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I recent years, moments and their uses have been investigated by mathematicians,
statisticians, aud engineers. In 1937, the Anerican Mathematical Society sponsored o short
course on “NMoments in Mathematies™ at its meeting in San Autonio, Texas, This led to
a volume containing the six papers delivered there. The volume wias published by thie
Society in its Short Course Series as Volume 37 in its Procecdings of Symposia tn Applicd
Mathematics.

Recently, Dr. James Maar of the National Security Agencey noted @ munber of
problems i signal processing i which moments of distributions were inportant and yer
statisticlans and signal processor scientists were unaware of what had been accomplishied
by each other. He initiated discussions with Professor Peter Purdue of the Operations
Research Department of the Naval Postgraduate School and Professor Herbert Solomon of
the Statistics Department at Stanford University about developing a conference in which
moments and signal processing and their interaction would be featured. Professor Purdue
and Professor Solomon agreed to explore this idea and they developed and co-chadred
Conference on Moments and Signal Processing which was Lield at the Naval Postgraduate
School on March 30-31, 1992, The Proceedings herein resulted from that confercuce.

The Conference developed around eight speakers whose interests include mwoments
and statistics, signal processing. aud interactions between the two. Professors Jerry Mendel
and Max Nikias came from the signal processing community; Professors Satish Iyengar and
AMichael Stephens came from the statistical community. The remaining four, Professors
David Brillinger, Ken-Shin Lii. Bruce Lindsay, and Ed Wegman, came at the subject in
different shadings emanating from the central core of the Conference.

The Conference was supported substantively by the National Sccurity Agency
and partially by the Otlee of Naval Rescarch, Many thanks are due to these agencies. A
number of government seientists from the Department of Defense and a lmited number of
general community attendees participated in the Conference. This led to a lively audicnce
of 40 to 30 participants over t7e two day period,

[t is hoped that the wi le availability of the papers in this report will len ! o more

commmunication between the two communities and of course within cach group.
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ABSTRACT

This tutorial paper is focused on two topics, namely: (1) to deseribe system-
atic methodologies for selecting nonlinear transformations for blind equal-
ization algorithms {and thus new types of cumulants), and (i) to give an
overview of the existing blind equalization algorithms and point out their
strengths as well as weaknesses. It is sllown i this paper that all blind
equalization algorithms belong in one of the following three categories, de-
pending where the nounlinear transformation is being applied on the data:
(i} the Bussgang algorithms, where the nonlinearity is in the output of the
adaptive equalization filter; (ii) the polyspectra (or Higher-Order Spectra)
algorithms, where the nonlinearity is in the inpat of the adaptive equal-
ization filter; and (iii) the algorithms where the nonlinearity is inside the
adaptive filter, w.e., the nonlinear filter or neural network. We describe
methodologies for selecting nonlinear transformations based on various op-
timality criteria such as MSE or MAP. We illustrate that such existing al-
gorithms as Saio. Benveniste-Goursat, Godard or CMA, Stop-and-Go and
Donoho are indeed special cases of the Bussgang family of techniques when
the nonlinearity is memoryless. We present results that demonstrate the
pelyspectra-based algorithms exhibit faster convergence rate than Bussgang
algorithms. However, this improved performance is at the expense of more
computations per iteration. We also show that blind equalizers based on
nonlinear filters or neural networks are more suited for channels that have
nonlinear distortions,

The Godard or CMA algorithm is probably the most widely used blind
equalizer in digital communications today due to its simplicity, low complex-
ity and constant modulus property. Its main drawbacks, however, are slow
convergence and no guarantee for global convergence starting from arbitrary
initial guess. We present a new method for blind equalization, the CRIMNO
algorithm (i.e., criterion with memory nonlinearity), which is shown to have
the same advantages as Godard (simplicity, low complexity, constant modu-
lus property) and yet guaranteeing much faster convergence. The CRIMNO
algorithm is flexible enough to address blind deconvolution problems when
the input sequence is colored.




1 INTRODUCTION

Blind deconvolution or equalization is a signal processing procedure that recovers the input
sequence applied to a linear time-invariant nonminimum phase system from its output only.
Blind equalization algorithms are essentially adaptive filtering algorithms designed in such a way
thal they do not need the external supply oI a desired response to generate the error signal in
the output of the adaptive filter. In other words, the adaptive algorithm is “blind” to the desired
response. However, the algorithm itsclf generates the desired response by applying a nonlinear
transformation on sequences involved in the adaptation process. All blind equalization algorithms
belong to one of the following three categories, depending where the nonlinear transformation is

being applied on the data:

e The Bussgang algorithms, where the nonlinearity is in the output of the adaptive equal-

ization filter;

o The Polyspectra (or Higher-Order Spectra) algorithms, where the nonlinearity is in the

input of the adaptive equalization filter;

e The algorithms where the nonlinearity is inside the adaptive filter; 1.e., the filter is non-

linear (e.g. Volterra) or neural network.

