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ABSTRACT

This paper presents a highly-integrated, high-precision FFT architecture. A 1.20m
CMOS implementation of this architecture has yielded a 32-bit, 64K-point FFT that
operates at a continuous 4-million-samples-per-second data rate. All FFT support func-
tions, including coefficient generation and memory interfacing, are included on-chip.
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PREFACE

This paper was originally presented at the 35th Midwest Symposium on Circuits and
Systems in Washington, DC, August 1992.
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SECTION 1

INTRODUCTION

The fast Fourier transform (FFT) class of algorithms [1] is widely used in communication
and sensor signal processing. Several communication and sensor applications require very
high precision (32-bit) real-time Fourier transforms of large (64K-point), comple-ý data
blocks. One such application is a high-frequency, spread spectrum communication system
as described in [2]; radar systems designed to detect small cross-sectional targets are
similarly demanding applications. Although the FFT algorithm is readily implemented
with commercial digital signal processing (DSP) components, those components lack
either the throughput or precision required for these applications. This paper presents an
FFT processor architecture designed to satisfy the precision and throughput requirements
of a class of applications. We begin with a review of the inadequacies of commercially
available components. We then propose an alternative, highly-integrated architecture,
provide design details on portions of the architecture, and conclude with a discussion of
a radix-4 implementation of this architecture.

FFT processors are readily constructed from commercially available integrated circuits.
There are, essentially, three approaches available: (1) use a programmable DSP compo-
nent such as the TMS320, (2) use the commercially available "single-chip" FFT proces-
sors, or (3) construct an FFT processor from available arithmetic components such as
ALUs.

Programmable DSP components, such as the TMS320, provide high-precision compu-
tation in a very flexible form. Their flexibility and performance have allowed these
programmable components to ,lxbsume many DSP applications. However, their flexibil-
ity comes at the expense of throughput; the DSP chips are not well suited to real-time
computation at modest or high throughput rates.

An alternative to programmable DSP components is commercial "single-chip" FFT pro-
cessors. These components meet the throughput requirements of high-performance ap-
plications, but they lack the necessary precision. Many such components provide only 16
bits of precision, while a few others offer 24 bits. Secondly, these "single-chip" processors
typically require a large number of supporting components; in particular, address genera-
tors and coefficient memories are not incorporated on-chip. Finally, processor throughput
and FFT block size are tightly coupled in these processors-larger blocks are typically
processed at lower throughput rates.
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A third option is the construction of a high-precision FFT processor from commercially
available "building blocks," such as high-performance ALUs. This approach provides
both precision and performance, but the resulting system is large and inflexible. Using
this approach, we constructed a 32-bit, 16K-point FFT in 1990. The processor required
nearly 300 components and could not be readily extended to larger block sizes or through-
put rates.

Application-specific integrated circuits (ASICs) provide the only feasible solution to this
dilemma. ASIC integration allows flexible, high-precision, high-performance FFT pro-
cessors to be realized. In this paper, an FFT architecture that differs significantly from
commercially available "single-chip" FFT processors is presented. U nlike the commercial
offerings, this architecture incorporates all FFT support functions-including coefficient
and memory-address generation-on a single die. Additionally, our processor computes
the transform to full 32-bit precision, significantly greater precision than currently avail-
able with commercial processors. Our current implementation operates with a continuous
complex-data rate of 4 million samples-per-second (MSPS) and can be cascaded to pro-
vide up to 64K-point transforms. The architecture is easily extensible to a 20-MSPS
processor with no compromise in precision or block length.
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SECTION 2

PIPELINED FFT ARCHITECTURE

Recall that the discrete Fourier transform, X[k], of a series of N samples x[n] is given by

N-i

x~k)- xLne N
n=0

As shown, the computation of a block of length N requires O(N 2) arithmetic operations.
A radix-r fast Fourier formulation of this calculation reduces this number to O(N log 2 N)
arithmetic operations in log, N itageg. This computation is suggested in figure 1 for
r-2.

