AD-A257 278 FION PAGE Form Aproval AD-A257 278 Induce Part of the approximate of the approxim							
TAGENCY USE ONLY (Lever Mark) 12. REFORM THE Second Mark	-	- MIJ- M/3	7 278	8 TION PAGE		OMB No. 0704-0188	
T. AGENCY USE ONLY (LEVE MARK) 2. REPORT DATE 1. REPORT TYPE AND DATES COVERED September 1992 1. REPORT TYPE AND DATES COVERED T. THE AND SUBTILE Limit Theorems for Fisher-Score Change Processes DAAL03-90-G-0069 C. AUTHOR(S) Lajos Horvath and Emanual Parzen DAAL03-90-G-0069 J. Jacos A + M Lininus T 71743-3143 DACT 2 7 1992 S. SPONSOMING ORGANIZATION NAME(S) AND ADDRESS(ES) 1. SPONSOMING ONGAME ACENCY NAME(S) AND ADDRESS(ES) 1. SPONSOMING (MONITORNG ACENCY NAME(S) AND ADDRESS(ES) U. S. ATMY RESEarch Office P. O. BOX 12211 Rev REPORT NUMMER The view, opinions and/or findings contained in this report are those of the author(s) and bould not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation. 12. DISTRBUTION/AVAUABLITY STATEMENT 1. Distribution/AVAUABLITY STATEMENT Approved for public release; distribution unlimited. 1. Distribution, Cone can choose non-parametric score functions which detect of oldistribution, Sci on choose non-parametric score functions which detect of oldistribution which we call fisher-score functions. This paper studies the asymptic distribution of the observation of the dates paper studies the parametric score functions which we call fisher-score functions. This paper studies the asymptic distribution of the observation of the observation of the observation of the dates of porcesses. 13. ABSTRACT (MASAMMER Change proces	ga col Da			rage 1 hour per response, including the time for reviewing instructions, searching existing data source he collection of information. Send comments regarding this burden estimate or any other aspect of E Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jeffert anagement and Budget, Paperwork Reduction Project (0704-0188), Washington, DC 20503			
September 1992 4. THEL AND SUBTILE Limit Theorems for Fisher-Score Change Processes ANTORIS Lajos Horvath and Emanual Parzen Jagos A+M University Jugos A+M University College Station, TX 7.77443-3743 S. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS[ES) Jugos A+M University College Station, TX 7.77443-3743 S. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS[ES) U. S. Army Research Office P. O. Box 12211 Research Triangle Park, NC 27709-2211 The view, opinions and/or findings contained in this report are those of the author(s) and abould not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation. 12b. DISTRUETION AVAILABENT STATIENT 12b. DISTRUETION	1.	AGENCY USE ONLY (Leave b	lank) 2. REPORT D	ATE	3. REPORT TYPE AP	ND DATES COVERED	
	L		Septemb	er 1992			
Limit Theorems for Fisher-Score Change Processes DAAL03-90-6-0069 4. AUTHOR(5) Lajos Horvath and Emanual Parzen 7. PERFORMING ONGANIZATION NAME(5) AND ADDRESS(E5) S. PERFORMING ONGANIZATION NAME(5) AND ADDRESS(E5) J.V.Go. A.+ M. LYNDYNAL, College Station, T.X. 71743-3143 S. PERFORMING (MONITORING AGENCY NAME(5) AND ADDRESS(E5) U. S. Army Research Office P. O. Box 12211 The yiew, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation. 13. BUBLEMENTARY NOTES The yiew, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation. 13. BUBLEMENTARY NOTES The yiew, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation. 13. ABSTRACT (MAMIMUM 200 words) Change analysis is concerned with "fluctuation" of the of (in accordance with probability distributions fitted to a whole sample) from "no stationarity" (changes in the parameters of probability distributions. To dete change over time in a sequence of observations one forms for various transformation of the data sample change processes on [0,]]; the transformations are called "de score functions. Sole, skewness, etc. In the probability distribution of the observ when a parametric model is available for the distrib	4.	TITLE AND SUBTITLE				5. FUNDING NUMBERS	
AUTHOR(5) Lajos Horvath and Emanual Parzen Joyas Horvath And Manusult, Joyas Horvath, Joyas		Limit Theorems for F	Fisher-Score C	hange Proc	esses	DAAL03-90-G-0069	
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 1. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 3. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 0. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U. S. Army Research Office 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U. S. Army Research Office 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U. S. Army Research Office 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U. S. Army Research Triangle Park, NC 27709-2211 10. SPONSORING/MONITORING AGENCY NAMES 13. SUPLEMENTARY NOTES ARGU 275744.10* The view, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation. 12. DISTRIBUTION/AVAILABLITY STATEMENT 12b. DISTRBUTION AVAILABLITY STATEMENT Approved for public release; distribution unlimited. 12b. DISTRBUTION CODE 13. ABSTRACT (Meanimum 200 words) Change analysis is concerned with "fluctuation" of the cost change over time in a sequence of observations one forms for various transformation for which detect change over time in a sequence of observations one forms for various transformation of the observation or detect changes processes, etc. In the probability distribution of each observation or detect changes in the parameter values by transforming the data by parametric sequence the observation of each observation or detect changes in the parameter value	6.	. AUTHOR(S) Lajos Horvath and En	nanual Parzen				
7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) B. PERFORMING / MONITORING AGENCY NAME(S) AND ADDRESS(ES) 1. Supplementation Jurios A + M University 77743-3143 8. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 1. S. Army Research Office P. O. Box 12211 Research Triangle Park, NC 27709-2211 ARO 27574.10* 11. SUPPLEMENTARY NOTES The view, opinions and/or findings contained in this report are those of the author (s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation. 12. DISTRIBUTION/AVAILABUITY STATEMENT 12b. DISTRIBUTION/AVAILABUITY STATEMENT 13. ABSTRACT (Maximum 200 words) Change analysis is concerned with "fluctuation" of the constructions on a construct on a whole sample from "ma stationarity" (changes in the parametric so probability distributions. To detect change on choose non-parametric score functions which detect cf of location, scale, skewness, etc. in the probability distribution of the observation or detect changes in the parameter values by transforming the data by parametric so functions which we call Fisher-score functions. This paper studies the asymptot distribution (the area by parametric score functions which we call Fisher-score functions. This paper studies the asymptot distribution of each observation or detect changes in the parameter values by transforming the data by parametric score functions which we call Fisher-score functions. This paper studies the asymptot distributions (under the null hypothesis of no change) of Fisher-score change processes. <td></td> <td></td> <td></td> <td></td> <td></td> <td>DTIC</td>						DTIC	
Juras A + M Kinning 77743-3/43 DGT 2 7 1992 A. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) U. S. Army Research Office 7.0743-3/43 ACENCY NAME(S) AND ADDRESS(ES) U. S. Army Research Office 7.0709-2211 ACENCY NAME(S) AND ADDRESS(ES) IS. SUPPLEMENTARY NOTES ARO 27574.10* The view, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation. 20. DISTRBUTION/AVAILABBLITY STATEMENT 12b. DISTRBUTION (ANAMENT STATEMENT Approved for public release; distribution unlimited. 12b. DISTRBUTION (CODE 39. ABSTRACT (Maximum 200 words) Change analysis is concerned with "fluctuation" of the constationarity" (changes in the parameters of probability distributions. To dete change over time in a sequence of observations one forms for various transformat of the data sample change processes on [0, 1]; the transformations are called "data corr functions". One can chose non-parametric score functions which we call Fisher-score functions. This paper studies the asymptot distribution (Langes in the parameter values by transforming the data by parametric scienc thanges in the parameter values by transforming the data by parametric scienc thanges in the parameter values by transforming the data by parametric scinc functions which we call Fisher-score functions. This paper stud	'.	PERFORMING ORGANIZATION	NAME(S) AND ADDR	ESS(ES)		8. PER OF NUMBER	
