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ABSTRACT 'Ifv
A new algorithm is described for generating an unstructured mesh about ar -tT'A twU-
dimensional configuration. Mesh points are generated automatically by the algorithm in a
manner which ensures a smooth variation of elements, and the resulting triangulation consti-
tutes the Delaunay triangulation of these points. The algorithm combines the mathematical
elegance and efficiency of Delannay triangulation algorithms with the desirable point placement
features, boundary integrity, and robustness traditionally associated with advancing-front-type
mesh generation strategies. The method offers increased robustness over previous algorithms
in that it cannot fail regardless of the initial boundary point distribution and the prescribed cell
size distribution throughout the flow-field.
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1. INTRODUCTION

One of the main promises of unstructured mesh computational fluid dynamics is the abil-
ity to discretize flow-fields about arbitrarily complex geometries in two and three dimensions.
With this purpose in mind, a number of algorithms for constructing two-dimensional triangular
and three-dimensional tetrahedral unstructured meshes have been developed over the years [1-
91. Of the various methods developed, two types of approaches which have received much
attention in the computational fluid dynamics community have been advancing-front-based
techniques[1,2] and Delaunay-triangulation-based techniques [3,4,5,6]. These two strategies
have most often been perceived as competing approaches to the same problem. However, a
Delaunay triangulation merely refers to a particular connectivity associated with a given set of
points which possesses certain desirable properties, while an advancing front technique consti-
tutes a point placement strategy while imposing a particular ordering of the element generation
process. Thus, the two approaches are in some sense complementary, and several recent
attempts to combine the advantages of both methods have appeared in the literature [7,8,9].
This is the approach taken in this work.

One may question the need for yet another unstructured mesh generation strategy, espe-
cially in two dimensions. As will be shown, all of the present methodologies offer much room
for improvement in terms of either efficiency or robustness, and the present algorithm was
designed with such issues in mind. Furthermore, the two-dimensional setting is employed for
demonstrating techniques which should eventually be extendable to three dimensions.

1.1. The Advancing Front Approach

In order to understand the development of the present algorithm, it is useful to first exam-
ine the advantages and disadvantages of the various existing algorithms. Advancing front tech-
niques begin with a discretization of the geometry boundaries as a set of edges in two dimen-
sions. These edges form the initial front which is to be advanced out into the field. A particu-
lar edge of this front is selected, and a new triangle is formed with this edge as its base, by
joining the two ends of the current edge either to a newly created point, or to an existing point
on the front. The current edge is then removed from the front, since it is now obscured by the
new triangle. Similarly, the remaining two edges of the new triangle are either assigned to the
front or removed from the front, depending on their visibility, as shown in Figure 1. The front
thus constitutes a stack (or priority queue), and edges are continuously added to or removed
from the stack. The process terminates when the stack is empty, i.e. when all fronts have
merged upon each other and the domain is entirely covered. One of the critical features of
such methods is the placement of new points. Upon generating a new triangle, a new point is
first placed at a position which is determined to result in an optimal size and shape triangle.
The parameters which define this optimum triangle as a function of field position are obtained
by a prescribed field function (which may be interpolated from a background grid). The trian-
gle generated with tl's new point may result in a cross-over with other front edges, and thus
may be rejected. This is determined by computing possible intersections with "nearby" front
edges. Alternately, an existing point on the front may coincidentally be located very close to
the new point, and thus should be employed as the forming point for the new triangle, to avoid
the appearance of a triangle with a very small edge at some later stage. Existing candidate
points are thus also searched by locating all "nearby" front points.

One of the advantages of such an approach is thus the automatic point placement stra-
tegy, which generally results in high-quality elements throughout most of the flow-field due to
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the optimum positioning of these new points. Additionally, all real operations performed (such
as intersection checking) are of a local nature; i.e. intersection checks are performed with
neighboring edges of similar length, thus reducing the chances for round-off error induced
failure. Finally, boundary integrity is guaranteed, since the boundary discretization constitutes
the initial condition.

The space requirements for such an algorithm are lower than may be expected. Since
this is essentially a greedy triangulation [10]; i.e. formed elements are never subsequently
modified, all points, edges and triangles which lie behind the front need no longer be con-
sidered in the generation process. Thus the only active portion of the data is the front. Since
a front is has one lower dimension than the domain to be discretized, the required space for
such an algorithm in two dimensions is 0 ('-), where N is the final number of grid points
generated. Since N points are added sequentially, the complexity is at most O(N'-L-). How-
ever, by employing sophisticated searching techniques such as spatial quad-trees, this complex-
ity is easily lowered to O(Nlog'-) which is asymptotically equivalent to O(NlogN). Optimal
space usage has not in general been achieved, due to the difficulty in continuously dumping out
generated elements. However, restart capabilities are easily implemented [11], which can
greatly reduce the required working size for a large mesh generation job.