Xo X

xi X One "Butterfly"

xs 2• X2X.2

Figure 1. FFT Signal Flow Graph
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Commercial "single-chip" FFT processors generally provide all O(N log 2 N) operations
in a single component. This is advantageous in situations where N is relatively small
and throughput rates are low. In this case, the computational elements, or "butterfly,"
can easily be time multiplexed. For larger values of N, this approach is viable only if a
decrease in throughput can be tolerated (i.e., in a "single-chip" processor, 1hroughput and
block length are inversely proportional). This architecture requires a very fast butterfly,
but compromises integration-all available silicon area is devoted to the butterfly, and
none can be spared for support functions. In addition, the architecture's I/O bandwidth
requirements scale with increasing N. Typically, this increased bandwidth is provided by
additional signal pins on the processor chip and places stringent bandwidth requirements
on the buffer memories as well. It is easily seen, then, that this "single-chip" architecture
offers high performance at the expense of precision and integration-support functions
such as coefficient generation and memory addressing must be provided off-chip.

An alternative approach is to partition the O(N log 2 N) arithmetic operations among
log, N processors for the radix-r FFT. This scheme reduces the computational and
I/O requirements of the processor by a factor of logr N and effectively decouples block
length and throughput. At first, this approach seems unappealing since it requires log, N
processors, but this approach does provide a smaller overall system.

Reduced processing and I/O requirements allows greater architectural flexibility. To
improve precision and integration, we chose to reduce the silicon area devoted to the
butterfly's processing components. Reduction was accomplished by the application of
digit-serial arithmetic [3] and iterative multiplication architectures [4] wherever possible.
An additional area savings was realized by the adaptation of a distributed arithmetic
multiplier architecture presented in [5]. The multiplier architecture will be presented in
more detail shortly. These techniques enable a butterfly data path that provides high
precision processing in a very modest area. Our radix-2 and radix-4 implementations of
this architecture incorporate a 32-bit complex FFT batterfly and all support functions-
including a 42-bit complex coefficient generator and a buffer memory interface-on a
single die. The remainder of the paper will focus on our radix-4 implementation of this
architecture.
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SECTION 3

RADIX-4 PIPELINED FFT

The radix-4 FFT of an N-point data block consists of log4 N stages of processing. At
each stage, groups of four data samples are gather-read from the input memory buffer,
operated on, and scatter-written to the output buffer. Each interstage memory serves
as output buffer for one processor and input buffer to the next. Transforms of length
N =- 4', N <_ 64K, are constructed by cascading n identical stages, each stage consisting
of a processor chip and one commercial static random-access memory (SRAM) as shown
in figure 2. Note that the FFT chips implement a unidirectional pipeline-the double-
buffered memories traditionally associated with the FFT computation are not required.
The interstage memories allow the reordering of data as it progresses through the pipeline.

Figure 2. Pipelined FFT Approach

Two points should be noted about figure 2. First, since the FFT ICs are programmable, a
single design can serve as any stage of a forward or inverse FFT. Second, since all support
functions are included on-chip, no ancillary control or support devices are needed-there
are no coefficient ROMS, no external address generators, and no memory controllers
required. The result is a simple, regular FFT system implemented with precisely two IC
types: a commercially available SRAM module and the custom FFT processor.
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RADIX-4 BUTTERFLY

Figure 3 shows a block diagram of the radix-4 decimation-in-frequency [1] FFT IC. In
addition to the butterfly's arithmetic components, figure 3 shows a coefficient generator,
which calculates the root-of-unity "twiddle factors," and a buffer-memory controller.
Input and output registers convert between an on-chip digit-serial data format and the
word-parallel format used for chip-to-memory communication.

Prior to each calculation, a four-tuple, (a, b, c, d), is transferred from the buffer memory
to the processor's input registers. Together, these values represent 256 bits of data and
are transferred over a 32-bit input data bus in eight memory read cycles. In a forward
FFT, the radix-4 butterfly computes a new vector, (a', b', yc, d'), given by:

a' = a+b+c+d,

b' = (a - jb - c +jd)(e 2 N)nk,

= (a-b+c-d)(e- 2ff/N)n 2k,

= (a + jb-c-jd)(e,-J2 Z/N)n3k.