Image: SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING/MONITORING AGENCY NAME(S) AND ADDRESS(ES) I. S. Army Research Office P. O. Box 12211 Research Triangle Park, NC 27709-2211 ARU 27574.10 I. SUPPLEMENTARY NOTES The view, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation. I.a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION (AVAILABILITY STATEMENT I.a. ABSTRACT (Maximum 200 words) Change analysis is concerned with "fluctuation" of the construint of the drage over time in a sequence of observations one forms for various transformations are called "descore functions". One can choose non-parametric score functions which detect choil of location, scale, skewness, etc. in the probability distribution of each observation of detect changes in the parameter values by transforming the data by parametric score functions. This paper studies the asymptoi distributions (under the null hypothesis of no change) of Fisher-score change processes. Image: Static TREMS 15. NUMBER OF PAG Fisher-score change processes; Limit theorems 16. PRICE CODE I.a. SUBJECT TERMS 15. NUMBER OF PAG I.a. SUBJECT TERMS 15. NUMBER OF PAG I.a. SUBJECT TERMS 15. NUMBER OF PAG I.a. SUBJECT TERMS 15. SECURITY CLASSIFICATION 16. PRICE CODE		Iwas t Colleg	e Station,	TX 77	743-3143	SOCT 2 7 1992	
U. S. Army Research Office P. O. Box 12211 Research Triangle Park, NC 27709-2211 ARU 27574.10 11. SUPPLEMENTARY NOTES The view, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation. 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION (AVAILABILITY STATEMENT 13. ABSTRACT (Maximum 200 words) Change analysis is concerned with "fluctuation" of the or stationarity" (changes in the parameters of probability distributions). To dete change over time in a sequence of observations one forms for various transformations are called "de score functions". One can choose non-parametric score functions which detect ch of location, scale, skewness, etc. in the probability distribution of each observation of detect changes in the parameter values by transforming the data by parametric score functions. This paper studies the asymptot distributions (under the null hypothesis of no change) of Fisher-score change processes. 14. SUBJECT TERMS 15. NUMBER OF PAG 14. SUBJECT TERMS 15. NUMBER OF PAG 15. SECURITY CLASSIFICATION 16. SECURITY CLASSIFICATION	9.	SPONSORING / MONITORING	AGENCY NAME(S) ANI	D ADDRESS(ES)	10. SPONSORING / MONITORING	
F. O. BOX 12211 ARU 27574.10 Research Triangle Park, NC 27709-2211 ARU 27574.10 11. SUPPLEMENTARY NOTES The view, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation. 122. DISTRIBUTION/AVAILABILITY STATEMENT 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 12. DISTRIBUTION (Maximum 200 words) Change analysis is concerned with "fluctuation" of the of (in accordance with probability distributions fitted to a whole sample) from "no stationarity" (changes in the parameters of probability distributions). To detect change over time in a sequence of observations one forms for various transformation of the data sample change processes on [0,1]; the transformations are called "data sample change processes on [0,1]; the transformations are called "data sample change in the parameter values by transforming the data by parametric score functions which detect of location, scale, skewness, etc. in the probability distribution of the observation or detect changes in the parameter values by transforming the data by parametric scituations (under the null hypothesis of no change) of Fisher-score change processes which are cusums of scored data. They are related to cuscore processes cumulative score processes. 14. SUBJECT TERMS 15. NUMBER OF PAGE 15. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION		U. S. Army Research	Office			AUCIES OF OUT AUMIDER	
11. SUPPLEMENTARY NOTES The view, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation. 12. DISTRIBUTION/AVAILABLITY STATEMENT Image: Im		r. U. BOX 12211 Research Triangle P	ark, NC 27709	9-2211		ARU 27574.10-M	
11. SUPPLEMENTARY NOTES The view, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation. 12. DISTRIBUTION/AVAILABILITY STATEMENT 12. DISTRIBUTION/AVAILABILITY STATEMENT 12. DISTRIBUTION/AVAILABILITY STATEMENT 12. DISTRIBUTION (AVAILABILITY STATEMENT 13. ABSTRACT (Maximum 200 words) Change analysis is concerned with "fluctuation" of the of (in accordance with probability distributions fitted to a whole sample) from "no stationarity" (changes in the parameters of probability distributions). To dete change over time in a sequence of observations one forms for various transformation of the data sample change processes on [0,1]; the transformations which detect of of location, scale, skewness, etc. in the probability distribution of the observation of detect changes in the parameter values by transforming the data by parametric so functions which we call Fisher-score functions. This paper studies the asymptod distributions (under the null hypothesis of no change) of Fisher-score change processes. 14. SUBJECT TERMS 15. NUMBER OF PAG 15. NUMBER OF PAG 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION		· · · · · · · · · · · · · · · · · · ·				•••=•	
The view, opinions and/or findings contained in this report are those of the author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation. 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION/AVAILABILITY STATEMENT 12a. DISTRIBUTION/AVAILABILITY STATEMENT 12b. DISTRIBUTION/AVAILABILITY STATEMENT 13. ABSTRACT (Maximum 200 words) Change analysis is concerned with "fluctuation" of the constrained of the probability distributions fitted to a whole sample) from "no stationarity" (changes in the parameters of probability distributions). To dete change over time in a sequence of observations one forms for various transformation of the data sample change processes on [0,1]; the transformations are called "do score functions". One can choose non-parametric score functions which detect do of location, scale, skewness, etc. in the probability distribution of each observation or detect changes in the parameter values by transforming the data by parametrics so functions which we call Fisher-score functions. This paper studies the asymptot distributions (under the null hypothesis of no change) of Fisher-score change processes. 14. SUBJECT TERMS 15. NUMBER OF PAG 15. NUMBER OF PAG 16. PRICE CODE 17. SECURITY CLASSIFICATION [18. SECURITY CLASSIFICATION [20. UMITATION OF AX	F	1. SUPPLEMENTARY NOTES	·····				
author(s) and should not be construed as an official Department of the Army position, policy, or decision, unless so designated by other documentation. 12. DISTRIBUTION/AVAILABILITY STATEMENT 12. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 12. DISTRIBUTION/AVAILABILITY STATEMENT 13. ABSTRACT (Maximum 200 words) Change analysis is concerned with "fluctuation" of the of (in accordance with probability distributions fitted to a whole sample) from "not stationarity" (changes in the parameters of probability distributions). To dete change over time in a sequence of observations one forms for various transformation of the data sample change processes on [0,1]; the transformations are called "da score functions". One can choose non-parametric score functions which detect cho of location, scale, skewness, etc. in the probability distribution of the observation of the data symptom detect changes in the parameter values by transforming the data by parametric score functions which we call Fisher-score functions. This paper studies the asymptom distributions (under the null hypothesis of no change) of Fisher-score change processes which are cusums of scored data. They are related to cuscore processes cumulative score processes. 14. SUBJECT TERMS 15. NUMBER OF PAG 15. NUMBER OF PAG 16. PRICE CODE 17. SECURITY CLASSIFICATION [18. SECURITY CLASSIFICATION [20. UMITATION OF AI		The view, opinions	and/or finding	gs contain	ed in this repo	ort are those of the	
