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1. INTRODUCTION

This paper considers the assignment of weights for neural networks with one
hidden layer so that the network interpolates through a given finite set of input-
output points with low sensitivity to noise in the input patterns. The sensitivity
at the input patterns is minimized by minimizing the derivative of the input-
output map of the interpolating network at the input patterns. The idea is that if
the derivative at an input point is small, then a small variation around that point
will produce a small variation in the output. This idea is made precise in the
next section.

The approach presented here gives a direct method for determining the
weights. The input-output map defined by these weights interpolates through
the given set of points exactly and the derivative at the input patterns can be
made arbitrarily small. The inversion of a nonsingular matrix is required for
exact interpolation. If the exact interpolation requirement is relaxed, then the
inversion of that matrix can be circumventied. It is possible 10 determine weights
so that the network approximately interpolates through the given set of points
with any desired degree of accuracy and with a sensitivity as small as desired.
Both the accuracy of interpolation and the sensitivity to noise are controlled by
the size of the weights in the first layer of weights. Estimates on how large these
weights have to be to achieve a desired interpolation accuracy and noise
sensitivity are also presented, as well as an algorithm for determining the
weights.

Other authors have studied direct methods for weight assignment. By direct
methods we mean nonrecursive methods; that is, methods that determine the
weights as a well-defined, explicit function of the input-output pairs to be
implemented. In Reference 1 it is shown how to approximately interpolate, with
any desired degree of accuracy, through 2m-1 points with a network that has m
neurons in the hidden layer and sigmoidal activation functions. It is also known
that one can exactly interpolate through m+1 points with a network that has m
neurons in the hidden layer and different types of activation functions (see for
instance References 2 through 4). Here, the interpolation is through m+1 points
using a network with m neurons in the hidden layer. The interpolation is done
in such a way that the derivative at the points of interpolation can be controlled
and can be made arbitrarily small. The input and output spaces can be
multidimensional.

The weight assignment techniques for approximate interpolation can be
applied to find a good set of initial weights for problems that involve leamning
more points than the degrees of freedom of the net. This can be an important
application, since the speed of convergence of iterative learning algorithms is

3




NWC TP 7191

well known to depend severely on the choice of initial weights (References S and
6).

The notation required to present these results is introduced in Section 2,
where we also state one of our main results and some preliminary results. In
Section 3, we define weights and biases for a family of neural networks that solve
the exact interpolation problem. The family is parametrized by a vector w € R™M
whose size controls the derivative of the input-output map at the interpolation
points. We show that these derivatives can be made arbitrarily small by
increasing the components of the vector w. Approximate interpolation with small
sensitivity is addressed in Section 4. An algorithm for approximate
interpolation with low sensitivity is presented and illustrated with simple
examples. Some of the more tedious proofs are relegated to the Appendix.

2. NOTATION AND STATEMENT OF MAIN RESULTS

We shall consider feed-forward neural networks with one hidden layer
consisting of m neurons, each of which has a nonlinear activation function that
will be denoted by S. The activation function S is assumed to be a continuous

function mapping the real line R into the open interval (-1, 1) with hrjr:lx S(t) = 1.
1—

For an m-vector y with components y;, yi, ..., ym» We can define the m-
dimensional sigmoid Sy by the formula

rS()’l)
S(yz)

Smy)=| (yeR™ .

| S(Ym) |

The collection of k by ¢ real matrices is denoted by RKkX and the space of k-
dimensional real vectors is denoted by RK, where k and ¢ are any two positive
integers. If the network has n inputs and ¢ outputs, then the transfer function
(input-output map) of the network is a function F : R? = R’ of the form

F(Z)=o,+aS, (WZ+B) (Ze R"
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where W € RMXD represents the first layer of weights, o € R/XM represents the
second layer of weights, and the vectors B € R™ and o, € R? are bias vectors.

If S is differentiable, then Sy, is differentiable as well as F. Let S, and F'
denote the derivatives of Sy and F, respectively. Then S'y : RM — RMXM apg F':
RM - RN are given by

Smly) = diag (S'(y,), S'(y,), ..., S'(y,,) (ye R™
F(Z)=a S(WZ + B)W (ZeR" 2.1

where S' denotes the derivative of S, and diag(S'(y;), .... S'(ym)) is a diagonal
matrix with S'(y1), S'(y2), ... S'(ym) along the diagonal. Note that the ijtP

, , oF; .
component of the £ x n-matrix F (Z) is given by [F (Z)]ij = 37'.(2), where F; is the ith
)

component of F and Z; is the jth component of Z (1 <i<¢ 1<j< n).

Remark 2.1. For a vector valued function F : RM - R¥¢ such as the one
above, the (total) derivative F'(Z) of F at Z € R" is, by definition (see Reference 7
or 8), a linear transformation from R?™to Rf satisfying

- | FZ+h)-F2)-F (2)h || _

w0 Th 0

where Il - Il denotes the underlying vector norm. This means that for every € > 0
there exists a 8 > 0 such thatif il h Il < 3, then

| FZ+h) -FZ)-F'@)h || <e [Inl .

For Il h Il < 8, the above inequality implies

| FZ+0)-F@ <l F' @) h li+elh I<IF @) I+ellhll .5 5
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Inequality 2.2 has a significant interpretation. If Z represents a fixed input to
the network with desired output F(Z) and h represents a small (lhll < §)
perturbation to the exact input Z, then Inequality 2.2 asserts that the output
F(Z + h) to the perturbed input (Z + h) will be within a distance (Il F' (Z) Il + £] of
the desired output F(Z). Therefore, by making !l F' (Z) Il small, the output of the

network to an input perturbed by noise will remain close to the desired output.
/1t

Given a finite set of input-output pairs,

Q={(x,y;) e Ran‘:OSiSmandxi;txjwheni#j}

we shall say that F interpolates through Q if F(xj) =yj fori=0,1,2, .., m.

Throughout this paper, the matrix W of first layer of weights will be given by
an outer product W = wv, where vT € R will be fixed and chosen so that vxo < vx;
< .. < VXgp. The m-vector w will belong to an unbounded open subset G of R™,
The second layer of weights matrix o and the bias vectors oy and B will be defined
as functions on G. Thus, we shall define (in the next section) functions a: G -

Réxm B :G - RM, and ap : G - R¢, and a family of neural networks Fy (w e G) of
the form

F(2)= %(W) + o(w) S (wvz + B(wy) (ze R" (2.3)

such that Fy, interpolates through Q for every w ¢ G. Moreover, under certain
conditions on the sigmoid S, the function B : G - R™ can be chosen so that

lim Fu(x)=0 for0<i<m
W-poo

The notation w — ®means that wj - @ forall i =1, 2, ..., m, where w; (1 £ig
m) are the components of w ¢ R™M-,

These results, when combined with Remark 2.1, show that there exist neural
networks that interpolate through the set Q with an arbitrarily small sensitivity to

noise at the inputs xj (0 € i< m).

* The symbol //// indicates the end of a proof, an example, or a remark.
6
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3. WEIGHT ASSIGNMENT FOR EXACT INTERPOLATION AND
DERIVATIVE CONTROL

In this section we shall define a set G in R™ and a family of neural networks
Fw :R? 5 R?¢ (w e G) of the form

F,, (x) = (W) + 0(W) Sp(wvx + Bw))  (xe R7) 3.1)

such that Fy, interpolates through Q for every w € G. To solve the interpolation
problem, it is required only that the activation function S : R - (-1, 1) be

continuous with im S =% 1.
t—too

Next we will show that if the sigmoid S satisfies certain conditions for
derivative control, then the bias vector function B : G 5 R™ can be defined in such
a way that the derivative of Fy can be made arbitrarily small at the points of
interpolation.

