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1. INTRODUCTION

This paper considers the assignment of weights for neural networks with one
hidden layer so that the network interpolates through a given finite set of input-
output points with low sensitivity to noise in the input patterns. The sensitivity
at the input patterns is minimized by minimizing the derivative of the input-
output map of the interpolating network at the input patterns. The idea is that if
the derivative at an input point is small, then a small variation around that point
will produce a small variation in the output. This idea is made precise in the
next section.

The approach presented here gives a direct method for determining the
weights. The input-output map defined by these weights interpolates through
the given set of points exactly and the derivative at the input patterns can be
made arbitrarily small. The inversion of a nonsingular matrix is required for
exact interpolation. If the exact interpolation requirement is relaxed, then the
inversion of that matrix can be circumvented. It is possible to determine weights
so that the network approximately interpolates through the given set of points
with any desired degree of accuracy and with a sensitivity as small as desired.
Both the accuracy of interpolation and the sensitivity to noise are controlled by
the size of the weights in the first layer of weights. Estimates on how large these
weights have to be to achieve a desired interpolation accuracy and noise
sensitivity are also presented, as well as an algorithm for determining the
weights.

Other authors have studied direct methods for weight assignment. By direct
methods we mean nonrecursive methods; that is, methods that determine the
weights as a well-defined, explicit function of the input-output pairs to be
implemented. In Reference 1 it is shown how to approximately interpolate, with
any desired degree of accuracy, through 2m-1 points with a network that has m
neurons in the hidden layer and sigmoidal activation functions. It is also known
that one can exactly interpolate through m+l points with a network that has m
neurons in the hidden layer and different types of activation functions (see for
instance References 2 through 4). Here, the interpolation is through m+1 points
using a network with m neurons in the hidden layer. The interpolation is done
in such a way that the derivative at the points of interpolation can be controlled
and can be made arbitrarily small. The input and output spaces can be
multidimensional.

The weight assignment techniques for approximate interpolation can be
applied to find a good set of initial weights for problems that involve learning
more points than the degrees of freedom of the net. This can be an important
application, since the speed of convergence of iterative learning algorithms is

3
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well known to depend severely on the choice of initial weights (References 5 and
6).

The notation required to present these results is introduced in Section 2,
where we also state one of our main results and some preliminary results. In
Section 3, we define weights and biases for a family of neural networks that solve
the exact interpolation problem. The family is parametrized by a vector w c Rm
whose size controls the derivative of the input-output map at the interpolation
points. We show that these derivatives can be made arbitrarily small by
increasing the components of the vector w. Approximate interpolation with small
sensitivity is addressed in Section 4. An algorithm for approximate
interpolation with low sensitivity is presented and illustrated with simple
examples. Some of the more tedious proofs are relegated to the Appendix.

2. NOTATION AND STATEMENT OF MAIN RESULTS

We shall consider feed-forward neural networks with one hidden layer
consisting of m neurons, each of which has a nonlinear activation function that
will be denoted by S. The activation function S is assumed to be a continuous

function mapping the real line R into the open interval (-1, 1) with lim S(t) = ±1.
t---±-

For an m-vector y with components Y1 , Y2, ..... Y, we can define the m-
dimensional sigmoid Sm by the formula

s(y1 )_

S(y 2)

Sm(y) (y r R m)

S(Ym).

The collection of k by e real matrices is denoted by RkxO, and the space of k-
dimensional real vectors is denoted by Rk, where k and e are any two positive
integers. If the network has n inputs and e outputs, then the transfer function
(input-output map) of the network is a function F Rn -- Re of the form

F(Z) = o + a Sm (WZ + 3) (Ze R )

4
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where W e Rmxn represents the first layer of weights, a E RCxm represents the

second layer of weights, and the vectors 03 F Rm and ao e RE are bias vectors.

If S is differentiable, then Sm is differentiable as well as F. Let S'm and F'
denote the derivatives of Sm and F, respectively. Then S'm : R - Rmxm and F':
Rn-- RWn are given by

S (y) = diag (S'(y1 , S'(y2) ... , S'(Ym)) (y e R m)

F(Z)= a Sm(WZ + P)W (Z e R) (2.1)

where S' denotes the derivative of S, and diag(S'(yl), ..., S'(ym)) is a diagonal
matrix with S'(yi), S'(y2), ..., S'(yn) along the diagonal. Note that the ijth

component of the e x n-matrix F'(Z) is given by [F'(Z)]ij = j-(Z), where Fi is the ith

component of F and Zj is the jth component of Z (1 <- i < e, I < j <. n).

Remark 2.1. For a vector valued function F : Rn -• RV such as the one
above, the (total) derivative F'(Z) of F at Z e Rn is, by definition (see Reference 7
or 8), a linear transformation from Rn to R6 satisfying

II F(Z + h)- F(Z)- F' (Z)h I1
tihml=0h---+O 11 h 11

where II • II denotes the underlying vector norm. This means that for every E > 0
there exists a 8 > 0 such that if II h I1 < 8, then

II F(Z + h) - Fz) - F' (Z) h II - i hil

For II h II < 8, the above inequality implies

II F(Z + h) - F(Z) II 11 F' (Z)h 11+E11h 11<[11 Z) I +W IIhII * (2.2)

5
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Inequality 2.2 has a significant interpretation. If Z represents a fixed input to
the network with desired output F(Z) and h represents a small (11 h 11 < 8)
perturbation to the exact input Z, then Inequality 2.2 asserts that the output
F(Z + h) to the perturbed input (Z + h) will be within a distance 8[II F' (Z) II + E] of

the desired output F(Z). Therefore, by making II F' (Z) II small, the output of the
network to an input perturbed by noise will remain close to the desired output.I////

Given a finite set of input-output pairs,

S=- {(xi,yi) E R n x Re :0 i < m and xi • xj wheni j}

we shall say that F interpolates through Q if F(xi) = Yi for i = 0, 1, 2, ... , m.

Throughout this paper, the matrix W of first layer of weights will be given by
an outer product W = wv, where vT e Rn will be fixed and chosen so that vxo < vx1

< ... < vxm. The rn-vector w will belong to an unbounded open subset G of Rm.
The second layer of weights matrix a and the bias vectors ao and P3 will be defined
as functions on G. Thus, we shall define (in the next section) functions a : G --

Rexm, 5 • G -+ Rm, and cLo : G -+ Re, and a family of neural networks Fw (w e G) of
the form

Fw(z) = a,,(w) + a(w) Sm(wVz + 13(w•)) (z E Rn) (2.3)

such that Fw interpolates through 1 for every w a G. Moreover, under certain
conditions on the sigmoid S, the function G3 " G-- Rn' can be chosen so that

lim F,(xi)=0 for0 <i <_m
W-400

The notation w -*- means that wi -- for all i = 1, 2, ... , m, where wi(I <_i<

m) are the components of w e Rm'.

These results, when combined with Remark 2.1, show that there exist neural
networks that interpolate through the set f1 with an arbitrarily small sensitivity to
noise at the inputs xi (0 <_ i < in).

• The symbol //// indicates the end of a proof, an example, or a remark.

6
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3. WEIGHT ASSIGNMENT FOR EXACT INTERPOLATION AND
DERIVATIVE CONTROL

In this section we shall define a set G in Rm and a family of neural networks
Fw Rn-RO (w c G) of the form

Fw (x) = ao(w) + a(w) Sm(wVx + 53(w)) (x e Rn) (3.1)

such that Fw interpolates through Q• for every w e G. To solve the interpolation
problem, it is required only that the activation function S : R -ý (-1, 1) be

continuous with Jim S(t) = ± 1.
t-+-•ie

Next we will show that if the sigmoid S satisfies certain conditions for
derivative control, then the bias vector function 3 G -* Rm can be defined in such
a way that the derivative of Fw can be made arbitrarily small at the points of
interpolation.