12.2. DISTRIBUTION/AVAILABILITY STATEMENT Approved for public release; distribution unlimited. 13. ABSTRACT (Maximum 200 words) Change analysis is concerned with "fluctuation" of the concerned with "fluctuation" of the concerned with probability distributions fitted to a whole sample) from "not stationarity" (changes in the parameters of probability distributions). To detechange over time in a sequence of observations one forms for various transformation of the data sample change processes on [0,1]; the transformations are called "data score functions". One can choose non-parametric score functions which detect changes in the parameter values by transforming the data by parametric score functions which detect changes in the parameter values by transforming the data by parametric score change in the parameter values by transforming the data by parametric score change processes which are cusums of scored data. They are related to cuscore processes cumulative score processes. 14. SUBJECT TERMS 15. NUMBER OF PAG 14. SUBJECT TERMS 15. NUMBER OF PAG 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UNITATION OF AM	•	author(s) and should nosition policy	ld not be cons	trued as a	n official Depa lesionated by of	artment of the Army	
Approved for public release; distribution unlimited. 13. ABSTRACT (Maximum 200 words) Change analysis is concerned with "fluctuation" of the concerned with probability distributions fitted to a whole sample) from "not stationarity" (changes in the parameters of probability distributions). To detect change over time in a sequence of observations one forms for various transformation of the data sample change processes on [0,1]; the transformations are called "data score functions". One can choose non-parametric score functions which detect of location, scale, skewness, etc. in the probability distribution of the observation or detect changes in the parameter values by transforming the data by parametric sc functions which we call Fisher-score functions. This paper studies the asymptot distribution s (under the null hypothesis of no change) of Fisher-score change processes. 14. SUBJECT TERMS 15. NUMBER OF PAG 14. SUBJECT TERMS 15. NUMBER OF PAG 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LUMITATION OF AA	1	2a. DISTRIBUTION / AVAILABILIT	TY STATEMENT			12b. DISTRIBUTION CODE	
13. ABSTRACT (Maximum 200 words) Change analysis is concerned with "fluctuation" of the of (in accordance with probability distributions fitted to a whole sample) from "not stationarity" (changes in the parameters of probability distributions). To deter change over time in a sequence of observations one forms for various transformation of the data sample change processes on [0,1]; the transformations are called "data score functions". One can choose non-parametric score functions which detect of of location, scale, skewness, etc. in the probability distribution of the observation or detect changes in the parameter values by transforming the data by parametric score functions which we call Fisher-score functions. This paper studies the asymptotidistributions (under the null hypothesis of no change) of Fisher-score change processes which are cusums of scored data. They are related to cuscore processes cumulative score processes. 14. SUBJECT TERMS 15. NUMBER OF PAG 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. UMITATION OF AG		Approved for public	c release; dis	tribution	unlimited.		
14. SUBJECT TERMS 15. NUMBER OF PAG Fisher-score change processes; Limit theorems 16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF AI							
16. PRICE CODE 17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF AI	1:	3. ABSTRACT (Maximum 200 we (in accordance with stationarity" (chang change over time in of the data sample of score functions". (of location, scale, When a parametric mod detect changes in th functions which we of distributions (under processes which are cumulative score pro	ords) Change and probability d ges in the para a sequence of change processe One can choose skewness, etc odel is availat he parameter va call Fisher-sco r the null hypo cusums of scor pocesses.	alysis is istributic ameters of observati es on [0,1 non-param , in the p ble for th alues by t ore functi othesis of red data.	concerned with ns fitted to a probability di ons one forms f]; the transfor etric score fun robability dist e distribution ransforming the ons. This pape no change) of They are relat	"fluctuation" of the dat whole sample) from "non- stributions). To detect or various transformatic mations are called "data actions which detect char ribution of the observat of each observation one e data by parametric scor er studies the asymptotic Fisher-score change red to cuscore processes	
17. SECURITY CLASSIFICATION 18. SECURITY CLASSIFICATION 19. SECURITY CLASSIFICATION 20. LIMITATION OF A	1:	3. ABSTRACT (Maximum 200 we (in accordance with stationarity" (chang change over time in of the data sample of score functions". (of location, scale, When a parametric mod detect changes in th functions which we of distributions (under processes which are cumulative score pro	ords) Change and probability d ges in the para a sequence of change processo One can choose skewness, etc odel is availat he parameter va call Fisher-sco r the null hype cusums of score occesses.	alysis is istributic ameters of observati es on [0,1 non-param . in the p ble for th alues by t ore functi othesis of red data.	concerned with ns fitted to a probability di ons one forms f]; the transfor etric score fun robability dist e distribution ransforming the ons. This pape no change) of They are relat	"fluctuation" of the dat whole sample) from "non- stributions). To detect or various transformatic mations are called "data actions which detect char ribution of the observat of each observation one a data by parametric scor er studies the asymptotic Fisher-score change red to cuscore processes	
OF REPORT OF THIS PAGE I OF ARSTRACT I	1	3. ABSTRACT (Maximum 200 we (in accordance with stationarity" (chang change over time in of the data sample of score functions". (of location, scale, When a parametric mod detect changes in the functions which we ded distributions (under processes which are cumulative score proceed 4. SUBJECT TERMS Fisher-score character	ords) Change and probability d ges in the para a sequence of change processe One can choose skewness, etc odel is availat ne parameter va call Fisher-sco r the null hypo cusums of sco pocesses.	alysis is istributic ameters of observati es on [0,1 non-param . in the p ble for th alues by t ore functi othesis of red data.	concerned with ns fitted to a probability di ons one forms f]; the transfor etric score fun robability dist e distribution ransforming the ons. This pape no change) of They are relat	"fluctuation" of the dat whole sample) from "non- stributions). To detect or various transformatic mations are called "data actions which detect char ribution of the observat of each observation one data by parametric scor r studies the asymptotic Fisher-score change red to cuscore processes 15. NUMBER OF PAGES 16. PRICE CODE	
UNCLASSIFIED UNCLASSIFIED UL	1	3. ABSTRACT (Maximum 200 we (in accordance with stationarity" (chang change over time in of the data sample of score functions". (of location, scale, When a parametric mod detect changes in th functions which we of distributions (under processes which are cumulative score pro	ords) Change and probability d ges in the para a sequence of change processe One can choose skewness, etc odel is availat ne parameter va call Fisher-sco r the null hypo cusums of sco ocesses. ange process 18. SECURITY CLA	alysis is istributic ameters of observati es on [0,1 non-param in the p ble for the alues by t ore function othesis of red data.	concerned with ns fitted to a probability di ons one forms f]; the transfor etric score fun robability dist e distribution ransforming the ons. This pape no change) of They are relat	"fluctuation" of the dat whole sample) from "non- stributions). To detect or various transformatic mations are called "data actions which detect char ribution of the observat of each observation one data by parametric score r studies the asymptotic Fisher-score change red to cuscore processes 16. PRICE CODE FICATION 20. LIMITATION OF ABST	