The disadvantages of advancing front techniques mainly relate to their efficiency. The
intersection checking phase is a rather brute-force technique for ensuring the acceptability of a
new triangle, which is relatively expensive. Additionally, for each generated triangle, the
quad-tree data structure must be traversed from top to bottom (0 (logN) steps) in order to locate
"nearby" points and edges. Another contributing factor is the fact that advancing front tech-
niques construct the mesh one triangle at a time. Since in two dimensions there are asymptoti-
cally twice as many triangles as points, a more efficient strategy would be to construct the
mesh one point at a time. Thus, each time a new point is generated, efficiency could be
gained by determining all the potential triangles which join this new point to the existing front
with a single traversal of the quad-tree data-structure. In three dimensions, the savings are
even greater, since there exists on average 5 to 6 times more tetrahedra than vertices.

Finally, even though advancing front techniques rely only on local operations, they may
still suffer from robustness problems. Central to the issue of determining acceptable triangles
and "best" points, is the determination of a local length scale which defines the region of
"nearby" points and edges. This length scale is generally obtained from the field function
(which may employ a background grid). Consider the case of two merging fronts. If the field
function varies rapidly over the region between the merging fronts, the relative sizes of the
edges on one front may be much larger than those on the other front. If a search is initiated
from the front with the smaller length scale, the region of "nearby" edges may not contain the
appropriate edges and points of the other front, and failure will occur, as shown in Figure 2.
Thus, the advancing front-technique can only be guaranteed to produce a valid triangulation if
certain non-heuristic constraints are derived and imposed on the variation of the field function.

1.2. Delaunay Triangulation Algorithms

Given a set of points in the plane, there exists many possible triangulations of these
points. A Delaunay construction represents a unique triangulation of these points which exhi-
bits a large class of well defined properties. Particular properties can be employed to construct
algorithms for generating the Delaunay triangulation of a given set of points.
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The empty circumcircle property forms the basis of the Bowyer/Watson algorithm
[12,13]. This property states that no triangle in a Delaunay triangulation can contain a point
other than its three forming vertices within its circumcircle. Thus, given an initial triangula-
tion, a new point may be inserted into the triangulation by first locating and deleting all exist-
ing triangles whose circumcircles contain the newly inserted point. A new triangulation is then
formed by joining the new point to all boundary vertices of the cavity created by the previous
removal of intersected triangles, as shown in Figure 3.

These algorithms exhibit a worst case complexity of O(N2) (imagine the case where each
newly inserted point intersects all existing triangle circumcircles) and have thus been avoided
in the computational geometry literature. However, O(N2) behavior represents a pathological
case and in general mesh generation applications employing this algorithm exhibit close to
linear complexity [4]. In fact, it has been shown that O (NlogN) complexity can always be
achieved if the order in which the points are inserted is modified [ 14].

Point insertion algorithms can be employed as the basis for a mesh generation strategy
where the mesh points have been predetermined. The mesh points are put in a list, and an ini-
tial triangulation is artificially constructed (with auxiliary points) which completely covers the
entire domain to be gridded. The mesh points in the list are then inserted sequentially into the
existing triangulation using the Bowyer/Watson algorithm. The final mesh is obtained when all
points from the list have been inserted. The main problems associated with such an approach
relate to the generation of an initial triangulation. While it is not difficult to construct an initial
triangulation, the insertion of points can lead to robustness problems due to round-off error.
This comes about due to the non-local nature of the real operations required in the insertion
process. When an inner boundary point is introduced at the initial stages of the triangulation, a
triangle joining this point to the outer boundary will most likely be formed. If the next point
introduced is an adjacent boundary point, the distance between these two points may be much
smaller than the distance to the outer boundary (i.e. the other dimension of the triangle being
intersected), and round-off error alone may cause an improper reconnection.

For non-convex domains, the integrity of the boundaries is not guaranteed by such an
approach. This is generally remedied by increasing the boundary point resolution, or by tri-
angulating through the boundary and performing an edge swapping clean-up phase as a post-
processing operation to recover the boundary edges [ 15].

The poor worst case complexity of the above algorithms has lead to the development of a
variety of divide and conquer algorithms for the Delaunay triangulation of an existing point set
[10,16]. In this approach, the points are recursively divided into two groups, each group is tri-
angulated individually, and the groups are then merged together. Such an approach can be
shown to exhibit a worst case complexity of O(NlogN). The merging of two triangulations
exhibits certain similarities with the merging of fronts in the advancing front process. How-
ever, the algorithms are based on known Delaunay triangulation properties, rather than the
assumption of an appropriate length scale, and thus can be proved to yield a correct triangula-
tion under any conditions.

