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Spectral conditions for sojourn and extreme 
value limit theorems for Gaussian processes 
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Let X (t ), t;;;. 0, be a stationary Gaussian process, and define the sojourn time Lu { t) = 

mes{s: O.;; s.;; t, X(s) > u} and the maximum Z(t) = max(X{s): O.;; so;; t). Limit theorems for the distri­
butions of Lu(t) and Z(t), fort, u�oo, are obtained under specified conditions on the spectral density 
of the process. The results supplement earlier theorems obtained under suitable conditions on the 
covariance function. 

AMS 1980 Subject Classifications: 60F05, 60G10, 60Gl5. 

stationary Gaussian processes * spectral density function * mixing condition * sojourn above a ieve_i * 

extreme value 

1. Introduction and summary 

Let X ( t ), t;;;;;. 0, be a stationary Gaussian process with mean 0, variance 1 and 
covariance function r(t) = EX(O)X(t). There is now an extensive literature on the 
functionals of this process which are associated with the large values of the sample 
functions. Key examples of such functionals are (i) the sojourn time above a high 
level u, 

Lu(t) = J: 1[X(s)>u] ds; 

and (ii) the maximum value 

Z(t) =max X(s). 
O:s;;s�l 

(1.1) 

(1.2) 

The latter is well defined because the conditions assumed in the hypotheses of the 
theorems imply the continuity of the sample functions. Results of much mathematical 
interest are limit theorems for the distributions of these functionals for t � oo, u � oo, 
where t and u are tied together by means of a specified asymptotic relation. Among 
the recent results for Lu(t) are those of Berman (1980, 1989). Surveys of results for 
Z(t) are those of Leadbetter et al. (1983) and Leadbetter and Rootzen (1988). 

This paper represents results obtained at the Courant Institute of Mathematical Sciences, New York 
University, under the sponsorship of the National Science Foundation, Grant DMS 8801188, and the 
U.S. Army Research Office, Contract DAAL 03-89-K-0125. 

0304-4149/91/$03.50 © 1991-Eisevier Science Publishers B.V. {North-Holland) 
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Central Limit Theorems for Extreme Sojourns of 
Stationary Gaussian Processes 

SIMEON M. BERMAN 
Courant Institute 

This paper is dedicated to Natascha A. Brunswick for years of talented service, 
dedication, and good cheer. 

Abstract 

Let X(l), t;?:; 0, be a real stationary Gaussian process. and. for u > 0 and t > 0. let L,(u) be the 

time spent by X(s), 0 ;as ;at, above the level u. Here u is taken to be a function u(t) oft, and L, is 

deftned as L,(u(t)). It is shown that the distribution of(L,- EL,)/(Var L,)
112 converges. fort- co 

and u( t) - co, to a standard normal distribution under various conditions relating the growth of u( t) 

to the decay of the covariance and other functions associated with it. 

-"'1. Introducticm�and Sumnuiry 
Let X ( t), t � 0, be a real measurable stationary Gaussian process with mean 0 

and covariance function r(t) = EX(O)X(t). For simplicity we take r(O) = l. For 
t > 0, put L1(u) = mes(s : 0 � s � t, X(s) > u); then, for a given measurable 
function u(t), we deftne 

( 1.1) 

The main results of this paper are several new central limit theorems for the dis­
tribution of(L1- EL1)/(Var 4)112, fort- co, under various conditions on the 
covariance function and the function u(t). In this work we assume thatthe spectral 
distribution function in the representation of r( t) is absolutely continuous. Letf( A) 
be the spectral density function, and let b( t) be the Fourier transform of the L2-
function (f( A)) 112; then r( t) has the representation 

( 1.2) r(t) = L: b(t + s)b(s) ds , 

and bE L2• Furthermore, X(t) has the stochastic integral representation 

{ 1.3) X(t) = L: b(t + s)�(ds), 

where �(s) is a standard Brownian motion . 
The focal point of the calculations in the proofs of these theorems is the relation 

Communications on Pure and Applied Mathematics, Vol. XUV, 925-938 (1991) 
© 1991 John Wiley & Sons, Inc. CCC 0010..3640/91/8-9925-14$04.00 
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(21u)1'2- 0, which proves (6.7). In [2] conditions (1.5) and (1.7) above are 
used to prove that v( t) - oo and exp { ou2} .8( vI 2) - 0. We will show that the 
latter relations remain true under ( 1.5 ) and ( I. 7) with the new definition ( 7.1 ) of 
v. Indeed, if ( 1.5) holds for some 8 > 1, then, for every 8', with 1 < 8' < 8, by the 
relation (5.6) of[2] with 8' in the place of8, 

v � constant(tlu2) 1'2exp { -u28' 14} 

exp { ( u2 /4 )(8 - 8')} 
=constant t112exp { -u2814} , 

u 

from which it follows by ( 1.5) that v - oo and by ( l. 7) that exp { ou2 } ,8( v 12) -
0. In the relation (5.9) of[2] the factor u114 should be changed to u-112• 

I thank Katarzina Pietruska-Paluba for noticing this error. 