LIMIT THEOREMS FOR FISHER-SCORE CHANGE PROCESSES

Technical Report # 186

September 1992

Lajos Horváth and Emanuel Parzen

Texas A&M Research Foundation

Project No. 6547

Sponsored by the U. S. Army Research Office Professor Emanuel Parzen, Principal Investigator Approved for public release; distribution unlimited

LIMIT THEOREMS FOR FISHER-SCORE CHANGE PROCESSES

by Lajos Horváth and Emanuel Parzen* University of Utah and Texas ASM University

0. Introduction

Change analysis is concerned with distinguishing "fluctuation" of the data (in accordance with probability distributions fitted to a whole sample) from "non-stationarity" (changes in the parameters of probability distributions). To detect change over time in a sequence of observations one forms for various transformations of the data sample change processes on [0,1]; the transformations are called "data score functions" (Parzen (1992)). One can choose non-parametric score functions which detect changes of location, scale, skewness, etc. in the probability distribution of the observations. When a parametric model is available for the distribution of each observation one can detect changes in the parameter values by transforming the data by parametric score functions which we call Fisher-score functions.

This paper studies the asymptotic distributions (under the null hypothesis of no change) of Fisher-score change processes which are cusums of scored data. They are related to cuscore processes or cumulative score processes, some of whose applications are described in Box and Ramirez (1992).

1. Fisher-score change processes

Let X_1, X_2, \ldots, X_n be independent random vectors with distribution functions $F(\mathbf{x}; -\Theta_1)$, $F(\mathbf{x}; \Theta_2), \ldots, F(\mathbf{x}; \Theta_n)$, where $\Theta_1, \Theta_2, \ldots, \Theta_n$ are unknown *p*-dimensional parameter – vectors. A basic changepoint problem is the problem of "abrupt change" which tests

 $H_0: \Theta_1 = \Theta_2 = \ldots = \Theta_n$

1

• • • • • • • • • • • • •

*Research supported by U. S. Army Research Office

Bv		
Distr	ibution/	
Avai	lability Codes	
Dist	Avail and/or Special	
A-1		

against the alternative H_A : There is $\tau \epsilon(0,1)$ such that

$$\Theta_1 = \ldots = \Theta_{[n\tau]} \neq \Theta_{[n\tau]+1} = \ldots = \Theta_n.$$

The "abrupt change" problem motivates the definition of the Fisher-score change processes introduced in (1.3). We digress for a moment to note that test statistics for smooth change models can be formed by inner products of these processes with "change score functions."

We assume that the observations are absolutely continuous or discrete. The density functions (probability mass functions in the discrete case) are denoted by $f(\mathbf{x}; \boldsymbol{\Theta}_1), \ldots, f(\mathbf{x}; \boldsymbol{\Theta}_n)$.

Let $\mathbf{g}_1(\mathbf{x}; \mathbf{\Theta}) = (g_{1,1}(\mathbf{x}; \mathbf{\Theta}), \dots, g_{1,p}(\mathbf{x}; \mathbf{\Theta}))$, defining Fisher-score functions

$$g_{1,i}(\mathbf{x}; \mathbf{\Theta}) = rac{\partial \log f(\mathbf{x}; \mathbf{\Theta})}{\partial \theta_i} , \quad 1 \leq i \leq p.$$

We estimate the unknown parameter by the usual maximum likelihood method; i.e. $\hat{\Theta}_n = (\hat{\Theta}_{n,1}, \dots, \hat{\Theta}_{n,p})$ satisfies the estimating equations

$$\sum_{1 \le j \le n} g_{1,i}\left(\mathbf{X}_j; \hat{\mathbf{\Theta}}_n\right) = 0, \qquad 1 \le i \le p.$$
(1.1)

A basic statistic in changepoint problems is the process on 0 < t < 1

$$\mathbf{Z}_{n}(t) = \left(Z_{n,1}(t), \dots, Z_{n,p}(t) \right), \qquad (1.2)$$

whose components are called Fisher-score change processes defined by

$$Z_{n,i}(t) = \frac{1}{n^{1/2}} \sum_{1 \le j \le (n+1)t} g_{1,i}\left(\mathbf{X}_j; \hat{\mathbf{\Theta}}_n\right), 0 \le t < 1, 1 \le i \le p$$
(1.3)

 $(Z_{n,i}(1) = 0, 1 \le i \le p)$. They can be considered, for t fixed, to be score test statistics for the hypothesis that the parameter estimators for data up to time (n + 1)t are not significantly different from the parameter estimators for all the data, against the alternative hypothesis that there is abrupt change at time (n + 1)t.

We study the asymptotic properties of $Z_n(t)$ under the null hypothesis of no change. The true value of the parameter under H_0 is denoted by $\Theta_0 = (\Theta_{0,1}, \dots, \Theta_{0,p})$. Let X be a random vector with density function (probability mass function in the discrete case) $f(\mathbf{x}; \boldsymbol{\Theta}_0)$. Let

$$g(\mathbf{x}; \mathbf{\Theta}) = \log f(\mathbf{x}; \mathbf{\Theta})$$
$$g_{1,i}(\mathbf{x}; \mathbf{\Theta}) = \frac{\partial}{\partial \Theta_i} g(\mathbf{x}; \mathbf{\Theta}), \quad 1 \le i \le p$$
$$g_{2,i,j}(\mathbf{x}; \mathbf{\Theta}) = \frac{\partial^2}{\partial \Theta_i \partial \Theta_j} g(\mathbf{x}; \mathbf{\Theta}), \quad 1 \le i, j \le p$$

and

$$g_{3,i,j,k}(\mathbf{x};\Theta) = \frac{\partial^3}{\partial \Theta_i \partial \Theta_j \partial \Theta_k} g(\mathbf{x};\Theta), 1 \le i, j, k \le p$$

We assume that there is an open neighborhood Θ_0 of Θ_0 such that the following conditions hold:

- C.1 $g(\mathbf{x}; \mathbf{\Theta}), g_{1i}(\mathbf{x}; \mathbf{\Theta}), g_{2,i,j}(\mathbf{x}; \mathbf{\Theta}) \text{ and } g_{3,i,j,k}(\mathbf{x}; \mathbf{\Theta}) \ 1 \leq i, j, k \leq p \text{ exist for all } \mathbf{x} \epsilon R^d \text{ and } \mathbf{\Theta} \epsilon \Theta_0$
- C.2 There is a function $M(\mathbf{x})$ such that $EM(\mathbf{X}) < \infty$ and for all $\mathbf{x} \epsilon R^d, \boldsymbol{\Theta} \epsilon \Theta_0$ $|g_{1,i}(\mathbf{x}; \boldsymbol{\Theta})| \leq M(\mathbf{x}), \quad 1 \leq i \leq p$ $|g_{2,i,j}(\mathbf{x}; \boldsymbol{\Theta})| \leq M(\mathbf{x}), \quad 1 \leq i \leq p$

$$|g_{3,i,j,k}(\mathbf{x};\boldsymbol{\Theta})| \leq M(\mathbf{x}), \quad 1 \leq i, j, k \leq p$$

- C.3 $Eg_{1,i}(\mathbf{X}; \boldsymbol{\Theta}_0) = 0, \quad 1 \leq i \leq p$
- C.4 $E|g_{1,i}(\mathbf{X};\boldsymbol{\Theta}_0)|^{2+\delta} < \infty, 1 \le i \le p$, for some $\delta > 0$

C.5 J^{-1} exists, where $J = \{J_{i,j}, 1 \le i, j \le p\}$ and $J_{i,j} = Eg_{1,i}(\mathbf{X}; \Theta_0)g_{1,j}(\mathbf{X}; \Theta_0), 1 \le i, j \le p$

C.6 $E|g_{2,i,j}(\mathbf{X};\boldsymbol{\Theta}_0)|^2 < \infty$

We show that $Z_n(t)$ converges weakly to $\Gamma(t) = (\Gamma^{(1)}(t), \dots, \Gamma^{(p)}(t))$, where $\Gamma(t)$ is a Gaussian process with covariance structure $E\Gamma^{(i)}(t) = 0$ and $E\Gamma^{(i)}(t)\Gamma^{(j)}(s) = J_{i,j}(\min(t,s)-ts)$. This means that $J_{i,i}^{-1/2}\Gamma^{(i)}(t)$ is a Brownian bridge for each $1 \le i \le p$.

