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This project was conducted to demonstrate a quick-response capability to monitor crisis
situations using commercial satellite imagery. The requirement for such a capability
became evident during the Persian Gulf War; particularly, the need for monitoring the path
of the oil spill coming from oil dumped in the bay near Kuwait City. The Coast Guard's
SLAR-based AIREYE sensor is usually deployed to major global oil spills. However, this
system would have been too risky to operate because of the nature of the hostile
environment.

The project was conducted during the period of January to July 1991. The most intense
effort was made in the first two weeks of February 1991 during the war, in response to
requests from the USACE Army Cold Regions Research and Engineering Laboratory and
the Corps of Engineers Emergency Operation Center to monitor the Persian Gulf oil spill.

This was a laboratory effort initially involving TECs Research Institute (RI), Space
Programs Laboratory (SPL), and the Geographic Sciences Laboratory (GSL) to conduct
the quick-response demonstration. Subsequently, TEC's Topographic Developments
Laboratory (TDL) joined the effort, helping to formulate and demonstrate an improved
quick-response capability via the prototype Quick Response Multicolor Printer (QRMP).
Additional effort was also made by SPL to better characterize the performance of the semi-
automated classifiers using the remotely sensed images.

The authors were the TEC team that conducted the quick-response demonstration. In
addition, a special acknowledgement is made to Francis A. Ward, Chief, Graphic Systems
Development Branch, who provided valuable support in formulating and demonstrating the
improved quick-response hard copy capability.

The Space Programs Laboratory work was conducted under the supervision of Mr. Donald
J. Skala, Chief, Exploratory Technology Branch; Mr. James E. Stilwell, Chief, Space
Technology Division; and Dr. Joseph J. Del Vecchio, Director, Space Programs
Laboratory. The Research Institute work was conducted under the supervision of Dr. Jack
N. Rinker, Chief, Remote Sensing Division; and Mr. John V.E. Hansen, Director
Research Institute. The Geographic Sciences Laboratory work was conducted under the
supervision of Mr. Paul G. Logan, Chief, Data Base Development Branch; Mr. Douglas
Caldwell, Chief, Terrain Analysis and Data Generation Division; and Mr. Bruce K. Opitz,
Director, Geographic Sciences Laboratory. The Topographic Developments Laboratory
work was conducted under the supervision of Mr. Francis A. Ward, Chief, Graphic
Systems Development Branch; and Mr. Regis J. Orsinger, Director, Topographic
Developments Laboratory.

Mr. Walter E. Boge was Director, and Colonel Kenneth C. Kessler was Commander and
Deputy Director of the U.S. Army Topographic Engineer Center at the time of publication
of this report.
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METHODS OF MONITORING
THE PERSIAN GULF OIL SPILL

USING DIGITAL AND HARDCOPY MULTIBAND DATA

1.0 INTRODUCTION

1.1 Objective

The purpose of this effort was to demonstrate a quick response Corps of Engineers
capability to detect and identify oil spills using commercial multiband satellite imagery,
such as the Advanced Very High Resolution Radiometer (AVHRR) and Landsat Thematic
Mapper (Landsat TM). The digital processing and analysis procedures needed to perform
this task were to be identified, as well as the methodology for producing hardcopy
products.

1.2 Background

A Remote Sensing team was assembled at the U.S. Army Topographic Engineering Center
(TEC), comprised of members from TECs Research Institute (RI), Space Programs
Laboratory (SPL), and Geographic Sciences Laboratory (GSL), as a quick response to
requests from the U.S. Cold Regions Research and Engineering Laboratory (CRREL) and
the Corps of Engineers Emergency Operation Center to monitor the Persian Gulf oil spill
(January-March 1991). Members of RI acquired the necessary image data, performed
much of the visual image interpretation, and maintained a liaison among the various
agencies. Members of SPL processed the data on the Space Research Test Facility,
Multiband Image Processing System (SRTF/MBIPS), performing data screening, image
classification (segmentation), and data reformatting for hardcopy processing. Members of
GSL provided the quick-response hardcopy processing and output using the
TIES/ERDAS, the electrostatic plotter, and the bubble jet copier.

Subsequently, SPL characterized in more detail the performance of the semi-automated
image classifiers. Also, the Topographic Developments Laboratory (TDL) also worked
with SPL in formulating and testing an alternate hardcopy production methodology utilizing
the Quick Response Multicolor Printer (QRMP) prototype.

Imagery from two commercial satellite sensors was used; (1) the Advanced Very High
Resolution Radiometer (AVHRR), and (2) the Landsat Thematic Mapper (Landsat TM).
The AVHRR sensor generates data with 10-bit precision, 5 spectral bands, and pixels
having an Instantaneous Field of View (IFOV) of 1.1 kIn. There are numerous satellites
carrying this sensor. The spectral band widths vary according to the satellite and are listed
in Table 1 (Section 2). Although the spatial resolution was a major disadvantage, the
revisit cycle of a few times per day was a big advantage.

The Landsat TM sensor generates data with 8-bit precision, 7 spectral bands, and pixels
having an IFOV of approximately 30 meters for all bands except Band 6, which has an
IFOV of 120 meters. There are currently two Landsat satellites, each with a revisit cycle of
16 days. Typically, the revisit is once every 16 days, corresponding to a single satellite.
However, if the two satellites are tasked to collect data over the same target in response to a
time sensitive event, then the revisit time can be reduced to 8 days. The spectral bands are
listed in Table 2 (Section 2.2).

1



1.3 Scope

The oil spill monitoring was accomplished using both AVHRR and Landsat TM imagery.
The first scene processed was a 30 January 1991 Landsat TM image. The team members
found no oil in this scene. Members later confirmed that the oil spill was actually to the
north of the acquired scene. Because Landsat TM data could only be acquired every 8
days at best, a decision was made to acquire and analyze AVHRR data that was available
for multiple times a day. A total of 16 scenes was processed on the SRTF/MBIPS
covering the period between 16 January to 8 February 199. However, since 11 of the
scenes were found to contain clouds over the region of interest, only 5 cloud-free AVHRR
scenes were used in the analysis. Two additional Landsat scenes, taken on 8 February and
16 February, were subsequently processed and analyzed as they became available.
Eventually, the main region of interest became the coastal waters near the Manifah Oil
Fields, and the coastal towns of Jaziratal Batinah and Al Jubayl, Saudi Arabia.

This effort had essentially two aspects: Digital Processing and Analysis, and Hardcopy
Product Support. Both manual and semi-automated digital processing techniques were
used and are discussed in Section 2.0. Numerical results of the classification runs are
presented in Section 3.0. Two methodologies of hardcopy production support were used,
and are discussed in Section 4.0. Appendix A contains an example of the current status of
Methodology Il's capability. It should also be noted that all the photographs in this report
were generated using the QRMP-prototypt under Methodology II. Appendix B contains
spectral curves of new and aged oil, as well as class statistics for the training sites used for
the supervised classification algorithms. Appendix C contains processing-related data.

2



PROCESSING METHODS AND ANALYSIS

2.0 PROCESSING METHODS AND ANALYSIS

The Land Analysis System (LAS) software on the SRTF/MBIPS was used for the digital
processing and analysis. This included inputing the data from 9-track tape, screening the
data by displaying multiple band combinations of each scene, remapping 10-bit data to 8-bit
AVHRR data, enhancing the image data, co-registering AVHRR scenes, and segmenting
the AVHRR and Landsat image data using a number of alternative classifiers. The outputs
from this processing included remapped subscenes suitable for hardcopy output; class
maps of subscenes portraying oil, land, and water features; and oil area coverage estimates
using the class map results.

2.1 AVHRR Processing and Analysis

A special purpose routine was used to input the AVHRR data.1 The program enabled easy
input of the 5-band/10-bit data as multiband image data. Because of the nature of its
acquisition, some of the scenes were found to have a north-to-south orientation, and others
had a south-to-north orientation. Therefore, a routine 2 was used to rotate the south-to-
north scenes by 180 degrees. A smaller subscene containing the major portion of the
Persian Gulf and coastal areas was generated for each of the five scenes.

