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LIMIT THEOREMS FOR FISHER-SCORE CHANGE PROCESSES

by Lajos Horvath and Emanuel Parzen*
Universsty of Utah and Tezas ASM University

0. Introduction

Change analysis is concerned with distinguishing “fluctuation” of the data (in ac-
cordance with probability distributions fitted to a whole sample) from “non-stationarity”
(changes in the parameters of probability distributions). To detect change over time in a
sequence of observations one forms for various transformations of the data sample change
processes on [0,1]; the transformations are called “data score functions” (Parzen (1992)).
One can choose non-parametric score functions which detect changes of location, scale,
skewness, etc. in the probability distribution of the observations. When a parametric
model is available for the distribution of each observation one can detect changes in the
parameter values by transforming the data by parametric score functions which we call

Fisher-score functions.

This paper studies the asymptotic distributions (under the null hypothesis of no
change) of Fisher-score change processes which are cusums of scored data. They are

related to cuscore processes or cumulative score processes, some of whose applications are

described in Box and Ramirez (1992).

1. Fisher-score change processes

Let X1,X9,...,Xy be independent random vectors with distribution functions F(x;

g

©,), F(x;09),...,F(x;0y), where ©1,09,... ,0, are unknown p-dimensional parameter =]
vectors. A basic changepoint probl m is the problem of “abrupt change” which tests 8
1?b :(51 ==(32 =...=06, Bv. :
:kpxgtripution( o
*Research supported by U. S. Army Research Office __Avallability Ccdes
Avall and/or
1 Dist Spocial
- - i : ' kl‘\ “




against the alternative H4 : There is 7¢(0,1) such that
61 =... =9[m.] # e[n,.]+1 =... =en.

The “abrupt change” problem motivates the definition of the Fisher-score change processes
introduced in (1.3). We digress for a moment to note that test statistics for smooth change
models can be formed by inner products of these processes with “change score functions.”
We assume that the observations are absolutely continuous or discrete. The density
functions (probability mass functions in the discrete case) are denoted by f(x;0),..., f(x;
©5).
Let g1(x;0) = (91,1(x;©),. .., 91 p(x; ©)), defining Fisher-score functions

91,i(x;0) = 21955%?52 , 1<i<p.

We estimate the unknown parameter by the usual maximum likelihood method; i.e. €, =
(én,l, cevy én,p) satisfies the estimating equations
> 01i(X58a) =0, 1<i<p. (1.1)
1<j<n

A basic statistic in changepoint problems is the processon 0 <t < 1

Zn(t) = (Zp1(2),. .., Znp(t), (1.2)

whose components are called Fisher-score change processes defined by
Zn,i(t) = ;117 > a1 (xj;én) ,0St<1,1<i<p (1.3)
1<j<(n+1)t

(Zni(1) = 0,1 <t < p). They can be considered, for ¢ fixed, to be score test statistics
for the hypothesis that the parameter estimators for data up to time (n + 1)t are not
significantly different from the parameter estimators for all the data, against the alternative
hypothesis that there is abrupt change at time (n + 1)t.

We study the asymptotic properties of Z,,(¢) under the null hypothesis of no change.
The true value of the parameter under Hy is denoted by 6y = (¢ 1,... ,O0,p)- Let X
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be a random vector with density function (probability mass function in the discrete case)

f(x;6q). Let
9(x; ©) = log f(x; ©)

d )
91,i(x;0) = ;9—9-'_-9(X; 0), 1<i<p

o2 ..
92,i,j(x;0) = mg(x; ), 1<ij<p

and

. o M B e————— . < . 7 k <
g3,t,},k(x1 6) 69;69j36kg(x’ e)$ 1<43,kZp
We assume that there is an open neighborhood ©¢ of ©g such that the following conditions
hold:
C.1 g(x;8), g1i(x;8), g2, j(x;0) and g3 j k(x;0) 1 < i,j,k < p exist for all xeR? and