Acknowledgments. This paper represents results obtained at the Courant Institute 
of Mathematical Sciences, New York University, under the sponsorship of the 
National Science Foundation, Grant DMS 88 01188, and the U.S. Army Research 
Office, Contract DAAL 89 03 K 0125. 
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A CENTRAL LIMIT THEOREM FOR INTEGRAL FUNCTIONALS OF A 

STATIONARY GAUSSIAN PROCESS* 

Simeon M. Berman 

Courant Institute of Mathematical Sciences 

New York University 

New York, NY 10012 

ABSTRACT. Let X(t), t 2:: 0, be a real stationary Gaussian process with covariance 

function r(t). Let f(x) be a function in L2(¢>), where ¢>(z) is the standardnormal density, 

and assume that I x f( x) ¢>( x) dx ::J 0. It is shown that the central limit theorem holds for 

the functional I: f(X(s)) ds, for t -+ oo, under the sole assumptions r(t) 2:: 0 and r(t)-+ 0 
fort-+ oo. 

1. Summary. 

Let X(t), t > 0, be a real stationary �aussian process with mean 0 and covariance 

function r(t) = EX(O)X(t). For a Borel function f(x) and t > 0, consider the functional 

(1.1) 1t f(X(s)) ds. 

There has been a sustained interest in proving the Central Limit Theorem, for t -+ oo, 

for such functionals, that is, determining the limiting distribution of the normed random 

variable 

(1.2) I: f(X(s)) ds- E[f; f(X(s)) ds] 
{Var I: f(X(s))ds}I/2 

* Supported by the U. S. Army Research Office. 
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A CENTRAL LIMIT THEOREM FOR THE RENORMALIZED 
SELF-INTERSECTION LOCAL TIME OF A STATIONARY 

VECTOR GAUSSIAN PROCESS1 

BY SIMEON M. BERMAN 

New York University 
Let X(t) be a stationary vector Gaussian process in Rm whose compo­

nents are independent copies of a real stationary Gaussian process with 
covariance function r(t). Let t/>(z) be the standard normal density and, for 
t > 0, s > 0, consider the double integral 

which represents an approximate self-intersection local time ofX(s), 0 � s 
� t. Under the sole condition r e L2, the double integral has, upon suitable 
normalization, a limiting normal distribution under a class of limit opera­
tions in which t-. ex) and e = e(t) tends to 0 sufficiently slowly. The 
expected value and standard deviation of the double integral, which are the 
normalizing functions, are asymptotically equal to constant multiples of t2 
and t312, respectively. These results are valid without any restrictions on 
the behavior of r(t) for t -+ 0 other than continuity. 

1. Introduction and summary. Let X(t), t � 0, be a real, measurable 
stationary Gaussian process. For simplicity, take EX(t) = 0 and EX2(t) = 1 
and let r(t) = EX(O)X(t) be the covariance function, which is assumed to be 
continuous. For m � 1, let X1(t),: .. , Xm(t), t � 0, be independent copies of 
X(t), and define the vector process X(t) = (X1(t), ... , Xm(t)). Put 

( 1.1) c/>(z) = _
1

_ exp (-�z2) , 
i;Y & 2 
,J 

\� 
and, for s > 0 and t > 0, consider the random variable 

(1.2) _ rt rt n
m (Xi( s) -Xi( s') ) 

e m ), ), c/> ds ds'. 
o Oj-1 e 

The following theorem is our main result. 

Received March 1990; revised November 1990. 
1This paper represents results obtained at the Courant Institute of Mathematical Sciences, 

New York University, under the sponsorship of the NSF Grant DMS-88-01188 and U.S. Army 
Research Office Contract DAAL 03-89-K-0125. 

AMS 1980 subject classifications. 60F05, 60G15, 60G17, 60J55. 
Key words and phrases. Central limit theorem, mixing, renormalized local time, self-intersec­

tions, stationary Gaussian process. 
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THE TAIL OF THE CONVOLUTION OF DENSITIES AND ITS 
APPLICATION TO A MODEL OF HIV-LATENCY TIME1 

BY SIMEON M. B� 

New York University 
Let p(:r:) and q(:r:) be density functions and let (p • q Xx) be their 

convolution. Define 

w(:r:)- -(d/d:r:)logq(x) and v(x) = -(d!d:r:)log p(x). 

