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LIMIT THEOREMS FOR FISHER-SCORE CHANGE PROCESSES

by Lajos Horvgth and Emanuel Parzen*
University of Utah and Texas A &M University

0. Introduction

Change analysis is concerned with distinguishing "fluctuation" of the data (in ac-

cordance with probability distributions fitted to a whole sample) from "non-stationarity"

(changes in the parameters of probability distributions). To detect change over time in a

sequence of observations one forms for various transformations of the data sample change

processes on [0,1]; the transformations are called "data score functions" (Parzen (1992)).

One can choose non-parametric score functions which detect changes of location, scale,

skewness, etc. in the probability distribution of the observations. When a parametric

model is available for the distribution of each observation one can detect changes in the

parameter values by transforming the data by parametric score functions which we call

Fisher-score functions.

This paper studies the asymptotic distributions (under the null hypothesis of no

change) of Fisher-score change processes which are cusums of scored data. They are

related to cuscore processes or cumulative score processes, some of whose applications are

described in Box and Ramirez (1992).

1. Fisher-score change processes

Let X 1 , X 2 ,... ,Xn be independent random vectors with distribution functions F(x;

81), F(x; 02),... ., F(x; On), where O1, 02,.. ,en are unknown p-dimensional parameter -

vectors. A basic changepoint probl im is the problem of "abrupt change" which tests

H0 : 01 -- 02 - ."-On BV_
S15[1

,) istrtb•.;tion/

*Research supported by U. S. Army Research Office Availtbillity Ccdes

Avail ard/or
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against the alternative HA : There is re(O, 1) such that

el 0... en] 96~ r+l=. On.

The "abrupt change" problem motivates the definition of the Fisher-score change processes

introduced in (1.3). We digress for a moment to note that test statistics for smooth change

models can be formed by inner products of these processes with "change score functions."

We assume that the observations are absolutely continuous or discrete. The density

functions (probability mass functions in the discrete case) are denoted by f(x; 1), ... (x;

Let gl(x; 0) = (gi,i(X; 0),..., gi,p(x; e)), defining Fisher-score functions
g1,:(x;e) -Oalog f(x;e) 1) < P.

aei

We estimate the unknown parameter by the usual maximum likelihood method; i.e. 4n =

(On,I,, ,np) satisfies the estimating equations

E gi,i (Xj;6n) = 0, 1 <i < p. (1.1)
l<j<n

A basic statistic in changepoint problems is the process on 0 < t < 1

Zn(t) = (Z4,1(t),... , Znp(O)), (1.2)

whose components are called Fisher-score change processes defined by
1 (1 )

Zn~it) =n/ 1_ E 9,i (Xi; 6n) ,O<_t <l1,1 <i < P (1.3)

n1<j<(n+l)t

(Zn,i(1) = 0, 1 < i < p). They can be considered, for t fixed, to be score test statistics

for the hypothesis that the parameter estimators for data up to time (n + 1)t are not

significantly different from the parameter estimators for all the data, against the alternative

hypothesis that there is abrupt change at time (n + 1)t.

We study the asymptotic properties of Zn(t) under the null hypothesis of no change.

The true value of the parameter under H0 is denoted by 0 0 = (90,1,... I0,p). Let X
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be a random vector with density function (probability mass function in the discrete case)

f(x; 00). Let
g(x; 0) = log f(x; )

gl,I(x;O) = •-(x;0), 1 < i < p
02

g2,ij(x; 0) = ioe j 9g(x; <), 1 _ ij _ p

and

g3,i,j,k(x; O) - o 0ib k g(x; <), 1 i, j, k < p

We assume that there is an open neighborhood ( 0 of e0 such that the following conditions

hold:

C.1 g(x;O), g1i(x;O), g2,i,j(x;O) and g3,ij,k(x;O) 1 _< i,j,k •_ p exist for all xeRd and

OeE)0

C.2 There is a function M(x) such that EM(X) < 0o and for all xeRd, ecOo

IglA(x; 0)1 < M(x), 1 < i < p

Jg2,ij(x; 0)1 M(x), 1 <i <p

1g3,ij,k(x;O)I < M(x), 1 < i,j,k <p
C.3 Egl,i(X;0 0 ) = 0, 1< i <p

C.4 Elgl,i(X; 00).2+6 < o,1 < i < p, for some 6 > 0

C.5 J- 1 exists, where J = {Jij, 1 < i,j :_ p} and Jij = Egl,i(X; 8 0 )gl,j(X; eo), 1 <

i, j <p

C.6 E1g2,i~j(X; 00)12 < 00

We show that Zn(t) converges weakly to r(t) = (r( 1)(t),.... ,r(P)(t)), where r(t)

is a Gaussian process with covariance structure Er(')(t) = 0 and Er(W(t)r(1) () =

Jij(min(t, s) - is). This means that J'0 2r()(t) is a Brownian bridge for each 1 < i < p.