To consider the convergence in weighted metrics, we consider the following class of functions:

 $Q_{0,1} = \{q : q \text{ non-decreasing in a neighborhood of zero, non-increasing in a neighborhood of one and <math>\inf_{\delta \le t \le 1-\delta} q(t) > 0$ for all $0 < \delta < 1/2\}$.

The condition is given in terms of the integral test

$$I(q,c) = \int_0^1 \frac{1}{t(1-t)} \exp\left(-\frac{cq^2(t)}{t(1-t)}\right) dt.$$

Theorem 1.1. We assume that (1.1) has a unique solution, C.1–C.6 hold and $q_i \in Q_{0,1}$, $1 \leq i \leq p$. We can define a sequence of Gaussian processes $\{\Gamma_n(t) = (\Gamma_{n,1}(t), \ldots, \Gamma_{n,p}(t)), 0 \leq t \leq 1\}$ such that

$$\{\Gamma_n(t), \ 0 \le t \le 1\} \stackrel{D}{=} \{\Gamma(t), \ 0 \le t \le 1\}$$
(1.4)

and

$$\max_{1 \le i \le p} \sup_{0 < t < 1} |Z_{n,i}(t) - \Gamma_{n,i}(t)| / q_i(t) = o_p(1)$$
(1.5)

if and only if

$$\max_{1 \le i \le p} I(q_i, c) < \infty \text{ for all } c > 0.$$
(1.6)

If we are interested in the convergence of the weighted supremum functional, we can establish it under weaker conditions.

Theorem 1.2. We assume that (1.1) has a unique solution, C.1 – C.6 hold and $q_i \in Q_{0,1}, 1 \le i \le p$. Then, as $n \to \infty$, we have

$$\begin{cases} \sup_{0 < t < 1} |Z_{n,1}(t)|/q_1(t), \dots, \sup_{0 < t < 1} |Z_{n,p}|/q_p(t) \\ \xrightarrow{D} \left\{ \sup_{0 < t < 1} |\Gamma^{(1)}(t)|/q_1(t), \dots, \sup_{0 < t < 1} |\Gamma^{(p)}(t)|/q_p(t) \right\} \end{cases}$$
(1.7)

if and only if

$$\max_{1 \le i \le p} I(q_i, c) < \infty \text{ for some } c > 0.$$
(1.8)

We can choose $q_i(t) = (t(1-t)\log\log 1(t(1-t)))^{1/2}$ in Theorem 1.2 but this function does not satisfy (1.6). However, the standard deviation $(J_{i,i}t(1-t))^{1/2}$ does not satisfy (1.6) nor (1.8). Let

$$a(x) = (2 \log x)^{1/2}$$

$$b(x) = 2 \log x + \frac{1}{2} \log \log x - \frac{1}{2} \log \pi.$$

Theorem 1.3. We assume that (1.1) has a unique solution and C.1–C.6 hold. Then for each $1 \le i \le p$ we have

$$\lim_{n \to \infty} P\left\{ a(\log n) \sup_{0 < t < 1} |Z_{n,i}(t)| / (J_{i,i}t(1-t))^{1/2} \le x + b(\log n) \right\}$$
(1.9)
= $\exp(-2e^{-x})$

for all x.

We note that if $J_{i,j} = 0, i \neq j$, then $a(\log n) \sup_{0 < t < 1} |Z_{n,i}(t)| / (J_{i,i}t(1-t))^{1/2} - b(\log n)$ and $a(\log n) \sup_{0 < t < 1} |Z_{n,j}(t)| / (J_{j,j}t(1-t))^{1/2} - b(\log n)$ are asymptotically independent. This happens, for example, if the observations are normal and the parameters are the mean and the variance.

2. Proofs

We start with a few lemmas. We assume that H_0 holds. Let $||\mathbf{x}|| = \max_{1 \le i \le p} |x_i|$, $\mathbf{x} = (x_1, \ldots, x_p)$.

Lemma 2.1. We assume that (1.1) has a unique solution and C.1-C.6 hold. Then, as $n \to \infty$, we have for all $1 \le i \le p$ that

$$Z_{n,i}(t) = Z_{n,i}^{*}(t) + R_{n,i}^{(1)}(t) + R_{n,i}^{(2)}(t),$$

where

$$Z_{n,i}^{*}(t) = \frac{1}{n^{1/2}} \left\{ \sum_{\substack{1 \le j \le (n+1)t \\ 0 \le t \le 1}} g_{1,i} \left(\mathbf{X}_{j}; \mathbf{\Theta}_{0} \right) - t \sum_{\substack{1 \le j \le n \\ 1 \le j \le n}} g_{1,i} \left(\mathbf{X}_{j}; \mathbf{\Theta}_{0} \right) \right\},$$

and

$$\sup_{1/(n+1) \le t \le 1-1/(n+1)} |R_{n,i}^{(2)}(t)|/(t(1-t)) = O_p(1).$$

PROOFS. Conditions C.1 –C.4 imply

$$\|\hat{\boldsymbol{\theta}}_n - \boldsymbol{\Theta}_0\| \stackrel{a.s.}{=} O(1) \tag{2.1}$$

as $n \to \infty$, and therefore we can assume that $\hat{\Theta}_n \epsilon \Theta_0$. Ibragimov and Hasminskii (1972, 1973a,b) showed that

$$||n\left(\hat{\boldsymbol{\theta}}_{n}-\boldsymbol{\Theta}_{0}\right)-\sum_{1\leq j\leq n}\mathbf{g}_{1}\left(\mathbf{X}_{j};\boldsymbol{\Theta}_{0}\right)J^{-1}||=o_{p}(n). \tag{2.2}$$

Let

$$\tilde{\mathbf{g}}_1(\mathbf{\Theta}) = E\mathbf{g}_1(\mathbf{X};\mathbf{\Theta}_0)$$

We write

$$Z_{n,i}(t) = A_{n,i}^{(1)}(t) + A_{n,i}^{(2)}(t), \qquad (2.3)$$

where

$$A_{n,i}^{(1)}(t) = \frac{1}{n^{1/2}} \sum_{1 \le j \le (n+1)t} \tau_{1,i} \left(\mathbf{X}_j; \hat{\Theta}_n \right)$$
(2.4)

$$A_{n,i}^{(2)}(t) = \frac{(n+1)t}{n^{1/2}} \left(\tilde{g}_{1,i} \left(\hat{\Theta}_n \right) - \tilde{g}_{1,i} \left(\Theta_0 \right) \right)$$
(2.5)

 $\quad \text{and} \quad$

$$\tau_{1,i}\left(\mathbf{x}_{j}\mathbf{\Theta}\right) = g_{1,i}\left(\mathbf{x};\mathbf{\Theta}\right) - \tilde{g}_{1,i}\left(\mathbf{\Theta}\right), \quad 1 \leq i \leq p.$$

Let

$$\tau_{2,i,j}(\mathbf{x};\mathbf{\Theta}) = \frac{\partial}{\Theta_j} \tau_{1,i}(\mathbf{x};\mathbf{\Theta})$$

and

$$\tau_{3,i,j,k}(\mathbf{x};\boldsymbol{\Theta}) = \frac{\partial^2}{\Theta_j \Theta_k} \tau_{1,i}(\mathbf{x};\boldsymbol{\Theta}).$$