The computation of the inverse FFT is the complex conjugate of the above.

inpt iputRadx-4Outututt
Data ' Registers Butterfly Registers Data

Seed Coetl~et MeoryMemory
d Coeffint memory Addresses

ROM Generator Controller and
Timing

control
Inputs E iming and Control Generator

Radix-4 FIT Processor Chip

Figure 3. Block Diagram of Radix-4 FFT Processor

6



The input registers provide the synchronization of input data required for these compu-
tations. Each of the values a, b, c, and d is clocked out of the input registers as a stream of
quaternary digits and fed to the appropriate adder/subtracter combination. Operating
on two-bit digits represents a compromise between the area efficiency of bit-serial comu-
tation and the speed of parallel computation. The outputs of the digit-serial adderv and
subtracters, themselves quaternary streams, are buffered for time-division multiplexing
through a single complex multiplier. The size of the high-precision complex multiplier
prevented its replication and, therefore, mandated the use of time-division multiplexing.
(Notice that a' requires no rotation, so the multiplier need only be multiplexed between
the three remaining data items.) The buffered data is synchronized with an on-chip coef-
ficient generator, and the pair of values, data and coefficient, is fed to the multiplier. The
multiplier's outputs are captured and reformatted in the output registers. Reformatting
is primarily a conversion from the on-chip digit-serial quaternary representation to the
parallel inter-chip format. The resulting values are gated to the output data bus and
written as eight 32-bit quantities to the inter-stage buffer memory.

Since the multiplier processes three sets of operands per butterfly, its performance de-
termines the chip's overall throughput rate. This presents a significant design challenge.
On the one hand, there is the need to minimize the multiplier's size to allow higher
precision calculation and better integration, while on the other hand, the multiplier's
size determines its throughput. The majority of our effort has been invested in refining
the multiplier architecture.

MULTIPLIER ARCHITECTURE

Our multiplier is an adaptation of the distributed arithmetic architecture suggested by [5].
Rather than the naive complex multiplier configuration that requires four real multipliers
and two real adders, the distributed arithmetic complex multiplier uses the equivalent of
only two multipliers to compute a complex product. The multiplier, y, is converted into
the values K and K' as follows:

K = Re(y) + Im(y),

K' = Re(y) - Im(y),

where Re(y) and Im(y) are the real and imaginary parts of y respectively. The mul-
tiplicand is then encoded to control the accumulate and shift operations on ±K and
±K'. This approach halves the number of real multipliers without impacting throughput.
However, this technique alone does not provide adequate area savings.
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Additional area savings is possible, but only with a reduction in multiplier throughput.
As described in [41, the multiplication can be performed iteratively in a single, time-
multiplexed multiplier row. This iterative multiplication architecture complements our
quaternary number system nicely; the two provide a small-area multiplier with acceptable
performance.

The iterative multiplier, along with the digit-serial adders and subtracters, enables the
radix-4 butterfly to be implemented in a mere 19,000 transistors. By comparison, a
butterfly containing a flash multiplier and parallel adders would require approximately
120,000 transistors. This savings allows us to address higher-level system issues.

COEFFICIENT GENERATOR

Traditionally, the FFT coefficients, or "twiddle factors," are stored in ROM and read by
the FFT processor as needed. There are two primary disadvantages with this approach.
First, it exacerbates the FFT's I/O bottleneck problem, and second, it increases the
number of components required per stage. The latter is particularly objectionable when
the FFT consists of several stages. On-chip coefficient storage is possible only for modest
size or low-precision FFTs-the 32-bit complex coefficients for a 64K-point transform
require 4Mb of ROM, so on-chip storage is impractical. Our solution is to compute the
coefficients on-chip.

For the decimation in frequency (DIF) FFT algorithm, each of the three coefficient
sequences is given by the power series of a complex "seed." The sequences, and therefore
the seeds, are determined by position of the processor in the pipeline. Our on-chip
coefficient generator consists of a small on-board ROM and a high-precision recursive
multiplier. The ROM contains the seed values for each possible processor position. A
simplified block diagram of the coefficient generator is shown in figure 4. In the radix-4
FFT, an element from each of three sequences is needed for each butterfly operation.
The three sequences are generated in a single, high-precision multiplier that is time-
multiplexed.

The disadvantage of on-chip coefficient calculation is the generation and propagation of
error. Representation error of the initial seed proves to be the dominant source of error.
Recall that the seed values are roots of unity, so any seed has unit length. If the initial
seed has a magnitude error of c, then the kth coefficient will have a magnitude of

8
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Figure 4. Simplified Block Diagram of Coefficient Generator

I(w)kI - (1 + )k
= 1+kf+O( 2 )

;:- I+ ke.