To consider the convergence in weighted metrics, we consider the following class of

functions:

Q0,1 = {q : q non-decreasing in a neighborhood of zero, non-increasing in a neighbor-

hood of one and infb<t<1 _. q(t) > 0 for all 0 < b < 1/2}.

3



The condition is given in terms of the integral test

I(q,c) = t(1- t) exp (_ - t)) dt.

Theorem 1.1. We assume that (1.1) has a unique solution, C.1-C.6 hold and

qieQo,1 , 1 < i < p. We can define a sequence of Gaussian processes {Tn(t) -

(rn,1(t),... ,rn,p(t)), 0 < t < 1} such that

{r,(t), o , t < 1} {r(t),0 o t < 1} (1.4)

and

max sup Izn,i(t) - rn,i(t)l/qi(t) = op(l) (1.5)lipO<t<l

if and only if

max I(qi, c) < oo for all c > 0. (1.6)
1<i<_p

If we are interested in the convergence of the weighted supremum functional, we can

establish it under weaker conditions.

Theorem 1.2. We assume that (1.1) has a unique solution, C.1 - C.6 hold and

qieQo,1, 1 < i < p. Then, as n -. oo, we have

SUP jZn,j(t)j/ql(t),..., sup fZn,pl/qp(t)} (1.7)0<t<l 0<t<l

+-I sup Ir(1)(t)j/ql(t),..., sup Ir(P)(t)j/qp(t)
(0<t<l 0<t<l

if and only if

max I(qi, c) < 0o for some c > 0. (1.8)l<i<_.p

We can choose qi(t) = (t(1 _t)loglog l(t(1 _t)))1 / 2 in Theorem 1.2 but this function

does not satisfy (1.6). However, the standard deviation (Ji,it(1 - t)) 1/ 2 does not satisfy

(1.6) nor (1.8). Let
a(x) = (2 logx)1/2

b(x) = 2 log z + log log x - log 7r.
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Theorem 1.3. We assume that (1.1) has a unique solution and C.1-C.6 hold. Then for

each 1 < i < p we have

lim P a(logn) sup IZn,,(t)t/(j,,,t(1- t))1/ 2 < x + b(logn)} (1.9)

n---*oo , 0<t<l (19

= exp(-2e-Z)

for all x.

We note that if Jij = O,i # j, then a(logn)supo<t<l IZ.,i(t)l/ (Ji,it(l - t))1/2-

b(log n) and a(logn)supo<t<l IZ.j(t)l/ (Jj,,t(1 - t)) /2 - b(logn) are asymptotically in-

dependent. This happens, for example, if the observations are normal and the parameters

are the mean and the vaniance.

2. Proofs

We start with a few lemmas. We assume that H0 holds. Let jlxil = maxl<i<_p IxiI,

X = (Xi,... , Xp).

Lemma 2.1. We assume that (1.1) has a unique solution and C.1-C.6 hold. Then, as

n -+ oo, we have for all 1 < i < p that

Z,(t) = Z*,i(t) + R(1)(t) + R (2)(t),

where

Z (',( = gli (Xj; 00) - t E gl,' (Xj;O}0),Sn1<j_(n+l)t 
1j<_n

0<t<l i

and

sup IR(2$(t)I/(t(1 - t)) = Op(1).
1/(n+l)<_t<_1- l/(n+l 0)

PROOFS. Conditions C.1 -C.4 imply

II18 - e0 11 - 0(1) (2.1)

5



as n -. oo, and therefore we can assume that On•E 0 . Ibragimov and Hasminskii (1972,

1973a,b) showed that

11n (in - 00) - g1(Xj;O) J-1 1 = op(fl). (2.2)
l<j<n

Let

gl(e) = Egi (X;eo).