3.1. EXACT INTERPOLATION

Let a set of interpolation points fQ = {(xj, yi) e Rn x Re "0< i < m and xi * xj
when i •j} be given.

The first stei. is to find a vector vT E Rn such that

vxo < vxI < vx2 < ... < VXm . (3.2)

Such a vector vT always exists as asserted by the next lemma; however, we may
have to relable the xi (0 <i< m).

Lemma 3.1. Given distinct points xO, x1, x2, .... Xm in Rn, there exists a

vector vT e R such that fvxi : 0 < i < m I is a set of distinct numbers.

This lemma is proved in the Appendix.

Note that v denotes a row vector, while its transpose vT denotes a column
vector in Rn.

7
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Given vT a Rn satisfying Inequalities 3.2, we define W = wv with w e Rm.
Next, one selects any in continuous functions Ak (tk,- -+ (0, -) (1 < k < m)
that grow slower than linear; that is, they satisfy the Growth Condition

+00 if a _> 0

Jra [ta + Ak(t)] f (1< k ! m)
t• -)if a<0 (3.3)

For example, Ak(t) = (t - tk)c fort > tk and 0 < E < 1, k = 1, 2, ..., in.
m

The bias vector function 0 is defined on the open set X-- i' (tk, ): R'. If
k=--

w = [w1, w2, ... , wmiT G X, then the ith component of A3(w) is given by

Pi(w) a Ai(wi) - wivxi (W E X, 1 _ i _ m) . (3.4)

To simplify the notation, let Lw "Rn - Rm denote the affine transformation
defined for each w e X by

Lw(x) a wvx + f3(w) (x e Rn)

Note that for each w e X, Lw is the transformation between the input layer and the
hidden layer. By Equation 3.4, the ith component of Lw(x) can be written as

[Lw(x)]i = wiv (x - xi) + Ai(wi) (x E Rn, 1 < i <m) (3.5)

Let A(w) denote the in x m matrix whose jth column equals

Sm(Lw(xj)) - Sm(Lw(xri-)) (1 <j5 <m, w 6 X) (3.6)

Note that since the sigmoid S and the functions Ai (1 <5 i m. in) are continuous,
the matrix valued mapping w - A(w) defines a continuous map A X - Rmxm.

8
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The set G is defined to be the collection of all vectors w E X for which A(w) is

an invertiblt matrix. We shall see shortly that G is an unbounded open set in
Rrm.

The matrix valued function a : G -- R"xn is defined by

X(w) -- Y A-' (w) (W G r , (3.7)

where Y=IYi-Yt -Yo 2-Y1 : ... :Ym -Ym-1 Rxrm

Finally, ato: G -+ RW is defined as

ajo(w) -yYo- (w) Sm (Lw(Xo)) (w e G) • (3.8)

Our first theorem shows how this construction solves the interpolation

problem. It also shows why it suffices to have m neurons in the hidden layer to

interpolate through (m+l) points.

Theorem 3.1. For each w E G, the layered neural network

Fw(x) a cc(w) + cz(w) Sm(Lw(x)) (x e Rk)

interpolates through Q.

Proof. The proof is by induction. Fix w E G. The definition of ato(w)

(Equation 3.8) clearly implies Fw(xo) = yo. Assume that Fw(Xk) = Yk for 0 < k < m.

If ek+I denotes the (k+l)st column of the m x m identity matrix, then

Fw(xk+1) - Fw(Xk) = Y A-l(w) [Sm(Lw(Xk+l)) - Sm(Lw(Xk))]

= Y ek+l = Yk+1 - Yk

Here we used ths definition of a(w) (Equation 3.7) and the definition of the

(k+1)st column of A(w) (see Expression 3.6). It follows that Fw(Xk+I) = Yk+1. This

completes the proof. /I

9
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For the construction above to work, it is essential that A(w) be invertible for
some values of w. This is guaranteed by the next proposition, which is a
consequence of the Growth Condition 3.3 and the asymptotic properties of S.

Proposition 3.1. liUM A(w) = 2 1m, where Im denotes the mx m identity
W-400

matrix. Consequently, G is an unbounded open subset of Rm. More precisely,
in

there exist Tk >_ tk large enough (1 < k < m) such that the product 1 (T
k1 k )is

contained in G.

Recall that irm means that wi- foralli= 1,2 ... , m.

Proof. If U denotes the collection of all invertible matrices in Rmxm, then U
is an open set containing 2 1m, Therefore, if the above limit holds, then U contains

A(w) for all w large enough. This implies that G contains the product [1 (Tk c)

k=
for Tk large enough (1 < k < m). Moreover, since A : X -+ Rmxm is continuous, G =

A 1(U) is open in X, hence open in Rmxn.

To prove that A(w) converges to 2 1m for large w, let Aij(w) denote the ijth
entry of A(w), I < i < m, I < j m m. Equation 3.5 and Expression 3.6 give

Aij(w) = S(wiv(xj - xi) + Ai(wi)) - S(wiv(xj_1 - xi) + Ai(wi))

"IS(Ai(wi)) - S(wiv(xi-l - xi) + Ai(wi)) if j = i

= S(wiv(xi+1 - xi) + Ai(wi)) - S(Ai(wi)) ifj = i + 1

(S(wiv(xj - xi) + Ai(wi)) - S(wiv(xj_1 - xi) + Ai(wi)) ifj <i orj > i + 1

Hence it follows from the choice of v (Inequalities 3.2), the asymptotic properties
of S, and the Growth Condition 3.3 that

w•_• ij~w = 12 if j = i

Jim Ajj(w){
0Oifj;ei

This completes the proof of the proposition. ///

10
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Remark 3.1. The Growth Condition 3.3 on the functions Ak (1 < k < m)
was instrumental in the proof of Proposition 3.1, which hinges on the fact that
A(w) converges to an invertible matrix as w -* -, and this guarantees the
invertibility of A(w) for w in the unbounded set G. It should be pointed out that
if one is only interested in solving the interpolation problem, then one may do
without the Growth Condition 3.3 and replace the functions Ak by arbitrary
constants. If Ak are constants (1 < k <. m), then A(w) still converges to an
invertible matrix M as w -ý -. Thus, Proposition 3.1 will hold for arbitrary
constants Ak if 2 1m is replaced by the matrix M, which has the form

a, b1  0 ... 0
0 a2  b 2  ... 0

M=

0 0 ... am bmi 1

0 0 ... 0 am

with ak= I + S(Ak) and bk I - S(Ak) (1 <_ k < m). Note that ak -+ 2 and bk- 0 if
Ak -+ 00 (1 < k < m). Of course, Theorem 3.1 holds whenever A(w) is invertible,
independent of what the limit of A(w) might be as w -4 o. It is because the Growth
Condition 3.3 will be required to control the derivative of Fw at xi (0:5. i < m) that
we chose to present this approach for solving the interpolation problem.