An advancing front type algorithm for constructing a Delaunay triangulation of a given
set of points has been demonstrated in the context of mesh generation by Merriam [7]. This
approach, which has also been reported in other applications [17,18,19], relies on the empty
circumcircle property. An edge on the front is chosen, and a new triangle is tentatively formed
by joining the ends of this edge to an arbitrary point of the set of points to be triangulated
which lie to the interior of the domain, with regards to the front. If this formed triangle
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contains any points within its circumcircle, it cannot be a valid Delaunay triangle, and thus an
alternate point is chosen; i.e. the point contained inside the newly formed circumcircle which is
closest to its circumcenter. By iterating this procedure, as shown in Figure 4, the appropriate
point which prouuces a triangle containing no points interior to its circumcircle is eventually
found. The new triangle is thus accepted, and the front advanced.

The present work makes use of the ideas found in the divide and conquer algorithms and
the advancing front Delaunay triangulation algorithm. However, all the algorithms discussed
so far assume that the mesh points have been predetermined. What is desired in the mesh gen-
eration context is an automatic point placement strategy. There are various Delaunay triangula-
tion algorithms which incorporate automatic point placement strategies. A very simple method
[5,6] is based on the Bowyer/Watson algorithm. Starting with an initial coarse triangulation
which covers the entire domain, a priority queue is constructed based on some parameter of the
individual triangles (circumradius for example). A field value is assumed to exist which deter-
mines the local maximum permissible value for the circumradius of the triangles (or other
parameter). The first triangle in the queue is examined, and a point is added at its circum-
center if the triangle circumradius is larger than the locally prescribed maximum. This new
point is inserted into the triangulation using Bowyer's algorithm, and the newly formed trian-
gles are inserted into the queue if their circumcircles are too large, otherwise they are labeled
as acceptable, and do not appear in the queue. The final grid is obtained when the priority
queue empties out.

A consequence of this approach is that the final triangulation depends on the order of the
insertion of the points. For example, if the queue is ordered by the smallest circumcircle rather
than the largest circumcircle, a different triangulation will result. Furthermore, the meshes pro-
duced by this strategy do not exhibit the high degree of smoothness and element quality usu-
ally produced by the advancing front technique. Modifications to the point placement strategy
have been proposed separately by Rebay [8] and Mueller at al [9]. Both methods are quite
similar. In [8] for example, the triangles are divided into accepted (small enough) triangles,
and waiting (too large) triangles. However, a subset of the waiting triangles is defined as those
which border on accepted triangles. These so-called active triangles are the only ones con-
sidered as candidates for point insertion. When new points are inserted, they are positioned
along the median of the edge separating the active triangle from its neighboring accepted trian-
gle, at a distance which results in the formation of an optimal triangle between the new point
and the bounding edge. The optimal size of the triangle is determined from the field function.
The initial triangulation is set up by joining all inner boundary points to the outer boundary
points, and all triangles adjacent to the boundaries are defined as active. The order in which
points are inserted thus resembles the advancing front algorithm. The process begins at the
boundaries and marches outwards as new triangles are accepted, and their outer neighbors
become candidates for refinement. The produced triangulations exhibit the smooth variations
and high quality elements typically associated with advancing front techniques, without the
difficulties of merging fronts.

Delaunay techniques involving point placement are much more efficient than advancing
front techniques. The absence of a sophisticated spatial data-structure for locating neighboring
points, and the lack of an intersection checking routine make these very simple and efficient
algorithms. Furthermore, the mesh is generated point by point, rather than one triangle at a
time. Each time a point is inserted, all triangles neighboring that point are formed simultane-
ously, which results in increased efficiency due to the larger number of elements than points in
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an unstructured mesh. However, these algorithms still suffer from their inability to guarantee
boundary integrity and the use of non-local operations which are prone to round-off error, as
can be seen by the large aspect ratio (non-accepted) triangles in Figure 5, (which is taken from
[9]). These are precisely the strengths of the advancing front technique. Thus, what is
required is an advancing front strategy which automatically positions new points, forms trian-
gles which conform to the Delaunay criterion, and exhibits the efficiency of Delaunay point
insertion methods.

2. DESCRIPTION OF PROPOSED ALGORITHM

The proposed algorithm is essentially an advancing front algorithm which adds new
points ahead of the front, and triangulates them according to the Delaunay criterion. By mak-
ing use of certain properties of Delaunay triangulations, one can ensure that only local opera-
tions are required and that consistent triangulations are always obtained.