We note that

$$E\tau_{2,i,j}(\mathbf{X};\boldsymbol{\Theta}_0) = 0, \quad 1 \le i, \quad j \le p$$
(2.6)

and

$$|\tau_{3,i,j,k}(\mathbf{x})| \le 2M(\mathbf{x}). \tag{2.7}$$

A two-term Taylor expansion and (2.2) with the central limit theorem yield

$$\tilde{g}_{1,i}\left(\hat{\Theta}_{n}\right) - \tilde{g}_{1,i}\left(\Theta_{0}\right) = \sum_{1 \leq j \leq p} \tilde{g}_{2,i,j}\left(\Theta_{0}\right) \left(\hat{\Theta}_{n,i} - \Theta_{0,i}\right) + O_{p}\left(\frac{1}{n}\right)$$

$$(2.8)$$

Next we use again (2.2) and get

$$n\left(\tilde{g}_{1,i}\left(\hat{\boldsymbol{\Theta}}_{n}\right)-\tilde{g}_{1,i}\left(\boldsymbol{\Theta}_{0}\right)\right)=\tilde{\mathbf{g}}_{2,i}\left(\boldsymbol{\Theta}_{0}\right)\left(\sum_{1\leq\ell\leq n}\mathbf{g}_{1}\left(\mathbf{X}_{\ell};\boldsymbol{\Theta}_{0}\right)J^{-1}\right)^{T}$$

$$+o_{p}\left(n^{1/2}\right).$$

$$(2.9)$$

Observing that $\tilde{g}_{2,i,j}(\boldsymbol{\Theta}_0) = -J_{i,j}$, by (2.9) we have

$$n\left(\tilde{g}_{1,i}\left(\hat{\boldsymbol{\Theta}}_{n}\right)-\tilde{g}_{1,i}\left(\boldsymbol{\Theta}_{0}\right)\right)=-\sum_{1\leq\ell\leq n}g_{1,i}\left(\mathbf{X}_{\ell};\boldsymbol{\Theta}_{0}\right)+o_{p}\left(n^{1/2}\right).$$
(2.10)

We use again Taylor expansion and get

$$|\sum_{1 \leq \ell \leq (n+1)t} \left(\tau_{1,i} \left(\mathbf{X}_{\ell}; \hat{\mathbf{\Theta}}_{0} \right) - \tau_{1,i} \left(\mathbf{X}_{\ell}; \mathbf{\Theta}_{0} \right) \right)$$

$$- \sum_{1 \leq j \leq p} \left(\hat{\mathbf{\Theta}}_{n,j} - \mathbf{\Theta}_{0,j} \right) \sum_{1 \leq \ell \leq (n+1)t} \tau_{2,i,j} \left(\mathbf{X}_{\ell}; \mathbf{\Theta}_{0} \right) |$$

$$\leq \frac{p}{2} || \hat{\mathbf{\Theta}}_{n} - \mathbf{\Theta}_{0} ||^{2} \sum_{1 \leq \ell \leq (n+1)t} M \left(\mathbf{X}_{\ell} \right).$$

$$(2.11)$$

Now by (2.6) we can use the invariance principle and by C.2 we can apply the law of large numbers. Thus we obtain

$$\sup_{0 \le t \le 1} \left| \sum_{1 \le \ell \le (n+1)t} \left(\tau_{1,i} \left(\mathbf{X}_{\ell}; \boldsymbol{\Theta}_0 \right) - \tau_{1,i} \left(\mathbf{X}_{\ell}; \boldsymbol{\Theta}_0 \right) \right) \right| = O_p(1).$$
(2.11)

We showed that

$$\sup_{0 \le t \le 1} |A_{n,i}^{(1)}(t) - \frac{1}{n^{1/2}} \sum_{1 \le j \le (n+1)t} g_{1,i}\left(\mathbf{X}_j; \boldsymbol{\Theta}_0\right)| = O_p\left(n^{-1/2}\right)$$
(2.12)

and

$$\sup_{0 \le t \le 1} \left| \left(A_{n,i}^{(2)}(t) + \frac{t}{n^{1/2}} \sum_{1 \le j \le n} q_{1,i} \left(\mathbf{X}_j; \mathbf{\Theta}_0 \right) \right) / t \right| = o_p(1).$$
(2.13)

By (1.1) we have

$$Z_{n,i}(t) = -\sum_{(n+1)t < j \le n} q_{1,i}\left(\mathbf{X}_j; \hat{\mathbf{\Theta}}_n\right),$$

and therefore similarly to (2.3) we have

$$\begin{split} |Z_{n,i}(t) - \frac{1}{n^{1/2}} \left(\sum_{1 \le \ell \le (n+1)t} g_{1,i}(\mathbf{X}_{\ell}; \Theta_0) - t \sum_{1 \le \ell \le n} g_{1,i}(\mathbf{X}_{\ell}; \Theta_0) \right) | \\ \le |n^{-1/2} \sum_{(n+1)t < j \le n} \left\{ \left(g_{1,i}\left(\mathbf{X}_j; \hat{\Theta}_n\right) - \tilde{g}_{1,i}\left(\hat{\Theta}_n\right) \right) - g_1\left(\mathbf{X}_j; \Theta_0\right) \right\} | \\ + |\frac{n - (n+1)t}{n^{1/2}} \left(\tilde{g}_{1,i}\left(\hat{\Theta}_n\right) - \tilde{g}_{1,i}\left(\Theta_0\right) \right) + \frac{1 - t}{n^{1/2}} \sum_{1 \le j \le n} g_{1,i}\left(\mathbf{X}_j; \Theta_0\right) | \\ = A_{n,i}^{(3)}(t) + A_{n,i}^{(4)}(t). \end{split}$$

Now similarly to (2.12) and (2.13) one can establish

$$\sup_{0 \le t \le 1} |A_{n,i}^{(3)}(t)| = O_p\left(n^{-1/2}\right)$$

and

$$\sup_{1/(n+1) \le t \le 1-1/(n+1)} |A_{n,i}^{(4)}(t)|/(1-t)| = o_p(1).$$

which completes the proof of Lemma 2.1.

Lemma 2.2. We assume that C.3 and C.4 hold. We can define a sequence of Gaussian processes $\{\Gamma_n(t) = (\Gamma_{n,1}(t), \ldots, \Gamma_{n,p}(t)), 0 \le t \le 1\}$ such that (1.4) holds and

$$n^{\frac{1}{2}-\nu} \max_{1 \le i \le p} \sup_{1/(n+1) \le t \le n/(n+1)} |Z_{n,i}^{*}(t) - \Gamma_{n,1}(t)|/(t(1-t))^{\nu} = O_p(1)$$
(2.14)
for all $\frac{1}{2+\delta} \le \nu \le 1/2$.

PROOF. Let

$$V_{n,i}(t) = \sum_{1 \leq j \leq (n+1)t} q_{1i}(\mathbf{X}_j; \boldsymbol{\Theta}_o),$$

and

$$V_{n,i}(1) = \sum_{1 \leq j \leq n} g_{1,i}(\mathbf{X}_j; \mathbf{\Theta}_o).$$

We have

$$n^{1/2}Z_{n,i}^{*}(t) = \begin{cases} V_{n,i}(t) - t\left(V_{n,i}\left(\frac{1}{2}\right) + \left(V_{n,i}(1) - V_{n,i}\left(\frac{1}{2}\right)\right)\right), 0 \le t \le \frac{1}{2} \\ -\left(V_{n,i}(1) - V_{n,i}(t)\right) + (1-t)\left(V_{n,i}\left(\frac{1}{2}\right) + \left(V_{n,i}(1) - V_{n,i}\left(\frac{1}{2}\right)\right)\right), \frac{1}{2} \le t \le 1. \end{cases}$$