3.1. EXACT INTERPOLATION

Let a set of interpolation points Q = {(xi,yij)e RPx R :0< i< mand xj #x;
when i #j} be given.

The first stej. is to find a vector vI € R™ such that

VXg< VX; € VX3 < ... < VXp, . (3.2)

Such a vector vT always exists as asserted by the next lemma; however, we may
have to relable the x; (0 £ 1< m).

Lemma 3.1. Given distinct points xo, X;, X2, ..., Xm in R7, there exists a
vector vI € R such that {vx;: 0 <i< m} is a set of distinct numbers.

This lemma is proved in the Appendix.

Note that v denotes a row vector, while its transpose vI denotes a column
vector in RD,
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Given vT e R" satisfying Inequalities 3.2, we define W = wv with w € R™.
Next, one selects any m continuous functions Ak : (g, ) > (0, ) (1 £ k< m)
that grow slower than linear; that is, they satisfy the Growth Condition

+ o0 ifaz0
lim [ta+ A (D] = (1<k<m)

~— oo ifa<O ' (3.3)

For example, Ax(t) = (t-tx)efort >txand 0 <e <1, k=1,2,..,m

m
The bias vector function B is defined on the open set XEkl:I‘ (4, w)cR™. If

w = (W, W2, ..., Wm]T € X, then the ith component of B(w) is given by

Bi(w) = Ay(w;) = wyvx; (we X, 1<i<m) . (3.4)

To simplify the notation, let Ly : R? - R™M denote the affine transformation
defined for each w € X by

L, (x) = wvx + B(w) (xe R") .

Note that for each w ¢ X, Ly is the transformation between the input layer and the
hidden layer. By Equation 3.4, the ith component of L (x) can be written as

[L,(X)]; = w;v (x = x;) + Al(w;) (xeR",1<i<m) . 3.5)
Let A(w) denote the m x m matrix whose j“‘ column equals
Sm(Lw(x)) = Sp(Ly(x;-1)) (1€jsm,we X) . (3.6)

Note that since the sigmoid S and the functions A; (1< i< m) are continuous,
the matrix valued mapping w — A(w) defines a continuous map A : X - Rmxm,
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The set G is defined to be the collection of all vectors w € X for which A(w) is
an invertiblec matrix. We shall see shortly that G is an unbounded open set in
Rm.

The matrix valued function o : G - RXM s defined by

aw)=YAlw) (we@ , | (3.7)

where YE[yl-yOZY2"yl Z...Iym—ym_1]€ R m .

Finally, ag: G — Rfis defined as

0, (W) = y— olw) S (Lo (x,)) (we G) . (3.8)

Our first theorem shows how this construction solves the interpolation
problem. It also shows why it suffices to have m neurons in the hidden layer to
interpolate through (m+1) points.

Theorem 3.1. For each w € G, the layered neural network
F,(x) = o (w) + alw) S (L, (x)) (xe RY)

interpolates through Q.
Proof. The proof is by induction. Fix w e G. The definition of ao(w)

(Equation 3.8) clearly implies Fy(xo) =yo. Assume that Fy (xy) =y for0 < k <m.
If ec,; denotes the (k+1)S! column of the mxm identity matrix, then

Fw(xk+1) - Fw(xk) =Y A.I(W) [Sm(Lw(xk+1)) - Sm(Lw(xk))]
=Y €1 = Y1 ~ Yk -
Here we used the definition of a(w) (Equation 3.7) and the definition of the

(k+1)st column of A(w) (see Expression 3.6). It follows that Fy (Xk.+1) = Yks1- This
completes the proof. 1111
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For the construction above to work, it is essential that A(w) be invertible for
some values of w. This is guaranteed by the next proposition, which is a
consequence of the Growth Condition 3.3 and the asymptotic properties of S.

Proposition 3.1. lim A(w) = 2Ip, where I, denotes the m x m identity

W—yo0

matrix. Consequently, G is an unbounded open subset of R™M., More precisely,
. m
there exist Tk 2 large enough (1 < k < m) such that the product kl_]l (Tk , %) is

contained in G.

Recall that Lm means that w. -5 o foralli=1, 2, ..., m.
W00 1

Proof. If U denotes the collection of all inveniible matrices in RMXM  then U
is an open set containing 2I,. Therefore, if the above limit holds, then U contains

m
A(w) for all w large enough. This implies that G contains the product kI_Il (Ty > =)

for Ty large enough (1 € k < m). Moreover, since A : X - RMXM {5 continuous, G =
A-1(U) is open in X, hence open in Rmxm

To prove that A(w) converges to 2lp for large w, let Ajj(w) denote the ijth
entry of A(w), 1 <i<m,1<j< m. Equation 3.5 and Expression 3.6 give

Agj(W) = S(WiV(Xj - Xi) + Ai(wi)) - S(in(xj—l - xi) + Ai(wi))
S(Ai(wi)) - S(WiV(xi_l - Xi) + Ai(wi)) lf_] =1
= S(Wi"(xm - Xi) + Al(Wl)) - S(AI(W,)) ifj=i+1

[ Swiv(x; — x;) + A(wy)) — S(wiv(x;_; = x;) + Ajwy)) if j<iorj>i+]1

Hence it follows from the choice of v (Inequalities 3.2), the asymptotic properties
of S, and the Growth Condition 3.3 that

2if j=i
lim AU(W)=
W—doo
Oif j=i
This completes the proof of the proposition. 111/

10
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Remark 3.1. The Growth Condition 3.3 on the functions Agx (1 < k< m)
was instrumental in the proof of Proposition 3.1, which hinges on the fact that
A(w) converges to an invertible matrix as w — o, and this guarantees the
invertibility of A(w) for w in the unbounded set G. It should be pointed out that
if one is only interested in solving the interpolation problem, then one may do
without the Growth Condition 3.3 and replace the functions Ag by arbitrary
constants. If Ag are constants (1 < k < m), then A(w) still converges to an
invertible matrix M as w — . Thus, Proposition 3.1 will hold for arbitrary
constants Ay if 2l is replaced by the matrix M, which has the form

ral bl 0 0
0 a, b, 0
M=
0 0 -1 bm-l
0 0 0 a,

with a, =1 + S(Ay) and by =1 - S(Ax) (1 £k < m). Note that ay - 2 and by - 0 if
Agx 9 = (l<kg m). Of course, Theorem 3.1 holds whenever A(w)is invertible,
independent of what the limit of A(w) might be asw — oo, It is because the Growth
Condition 3.3 will be required to control the derivative of Fy at x; (0 < i< m) that
we chose to present this approach for solving the interpolation problem.