Moreover, the fact that A- 1(w) -- ½ Im as w - oo will lead to a simple formula for2

the weight matrix oL; namely, 2 Y, which will solve the interpolation problem
approximately without matrix inversions. Il

3.2. DERIVATIVE CONTROL

To control the limiting behavior of F'w at the points of interpolation as w - 00,

we require that the functions Ak approach infinity as w -- 0 in a particular way.
Given rk >_ 0, we assume that the functions Ak :(tk, 00) - (0, 00) (1 <. k <. m) in
Equation 3.4 satisfy the Growth Condition 3.3 and the two conditions below:

lim t S'(Ak(t)) =0 if rk = 0

(3.9)

t S'(Ak(t)) = rk for t>tk ifrk> 1

11
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lirn t S'(at + Ak(t)) = 0 for a * 0 and 1 km< (.0t-- (3.10)

These conditions for derivative control are satisfied by a vast class of
differentiable sigmoids. This class includes commonly used sigmoids such as the
hyperbolic tangent, for which

Ak(t) = cosh- [4 t/rk I , t> rk , when rk >0

and

Ak(t) = cosh" 1 [(4t'"•] ,t> I , for anyE> 0 when rk=0

Another example is the inverse tangent S(t) = tan- 1 (t), (t e R), for which

Ak(t) = '(2t/irk)-l , t > xrk/2 , when rk > 0

and

Ak(t) = iI(2t3/2/r)-1 , t > (x/2) 2/3 
, when rk = 0

For the logistic sigmoid,

t

S(t)= 2 f e-x2dx-1 , (t e R)

Ak(t)=[on2t- en5-rk]1/2 , t>4Frk/2 , when rk>O0

and

Ak(t) = (Al[ tt+e/2 , t > 1  x2 for any c >0 , when rk 0

It is not hard to show that the examples above satisfy Conditions 3.3, 3.9,
and 3.10 (see Remark 3.2).

When the derivative of the sigmoid is strictly decreasing on some infinite
interval of the positive real axis as in the examples above, then the derivative S'
of the sigmoid is invertible on that interval. Thus, one may solve the equation
t S'(Ak(t)) = rk to obtain a unique function Ak for each rk > 0. If (S')"I denotes

12



NWC TP 7191

the inverse of S' on an appropriate domain, then Ak(t)- (S')1 (rk/t) for
appropriate values of t. When rk = 0, one simply chooses a decaying function f

such that f(t) -+ 0 as t -. 00 and solves t S'(Ak(t)) = fRt) to get Ak(t) = (S')" 1 (tf(t))

for t in an appropriate domain. For example, f(t) = t-E (t > 0), with e > 0
judiciously chosen so that Ak satisfies the Growth Condition 3.3.

The following lemma sheds light on some relationships that exist among
Conditions 3.3, 3.9, and 3.10 under certain assumptions on the sigmoid S.

Lemma 3.2. Suppose that S : R -+ (-1, 1) is a differentiable odd function
with S' nonincreasing on (0, cc). Suppose that for every rk > 0 there exists tk > 0
and Ak :(tk, -c) - (0, c-) such that Condition 3.9 and Condition 3.3 with a < 0
hold. Then Condition 3.3 holds for a = 0 (and all a > 0) and Condition 3.10 holds
for all a * 0.

The proof may be found in the Appendix.

Remark 3.2. It should be clear from Lemma 3.2 and the observations
preceding it that for odd sigmoids with strictly decreasing derivative
on some infinite interval of the positive real axis, the functions Ak satisfying
Condition 3.9 always exist and are in fact unique when rk > 0. Consequently, it is
only the Growth Condition 3.3 with a < 0 that must be verified when dealing with
such sigmoids.

Theorem 3.2. If the sigmoid S and the functions Ak (1 <. k < m) in the
definition of 0 (Equation 3.4) satisfy Conditions 3.3, 3.9, and 3.10, then the
family Fw (w e G) of Theorem 3.1 interpolates through fQ and

0 for k = 0

Ilin Fw(Xk)-

"•"rk (Yk - Yk-1) V for 15< k:5 m

Proof. Since Ak (1 k < m) satisfy the Growth Condition 3.3, it follows from

Theorem 3.1 that Fw interpolates through Q for all w £ G.

Now, by Equation 2.1 and the definitions of W, O(w), Lw, and a(w), for each w f
G,F'w(Xk) is given by

F, (xk) = Y &-(w) S'm(Lw(Xk))WV (0:5 k: <m) (3.11)

13
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Since l__ A-1 (w)=m1 (Proposition 3.1), it suffices to show that

0 for k =0

Jim S' (Iw(xk)) W (3.12)W-4

rkek for 1:< k:< m

where ek denotes the kth column of the mxm identity matrix Im. Indeed, if the
Limit 3.12 holds, then by Equation 3.11,

1 1
irk Yekv= 2 rk(Yk - Yk-1 v for 1 < k:5 m

lim Fw(Xk) 
o

0 fork =0

To establish the Limit 3.12, consider the ith component of the vector S'm(Lw(xk))w
(1 <i<m, 0<k<m)

[S'm(Lw(Xk))Wli = Wi S'(wiv(xk - xi) + Ai(wi)) (3.13)

When i # k, v(xk - xi) # 0. Thus, Equations 3.10 and 3.13 imply

Hr [Som(Lw(Xk))Wli = 0 (O0 k5 m, 1:< i < m, i k)wt--)-

When i = k, the choice of Ak and Equations 3.9 and 3.13 imply

lir [S'm(Lw(Xk))W]k = rk (1 < k < m)
Wk--"

The last two limits show that the Limit 3.12 holds. This completes the proof of
the theorem. //f

14
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By setting rk = 0 for k = 1, 2, ..., m in Theorem 3.2, we arrive at one of the
main results of this paper.

Corollary 3.1. (Bract Interpolation With Low Sensitivity). There exists a
family of neural networks Fw : Rn -4 Re (w E G) such that each Fw interpolates
through Q and

Bin Fw(Xk)=O for 0<k:m
W-."

Proof. The examples appearing after Condition 3.10 give sigmoids S and
functions Ak for every rk >. 0 that satisfy the hypothesis of Theorem 3.2. Thus,
the corollary follows from the theorem with rk = 0 (1 < k < in). 6//

Another result that follows as a special case of Theorem 3.2 when n = 1 =

states that the values of a one-input/one-output net with m hidden neurons can
be exactly specified at m + I points and the derivatives at m of those points can
be approximately assigned with any degree of accuracy except for a sign
restriction.

Theorem 3.3. Let (xk, Yk) R 2  (0<:. k < m) be m + I points such that xo <
x, < ... < xm and let dk (0 < k < m) be m + 1 real numbers satisfying one of the two
conditions below:

(a) do =0 and for k > 0 dk =0 if Yk - Yk-I = 0; otherwise, dk(Yk - Yk-1) > 0.

(b) dm - 0 and for k < m dk - 0 if Yk+1 - Yk = 0; otherwise, dk(Yk+÷ - YO) >- 0.

Then, there exists a family of neural nets Fw : R -+ R (w a G) with m hidden
neurons such that

Fw (Xk) = yk and uim Fw (xk) = dk (0 < k < m)

Proof. Assume that Condition (a) holds. Set rk = 0 if yk - Yk-1 = 0; otherwise,

rk - Ykl (1 < k <. m). Let S denote any of the sigmoids in the examplesYk-Yk- I

appearing after Condition 3.10 and let Ak correspond to rk (1 <s. k <. m) as in
Theorem 3.2. Since rk > 0 (1 < k < 5m), Theorem 3.2 applies with v = 1 to yield
the result.
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If Condition (b) holds, set x. = Xm-k and Yk = Yi-k (0 < k <_m) and let rk =rm-k

2dk
where rk = 0 if Yk+1 - Yk = 0; otherwise , rLk - Yk+='Yk -- k > 0

(1 <_. k < m), Theorem 3.2 applies to the set Q = -( ,y)e R 2 :0< k<. m} with

v = -1 and we obtain Fw :R -- R (w e G) such that F, interpolates through Q and

0 for k=0

Urn (ý
I )DO 1 r (Yk - Y- 1)v for 1 <k- m

Now, by Equation 3.14 and the definitions of xý, yk, and rk, we have

1 ,
lirn Fw(xk) = lir Fw(Xx.k) =-- r- k(Ymk - Ym-k-d)

W- )VO W---)G,

="rk(Yk+l - Yk)= dk (0:5 k5 m-1)

and

tin Fw(xm) =im Vw(x) = 0 =dm
W--* W--)