The resulting five subscenes of AVHRR imagery were remapped from 10-bit data to 8-bit
data by using a routine to generate multiband histograms, 3 manually identifying stretch
points, and then using another routine4 to perform a piecewise linear stretch. Table C1 in
Appendix C lists the five names of the subscenes used and the corresponding mappings.

The five AVHRR subscenes were co-registered to each other by identifying tiepoints and
and applying them in a sequence of registration-related routines.5 Upon completion, all
co-registration was achieved to an acceptable level (less than one pixel) with a translation
and rotation transformation. The AV0124.MORN8 subscene was used as the base scene
for which the other four subscenes were registered. During the registration process, these
four subscenes were resampled using a bilinear interpolation option. As listed in Table C2,
the names of these subscenes were given an additional "R" suffix (e.g. AV0116.NOON8
-> AV0116.NOON8R).

The co-registered subscenes were also saved as a '.X magnification for easy display and
comparison. The magnified images were resampled using cubic convolution. As listed in
Table C2, the names of these subscenes were given a "C" suffix (e.g. AV0116.NOON8R
-> AVO116.NOON8C).

Each of the bands was visually analyzed by the team members. Based on the spectral band
widths, listed in Table 1, and the thermal properties of oil as compared to water, it was

1 LAS Routine LACIN.
2 LAS Routine FLIP.

3 LAS Routine PIXCOUNT.
4 LAS Routine MAP.
5 LAS Routines COORDEDT, TIEMERGE, NULLCORR, TIEFIT, and GEOM. A single program called

REGISTER can generally replace the functions of TIEMERGE, NULLCORR, TIEFIT, and GEOM; however,
instability of the statistical estimating parameters in the defining transformation required adjustment of the alpha

acceptance values for a couple of the scenes . This option was not available in REGISTER.

3



PROCESSING METHODS AND ANALYSIS

anticipated that Band 4 or Band 5 (Long Wave/Thermal Infrared) would provide the most
useful information, but that these would be redundant if used together. The team's
observations confirmed this. Bands 1, 2, 3 were not useful for oil; although Band 3
readily showed strong heat sources, such as oil fires. In addition, 3-band color
combinations were not found any more useful than Band 4.

Table 1. NOAA-AVHRR Sessor Band Widths

Satellite Number
NOAA NOAA

Bmi...ihn -6, .8, -1 -7, -9, .11, 12, -I, -J
B1 0.58 - 0.68 ktm 0.58 - 0.68 Itm
B2 0.725 - 1.10 tim 0.725 - 1.10 pum
B3 3.55 - 3.93 p&m 3.55 - 3.93 pm
B4 10.50 - 11.50 p&m 10.30 - 11.30 p&m
B3 same as Band 4 11.50 - 12.50 tAm

As a consequence of the initial observations, only Band 4 was used for the majority of the
analysis. Figures I to 4 show photos of the AVHRR (Band 4) images. Figure 1, the
January 16 image, can be used as a refe" nce since there is no oil in the scene. Figure 2,
the January 24 image, is a morning scene. At this time of day, since the oil is cooler than
the water, it appears as a light snake-like feature off the coast, located about one-half to
two-thirds of the way down the scene. Figure 3, the first of the February I images, is a
morning scene. Once again, the oil is cooler than the water and appears as a light snake-
like feature off the coast, but further down the scene. Figure 4, the second of the
February 1 scenes, is an early afternoon scene. At this time of day the oil is heated by the
sun, becoming hotter than the surrounding water, so it appears as a dark feature against the
lighter water.

4



Figumre 1 AVTIPR (Band '1) - January 16, 1991 - MOON



Figure 2- AVHRR (Band 4) - January 24, 1991 - MORN



Figure 3. AVHIRR (Band 4) - February 1, 1991 - MORN
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Figure 4. AVHRP (Band 4)-- February 1j 1991 -- NOON



PROCESSING METHODS AND ANALYSIS

2.2 Landsat TM Processing and Analysis

The Landsat TM band widths are listed in Table 2. Spectral curves of fresh crude oil and
weathered oil (floating oil, floating crude oil, and oil sludge) are shown in Appendix B.
Given this information, the following framework can be postulated. Thermal Band 6
should show a good contrast between the oil and water because of temperature differences.
Band 5 should show a good contrast between water and weathered oil, but not between
water and fresh crude oil. Furthermore, along the coastal areas, where Band 1 should
penetrate the water and scatter the light from underwater features (i.e. non-oil should be a
lighter shade of gray), the oil should remain black.

Table 2. Landsat Thematic Mapper Bands

Band Number Band Width
B1 0.45 - 0.52 jim
B2 0.52 - 0.60 prm
B3 0.63 - 0.69 prm
B4 0.76 - 0.90 prm
B5 1.55 - 1.75 prm
B7 2.08 - 2.35 pim
B6 10.4 - 12.5 prm

Landsat TM data was input using a general-purpose routine for ingesting tapes.6 Usually,
such data can be read using a special-purpose Landsat-ingest routine; however, the tape
TEC received had a nonstandard 3-line blocking per record. This nonstandard blocking
also made it impossible to read the data on other TEC systems.

Three dates of full-sized Landsat TM imagery were processed, 30 January, 8 February,
and 16 February 1991 images. The scenes were predominantly water, with land only
along the northern, western, and southern portions of the images. Each entire scene was
screened visually using B6, B5, and B1 with emphasis on the northern edge and coastal
edges, and the water-land boundary. Appropriate subscenes were generated from each
image.

No oil was detected by the TEC team on the 30 January scene, and it was subsequently
confirmed that no oil existed in the area at that time (it was located to the north). The
team's analysis of the TM image required using several bands. Initially, some false alarms
were raised as the team focused on some dark-tone linear features in B6, which stretched
across portions of the scene. However, with the help of B1, which is sensitive to clouds,
shadows, and atmospheric scattering these features were deduced to be thin clouds,
shadows from thin clouds, or wind smoothing of the water. Using a priori spectral
reflectance curves for new and aged oil (Appendix B), the team analyzed TM bands 1, 4, 5,
and 7. They determined that previous reports of oil in this vicinity of the gulf were not
correct and that the oil must still be north of the area covered by the Landsat TM scene.
This conclusion was subsequently confirmed from the team's analysis of the AVHRR
imagery and by other governmental agencies monitoring the gulf spill.

6 LAS Routine IENTER.

9



PROCESSING METHODS AND ANALYSIS

Without using the visual bands, the confusion between oil and clouds is easily
understandable. At times, both oil and clouds have similar thermal contrast with the water,
and the lineal spatial patterns look amazingly similar to the pattern one would expect for oil.
However, the situation becomes immediately apparent when incorporating Band 1. This
band (blue) excels at showing haze along with clouds, both of which have bright responses
in this band. Of course, oil has a black response in this spectral region. This concludes the
argument, and eliminates any possible error between cloud patterns and oil.

Although oil was not present in this scene, a coastal site was selected, and a subscene of
1200 by 1200 pixels (33.6 by 33.6 kM2) was generated using the three multispectral bands
B6, B5, and B1 (Red, Green, and Blue). Hardcopies of this imagery (generated using
Methodology I) were produced to provide a control image in case future environmental
impact studies were needed.

Oil was easily identified (visually) on the 8 and 16 February scenes using either B5 or B6.
The oil spill on the 8 February image was present in the extreme northwest corner of the
TM image, whereas on the 16 February image the oil had moved southward along the coast
and was found over a large area (the latter is shown in Figures 5 to 7). Subscenes of 1200
by 1200 pixels containing the oil were generated. These were not co-registered because the
drift in oil could not be contained within the same 1200- by 1200- pixel area, unless the
scenes were resampled to a more coarse ground resolution. Such resampling and
subsequent co-registration for both dates would have been time-consuming, and because of
other priorities, these tasks were not performed.