Moreover, the fact that A~1(w) —)%lm as w — o will lead to a simple formula for

the weight matrix a; namely, %Y. which will solve the interpolation problem
approximately without matrix inversions. 1111

3.2. DERIVATIVE CONTROL

To control the limiting behavior of F'y at the points of interpolation as w — oo,
we require that the functions Ax approach infinity as w — < in a particular way.
Given r, > 0, we assume that the functions Ak : (t;, =) = (0, ) (1 £k < m) in
Equation 3.4 satisfy the Growth Condition 3.3 and the two conditions below:

lim t S'(A () =0 if =0
[ S o

3.9
tS'(Ag(W) =1, fort>t ifr, >0

11
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lim tS'(at+ A (1)) =0 fora=0and1<k<m
t—o0 (3.10)

These conditions for derivative control are satisfied by a vast class of
differentiable sigmoids. This class includes commonly used sigmoids such as the
hyperbolic tangent, for which

A) = cosh’! [\/t/rk ] , t> , whengp >0 ,

and

Ag(t) = cosh’! [Vt““] ,t>1 , forany € > 0 when rp =0

Another example is the inverse tangent S(t) = %tan‘l (t), (e R), for which

A() = V(Zt/urk)-l , t>nn/2 , whenr >0 ,

and

A(t) = \/(2t3/2/1t)-1 , t>®/2)23 , whenr, =0

For the logistic sigmoid,

t
S = je"‘zdx-l, t € R)

i

A=[2t-mVe)2 , t>Vrn/2 , whenre>0

and

A(t) = [m% gz | s "NVxn2 | for anye >0 , whenr,=0

It is not hard to show that the examples above satisfy Conditions 3.3, 3.9,
and 3.10 (see Remark 3.2).

When the derivative of the sigmoid is strictly decreasing on some infinite
interval of the positive real axis as in the examples above, then the derivative §'
of the sigmoid is invertible on that interval. Thus, one may solve the equation
t S'(Ak(t)) = 1 to obtain a unique function Ag for each rp > 0. If (§')°! denotes

12
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the inverse of S' on an appropriate domain, then Ag(t) = (SH-1 (r ) for
appropriate values of t. When ry = 0, one simply chooses a decaying function f
such that f(t) - 0 ast — e and solves t S'(Ak(1)) = f(t) to get Ak(t) = (SH1 (tlf(t))

for t in an appropriate domain. For example, f(t) = t¢€ (t > 0), withe >0
judiciously chosen so that Ay satisfies the Growth Condition 3.3.

The following lemma sheds light on some relationships that exist among
Conditions 3.3, 3.9, and 3.10 under certain assumptions on the sigmoid S.

Lemma 3.2. Suppose that S : R - (-1, 1) is a differentiable odd function
with S' nonincreasing on (0, «). Suppose that for every rp > O there exists ty > 0
and Ak : (t, <) > (0, =) such that Condition 3.9 and Condition 3.3 with a < 0
hold. Then Condition 3.3 holds for a = 0 (and all a > 0) and Condition 3.10 holds
for all a # 0.

The proof may be found in the Appendix.

Remark 3.2. 1t should be clear from Lemma 3.2 and the observations
preceding it that for odd sigmoids with strictly decreasing derivative
on some infinite interval of the positive real axis, the functions Ax satisfying
Condition 3.9 always exist and are in fact unique when r,, > 0. Consequently, it is
only the Growth Condition 3.3 with a < O that must be verified when dealing with
such sigmoids. 1111

Theorem 3.2. If the sigmoid S and the functions Ay (1 < k < m) in the
definition of B (Equation 3.4) satisfy Conditions 3.3, 3.9, and 3.10, then the

family Fy (w € G) of Theorem 3.1 interpolates through Q and

0 fork=0
lim Fu(x)=
W00

%rk(yk—yk_l)v for1<k<m

Proof. Since Ay (1 < k £ m) satisfy the Growth Condition 3.3, it follows from
Theorem 3.1 that Fy interpolates through Q for all w € G.

Now, by Equation 2.1 and the definitions of W, B(w), Ly, and a(w), for each w ¢
G,F'w(xg) is given by

Fw (xk) =Y A—l(w) S'm(Lw(Xk))WV (O0O<k<m) . (3.11)

13
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. - 1
Since lim A 1(w)=—2 L, (Proposition 3.1), it suffices to show that
W—)oo

0 fork=0

Im Sy Ly(x)) w= 4 (3.12)
ek for1<k<m ,

where ey denotes the kth column of the mxm identity matrix Ip,. Indeed, if the
Limit 3.12 holds, then by Equation 3.11,

1

1
'frkYCkV=§fk(Yk‘Yk-1)V forl1<k<m

lim F;v(xk) =
W—yoo
0 fork=0

To establish the Limit 3.12, consider the ith component of the vector S'm(Lw(xk))w
(l<igmO0<k<m)

[S'm(Lw(xk))w]i =Ww; S'(wiv(xk - xi) + Al(Wl)) . (3.13)
When i # k, v(xk - xj) # 0. Thus, Equations 3.10 and 3.13 imply

wlii_‘_',’.. [S'n(Lw(x W] =0 0<k<m,1<is<m,i#k) .

When i = k, the choice of Ax and Equations 3.9 and 3.13 imply

lim [S'(L,(x)wlk =1 (1sk<m) .
Wy —doo

The last two limits show that the Limit 3.12 holds. This completes the proof of
the theorem. 1111/

14
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By setting ry, = 0 for k = 1, 2, ..., m in Theorem 3.2, we arrive at one of the
main results of this paper.

Corollary 3.1. (Exact Interpolation With Low Sensitivity). There exists a
family of neural networks Fy, : R? > R¢ (we G) such that each Fy, interpolates
through Q and

lim F(x)=0 for 0<k<m
W--poo

Proof. The examples appearing after Condition 3.10 give sigmoids S and
functions Ay for every ry > 0 that satisfy the hypothesis of Theorem 3.2. Thus,
the corollary follows from the theorem with ry, =0 (1<k< m). /11117

Another result that follows as a special case of Theorem 3.2 when n = ¢=1
states that the values of a one-input/one-output net with m hidden neurons can
be exactly specified at m + 1 points and the derivatives at m of those points can
be approximately assigned with any degree of accuracy except for a sign
restriction.

Theorem 3.3. Let (x,, yy)e R2 (0<k< m) be m + 1 points such that xo <
X1 <..<Xnand let dy 0 <k< m) be m + 1 real numbers satisfying one of the two
conditions below:

(@) do =0and fork >0 dx =0 if yy - yg.1 = 0; otherwise, dy(yx - yx-1) 2 0.
(b) dm = 0 and for k < m dy = 0 if yx,1 - yx = 0; otherwise, dy(yx+1 - Yx) 2 0.

Then, there exists a family of neural nets Fy : R -5 R (w e G) with m hidden
neurons such that

F, (x)=y, and “l’iln’“Fw(xk)=dk 0<ks<m) .

-

Proof. Assume that Condition (a) holds. Set ry = 0 if yx - yx.1 = 0; otherwise,

2dy

<
Yk-Yk-1
appearing after Condition 3.10 and let Ay correspond to ry (1 £ k< m) as in
Theorem 3.2. Since 20 (1 £k < m), Theorem 3.2 applies with v = 1 to yield

the result.

Iy = k< m). Let S denote any of the sigmoids in the examples
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If Condition (b) holds, set X = Xpq and y; = Ymx (0 £k <m) and let 1 = .y,

2dy
Yre1-¥Yx

where 1, = 0 if yp,; - yx = 0; otherwise , r; = (0 < k< m-1). Since r; >0

(1 <k < m), Theorem 3.2 applies to the set Q = ((x, , y,) € R2:0<k < m} with

v=-1 and we obtain Fy : R - R (w e G) such that F, interpolates through Q and

0 fork=0
s Fo O =
l L L L
3 % (yx = Y1)V for1 <k<m
(3.14)
Now, by Equation 3.14 and the definitions of x,y,, and r,, we have
Jim_Fo(x) = lim Fy( ) = =5 tmi¥m-k ~ Ym-k-1)
1
= 5 rk(yk+1 - yk) = dk (0 <k< m-l)
and
. Fyls)= i, Fu)=0=d,
This completes the proof. /1111

We close this section with some comments about the last result. A network
with m hidden neurons, one input, and one output has 3m + 1 degrees of
freedom; namely, the components of the m-vectors al, w, and B and the constant
ao. Theorem 3.3 exhibits a family Fy parametrized by vectors w belonging to the
unbounded open set G in R™. Each Fy, interpolates through m + 1 points. This
accounts for m + 1 degrees of freedom. The parameter w accounts for m degrees
of freedom. The remaining m degrees of freedom were utilized to approximately
assign the derivatives at m of the interpolation points within the restrictions of
Conditions (a) and (b) of Theorem 3.3.