The local property of Delaunay triangulations forms the basis of this algorithm. A field
function is defined which determines the maximum permissible circumradius of a triangle as a
function of its position in the domain to be discretized. When a new point is added ahead of
the front, it is desired to construct all Delaunay triangles which contain this new point but
which do not violate the local circumradius bound. Triangles which violate the circumradius
bound should not be constructed, even temporarily, for this may require non-local operations
and the possibility of round-off induced error. One method of constructing these triangles is
simply to join the new point to every possible pair of points in the grid and preserve each
potential triangle which does not violate the Delaunay criterion and the circumradius bound. A
more efficient technique is to determine a subset of the grid points which is sufficient for locat-
ing all acceptable triangles. Such a subset can be formed by considering all points which are
less than 2p away from the new point, where p represents the maximum permissible local cir-
cumradius as determined by the field function. Since any resulting triangles will contain an
edge joining the new point to one of these candidate points, any points further than a distance
2p away from the new point cannot produce a triangle with a circumradius smaller than p.
Furthermore, it will be shown that we need not consider all such points, but only the points on
the front which are within 2p of the new point.

When adding a new point, two possibilities exist: either the point is not contained in any
existing triangle circumcircle, or there exists a number of triangles whose circumcircles contain
this new point. In the former case, we know that all existing triangles will still be valid after
the insertion of the new point. Thus any new triangles must be formed by joining the new
point to points on the front only. In the latter case, we must determine the set of triangles
whose circumcircles are intersected. This set may contain triangles which border on the front
as well as triangles which are interior to the mesh. However, the set cannot contain interior
triangles without containing at least one front triangle, otherwise the interior triangles would
not be visible to the new point after all intersected triangles have been removed, which is
required by the properties of a Delaunay triangulation [4]. Thus, in order to locate all inter-
sected triangles, we first locate the intersected front triangles, and then determine the inter-
sected interior triangles by searching the neighbors of these triangles, and the neighbors of any
subsequently found intersected triangles, In the traditional point insertion Delaunay algorithms,
such situations do not arise; since the triangulation always covers the entire domain, every
inserted point must be contained in at least one triangle circumcircle. Furthermore, all inter-
sected triangles can be located using the neighbor search approach, since the grid is fully
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connected. In the advancing front version, the neighbor search may be interrupted by the
ungridded gap region between fronts. However, the Delaunay visibility property guarantees
that all intersected triangles can be located from a neighbor search provided all intersected
front triangles are known and used to initiate the search, as shown in Figure 6.

Finally, there is a third situation which must be considered. There may exist a point on
the front which, when joined to the two ends of the front edge being considered, forms an
acceptable triangle. At first it may appear as if such a situation should not arise. This existing
front point should have been linked to the current edge at the time of its insertion. However,
due to the variation of the local field function, it is possible that such a triangle would have
been rejected at that time, since the field function was not sampled at precisely the same spatial
location as when approaching from the other front. In any case, this situation is easily han-
dled. Since it involves the generation of a new triangle without the insertion of a new point,
we merely resort to the algorithm reported in [7,17,18,19] for advancing a Delaunay triangula-
tion front on a set of predetermined points.

Thus the algorithm can be summarized as follows.

1. Construct the original front as the set of boundary edges.

2. Chose a particular edge of the front, according to some criterion such as minimum edge
length.

3. Determine the maximum permissible circumradius by evaluating the field function at the
center of the edge.

4. Locate all front points which are less than 2 p away from either end point of this edge.

5. Use the algorithm in [71 to determine the Delaunay triangle formed between this edge and
the set of candidate points, if such a triangle exists.

6. If this triangle exists and is acceptable (circumradius smaller than p), form new triangle,
update the front, and proceed to 13. Otherwise create a new point at the appropriate
location.

7. Determine all front triangles whose circumcircles are broken by the new point.

8. Using a neighbor search initiated at the intersected front triangles, locate all interior trian-
gles whose circumcircles are intersected by the new point.

9. Remove all such triangles and update the front. Any new front points which result from
this operation are added to the list of "close" points.

10. If the circumradius of any of the intersected triangles is larger than the previously deter-
mined maximum permissible value p, replace the old value by this new maximum, and
locate any additional front points which are less then 2p away from the new point.

11. Form all possible Delaunay triangles which contain the new point and two other points in
the list of "close" points, and which do not violate the local circumradius bound. Such
triangles are found using the algorithm in [7].