Figures 5, 6, and 7 show photos of the Landsat images for the 16 February scene.
Figures 5 and 6 illustrate the appearance of oil on Landsat Bands 5 and 6 (near IR and
thermal). Notice the general agreement in the overall pattern of the oil in these two bands.
However, there is a difference. B6 responds to temperature and is a useful indicator of the
thickness of the oil, whereas, B5 seems to be indicating oil along certain shorelines.

What about this additional oil pattern along the shorelines? In particular, an apparent oil
pattern can be seen along the western shore of Jaziratal Batinah, north of Al Jubayl (the
cresent-shaped island in the center-right of image). According to B5, this feature may be
oil, but it also may be wetland since many of the cove regions along the shoreline show
about the same intensity response. The question is resolved by incorporating BI which
reveals that the areas in dispute are black and therefore oil. Figure 7 is a color composite
showing the appearance in the three multispectral bands B6, B5, and BI (Red, Green, and
Blue).

Both the 8 and 16 February scenes were used in the classification studies. In addition to
the two subscenes mentioned above, a larger portion of one of the scenes, 16 February,
was resampled by a factor of 4 to reduce the size from 4800 by 4800 pixels to 1200 by
1200 pixels. The effective areal coverage of this scene was (134 by 134 kin2).

10



PROCESSING METHODS AND ANALYSIS

2.3 Classification Trials

Three classification algorithms were studied for their effectiveness in identifying oil: the
Euclidean minimum distance classifier, the Bayesian discriminant classifier, and the
ISODATA clustering method. 7 The Euclidean and Bayesian classifiers are supervised
methods requiring training data. The ISODATA algorithm is an unsupervised method that
requires no training data; however, its performance can often be enhanced by using a priori
knowledge to define initial seed clusters. Table 3 describes the different trials in the
experiment.

The Euclidean minimum distance classifier is simple and computationally fast. It is a linear
classifier, meaning that the decision surfaces are hyperplanes. The decision function is

gi (x) = -r (x) - (x - tti)t (x- -i)

where x is the n dimensional pixel vector being classified, and p.i is the n dimensional mean

vector for class wi. The function gi (x) is evaluated for each class, and the pixel is
assigned to the class with the maximum value of gi (x).

Trials 2 to 8 were used to test the Euclidean minimum distance classifier as well as to
determine if a subset of multispectral bands could achieve comparable results to all seven
bands. This was done on the 16 February Landsat image. One variable that affects the
performance of this classifier is the distance-threshold parameter. Under the MINDIST
implementation, pixel vectors with a distance from each training vector that are greater than
this threshold distance are assigned to a null class. During Trials 2 to 8 this parameter was
varied. Selection of the thresholds was based on the class variance for each band using the
expression

N
T = sqrt [ (r" i)2]

where N is the number of bands used in the classification (in this case either 4 or 7), r is a

tunable parameter, and ,-2 is the class variance for band i. The value is interpreted as r
times the standard deviation of class i. The value T was used as an initial guess, and then
refined subjectively to improve the classification.

The Bayesian classifier is a quadratic algorithm that generates hyperquadric decision
surfaces (i.e. hyperplanes, hyperspheres, hyperellipsoids, hyperparabloids). Accordingly,
it is also more complex and computationally slower. From a statistical point of view, the
algorithm is attractive because it weights the variables, and it accounts for correlation of the
variables. Under the assumption that class data belong to multivariate normal populations,
the method is optimal in the sense that it minimizes the probability of classification error.
The multivariate normal (MVN) assumption allows the distributional properties of each
class to be completely specified by a mean vector and covariance matrix. Unfortunately,
violations of the MVN assumption (quite common in practice) and difficulties in estimating
the class covariance matrices can potentially lead to poor performance.

7 LAS routines MINDIST, BAYES, and ISOCLASS were used for the Euclidean minimum distance classifier,
the Bayesian classifier, and the ISODATA clustering method, respectively. For a more complete discussion of
these classifiers than what is given, see Charles W.Therrien. Decision Estimation and Classification. New York.
NY: John Wiley & Sons, 1989.

11



PROCESSING METHODS AND ANALYSIS

The Bayes classifier appeals to the well-known Bayes Theorem and then uses the logarithm
of the a posterior probability fwlx(oilx) = fxiw(xI wi) * P(wi) as the definition of the Bayes
discriminant function:

g (x)= - •1 (X - S)t•i(x - -ti) - log1i I + log P(wi) + R log 2.

During this effort the a priori probabilities P(cai) are set equal and do not contribute to the
decision. Since the last term is a constant that also does not contribute to the decision, the
effective Bayes discriminant function used by the software is

gi (X) = - I1, (x - tii)t Xi'l(x - tti) - I1 log I 'il

In trials 9 and 10, the Bayesian classifier was tested on 4 bands and 7 bands of Landsat,
respectively, for the 16 February image.

In trial 1, the ISOCLASS clustering method was tested on all the Landsat TM bands for the
February 8 image. Similarly, during Trials 11, 12, and 13, the method was also tested on
all the AVHRR bands for the 1 and 8 February images (see table 3).

The ISOCLASS method available under LAS is a slight modification of the well-known
ISODATA (Iterative Self-Organizing Data Analysis Techniques A) algorithm developed by
Ball and Hall.8 This algorithm belongs to the category of clustering techniques that seek to
minimize a specified objective function.

The ISODATA/ISOCLASS method is an iterative procedure, whereby clusters are
continually split and merged. Achieving a local minimization of the objective function is
easy, as it occurs when each of the samples in a data set has been assigned to the nearest
cluster center. Such a solution is found at each iteration of the algorithm. However, a
unique global solution for the data set cannot be guaranteed. This technique may settle into
a local rather than global solution (the minimized value of its objective function is not a
global minimum). The local solution generally depends on the initial starting estimates for
the seed clusters and specifying different seed points for the initial clusters can produce
different classification outputs. The differences may or may not be significant, but
nevertheless a unique solution can never be guaranteed. Further discussion of the
implementation can be found in an earlier TEC report.9

Prior to running the classification algorithms, a statistics file was generated for each scene,
containing mean vectors and covariance matrices for numerous intermediate training
classes. Eleven intermediate classes were defined for three types of oil (heavy, medium,
light), three types of water, two types of land, wet cove, wet sand, and clouds. The same
file was used for both supervised classifiers, and it was also used in one of the ISODATA
trials (to define initial seed vectors). These eleven classes would subsequently be
consolidated into seven classes as listed in Section 3.2, Table 5, and eventually to three
classes (oil, water, land) as shown in Section 3.2, Figure 8.

8 G.H. Ball, and DJ. Hall. lsodata, A Novel Method of Data Analysis and Pattern Classification. Stanford

Reseanr Institute Technical Report, (NTIS AD699616) Stanford, CA. 1965.
9 Robert S. Rand. A Hybrid Methodology for Detecting Cartographically Significant Features Using Landsat TM
Imagery. Fort Belvoir, VA. U.S. Topographic Engineer Center, ETL.-0589, September 1991.
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PROCESSING METHODS AND ANALVSIS

A 3-D scatterplot and further description of the classes is found in Section 3.2, Figure 9.
The mean vectors and covariance matrices for this training set are listed in Appendix B,
Tables B1 and B2, respectively. Signature plots of the mean vectors of oil (combined) and
two water classes are shown in Figure B3.