The purpose of this paper is to provide an overview of the existing blind equalization algo-
rithms and to discuss their advantages and limitations. Conventional equalization and carrier
recovery techniques used in multilevel digital communication systems nsually require an initial
training period, during which 2 known data sequence (i.e., training sequence) is transmitted [43],
[45]. An alternative effective approach to this problem is to utilize blind equalizers which do not

require any known training sequence during the startup period.




The paper describes systematic methodologices for selecting the nonlinearity based ou various
optimality criteria. such as maximum likelihood (ML), mean-square error (MSE}J or maximum
a posteriori (MAP). As an example, it is illustrated that such existing algorithms as Sato [16],
[47] Benveniste-Goursat [5], [6] Godard or CMA [22], [50] and Stop-and-Go [11] are indeed spe-
cial cases of the family of Bussgang techniques where the nonlinearity is memoryless [3], [4]. Tt
is demonstrated that the polyspectra-based algorithms exhibit faster convergence rate than the
Bussgang algorithms. However, this immproved performance is at the expense of more computa-
tional complexity. On the other hand, blind equalizers based on nonlinear filters are well suited
for channels that have nonlinear distortions {39], {40].

The Godard algorithm is probably the most widely used blind equalizer in digital communica-
tions today due to its simplicity, low computational complexity, and constant modulus property.
Its main drawbacks, however, is slow convergence and no guarantee for global convergence (con-
vergence starting from arbitrary initial guess). The paper describes the development of the
CRIMNO algorithm (i.e., criterion with memory nonlinearity) which is shown to have the sanie
advantages as Godard algorithm (simplicity, low complexity, constant modulus property) and yet
guaranteeing much faster convergence [12], [13]. Extension of the CRIMNO algorithm to the case
of colored input signals is also presented.

The polyspectra-based adaptive blind equalization algorithms are also described in the pa-
per. In particular, the Tricepstrum Equalization Algorithm (TEA) [24], the Power Cepstrum
and Tricoherence Equalization Algorithm (POTEA) [7], and the Cross-Tricepstrum Equalization
Algorithm (CTEA) [8] are presented, as well as their advantages and limitations. It is shown
that these algorithms perform simultaneous identification and equalization of a nonminimum

phase communication channel from its output only. Simulations with PAM and QAM signals




demonstrate the effectiveness of the polyspectra-based algorithms.,
Finally, the paper provides av overview of the neural network based adaptive equalization

algorithms either with or without a training sequence (11}, [20], [26], [27], [39], [10], [19].

2 DEFINITION OF BLIND EQUALIZATION PROBLEM

Let us consider the discrete-time linear transmission channel whose impulse response { (i)} is
unknown and possibly time-varying. The input data {£(:)} are assumed to be independent and
identically distributed (i.i.d.) random variables, with non-Gaussian probability density function.
Let us also assume, without loss of generality, that the sequence {r(i)} has mean E{r(:)} =0
and variance E{|Jz()|*} = Q,. If r(i) is real, we may drop the magnitude function and simply
write E{z°(:)}. Initially, noise i not taken into account in the output of the channel. From

Figure 2.1, it follows that the model we consider is

y() = JG) * 2(d)
= D flk) zti—k) (2.1)
k

where “+” denotes linear convolution and {y(i)} is the received sequence. The problem is to recon-
struct (or restore) the input sequence {z(i)} from the received sequence {y(i)} or, equivalently,
to identify the inverse filter (equalizer) {u({)} for the channel.

From Figurc 2.1, we see that the output sequence {I(i)} of the equalizer is given by




= u(1) * (f(t) = z(i))

= ufy) x f{i) = (7).

So. to achieve

where

(i) =

0, otherwise.

Performing the Fourier transform on (2.4), we obtain

(8—wD)
e’ .

U(w)- Flw) =

In other words, the objective of the equalizer is to achieve a transfer function

(2.6)

In general, D and 8 are unknown. However, the constant delay D does not affect the reconstruc-

tion of the original input sequence {z(i)}. The constant phase shift § can be removed by a carry

recovery technique. As such, in the sequel, it will be assumed that D = 0 and 6 = 0.