12. Add these triangles to the mesh and update the front.

13. If front queue is empty, stop, otherwise go to 2.

The searches in steps 4 and 7 must be implemented using quad-tree-type data structures
in order to avoid an O(N4'1F) overhead. The actual manner in which new points are positioned
in step 6 is taken from [8]. In this work, a triangulation which covers the entire domain
always exists, and new points are inserted in the so-called active triangles which border on
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previously generated accepted triangles. A new point is positioned along the median of the
edge which delimits the active triangle from an accepted triangle at the precise distance which
results in a triangle of the desired circumradius when the new point is joined to the end points
of this edge. However, the prescribed circumradius may be incompatible with the local tri-
angulation. For example, if the prescribed circumradius is smaller than half the current edge
length, there is no point location which yields a triangle of the desired size. In this case, the
new point is positioned at the intersection of the edge median and the edge inscribing circle,
since this results in the smallest possible triangle circumcircle containing the current edge. On
the other hand, if the prescribed circumcircle is much larger than the current edge length, the
new point may inadvertently be positioned close to another existing front mesh point, which
would result in undesirable triangles away from the current edge. In this case, the point loca-
tion along the median of the current edge is limited by the circumcenter of the current active
triangle, thus guaranteeing that the new point will be at least a distance Paaive away from all
other mesh points.

This strategy is mimicked in the current advancing front algorithm. The new point is
positioned along the median of the current front edge at a distance which results in a triangle
of the desired circumradius. The location of the new point along the median is limited at the
lower end by the intersection of the median with the inscribed circle of the current front edge,
and at the other extreme by the location of the circumcenter of the Delaunay triangle formed
with this edge and existing mesh points, which is found in step 5, as shown in Figure 7. Thus,
in step 5, we must ensure that we form any triangle for which the circumradius is up to twice
the size of the prescribed circumradius. Any larger triangles will not be useful in limiting the
position of the new point. If the circumradius of the formed triangle is smaller than twice the
prescribed value, but still larger than the prescribed value itself, the triangle will be employed
solely to limit the position of the new point, and then discarded afterwards. On the other hand,
if the triangle circumradius is smaller than the prescribedl value, the triangle is retained as part
of the mesh, and no new point is required.

When new triamigies are formed, one must ensure that the integrity of the boundary
discretization is not violated. This is accomplished by removing from the list of "close" points
all points which are not visible to the new point due to the presence of boundary edges. (In the
case of step 5, we remove all points which are not visible to the two end points of the current
edge.) In two-dimensions, the uxistence of constrained Delaunay triangulations [201 guarantees
that this is a sufficient condition to obtain a suitable boundary conforming discretization. One
method of removing non-visible points is to draw the ray from the new point to the point being
tested, and check for intersections with all boundary edges. Since the number of boundary
edges is 0(4N--), this can become prohibitively expensive. Hence, a sufficient subset of the
boundary edges which are "close enough" to the new point is first determined and then
employed to check for intersections. Since the points being tested are all within a distance 2p
of the new point, we are merely required to test all boundary edges which are within this dis-
tance of the new point. These include but are not limited to all boundary edges with an end
point which belongs to the current list of "close" points. In order to locate remaining boundary
edges whose normal distance to the new point is less than 2p but whose end points are further
away than 2p from the new point, we draw the inscribed circle of the boundary edge, as shown
in Figure 8.

We distinguish two cases: the first case when the new point is inside the inscribed circle
of the boundary edge, and the second case when the new point lies outside this circle. In the
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first case, the boundary edge is added to the list of edges which require searching. In the
second case, Figure 8 indicates that the distance from the new point to the end points of the
edge can at most be 12 times the normal distance from the new point to the edge. Thus, the
set of boundary edges required for checking intersections is formed by locating all boundary
edges which contain a vertex less than 242 p away from the new point, as well as all boundary
edges whose inscribed circles are intersected by the new point. The determination of these
points and intersected circles can be performed simultaneously with the search for nearby
points in step 4 and the search for intersected triangle circumcircles in step 7 respectively.

Using this subset, the number of boundary edges which must be checked for intersections
is greatly reduced. In fact, in most cases, typical for the interior regions of the mesh, no
"close" boundary edges will be found, and no checking for intersections will be required.

