3).

E. EVENT PROCESSING

1. The Interaction Manager

The ATK is an event-driven system. The coordination

of event handling for a window is performed by a core Toolkit

object called the interaction manager, or im. When an

application creates a window, it does so by generating an

interaction manager to be the top-level object in the window

(Borenstein, 1990, pp. 36-37) . The im translates input events

such as key strokes, mouse, menu, and exposure events from the

underlying window system to the view objects contained within

that window. In addition, the im is responsible for

synchronizing drawing requests between views and for hiding

the input model used by the underlying window system, namely

Xll or the Andrew window manager, wm.

2. The View Tree

Views within a window are organized in a tree

structure, with the interaction manager at the root. The view

tree is the tree of view objects as they are configured in a

15

Window
System

Interaction
Manager

(im)

view
Object

(e.g., window frame)

(e.g., scrolibar) (egtext line)P
View's descendants 7eo

Figure 4. Window view tree structure.

window at run time (Borenstein, 1990, p. 40). The im has one

child view, which, in turn, can have any number of children.

When an event is received by the im by the underlying window

system, the im passes the event down to its child view which

then determines if it should handle the event or pass it down

to one of its children. This process recurs until some view

in the view tree finally handles the event (Palay, 1988, p.4).

This relationship, depicted in Figure 4, is a distinctive

characteristic of ATK. Other toolkits rely on the physical

relationship of components on a screen to determine event

handling, sometimes resulting in the blockage of event

transmission to hidden or partially obscured components.

16

Furthermore, some toolkits use a global analysis of all views

in order to process and distribute events, whereas ATK

delegates this authority to each view over its children

(Palay, 1988, p. 6)

17

IV. TEESIS PROJECT ENVIRONMENT

A. THESIS OBJECTIVE

The basic objective of this thesis project was to research

the implementation of a C-language extension to the ATK-based

GraphBrowser utility program to enable the retrieval and

manipulation of objects from the REMAP model in the X Window

environment.

B. THE Rh3AP PROJECT

The focus of the REMAP project (REpresentation and

MAintenance of Process knowledge) is the structured capture of

design rationale, or "process knowledge," during the

requirements engineering phase of a software development

project. The REMAP conceptual model includes the Issue Based

Information Systems method (IBIS). IBIS was used at

Microelectronic Computer technology Corporation (MCC) in the

Design Journal research project as a way of representing

design deliberations in large design projects (Ramesh 1992).

The IBIS method utilizes a set of three primitives and

relationships among them in a rhetorical model for

representing the "argumentation" process (Ramesh 1992). This

initial primitive set was expanded in REMAP based on an

empirical study of experienced systems analysts using a

requirements engineering exercise (see Table 1).

18

TABLE 1. EXPANSION OF IBIS PRIMITIVES FOR REMAP MODEL

ititial IBIS M~odel. Additional REMAP Model
Primitives j Componentsj

Issue Requirement
Position Constraint
Argument Design Object

Assumption
Decision

Figure 5 represents the basic relationship of the elements

in the conceptual REMAP model.

REQU IREMENWT

GENERALII7ZEL/
SPECIALIZESN, EE E REPLLCES/Q)UESTIOIS/

DEPUGENSTE 0 BYALFE

BY I/TESOAD O

GEEEOLTES

SL CTSDPENSN)LIFE

RPEMOVS/MDIFES apDEPENDS 01

DEIGNPLE/~ O

REMVESNODFIE DEPIND PONti

Figure 5. The conceptual REMAP model (Ramesh 1992).

19

1. REMAP Model Prototype Environment

The REMAP prototype is implemented in ConceptBase--an

experimental knowledge base management system developed at the

University of Passau (Jarke, 1991, p. 1). ConceptBase manages

the REMAP knowledge base which is expressed in the knowledge

representation language Telos. Telos is a high-level,

conceptual modeling language which "integrates a thoroughly

axiomatized structurally object-oriented kernel with a

predicative assertion language in the style of deductive

databases and with a temporal sublanguage that covers validity

as well as transaction time" (Jarke, 1991, p. 2). ConceptBase

is designed as a coordination mechanism for heterogeneous

design environments and can run distributed over local or wide

area networks with the Internet protocol in a client-server

architecture (Jarke, 1991, p. i) . It is important to note

that the client-server definitions for ConceptBase are the

reverse of those used in the X Windows context described in

Chapter II. As a standard client, ConceptBase supports both

Sun View and X Windows (Xll) usage environments. The Xll

usage environment was written in C utilizing the Andrew

Toolkit and includes a number of tools such as the Telos

editor and the GraphBrowser application described below

(Jarke, 1991, p. 3).