Table 3. Classification Runs

TRIAL IMAGE CLASSFIER TYPE IMAGE SOURCE IMAGE BAND

No. DATE COMBINATIONS

1 8-Feb-91 ISOCLASS LANDSAT SPILL2 1,2,3,4,5,6,7

2 16-Feb-91 MINDIST LANDSAT OL216X4 1,2,3,4,5,6,7

3 16-Feb-91 MINDIST LANDSAT OL216X4 1,5,6,7

4 16-Feb-91 MINDIST LANDSAT OL216X4 1,2,3,4,5,6,7

5 16-Feb-91 MINDIST LANDSAT OL216X4 1,5,6,7

6 16-Feb-91 MINDIST LANDSAT OL216X4 1,2,3,4,5,6,7

7 16-Feb-91 MINDIST LANDSAT OIL216X4 1,5,6,7

8 16-Feb-91 MINDIST LANDSAT OIL216X4 1,2,3,4,5,6,7

9 16-Feb-91 BAYES LANDSAT OIL216X4 1,5,6,7
W = (1 1 1024 1024)

10 16-Feb-91 BAYES LANDSAT O1.216X4 1,2,3,4,5,6,7
W = (88 88 1024
1024)

11 1-Feb-91 ISOCLASS AVHRR AV0201.NOON 1,2,3,4,5
W = (200,140,70,30)

12 1-Feb-91 ISOCLASS AVHRR AV0201.NOON 1,2,3,4,5
W = (200,140,70,40)

13 8-Feb-91 ISOCLASS AVHRR AV0208.NOON 1,2,3,4,5
W = (540,370,40,30)
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CLASSIFICATION RESULTS

3.0 CLASSIFICATION RESULTS

3.1 Oil Coverage Estimates

The estimates from the classification trials of the oil area coverage are listed in Table 4 and
illustrated by a class map in Figure 8. Because of the lack of ground truth for this project,
only a subjective comparison of the performance of the classifiers could be made visually.
The nature of the problem (moving oil, particularly in a wartime environment) is such that
ground truth is not likely ever to be available. In fact, a controlled study that delineates
exact reference locations of moving oil in water is extremely difficult and rather costly to
implement, even under ideal circumstances. 10 However, the nature of the problem (oil in
water) is also such that most classification errors are easy to identify visually. For
example, the presence of oil within interior land masses would be an obvious error.

Table 4. Classification Results

TRIAL CLASSMAP NAME SIZE THRESHOLDS OIL Coverage
No. (kin2 )

1 SPILL2.ISOCLASS 1024 X 1024 17.95
2 OIL216X4.MDIST 1200 X 1200 none 100.69

3 0IL216X4.MDIST2 1200 X 1200 30 for all classes 119.62
4 01L216X4.MDIST3 1200 X 1200 30 for all classes 104.47

5 01L216X4.MDIST4 1200 X 1200 20 for Oil, 30 for others 103.68

6 01L216X4.MDIST5 1200 X 1200 55 for all classes 117.42

7 01L216X4.MDIST6 1200 X 1200 25 ,for Oil, 30 for others 111.21
8 0OL216X4.MDIST7 1200 X 1200 35 for Oil, 55 for others 107.40
9 OIL216X4.BAYES 1024 X 1024 Uncertain
10 0OL216X4.BAYES2 1024 X 1024 Uncertain
11 AV0201.ISO 70 X 30 171.00

12 AV0201IJSO2 70 X 40 104.00

13 AV0208JSO 40 X 30 40.00

3.2 Classifier Performance

In general, the Euclidean classifier produced results that were consistent among themselves
and with visual observations. Trials 7 and 8 produced the best of the minimum distance
results. Regarding missed oil, very few pixels visually observed as oil were misclassified
as water. Regarding false alarms, only a handful of pixels visually observed on the land
were misclassified as oil. The four-band combination B1, B5, B6, B7, produced
essentially equivalent results as the seven-band combination.

The ISOCLASS clustering performed in Trial 1 actually produced better results for this date
imagery. However, initial optimism was quickly shattered when the algorithm was applied
to other scenes with very unstable results. For example, a comparison of the oil coverage
for Trials 11 and 12 using AVHRR data shows a coverage of 171 km 2 vs. 104 km2. The
Trial 11 output drastically overestimated the amount of oil. However, the only

10 Some studies using passive microwaves have been conduted. One such effort is documented in
James Hollinger, Determining Oil SpiU Thickness Using Passive Microwaves, Naval Research Laboratory, 1974.
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distinguishing difference between runs was a slight change in the size of the images from
70 by 30 pixels to 70 by 40 pixels, which added an additional strip of water. The rationale
for this behavior is the potential problem of the ISOCLASS solution becoming trapped in a
local minimum and unable to reach the global minimum, as was discussed in Section 2.3.

The Bayesian discriminant classifier trials generated mysterious results that are difficult to
interpret. From a theoretical standpoint, the Bayesian approach is preferable over the
Euclidean distance. The latter is most appropriate if all the variances are equal and the
variables are independent. The Bayesian method accounts for unequal variances and the
lack of independence, and it models the size and shape variations in the training class
distributions. It is also a statistically optimal classifier if the assumed multivariate normality
of class data is correct (see Section 2.3). Accordingly, the Bayesian classifier should
provide more accurate results than the Euclidean distance classifier. Generally, the
experience reported in the literature is in keeping with this expectation and the Bayesian
classifier is generally viewed as providing better overall results than the Euclidean distance
classifier.

In apparent conflict with this rationale, the results of Trials 9 and 10 indicated a far greater
amount of oil than that of the Euclidean minimum distance classifier or the ISOCLASS
clustering algorithm that could not be confirmed visually. Both Oil H and Oil M had such
troublesome areas. A post-processing operation was subsequently performed on the
Bayesian results that relabeled samples outside a specified threshold into an unknown
class.11 Numerous thresholds were specified; however, the various thresholds had one of
two effects. Either the detected oil samples remained unchanged or the majority of the
scene was relabeled as a null class. The four-band combination, B1, B5, B6, B7,
produced essentially equivalent results as the seven-band combination for the Bayesian
classifier and the thresholds.

Was this detection of additional oil correct or false? During the demonstration, the analysts
acted cautiously and dismissed the Bayesian results as erroneous. They could not visually
identify the oil in these apparently extraneous regions using any of the Landsat TM band
combinations, and although the extraneous Oil M regions had a certain amount of spatial
structure, much of the extraneous Oil H regions appeared somewhat random.
Unfortunately, the lack of ground truth made it impossible to reach a definite conclusion.

If these additional detections were incorrect, a possible explanation lies in the covariance
structure of the training data. A comparison of the covariance matrices of water as
compared to oil (listed in Appendix B, along with the mean vectors) shows that water is a
tightly defined class as compared to oil. The variances of concern range as follows:

Water A .02 to 0.64
Water B .04 to 2.34
Oil H .48 to 23.19
Oil M .41 to 134.83
Oil R .89 to 58.93

In particular, the variances of Water A are likely to be problematic, since they are all less
than one ( 0.64, 0.26, 0.05, 0.08, 0.02, 0.31, 0.10 for bands 1 to 7, respectively). The
variances of Water B are not that much better ( 2.34, 0.19, 0.11, 0.22, 0.04, 0.61, 0.25
bands 1 to 7, respectively).

1 LAS Routine UNKNOWN.
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ON M

Land A WetSand OilH

Oil R

Water A CQ
Land B

Water B

WetCotve

Water C

This is one projection of a three-dimensional acatterplot of the training data. Each training set is portrayed as a
duster (or cloud of data). Such scatterplots allow an analyst to anticipate the duster shape of the underlying
population distributions, and also to observe any overlap between the dusters. The program that generates this
plot allows the user to spin the 3-D axis to view the data from any direction.

Geographically, Water A and Water B are at large distances from the shoreline and presumably in deep water,
whereas, Water C is an off-shore water sample. WetCove is along the shoreline in a oove, and presumably heavily
saturated with water. WetSand is located quite a distance inland.

According to this diagram, each of the classes appears to be separable. Rotating the plot would show that all the
classes are indeed well separated, even though some, such as WetSand and Land B, appear to be dose in this
projection.

Figure 9. 3-D Scatterplot Results for B1, B5, B6.

If multivariate normality is assumed, then from a statistical viewpoint at least 95 percent of
the water pixels would vary only a fraction of one gray shade from its class mean. Of
course, the imagery is quantized to integer values and fractional data do not exist. Since the
Bayesian classifier assumes multivariate normality and uses the covariance matrix in
defining a distance metric (the Euclidean distance does not), it is very plausible that this
classifier could mislabel legitimate water pixels as oil.