6O

C.2 There is a function M(x) such that EM(X) < oo and for all xeR%, 060
l91,i(x;0)| S M(x), 1<i<p

lg,i,j(x;0)| < M(x), 1<i<p

l93,i,jk(x;©) < M(x), 1<i,j,k<p
C.3 Eq1,i(X;09)=0, 1<i<p
C4 E:gl,,-(x;eo)f”" <00,1<i<p, forsomeé>0
C.5 J~! exists, where J = {J; j,1 < i,j < p} and J; j = Eg14(X;©09)g1,j(X;0p), 1<
,,J<p
C.6 Elga,i j(X;60)|? < oo
We show that Zn(t) converges weakly to T'(t) = ([(1(¢),...,T'P)(¢)), where I'(t)
is a Gaussian process with covariance structure EI"(")(t) = 0 and EP(i)(t)P(j)(s) =
Ji j(min(t, s) — ts). This means that J;-l/ 2I'(’.)(t) is a Brownian bridge for each 1 <1 < p.
To consider the convergence in weighted metrics, we consider the following class of

functions:

Q0,1 = {q: ¢ non-decreasing in a neighborhood of zero, non-increasing in a neighbor-
hood of one and infs<4<1_59(t) > 0 for all 0 < 6 < 1/2}.
3




The condition is given in terms of the integral test

I(g,c) = /0 1 mL—T)e"" (— t€‘1]2-(-t2)) dt.

Theorem 1.1. We assume that (1.1) has a unigue solution, C.1-C.6 hold and

gi€Qo1, 1 < i < p. We can define a sequence of Gaussian processes {['n(t) =
(Tn,1(t);-..,Tnp(t)), 0 <t <1} such that

{Ta(t), 02t <1} 2 {P), 0t < 1) (1.4)
and
[Zax sup |Zn,i(t) — Tn,i(t)l/4i(t) = 0p(1) (1.5)
if and only if
lrg?gpl(q,-,c) < oo forallc > 0. (1.6)

If we are interested in the convergence of the weighted supremum functional, we can

establish it under weaker conditions.

Theorem 1.2. We assume that (1.1) has a unique solution, C.1 - C.6 hold and

¢i€Qo,1, 1 <i < p. Then, as n — oo, we have

{03;51 lzn,l(t)l/‘n(t),---,oiltlglIZn,pl/‘IP(t)} (17)
B{ sup [TD@)|/q1(8),..., sup |r<P>(t)|/qp<t)}
o<kl ikl

if and only if

max I(gj,c) < oo for some ¢ > 0. (1.8)
1<i<p

We can choose g;(t) = (¢(1 — t)loglog 1((1 - £)))1/2 in Theorem 1.2 but this function
does not satisfy (1.6). However, the standard deviation (J;;t(1 — £))1/2 does not satisfy
(1.6) nor (1.8). Let

a(z) = (2logz)!/?
1

bz) =2logz + 5

loglog z — % log =.

4




Theorem 1.3. We assume that (1.1) has a unique solution and C.1-C.6 hold. Then for

each 1 <1< p we have

Jim P {allogn) sup 120,01/ (Jiit1 - D)2 S o +blogm)}  (19)
12429

= exp(—2¢”%)

for all x.

We note that if J;j; = 0,i # j, then a(logn)supgcs<i |Zn i(t)l/ (Jiit(1 — t'))l/2 -
blogn) and a(log n)supgcicy 12a j(E)/ (Jj,t(1 - t))I/2 — b(logn) are asymptotically in-
dependent. This happens, for example, if the observations are normal and the parameters

are the mean and the variance.

2. Proofs
We start with a few lemmas. We assume that Hy holds. Let ||x|| = max;<;<p |zil,

X= (zl,...,zp).

Lemma 2.1. We assume that (1.1) has a unique solution and C.1-C.6 hold. Then, as

n — 0o, we have for all 1 < i < p that

Zni(t) = 25 (1) + RO + RO (w),

where
1
Z;,i(t)="17§{ Y. 9,i(X;00) -t > g1 (Xj;eo)},
" ligignye 1<j<n
M — -1/2
R :(t)|=0
ogspll (0 p(n )
and
sup IR21/¢1 - 1) = 0,5(1).
1/(n+1)<t<1-1/(n+1)
PROOFS. Conditions C.1 -C.4 imply
118 — 6]} %" O(1) (2.1)

5




as n — 00, and therefore we can assume that 6,60¢. Ibragimov and Hasminskii (1972,

