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STATIONARY TIME SERIES ANALYSIS

USING INFORMATION AND SPECTRAL ANALYSIS

EMANUEL PARZEN

Department of Statistics, Texas A&M University

Dedicated to Maurice Priestley on his 60th Birthday

0. Introduction to philosophical and technical aims and means

The technical aims of this paper are: to discuss some roles of information ideas and

spectral analysis in time series analysis (sections 1 and 2); extend spectral estimation

by exponential models and extend (to time beries) goodness of fit tests by components

(sections 3 and 4). Section 0 presents some philosophy.

We believe that a major problem of statistical theory is how to develop technology

transfer from esoteric methods to exoteric methods. We define exoteric statistical methods

as those that have reached the status of a consumer product, where the consumers are

applied researchers. Esoteric methods are known mainly to experts who are researching

the theory and are often alleged to be an intellectual game. More methods need to reach

the status of consumer products (applicable methods) because computing power enables us

to apply several methods to a real problem and reduces the personal investment required

to learn how to apply a new method. It should now be possible to implement the growing

consensus that problem solving by comparison of several methods leads to conclusions

which have increased confidence.

The practice of statistics and time series analysis can "stand on the shoulders of giants"

if we develop a framework which unifies diverse methods. Information ideas are central

to a unified framework since they clarify and extend methods by providing many levels

of relationship between time series analysis, classical statistical methods for independent

samples, and signal processing problems called inverse problems with positivity constraints.

Research supported by U. S. Army Research Office
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We believe that statisticians who work in time series analysis may find that their audi-

ence is not their fellow statisticians. While their work is appreciated by many researchers

in the many fields in which time series analysis is applied and developed, they may feel

not valued by the majority of statisticians (to whom the extensive literature of time series

analysis seems to be disjoint from the main stream of statistical methods). My experience

is that statisticians should understand that time series methods provide many of the right

foundations for the successful unification of statistical methods. I feel fortunate to have

studied time series analysis intensively before beginning (in 1977) my current work on

non-parametric data modeling, unification of statistical methods, and change analysis.

Another benefit that I have derived from working in time series analysis has been the

friendship of Maurice Priestley and his wife Nancy since we first met in 1958. As I express

my esteem for Maurice Priestley and honor his 60th birthday, let me commend Priestley

(1981) as the best book to read to learn about time series analysis in both the time and

frequency domains.

1. Entropy, Cross-Entropy, Renyi Information

The pioneer work of Kullback (1959) made statisticians aware of the fundamental role

in statistical theory played by the (Kuilback-Liebler) information divergence between two

probability distributions F and G; we define it by a definition which differs from usual

definitions by a factor of 2:

I(F; G) =(-2) log{g(x)/f(x)}f(x)dx

when F and G are continuous with probability density functions f(x) and g(x);

I(F; G) = (-2) logPG(x)/PF()pF(x)

when F and G are discrete, with probability mass functions PF(x) and PG(x). One reason

for the importance of information divergence (among other possible definitions) is that it

possesses a decomposition

I(F;G) = H(F;G)- H(F),

2



in terms of entropy H(F) and cross-entropy H(F; G); we define

H(F) = (-2) {logf(x)}f(z)dz,

H(F; G) = (-2) j{logg(x)}f(x)dx.

The fundamental work of Renyi (1961) deserves more attention by statisticians; we

define Renyi information of index A as follows for continuous F and G:

R(F;G)= 2 )-5( - ') lo f- ("•') A f Y)

for A # 0, -1;

IRo(F; G) = 2 i{-) logf(y) -(y) +-- 1} f(y)dy

IR-.I(F;G) = -2 log f(y) -(y) +1 f(y)dy

An analogous definition holds for discrete F and G.

When we think of these formulas as relating non-negative functions f and g, we denote

it by IRX(f; g). This definition provides: (1) extensions to non-negative functions which

are not densities, and also (2) a non-negative integrand which can provide diagnostic

measures at each value of y. The above definitions hold also for multivariate F and G.