20

a. GraphBrowser

The GraphBrowser application is a window-based

utility which allows a point-and-click method of graphically

browsing the contents of a model loaded from the ConceptBase

server and displays the contents in the form of a directed

acyclic graph (DAG). The top-level GraphBrowser menu options

shown in Table 2 allow the expansion and removal of Telos-

defined objects displayed within the GraphBrowser window.

TABLE 2. TOP-LEVEL GRAPHBROWSER MENU FUNCTIONS

- erase node Removes selected object from
display (does not modify
contents of knowledge base).

- any Expands graph with selected
object.

- show attributes Displays all direct attributes
of selected objects.

- show instances Displays all direct instances
of selected objects.

- show subclasses Displays one level of
subclasses of selected

____ ___ ____ ___ ____ ___ objects.

GraphBrowser functionality is limited, however,

since it does not provide for actual modifications to the

server's knowledge base, such as the insertion, deletion, or

editing of an object instance. Furthermore, GraphBrowser-

generated server queries regarding object instances and

attributes are formatted according to the predefined Telos

21

knowledge base classes: Token, SimpleClass, MetaClass, and

MetametaClass (Jarke, 1991, p. 6).

This thesis project investigates the means by which

the GraphBrowser utility can be extended with the Andrew

Toolkit to permit the direct editing of the REMAP model's

objects using a graphical user interface.

22

V. EXTENDING THE GRAPHBROWSER INSET

A. GRAPRBROWSER INSET COMPONENTS

The GraphBrowser inset consists of the data object cbGraph

and the view cbGraphView. The class cbGraph stores

information about the knowledge base objects that comprise the

semantic network to be graphically displayed, such as the

specific ID of the object within the ConceptBase server or the

graphical type of the object (Eherer, 1991, p. 1) . In

addition, the cbGraph class provides methods for inserting and

deleting objects and computing neighbors of an object. The

procedures cbGraphInsert, cbGraphDelete, and

cbGraph_Neighbors are used for these functions.

The class cbGraphView provides methods for displaying the

cbGraph, such as cbGraphView_ Update and

cbGraphViewGetInterface. The class also maintains menu lists

which determine the appropriate menu cards to be displayed

along with the objects in the semantic network.

In order to provide the capability to graphically access

the ConceptBase server knowledge base according to the class

definitions of the REMAP model, it is necessary to extend the

basic GraphBrowser functionality.

The following steps are necessary to accomplish this

extension:

23

1. Write the new Andrew class files.

2. Modify the .graphbrowserinit file.

3. Modify the knowledge base.

4. Compile the new Andrew class.

These steps are detailed in the following sections.

B. WRITING NEW ANDREW CLASS FILES

1. Class Header File

The class header file, or ".ch" file, is the class

specification and is roughly analogous to standard C include

(".h") files. The class header file enables inheritance of

procedures from a superclass (ancestor) by defining the class

as a subclass, if desired. In the following example, however,

no procedures need to be inherited, so the new class will be

defined as the top-level class "issue."

Example class header file: issue.ch

Idefine issueVERSION 1

class issue (
classprocedures:

InitializeClass) returns boolean;
InitializeObject (struct issue *self) returns boolean;
FinalizeObject();

I;

This .ch file contains the procedure specification for

the initialization of the issue class and object instance as

well as for cleaning up and freeing memory when the object is

deleted. In C++ terminology, this is equivalent to providing

specification for class constructors and destructors.

24

2. Class C File

The corresponding C file contains the actual

procedures for which the class was created. The example below

illustrates the components of the file issue.c.