1973a,b) showed that

lIn (8n - 80) = 3 &1(X;i€0) 7| = op(n). (22)
1<j<n
Let
£1(0) = Eg) (X;6q).
We write
Zni(t) = ALN®) + ATNW), (23)
where
A(l)(t) / Z 1’1,3' (XJ’ én) (24)
P 1<i<(na1)t
1)t
A% = O (51(84) - 51, 00) (25)
and
71,i (xj0) = 91 (x;0) — 51,i(0), 1<i<p
Let
1/}
79, (% 0) = o, (x;0)
j
and

73,05,k (X,0) = 96; n1,i(%;6).
We note that
Ery;;j(X;00)=0, 1<i, j<p (2.6)
and
73,6,k (%) | < 2M(x). (2.7)

A two-term Taylor expansion and (2.2) with the central limit theorem yield

91, (én)-él,i(eo) Y. G2 (90)( ni“eﬂ,i) (2.8)

1<j<p

+0, (%)




Next we use again (2.2) and get

T
n (51,i (é,,) —§1,i(90)) = £2,:(69) ( Y &1(X00) J'1> (2.9)

1<t<n
+op (nl/ 2) .

Observing that g3 ; (09) = —J; j, by (2.9) we have
n (51,; (én) - g1 (90)) =- Y 91i(X500) +0p ("1/ 2) : (2.10)
1<£<n
We use again Taylor expansion and get

Y ("'l,i (Xt; éo)—"'l,i(xl;GO)) (2.11)

1<e<(n+1)t

-2 (én,i—eoa') Y mii(Xe60)]

1<j<p 1<e<(n+1)t

<Pi6n-60l? 3 M(Xo.
1<e<(n+1)t

Now by (2.6) we can use the invariance principle and by C.2 we can apply the law of large

numbers. Thus we obtain

sup | Y (74 (Xe580) — 71,4 (X6580)) | = Op(1). (211)

0<t<1 1 coc(n+1)t
We showed that
mp 40D -7 X 014(X5500) | = 0p (n77) (2.12)
Osisl P 1gig(nnt
and

sup || A0+ =5 3 a1 (X500) | /1l = 0p(1). (2.13)
ost<t \ ™ 2 e

By (1.1) we have
Zni)=- Y. (Xj; én) :
(n+1)t<j<n

7




and therefore similarly to (2.3) we have

IZn,i(t)_#( Y 9i(X5€) -t Y gl,i(xz;Go))l

1<e<(n+1)t 1<t<n
<@ 23 {(91,:’ (Xj;én) — 1 (én)) -9 (Xj;eo)} |
(n+1)t<j<n
—(n+1)t (. (a4 . 1-t _
+ 1= (915 (8n) - 91 (80)) + 5 KJZ;n 91, (X;3©0) |
= A%® + a%).

Now similarly to (2.12) and (2.13) one can establish
3 -1/2
A( ()] =0p(n
8 |45, ()] = Op ( )

and

sup IAGO1/(1 - )] = op(1),
1/(n+1)<t<1-1/(n+1)

which completes the proof of Lemma 2.1.

Lemma 2.2. We assume that C.3 and C.4 hold. We can define a sequence of Gaussian
processes {Tn(t) = (Ta,1(t),- .., Tnp(2)),0 <t < 1} such that (1.4) holds and

ni=v max sup 125 () = T 1 ()I/(2(1 = t))” = Op(1) (2.14)
1<iSp 1 /(n+1)<t<n/(n+1)

for all 1 <v<1/2

246

PROQF. Let
Va,i(t) = Z 71i(X; ©o),
1<j<(n+1)t
and
Va,i(1) = Z 91,i(X3 6o).
1<j<n

We have

Vn,i(t) -t (Vn,i (%) + (Vn,i(l) - Vn,i (%))) ,05t < %

- (Vn,i(l) - Vn,i(t)) + (1 —t) (Vn,i (%) + (Vn,i(l) - Vn,i (%))) s % <t<1l
8

1225 (1) = {




By Einmahl (1989) for each n we can define two independent Gaussian processes
{(GN(2),...,G)(2)),0 < z < n/2} and {(GP)(2),...,G\p(2)),0 < z < n/2} with
covariance EGY)(z) = 0, EGY)(2)GY)(y) = J; y min(z,y), j = 1,2,1 < i,k < pand