Under the hypothesis of the regular oscillation of the functions w and v, 

the asymptotic form of (p • qXx), for ;r;-+ "'• is obtained. The results are 
applied to a model previously introduced by the author for the estimation of 
the distribution of HN latency time. 

1. Introduction and summary. Let p(x) and q(x) be probability den­
sity functions and (p * q Xx) their convolution. The focus of this paper is the 
determination of the asymptotic form of (p * qXx) for x- co or x � b =sup 
(support of p * q) on the basis of the asymptotic forms of p(x) and q(x). In 
most of this paper p and q are assumed to be of different orders of magnitude 
for x - co and q will have the role of the density with the heavier tail. The key 
tools for densities p and q with unbounded support are the functions v(x) = 
-(djdx)log p(x) and w(x) = -(djdx)log q(x), which are closely related to 
the hazard functions used in extreme value theory. The tail of q obviously 
dominates the tail of p whenever the reverse holds for their corresponding 
functions w and v. Throughout this paper it is assumed that v(x) and w(x) 
are nonnegative for all sufficiently large x. In particular, it follows that the 
corresponding densities are nonincreasing for such x. 

Theorem 3.1 states that if lim sup w(x) < liminf v(x) for x- co, then 

j'"' p( x - t)q( t) dt,.., q( x) j"" etw(z>p( t) dt. 
-= -� 

This represents an extension of a corresponding result of Breiman (1965) and 
Cline (1986), stated in terms of distributions instead of densities for the case 
w(x)- c � 0. Theorem 3.2 furnishes a general result under the condition 
w(x)jv(x) - 0, which allows for even the cases w(x) - co or v(x) - 0. It 

Received August 1990; revised March 1991. 
1This paper represents results obtained at the Courant Institute of Mathematical Sciences, 

New York University, under the sponsorship of NSF Grant DMS-88-01188, the U.S. Army 
Research Office Contract DAAL-03-89-K0125, the National Institute on Drug Abuse through a 
grant to the Societal Institute of Mathematical Sciences (SIMS), NIDA Grant DA-04722 and the 
National Institute of Allergy and Infectious Diseases, NIAID Grant AI-29184. 

AMS 1980 subject classifications. Primary 60E99, 60F05; secondary 92A15. 
Key words and phrases. Tail of a density function, convolution, regular oscillation, regular 

variation, extreme value distribution, domain of attraction, HN latency time. 
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A CENTRAL LIMIT THEOREM FOR THE RENORMALIZED 

SELF-INTERSECTION LOCAL TIME OF A STATIONARY PROCESS 

Simeon M. Berman* 

1. Introduction and Summary 

Let X(t), t > 0, be a measurable, separable stochastic process in Rm, for some 

m > 1. Let ¢( x ), x E Rm, be a probability density function such that ¢( x) = ¢( -x ) , 
and let ¢( u) be the corresponding characteristic function. It is assumed that 

{1.1) 

Let B be a symmetric (B =-B) closed bounded Borel set in Rm. Fore> 0 and 

t > 0 define the functional 

(1.2) It(t) = 1t 1' e-m¢ ( X(s) � X(s')) 1B(X(s)) 1B(X(s')) ds ds' ; 

this is the approximate self-intersection local time of X(s), 0 � s < t, relative 

to B, for small e > 0. (The ratio X(s)-X(s')/e in (1.2) is understood as e-1 

times the vector X(s)-X(s').) This is a more general version of the functional 

introduced by the author (Berman, 1992) in the context of a stationary Gaussian 

process X(t) in the special case where B = Rm and¢ is them-dimensional prod­

uct standard normal density. The inclusion of the indicator lB in the integrand 

restricts the approximate self-intersections to those for which the sample function 

values belong to B. In the preYious work it was shown that if X(t), t > 0, is a 

stationary Gaussian process in Rm whose components are independent copies of a 

real stationary Gaussian process, then, under a mild condition on the covariance 

function, the random variable t-312(I((t)- Eit(t)) has, under an appropriate class 

* Supported by NSF grant D�1S 88-01188 and ARO contract DAAL 03-89-K-

0125. 



2 SIMEON M. BERMAN 

of limit operations t-+ oo, e = e(t) -+ 0, a limiting N(O, 0'2) distribution, where u2 
is explicitly given. The current work extends this central limit theorem to the func­

tional (1.2) and where the class of stochastic processes X(t) includes, in addition to 

the Gaussian process studied in Berman (1992), a large class of ergodic stationary 

Markov processes. 