The scatterplot projection shown in Figure 9 also shows a tightly-defined water class and
broadly-defined oil classes, and in addition, shows these classes to have a close pairwise
distance as compared to other class pairs. Notice that Oil H contains a couple of apparent
outliers, which should probably have been reassigned: one to Oil M and the other to Oil R.
As it is defined (with these two pixels included), the estimate for the covariance of Oil H is
exaggerated, and the modeled distribution is wider than it probably should be. Software
limitations at the time prevented this issue from being explored further, however, it is being
researched currently at TEC. Although it is beyond the scope of the effort to elaborate
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CLASSIFICATION RESULTS

much further, the results indicate that the presence of outliers in a training class can indeed
greatly exaggerate covariance estimates. This explanation offers another way for water
pixels to be misclassified as oil.

Noting these arguments, it is interesting to observe the results of the auto-classification
trial that was subsequently performed using the Bayesian and Euclidean classifiers. The
results, as listed in Table 6, show the Bayesian classifier performed flawlessly with 100
percent accuracy on the prototype data. This is in spite of the suspicious covariance
structure. However, it is worth mentioning that TEC researchers have noticed this type of
behavior in other studies.12 Unfortunately, training data can often produce excellent
autoclassification results, but have serious problems in classifying other portions of a
scene.

It would then seem reasonable to conclude that the Bayesian classifier performed poorly on
this data set. However, a closer look at the Bayes class map revealed that although the
Oil H regions appeared somewhat random, the Oil M pattern seemed to radiate away from
the oil identified by the other classification trials. A thin layer of oil would most definitely
act this way.

Is it possible that the Bayesian classifier might be detecting a thin sheet of oil otherwise
invisible -- oil that was not detected using the minimum distance or ISODATA methods,
and that also was not noticed visually? Although not part of this quick-response effort,
additional statistical analysis and classification trials were subsequently performed. Results
from this follow-up analysis showed that combining the Water A and Water B classes
succeeded in making the class covariance broader with only a minor affect on the class
means. This action improved the visual appearance of the resulting image classification.
Most of the troublesome Oil H was replaced as Water. The random patterns vanished
almost completely.

However, essentially all of the troublesome Oil M areas remain. Closer visual analysis
focusing on these areas indicated that indeed there may be something after all that looks like
oil. These areas have a pattern that would resemble a thin oil sheet. The areas are located
near the shoreline and the Band 1 pattern is dark, not as black as the known oil areas, but it
does seems to be obscuring underwater features that should be seen. Since the
investigators cannot reach a solid conclusion based on visual analysis, perhaps it is not
surprising the Bayesian algorithm performed as it did. At the very least, it must be said that
the Bayesian algorithm focused the investigators attention on an area that otherwise would
have been overlooked.

Another effort is being conducted to study the effect of modifying the Bayesian algorithm
by invoking 'a minimum-variance criterion and chi-squared distance rejection threshold.13

Initial results are promising. In particular, by invoking a minimum-variance criterion,
problems of misclassifying water samples as something else are greatly reduced. The chi-
squared rejection criteria is proving useful to reduce errors by incorporating a null class;
thereby allowing samples that were forced into a category by default to be rejected from the
default class and relabeled as null. Unlike the LAS implementation that was used
unsuccessfully in this effort, the criteria proposed seems to work without assigning almost
everything to a null class.

12 Robert Rand and Donald Davis. Interactive Mukivariate Analysis Techniques to Extract Natural and Man-Made

Features from Broad-Band Spectral Imaging Data. Fort Belvoir, VA. U.S. Topographic Engineer Center, in
publication.
13 Ibid.
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Table 5. Consolidated Class Conversions

To assess the actual performance for either the complete scenes or the auto-clasaification runs, the original eleven

training classes were consolidated into seven classes as follows:

Consolidated Class Original Class(s)

Class l = Oil H Oil H
Class 2 = Oil M OHiM
Class 3 = Oil R OiR
Class 4 = Land Land A, Land B
Class 5 = Wetland WetCove, WetSand
Class 6 = Water Water A, Water B, Water C
Class 7 = Clouds Clouds

Table 6 . Auto-Classification Results for Seven Bands.

Tbe Bayesian discriminant and Euclidean minimum distance classifications were performed using 11 training
classes with means and covariance as shown in Appendix B. The statistics were gathered from the prototypes and
the classification was performed on the same data. After the clasifications were completed, these 11 classes were
combined into 7 classes as listed in Table 8. Each row represents the percentage of class labels assigned to each
training class. Read across (e.g. for the Euclidean results, and for the Oil M prototypes, 81.33% were classified
correctly; 9.33% were incorrectly labeled as Oil H; and 9.33% were incorrectly labeled as Water).

BAYES CONTINGENCY RESULTS - T=ainin2 Data - oi1216 nrotos7

Class 1 2 3 4 5 6 7

1 100.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 100.00 0.00 0.00 0.00 0.00 0.00

3 0.00 0.00 100.00 0.00 0.00 0.00 0.00

4 0.00 0.00 0.00 100.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 100.00 0.00 0.00

6 0.00 0.00 0.00 0.00 0.00 100.00 0.00

7 0.00 0.00 0.00 0.00 0.00 0.00 100.00

EUCLIDEAN CONTINGENCY RESULTS - Training Data = oi0216 Rrotos7

Class 1 2 3 4 5 6 7

1 9$.77 4.23 0.00 0.00 0.00 0.00 0.00

2 9.33 81.33 0.00 0.00 0.00 9.33 0.00

3 0.00 2.17 99.13 0.00 0.00 8.70 0.00

4 0.00 0.00 0.00 100.00 0.00 0.00 0.00

5 0.00 0.00 0.00 3.73 96.27 0.00 0.00

6 0.00 0.00 0.00 0.00 0.36 99.64 0.00

7 0.00 0.00 0.00 0.00 0.00 0.00 100.00
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4.0 HARDCOPY REPRODUCTION

Two methodologies for hardcopy reproduction were used in this efforL Methodology I
provided an immediate response to the quick-response requirement, and provided a very
acceptable product that was well received in the community. However, it was not the most
desirable solution, since the process had an extra layer of processing for defining the final
radiometric adjustments, and the plotter used was best suited for graphic plotting rather
than photographic printing. Methodology II was subsequently formulated and tested after
the quick-response requirement was satisfied.

4.1 Methodology I

This methodology provided an immediate response to the quick-response requirement. It is
discussed in the manner it was implemented during the demonstration.

4.1.1 Scene Processing

Digital scenes for hardcopy processing were subset into 1024 by 1024 blocks on LAS
using the AVHRR and Landsat TM data depicting the spill as it made landfall in coastal
Saudi Arabia. The tapes were generated as band-interleaved by line (BEL) composite
images (rasters) and passed to the Earth Resource Data Analysis (ERDAS) image
processing system. The ERDAS system is networked via TCP/IP to a SUN Sparcserver
490. Also configured as a node on the network is a large format (D and E size) Precision
Image color electrostatic plotter. This plotter was used to create graphics at a scale of
approximately 1:50,000 of the spill area.

Scenes generated on the LAS were pre-processed using the ERDAS software before
plotting. The program executed to bring the data into the Sparcserver's disk was "dd"
under the UNIX operating system. Each raster image was read from tape, and a statistics
file was generated to collect and preserve the image statistics generated by LAS of the
original image data sets. Image statistics representing spectral enhancements used for
hardcopy production were generated using ERDAS.14 This program allows an enhanced
scaled data set to be written out as a file, and permits the custom application of algebraic
expressions to multiple or single band files. Since the plotter renders images using cyan,
magenta, yellow, and black (CMYK) and the 8- bit rasters are stored as red, green, and
blue (RGB), it was essential that the histogram data be collected and applied to the image
files as color look-up tables and be output as the digital file to be plotted. Spectral
enhancements developed and written out as plot files served two purposes: (1) Oil in the
scene was more obvious after histogram adjustment, particularly where band 1 in TM was
used, and (2) Resulting hardcopy plots were brighter and were more representative in color
to the same images on the video display.