Example C file: issue.c

#include "issue. eh"
#include "cbgraphv. ih"
#include "cbGraph. ih"
#include "proctbl. ih"

static void
issuequery (struct cbGraphView *self, long rock)
{
/* Actual C code of function */
I

boolean issueInitializeObject (ClassID, self)
struct classheader *classID;
struct issue *self;

return TRUE;

void issue FinalizeObject (ClassID, self)
struct classheader *ClassID;
struct issue *self;
(

boolean issue InitializeClass(ClassID)
struct classheader *ClassID;
(

struct classinfo *cbGvtype = class Load("cbGraphView");
proctableDefineProc ("issue-query", issuequery, cbGvtype,

NULL, "Displays all pertinent issues.");
return TRUE;

The first section contains the necessary #include

files, the first of which is "issue.eh". This is the export

header file that enables other Andrew classes to utilize the

procedures of the issue class.

25

The next section will contain the C code of the

function to be performed when the class is invoked through

selection of its corresponding menu item from the GraphBrowser

window.

The InitializeObject and FinalizeObject are class

methods required for proper object instantiation and

termination.

Finally, the InitializeClass method requires the call

to proctableDefineProc which enters the internal procedure

name, "issue-query," into the cbGraphView's procedure table.

The procedure table, or proctable, is used to establish and

translate bindings between menu items and their corresponding

procedures. The proctableDefineProc method takes the

following five parameters, separated by commas (Borenstein,

1990, p. 98):

1. Internal procedure pointer name ("issue-query")
2. Formal C procedure pointer (issuequery)
3. Class identifier used in procedure type-checking

(cbGVtype)
4. Name of module to load procedure from (NULL, since

procedure is local)
5. Interactive help text (optional)

C. MODIFICATION OF .graphbrowserinit FILE

The .graphbrowerinit file has two parts: the menu item

description part and the graphical type description part. The

basic .graphbrowserinit file is shown below:

26

#include <gbinit.h>
Show Subclasses-66, GBNODE, gb-gbshow subclasses
Show Superclasses-65, GB_NODE, gb-gbsh-ow supclasses
Show Instances-64, GBNODE, gb-gb_show instances
Show classes-63, GB_NODE, gb-gb_show__classes
Show Attributes-62, GB SOMETHING, gb-gb_showattributes
Any-61, GBSOMETHING, gb-gb_any
Erase Link-60, GB LINK, gb-gb_Erase
Erase Node-60, GB_NODE, gb-gb_Erase

Metametaclass, black, rectangle, GB NODEIGB SOMETHINGIGB TOOLS
MetaClass, black, rectangle, GB NODEIGB SOMETHINGIGB TOOLS
SimpleClass, gray, rectangle, GB NODEGB_ SOMETHING/GB_TOOLS
Token, none, oval, GBNODEIGB_SOMETHING/ZGB_TOOLS

1. Menu Item Description

Each line in the first part is a description of a menu

item with the format: menu card, menu item, menu item mask,

and menu procedure (Eherer, 1991, p. 8). The menu card is

optional and has been omitted from the standard GraphBrowser

menu item descriptions. The second entry in the menu item

description (actually the first item shown in the above

example, since the optional menu card identifier was omitted)

is the literal string label of the menu item itself. This is

the label of the push bar on the menu card that will be

clicked on. The number following the tilde (-) determines the

relative position of the item on the menu card, with the lower

valued-item appearing above the higher-valued items. The menu

card from the standard .graphbrowserinit file that will appear

along with a displayed node will be arranged as follows:

27

Irase Node
Any
Show Attributes
Show ClassesShow Instances
Show Superclass5s
Show Subclasses

The third element in the menu description is the menu

item mask, which may be given either as a number directly in

the menu item description, or indirectly as an identifier from

the file gb_init.h, shown below:

#define GB NOTHING OL
#define GB NODE IL
idefine GB LINK 2L
#define GB-SOMETHING 4L
#define GB UNDO 8L
Mdefine GBTOOLS 16L

To determine exactly which menu items are available

with a displayed object, a simple boolean evaluation is

performed on the comparison of the menu item mask and the

object's mask. The menu item will be displayed only if the

result of the following is TRUE:

(object mask & menu item mask) == menu item mask

As described in the next section, the object mask is

defined in the second part of the .graphbrowserinit file to

allow access to certain menu items when a particular object is

displayed.