16
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4. APPROXIMATE INTERPOLATION WITH LOW SENSITIVITY,
ALGORITHM, AND EXAMPLES

. -1 1
An interesting consequence of Proposition 3.1 is that }l_l}'l“ A (W)=§Im.

. 1
Consequently, &Q(W)=5Y. Thus, one may be tempted to replace the second

matrix of weights a(w) =Y A-l(w) by % Y, since this choice of weights avoids

having to compute the inverse of A(w). With this choice of o the interpolation
through Q will not be exact. It will improve, however, as w increases. In this
section, this idea will be explored. We shall derive conditions that determine
how large w must be in order to approximately interpolate through Q within a

given error tolerance and with [F'w (xk)]i; within a prescribed distance from zero

O<ksm l<isfl<j<n)usinga=7Y.

The neural network map with o =% Y will be denoted by Tw. It can be written

as

T,(x) =y, +% Y [S,,(Ly (%)) — S (Lo (x,)] (xe RY ,
(4.1)

where Ly is defined in terms of w, v, and B(w) as in Section 3 and w may be any
vector in X.

Our first lemma gives a bound on the size of the error Ty (xj) - yj in terms of
the size of the vectors yj (0 <j< m). The absolute value of a real number z will
be denoted by |z | If z is a vector with components z;, z;, ..., z, then |z |=
(Vzyl Vzp ), ., 1z T, If z' is another k-vector, then |zl < |z'| means
lzjlxglz'jl fori=1, 2, .., k.

Remark 4.1. Since the sigmoid S : R —» (-1, 1) is continuous with

[ET” S(V =11, given any number d € (0, 1) one can find @ > 0 large enough that
1-8<S(t) <1 forallt>a. 111/

Lemma 4.1. Choose 81 €(0, 1) and a >0 such that 1 - 8; <S(t) < 1 forall t >
o. If we X has positive components and satisfies the following two conditions

17
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A“(Wu) > o (1<p<m) (4.2)

wv (X - x )+ A W) < - a (1sp<m) (4.3)

then

3. m .
'TW(Xj)—Yj| 5-581 i=2‘.°|yi| (1<j<m) . (4.4)

This lemma is proved in the Appendix.

The next lemma gives a bound on the size of [T:v (xk)ljj in terms of the j‘h

component of v and the size of the i'h component of the differences |yy - yu-1 |
(lspsm 1gigctl<j<s ).

Lemma 4.2. Choose &2 > 0 and assume that S is an odd differentiable
function with S' nonincreasing on (0, o). If the neural network map is given by
Equation 4.1 and if w = [wy, w2, .., wn]T € X has positive components and
satisfies the following two conditions,

0< w,S(Aw)) < B, (1sp<m) (4.5)

0 < w,S'(w, v(x —x)+A, (W) < 8 with
(4.6)

wyvix,  ~x)+Aw) <0 (1<u<m) ,

then

5 m . .
Tyl < 5 LE [0 =y [T vl O <ksm 1sis155<m), “n

where (yp - yu-1)i denotes the ith component of the vector (Yu - Yu-10 = 1,2, .,

m and [T, (xk)Lij is the ijth entry of the matrix T, (x).

18
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The proof of this temma may be found in the Appendix.

Lemma 4.1 establishes the connection between the asymptotic values of the
sigmoid and the size of the errors in the approximate interpolation. It shows that
the errors can be made arbitrarily small by choosing w large enough, as specified
by Inequalities 4.2 and 4.3. Its counterpart, Lemma 4.2, shows the connection
between the asymptotic values of the functions fa u(t) = t S'(at + Au(V)) (>t 1<
p<m ae R) and the size of the derivatives at the points of interpolation. It
shows that the derivatives can be made arbitrarily small by choosing w large
enough as specified by Inequalities 4.5 and 4.6.

The next theorem, which is the main result of this section, puts together
these results in a proof showing that when the functions Ak : (tg, ©) — (0, =)
approach infinity as w — o in the particular way described in Section 3, then one
can in fact find a vector w ¢ X such that the errors and the derivatives at the
interpolation points are arbitrarily small for all w > w. Before stating the

theorem, it should be emphasized that the two lemmas above hold true if the
functions Ag : (x, =) = (0, ») (1 < k< m) are constant functions. That is, the

values Ap(wy) appearing in the Inequalities 4.2, 4.3, 4.5, and 4.6 can be fixed
constants independent of wy (1 <pu < m) without invalidating the proofs of the
two lemmas. Notice, however, that Inequality 4.5 cannot hold for all w > w
unless S'(Ap(wy)) decreases as wy  increases without a bound, forcing Ap(wy) to
vary with wy. Since the main purpose of these two lemmas is to facilitate the
proof of Theorem 4.1, which requires Inequality 4.5 to hold for all w > w, we
chose to state the lemmas in a manner that indicates the possibility that Ap(wy)
may vary with wy (1<p< m).

Theorem 4.1. Approximate Interpolation With Low Sensitivity).
Assume that S is an odd differentiable function with S' nonincreasing on (0, ).
Let Ag : (&, ) = (0, =) satisfy the Growth Condition 3.3, Condition 3.10, and
Condition 3.9 with r, =0 (1 <k < m). Let Ty : R® - R¢ be given by Equation 4.1.
Then, for any €; > 0 and €, > 0, there exists w € X such that for all w > w,

~ T -yl < g (1<i<40<j<m)

and

T, O]l < € (1<i<f1<j<n,0<ks<m) ,

where (Tw(x;j) - yj)i denotes the it component of Tyw(xj) - yj.

Proof. Let yj; denote the ith component of yj (1<i<6,0< j<m). Letd) e
(0, 1) and 82 > O satisfy
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25] 3 ly;l < g (1<i<d

27 (4.8)
58 2 |Gu-yunil Iyl < & (1sis¢, 1<j<n)

2 7= PR T (4.9)

and choose a > 0 as in Lemma 4.1. Then, clearly, by Lemmas 4.1 and 4.2, it

suffices to show that there exists w € X such that Inequalities 4.2, 4.3, 4.5, and
4.6 hold for all w > w.