3. RELATIONSHIP WITH PREVIOUS WORK

It is informative to examine the relationship of the present algorithm with those discussed
earlier. This work is closely related to that of Rebay [8] and Mueller at el [9]. A similar
mesh should be produced by the present method and that of [8], since both use similar point
placement strategies, and both produce the Delaunay triangulation of these points. The main
difference is that in the previous works, a triangulation which covers the entire domain always
exists, whereas in the present work, only the area behind the fronts are covered by a triangula-
tion. In the former case, the existing triangulation is conveniently employed as the basic data-
structure (i.e. a linked list) to support the searches for locating intersected triangles and points
to which the new point must be connected. In the present work, only the triangles which
correspond to "accepted" triangles in [8] are present, and thus more complicated quad-tree type
data-structures must be employed to locate neighboring points and intersected triangles on the
fronts, while the triangulation can be employed to aid the search in regions behind the fronts.
While this adds to the coding complexity and incurs additional overhead, the omission of non-
accepted triangles ensures that all real operations are of a local nature, thus minimizing oppor-
tuinites for round-off error induced failure. Boundary integrity is also preserved automatically.

The present algorithm also closely resembles the advancing front algorithm of [1,2].
However, explicit intersection checking is not required due to the properties guaranteed by the
Delaunay construction. Both approaches rely on the determination of a local characteristic dis-
tance which is employed for reducing the number of front edges and points which must be
considered in the triangulation process. In the advancing front algorithm of [1,21, this length
scale is obtained from the field function (evaluated by interpolating from a backgrowid grid).
The implicit assumption in this method is that the field function varies slowly with respect to
the local cell size, and thus may be considered locally constant when advancing a front or
merging two fronts. In cases where this assumption does not hold, the merging of two fronts
of widely differing cell sizes may occur, which usually results in a failure of the algorithm. In
the present strategy, a local length scale is obtained from the prescribed field function as well.
This distance is employed to locate all "nearby" front points. However, an additional search is
required to locate front triangles whose circumcircles are intersected by the newly inserted
point. If the field function were constant throughout the domain, this second search would not
be required, since all vertices of any intersected triangle (which could have a circumcircle no
larger than that prescribed by the field function) would be no further from the new point than
the constant search distance defined by the field function. Thus, the search for intersected front
triingles corresponds to the determination of an alternate characteristic length scale at
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neighboring fronts, which is required in order to guarantee a valid triangulation in regions
where the field function varies rapidly.

4. COMPLEXITY AND SPACE REQUIREMENTS

The space requirements and computational efficiency of the present algorithm lie in
between those of traditional advancing front algorithms and the Bowyer/Watson algorithm for
Delaunay triangulation. As opposed to the advancing front algorithms, the present approach
does not represent a true greedy algorithm [101; i.e. triangles behind the front may be subse-
quently modified. However, the only such triangles which may be modified are those whose
circumcircle extends ahead of the front into the ungridded region into which new points are
placed. Assuming a relatively smooth distribution of elements behind the front, the number of
such non-frozen elements is a constant times the size of the front. Thus, we can expect a
space requirement of O(WJ), although the worst case estimate is more likely O(N). On the
other hand, it is a simple matter to create a restart facility which dumps out the generated por-
tion of the grid after a prescribed number of elements have been produced, and reinitializes the
generation process using the front of the previous mesh as the initial condition. If no old ele-
ments behind the front are considered in the restart process, the resulting mesh may contain
regions of locally non-Delaunay triangles along the fronts present at each restart phase. If a
true Delaunay triangulation is required, these regions may be converted using the edge-
swapping algorithm [21] in a postprocessing phase.

The current algorithm exhibits a worst case complexity of O(N 2), just as the
Bowyer/Watson algorithm for Delaunay triangulation. This occurs when the circumcircles of
all existing triangles are intersected by each new point, or when all front points must be
included in the list of "nearby" points which are candidates for forming a new element. How-
ever, for the smooth element and point distributions which are sought in the context of mesh
generation, the number of points within the characteristic distance of a newly inserted point
and the number of intersected triangles should approach a constant. When the logN term from
the quad-tree structures employed for the search routines on the front is included, a complexity
of O(NlogN) can be expecte l. This is the same complexity exhibited by other advancing front
algorithms under the same assumptions. However, the present algorithm can be expected to
run significantly faster than other advancing front algorithms since the mesh is generated one
point at a time, rather than one triangle at a time. In two dimensions, the differences may be
small, especially since two length scales and thus two searches on the front are required for
robustness (an additional one for the intersected front triangles). However, in three dimensions
where there are on the average 5 to 6 times more tetrahedra than vertices, the 0 (logN) cost of
traversing the octree data-structures may be amortized over all elements generated about each
newly inserted mesh point.