This completes the proof. ///

We close this section with some comments about the last result. A network
with m hidden neurons, one input, and one output has 3m + I degrees of
freedom; namely, the components of the m-vectors aT, w, and 0 and the constant
ao. Theorem 3.3 exhibits a family Fw parametrized by vectors w belonging to the
unbounded open set G in Rm. Each Fw interpolates through m + I points. This
accounts for m + I degrees of freedom. The parameter w accounts for m degrees
of freedom. The remaining m degrees of freedom were utilized to approximately
assign the derivatives at m of the interpolation points within the restrictions of
Conditions (a) and (b) of Theorem 3.3.
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4. APPROXIMATE INTERPOLATION WITH LOW SENSITIVITY,
ALGORITHM, AND EXAMPLES

1

An interesting consequence of Proposition 3.1 is that lir A-(w)= m

Consequently, lira(w)=- Y. Thus, one may be tempted to replace the second

matrix of weights a(w) = Y A'l(w) by I Y, since this choice of weights avoids2'
having to compute the inverse of A(w). With this choice of a the interpolation
through 91 will not be exact. It will improve, however, as w increases. In this
section, this idea will be explored. We shall derive conditions that determine
how large w must be in order to approximately interpolate through fl within a

given error tolerance and with [F w (xk)]ij within a prescribed distance from zero

(0• k • m, 1 <i <€, 1 <j < n) using c =Y.

The neural network map with ca = - Y will be denoted by Tw. It can be written2as

1
T(x) = Yo + Y [Sm(Lw(x)) - Sm(Lw(xo))] (x = Rn) (w~x) YO 2(4.1)

where Lw is defined in terms of w, v, and 13(w) as in Section 3 and w may be any
vector in X.

Our first lemma gives a bound on the size of the error Tw(xj) - yj in terms of
the size of the vectors yj (0 < j < nm). The absolute value of a real number z will
be denoted by I z I If z is a vector with components Z1 , z2, ... , Zk, then I z 1=
[I z, I, I z2 I, ... , I Zk I]T. If z' is another k-vector, then I z I < I z' I means
I z i  z'i I for i = 1, 2. .... k.

Remark 4.1. Since the sigmoid S : R - (-1, 1) is continuous with

lirn S(t)= + 1, given any number 8 E (0, 1) one can find a > 0 large enough that

1 -8<S(t) < 1 for all t>c. a///

Lemma 4.1. Choose 81 E(O, 1) and a > 0 such that I - 81 < S(t) < I for all t >
a. If w a X has positive components and satisfies the following two conditions

17
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A(w) > a (1 _< A5 <m) (4.2)

wAv (xg--x.)+ )<- +a (1 0•p.•<_m) (4.3)

then

ITW(xj) -Yj -1 '5 1 • Yi] (l:5j:m)
2 ijo (4.4)

This lemma is proved in the Appendix.

The next lemma gives a bound on the size of [Tw' (Xk)]ij in terms of the jth

component of v and the size of the ith component of the differences Iyg - yg-1
<1 <p: m, 1<ýi <e, Il<j <_n).

Lemma 4.2. Choose 82 > 0 and assume that S is an odd differentiable
function with S' nonincreasing on (0, -- ). If the neural network map is given by
Equation 4.1 and if w = [WI, w2, ... , win] T X has positive components and
satisfies the following two conditions,

0O< wA S'P(Apw) < 82 (1 <5 A5 <M) (4.5)

0 < w; S'(wj v(xg.1 - xA) + AA (wjL)) < 82 with
(4.6)

wvv(x 1 -x~)+Ag(w;) < 0 (10 !I : m)

then

I[ [Tw(Xk)]ijl 5I M < [ J(Y;-YA-1)i 111 vjj(0 Sk_<m, l~i <€, I<:5j <n),(47

2 PX1(4.7)

where (yg - y;.1)i denotes the ith component of the vector (y; - y;lj), g = 1, 2,

m and (Tw(xk)]ij is the ijth entry of the matrix Tý'(xk).
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The proof of this lemma may be found in the Appendix.

Lemma 4.1 establishes the connection between the asymptotic values of the
sigmoid and the size of the errors in the approximate interpolation. It shows that
the errors can be made arbitrarily small by choosing w large enough, as specified
by Inequalities 4.2 and 4.3. Its counterpart, Lemma 4.2, shows the connection
between the asymptotic values of the functions fa,±(t) M t S'(at + Al(t)) (t > tg, 1 <.

g <. m, a , R) and the size of the derivatives at the points of interpolation. It
shows that the derivatives can be made arbitrarily small by choosing w large
enough as specified by Inequalities 4.5 and 4.6.

The next theorem, which is the main result of this section, puts together
these results in a proof showing that when the functions Ak :(tk, cc) -ý (0, ce)

approach infinity as w -+ - in the particular way described in Section 3, then one

can in fact find a vector w a X such that the errors and the derivatives at the
interpolation points are arbitrarily small for all w > w. Before stating the
theorem, it should be emphasized that the two lemmas above hold true if the
functions Ak : (tk, cc) -+ (0, -0) (1 < k <. m) are constant functions. That is, the
values Aj.(w;.) appearing in the Inequalities 4.2, 4.3, 4.5, and 4.6 can be fixed

constants independent of wg (1 <•. g :. m) without invalidating the proofs of the
two lemmas. Notice, however, that Inequality 4.5 cannot hold for all w > w
unless S'(Ap(w~j)) decreases as wp increases without a bound, forcing Art(wg) to
vary with wg. Since the main purpose of these two lemmas is to facilitate the
proof of Theorem 4.1, which requires Inequality 4.5 to hold for all w > w, we
chose to state the lemmas in a manner that indicates the possibility that AtL(wIL)
may vary with w• (I<ý<Lm).

Theorem 4.1. (4pproximate Interpolation With Low Sensitivity).
Assume that S is an odd differentiable function with S' nonincreasing on (0, cc).

Let Ak : (tk, 00) -b (0, -c) satisfy the Growth Condition 3.3, Condition 3.10, and

Condition 3.9 with rk = 0 (1 < k <i m). Let Tw : Rn -+ Re be given by Equation 4.1.

Then, for any £j > 0 and E2 > 0, there exists w e X such that for all w >. w,

-Y (1 <i5e,0<j<_rm)

and

I[TW,,(xk)]ijI < (1 0 i:5e, 1 j5n, 0:<k!m)

where (Tw(xj) - yj)i denotes the ith component of Tw(xj) - yj.

Proof. Let yji denote the ith component of yj (1 <. i <-, 0 0 j < in). Let 81 a
(0, 1) and 82 > 0 satisfy
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3•'8 • Yji I < el(l<i<
o <( i(4.8)

8'2• n' (Yt-YIt-lil Ivil < E2 (l i e,1:5j :5n)
11=1 (4.9)

and choose a > 0 as in Lemma 4.1. Then, clearly, by Lemmas 4.1 and 4.2, it
suffices to show that there exists w e X such that Inequalities 4.2, 4.3, 4.5, and
4.6 hold for all w > w.

Fix g a {1, 2, ... , in). The Growth Condition 3.3 clearly implies that there
exists w'11 > tg such that Inequalities 4.2 and 4.3 hold for all wg 1 > w'gt. Similarly,
Condition 3.9 with rg = 0 implies that there exists w"g1 > tp such that Inequality
4.5 holds for all wg k> w"4. Finally, the Growth Condition 3.3 and Condition 3.10
imply that there exists w"'. > tg such that Inequality 4.6 holds for all wA 2> w"'IL.