By Einmahl (1989) for each *n* we can define two independent Gaussian processes $\{(G_{n,1}^{(1)}(x), \ldots, G_{n,p}^{(1)}(x)), 0 \le x \le n/2\}$ and $\{(G_{n,1}^{(2)}(x), \ldots, G_{n,p}^{(2)}(x)), 0 \le x \le n/2\}$ with covariance $EG_{n,i}^{(j)}(x) = 0$, $EG_{n,i}^{(j)}(x)G_{n,k}^{(j)}(y) = J_{i,k}\min(x,y)$, $j = 1, 2, 1 \le i, k \le p$ and

$$\max_{1 \le i \le p} \sup_{1/(n+1) \le t \le 1/2} |V_{n,i}(t) - G_{n,i}^{(1)}(nt)|/(nt)^{\frac{1}{2+\delta}} = O_p(1)$$
(2.16)

and

$$\max_{1 \le i \le p} \sup_{1/2 \le t \le n/(n+1)} | \left(V_{n,i}(1) - V_{n,i}(t) \right) - G_{n,i}^{(2)}(n(1-t)) | / (n(1-t))^{\frac{1}{2+\delta}} = O_p(1).$$
(2.17)

Now (2.15), (2.16) and (2.17) yield

$$n^{\frac{1}{2}-\nu} \sum_{\substack{1/(n+1) \le t \le 1/2 \\ n,i}(t) \le 1/2} |Z_{n,i}^{*}(t) - n^{-1/2} \left(G_{n,i}^{(1)}(nt) - t \left(G_{n,i}^{(1)}\left(\frac{n}{2}\right) + G_{n,i}^{(2)}\left(\frac{n}{2}\right) \right) \right)|/(nt)^{\nu}$$

$$= \sup_{\substack{1/(n+1) \le t \le 1/2 \\ n/(n+1) \le t \le 1/2}} |n^{1/2} Z_{n,i}^{*}(t) - \left(G_{n,i}^{(1)}(nt) - t \left(G_{n,i}^{(1)}\left(\frac{n}{2}\right) + G_{n,i}^{(2)}\left(\frac{n}{2}\right) \right) \right)|/(nt)^{\nu} \quad (2.18)$$

$$= O_{p}(1) \sup_{\substack{1/(n+1) \le t \le 1/2 \\ 1/(n+1) \le t \le 1/2}} (nt)^{\frac{1}{2+\delta}-\nu} = O_{p}(1),$$

and similar arguments give

$$n^{\frac{1}{2}-\nu} \sup_{\substack{1/2 \le t \le n/(n+1) \\ +(1-t) \left(G_{n,i}^{(1)}\left(\frac{n}{2}\right) + G_{n,i}^{(2)}\left(\frac{n}{2}\right)\right) \right) | / (1-t)^{\nu}} = O_p(1).$$
(2.19)

We define $\Gamma_n(t)$ by

$$n^{1/2}\Gamma_{n,i}(t) = \begin{cases} G_{n,i}^{(1)}(nt) - t\left(G_{n,i}^{(1)}\left(\frac{n}{2}\right) + G_{n,i}^{(2)}\left(\frac{n}{2}\right)\right), 0 \le t \le 1/2\\ -G_{n,i}^{(2)}(n(1-t)) + (1-t)\left(G_{n,i}^{(1)}\left(\frac{n}{2}\right) + G_{n,i}^{(2)}\left(\frac{n}{2}\right)\right), 1/2 \le t \le 1. \end{cases}$$

It is easy to see that $\Gamma_n(t)$ satisfies (1.4) and by (2.18), (2.19) we have (2.14).

PROOF OF THEOREM 1.1. First we assume that

$$I(q_i, c) < \infty \text{ for some } c > 0.$$
(2.20)

By Csörgő et al (1986) (2.20) implies

$$\lim_{t \downarrow 0} q_i(t) / \sqrt{t} = \infty \tag{2.21}$$

and

$$\lim_{t \downarrow 1} q_i(t) / (1-t)^{1/2} = \infty.$$
(2.22)

Let $\varepsilon > 0$. Lemma 2.1 implies

$$\sup_{\epsilon \le t \le 1-\epsilon} |Z_{n,i}(t) - Z_{n,i}^*(t)| / q_i(t) = o_p(1)$$
(2.23)

and

$$\sup_{\substack{1/(n+1) \le t \le n/(n+1)}} |Z_{n,i}(t) - Z_{n,i}^*(t)| / (t(1-t))^{1/2} = O_p(1).$$
(2.24)

Next we write

$$\sup_{\substack{1/(n+1) \le t \le \epsilon \\ \le \sup_{0 < t \le \epsilon} t^{1/2}/q_i(t) \\ 1/(n+1) \le t \le n/(n+1)}} |Z_{n,i}(t) - Z_{n,i}^*(t)|/t^{1/2}}$$
(2.25)

and

$$\sup_{\substack{1-\varepsilon \le t \le n/(n+1)}} |Z_{n,i}(t) - Z_{n,i}^{*}(t)|/q_{i}(t)$$

$$\le \sup_{\substack{1-\varepsilon \le t \le 1}} (1-t)^{1/2}/q_{i}(t) \sup_{\substack{1/(n+1) \le t \le n/(n+1)}} |Z_{n,i}(t) - Z_{n,i}^{*}(t)|/(1-t)^{1/2}$$
(2.26)

Putting together (2.21) - (2.26) and choosing ε as small as we wish we get

$$\sup_{1/(n+1) \le t \le n/(n+1)} |Z_{n,i}(t) - Z_{n,i}^*(t)| / q_i(t) = o_p(1).$$
(2.27)

Using Lemma 2.2 with $\nu = 1/2$ we have

$$\sup_{1/(n+1) \le t \le n/(n+1)} |Z_{n,i}^*(t) - \Gamma_{n,i}(t)| / (t(1-t))^{1/2} = O_p(1).$$
(2.28)

Hence by (2.21) and (2.22) similarly to (2.27) we can establish

$$\sup_{1/(n+1) \le t \le n/(n+1)} |Z_{n,i}^{*}(t) - \Gamma_{n,i}(t)|/q_{i}(t) = o_{p}(1).$$
(2.29)

The covariance of $\Gamma_{n,i}(t)$ implies that $J_{i,i}^{-1/2}\Gamma_{n,i}(t)$ is a Brownian bridge for each n. By Csörgő et al (1986) condition (1.6) implies

$$\sup_{0 \le t \le 1/(n+1)} |\Gamma_{n,i}(t)| / q_i(t) = o_p(1)$$
(2.30)

and

$$\sup_{n/(n+1) \le t \le 1} |\Gamma_{n,i}(t)|/q_i(t) = o_p(1).$$
(2.31)

Now (1.5) follows form (2.27), (2.29), (2.30) and (2.31).

Next we assume that (1.5) holds. It follows from the definition and (1.1) that $Z_{n,i}(t) = 0$ if $0 \le t < 1/(n+1)$ and $Z_{n,i}(t) = 0$ if $n/(n+1) \le t \le 1$. Thus we have

$$\sup_{0 < t < 1/(n+1)} |\Gamma_{n,i}(t)| / q_i(t) = o_p(1)$$
(2.32)

and

$$\sup_{n/(n+1) \le t < 1} |\Gamma_{n,i}(t)|/q_i(t) = o_p(1).$$
(2.33)

By definition,

$$\left\{\Gamma_{n,i}(t), 0 \le t \le 1\right\} \stackrel{D}{=} \left\{J_{i,i}^{1/2} B(t), \ 0 \le t \le 1\right\}$$
(2.34)

for each n, where $\{B(t), 0 \le t \le 1\}$ is a Brownian bridge. We have (2.32) and (2.33) if and only if

$$\lim_{\varepsilon \downarrow 0} \sup_{0 < t \le \varepsilon} |B(t)|/q_i(t) = 0 \qquad a.s.$$
(2.35)

and

$$\lim_{\epsilon \downarrow 0} \sup_{1-\epsilon \le t \le 1} |B(t)|/q_i(t) = 0 \qquad a.s.$$
(2.36)

Using Csörgő et al (1986) we get that (2.35) and (2.36) imply (1.6).