We write

Zni(t) = A(l)(t) + A (2)(t), (2.3)

where
P)}t•n, W =l--• E r~ (Xi; 6n) (2.4)

l<j<(n+l)t

A -(2)(, = (n + 1)t (41,i (6n) - §1,i (e0)) (2.5)n,i n1/ril2

and

,,i(Xj)) = ,(x;e) -l,((o), 1<i <P

Let

T2,ij (x;e) = 7T1,i (x; e)

and

'"3,id,j, (X;) = -±--• ,i (x;O)

We note that

Er2,i,j (X; 0) = 0, 1 < i, j < p (2.6)

and

1r3,ij,k (x) J < 2M(x). (2.7)

A two-term Taylor expansion and (2.2) with the central limit theorem yield

§i (6n) -- 1,i A0) -- E 2,i (0) (6i -60,i) (2.8)

6



Next we use again (2.2) and get

n (§~ (6n) - §1ij (00)) = g2,i (e0)o 1~~ i X;~) (2.9)

+ 0p (n1/2).

Observing that j 2,ij(e 0) = -7ij, by (2.9) we have

n (§li (e) i,i (e)o)) = - E l~ (XI; ()0) + op (P/2). (2.10)
1<t<n

We use again Taylor expansion and get

E (,1,i (XI; 6o) - Tx, (XI; e0)) (2.11)

1<_<(n+l)t

- (., - o) r2,i,j (Xe; e0)I
l<_j<.p l_<1<(n+l)t

_<2110 _-e0112 • M(XI)

1<t<(n+l)t

Now by (2.6) we can use the invariance principle and by C.2 we can apply the law of large

numbers. Thus we obtain

sup I E (Ti,i (Xe; 00) - T-,i (XI; e0)) I = Op(l). (2.11)
0_<t<I _<1_<(n+l)t

We showed that

sup ) IA( Oo(t) - n i +o,(-1/)) (2.12)sup I n,i( - n'/2 E gi,i x;e o

O<_.t<_l l<j<(n+l)t

and

sup ( (A,(t)+ t qx,i (Xj;eo) ItI = op(). (2.13)
0<|_<1 l_ 1/ <j<n

By (1.1) we have
zni(=- jn i;, 6(x n),I

(n+l)t<j<_n

7



and therefore similarly to (2.3) we have

IZn,i(t) - 1 ( E ga,, (XI; Oo)-t E gl, (XI;O0),,/ <1<_(n+l)t 1<_1<_n

_< I.-,, 2  Z {(,,,i (xj;&6) - §i,i (6n))-gi (Xi;0o)}
(n+l)t<j<n

1 - t"+ I"-(n1/2 (§I,i (6n) -- §l,i ((0)) + n---/2 1: gl,i X;Eo

l<j<_n
n1•$x l

(~3 )(t) + A (4(t).

Now similarly to (2.12) and (2.13) one can establish

sup IJA?(t)I- o= (-,n1/2)

O<t<l

and

sup IA (t)I/( t - I = o"(1),
1/(n+l)<St< 1-11(n+1) t

which completes the proof of Lemma 2.1.

Lemma 2.2. We assume that C.3 and C.4 hold. We can define a sequence of Gaussian

processes {rn(t) = (rn,1 (t),...,rn,p(t)),0 <-t <_ 1} such that (1.4) holds and

n max sup jz*,i(t) - r,l(t)l/(t(l - ))= OP) (2.14)1 -<i<_P I /(n+ 1) <t<<_n/(n+ l1)

1
for all 1 < v < 1/2.

PROOF. Let

Vni(t) - qli(Xj; °

1<j<(n+l)t

and

Vn~,(1) g,(xj;Oo).
l-<j:5n

We have

"1/2Zn Vnit) -t (Vn,i (2) -+" (Vni() - Vn,, (7))),0 <t<- 18
n -(Vn ,0() - Vn~it)) + (1 - t) (Vn,i (2½) + (Vn,i(1) - Vn,i <½)) ½ t 1 1.