Fix pe {1, 2, ..., m}. The Growth Condition 3.3 clearly implies that there
exists wy >ty such that Inequalities 4.2 and 4.3 hold for all wy > w',. Similarly,
Condition 3.9 with ry = O implies that there exists w"y >t such that Inequality
4.5 holds for all w, > w",. Finally, the Growth Condition 3.3 and Condition 3.10

imply that there exists w™y >, such that Inequality 4.6 holds for all wy > w".
By letting wy = max {w', , w", w",} for each pe (1, 2, .., m}, we obtain w = [w,,
w1, ..., wn]T € X with the required properties. 1111

The functions Ay (1 <p < m) in Theorem 4.1 have in common that they all

satisfy Condition 3.9 with ry = 0; namely, im S'(Ay(1) =0 (1 <p< m), and they
satisfy the Growth Condition 3.3 with a < 0; namely,

+ooifa=0
lim [at+ A, (D] =
t—yo0

—-oifa<0

For some sigmoids there are several choices of functions that satisfy the above
two limits with different rates of convergence, and in some applications it may be
advantageous to select different functions Ay in order to satisfy
Inequalities 4.2, 4.3, 4.5, and 4.6 with smaller values of wy (1 <pu < m). The last
two lemmas and the theorem were stated with sufficient generality to
accommodate different functions Ay,. If, however, the functions Ay (1 <p < m)

are all the same function, then the conditions of the lemmas can be simplified.
Before closing this section, we present these simplifications and briefly discuss
qualitatively when and why one would choose functions Ay with different rates of

convergence in the two limits above.

Proposition 4.1. Let S be an odd differentiable function such that on (0,
«), §' is nonincreasing and positive. Assume that Ay, = Aforallpu =1, 2, ., m.

Let
20
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a= min vix,—x,) .

1Spsm

If w > 0 satisfies the following three inequalities

Aw)>a (4.10)
-3 WH+AMW) <0 (4.11)
0 <wS'(A(w)) < 8 (4.12)

and wy = w forallp =1, 2, ..., m, then Inequalities 4.2, 4.3, 4.5, and 4.6 hold for
allpu=1,2, .., m Here a and 82 are as in Lemmas 4.1 and 4.2, respectively.

Proof. Since Ay = A and wy =w (1 <u < m), clearly Inequality 4.10 implies
Inequality 4.2 and Inequality 4.12 implies Inequality 4.5. Inequalities 4.10 and
4.11 together imply -aw + A(w) < -A(w) < -a, which implies Inequality 4.3 for 1
< u < m by definition of a. Now, the next series of inequalities follows from the
definition of a, §' > 0 and nondecreasing on (-, 0), Inequality 4.11, S' even, and
Inequality 4.12:

0 < wy S'(wy, v(x,_; — %) + Ay (W) S w S'(—= wa+ A(W)) S w S'(— A(W))
=wS'(A(w) <5, .

Therefore, Inequality 4.6 holds for all pu=1,2, .., m, 11117

In Proposition 4.1 we are simply taking advantage of the fact that once
Inequality 4.3 is satisfied for that p that gives the smallest value of v(xy - xu-1),

then the same value wy satisfies Inequality 4.3 for all the other values of n.
However, a very small value of v(xy - x,—1) may require an extremely large value of
wy to satisfy Inequality 4.3, while the same inequality may be satisfied by more
conservative values of wy, for the other values of p.

In cases where a large discrepancy exists between the terms v(x, - xy-1) (1<
B < m), it may be better to satisfy each of the Inequalities 4.3 with different
values for wy. Moreover, since the terms wyv(xy-; - xy) and Ay(wy) in Inequality
4.3 are competing against each other in the sense that Ap(wy) is increasing
with wy while wpv(xy-; - xy) is decreasing linearly with wy, it may be
advantageous to choose functions A, with different rates of divergence
depending on the sizes of the terms v(xy-1 - xy) (1 <p < m). Qualitatively
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speaking, a slow rate of divergence for A, implies a smaller value for wy in
Inequality 4.3, but it also implies a larger value for wy in Inequality 4.2. A faster
rate of divergence for Ay, of course, would imply the opposite.

Finally, we should point out that the sizes of the terms vixy-1 - xp) (1<p<m)
also depend on the choice of v. How to choose vI and the functions A, optimally

will not be discussed here. These are issues that require further research. We
do believe, however, that, as a general rule, the faster S converges to 1, the
slower A, will grow and the smaller the weights will be.

The following simple examples illustrate some of the points mentioned
above. Hopefully, they also will help the reader appreciate the simplicity of the
technique for determining weights that follows from Theorem 4.1.

Throughout these examples the sigmoid will be the hyperbolic tangent: S(t) =
tanh(t) with derivative S'(t) = sech?(t) (te R). It is not hard to show that, for any
n > 0, the function

Ay =cost (4t )sln[ﬁ“‘ +J:‘*“—1] (t21)

satisfies

, 1
tS (An(t))=F‘- , forallt>1.

m
The set X < RM js X =ip1 (1, »). The functions Ay and S are strictly increasing. The

algorithm that we <hall use is based on Proposition 4.1. For each a > 0 and n > 0,
let gan denote the function appearing on the lefi-hand side of Incquality 4.11:

that is

8a,n(t)=—-%-at+A,|(t) (t=21)

-~

] . . .
Let ln(a) denote the value of t where g; n achieves its maximum value. When

n=1orn = 3, one can find a closed-form expression for t:‘(a):

. - 2
y(a) =, /1+—42- , t3(a)=\/%+.\ /(%) +1, (@>0). @13
a a a
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Since ga n is decreasing on [t:(a) , »), ~e shall lock in this interval for a value of w

that satisfies Inequality 4.11. Note that since wS'(Aq(w)) = % , Inequality 4.12 is

satisfied by all w > (1/8;)!/1. Similarly, since Ay is an increasing function,
Inequality 4.10 is satisfied by all w > An-1(a), where Ayl denotes the inverse of

the function Ay. Thus, the strategy will be to find w > max 1(1/8,) 1/, An‘l(a),

*
tn(a)} that satisfies Inequality 4.11. The inverse of Ay is given by

2
Ay (@) =lcosh @WIT (220)

Note that when a is small, one can use the following approximations:

- 4
11(a) Sf and t :(a) ﬁ‘a‘ . for"smalla® (O <a<1.

The Problem. Given xg, Xy, ..., Xy in R?, yo, ¥y, ..., ym in R¢, &, >0, and g, >
0, find w € X such that

| [Ty, () —yli | <g (1<i<¢ 0<j<m)
and
PIT, () | <e, (1<i<g 1<j<n, 0<k<m)

forallw > w.
Algorithm 4.1.

Step 1.

m
1.1. Compute M, = ﬂjas’é .3.:'0 'yiil , (yij=jlh component of yi).

1.2. Choose 8, € (0, 1) such that 8, < =

3

1.3. Seta-= S'l(l - 81). (S'1 denotes the inverse of S.)

-1
€4 N’.1 .
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Step 2.
2.1. Choose vT in R? at random.
2.2. Order the numbers vxy (0 < k € m) and relabel:

kao < kal <..< kam

2.3. Compute the consecutive differences of the above numbers:

ay = V(xku - xk“_l) (1 <p < m) and order the numbers a,:

0<a, <a,<..<a
If ay =0, repeat Step 2.

Step 3. (For Derivative Control)
3.1. Compute
lvil X | l
M= max |y u§1 (yku— ykp—l)i .

1<ig¢
1€j<n

3.2. Choose &2 > 0 such that 8, <2 ¢, Mil.
Seti=1.

Step 4.

4.1. Seta=ay,.

4.2. Choose n > 0 for appropriate decay rate of tS'(Aq(1)) = 't% (Note: Small

N a calls for low rate of increase of Ay, thus low rate of decay of ;lﬁ ; e,
small 71.)

4.3, Set A= AT]‘

4.4, Letty= Al (a).:;2=(51;)1/n  if t5, is 100 large, increase 0.