Blind equalization schemes may be classified into three categories; i.e., those which utilize




nonlinearities in the output of the adaptive equalization filter. those which place the nonlinearity
in the input of the adaptive equalization filter, and those which utilize adaptive nonlinear equal-
ization filters. The Bussgang equalization algorithms with memoryless or memory nonlinearity
belong to the first category whereas the higher-order cumulant-based equalizers (TEA. POTFEA,
ete.) belong to the second category, as they perform memory nonlinear transformation on the
input dara of the equalization filter. Blind equalizers based on nounlinear filters, such as the
Volterra filter or neural networks, belong to the third category. Figures 2.2 (a)-(¢) illustrate the

block diagrams of the aforementioned three families of blind equalizers.

3 PERFORMANCE MEASURES FOR ALGORITHM EVAL-

UATION

Four different performance measures are usually considered in simulation experiments for the
testing of the blind equalization algorithms: the time-average squared error (E5gp). the tran-
sitional symbol error rate (SER), the residual intersymbol interference (IS1) and the discrete eye
patterns [43], [4t]. They are defined as follows.

Time-Average Squared Error(E g or MSE)

At iteration (1), the mean square error in the output of the equalizer is defined as :

EAsE = w2 lz(i= D) - 2(d (3.1)

where I(7) is the output of the equalizer at iteration (i) and (2 — D) is the corresponiing true
value. Note that the delay D, which is introduced by the chapnel and the equalizer, does not

affect the recovery of the original information {z(7)}. However, it musi be {aken into account in




the calculation of MSE (4). The MSLE (1) gives a neasure of both the noise and residual 181 at
the cutput of the equalizer.

Transitional Syinbol Error Rate (SER)

The SER indicates the percentage of wrongly detected symbols in consecntive intervals of 500

svimbols, e

b wrong detections i 500 svmbols
H00

Residual ISI
The residual IST in the output of equalizer is defined as fc "ows. Let { f{i}} be the chanuel impulse
response and {u(2)} the equalizer tap coeflicients at iteration (i). Let s{(¢) = f(i) » u(1), then

ST (P — max{|s(V#}
max{]s(¢){*}

ISI(:) = (3.3)

Physically. this indicates the amount ~{ ISI present at the output of the equalizer due to imperfect
equalization.
Discrete eye patterns
Discrete eve patterns (or equalized signal constellation) consist of all possible values of the outpu*
of the equalizer, I({), at iteration (i), drawn in two-dimensional space. We say that the
eve pattern is open when~ver the ideal decoding thresunolds are easily distinguishable between
neighboring equalized states.

In our simulations, all performance n.easures were calculated for many independent siznal
and noise realizations. For the E ygp, time averaging over 100 samples were performed for each

re..zation. The eye pattern at iteration (1) was obtained by drawing the output of eqi alizer for all




independent realizations and for a specific number of samples (for each realization) symmetrically

located around (i).

4 ALGORITHMS WITH NONLINEARITY IN THE OUT-

PUT OF THE EQUALIZATION FILTER

Let us assume that a guess for the impulse response of the inverse filter (equalizer), u,(7) has

been selected. Then,

ug(?) * f(i) = 6(i) + €(3) (4.1)

where €(i) accounts for the difference (error) between our guess u,(i) and the actual values of

u(i). If we convolve the initial guess of the inverse filter, {u_;,(i)}, with the received sequence,

{y(?)}, we obtain

z(7) (i) * ug(3)

= z(i) = f(3) * uy(3). (4.2)

Combining (4.2) with(4.1), we obtain

z z(i) * (8(3) + (7))

= [z(i) * 8(3)] +[2() * €(3)]

= z(i) + n(3) (4.3)

10




where

n(i) = 2(1) * €(1) (4.4)

is the “convolutional noise”, namely, the residual ISI arising from the difference between our
guess ug(7) and the actual inverse filter u(i).

Our problem now is to utilize the deconvolved sequence {Z(7)} to find the “best” estimate of
{Z(¢)}; namely, {d({)}. Note that in adaptive-filter literature d(i) is used to represent the desired
response [25]. Two criteria are employed to determine the “best” estimate of z(7) from the given
£(7) . These are the mean-square error (MSE) and maximum a posteriori (MAP).