Note that the result of the bit-wise AND operation

above will equal the menu item mask only if the bits set in

28

the menu item mask are also set in the object mask. An item

with mask zero, for example, will appear with all objects,

since zero ANDed with any object mask will always yield

itself.

The final entry in the menu item description is the

internal name of the procedure to be executed when the menu

item is selected from the display. The procedure is specified

in the same way as the first argument in the

proctableDefineProc call, not as specified in the C code of

the procedure itself. Notice, therefore, that the name of the

class will always be followed by a dash (-).

A menu item labeled "Get Issue," for example, which

will call the C procedure issue query from the new Andrew

class can be included in the .graphbrowserinit file as

follows:

#include <gb init.h>
Show Subclasses-66, GBNODE, gb-gb show subclasses
Show Superclasses-65, GB_NODE, gb-gb_showsupclasses
Show Instances-64, GB NODE, gb-gbshowinstances
Show classes-63, GB__NODE, gb-gb_show_classes
Show Attributes-62, GBSOMETHING, gb-gb_showattributes
Any-61, GBSOMETHING, gb-gb_any
Erase Link-60, GB_LINK, gb-gb_Erase
Erase Node-60, GB_NODE, gb-gb_Erase

/* APPENDED MENU ITEM AND CARD */
New Functions-10, Get Issues-1, GB_NODE, issue-quezy

Metametaclass, black, rectangle, GB NODEIGBSOMETHINGIGB TOOLS
MetaClass, black, rectangle, GB NODEIGB SOMETHINGIGB_TOOLS
SimpleClass, gray, rectangle, GB NODE/GB SOMETHING/GB_TOOLS
Token, none, oval, GBNODEIGB SOMETHING/GB TOOLS

The item mask of GB NODE (value of 1) will cause this

29

new item to appear whenever a view mask has the one's bit set.

The menu card entry, New Functions-10, will generate a menu

card labeled "New Functions" positioned underneath the

untitled GraphBrowser standard menu card. On the New Functions

menu card will be a sole menu item, labeled "Get Issues."

2. Graphical Type Description

The second section of the .graphbrowserinit file

contains the specification of how various classes of objects

are to be displayed and what menu items will be available with

them. Like the menu item description, the graphical type

description consists of four parts separated by commas: class

name, fill color of displayed object, shape of displayed

object, and object mask. The object mask determines which

menu cards and items will be available when the object is

displayed. These masks can be logically ORed together to

provide flexibility in the definition of various masks.

30

For example, the inclusion of graphical type

descriptions for the objects REQUIREMENT, ISSUE, POSITION, and

ASSUMPTION from the REMAP model in the .graphbrowserinit file

is illustrated below:

#include <gbinit.h>
Show Subclasses-66, GBNODE, gb-gb_showsubclasses
Show Superclasses-65, GB_NODE, gb-gb_showsupclasses
Show Instances-64, GB_NODE, gb-gb_show instances
Show classes-63, GB_NODE, gb-gb_show_classes
Show Attributes-62, GBSOMETHING, gb-gb_showattributes
Any-61, GB SOMETHING, gb-gb_any
Erase Link-60, GB LINK, gb-gbErase
Erase Node-60, GB_NODE, gb-gb_Erase
New Functions-10, Get Issues-i, GB_NODE, issue-query

/* APPZEDZD REMIAP GRAPHICAL TYPES */
REQUIRZMENT, gray, circle, GB NODEI GB SOETRINGI GB TOOLS
ISSUE, none, rectangle, Gm NOlDE/BS OTm THING/GrB TOOLS
POSITION, none, rectangle, GBSNODE7GBSONETHING7GB TOOLS
ASSUWTION, none, rectangle, GB_NODEO G_SOIWTRINIG/GTOOLS

Metametaclass, black, rectangle, GB NODEIGB SOMETHINGIGB TOOLS
MetaClass, black, rectangle, GB NODE/GB SOMETHINGIGB TOOLS
SimpleClass, gray, rectangle, GB NODE/GB SOMETHING/GB_TOOLS
Token, none, oval, GBNODEIGB_SOMETHING/IGB_TOOLS

To display an object's menu(s) in the GraphBrowser

window, the object must first be designated by clicking on it

with the left mouse button. Then, when the center mouse

button is held down, all menu items will be displayed whose

mask bits are also set in the object's mask. When the

displayed menu items reside on different menu cards, the

multiple cards will be displayed in a staggered offset such

that the titles (if any) of the lower cards will be visible.