8



By Einmahl (1989) for each n we can define two independent Gaussian processes

( ,.(1)(, ),0 o x < (/2) and ((G (2) (x),...,G (2)x 0 < x < n/2} with

covariance EG(x) = 0, () min(x,y), j = 1,2, 1 <i, k <p andcovarianeeEG (z) - ,Eni(x)Gnlk(y) Ji - - ad

1
max sup JVni(t) - G (nt)/(nt)2 + b

l<ijP 1/(n+l)<t<1/2

and
1

max sup Gn1n,i(t))-G(2a(n(l -t))J/(n(1-t))2+ = Op(1). (2.17)
1 <i<p 1/2<t<n/(n+l) (2

Now (2.15), (2.16) and (2.17) yield

n2 lZn*,i(t) - n-1/2 (G(1,(nt) - t (G( G(2) ()))0 n,(2) + G,(2))/(nt)v

1/(n+0<_t<_1/2 02 n,2

sup jnl/2 Zni(t) G (1)(nt) - t G(G') (n) + G (2)())) 1/(nt~ v (2.18)]/(n+])<t<l!2 ini2 ni2
1

=Op(l) sup (nt) 2 +, 6  = Op(l),
1/(n+l)<t<l1/2

and similar arguments give

n2 sup IZ(•*(t) - n-1/2 (G$,(2)( )(
1/2<t<n/(n+l) "( 0 n t)2.)

+ (1 -t)(G(lk (n, ) -,,+n G( (2))](I, t)v = O (X).

We define rn(t) by
G ,( .,) -t G, +,, ( 2) (n),

n'/2r ,(t) = I Gi(nt) -
7 +i) 1, 0 < 2t < 1/2

-G (2) (n~~l.-,t)) + .,,t)() n

It is easy to see that rn(t) satisfies (1.4) and by (2.18), (2.19) we have (2.14).

PROOF OF THEOREM 1.1. First we assume that

I(qi, c) < o0 for some c > 0. (2.20)

9



By Csar6 et al (1986) (2.20) implies

limqi(t)/V'i = 00 (2.21)
*10

and

limq2(t)/(l _-)/ = 00. (2.22)
41i

Let c > 0. Lemma 2.1 implies

_SUP IZ4,M) -Z*,i(t)l/qi(t) =op(l) (2.23)

and

Sap IZnJit) -n,~~l~ t- 1/ OP4l). (2.24)

Next we write

SUP jZni(t) - Z*,i(t)I/qi(t) (2.25)

< SUP tl/ 2/q,(t) SUP IZn,,(t) - Zn*,,(t)l/tl/2
O~t<C 1/(n+l)<5t<n/(n+l)

and

SUP 14,M() - Zn*,i(t)l/qi(t) (2.26)
1.-e<t<n/(n+l)

K sup (1 _ t)1/2 / q(t) sup IZn,,(t) _ Zn*,,(t)l/(1 _-)/
1-C<t<1 1/(va+l)<t<n/(n+l)

Putting together (2.21) - (2.26) and choosing c as small as we wish we get

sup VOW1(t - Z*,i(t)l/qi(t) = op(l). (2.27)
1/(n+ 1):t<n/(n+1)

Using Lemma 2.2 with v' = 1/2 we have

sup lzn*,i(t) - rn,i(t)I/(t(1. _ t))1/2 = OP(1.). (2.28)

Hence by (2.21) and (2.22) similarly to (2.27) we can establish

sup Iz*,-(t) - rn,i(t)I/qi(t) = Op(l). (2.29)
1/(n+l):5t<n/(n+l I) s

10



The covariance of r.,i(t) implies that J[.11 2iri(t) is a Brownian bridge for each n. By

Cs~rg6 et al (1986) condition (1.6) implies

sup Irni(t)l/qi(t) = Op(1) (2.30)

0<t<1/(n+1)

and

sup jrn,i(t)j/qi(t) = op(l). (2.31)
n/(n+l)<t<l

Now (1.5) follows form (2.27), (2.29), (2.30) and (2.31).

Next we assume that (1.5) holds. It follows from the definition and (1.1) that Zn,i(t) =

0 if 0 :5 t < 1/(n + 1) and Zn,,(t) = 0 if n/(n + 1) < t < 1. Thus we have

sup Iri(t)Il/qi(t) = op(1) (2.32)

0<t<l/(n+1)

and

sup [rni(t)l/qi(t) = op(1). (2.33)
n/(n+l)<t<l

By definition,

{rni(t),0 < 1} t {J1X2 B(t), 0 < t < 1} (2.34)

for each n, where {B(t), 0 < t < 1} is a Brownian bridge. We have (2.32) and (2.33) if and

only if

lim sup IB(t)l/qi(t) = 0 a.s. (2.35)
CO O<t<e

and

lim sup jB(t)I/qi(t) = 0 a.s. (2.36)
I0 1-_<t_<

Using Cs~rg6 et al (1986) we get that (2.35) and (2.36) imply (1.6).