Our main result is 

THEOREM 1.1. Let X(t) be a .stationary vector proce.ss in Rm with marginal 

density p(x ), x E Rm. Let p(x, y; t) repre.sent the joint density of X(O) and X(t) at 

(x, y ) , fort > 0. Let e = e(t) be a decrea.sing function for t > 0 with e(t) -+ 0 for 

t -+ 0, where the convergence is .so .slow that 
- 1 - - - - ------ ------ --- - -

(1.3) ,�t-112(e(t))-m 1 hh <t> (x
e(t)y) p(x,y;s)dxdyds=O . 

As.sume: 

{1.4) p( x) is continuous on B , 

(1.5) p(x) = p( -x) , xeB, 

(1.6) 100 jp(x,y;s)-p(x)p(y) lds < oo, 

x,y E B; 

and that for every c > 0, 

(1.7) 100 [p(.r.y;s)-p(x)p(y)] ds 

is continuo-u.s for (x,y) E B x B. As.sume al.so that the CLT holds for the integral 

functional J; lB(X(s) )p(X( s)) ds in the .sense 

(1.8) t-112 [ 1t 1B(X(s) ) p(X(s)) ds -t L p2(x) dx] .!!.N(O, u2) , 

for .some u2, 0 < 0'2 < oo. Then we conclude that 

(1.9) 
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fort � oo. In this case u2 is given by 

(1.10) u2 = 2 LLp(x)p(y) 100 [p(x,y;
.
s)-p(x)p(y)] dsdxdy. 

We note that the condition 

(1.11) 

is sufficient for ( 1.3) because 4> is bounded under ( 1.1) and J J p( x, y; s) dx dy = 1 

for every s > 0. We also note that the scaling factor t312 in (1.9) is the same for all 

dimensions m > 1. 

Fore- 0 the integral (1.2) measures the set of points (s,s') where X(s) and 

X ( s') are close. This includes both points near the diagonal and points bounded 

away from it. The latter are the "genuine" near-self-intersection points. We show · 

that the near-diagonal points make an asymptotically negligible contribution to 

Jf(t) in the statement of Theorem 4.1 in the sense that (1.9) still holds after the 

removal of these points from the domain of integration in (1.2). For this purpose, 

we prove: 

THEOREM 1.2. Under the conditions of Theorem 1.1, 

(1.12) 
lim t-312 E( 1' 1' l[o l](ls- s'l) t-oo 0 0 ' 

e-m <P(X(s)- X(s')) ls(X(s)) 1s(X(s') )dsds') = 0. 
E 

PROOF. The expected value in (1.12) is at most equal to (see Section 6) 

21' J.' 1[0, l](s'- .s) e-m is fa tl>(x e 11) p(x, y; s'-s) dx dy ds' ds 

11 11 x-y < 2t e-m 4>(-)p(x,y;s)dxdyds, 
0 B B f 

which, under the condition (1.3) is of order smaller than t312• 0 

The application of Theorem 1.1 to Markov processes X ( t) is demonstrated in 

Section 5. The bh-ariate density p( :r, y; s) assumes the particular form p( x) q( s; x. y ), 

where q is the transition density. The hypotheses (1.4)-(1.7) can be stated in terms 
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A CENTRAL LIMIT THEOREM 

FOR EXTREME SOJOURNS OF 

DIFFUSION PROCESSES 

Simeon M. Berman 

Courant Institute of Mathematical Sciences 

251 Mercer Street 

New Yorlc, NY 10012 

ABSTRACT 

Let X(t), t � 0, be a real-valued diffusion process having a stationary probability measure. 
For an increasing function u(t), t > 0, put L(t) = mes (s:O S s S t,X(s) > u(t)). It is 
shown, under general conditions on the diffusion coefficients, that if u(t)-+ oo at a 
sufficiently slow rate, then (L(t)-EL(t))I(VarL(t))* has, fort-+ oo, a limiting normal 
distribution. The rate of increase of u (t) is stated in tenns of the scale function S (x) asso­
ciated with the generator of the process; u(t) must satisfy S(u(t)) = o(t), fort-+ oo. This 
complements an earlier result (Berman, 1988) in the case S(u (t)) - t, where it was shown 
that there is a function v(t) such that v(t)L(t) has a particular limiting compound Poisson 
distribution. 

This paper represents results obtained at the Courant Institute of Mathematical Sciences, 
New Yorlc University under the sponsorship of the National Science Foundation, Grant 
DMS 88-01188, the U.S. Army Research Office, Contract DAAL-03-89-K0125, the 
National Institute on Drug Abuse through a grant to the Societal Institute of Mathemati­
cal Sciences, NIDA Grant DA-04722, and the National Institute of Allergy and Infections 

Diseases, NIAID Grant AI-29184. 