By letting wg = max {w'; , w";L, w.'"..;) for each t ({1, 2, ... , inm, we obtain w = [w1

W2, .... Wm]T c X with the required properties. ///

The functions Ag (1 :I <I : m) in Theorem 4.1 have in common that they all

satisfy Condition 3.9 with r;1 = 0; namely. Uir tS'(A;1 (t)) = 0 (1 < ji in), and they

satisfy the Growth Condition 3.3 with a <_ 0; namely,

lim at +Artt)] I+oo if a = 0

-aifa<0
urn~~ ~ -a+ ={ if a < 0

For some sigmoids there are several choices of functions that satisfy the above
two limits with different rates of convergence, and in some applications it may be
advantageous to select different functions AR in order to satisfy
Inequalities 4.2, 4.3, 4.5, and 4.6 with smaller values of w; (1 <; .i in). The last
two lemmas and the theorem were stated with sufficient generality to
accommodate different functions Ag. If, however, the functions Ag (1 <IL < . m)
are all the same function, then the conditions of the lemmas can be simplified.
Before closing this section, we present these simplifications and briefly discuss
qualitatively when and why one would choose functions Ag with different rates of
convergence in the two limits above.

Proposition 4.1. Let S be an odd differentiable function such that on (0,
S), 5' is nonincreasing and positive. Assume that Ag1 = A for all I = 12, 2 .... .

Let
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a =-min v(x - xt_1)

If w > 0 satisfies the following three inequalities

A(w) > a (4.10)

-a" w + A(w) < 0 (4.11)

0 < w S'(A(w)) < 82 (4.12)

and wit = w for all A± = 1, 2, ..., m, then Inequalities 4.2, 4.3, 4.5, and 4.6 hold for
all gt = 1, 2, ..., m. Here a and 82 are as in Lemmas 4.1 and 4.2, respectively.

Proof. Since AIL = A and wg = w (1 .!t <. m), clearly Inequality 4.10 implies
Inequality 4.2 and Inequality 4.12 implies Inequality 4.5. Inequalities 4.10 and
4.11 together imply -aw + A(w) < -A(w) < -a, which implies Inequality 4.3 for 1
< St < m by definition of a. Now, the next series of inequalities follows from the
definition of a, S' > 0 and nondecreasing on (--o, 0), Inequality 4.11, S' even, and
Inequality 4.12:

0 < w. S'(w,, v(x,_i - x.;) + AA(wjL)) _ w S'(- wa + A(w)) < w S'(- A(w))

= w S'(A(w)) < 82

Therefore, Inequality 4.6 holds for all St = 1, 2, .... m. //

In Proposition 4.1 we are simply taking advantage of the fact that once
Inequality 4.3 is satisfied for that ;L that gives the smallest value of v(xp - xg-J),
then the same value wg satisfies Inequality 4.3 for all the other values of p..
Howevir, a very small value of v(xg - xg-1) may require an extremely large value of
w tt to satisfy Inequality 4.3, while the same inequality may be satisfied by more
conservative values of w;L for the other values of g.

In cases where a large discrepancy exists between the terms v(x; - xg-1) (1 I
pt < m), it may be better to satisfy each of the Inequalities 4.3 with different
values for wg.. Moreover, since the terms wgv(xg-_1 - xg) and Ap(w~t) in Inequality
4.3 are competing against each other in the sense that AA(wg) is increasing
with wg while wg.v(xA_1 - xjL) is decreasing linearly with wjL, it may be
advantageous to choose functions Ap with different rates of divergence
depending on the sizes of the terms v(xg- I - xg) (I < m). Qualitatively

21



NWC TP 7191

speaking, a slow rate of divergence for Ag implies a smaller value for wt in
Inequality 4.3, but it also implies a larger value for wg in Inequality 4.2. A faster
rate of divergence for Ag,, of course, would imply the opposite.

Finally, we should point out that the sizes of the terms v(xg-1 - x.) (1 < •± < m)
also depend on the choice of v. How to choose vT and the functions AýL optimally
will not be discussed here. These are issues that require further research. We
do believe, however, that, as a general rule, the faster S converges to 1, the
slower A11 will grow and the smaller the weights will be.

The following simple examples illustrate some of the points mentioned
above. Hopefully, they also will help the reader appreciate the simplicity of the
technique for determining weights that follows from Theorem 4.1.

Throughout these examples the sigmoid will be the hyperbolic tangent: S(t) =
tanh(t) with derivative S'(t) = sech 2 (t) (t e R). It is not hard to show that, for any
i > 0, the function

satisfies

1
t 0forallt1.
tin

m
The set X c Rm is X = -71 (1, -.). The functions Aq and S are strictly increasing. The

i=1
algorithm that we zhall use is based on Proposition 4.1. For each a > 0 and 11 > 0,
let ga,. denote the function appearing on the left-hand side of Inequality 4.11;
that is

1
ga,.n (t) = -a t + A,, (t) (t >t 1)

Let t*(a) denote the value of t where gaTj achieves its maximum value. When'*1

S= I or il = 3, one can find a closed-form expression for t*(a):•11

4 8t( (a) a),+ (a2+1 (a>0) . (4.13)
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Since ga,i is decreasing on [t*(a) , No), ve shall look in this interval for a value of w
q

that satisfies Inequality 4.11. Note that since wS'(A 1 (w))= , Inequality 4.12 is

satisfied by all w > (1/82)1/1. Similarly, since A1I is an increasing function,
Inequality 4.10 is satisfied by all w > Alf-l(a), where A - 1 denotes the inverse of

the function Al. Thus, the strategy will be to find w > max 1(1/82)1/'n, A 1 -(a),

t (a)) that satisfies Inequality 4.11. The inverse of A-n is given by

2

AnI (a) = [cosh (a)W]77 (a >_ 0)

Note that when 3 is small, one can use the following approximations:

Ia -- and t (a) , for "small a" (0 < a < 1).a 3 a

The Problem. Given xO, xi ... , Xm in Rn, y0 , yl, ..., y, in RO, el > 0, and E2 >

0, find w e X such that

I [Tw (xj)-y]i I <et (e•i<, 0<j5m)

and

I TMw(Xk)lij I < E2  (15i<5, l<j<n, O_<km)

for allw >w.

Algorithm 4.1.

Step 1.

1. 1. Compute M1 - max T I yi , (yij = jth component of yi).
Ijse i=O

1.2. Choose 6 1 (0, 1) such that 8 < EI M-1.3 1

1.3. Set a = S- 1 (1 - a]). (S"1 denotes the inverse of S.)
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Step 2.

2.1. Choose vTinRn at random.

2.2. Order the numbers vxk (0 . k < m) and relabel:

VXko < VXkI < ... < VXkm

2.3. Compute the consecutive differences of the above numbers:

ag a v(xk - Xkk - (I <!ý g< m) and order the numbers a,:

0 < aIL I<: aP2 <! ... < a;',,

If ap., = 0, repeat Step 2.

Step 3. (For Derivative Control)

3. 1. Compute

M2 max lvi (yk- Y)i I.

1<i<-

3.2. Choose 82 > 0 such that 52 < 2 2 E 2 2

Set i = 1.

Step 4.

4.1. Set a = a;.

4.2. Choose 11 > 0 for appropriate decay rate of tS'(A,1 (t)) * t. (Note: Small
1.

a calls for low rate of increase of Aq, thus low rate of decay of ; i.e.,

small ii.)

4.3. SetA=AA.
4.4. Let t A"I (a),t 2 = (I) I/TI if t 2 is too large, increase i1.

4.5. Let t* = value of t where [- t + A(t)] attains its maximum value.
4.6. Set t =max {ta, t• 2 t*}J.
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(Note: The value t has the property that Inequalities 4.10 and 4.12

hold for all w > t and the function [-L- t + A(t)] is decreasing for

t > t. )
1

4.7. If- -at + A(t)> 0, let t = (2A(t) + q)/a , lett= t, and repeat Step 4.6.
2

(Note: Here q > 0 and q z 1. The larger q is, the faster the• 1
convergence to a value t satisfying -- at + A(t) < 0; however, too

2
large a q can lead to an excessively large t.)