2. Asymptotic Information of Stationary Normal Time Series

This section discusses the elegance of formulas provided by a unification of informa-

tion measures of stationary normal time series and information measures of non-negative

functions which are spectral density functions.

When a time series {Y(t), t = 1, 2, ... } is modeled by alternative probability measures

P1 and P 2 for the infinite sequence, we define asymptotic information divergence (or rate

of information divergence)

AsymIR,\(P2; P1 ) = lim_(1/n)IR,(P(n); pfn)).

where P(n) is the multivariate distribution under Pi of Y(t), t = 1,..., n.
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Let Y(.) be zero mean stationary with covariance function

R(v) = E[Y(t)Y(t - v)].

and correlation function

p(v) = R(v)/R(O).

Parzen ((1981), (1983)) shows how empirical modeling of a time series from data can be

approached by using concepts of information to measure the predictability of Y(t) from

past values Y(t - 1),..., Y(t - m). We define the information about Y(t) in its infinite

past Y(t - 1), Y(t - 2),..., and in its finite past by

Ioo = I(Y IY-t1,Y-2,.... Ey_ ,,Y_ 2,... I (fYjy_1,,y_,..." fY)= i IM

I, = I(YIY- 1,... , Y-m) = Ey ,...,y,,l(fyiy_,...,y_,,;y)

where fyIy-.,...,Y-,, denotes the conditional probability density of Y(t) given Y(t -

),.., Y(t- M).

An important classification of time series is by memory type: no memory,

short memory, long memory according as I.o = 0, 0 < I1o < oo, IOO = oo. Memory

type is related to the dynamic range of the spectral density function of the time series.

The spectral density function f(w), 0 < w < 1, is defined as the Fourier transform of

the correlation function (assuming it exists):

W= Z exp(-2Urivw)p(v)
v=-00

We call a time series bounded memory if the spectral density is bounded above and below:

0<Cl5f(w)c2 <oo.

Long memory occurs when there are zeroes or infinities in f(w). Bounded memory is

intuitively the same as short memory or finite memory.

Let P1 denote the probability measure on the space of infinite sequences RO cor-

responding to a normal zero mean stationary time series with spectral density function

f(w).

4



An important result of Pinsker [(1964), p. 196] can be interpreted as providing a for-

mula for asymptotic information divergence between two zero mean stationary time series

with respective rational spectral density functions f (w) and g(w). Write AsymIR.A(f, g)

for AsymIRA(P,; Pg). Adapting Pinsker (1964) one can prove that

,1
AsymIR_l1 (f, g) = I {(f(w)/g(w)) - 1 - log(f(w)/g(w))} dw

The right hand side is called by electrical engineers the Itakura-Saito formula and plays

an important role in signal processing.

Because spectral densities are even functions we can take the integral to be over

0 <_ w < .5; then one obtains the following important theorem.

Theorem: Unification of information measures of Pinsker (1964) and Itakura-Saito

(1970).

AsymIR.l(f,g) = 1R_lfo)1g(w))O,.5

The validity of this identity of information measures can be extended to non-normal asymp-

totically stationary time series (Ephraim, Lev-Ari, Gray (1988)). It can be called Pinsker's

information theoretic justification of the Itakura-Saito distortion measure. Statisticians

might try to understand these formulas as extensions of the formula for the information

divergence between two univariate normal distributions with zero means and different

variances.

For bounded memory time series (and -1 < A < 0), Kazakos and Kazakos (1980)

prove

AsymIR (f,g) = (1/A)j\ log(f(o)/g(w)) - (1/(1 + A)) log 1 + (1 + A)

((fMw)g(.M) - 1}}+1dw

Kazakos and Kazakos (1980) also give formulas for asymptotic information of multiple

stationary time series. They illustrate how formulas for -1 < A < 0 can lead to formulas

for A = 0 and A = 1.
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3. Estimation of Finite Parameter Spectral Densities

This section formulates in terms of our Renyi information notation the classic asymp-

totic maximum likelihood Whittle theory of time series parameter estimation.