Although only the top card will initially be completely

visible, all cards below it may be accessed by pointing to the

caru.s title area.

31

D. MODIFICATION OF REMAP MODEL

The definition of new graphical types in the

.graphbrowserinit file has to be made available to the

ConceptBase server by including them in the server model.

This is done by Telos modifications to the XllGraphBrowserNODE

and XllGraphBrowserEDGE classes in the file

X11GraphBrowserEDGE. sml.

First, four additional graphical types must be added as

attributes to both the X1lGraphBrowserEDGE and

X11GraphBrowserNODE classes. The following example shows the

XllGraphBrowserEDGE class specifications both before and after

the addition of the REMAP graphical type pointers:

Standard GraphBrowser XllGraphBrowserNODE class
specification:

Class XllGraphBrowserNODE in AnswerRepresentation isA NODE
with

graphical Type
gT1 : MetametaClass;
gT2 : MetaClass;
gT3 : SimpleClass;
gT4 : Token

GraphBrowser XllGraphBrowserNODE class specification after
the addition of four REMAP classes:

Class XllGraphBrowserNODE in AnswerRepresentation isA NODE
with

graphcial Type
gT1 : REQUIREMENT;
gT2 : ISSUE;
gT3 : POSITION;
gT4 : ASSUMPTION;

gT5 : MetametaClass;
gT6 : MetaClass;
gT7 : SimpleClass;
gT8 : Token

32

Notice that the original graphical type pointers of the

standard GraphBrowser class (gTl-gT4) were displaced to the

gT5-gT8 position to correlate with the listed order of

graphical types in the modified .graphbrowserinit file (shown

earlier). If, instead, the REMAP graphical types were added

to the end of the .graphbrowserinit file as items 5-8, they

would correctly be defined by attributes gT5-gT8 in the

XllGraphBrowserEDGE and XllGraphBrowserNODE class

specification.

The second step in modifying the knowledge base model

involves ordering the attributes that have been added to the

class specification. Since the attributes gTl-gT8 directly

correlate with the listed order of graphical types in the

.graphbrowserinit file, it is necessary only to add the

orderValues 5-8 to gT5-gT8, respectively.

33

The addition of ordervalue definitions to the

XllGraphBrowserNODE class is shown below:

XlI GraphBrowserEDGE! gT1 with
orderValue

v:I
end

Xl lGraphBrowser.EDGE !gT2 with
orderVal ue

v:2 Standard orderValue
end representation of the

Xll1GraphBrowserEDGE
Xl lGraphBrowserEDGE! gT3 with attributes gTl -gT4
orderValue

v:3
end

XII1GraphBrowserED GE IgT4 with
orderVal ue

v:4
end

XlI1GraphBrowserEDGE! gT5 with
orderVal ue

V:5
end

X1lGraphBrowserEDGEI gT6 with
orderVal ue

v:6
end Appended orderValue

representation of
Xl lGraphBrowserEDGE!gT7 with attributes gT5-gT8

orderValue
v: 7

end

Xi G~raphBrowserED GE IgT8 with
orderVal ue

V:8
end

34

Note that the same modifications must be performed to the

Xl lGraphBrowserEDGE and XllGraphBrowserNODE specifications.

If the gT attribute order does not correlate with the order in

the .graphbrowserinit file, the orderValue definition can be

used to provide an accurate cross-reference between the two

lists. In order to avoid confusion, however, it is best to

arrange the graphical type definitions in the

.graphbrowserinit file in the same order as the gT attributes

of the XllGraphBrowserNODE and XllGraphBrowserEDGE class

specifications.