4.5. Let t* = value of t where [- % t + A(t)] attains its maximum value.
4.6. Sett=max {tg, 13, t*}.
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(Note: The value f has the property that Inequalities 4.10 and 4.12
hold for all w > t and the function [-;— t + A(t)]) is decreasing for

t>t)

4.7. If-;—at +A@) >0, lett = (2A@) + q)/a, let £= t, and repeat Step 4.6.

(Note: Here q > 0 and q & 1. The larger q is, the faster the

convergence to a value t satisfying - ;— at + A(t) < 0; however, too

large a q can lead to an excessively large ¢.)

4.8. I -7at+ AM) <0, set wy=t.

4.9. Ifi=m, stop.
4.10. If wy_ is not too large, set Wy, = Wy, for all j > i. Stop.

4.11. Seti=1i+ 1. Repeat Step 4.

1

2 at + A(t) is decreasing on the

Remark 4.2. Since the function g(t) = -
interval (t1*, «) and tll_r’n“° g(t) = - = when a > 0, it is easy to see that the iteration in

Step 4.6 will yield a value ¢ such that g(#) < 0 in a finite number of steps

whenever q > 0. To see this, assume g(t*) > 0 and let T > t* satisfy g(T) = 0. Set
., = AG) +q)a (k =0, 1,2, ..), where t, is any point in [t*, T]. Now, if t, €

q
[t*, T], then g(t,) > O; thus, t,,; > t, +3 Therefore, as long as to and t, € [t*, T],
we have t, > tp + kg . This means that t, cannot be less than T for all k > 0. Thus,
after a finite number of iterations, t, leaves the interval [t*, T] and g(%) < 0. ////
In the following examples, n will be either 1 or 3 so that we may determine

*®
tn(a) from Equations 4.13.

Example 4.1a. The points of interpolation are {(0, 0), (1, 1), (1.1, -1), (2,
0)). Soletxg=0,x;=1,x2=11,x3=2,andyo=0,y;, =1L, y2=-1,y3=0. Letg, =
€2 = 0.001.

25




NWC TP 7191

Step 1.

M, =2, s,<§3l = 0.00033

8, = 0.0003
a=S81(1-38,) = 4402

Step 2.

Since xo<x;<x2<x3 letv=1, soky=p (1<p<3)
ap=x3-%x =1

32=X2-X1=0.1

33=X3-X2=0.9

Since a;<az<a;, wehave p; =2, puy;=3, py=1.

Step 3.

My=lyi-yo I+ ly2-yi [+ lys-y2 l=142+1=4
52 < 2e2/4 = 0.0005

8, = 0.0004

Leti=1.

Step 4.

a= a”l =a = 0.1

Since a is "small," choose "small" 7.
Letn=1

A@) = A1(t) = cosh’l(t) (t>1)
A-1(a) = cosh(a), (x> 0)

tq = cosh (o) = cosh (4.402) = 40.81

13,= 18, = 2500. This value of t5, is excessively large. We must increase 1.

Letn=3
A(1) = As(t) = cosh1(12)

A-l(a) = Y cosh(a)

ta="\/ cosh(a) = 6.38 [smaller value of ty means that A(t) is increasing faster]
ts, = (1/82)13 = 3V2500 = 13.57. This value of ts, is acceptable.

t* =1, (a) & 4/a = 40
t= 40.

The following table shows the results of the iterations involved in Step 4.6.

We shall use q = 1 and g0 = - 3t + AQ.
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t -g-: A(t) g(t) fnew = 20 At ) + 10
40 2 8.07 6.07 171.4
171.4 -8.57 10.98 2.41 229.6
229.6 -11.48 11.57 -0.09 /1171

Let wy, =w; = 230.
Since a; is smaller than all the other . the value of wy will work for all of the

other weights; however, we consider w; too large, so we will repeat Step 4
with i=2.

Step 4 with i = 2.
a=a,, =2a,;,=09
Set = 3 (in order to meet the derivative requirement with an acceptable

value of wj)
tq and t5, are as before (because n did not change)

t* = L; (a)sai = 445
t = 13.57 and gt ) < 0.
Let wy, = w3 = 13.57.

Note that since ¢ = t5,, it is the derivative requirement that will determine all

of the remaining weights (i.e., w,) even if the remaining ay. are much larger than

Let w, = wy = 13.57. Stop.

The vector w = [13.57, 230, 13.57] satisfies Theorem 4.1 for the data of this
example.

To complete the example, we shall determine a neural net mapping Ty : R —

R that interpolates through the data with an error less than €; = 0.001 and with
derivative less than €, = 0.001 at the interpolation points. We shall use w = w.

Recall that Tw(x) = yo + % Y [Sm(Lw(x)) - Sm(Lw(xo))], where

wl(x - Xl) + A(Wl)
Lux)=| wax -x)+ Awp)| » Y=[y1-Yyo { y2-¥1 ! y3-y,l
w3(X = x3) + A(wy)
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Note that the function A in the ith component of Ly (x) is the function used in the
computation of w; (1 <i< 3). The result is

Tw(x)=%[S(l3.57x - 7.67) - 28(230x - 241.43) + S(13.57x - 21.24)] iy

Example 4.1b. This example is the same as Example 4.1a. We want to
show that, by working directly with Inequalities 4.3 and 4.6 instead of the
shortcut presented in Proposition 4.1, Theorem 4.1 may be satisfied with smaller
weights. We focus on the second weight w,. A simple calculation shows that wy =
185 satisfies Inequalities 4.2, 4.3, 4.5, and 4.6 with A,(t) = cosh"1(12), ie., 0 = 3.
Moreover, w = [13.57, 185, 13.57] satisfies Theorem 4.1. Note that w, is smaller
than in Example 4.1a. 1111

Example 4.1c. Now let us consider Example 4.1a without the requirement
on the derivative. Recall that in Step 4 we were forced to increase 7 from 1 to 3
in order to satisfy the requirement on the derivative. Without this requirement,
we can use = 1 to solve the interpolation problem with a smaller weight wj.
Again, we only focus on the second weight and the iterations involved in Step 4.6
with q = 1 and

A(t) = A1) = cosh-1(1)

a = 4.402
tag = 40.81
t:(a) & 2/a =20
t = 41.
41 -2.05 4.406 2.36 98.12
98.12 -4.91 5.279 0.37 115.6
115.6 -5.78 5.44 -0.33 1111/

The interpolation problem can be solved with w; = 116. Moreover, if we work
directly with Inequality 4.3, we find that w, = 100 also will solve the interpolation
problem. [

Example 4.2. The six inputs of this example belong to R3; x, through xs
are, respectively, [0 0 0]T, [0 1 0T, (1 0 0T, (1 1 O]T, [0 O 0.1)7, and
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[0 0 1]T. The outputs yo through ys belong to R2; they are [0 O]T, [1 O]T, [0

11T, [0 0T, (1 1]7, and [0 3]T. We wish to interpolate through the points (xj,
yi) 0<i< 5 with an error bound €; = 0.001 and a derivative less than £, = 0.01
at the interpolation points.

Step 1.

2
M, =max {2,5} =5, & <=2 = 0.00013

15
8; = 0.0001
a=S1(1-8) = 4952

Step 2.

Letv=1[21-1] to get

vxo =0, vx; = 1, vxy = 2, vx3 = 3, vx4 = -0.1, vxs = -1.
Since vxs < Vx4 < vXg < VX; < VX; < vx; we have
k0=5,k1=4,k2=0,k3= 1,k4=2,k5=3.

a1 = V(X - Xgg) = VX4 - VX5 = -0.1 - (-1) = 0.9

a2 = V(Xk, - Xk;) = VXg - Vx4 = 0 - (-0.1) = 0.1

a3 = V(X3 - Xg,)) S VX -vXo=1-0=1

a4 = V(Xk, - Xgy) = VX2 - VX =2-1=1

as = V(Xkg - Xkq) = VX3 - VX3 =3-2=1

Since a; < a; < a3 = a4, = a5 we have
Hi=2,p=Lpus=3,u4=4,us=5.