4.1.2 Hardcopy Production

The new raster images were examined's to check for any anomalies in the data, i.e. pixel
drop-out, swapped lines and samples, color integrity, etc., before the next phase of
processing prior to plotting. All lines and samples were determined to be acceptable, and

14 ERDAS routine ALGEBRA.
15 ERDAS routine READ.
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RGB to CMYK conversion was initiated to generate formatted plotfiles to be passed to the
plotter. To accomplish this, software16 was used to format and place the rasters in PI-CGI
raster graphics format. In addition, legend, scaling, and boundary options within the
software allowed customization of the resulting plot files. Some loss of chroma and color
values took place in a few of the images. This was due mainly to limitations in the
electrostatic process used for rendering the images. Cartographic plotters are intended
mainly for line, point, and polygonal data sets - not dense image (photographic-type) data
sets. Dense rasters, reproduced at 100 to 400 dots per inch, lose some quality and detail
through resampling and data compression. Additionally, the RGB to CMYK conversion
can corrupt color values depending on the plotter used, media, humidity, temperature, and
the mechanical process.

Thirteen graphics were produced for scenes acquired on the 1st, 8th, and 16th of February
1991. The AVHRR full-resolution scenes covered the entire Persian Gulf region and
border countries. Scenes generated from Landsat TM were full-resolution mosaics
covering the eastern border of Kuwait (Mina az Zawr), south of the Manifah oil fields over
coastal Saudi Arabia to Ra's az Zawr. Each graphic took approximately 25 minutes to plot,
once the files were pre-processed to place them into PI CGI format. Plotting time can be
varied, and it was determined that it was more advantageous to plot slower since the plot
files were dense raster files greater than 5 megabytes. Plot time variability is determined by
writing (placing the electrically charged image on the media) and toning (painting the
charged image with color toner solution). These operations can be done simultaneously for
faster plotting, or separately for slower plotting.

Once the original graphics were produced, multiple reduced copies were reproduced using
two Canon BubbleJet copiers.

4.2 Methodology II

Subsequent to Methodology I, a different method for reproducing hardcopy was
developed that improved the appearance of the images on hardcopy and increased
annotation flexibility. Since this method also reduced the processing steps and the printing
time was faster, it should be quicker and less expensive.

4.2.1 Scene Processing

After the image-screening process is completed on LAS, the scenes of interest are
transferred via the Ethernet from the LAS to the Macintosh II workstation. Single-band
gray shade or three-band color combinations can be used. If linear piecewise radiometric
remappings are desired to improve the visual appearance of the scenes, this operation
should be applied prior to the transfer.

Once the transfer is completed, the image data is read and processed by a commercially
written Macintosh image/photo processing program. 17 All the necessary image cropping,
annotation, and final radiometric adjustment operations are performed interactively with the
program. The Macintosh II workstation and software used in the process perform 32-bit
color operations, and therefore provide full true-color support. The resulting digital image
that the analyst views, prior to hardcopy generation, is exactly what the analyst gets. An
almost identically-configured system exists as the interface to the Quick-Response
Multicolor Printer (QRMP) prototype that is used for hardcopy output.

16 PIMAGE software
17 Adobe Photoshop, Version 2.0.
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The images are ingested as raw data and converted into their own multichannel format.
Upper limits on the input multichannel image data have not yet been established, although
2560 pixels by 5632 lines have been successfully manipulated (a 3-channel color 42MB
file). The presently established upper limit on the output images is a total of 24 MB for a
multichannel scene. This is not a limitation of the image/photo processing software, but
rather a memory limitation of the copier, which will soon be resolved by new memory
boards.

Once the scene has been processed to the desired level, photographically, two additional
parameters must be specified. These parameters are the page size and the print density in
dots-per-inch (dpi). Available page sizes are the standard letter ( 8.5" by 11" ) and tabloid
size (11" by 17"). The print density ranges from 72 dpi to 400 dpi. Of course, the
density setting affects both the scale of the imagery and the size of the image that can be
printed. For example, at a density of 72 dpi, only an image of 648 by 936 pixels could be
printed on a 9- by 13- inch area within a tabloid-sized sheet of paper. At 200 dpi, an image
of 1800 by 2600 pixels could be printed on the same-sized area.

The file can be saved as a raw data file, a PICT data file, or a program-specific data file.
However, if one wishes to save the print parameters, the program-specific format should
be used. The file is then copied to either a 1.4 MB floppy disc, or 45 MB removable
cartridge, depending on the file size.

Note that because identical software exists on the QRMP, much of this scene processing
could be performed directly on the QRMP as well. Convenience and user expertise should
determine this.

4.2.2 Hardcopy Production

As mentioned above, an almost identically-configured system exists as the interface to the
Quick-Response Multicolor Printer (QRMP) prototype that is used for hardcopy output
Therefore, the disc file, created by Scene Processing, is read directly into the QRMP
prototype system. The same program used to create the file is executed, the file is opened,
and the print command is issued.

Each of the two QRMP prototypes is a network system presently consisting of a Macintosh
llfx, a Raster Input Processor (RIP), a Cannon CLC500 copier/printer, and a Canon
BubbleJet copier. The Macintosh files are transferred to the RIP, which converts the image
files into a PostScript file that the CLC500 printer can interpret. The output of the CLC500
is a letter or tabloid-size photo. These photos are then copied with some magnification
factor ( lx to 12x) using the BubbleJet copier. The format of the BubbleJet allows the
copies to have a maximum size of 20 by 30 inches.

Noting the original pixel size ( e.g. Landsat TM has a resolution of 28 meters/pixel), the
print density recorded by the laser printer, and the scale factor introduced by the BubbleJet
copier, one can determine the scale factor of the resulting hardcopy output. Typically, one
determines the scale factor in advance, noting the image pixel size and adjusting the print
density of the printer and the scale factor of the copier accordingly.
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All of the photos in this report were generated using Methodology II. Except for the figure
in Appendix A, annotation of the photos was given only limited attention, because of the
limited resources available after the Quick-Response demonstration. Also, to reduce cost,
only a standard grade of paper was used. The best :epresentation of the capabilities of the
system is illustrated in Appendix A, where annotation/graphics was given greater
emphasis, and a much higher grade of (clay-based) paper was used.

Update on Production Methodologv IL. Since this effort was completed, a direct
digital interface from the Macintosh/RIP to the Canon BubbleJet copier/printer was
established. This will be particularly useful for generating poster-size prints directly from a
digital file, eliminating the need for the intermediate step of generating a page-size (letter or
tabloid) print that must be subsequently magnified.
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5.0 CONCLUSIONS

Oil was identified on both AVHRR and Landsat TM. The success in using AVHRR was
primarily due to the contrast between oil and water in the thermal wavebands, and to the
massive amounts of concentrated oil. As the oil became dispersed on the later dates, it was
far more difficult to detect, because its thermal signature became merged with that of the
coastal features. Much of the oil was missed. However, this same oil was easily identified
on the Landsat scene of the corresponding date because of the increased spatial resolution.
Also, automated detection became possible because of additional bands.

Subsets of the most useful AVHRR and Landsat TM bands for detecting and identifying oil
were easily determined. The useful AVHRR bands were B4 and B5. Only one of these is
needed, and the team members used B4.

The most useful Landsat TM bands were B6, B5, and B1. Although Landsat TM B6 was
perhaps the most important for conservative oil estimates, B5 possibly indicated additional
oil near shorelines. The BI band was essential to eliminate possible confusion between oil
and wetland, between oil and cloud patterns, as well as between oil and near-shore
bathymetric features.

Both manual methods and interactive classification routines were successful in identifying
the oil. Manual methods served best for screening the data, determining the best band
combinations, and verifying the actual presence of the oil. Manual interpretation of
AVHRR was essential because of the limited spatial resolution and the limited number of
useful spectral bands.