Z. COMPILATION OF THE ANDREW CLASS

The C-code compilation associated with this thesis

research was conducted using Imakefile macros developed

specifically for Andrew systems development efforts. An

Imakefile is a Makefile-generator that consists of a set of

templates containing rules that are expanded into a Makefile

customized for specific system types and configurations. The

imake program, created by Todd Brunhoff of Project Athena and

Jim Fulton of the X Consortium, passes the Imakefile through

the C preprocessor, cpp, to produce a Makefile with applicable

file descriptions and dependencies (Oram, 1991, p. 111).

The overall file compilation effort can be summarized in

the following steps, explained in the subsequent paragraphs:

35

1. Set environment variables.
2. Create Imakefile.
3. Installation of Imakefile, .c and .ch file in

project directory.
4. Generate Makefile and compile C code.

1. Setting Environment Variables

It is first necessary to ensure that the environment

variables in the .cshrc file of the project account are

properly set to look for executable and dynamic objects within

the account directory. The following environment variables

should be set to build and test Andrew code:

setenv ANDREWDIR lusrilocal/andrew
setenv PATH .: $ANDREWDIR/bin: $PATH
setenv CLASSPATH . :$ANDREWDIR/dlib/atk

2. Creating the Imakefile

The following Imakefile was created using the emacs

editor and installed in the project directory:

NormalObjectRule()
DependTarget()
NormalATKRule 0
DynamicObject(remap,,)
InstallClassFiles (remap. do, remap.ih)
CC = gcc
PICFLAG = -fpic

The NormalObjectRule is a standard default dependency

rule used whenever .c files need to be compiled into .o files

and eventually into .c files. DependTarget sets up directory

dependencies, while the NormalATKRule establishes dependencies

for the production of .ih, .eh, and .do files. The

DynamicObject macro is used to create .do files which depend

upon only one object file of the same basic name. The file

36

name of the dynamic object to be created is listed as the only

argument (without the .do extension). Optionally, a space-

separated list of library files to be linked against can be

included as the second argument. The final macro shown is the

InstallClassFiles, used for installing dynamic object (.do)

and associated class header (.ch) and import header (.ih)

files. Required arguments are the .do files and corresponding

.ih files to be installed.

Since the standard C compiler, cc, does not accept the

function prototypes in the GraphBrowser include files, it's

best to use the ANSI compiler, gcc, by including the rule

CC = gcc in the Imakefile. This will eliminate the appearance

of many confusing errors at compilation.

The last line in the Imakefile, "PICFLAG = -fpic," is

necessary since the gcc compiler uses the option -fpic to get

position-independent code and does not recognize the -pic

option normally generated by imake.

3. Installation of Project Files

The next step in preparation for the Andrew class

compilation is to ensure the appropriate files are installed

in the project directory. For simplicity's sake, the project

account's home directory was used as the project directory for

this thesis, but a dedicated subdirectory could have been

created to segregate the project code from unrelated files in

the home directory. The necessary files to be installed are

37

the Imakefile, the modified .graphbrowserinit file, the .c

file, and the class header (.ch) file.

4. HakefIle Generation and Code Compilation

The final step in the compilation process is to

generate the Makefile and compile the code for dynamic loading

by the GraphBrowser. With the project directory containing

the above mentioned files set as the current working directory

(cwd), type the command

% genmake

to generate the Makefile which will appear in the cwd. When

the prompt returns, type

% make depend

to set up the file dependencies. Finally, type

% make

to generate and index the binary .do file which will be also

loaded in the cwd. The .c file can be re-compiled after

modifications to the source code by omitting the first two

commands and simply typing

% make

The functions contained within the newly compiled ATK

class can be accessed by clicking on their corresponding menu

items in the GraphBrowser window. The GraphBrowser can be

initiated from the ConceptBase Toolbar as described in the

Appendix.

38

VI. CONCLUSIONS AND RECONMENDATIONS

A. HIGH-LEVEL VERSUS LOW-LEVEL TOOLKITS

A drawback to using high-level toolkits is that an

application ported across different window managers will have

an inconsistent look and feel. Applications written

completely in the low-level Xlib interface have the advantage

of being consistently portable across all standard X Window

implementations, but they can be tedious and difficult to

implement. Hundreds of lines of code can be needed to handle

the window manager conventions alone (Young, 1990, p. 11). X

toolkits provide a set of utility functions and prefabricated

user-interface components that allow the developer to focus on

the interface design. Although most X toolkits are based on

Xlib routines, they are generally much easier to use than

Xlib, since implementation details are hidden from the

programmer.