For a random sample of a random variable with unknown probability density f, max-

imum likelihood estimators 0^ of the parameters of a finite parameter model f9 of the

probability density f can be shown to be equivalent to minimizing

IR- I.(f, fo)

where fr is a raw estimator of f (initially, a symbolic sample probability density formed

from the sample distribution function F). A similar result, called Whittle's estimator

(Whittle (1953)), holds for estimation of spectral densities of a bounded memory zero

mean stationary time series for which one assumes a finite parametric model fe(w) for the

true unknown spectral density f(w).

A raw fully nonparametric estimator of f(w) from a time series sample Y(t), t =

1,... n, is the sample spectral density (or periodogram)

n1 n

f-(w) = I Z'Y(t) exp(-27riwt)12 + Z IY(t)12

t=1 t=1

Note that f(w) is not a consistent estimator of f(w); nevertheless,

E [f(w)] converges to f(w),

a fact which can be taken as the definition of the spectral density f(w).

An estimator 0^ which is asymptotically equivalent to maximum likelihood estimator

is obtained by minimizing AsymIR- I (f-; f1) = IR-1(f', fe)o,.5 =

0 {(f-(w)/fo(w)) - -I log(f-(w)/fo(w))} dw
f~ w)

which can be interpreted as choosing 0 to make F as flat or constant as possible.
fe(w)
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Whittle pioneered the representation of a parametric model for a Gaussian stationary

time series with zero mean and unit variance

fe(w) = o21"YO(

where -ye(w) is the square modulus of the transfer function of the whitening filter repre-

sented by the spectral density model fO, and a2 is defined to satisfy

fo1 log fo(w)dw = log o2 = -1.

Note that 0 < a 2 < 1 and o2 is the ratio of the conditional variance of Y(-) given its

infinite past and the unconditional variance of Y(-).

Minizimizing AsymIRl.I(f-, fo) is equivalent to minimizing

(1/0,2) j01{f(w)7y9(w)} dw + log(o 2 )

which is equivalent to ininimizing over 0

= j Ye(w)f-(w)dw

and setting

.2 j= =eo0(,2)d4P .

The information divergence between the data and the fitted model is given by

IRi(f,f-) = logo2 - loga-2 = IC" - I00

defining -Ioo& = log a^2

- log er 2 = J log f-(w)dw

This criterion (however, corrected for bias in Ioo-) arises from information approaches

to model identification (Parzen (1983)). A model fitting criterion (but not a parameter

estimation criterion) is provided by the information increment

I(YI all past Y; Y values in model 0)
=f - log {f (w)feO-(w)} dw = IR- 1 (f/feo)o,-.5

7



I.

One can regard it as a measure of the distance of the whitening spectral density

f*(W) = F(W)/fe-(W)

from a constant function; note that f*(w) is constructed to integrate to 1.

Our philosophy of identification of parametric models for a stationary time series is to

choose them so that by the criteria of the next section of this paper an optimal smoother

of the computed function f*(w) is a constant; then a "parameter-free" non-parametric

estimator of the spectral density f(w) by a smoother of f(w) is given by the parametric

estimator fo'. By "parameter-free" we mean that we are free to choose the parameters

to make the data (raw estimator) shape up to a smooth estimator. The parameters are

not regarded as having any significance or interpretation; they are merely coefficients of a

representation of f(w).

Portmanteau statistics to test goodness of fit of a model to the time series use sums

of squares of correlations of residuals; an analogous statistic is

IR 1 (f"/fo-)0,.5 = log {f (w)/fo-(w)} 2 dw

Goodness of fit of the model to the data (as measured by how close f*(w) is to the spectral

density of white noise) is the ultimate model identification criterion to decide between

competing parametric models.

4. Goodness of fit by components and exponential models

Our philosophy of stationary time series model identification argues that goodness of

fit tests of a model should test for whiteness

f*(w)- f=(w)/fo'(W).