On the other hand, the present algorithm will probably not achieve the efficiency exhi-
bited by Delaunay triangulation point insertion methods, due to the need to traverse the quad-
tree data structures which are not present in these other methods, and the need to consider a
sufficient but not necessary list of candidate points for triangulation at each point insertion pro-
cess. This cost, as well as the increased coding complexity, is viewed as the price required for
additional robustness.
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5. EXAMPLES

Figure 9 depicts the process of generating a mesh about a geometry consisting of two
thin plates. The boundary discretization of these thin plates is relatively uniform, except for
two very large edges on the upper surface of the lower plate. The combination of thin plates
and irregular boundary discretization poses a significant challenge to traditional Delaunay tri-
angulation methods, as well as to standard advancing front techniques. In the former case, the
boundary integrity is difficult to maintain without adding new boundary points. In the latter
case, the merging of two fronts of widely differing length scales is produced. The present
algorithm handles this case automatically, as can be seen from the figure. A valid triangulation
is observed, even in the region of rapid variation of the characteristic length scale, although the
quality of the triangulation degrades in such regions, as would be expected.

For practical problems involving dense meshes, a smooth background field function must
be constructed, and sophisticated spatial data-structures must be employed for efficiently per-
forming steps 4 and 7, in section 3.

The background field function is constructed by the method described in [221 with a
slight modification. A set of point sources which locally specify element size are placed in the
flow field, and a Poisson equation involving these sources is solved on a background mesh. In
the present work, the Poisson equation is solved on a mesh formed by constructing a quadtree
about the boundary points which define the initial front, as shown in Figure 10. When the
field function is sampled at a particular point in the plane, the quadtree element containing this
point is located by descending the tree, and the spacing value is taken as a bilinear interpola-
tion of the four values at the comers of the quad element, which have been determined by
solving the associated Poisson equation.

The search for "close" points (i.e. step 4 in section 3), is implemented using a standard
region quadtree [23]. The search for intersected front triangle circumcircles (i.e. step 7 in sec-
tion 3) and boundary edge circumcircles is somewhat more involved. This is achieved by first
representing each circumcircle by a point in three-dimensional space, with coordinates x, y and
r, where x and y are the physical coordinates of the circumcircle center, and r represents the
radius of the circumcircle. A region octree containing all front triangle and boundary edge cir-
cumcircles is then constructed and maintained dynamically, as the front evolves [23].

In order to determine all circumcircles intersected by a point (xo,y 0), we draw the cone
which has its origin at (xo,y 0 ,0 ), and a slope angle of 45 degrees, as depicted in Figure 11.
We then search all octants of the tree which are contained or intersected by this cone.

In Figure 12, the generation of an unstructured mesh about a multi-element airfoil
configuration is depicted. The spacing distribution was determined using 4 source points at the
outer boundary, and 6 source points close to the airfoil surfaces. As can be seen, the method
yields a smooth variation of elements throughout the flow field, even without any additional
mesh smoothing. Figure 13 shows the effect of smoothing the final mesh. Edge swapping is
also performed to ensure the mesh remains a Delaunay triangulation, although very few edges
require swapping after the smoothing operation.

The mesh contains 41781 triangles and 21232 vertices, which required a total of 100
seconds to generate on a Silicon Graphics 4D35 workstation. In general rates of 350 to 450
triangles per second have been observed on a wide variety of cases. While the quadtree search
routines consume less than 5% of the total CPU time, the octree based circumcircle search has
been found to consume roughly 35% to 40% of the total time. As expected, the efficiency of



this algorithm appears to fall in between that of the advancing front methods [1,2], and the
Delaunay triangulation methods [5,8,91.

It should be noted, however, that algorithms for triangulating a given set of points, such
as that described in [7], can be significantly more efficient than the present algorithm. This is
partly due to the fact that half the problem has already been solved, i.e. the placement of the
grid points. However, it is also largely due to the fact that the data is static, and hence more
efficient static data-structures such as fully balanced trees may be used in the search routines.
In the present algorithm, the search is executed on the front points which are continuously
changing, and thus dynamic data structures which support insertion and deletion of points must
be employed.

6. CONCLUSIONS AND FURTHER WORK

These results demonstrate the feasibility of generating unstructured meshes using an
advancing front strategy with an automatic point placement facility, while conforming to the
rules of Delaunay triangulation. The main advantages of such an approach over traditional
advancing front methods are increased robustness through the use of a more theoretically sound
approach, while avoiding the boundary integrity and accuracy induced failures of Delaunay
point insertion methods.

The octree based search routine for locating intersected front and boundary circumcircles,
while providing an order of magnitude increase in efficiency over a brute force type search,
still consumes a significant portion of the overall computational time. This indicates that
further increases in efficiency of the algorithm may be achieved by re-examining this search
operation.

Finally, the implementation of these ideas into the three dimensional setting is also
planned.
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Figure 1
Illustration of Conventional Advancing Front Mesh Generation Concept in Two Dimensions.