4.8. If -L at + A(t) <0, set wg, = t.

4.9. Ifi=m, stop.

4.10. If w;Li is not too large, set wg, = w;., for all j >_ i. Stop.

4.11. Set i = i + 1. Repeat Step 4.

Remark 4.2. Since the function g(t) -a at + A(t) is decreasing on the
2

interval (t*, -o) and lirn g(t) = - cc when a > 0, it is easy to see that the iteration in

Step 4.6 will yield a value t such that g(t) < 0 in a finite number of steps

whenever q > 0. To see this, assume g(t*) >. 0 and let T > t* satisfy g(T) = 0. Set

tk+1 = (2A(tk) +q)/a (k = 0, 1, 2, ...), where to is any point in tt*, TI. Now, if tt e
qt*, T], then g(tk) >_ 0; thus, tk 1 > tk + a" Therefore, as long as to and tk e [t*, T],

we have tký to +k-. This means that tk cannot be less than T for all k > 0. Thus,

after a finite number of iterations, tk leaves the interval [t*, T] and g(tk) < 0. ////

In the following examples, -q will be either I or 3 so that we may determine

t~ (a) from Equations 4.13.

Example 4.1a. The points of interpolation are {(0, 0), (1, 1), (1.1, -1), (2,
0)). So let x0 =0,x = 1, x2 = 1.1, x3 = 2, and yo = 0, yI = 1, y =-1,y3 = 0. Let e =
C2 = 0.001.
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Step 1.

MI=2, 8 <S = 0.00033

81 = 0.0003
a = S1 (0 - 80) = 4.402

Step 2.

Since Xo<x 1 <x 2 <x 3, letv=l, sokt1 =g (1!jtt<3)
a1 = x1 - Xo= 1

a 2 = X2- X = 0.1

a 3 = X3- X2 = 0.9

Since a2 <a 3 <aj, wehave ,±1=2, 112 =3, 1t3=1.

Step 3.

M 2 = IYI-YO I+ 1Y2-YI I+ 1Y3-Y2 1=1+2+1=4
82 < 2e 2/4 = 0.0005
82 = 0.0004
Let i = 1.

Step 4.

a = ag, = a2 = 0.1

Since a is "small," choose "small" -q.
Let il = 1
A(t) = AI(t) = coshlr(t) (t > 1)
A'I(a) = cosh(a), (a a 0)
tg = cosh (a) = cosh (4.402) = 40.81
t82= 1/82 = 2500. This value of t82 is excessively large. We must increase q.
Let q = 3
A(t) = A3(t) = cosh'l(t 2)

A'l(a) = lfcosh(a)

ta =-cosh(c) --= 6.38 [smaller value of ta means that A(t) is increasing faster]

t82 = (1/82)1/3 = 3"'2F500 = 13.57. This value of t82 is acceptable.

t* = t3 (a) a 4/a = 40

t= 40.

The following table shows the results of the iterations involved in Step 4.6.

We shall use q = I and g(t) = - t + A(t).
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a
a t A(t) g(t) tnew = 20 A(t)+ 10

40 -2 8.07 6.07 171.4
171.4 -8.57 10.98 2.41 229.6
229.6 -11.48 11.57 -0.09 ///

Let wA, = w2 = 230.
Since a2 is smaller than all the other aRg, the value of w2 will work for all of the

other weights; however, we consider w2 too large, so we will repeat Step 4
with i = 2.

Step 4 with i = 2.

a = a4.2 " a3 = 0.9

Set q = 3 (in order to meet the derivative requirement with an acceptable
value of w3)

ta and t82 are as before (because 1l did not change)
t* = (a). a- = 4.45

t3 a
t = 13.57 and g(t ) < 0.
Let w9 2 = w3 = 13.57.

Note that since t = t8 2 , it is the derivative requirement that will determine all
of the remaining weights (i.e., w 1) even if the remaining an.. are much larger than

a 3.

Let wI = w3 = 13.57. Stop.

The vector w 0 [13.57, 230, 13.571 satisfies Theorem 4.1 for the data of this
example.

To complete the example, we shall determine a neural net mapping Tw :R-.
R that interpolates through the data with an error less than el = 0.001 and with
derivative less than E2 = 0.001 at the interpolation points. We shall use w = w.

1

Recall that Tw(x) = Yo + -L Y [Sm(Lw(x)) - Sm(Lw(xo))1, where

[wl(x - x1 ) + A(wj)]

Lw(x)j w2(x-x 2)+A(w2)| , Y =[l-YO-y Y2-YI Y3 -Y 21

[w 3(x - x3) + A(w 3)J
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Note that the function A in the ith component of Lw(x) is the function used in the
computation of wi (1 :! i <. 3). The result is

Tw(x)=-1[S(13.57x - 7.67)- 2S(230x - 241.43)+ S(13.57x - 21.24)]
2 iii

Example 4.lb. This example is the same as Example 4.1a. We want to
show that, by working directly with Inequalities 4.3 and 4.6 instead of the
shortcut presented in Proposition 4.1, Theorem 4.1 may be satisfied with smaller
weights. We focus on the second weight w2. A simple calculation shows that w2 =

185 satisfies Inequalities 4.2, 4.3, 4.5, and 4.6 with Ag.(t) = cosh-l(t2), i.e., 11 = 3.

Moreover, w = [13.57, 185, 13.571 satisfies Theorem 4.1. Note that w2 is smaller
than in Example 4.1 a. ///

Example 4.1c. Now let us consider Example 4.1a without the requirement
on the derivative. Recall that in Step 4 we were forced to increase Tq from I to 3
in order to satisfy the requirement on the derivative. Without this requirement,
we can use Yj = 1 to solve the interpolation problem with a smaller weight w2.
Again, we only focus on the second weight and the iterations involved in Step 4.6
with q = I and

A(t) = AI(t) = coshl 1(t)
a = 4.402
ta = 40.81

t (a) a 2/a = 20

t = 41.

t -t/20 A(t) g(t) t new = 20 A(t) + 10

"41 -2.05 4.406 2.36 98.12
98.12 -4.91 5.279 0.37 115.6

115.6 -5.78 5.44 -0.33 //

The interpolation problem can be solved with w2 = 116. Moreover, if we work
directly with Inequality 4.3, we find that w2 = 100 also will solve the interpolation
problem. /1/I

Example 4.2. The six inputs of this example belong to R 3 ; x0 through x5

are, respectively, [0 0 0 T, [0 1 OIT, [1 0 0 ]T, [1 1 0 JT, [0 0 0.1]T, and
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[0 0 1IT. The outputs yo through y5 belong to R 2 ; they are [0 0 T, [1 0 ]T, [0
1 ]T, [0 OJT, [1 1 JT, and [0 3]T. We wish to interpolate through the points (xi,
yi), 0 < i < 5 with an error bound El = 0.001 and a derivative less than E2 = 0.01
at the interpolation points.

Step 1.

M= max {2, 51 = 5, 8 < 1  = 0.00013

81= 0.0001
a = s-1(l - 31) = 4.952.

Step 2.

Let v = [2 1 -1] to get
VXo = 0, vx1 = 1, vx 2 = 2, vx3 = 3, VX4 = -0.1, VX5 = -1.
Since vx5 < vx 4 < VXo < vxI < vx 2 < vx3 , we have
ko = 5, kl = 4, k2 = 0, k3 = 1, k4 = 2, k5 = 3.
a, = V(Xk1 - Xk0 ) = VX4 - VX5 = -0.1 - (-1) = 0.9
a 2 = V(Xk2 - Xkd) = VXo - VX4 = 0 - (-0.1) = 0.1
a 3 = v(xk 3 -Xk 2 ) = vx -vxo = 1 - 0 = 1

a4 = V(Xk 4 -Xk 3 ) = vx 2 -vx = 2 - I = I
a5 = V(Xk5 -Xk 4) = VX3 -VX 2 = 3 - 2 = I
Since a2 < a, < a3 = a4 = a5 we have
g` = 2, 1,2 = 1, J±3 = 3, 4±4 = 4, 5 = 5.