The initial representation error therefore grows with k. If the initial representation error
were restricted to ±!LSB, the least significant log 2 1 bits would be corrupted after I

iterations. To reduce the impact of propagated error, the coefficient generator performs

all calculations to 42 bits. Experimental results agree with this simple model; the actual

growth in the calculated error vector are shown in figure 5 for the first 64 terms of one

coefficient series.

To minimize the impact of this error term, the heart of the coefficient generator is a

42-bit complex multiplier that is architecturally similar to that in the butterfly, but with
three-bit digits. The 42-bit complex results are rounded to 32 bits before being used in

the butterfly. The 42-bit precision of the multiplier represents a compromise between

multiplier complexity and error magnitude. We note that when more than 2K multiplier
iterations are needed, the low-order bits of coefficients in some stages may be corrupted

by noise. Since, for the radix-4 processor, I = N/4, this can occur only for block lengths

of 16K points or longer. Experiments indicate that this is not problematical.
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Generator Error vs. Iteration Number
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Figure 5. Coefficient Generator Error Growth

MEMORY CONTROLLER

Another integral part of an FFT is the permutation of data between processing stages.
In traditional "single-chip" processors, this permutation is accomplished by combining
results-in-place FFT algorithms with a double buffering scheme. In a unidirectional
pipeline such as ours, data shuffling could be accomplished by double-buffering between
each FFT stage, but results-in-place computation is not possible. However, a double-
buffering approach would increases the processor's memory requirements; we regard this
as unacceptable. An alternative is to shuffle, or permute, the data "on-the-fly," an
option available only in the pipeline processor. The shuffling sequence required in the
decimation-in-frequency algorithm is amenable to such an approach.

In our approach, data is written into the buffer memory by a sequence of addresses,
A. It can then be read in a permuted order, p(A), as required by the FFT algorithm.
Note that the initial ordering, A, is insignificant so long as p(A) can be generated. It is
possible, therefore, to operate the interstage buffers efficiently by using read-modify-write
memory access cycles. As the first block's data is read in order p(A), the next block's
data is written in that order. That block is then read by a new permutation of addresses,

10



p(p(A)), while the third block is simultaneously written in that order. The cycle length
of the permutation is given by the smallest integer c for which the equality

pC(A) = A

holds. The cycle length is an indication of the relative complexity of the address genera-
tor. For the simple case of bit reversal, c = 2. In the 64K-point radix-4 FFT some stages
have a c as large as eight.

Generating this cycle of permutations is the primary function of the memory controller.
Additionally, the controller provides the signal timing required to read the 256 b- (four
64-bit quantities) over a 32-bit input data bus. Of course, this includes the generation
of write enable and output enable signals for the memories.

PROGRAMMABILITY

To simplify system design, the radix-4 FFT processor provides modest programmability.
Limited programmability allows a single processor design to serve a wider application
base, but a high degree of programmability would require off-chip support at power-up.
Since our goal was to minimize component count in the final system, we have restricted
the device's programmability by constraining all options to be strap or pin configurable.
Using this approach, programmability is expensive-one pin per bit-but off-chip support
is not required.

11



SECTION 4

CONCLUSION

We have defined and implemented a new architecture for moderate-rate continuous-
throughput FFTs. The heart of this architecture is a monolithic radix-4 FFT processor
implemented as a full-custom VLSI circuit. This IC contains all computational and
support circuitry-excepting interstage memory-for a single stage of an FFT processor.
The resulting IC is fully programmable-a single IC can perform the computations for
any stage in a forward or inverse FFT--enabling large FFT processors to be constructed
simply. We have implemented both a radix-2 and a radix-4 version of the architecture.
Both implementations support 64-bit complex samples, a maximum block length of
64K, and a continuous, real-time throughput of up to 4 million samples per second.
Note that these parameters are not limits of the architecture, but the limits of our
implementation only. The fundamental architecture is applicable to FFTs of arbitrary
input and block size. The complete radix-4 processor, which includes all ancillary support
functions, requires fewer than 63,000 transistors and fits on a small 6.5 x5.2 mm die when
implemented in 1.2pm CMOS. Although throughput rates are moderate, butterfly I/O
pin requirements have been minimized through the use of digit-serial techniques. This
implementation of the processor is packaged in a 132-pin leadless chip carrier. It is
suitable for a wide variety of applications that require processing of data at moderate
throughput rates with a minimum of available system area and power.
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