Dotted Line Represents Current Front. New Triangles are Generated One at a Time,
by Joining the Two Ends of a Front Edge to Either a Newly Created Point, or an Existing Front Point.
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Figure 2
Illustrion of a Failure Scenario for the Tradidonal Advancing Front Algorithm:

The Merging of Two Fronts of Widely Differing Length Scales.
The Advancing Front of Small Triangles May Fail to Locate the End Points of a Large Edge on the Adjacent
Front Prior to Cross-Over, Since these Points May Be Outside of the Search Region Defined by the Local Length Scale.
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Figure 3
Illustration of Bowyer's Point Insertion Algorithm for Delaunay Triangulation
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Figure 4
Illustration of the Iteration Sequence Employed by the Advancing Front Delaunay Triangulation Algorithm:

A Triangle is Formed by Joining the Front Edge to a Vertex. If the Circumcircle of this Triangle
Contains One or More Vertices, the Triangulation is Invalid, and a New Triangulation is Formed Using

One of the Vertices Interior to the Previous Circle. The Process Iterates Until a Triangle with a
Vertex-Free Circumcircle is Obtained, which Determines Convergence.
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Figure 5
Illustration of the Advancing Front Nature of the Algorithms Described in [8] and [9].

The Illustration is Reproduced from [91 and Depicts the Delaunay Triangulation
Obtained at an Intermediate Stage in the Mesh Generation Process.



-18-

S............ iiiiiiiiiiiii• iii................... .....• .....

"..... ... :.iii iiiiiiiiiiiiii~ ~iiii .. :i~ ~~~i !!ii!i•. .i

Figure 6
Illustration of the Search for Intersected Circumcircles Employed in The Current Algorithm

Upon Insertion of Point P, the Two Front Triangles S I and S2 are Flagged as Having their Circumcircles Intersected.
The Two Neighbors of S I are Searched and Found to be Non-Intersected.
One of the Neighbors of S2 is Flagged as Intersected, which Causes the

Search to Proceed to its Neighbors, Where it Terminates.
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Figure 7
Illustration of the Point Placement Strategy Employed by the Currnt Algorithm.

A New Point is Placed Along the Median of the Front Edge at a Distance Determined by the Prescribed Local
Circumcircle Size (Background Function). The Point Position is Limited at the Lower End by the Intersection
with the Inscribed Circle of the Front Edge (Point P1) and at the Upper End by the Circumcenter of the

Delaunay Triangle Formed Between the Front Edge and Existing Mesh Points (Point P2).
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Figure 8
If a Point P is Not Contained in the Inscribed Circle of a Boundary Edge

then the Distance from P to the End Points of the Edge s is bounded
by '-2d, Where d Represents the Minimum Distance from P to the Edge.

Since s = d7+-r-, the Bounding Case Occurs
when d = r, i.e. when P is on the Circle.
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Figure 9 a)
Triangulation of Two Thin Plates With Dissimilar Boundary Point Distributions.

A Situation Involving Two Merging Fronts of Widely Different Length Scales Occurs.
Once a Vertex From the Front of Small Triangles Intersects One of the

Circumcircles of the Large Triangles on the Opposing Front, The Fronts are Merged.
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Figure 12 a)
Unstructured Triangular Mesh Generated About a Four Element Airfoil

Configuration by the Present Algorithm before the Application of Mesh Smoothing.
(Number of Vertices = 21232, Number of Triangles = 41781)

(Global View)
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Figure 12 b)
Unstructured Triangular Mesh Generated About a Four Element Airfoil

Configuration by the Present Algorithm before the Application of Mesh Smoothing.
(Number of Vertices = 21232, Number of Triangles = 41781)

(Far Field View)
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Figure 12 c)
Unstructured Triangular Mesh Generated About a Four Element Airfoil

Configuration by the Present Algorithm before the Application of Mesh Smoothing.
(Number of Vertices = 21232, Number of Triangles = 41781)

(Close Up of Leading Edge Slat)
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Figure 13 a)
Unstructured Triangular Mesh Generated About a Four Element Airfoil

Configuration by the Present Algorithm After the Application of Mesh Smoothing.
(Number of Vertices = 21232, Number of Triangles = 41781)

(Global View)
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Figure 13 b)
Unstructured Triangular Mesh Generated About a Four Element Airfoil

Configuration by the Present Algorithm After the Application of Mesh Smoothing.
(Number of Vertices = 21232, Number of Triangles = 41781)

(Far Field View)
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Figure 13 c)
Unstructured Triangular Mesh Generated About a Four Element Airfoil

Configuration by the Present Algorithm After the Application of Mesh Smoothing.
(Number of Vertices = 21232, Number of Triangles = 41781)

(Close Up of Leading Edge Slat)
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