Step 3.
4

Consider the matrix M- E I Yk,, - Ykl lvi

M- [I Y4-Y5 I + I YO-Y4 I + I YI-Yo I + I Y2-Y + I Y3-Y2 2 1 1]

[4]~~ ~ ~ [211 =I44

By inspection, we get M2 = 10, so 82 < 10-- = 0.002.

Let 82 = 0.001

Let i = 1.
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Step 
4.

a = aL = a2 = 0.1

Let TI = 3, A(t) = A3(t) = cosh-1 (t2), A-1 (c) =qcosh()
tc= 8.41
t= (1/52)113 = 10

S= t*(a) = 40

W2 = 230 (see Example 4.1a.)
Let i = 2.

Step 4.

a= aLP2 = a, = 0.9

t = 8.41, t82 = 10 (as before)
* 4

= t3 (a) a = 4.45

t =max {ta.,t62 , t*} = t 2 =10

t -0.45t A(t) g(t) tnew= 2.22 AQf) + 1.11

10 -4.5 5.29 0.8 12.85
12.85 -5.78 5.8 0.015 13.98
13.98 -6.29 5.97 -0.32 /I

w, = 14

Let i = 3.

Step 4.

a = a,3 = a3 = 1
,q =3
tx = 8.41 and t52 = 10 (as before)

t* = (a) a 4 4

t = 10
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t -0.5t A(t) g(t) tnew = 2 A(t) + I

10 -5.0 5.29 0.29 11.58
11.58 -5.79 5.59 -0.2 //I

Set w3 = 11.6 and all the rest of the weights = 11.6
W4 = 11.6
W5 = 11.6
w = [14, 230, 11.6, 11.6, 11.6 1T.

The last example illustrates the modular features of the technique and shows
how to estimate the error directly from Lemma 4.1.

Example 4.3. Consider the "exclusive or" problem; that is, a map that
interpolates through (xi, yi), i = 0, 1, 2, 3, where x0 = [0 OJT, x, = [0 lIT, x2 =
[1 O0T, x3 = [1 lIT, Yo = 0 = y3, and Yj = Y2 = 1. We can assemble a network that
implements the exclusive or problem using "part" of the network in Example 4.2.

Note that the matrix v = [2 1] maps the vector xi into i for each i = 0, 1, 2, 3;
note that the matrix v of the previous example achieved the same result. Thus,
we already have a network (with three hidden units) in the previous network that
maps the integers 0, 1, 2, 3 into desired outputs YO, Y1, Y2, Y3. Consequently, all
we need to do is to use the correct matrix Y. If v = [2 11, w= [11.6, 11.6, 11. 61 T,
and Y = D1 0 -1], we have a net that implements the exclusive or problem.

Let us use Lemma 4.1 to estimate the error. Since wi = 11.6 and A(wi) =
5.59, we know that Inequalities 4.2 and 4.3 hold with a = 5.58. Since I - S(ca) =
0.000028, we conclude that Inequality 4.4 holds with 81 = 0.00003. By Lemma

3 3
4.1, the error is bounded by 281 i_ 1yi I = 38, = 0.00009. The mapping is given

by

1

T(x) =" [S(11.6 vx - 6.01) - S(11.6 vx - 29.21)] - 0.000005 (x E R 2 ),

with v = [2 1].

T(x 0 ) = 0, T(xl) = 0.99998 = T(x2), T(x 3) = 0.000009. ///I

Remark 4.3. The reader might have noticed that when the value of -q is
determined and fixed by the requirements on the derivative at the interpolation
points, as it was the case in some of the examples above, then the algorithm is
more efficient if Steps 4.2 through 4.4 are performed immediately after Step
3.2, for then those steps are performed only once. ////
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APPENDIX

Proof of Lemma 3.1. Let Cij denote the unique line through xi and xj and
let Hij be the hyperplane through the origin consisting of all vectors in Rn that
are perpendicular to ij for0<i.m,O0<j.m, and i •j. LetH=U Hi® :ij, 0<-

i .m, 0<j in). If vT H, then vxi' :0< i< m) is a set of distinct numbers; for
if not, say vxi = vxj, then v(xi - xj) 0 0, which. implies that vJ is perpendicular to
the line ij; thus, vT c H, a contradiction. ///

Remark A.]. Since the set H has Lebesgue measure zero, it follows that all
vectors vJ in Rn satisfy the hypothesis of the lemma except for those on a set of
measure zero. ///

Proof of Lemma 3.2. We must show that for every rk >. 0

lim Ak (t)=0
t•-- (A-1)

and

lir t S'(at + Ak(t)) = O foralla*•0 ,t--"* (A-2)

where Ak satisfies Condition 3.9 and Condition 3.3 with a < 0.

Fix rk ;> 0 and consider Ak : (tk, 0o) -ý (0, Go). If Equation A-I does not hold,
there exists M > 0 and an unbounded sequence ttL < l2 < ... < tin < ... such that
Ak (0tn) <_ M for all n > 1. Since S' is nonincreasing on (0, -o), we have S'(Ak(Jtn)) 2_
S'(M) for all n > 1. Consequently,

p S'(Ak(gpn)) >ý Žn S'(M) -4-oo as n -+ 4 ,

which contradicts Condition 3.9. Therefore, Equation A-I holds.

To prove Equation A-2, first assume that rk = 0. Since S' is nonincreasing on
(0, -o), S'(at + Ak(t)) <. S'(Ak(t)) when a > 0 and t > max (0, tk). Thus, when a > 0,
Equation A-2 trivially follows from Condition 3.9 with rk = 0. When a < 0,
Condition 3.3 gives

-.n [1 at + Ak(t) =-03
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1
Certainly, then, there exists T >. tk such that I at + Ak(t) < 0 for all t > T; that is,

- ta - Ak(t) > Ak(t) > 0 for all t > T. Since S' is an even function and nonincreasing
on (0, co), it follows from the last inequality that

tS'(ta + Ak(t)) = t S'(-ta - Ak(t)) <. tS'(Ak(t)) for all t > T.

Hence, when a < 0, Equation A-2 also follows from Condition 3.9 with rk = 0.

Next, fix rk > 0. To establish Equation A-2, we shall show that to every E > 0
there corresponds a T ,- tk such that tS'(ta + Ak(t)) < E for all t > T.

If ro r •, the hypothesis of the lemma gives us a function Ao : (to, o) - (0, 0)

such that

t S'(Ao(t))=2 for all t>to(2 (A-3)

If a > 0, Condition 3.3 applied to Ao shows that there exists To _. to such that
t(-a) + Ao(t) < 0 or, equivalently, ta > Ao(t) for all t > To. Since S' is
nonincreasing on (0, oa) and Ak is positive valued, it follows from the last
inequality that

S'(ta + Ak(t)) < S'(Ao(t)) for all t > max {TO, tk}

Let T a max {TO, tk}. Equation A-3 and the last inequality imply tS'(ta +Ak(t)) <.

E-< E for all t > T. This proves Equation A-2 for a > 0 and ri > 0.