PROOF OF THEOREM 1.2. We showed in the proof of Theorem 1.1 that (1.8)

implies

max sup IZn,i(t) - rn,(t)1/qi(t) = op(1). (2.37)
1 <i<_p 1/(n+ 1 )<5t<n/(n+ l)



Also, (1.8) yields that the limiting random vector is almost surely finite in (1.7) (cf. Cs~rg6

et al (1986)). Since Zn,i(t) = 0, if 0 < t < 1/(n + 1) and Zni(t) = 0 if n/(n + 1) < t < 1,

the limit theorem in (1.7) follows from (2.37).

Now we assume that (1.7) holds. In this case the limiting random vector is almost

surely finite. Using (2.34), this can happen only if (1.8) is satisfied.

The proof of Theorem 1.3 is based on the following lemma. Let

1-z

c(X) = log

Lemma 2.3. We assume that C.3 and C.4 hold. If 1/(n+l) < el(n), 62(n) !5 n/(n+l),

61(n) < 1- 62(n) and

limr (1 - (n))(1 - 62(n)) = 00,n.--.0o 1(n)e2(n)

then we have

JimP {a (jc(el(n)) + c(-2(n)))) sup •-._MAI/ (Iiit(-1 /2

:5 + b1 ((c(ej(n)))) exp(-2e t )

for all x.

PROOF. It can be found, for example, in Cs6rg6 and Horvith (1990).

PROOF OF THEOREM 1.3. We show that

sup IZ1,i(t)l/(t(1 - t)) 1/2 and sup IZ,i(t)l/(t(1 -t))/2

1/(n+l)<t<n/(n+l) 1/(n+ l)<t<n/(n+l)

satisfy the same limit theorem. By Lemma 2.3 we have

sup IZ1 ,)- (t)t)l/(t(1- )) 1 /2 - Ol(1). (2.38)
1/(n+ 1)<t<n/(n+l)

Now Lemma 2.3 yields

(2logloglogn)- 1/ 2  sup iZ*,i(t)l/ (Ji,,it( - t)) 1/ 2 P 1 (2.39)

l/(n+l)<t<(log n)n

12



and therefore by (2.38) we have

(2 log log log n)- 1/ 2  sup +Z*,i(t)I (Siit(1 - t))1 2 
. 1. (2.40)

1/(n+1)<.t<_(log n)/n

It is easy to see that (2.40) implies

a(log n) sup IZni(t)I/(Jit(1 -. t))/ 2 - (x + b(log n)) + -00 (2.41)
1/(n+l)Vt<(og n)/n

for all z. Similar arguments give

a(logn) sup IZn,i(t)I/(Jiit(1 - t))1 2 - (x + b(logn)) -P -oo. (2.42)
1-(log n)/n:5t<n/(n+ l)

Using again Lemma 2.1 we obtain

sup IZni(t) _- Z,i(t)l/(t(1 _ t))1/ 2 
- Op((logn)-1/ 2 ) (2.43)

(log n)/n<t< 1/log n

and

sup JZn,,(t) _ Z•,,(t)l/(t(1 _ t))1/ 2 = Op((log n)-1 2 ). (2.44)
I-I/ log n<t< 1-(log n)/n

Combining (2.38) with Lemma 2.3 we get

a(log n) sup IZni(t)I/(Jiit(1-t))1 2 - (x + b(log n)) + -00 (2.45)
1 log n<t<. -1/log n

for all x. Similarly,

a(log n) sup I(xi(I/(Jit(1 - ))1/2- (x + b(logn)) + -00. (2.46)
1/log n<t<1-1/log n

By (2.41)-(2.46) we have

lim P {a(logrn) sup IZn,(t)I/ (Ji,it(1 - t)) /2< x + b(log n)}
n--oo 1/n+l )<t<_n/(n+ l)

= lim P 1 a(logn) sup IZn,i(t)I/ (Ji,it(i - t))1/ 2 < x + b(log n) 1
n-4-o I(log n)/n<<t<< I1-(log n)/n

and therefore Lemma 2.3 implies the result in Theorem 1.3.

13
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