Interactive routines were useful in generating class maps and providing oil area coverage
estimates. The best conservative estimates were achieved using a simple minimum distance
classifier with threshold bounds for a null class. A four-band combination, B1, B5, B6,
B7, produced essentially equivalent results as the seven-band combination.

The unsupervised ISOCLASS technique produced some successful results; however, it
was also found to be unstable. Excellent results deteriorated to nonsense with only a small
change in scene content.

The results of the Bayesian discriminant classifier applied to the Landsat TM scene
produced results that were difficult to interpret and raised some important issues. Some of
the difficulty was traceable to tightly-defined water classes ( i.e. very small variances in the
class covariance matrix), and possibly to prototype outliers in one of the oil classes.

There is the need for software that can adapt to the problems associated with tightly-defined
classes, and for software that detects and eliminates outliers in training data. These
problems can often be avoided through skillful selection of training data; however, the
required talent is probably beyond the level that should be expected of the average user, and
software should be developed to circumvent these problems.

Overall, the classification results demonstrated successes and shortcomings that were in
keeping with those of other studies conducted by TEC researchers evaluating multispectral
data with different scene content. An ongoing effort is addressing the shortcomings for the
generalized problem (any scene content).
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A study should be performed that assesses the potential for using Landsat or other spectral
imaging data along with semi-automated machine algorithms for the specific problem of
detecting thin layers of oil. The Bayesian classifier might have detected such layers using
Landsat TM; however, the lack of ground truth available in this effort made it impossible to
reach any definite conclusion.

A quick response time of 24 hours was achieved for responding to emergency operations,
as measured from the moment TEC received the data tapes to completion of hardcopy
plotter products, and areal oil coverage estimates. Subsequent to the demonstration, a
methodology utilizing the Quick-Response Multicolor Printer Prototype (QRMP) for
producing better quality hardcopy products with an equivalent (or better) response time was
formulated and tested.

Most of the photos in this report do not fully represent the true capability of Methodology
II. Because of the limited resources available after the Quick-Response demonstration,
efforts were directed at printing the scenes in this report with only limited annotation. The
print quality is also somewhat limited because of paper quality (clay-based paper should be
used). A more representative sample of the capabilities of the system is illustrated in
Appendix A. Such a photo could easily be enlarged to 20 by 30 inches using the BubbleJet
copier.

28



6.0 REFERENCES

Ball, G.H. and Hall D.J. Isodata, A Novel Method of Data Analysis and Pattern
Classification. Stanford Research Institute Technical Report, (NTIS AD699616) Stanford,
CA. 1965.

Hollinger, James; Determining Oil Spill Thickness Using Passive Microwaves, Naval
Research Laboratory; 1974.

Rand, Robert S. A Hybrid Methodology for Detecting Cartographically Significant
Features Using Landsat IM Imagery. Fort Belvoir, VA: U.S. Topographic Engineer
Center, ETL-0589, September 1991.

Rand, Robert and Davis, Donald. Interactive Multidriate Analysis Techniques to Extract
Natural and Man-Made Features from Broad-Band Spectral Imaging Data. Fort Belvoir,
VA: U.S. Topographic Engineer Center, in publication.

Therrien, Charles W. Decision Estimation and Classification. New York, NY: John Wiley
& Sons, 1989.

29



APPENDIX A: Kuwait Airuort and Oil Fires
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APPENDIX B: Snectral Curves and Statistics
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APPENDIX B

Table B1. Mean Vectors or the Training Data

juj uBA Im BI
Oil H 66.34 20.52 18.11 14.37 49.85 132.66 23.37
Oil M 69.17 21.47 18.20 13.88 31.08 111.49 15.19
Oil R 68.24 21.22 18.67 12.15 17.17 136.70 12.00
Land A 135.75 70.08 103.27 89.35 153.27 123.89 105.29
Land B 137.63 66.33 92.80 76.01 122.55 126.64 77.70
WetCove 122.40 55.08 70.30 54.91 43.09 113.34 17.59
WetSand 117.54 56.80 81.32 68.41 117.78 128.64 74.37
Water A 65.82 19.43 15.00 8.91 5.00 120.35 3.90
Water B 85.73 24.90 16.97 9.76 5.96 112.03 4.52
Water C 142.64 62.83 66.02 24.09 9.72 106.82 5.64
Cloud 118.55 39.36 40.05 27.05 23.46 79.46 14.55

The mean vectors for Oil, Water A, and Water C are plotted in Figure B3,
where Oil = average of (Oil H, Oil M, and Oil R).
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Figure B3. Landsat TM-Derived Spectral Curves or Oil and Water.
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APPENDIX B

Table B2. Covariance Matrices

ILL LI LI 14 lu U L.
B 1 1.53 0.75 0.25 -0.21 -4.28 -3.08 -1.84

B2 0.75 0.48 0.21 -0.08 -1.76 -1.05 -0.69

B3 0.25 0.21 0.57 0.84 0.33 -0.10 -0.06

B4 -0.21 -0.08 0.84 1.38 1.91 -0.03 0.29

B5 -4.28 -1.76 0.33 1.91 23.19 13.39 11.13

B6 -3.08 -1.05 -0.10 -0.03 13.39 17.57 7.40

B7 -1.84 -0.69 -0.06 0.29 11.12 7.40 6.18

Oil M

.L L. LI I"4 ju U L.
111 4.09 1.62 -0.75 -3.15 -19.84 -3.33 -8.01

B2 1.62 0.79 -0.30 -1.27 -7.93 -1.34 -3.16

B3 -0.75 -0.30 0.41 1.04 5.77 1.04 2.18

B4 -3.15 -1.27 1.04 3.81 21.63 3.91 8.29

B5 -19.84 -7.93 5.77 21.63 134.83 23.77 52.01

B6 -3.33 -1.34 1.04 3.91 23.77 5.12 9.11

B7 -8.01 -3.16 2.18 8.29 52.01 9.11 20.53

Oil R

LI ju L. RA ju UA L.
B 1 5.70 1.97 0.26 -0.02 -0.20 -15.77 -1.73

B2 1.97 0.59 0.16 0.08 -0.02 -5.53 -0.67

B3 0.26 0.16 1.16 0.98 0.59 1.14 0.31

B4 -0.02 0.08 0.98 1.11 1.02 1.49 0.58

B5 -0.20 -0.02 0.59 1.02 I0.15 -6.10 4.84

B6 -15.77 -5.53 1.14 1.49 -6.10 58.93 2.20

B7 -1.73 -0.67 0.31 0.58 4.84 2.20 3.20

Land I

Al lI L ILA U U LI
B 1 14.64 7.74 12.16 9.50 11.95 -0.49 7.44

B2 7.74 4.79 7.79 6.23 8.80 0.02 6.01

B3 12.16 7.79 13.89 10.92 16.43 0.35 11.82

B34 9.50 6.23 10.92 9.65 14.25 0.75 9.93

B5 11.95 8.80 16.43 14.25 25.55 2.23 18.61

B6 -0.49 0.02 0.35 0.75 2.23 1.35 1.65

B7 7.44 6.01 11.82 9.93 18.61 1.65 14.51
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APPENDIX B