In this section we propose an analogue of the concept of components introduced in the

classical goodness of fit theory by Durbin and Knott (1972):

T*(J) = 2`5 f*(w)J(w)&,
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for variouxo core functions J(w), which one evaluates in practice as a sum over a dense

grid of frequencies.

One usually forms a sequence of components whose score functions

J0(w) = 1, J1(w), J2(w),...

are a complete orthonormal set of functions in L 2[0, 1]. Choices are: harmonics

(cos21rjw,j = 0,1,2,...); Legendre polynomials; Hermite polynomial functions of the

standard normal quantile function t-1. Note that f01 Jj(w)dw = 0 for j = 1, 2,...

Under the assumption that f(w) = f (w; 0) for some parameter vector 0, the asymptotic

distribution of T*(Jj) is the same as the spectral average 2-. fA(1/f(w))Jj(w)f'(w)dw;

the latter are asymptotically normal with mean

0 J,(w)&) = 0,

and variance

(2/n) j (1/2f 2(w))IJ.(w)12f 2(w)d) - (/n) 1IJ(w,)12d = 1/n.

Thus properly defined components are asymptotically independent Normal(0,1/n).

A component based quadratic test of the goodness of fit of the model, with an asymp-

totic chi-square distribution, is

m

sk,m = E IT*(Jj)12.
j=k

These component tests have the asymptotic optimality properties of score tests if we

model the true spectral density f(w) by an exponential model extending Bloomfield (1973).

The main technical contribution of this paper may be the following proposal: esti-

mate f(w) by assuming an ezponential model of order m uwing score functions J,(w),

j = 1,..., m. The choice of score functions and criteria for determining from the data an

optimal order m^ require further research.

Note that an exponential model for the spectral density provides smooth estimators

of the log spectral density and therefore of cepstral correlations (the Fourier coefficients
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of the log spectrum) and coeticients of the AR(oo) and MA(oo) representations of a time

series required for prediction.

An exponential model of order m, denoted f0,m, is defined

logf9 ,('m ) = 00 + 91Ji(,) + ... + SMJM(,)

The coefficient 00 has the interpretation 00 = f0o logf(w)dw = log al where a2 is the

infinite memory one step ahead prediction mean square error. An exponential model can

be expressed
m

fO,m = a0 exp(Z- jJj(w))
j=1

Maximum likelihood estimators Om = (01",. ,Ome) of Om = (01,..., m) are equivalent

to minimizing
V(o) = j0d& -(W) exp(- E OAM )

j=1

and then estimating a0 by V(O m ).

An estimated spectral density is given by

fg-(w) = V(0^m)exp(Z 0fJij(w);
j=1

it satisfies

Sf* m (w)dw = 1,

defining

f*m(W) = f'()fo"()

The product of the Fisher score function (derivative with respect to Oj of the opti-

mization criterion V(G)) and 2-5 is denoted Uj(O); for j = 1,..,m

Ui(O) = 2-'5/01dw(f'(w)/fo(w))Jj(w)

A goodness of fit test of a model of order m is given by a score test of an order m

sub-model against an order M "full" model:

Uj(O~m) = Oj = m + 1,. .. ,M

10



An overall chi-square test uses the sum of squares of these score statistics. To compute

the parameter estimators, let

u(o-m ) = (Ui(O'),...,Um( )

An approximate Newton-Raphson iterative scheme for computing can be shown, following

Bloomfield (1973), to be

e-m(n+l) =- om(n) _ .5U (e-m(n))

Note that the vector of correction terms in this iteration is the vector of score tests.

Exponential models for the spectral density uwe the same score statistics for iterative eval-

uation of estimators as are used for component tests of goodness of fit.

An initial estimator of 9j, adapting Bloomfield (1973), is
n

0(1) = (1/n) 1 log f(2irt/n)Jj(2?rt/n)
t=l

We conclude our heuristic discussion by emphasizing that the approach outlined above

to goodness of fit and spectral density estimation needs further research about the problems

of choosing score functions Jj(w) and determining an optimal order m.
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