1

max  sup  |Voit) - Clnt)|/(nt)2+ 8 = 0,(1) (2.16)
1<i<p 1/ (n+1)<t<1/2 ’

and

1
DV ) — (1 — N
1??5’.‘?1/25:2:3(”1)'(V""(l) Va,i(®) = Gy i(n(1=1))I/(n(1 =))2+ 6 = 0p(1). (2.17)

Now (2.15), (2.16) and (2.17) yield

S 1250 -2 (600 - (62 (2) + 62 (3))) Min”

1/(n+1)<t<1/2
= 12z% (8) = (6M(nt) =t (G (2) + cB (2 )Y (218
o™ 70 (Cutot = (00 (5) + i (3))) Vo) (219
1,
=0py(1) sup (nt)2+8 =0y(1),
1/(n+1)<t<1/2
and similar arguments give
A sup (20~ V(-6 Pn(1 - 1) (2.19)
1/2<t<n/(n+1) '

+(1-9 (6% (3) +62 (3))) /(1 -1)* = 0p(1).
We define I's(t) by
¢Nnt) - (6L} () +62) (3)) 0 st <12
-6 -)+1-1 (63 +6%(B) . 2st <t

nl/2rn,i(t) = {
It is easy to see that I'y(t) satisfies (1.4) and by (2.18), (2.19) we have (2.14).
PROOF OF THEOREM 1.1. First we assume that

I(gi,¢) < oo for some ¢ > 0. (2.20)
9




By Csorgé et al (1986) (2.20) implies
li : t t —
110 gi(t)/Vt = oo

and

e (8)/(1 — 12 = oo
ltlﬁlq.(t)/(l t)1/% = oo,

Let € > 0. Lemma 2.1 implies

sup |Zy,i(t) — 25 i()/4i(t) = op(1)
e<t<l-¢

and

sap |Za i(t) = 25, {1/ (1 = )12 = Op(2).

1/(n+1)<t<n/(n+1)
Next we write

sup |2 4(t) - Zp (D)) ai(t)

1/(n+1)<t<e
< sup t1/2/4(t) sup |Za,i(t) ~ 2 5(2)| /112
0<t<e 1/(n+1)<t<n/(n+1) '

and

sup 1Zn,i(t) — Z5 ;(D)]/9i(2)
1—e<t<n/(n+1)

l-e<i< 1/(n+1)<t<n/(n+1)

Putting together (2.21) - (2.26) and choosing ¢ as small as we wish we get

sup |1Zn,i(t) — Z3 i(£)]/2i(t) = 0p(1).

1/(n+1)<t<n/(n+1)

Using Lemma 2.2 with v = 1/2 we have

sup 125 4(2) — T i)/ (21 = £)1/2 = 0p(1).

1/(n+1)<t<n/(n+1)

Hence by (2.21) and (2.22) similarly to (2.27) we can establish

sup 1Z3,i(t) — Tn,i(t)|/qi(t) = op(1).

1/(n+1)<t<n/(n+1)
10

< sup 1(l—t)‘/‘*’/q,-(t) sup |Zn,i(t) ~ Z3 s (OI/(1 — £)1/2

(2.21)

(2.22)

(2.23)

(2.24)

(2.25)

(2.26)

(2.27)

(2.28)

(2.29)




The covariance of I'y (t) implies that J.-';-l/ 2l",,,,-(t) is a Brownian bndge for each n. By

Csorgd et al (1986) condition (1.6) implies

sup Ty i(t)l/9i(t) = 0p(1) (2.30)
0<t<1/(n+1)
and
sup [Ty i(t)]/qi(t) = 0p(1). (2.31)
n/(n+1)<t<1

Now (1.5) follows form (2.27), (2.29), (2.30) and (2.31).
Next we assume that (1.5) holds. It follows from the definition and (1.1) that Z,, ;(t) =
0iff0<t<1l/(n+1)and Z,;(t)=0ifn/(n+1) <t < 1. Thus we have

sup [Ty i(t)]/qi(t) = op(1) (2.32)
0<t<1/(n+1)
and
sup [Ty i(£)|/9i(t) = 0p(1). (2.33)
n/(n+1)<t<1
By definition,
{Tni()0 <t <1} 2{5}Br), 0 <t <1} (2.34)

for each n, where {B(t),0 <t < 1} is a Brownian bridge. We have (2.32) and (2.33) if and
only if

lim sup |B(t)|/qi(t)=0 a.s. (2.35)
€10 o<t<e
and
lim sup |B(t)|/qi(t)=0 a.s. (2.36)
€10 1-¢<t<1

Using Csorgo et al (1986) we get that (2.35) and (2.36) imply (1.6).