B. SELECTION Or THE ANDREW TOOLKIT

The multi-media potential of Andrew Toolkit applications

made Andrew an attractive choice for the conversion of the Sun

View REMAP application to an X Window interface. The capture

of process knowledge by the REMAP model will be facilitated by

Andrew's multi-media capacity, since software design

engineers' deliberations will be manifested in many forms -

39

flow charts, structure charts, data flow diagrams, bit-mapped

and raster images, text, and imbedded audio and video. This

rationale for using Andrew is reinforced by the fact that

ConceptBase, the REMAP prototype environment, is itself

written in Andrew. ATK was chosen for ConceptBase since, like

REMAP, it was intended as a coordination mechanism for

heterogeneous design environments.

C. LEARNING ANDREW

1. Prerequisite Skills

A set of prerequisite skills must be acquired before

initiating an Andrew Toolkit development project. First, a

fluency with the development platform's operating system and

window manager are essential. A working familiarity with the

C language is also necessary, with special emphasis on

structures, pointers, and arrays. Next, the basics of the X

Windows environment must be understood, including the client-

server model and the function of the X window manager. With

this background, the role of the high-level toolkit and its

relationship with the Xlib C language interface will become

clear. Finally, "hands-on" experience with the application

under development is required for a thorough understanding of

the required functionality. In the event that the development

is a conversion project, the current implementation must also

be well understood, since it will serve as a template for the

design of the target application.

40

2. Andrew-specific Skills

Apart from Nathaniel S. Borenstein's well-written

reference, Multimedia Applications Development with the Andrew

Toolkit, virtually all reference material on Andrew Toolkit

programming is in the form of on-line documentation within the

Xll distribution. On-line sample code from the examples used

by Borenstein combine with the book to provide a valuable

tutorial. The Andrew source code can also be a helpful

reference and can be FTPed from emsworth.andrew.cmu.edu,

userid: anonymous, under the split! directory in files

andrew. aa. tar. z through andrew. aj. tar. z.The Remote Andrew Demo

Service, provided by the Andrew Toolkit Consortium at Carnegie

Mellon University, is a. good way to experience Andrew

applications firsthand. To use the remote demo, log on to a

workstation running Xll with access to the Internet.

Run the commands:

finger help@atk.itc.cmu.edu
xhost +atk.itc.cmu.edu
finger run-demo@atk.itc.cmu.edu

Further information on Andrew may be available from

the Andrew Toolkit Consortium at Carnegie Mellon University:

Andrew Toolkit Consortium
Carnegie Mellon University
4910 Forbes Avenue
Pittsburgh, PA 15213-3890
(412) 268-6700 / FAX: (412) 621-8081

Mailing list: info-andrew@andrew.cmu.edu
Newsgroup: comp.soft-sys.andrew
ATK Consortium info: wjh+@andrew.cmu.edu

41

D. CLOSING RNNARKS

Although the current Xll GraphBrowser application does not

have the full functionality of the Sun View REMAP

implementation, the necessary extension to the Xll

GraphBrowser can be achieved with relatively little effort

using the Andrew Toolkit.

42

APPENDIX

RUNNING THE GRAPHBROWSER IN TRE X1I USAGE ENVIROMONT

Running the GraphBrowser from a Remote Workstation

1. Login and run X Windows by entering <startx> or <zinit>.

2. In console window, enter <xhost +>. The advisory "all

hosts being allowed (access control disabled)" will appear.

3. In an X terminal, rlogin to the workstation where the

GraphBrowser and extension is installed. This terminal will

hereafter be referred to as the GB terminal.

4. In the GB terminal, enter <setenv DISPLAY <local machine

address>:O.O> to send GraphBrowser graphics to the local

workstation.

5. In another X terminal rlogin to the machine running

ConceptBase. This terminal will be referred to as the CB

terminal.

6. Continue with "Procedures Common to Local and Remote

GraphBrowser Operation."