Table B2. Covarlance Matrices (continued)
Land 2

ili 12 A .u Li 12
B 1 22.18 9.16 9.90 6.10 0.67 -8.17 -4.83

B2 9.16 4.39 5.01 3.53 2.67 -2.72 0.37

B3 9.90 5.01 6.54 4.87 5.49 -2.21 2.97

B4 6.10 3.53 4.87 4.12 5.84 -0.76 4.24

BS 0.67 2.67 5.49 5.84 15.33 3.04 15.00

B6 -8.17 -2.72 -2.21 -0.76 3.04 5.40 5.27

B7 -4.83 0.37 2.97 4.24 15.00 5.27 16.95

WetCove
1.1 12 12 A Us U. 1.2

B 1 69.51 38.43 57.13 41.25 5.67 2.82 -0.66

B 2 38.43 21.76 32.36 23.78 3.51 1.86 -0.47

B 3 57.13 32.36 49.45 37.38 10.30 3.22 1.05

B 4 41.25 23.78 37.38 31.51 17.99 3.32 4.46

B 3 5.67 3.51 10.30 17.99 74.36 2.83 27.92

B 6 2.82 1.86 3.22 3.32 2.83 1.11 0.78

B 7 -0.66 -0.47 1.05 4.46 27.92 0.78 11.06

WetSand

1 u2 12 RA U & U 1.
B 1 16.20 9.22 14.90 12.16 16.91 2.06 9.67

B 2 9.22 5.54 8.70 7.11 9.92 1.23 5.70

B 3 14.90 8.70 14.40 11.87 16.72 2.00 9.33

B 4 12.16 7.11 11.87 10.09 14.12 1.56 7.70

B 3 16.91 9.92 16.72 14.12 21.38 2.54 11.98

B 6 2.06 1.23 2.00 1.56 2.54 0.33 1.75

B 7 9.67 5.70 9.33 7.70 11.98 1.75 7.99

Water A

1. 12 12 UA LA Uft 12

B 1 0.64 0.22 0.02 -0.01 -0.01 0.03 -0.01

B 2 0.22 0.26 0.00 -0.01 0.00 0.02 -0.01

B 3 0.02 0.00 0.05 0.00 0.00 -0.01 0.00

B 4 -0.01 -0.01 0.00 0.08 0.00 0.01 -0.01

B 3 -0.01 0.00 0.00 0.00 0.02 0.00 0.00

B 6 0.03 0.02 -0.01 0.01 0.00 0.31 0.00

B 7 -0.01 -0.01 0.00 -0.01 0.00 0.00 0.10
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APPENDIX B

Table B2. Covariance Matrices (continued)
Water B

1. 12 12 14 LA Li L.
B 1 2.34 0.25 -0.05 -0.15 -0.04 0.22 -0.13

32 0.25 0.19 0.01 0.00 0.00 -0.02 -0.01

B 3 -0.05 0.01 0.11 0.04 0.01 -0.04 0.01

B4 -0.15 0.00 0.04 0.22 0.01 -0.09 0.02

B3 -0.04 0.00 0.01 0.01 0.04 -0.03 0.00

36 0.22 -0.02 -0.04 -0.09 -0.03 0.61 -0.05

B7 -0.13 -0.01 0.01 0.02 0.00 -0.05 0.25

Water C

.I A. . 14 1i 1i JU
B 1 28.58 20.49 53.95 64.85 20.92 9.06 5.73

B 2 20.49 16.10 45.87 56.61 17.13 7.34 4.68

B 3 53.95 45.87 149.73 201.49 60.75 25.14 16.33

B4 64.85 56.61 201.49 312.54 107.83 41.79 28.60

BS 20.92 17.13 60.75 107.83 43.27 16.65 12.94

B6 9.06 7.34 25.14 41.79 16.65 6.63 4.46

B 7 5.73 4.68 16.33 28.60 12.94 4.46 3.68

Cloud

.L 12 1. 4A U RA LZ
B 1 31.50 12.17 16.88 12.83 12.41 -18.78 7.55

B 2 12.17 4.811 6.55 4.98 4.83 -7.36 2.94

B 3 16.88 6.55 9.38 7.00 6.74 -10.07 4.07

B 4 12.83 4.98 7.00 S.47 5.07 -7.59 3.07

B S 12.41 4.83 6.74 5.07 5.12 -7.45 2.98

B 6 -18.78 -7.36 -10.07 -7.59 -7.45 12.07 -4.45

B 7 7.55 2.94 4.07 3.07 2.98 -4.45 1.58
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APPENDIX C

APPENDIX C - Radlometric Magpinns and Nomenclature

Table C1 lists the mappings used to convert the 10-bit data to 8-bit data. Table C2 lists the
nomenclature used for the resultant images after the 8-bit conversion, the co-registration,
and the magnification.

Table C1. Mappings for AVHRR Data (1*2 to Byte Data)

AV0116.NOON
BAND FROM TO

1 0 66 266 724 0 10 210 255
2 0 51 251 683 0 10 210 255

3 0 255 740 929 0 10 240 255
4 0 352 552 7 4 1 0 10 210 255
5 0 305 543 71 0 10 210 255

AV0124.MORN
BAND FROM TO

1 0 50 250 426 0 10 210 255
2 0 45 245 409 0 10 210 255
3 0 545 806 986 0 10 200 200
4 0 392 500 8260 10 200 200
5 0 392 500 826 0 10 200 1 200

AV0201.MORN
BAND FROM TO

1 0 77 183 447 0 10 210 1 255
2 0 66 166 422 0 10 210 255
3 0 436 755 935 0 10 200 200
4 0 405 562 822 0 10 200 200
5 0 405 564 821 0 10 1 200 200

AV0201.NOON
BAND FROM TO

1 0 69 241 698 0 10 210 255
2 0 54 240 690 0 10 210 255
3 0 223 697 921 0 10 200 200
4 0 342 462 927 0 10 200 200
5 0 298 422 814 0 1 10 200 200

AV0208.NOON
BAND FROM TO

1 0 86 531 872 0 10 210 255
2 0 66 521 827 0 10 210 255
3 0 258 645 9 5 1  0 10 240 255
4 0 390. 543 842 0 10 210 255
5 0 333 504 817 0 10 210 255
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APPENDIX C

Table C2. AVHRR Images Used to Monitor the Oil Spill

AVHRR DATA
(5 BANDS 1 pixels)

SOURCE IMAGE 8 BIT IMAGE CO-REGISTERED 2X ZOOM CC
AV0116.NOON AV0116.NOON8 AV0116.NOON8R AV0116.NOON8C
AV0124.MORN AV0124.MORN8 AV0124.MORN8 AV0124.MORN8C
AV0125.MORN AV0125.MORN8 ___

AV0201.MORN AV0201.MORN8 AV0201.MORN8R AV0201.MORN8C
AV0201.NOON AV0201.NOON8 AV0201.NOON8R AVOI.NOON8C
AV0208NOON AV0208.NOON8 AV0208.NOONSR AV02.NOON8C

-=Image not generated

Note the nomenclature to designate the origins of the subscene. For example,
AV0116.NOON can be translated to AVHRR acquired on 1/16/91 at approximately
NOON. As listed in Table CZ remapped subscenes were given an "8" suffix (e.g.
AV0116.NOON -> AV0116.NOON8).

The AV0124.MORN8 subscene was used as the base scene for which the other four
subscenes were registered. During the registration process, these four subscenes were
resampled using a bilinear interpolation option. The names of these subscenes were given
an additional "R" suffix (e.g. AVO116.NOON8 -> AVO116.NOON8R).

The magnified images (2XZOOMCC) were resampled using cubic convolution. As listed
in this table, the names of these subscenes were given a "C" suffix (e.g.
AV0116.NOON8R -> AV0116.NOON8C).

40



LIST OF ACRONYMS

AVHRR Advanced Very High Resolution Radiometer
BIL Band Interleaved by line
CMYK Cyan, Magenta, Yellow, and Black

CRREL USACE Army Cold Regions Research and Engineering Laboratory
EOC Corps of Engineers Emergency Operation Center

ERDAS Earth Resource Data Analysis
GSL TECs Geographic Sciences Laboratory
IFOV Instantaneous Field of View

ISODATA Iterative Self-Organizing Data Analysis Techniques A
LAS Land Analysis System
MVN Multivariate Normal
QRMP Quick Response Multicolor Printer

RGB Red, Green, Blue
RI TEC's Research Institute
RIP Raster Input Processor
SLAR Side-Looking Airborne Radar
SPL TECs Space Programs Laboratory
SRTF/MBIPS Space Research Test Facility, Multiband Image Processing System

TDL TECs Topographic Developments Laboratory

TEC US. Army Topographic Engineer Center

TM Landsat Thematic Mapper
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