PROOF OF THEOREM 1.2. We showed in the proof of Theorem 1.1 that (1.8) implies

$$\max_{1 \le i \le p} \sup_{1/(n+1) \le t \le n/(n+1)} |Z_{n,i}(t) - \Gamma_{n,i}(t)| / q_i(t) = o_p(1).$$
(2.37)

Also, (1.8) yields that the limiting random vector is almost surely finite in (1.7) (cf. Csörgő et al (1986)). Since $Z_{n,i}(t) = 0$, if $0 \le t < 1/(n+1)$ and $Z_{n,i}(t) = 0$ if $n/(n+1) \le t \le 1$, the limit theorem in (1.7) follows from (2.37).

Now we assume that (1.7) holds. In this case the limiting random vector is almost surely finite. Using (2.34), this can happen only if (1.8) is satisfied.

The proof of Theorem 1.3 is based on the following lemma. Let

$$c(x)=\log\frac{1-x}{x}.$$

Lemma 2.3. We assume that C.3 and C.4 hold. If $1/(n+1) \le \varepsilon_1(n), \varepsilon_2(n) \le n/(n+1),$ $\varepsilon_1(n) < 1 - \varepsilon_2(n)$ and

$$\lim_{n\to\infty}\frac{(1-\varepsilon_1(n))(1-\varepsilon_2(n))}{\varepsilon_1(n)\varepsilon_2(n)}=\infty,$$

then we have

$$\lim_{n \to \infty} P\left\{ a\left(\frac{1}{2}(c(\varepsilon_1(n)) + c(\varepsilon_2(n)))\right) \sup_{\varepsilon_1(n) \le t \le 1 - \varepsilon_2(n)} |Z_{n,i}^*(t)| / (I_{i,i} t(1-t))^{1/2} \le x + b\left(\frac{1}{2}(c(\varepsilon_1(n)))\right) \right\} = \exp(-2e^{-x})$$

for all x.

PROOF. It can be found, for example, in Csörgő and Horváth (1990).

PROOF OF THEOREM 1.3. We show that

$$\sup_{1/(n+1) \le t \le n/(n+1)} |Z_{n,i}(t)|/(t(1-t))^{1/2} \text{ and } \sup_{1/(n+1) \le t \le n/(n+1)} |Z_{n,i}^*(t)|/(t(1-t))^{1/2}$$

satisfy the same limit theorem. By Lemma 2.3 we have

$$\sup_{1/(n+1) \le t \le n/(n+1)} |Z_{n,i}(t) - Z_{n,i}^*(t)| / (t(1-t))^{1/2} = O_p(1).$$
(2.38)

Now Lemma 2.3 yields

$$(2\log\log\log n)^{-1/2} \sup_{1/(n+1) \le t \le (\log n)/n} |Z_{n,i}^*(t)| / (J_{i,i} t(1-t))^{1/2} \xrightarrow{P} 1$$
(2.39)

and therefore by (2.38) we have

$$(2\log\log\log n)^{-1/2} \sup_{\substack{1/(n+1) \le t \le (\log n)/n}} |Z_{n,i}^*(t)| \left(J_{i,i} t(1-t)\right)^{1/2} \xrightarrow{P} 1.$$
(2.40)

It is easy to see that (2.40) implies

$$a(\log n) \sup_{1/(n+1) \le t \le (\log n)/n} |Z_{n,i}(t)| / (J_{i,i} t(1-t))^{1/2} - (x+b(\log n)) \xrightarrow{P} -\infty$$
(2.41)

for all x. Similar arguments give

$$a(\log n) \sup_{1-(\log n)/n \le t \le n/(n+1)} |Z_{n,i}(t)| / (J_{i,i} t(1-t))^{1/2} - (x+b(\log n)) \xrightarrow{P} -\infty.$$
(2.42)

Using again Lemma 2.1 we obtain

$$\sup_{\substack{(\log n)/n \le t \le 1/\log n}} |Z_{n,i}(t) - Z_{n,i}^*(t)|/(t(1-t))^{1/2} = O_p((\log n)^{-1/2})$$
(2.43)

4 10

and

$$\sup_{\substack{1-1/\log n \le t \le 1-(\log n)/n}} |Z_{n,i}(t) - Z_{n,i}^*(t)|/(t(1-t))^{1/2} = O_p((\log n)^{-1/2}).$$
(2.44)

Combining (2.38) with Lemma 2.3 we get

$$a(\log n) \sup_{\substack{1 \log n \le t \le 1 - 1/\log n}} |Z_{n,i}(t)| / (J_{i,i} t(1-t))^{1/2} - (x + b(\log n)) \xrightarrow{P} -\infty$$
(2.45)

for all x. Similarly,

$$a(\log n) \sup_{1/\log n \le t \le 1 - 1/\log n} |Z_{n,i}^*(t)| / (J_{i,i} t(1-t))^{1/2} - (x + b(\log n)) \xrightarrow{P} -\infty.$$
(2.46)

By (2.41)-(2.46) we have

$$\lim_{n \to \infty} P\left\{ a(\log n) \sup_{\substack{1/(n+1) \le t \le n/(n+1)}} |Z_{n,i}(t)| / (J_{i,i} t(1-t))^{1/2} \le x + b(\log n) \right\}$$
$$= \lim_{n \to \infty} P\left\{ a(\log n) \sup_{\substack{(\log n)/n \le t \le 1 - (\log n)/n}} |Z_{n,i}^*(t)| / (J_{i,i} t(1-t))^{1/2} \le x + b(\log n) \right\}$$

and therefore Lemma 2.3 implies the result in Theorem 1.3.

References

- Box, G. and Ramirez, J. (1992). Cumulative score charts. Quality and Reliability Engineering, 8, 17-27.
- Csörgő, M., Csörgő, S., Horváth, L. and Mason, D. M. (1986). Weighted empirical and quantile processes. Ann. Probab. 14, 31-85.
- Csörgő, M. and Horváth, L. (1990). On the distributions of the supremum of weighted quantile processes. Studia Sci. Math. Hung. 25, 353-375.
- Einmahl, M. (1989). Extensions of results of Komlós, Major and Tusnády to the multivariate case. J. Multivariate Analysis 28, 20-68.
- Ibragimov, I. A. and Hasminskii, R. Z. (1972). Asymptotic behaviour of statistical estimators in the smooth case I. Study of the likelihood ratio. Theory Probability Appl. 17, 445-462.
- Ibragimov, I. A. and Hasminskii, R. Z. (1973a). Asymptotic behaviour of some statistical estimators II. Limit theorems for the posteriori density and Bayes' estimators. Theory Probability Appl. 18, 76-91.
- Ibragimov, I. A. and Hasminskii, R. Z. (1973b). On the approximation of statistical estimators by sums of independent variables. *Soviet Math. Dokl.* 14, 883-887.
- Parzen, E. (1992). Comparison Change Analysis. Nonparametric Statistics and Related Topics (ed. A. K. Saleh), Elsevier: Amsterdam, 3-15.

Lajos Horváth Department of Mathematics University of Utah Salt Lake City, UT 84112 Emanuel Parzen Department of Statistics Texas A&M University College Station, TX 77843-3143