Procedures Common to Local and Remote GraphBrowser Operation

1. Start the GraphBrowser Toolbar in the GB terminal by

entering <$CBHOMU/Xll_UE/ 'arch '/toolbar>. The Toolbar window

should appear within a few seconds.

43

2. In the CB terminal, start the ConceptBase server by

entering <$CB_HOUZ/goCBserver>. When the server is started,

note the portnumber that the server is "ready under"

(typically 4001).

3. In the GB terminal, display the SYSTEM menu by first

clicking on the SYSTEM box with the left mouse button to

designate the SYSTEM tool, then point and hold with the center

mouse button to pull down the menu card.

4. From the SYSTEM menu card select "connect CB server" by

releasing the center mouse button on the "connect CB Server"

menu item while backlit.

5. Designate the MODELS tool by clicking on its box with the

left mouse button, and pull. down the menu card by holding down

the center mouse button. Select "load application" by

releasing center mouse button on backlit item.

6. An Interaction Window will appear and ask the pathname.

Enter </files/isl/cbase/project/>. For application name,

enter <MyApp>. When the word "Done" appears in the Toolbar

comment area, the application has been loaded.

7. From the BROWSING menu card, select GraphBrowser using the

technique described in steps 4 and 5 above. An Interaction

Window will appear and request the name of the object to

browse. Enter <processdata>. The comment "The GraphBrowser

starts up. Wait a little bit for its window." will appear in

the Toolbar comment area.

44

8. The GraphBrowser window will appear with the processdata

object graphically displayed. Operations on displayed objects

can be performed by selecting the object with the left mouse

button, then holding down the center button to display the

applicable menu cards from which the desired function can be

selected.

45

LIST Or RZFZRZNCZS

Barkakati, Nabajyoti, X Window System Programming, Sams, 1991.

Borenstein, Nathaniel S., Multimedia Applications Development
with the Andrew Toolkit, Prentice Hall, Inc., 1990.

Eherer, Stefan, and Baumeister, Markus, "Documentation of the
Andrew class cbGraph and cbGraphView and how to extend the
functionality of the standard GraphBrowser," addendum to
ConceptBase V3.0 User Manual, University of Passau, 1991.

Jarke, Matthias, ConceptBase V3.0 User Manual, University of
Passau, 1991.

Jones, Oliver, Introduction to the X Window System, Prentice
Hall, 1989.

Oram, Andrew, and Talbott,. Steve, Managing Projects with Make,
O'Reilly & Associates, 1991.

Palay, Andrew J. and others, "The Andrew Toolkit: An
Overview," paper presented at the USENIX Association Winter
Conference in Dallas, Texas, February 1988.

Ramesh, Balasubramaniam, and Dhar, Vasant, "Supporting Systems
Development Using Knowledge Captured During Requirements
Engineering, "IEEE Transactions on Software Engineering, June
1992.

Upton, Molly, "Is X the Window?," Patricia Seybold's Office
Computing Report, pp. 1-8, May 1990.

Young, Douglas A. The X Window System, Programming and
Applications with Xt, Prentice Hall, 1990.

46

BIBLIOGRAPHY

Borland International, Turbo C++, Getting Started, 1990.

Gilly, Daniel, and O'Reilly, Tim, The X Window System in a
Nutshell, O'Reilly & Associates, 1990.

Kernighan, Brian W., and Ritchie, Dennis M., The C Programming
Language, Prentice-Hall, 1978.

Massachussets Institute of Technology, XlIR5 online
documentation, 1991.

Meier, Carol, "An Introduction to C," tutorial notes, January
20, 1992.

47

INITIAL DISTRIBUTION LIST

1. Defense Technical Information Center 2
Cameron Station
Alexandria, Virginia 22304-6145

2. Library, Code 52 2
Naval Postgraduate School
Monterey, California 93943-5002

3. B. Ramesh, Code AS/RA 3
Naval Postgraduate School
Monterey, California 93943

4. Roger Stemp, Code CS/SP 1
Naval Postgraduate School
Monterey, California 93943

5. LCDR Jeffrey J. Stenzoski 2
3963 Devonshire Drive
Marietta, Georgia 30066

48