Step 3.

4
Consider the matrix M= u}=:1 I Yi, =Yk, I I v I .

M=[lya=ys [+ lyo-val+lyi-vo |+ 1 ya=yi | + 1 ys=y, [ 211]

=[dJein=[} 4 4

2¢
By inspection, we get M; =10, so 3§, <—10—1 = 0.002.
Let 5, = 0.001
Leti=1.
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Step 4.

a= aul =a = 0.1
Letn =3, A(t) = A;(t) = cosh'l (12), A"l (o) = v cosh(a)

tag = 8.41

15, = (1/5,)13 =10

t* =t (a) = 40

wy = 230 (see Example 4.1a.)
Leti=2.

Step 4.

a=2a,, =2 =09
n=3
g = 841, 15, = 10 (as before)

4
t* =) & = 445

¢ = max {tg, tg, t*) = 15, = 10

t -0.45¢ A g thhew = 2.22 A(r) + 1.11
10 -4.5 5.29 0.8 12.85
12.85 -5.78 5.8 0.015 13.98
13.98 -6.29 5.97 -0.32 11117
w, = 14
Leti=3.
Step 4.

a= 3“3 =a3= 1
n=3
tg = 8.41 and t5, = 10 (as before)

[*=L;(a)s‘$=
t=10
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t -0.5¢ A1) g(t) thew = 2 A®) + 1
10 -5.0 5.29 0.29 11.58
11.58 -5.79 5.59 -0.2 111
Set w3 = 11.6 and all the rest of the weights = 11.6
Wsg = 11.6
wWs = 11.6
w = [14, 230, 11.6, 11.6, 11.6]T. 1111

The last example illustrates the modular features of the technique and shows
how to estimate the error directly from Lemma 4.1.

Example 4.3. Consider the "exclusive or" problem; that is, a map that
interpolates through (xi, yi), i =0, 1, 2, 3, where xg = [0 OIT, x, = [0 1]T, x; =
(1 0T, x3=[1 1]T,yo=0=y;, and y; =y, = 1. We can assemble a network that
implements the exclusive or problem using "part” of the network in Example 4.2.

Note that the matrix v = [2 1] maps the vector x; into i for eachi = 0, 1, 2, 3;
note that the matrix v of the previous example achieved the same result. Thus,
we already have a network (with three hidden units) in the previous network that
maps the integers 0, 1, 2, 3 into desired outputs yg, y;, ¥2, y3. Consequently, all
we need to do is to use the correct matrix Y. If v = [2 1], w= [11.6, 11.6, 11.6]T,
and Y = (1 0 -1], we have a net that implements the exclusive or problem.

Let us use Lemma 4.1 to estimate the error. Since wj =11.6 and A(wj) =
5.59, we know that Inequalities 4.2 and 4.3 hold with a =5.58. Since 1 - S(a) =
0.000028, we conclude that Inequality 4.4 holds with §; = 0.00003. By Lemma

. 3. 3
4.1, the error is bounded by >3, ):o | yi | =38; = 0.00009. The mapping is given
1=
by

T(x) =2l [S(11.6 vx - 6.01) - S(11.6 vx - 29.21)] - 0.000005 (x € R2),

with v = [2 1].
T(x0) =0, T(xq) = 0.99998 = T(x3), T(x3) = 0.000009. 1111

Remark 4.3. The reader might have noticed that when the value of 7 is
determined and fixed by the requirements on the derivative at the interpolation
points, as it was the case in some of the examples above, then the algorithm is
more efficient if Steps 4.2 through 4.4 are performed immediately afier Siep
3.2, for then those steps are performed only once. /11117
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APPENDIX

Proof of Lemma 3.1. Let ¢4j denote the unique line through x; and xjand
let Hjj be the hyperplane through the origin consisting of all vectors in R that
are perpendicular to 4j for0<i<m,0g<j<m,andi=#j LetH=U {(Hjj :i#j,0<
ismO0O<j<m}. If vig H, then {vxj :0<i< m} is a set of distinct numbers; for
if not, say vxj = vxj, then v(xj - xj) = 0, which.implies that vT is perpendicular to
the line 4j; thus, vT € H, a contradiction. 1111

Remark A.l1. Since the set H has Lebesgue measure zero, it follows that all
vectors vI in RM satisfy the hypothesis of the lemma except for those on a set of
measure zero. (111

Proof of Lemma 3.2. We must show that for every rp > 0

lim Ak (t)=oo

e (A-1)
and

lim t S'at+ A (1)) =0 foralla=0 ,

t—ee (A-2)

where A satisfies Condition 3.9 and Condition 3.3 with a < 0.

Fix ry > 0 and comsider Ak : (tx, ) = (0, «). If Equation A-1 does not hold,
there exists M > 0 and an unbounded sequence pn; < p2 <..<{p < .. such that
Ax (up) < M forall n > 1. Since §' is nonincreasing on (0, «), we have S'(Ax(pn)) >
S'(M) for all n > 1. Consequently,

Hn S'(Ak(p-n)) 2 My S'(M) > 0asn — oo ,

which contradicts Condition 3.9. Therefore, Equation A-1 holds.

To prove Equation A-2, first assume that ry, = 0. Since S’ is nonincreasing on
(0, =), S'(at + Ag(t)) < S'(Ak(t)) when 2 > 0 and t > max {0, tx}. Thus, when a > 0,
Equation A-2 trivially follows from Condition 3.9 with , = 0. When a < 0,

Condition 3.3 gives

_T1 .
tllm»-[f at+Ak(t)] = .
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Certainly, then, there exists T > tx such that % at + Ag(t) < O for all t > T; that is,

-ta - Ak(t) > Ag(t) > 0 for all t > T. Since S' is an even function and nonincreasing
on (0, =), it follows from the last inequality that

tS'(ta + Ap(t)) = t S'(-ta - Ag(t)) < tS'(Ak(1) for all t > T.
Hence, when a < 0, Equation A-2 also follows from Condition 3.9 with r, = 0.

Next, fix rp, > 0. To establish Equation A-2, we shall show that to every € >0
there corresponds a T > tx such that tS'(ta + Ag(t)) <€ forall t > T.

€
If fo =5, the hypothesis of the lemma gives us a function A, : (tg, =) — (0, =)
such that

£
tS'(A()=5  forall t>¢, .
3 or t, (A-3)

If a > 0, Condition 3.3 applied to A, shows that there exists Tg > to such that
t(-a) + Ag(t) < 0 or, equivalently, ta > Ag(t) for all t > Ty. Since §' is

nonincreasing on (0, =) and Ay is positive valued, it follows from the last
inequality that

S'(ta + Ak(t)) < S'(Ao(t)) forall t >max {TO’ tk} .

Let T = max {Ty, tx}. Equation A-3 and the last inequality imply tS'(ta +Ag(1)) <

§< ¢ for all t > T. This proves Equation A-2 for a > 0 and r; > 0.