Now assume that a < 0. Condition 3.3 applied to Ak and Ao shows that there
exist T1 > tk and T 2 > to such that

1
-at + Ak(t) < 0 for all t >T1

1 at + Ao(t) < 0 for all t > T2

Consequently, if T n max (TI, T2 ), then - ta - Ak(t) > Ao(t) > 0 for all t > T. And,
as before, since S' is an even function and nonincreasing on (0, oo), we have

tS'(at + Ak(t)) = tS'(-at - Ak(t)) < tS'(Ao(t)) = L < e for t > T.
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Therefore, Equation A-2 holds when a < 0 and rk > 0. This completes the proof of
Lemma 3.2 /.//

Remark A-2. For the purpose of this remark, denote by Ar a function Ar
(tr, cc) -- (0, -c) that satisfies

t S'(Ar(t)) a r for all t > tr , (A-4)

where r > 0, and let Ao : (to, oc) -- (0 -c) satisfy

lirn t S'(Ao(t)) = 0

It is easy to see that the functions Ar above are nondecreasing for all r > 0
whenever S' is nonincreasing on (0, co). This fact was not needed in the
development of the theory in Section 3; however, it may prove useful when
implementing the techniques presented in this paper. To see that Ar is
nondecreasing when r > 0 assume otherwise; assume there exist a < b, both in
(tr, -c), such that Ar(a) > Ar(b). Then, S'(Ar(a)) •. S'(Ar(b)), which implies
r = a S'(Ar(a)) < a S'(Ar(b)) < b S'(Ar(b)) = r, a contradiction.

The function Ao can be defined in such a way that it too is a nondecreasing
function, provided tr does not increase as r decreases. This can be done as
follows. Suppose that, for 0 < r < ro, tr does not increase as r decreases. Let

f: (tro, c) -. (0, r.) be a decreasing function such that irn f(t) = 0. Define

A0 : (tro, ,,) -* (0, -c) by

Ao(t) a Af(t) (t) for t > tro

Note that f(t) < ro for all t > tro implies tf(t) <tro for all t > tro. Therefore, Af(t)(t)
is well defined for all t > tro; that is, t is in the domain of Af(t) for all t > tro. We

claim that Ao is a nondecreasing function. The proof is by contradiction: if
Ao(a) > Ao(b) for some a < b in the domain of A0 , then, by definition of A0 , we
have Af(a)(a) > Af(b)(b). Since S' is nonincreasing on (0, cc), with the aid of
Equation A-4 we conclude

f(a) = a S'(Af•(a)) < a S'(Af(b)(b)) < b S'(Af(b)(b)) = f(b)
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which contradicts the fact that f is a decreasing function. Note that lim

tS'(Ao(t)) = Jim tS'(Af(t)(t)) = •_fi f(t) = 0. //I
t-t-*m

Proof of Lemma 4.1. Fix j ( 0, 1, 2 ..... m) and w a X. Assume w satisfies
Inequalities 4.2 and 4.3. Let zj n Sm (Lw(xj)) - Sm(Lw(xo)) and let Zjk denote the
kth component of zj (1 <. k <_m). Set Zjo a 2 and Zj(m+l) - 0. Equation 4.1 gives

[ 1 zj.1 In
Tw,(xj) - Yj -- YO + I" Y 7]- Yj = Yo + " -klzjk (Yk -- Yk- 1) -- Yj

.[ k, yk(zjk - Zjlk+1)) + yj(zjj - zjq+I)- 2)] if j < m

(A-5)

1-L__ yk(zjk - zj(k+1)) + ym(Zn.u - 2) ifj=m

Hence, it suffices to prove Inequalities A-6 through A-9 for 1 < j -. m. Note that
the interpolation through (xo, yo) is exact.

12 - zjl I < 28, (A-6)

Izj- zjj(k+1)I <28, for 1 k<m,k*j (A-7)

zjj -zj(i+)-21 <38, ifj<m (A-8)

izn I < 81 ifj<m ,and [znm-2[ <28, (A-9)

Clearly, Inequalities A-5 through A-9 imply Inequality 4.4.

Since v(xj - xk) >_ 0 for I S k <_ j, Inequality 4.2 implies

wkv(xj - xk) + Ak(wk) > a for I s k S. j

36



NWC TP 7191

Therefore, by the choice of a, the kth component of Sm(Lw(xj)) is within 81 of 1 for
1 <_ k <=j; that is,

1 -81 < S(WkV(Xj -Xk)+Ak(Wk)) < 1 for 1 <k~j (A-10)

Since v(xj - xk) <. v(xk-1 - xk) for 0 <j < k < in, Inequality 4.3 implies

wk v(xj-xk)+Ak(Wk)<- C forO<j<k<mi.

Therefore, by the choice of a, the kth component of Sm(Lw(xj)) is within 81 of -1 for
0 j <k < in; that is,

- 1 < S(wk v(xj -xk) + Ak(wk)) <- I+81 for0<j<k m . (A-i1)

The definitions of 5, Lw, and zj give

IZjk - Zj(k+]) 1 • I Sm(Lw(Xj))k - Sm (Lw(xj))k+l I +
ISm(Lw(xo))k- Sm(Lw(Xo))k+lI for 1<k<m , (A-12)

where Sm(Lw(xj))k denotes the kth component of Sm(Lw(xj)) for all k and j.

The second term on the right-hand side (RHS) of Inequality A-12 is less than
81 for 1 < k < m as Inequality A-11 with j = 0 shows. The first term on the RHS of
Inequality A-12 is less than 81,_as shown by Inequality A-10 when 1 <. k < j and
by Inequality A-11 when j < k < in. This proves Inequality A-7.

Next, note that

I zii - zj(j+t) - 21 < I Sm(Lw(xj))j - Sm(Lw(xj))j+l - 21 +

I Sm(L,(Xo))j - Sm (L.(x))j+i (A- 13)

As before, the second term on the RHS of Inequality A-13 is less than 8 1 if j <
m. By Inequality A-10 with k - j and Inequality A-I l with k - j + 1, one concludes
that

2 - 281 < Sm(Lm(xj))j - Sm(Lw(xj))j+l < 2
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which shows that the first term on the RHS of Inequality A-13 is less than 281.
This proves Inequality A-8.

Consider now zjj:

0 < 2 - zjI = 2 - [Sm(Lw(xj)), - Sm(Lw(xo))i] < 2 - (1 - 81) + (-1 + 8 1)

where we used Inequality A-10 with k = 1 and Inequality A-Il with j = 0. This
proves Inequality A-6.

If j < m, then Inequality A-Il implies

I Zj = Sm(Lw(Xj))m - Sm(Lw(Xo))m i <81

If j = m, then Inequality A-10 with k = j = m and Inequality A-11 with j = 0 and k =
m give

0 > Zmm - 2 = Sm (Lw(xm))m - Sm(Lw(xo))m - 2 > (I - 81) + (I - 81) - 2 =28 1

Therefore Inequality A-9 holds. This completes the proof of Lemma 4.1. ////

Proof of Lemma 4.2. If Tw(x) is given by Equation 4.1 then, by Equation
2.1,

I
(T'w (xk)]ij Yi S'm(Lw(Xk))wvj (0 <_k< _m, I l<_jsýn)

where Yi denotes the ith row of the matrix Y (I < i <__) and vj denotes the jth
component of v (I < j <_ n). This leads to

I m
[T'w(Xk)]ij --- • (Y4 - Yý-)i w• S'(w4 v(Xk - xp) + A•(w4)) vi

Hence, if suffices to show

0 < wA S'(w• v(xk-xg)+ Ag(wwp)) < 82 (1_-<jim, 0<k m) . (A-14)
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Inequality A- 14 reduces to Inequality 4.5 when k = IL (1 <I. .g . m), and it is
implied by Inequality 4.5 when k > Ig (1 s.I < m) because S' is nonincreasing on
(0, -). Finally, since

WAV(Xk - xL) + A,L(wL) < w• v(xL.1 - x.) + AL(wl1 ) when k < IX

and S' is nondecreasing on (--, 0), Inequality 4.6 implies Inequality A-14 for k <
g. (1 :- < m). Note that we used the fact that S is an odd function (which implies
S' is even). ///
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