PROOF OF THEOREM 1.2. We showed in the proof of Theorem 1.1 that (1.8)
implies

max sup |Zn,i(t) — Tn,i(t)l/i(t) = op(1). (2.37)
1S42P 1/(n+1)<t<n/(n+1)

11




Also, (1.8) yields that the limiting random vector is almost surely finite in (1.7) (cf. Csorgd
et al (1986)). Since Z,;(t)=0,if0<t<1/(n+1)and Z,(t) =0ifn/(n+1) <t <1,
the limit theorem in (1.7) follows from (2.37).

Now we assume that (1.7) holds. In this case the limiting random vector is almost
surely finite. Using (2.34), this can happen only if (1.8) is satisfied.

The proof of Theorem 1.3 is based on the following lemma. Let

c(z) =log1;z.

Lemma 2.3. We assume that C.3 and C.4 hold. If 1/(n+1) < £1(n), e9(r) < n/(n+1),

e1(n) < 1—¢€9(n) and

o (L—a@)1-exn)) _
e emelm)

b

then we have

i P{a(Jelertm) +eleam)))  swp 1280l (Gt - )

n-—00 £3(n)<t<l—ez(n)
1
<z+b (5(0(51(")))) } = exp(—2¢7™")
for all z.

PROOF. It can be found, for example, in Csorgé and Horvath (1990).

PROOF OF THEOREM 1.3. We show that
sup | Zni(t)|/((1 ~ £))"/2 and sup | Z3 ())/(¢(1 - 1))'/2
1/(n+1)<t<n/(n+1) : 1/(n+1)<t<n/(n+1)
satisfy the same limit theorem. By Lemma 2.3 we have
sup | Zni(t) = Zn (()I/(H(1 = 1))/ = Op(1). (2.38)
1/(n4+1)<t<n/(n+1)
Now Lemma 2.3 yields
(2logloglogn)~1/2 sup 1Z (D (Fiit(1 = t)) 12 B4 (2.39)
1/(n+1)St<(logn)/n

12




and therefore by (2.38) we have

(2loglog logn)~1/2 sup \Z5 0 (it —0) 2 L1 (2.40)
1/(n+1)St<(logn)/n
It is easy to see that (2.40) implies
1/2 P
alogn)  sup  |Za®l (Bt - )2 = (e +bllogn) B —o0  (2.41)
1/(n+1)<t<(logn)/n

for all z. Similar arguments give

a(logn) sup |Zn i1/ (Jigt(1 ~ t)) 12 _ (z + b(log n)) F . (2.42)
1—(log n)/n<t<n/(n+1)

Using again Lemma 2.1 we obtain

sup |Zni(t) — Z84()I/(E(1 — £))/? = Op((logn)~1/?) (2.43)
(logn)/n<t<1/logn
and
sup 1Z,,i() — Z5 (O)/(8(1 = )2 = Op((logn)~/2).  (2.44)

1-1/log n<t<l-(logn)/n
Combining (2.38) with Lemma 2.3 we get
1/2 P
a(logn) sup 1Zn i (0 (Jiit(1 —1)) 7" = (z + b(logn)) = —oc0  (2.45)
llogn<t<1l-1/logn
for all z. Similarly,
* 1/2 P
a(logn) sup 125 ;I (Jiit(1 — 1)) ' — (= + b(logn)) = —oo. (2.46)
1/logn<t<1-1/logn

By (2.41)-(2.46) we have

lim P {aaogn) sup Zad@)l/ (Bigtd - 1)/2 <2+ b(logn)}
nmoeo 1/(n+1)<t<n/(n+1)
= lim P {a(log n) sup 124 01/ (Jiit(1 = 1)) 1/2 <z + log n)}
n=00 (logn)/n<t<l-(logn)/n

and therefore Lemma 2.3 implies the result in Theorem 1.3.

13
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