Now assume that a < 0. Condition 3.3 applied to Ax and A, shows that there
exist Ty >ty and Ty >ty such that

Ta+ A <0 forall  t >T,
;—at+Ao(t)<0 for all t >T,

Consequently, if T = max (T, Ty}, then - ta - Ag(t) > Ao(t) >0 for allt > T. And,
as before, since S' is an even function and nonincreasing on (0, «), we have

(S'at + Ax(V) = 1St - A(D) < 1SAo®) =5 < & fort>T.
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Therefore, Equation A-2 holds when a < 0 and ry, > 0. This completes the proof of
Lemma 3.2 /1111

Remark A-2. For the purpose of this remark, denote by Ar a function Ay :
(tr, ) — (0, =) that satisfies

t S(Ar())) =1 for all t>t | ' (A-4)
where r > 0, and let Ag : (g, ) = (0 =) satisfy

lim tS(AD)=0 .

It is easy to see that the functions A, above are nondecreasing for all r > 0
whenever S' is nonincreasing on (0, ). This fact was not needed in the
development of the theory in Section 3; however, it may prove useful when
implementing the techniques presented in this paper. To see that Aris
nondecreasing when r > 0 assume otherwise; assume there exist a < b, both in
(tr, =), such that A;(a) > A((b). Then, S'(A;(a)) < S'(A¢(b)), which implies
r=a S'(Ar(a)) < a S'(Ar(b)) < b S'(Ax(b)) = r, a contradiction.

The function A, can be defined in such a way that it too is a nondecreasing
function, provided t, does not increase as r decreases. This can be done as
follows. Suppose that, for 0 < r <15, tr does not increase as r decreases. Let

f:(tr,, ) > (0, 1,) be a decreasing function such that :limm f(t) = 0. Define
AO : (tfoi °°) - (0, °°) by

Ao(t) = Af(t) (t) for t> tro

Note that f(t) < ro for all t > t,, implies tf) < tr, for all t > tr,. Therefore, Ag(y)(t)
is well defined for all t > tr; that is, t is in the domain of Af(;) for all t > t,,. We
claim that Ay is a nondecreasing function. The proof is by contradiction: if
Ao(a) > Ag(b) for some a < b in the domain of Ay, then, by definition of Ay, we
have Af(a)(a) > Af(b)(b). Since §' is nonincreasing on (0, o), with the aid of
Equation A-4 we conclude

f(a) = a S'(Ag,)(a)) S a S'(Agp)(b)) < b S'(Agy)(d)) =f(b) ,
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which contradicts the fact that f is a decreasing function. Note that tli_x’n“

t1S'(Ao(1) = lim tS'(Ag(r)()) = lim f(t) = 0. /1111
t—yoe t—yoe

Proof of Lemma 4.1. Fix je {0, 1,2, .., m} and w € X. Assume w satisfies
Inequalities 4.2 and 4.3. Let zj= Sy (Lw(xj)) - Sm(Lw(x0)) and let zjy denote the
kth component of z; (1<k<m). Set zjo= 2 and zj(m+1) = 0. Equation 4.1 gives

1 1 m
Tw(xj)—)'j= yo+"2"YZj —Yj=y°+5k§1 ij(yk-yk_l)“)’j

i
1 m » .
5[ hEO Yz = Zign) + Y Zi = Zij(+1) — Dl ifj<m
k=3
B (A-5)
l m-l [
5 k=0 Yk(ij - zj(k+l)) + )'m(zmm - 2) if j=m .

Hence, it suffices to prove Inequalities A-6 through A-9 for 1 < j< m. Note that
the interpolation through (xo, yo) is exact.

12-2;1 <25, (A-6)
|2 = ey | < 28, fori<k<m,k#j (A-7)
N |z = zigge1) — 21 <35, ifj<m (A-8)
Izl <8 ifj<m ,and lzp,-21<23; . (A-9)

Clearly, Inequalities A-5 through A-9 imply Inequality 4.4.
Since v(xj - x¢) 20 for 1 < k < j, Inequality 4.2 implies

wkv(xi - xk) + Ak(wg)>a forl<kg j.
J
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Therefore, by the choice of «, the kth component of Sm(Lw(xj)) is within &) of 1 for
1 <k < j; that is,

1—81 < S(ka(xj'xk)'*'Ak(wk)) <1 fOTISkSJ . (A'IO)

Since v(xj - xk) £ Vv(xk-1 - Xk) for0 <j <k < m, Inequality 4.3 implies
wi V(xj - xk) + Ax(wy) < - a for0<j<k<m .
Therefore, by the choice of a, the kth component of Sm(Lw(xj)) is within &; of -1 for
0 £ j <k £ m; that is,
- 1 < S(wg v(xj - xg) + Ax(wg)) < -1+ for0<j<k<m . (A-11)

The definitions of B, Ly, and z; give

l Zik = Zj(k+1) I s | Sm(Lw(Xj))k - Sm (Lw(xj))k+1 l +
| Sl — Sl st | foriskem , (4 19y

where Sm(Lw(xj))x denotes the kth component of Sm(Lw(xj)) for all k and j.

The second term on the right-hand side (RHS) of Inequality A-12 is less than
81 for 1 < k < m as Inequality A-11 with j = 0 shows. The first term on the RHS of
Inequality A-12 is less than &1, as shown by Inequality A-10 when 1 < k < j and
by Inequality A-11 when j < k < m. This proves Inequality A-7.

Next, note that

I i~ Zy(+1) — 2 l < l Sm(Lw(xj))j - Sm(Lw(Xj))j-o-l -2 l +
| (L (xo)); = S LMt | (A-13)

As before, the second term on the RHS of Inequality A-13 is less than 81 if j <
m. By Inequality A-10 with k = j and Inequality A-11 with k = j + 1, one concludes
that

2-281 < Sm(Lm(xj))j - Sm(Lw(xj)j+1 < 2 ,
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which shows that the first term on the RHS of Inequality A-13 is less than 2§;.
This proves Inequality A-8.

Consider now zj;:
0<2-2j;=2-[Sm(Lw(xj)1 - Sm(Lw(xo)1]1 <2 -(1-81) +(-1+81) ,
where we used Inequality A-10 with k = 1 and Inequality A-11 with j = 0. This

proves Inequality A-6.

If j < m, then Inequality A-11 implies

If j = m, then Inequality A-10 with k = j = m and Inequality A-11 with j = 0 and k =
m give

0> zmm - 2 = Sm (Lw(Xm))m - Sm(Lw(xo))m -2>(1-81) +(1-81)-2=-2%; .

Therefore Inequality A-9 holds. This completes the proof of Lemma 4.1. 1111

Proof of Lemma 4.2. If Tw(x) is given by Equation 4.1 then, by Equation
2.1,

(T'w (x5 =§l° Yi Sm(Lw(xk))wv;j O<ksmlcigcblgjsn),

where Y; denotes the itP row of the matrix Y (1 <i<¢) and vj denotes the jth
component of v (1 <j< n). This leads to

1 m
[Tw(x)]; = 5 ui_-"l (Y = Yu-1)i Wy S' (W, v = x,) + Au(w)) v; .
Hence, if suffices to show

0 < wy S'(wy v(xk - xy) + Ay(wy)) < 82 (1gps<m, 0<k<sm) . (A-14)
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Inequality A-14 reduces to Inequality 4.5 when k = p (1 <p < m), and it is
implied by Inequality 4.5 when k > p (1 £ u < m) because S' is nonincreasing on
(0, =). Finally, since

WuV(xg - X)) + Ay(Wp) < W V(X - X)) + Al(w,)  whenk<p
and S§' is nondecreasing on (-, 0), Inequality 4.6 implies Inequality A-14 for k <

(1 <p< m) Note that we used the fact that S is an odd function (which implies
S’ is even). 1111
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