Since the transmitted sequence z(¢) has a non-Gaussian probability density function, the MSE
and MAP estimates are nonlinear transformations of £(z). In general, the “best” estimate d(i) is

given by [3], [4], [23], [54].

d(i) = g[z(:)]  (memoryless)

or

-

d(i) = g[z(i),z(: - 1),...,Z(i—m)] (mth — order memory) (4.5)

where g¢[-] is 2 nonlinear function with or without memory. The d(¢) is fed back into the adaptive
equalization filter as shown in Figure 4.1. From his figure, it is also apparent that the nonlinear

function g[-] is in the output of the equalization filter.

4.1 Optimum Selection of Nonlinearities

4.1.1 Nonlinearities with MSE Estimates

In summary, a well treated classical estimation problem is as follows:

11




(o) = z(i)+ n(1) (4.6)
where

(i) n(:) is Gaussian. Note that if €(:) in (4.4) is long enough, the central limit theorem makes

the Gaussianity assumption for n(Z) reasonable.

(ii) {z(:)} are independent, identically distributed (i.i.d.) and in general non-Gaussian. The
pdf of (1) is known; in digital communications the {z(i)} are usually equi-probable discrete

signal points.

(iii) z(i) and n(i) are assumed independent.

Given the Z(i), we seek the MSE estimate of z(i), namely, dmse(?).

From Van Trees [52, p. 58], it follows that the best MSE estimate of {z(i)} given {Z(7)} is

the mean of the a posteriori density, i.e.,

dmse(i) = /_+°°dx 2P, 3(2/%)

o0

E{z(2)/2(2)}- (4.7)

where P./:(z/%) = £ f(;j/g')})‘(r) is the a posteriori density; Py/z(z/Z) is Gaussian, N(z(¢),Qn),
with Q, being the variance of {n(z)}; the a priori density P:(z) is the pdf of z(i), and P;;:(Z)

behaves as a normalization constant in the integral of (4.7).

If z(i) is zero-mean Gaussian with variance Q; i.e., P(z)is N(0,Q;), (4.7) reduces to

12




dmse(t) = é‘%b—i'(i) (4.8)

which, in turn, implies that g[Z(:)] is a linear function. However, when P.(z) is non-Gaussian,
the integral (4.7) can not be reduced to a simple expression and g{-] will be a nonlinear function.
In the sequel, we show dmse(?) versus Z(¢) when pdf P.(z) is uniform and Laplace.

Uniform Distribution

The a priori pdf is given by

51'7 A<z <A
P.(z) = (4.9)

0, otherwise.

Consequently, the a posteriori pdf takes the form

BED A<z <A

- P - - .

Ppi(z/3) = ! {4.10)
0, otherwise.

where

2
Ayz,3) = .2.1/_\_5\/__717__Q__;exp [_(_”_ﬁ_)_]

By(3) = /_’: Ay(z)dz.

Substituting (4.10) into (4.7), we obtain dmse(?) as a function of Z. However, this relationship is

not easy to express analytically and is obtained by numerical integration as shown in Figure 4.2.

13




Laplace Distribution
The a priori density is given by

. A .
Pz) = ;joxp[—A]xl] (4.11)

and thus the a posteriori density takes the form

o Ay(z,7)
Frpx/z) = 7;7(? (4.12)
where
. A 1 (z —7)?
{2(z,1) = S exp [—/\|1:|- 27‘_Qnexp[~ 50,
+00
Ba(z) = / Ao(z)dr.

Combining (4.12) with (4.7) and using numerical integration we obtain dmse vs Z as shown in

Figure 4.3.

4.1.2 Nonlinearities with MAP Estimates

In this section we treat the estimation problem

#(i) = z(i)+ n(3)

where n(?) is Gaussian and z(?) is i.2.d. non-Gaussian. However, we seek MAP estimate of z(z).

namely dmap(#) when n(z) is white or colored, or correlated with z(z). The colored noise case.

14




as well as the case of correlated noise with z(i), will result into a memory nonlinear relationship
between dmap and I(:); ie., dmap(?) = gl&(i), 2(i = 1),..., (¢ = m)]. If z(i)is Gaussian i.i.d.
and n(i) is white Gaussian, independent from r(:), then the dmap(¢) is identical to dmse(?) and
is given by (41.8).

If we denote £ = [z(i),2(i—1),...,2(1)] and & = [2(i),%(¢ ~ 1),...,Z(1)], then a posteriori

pdf is given by Van Trees [p. 58]

Py(z)- Py/(i/z)

Pz(z/2) = Fla) (4.13)
and the MAP estimate, dmap~ of 2 given I is the value of z which maximizes #(z), where
{z) = €nPz(2/z)+ (nP(z). (4.14)

where the denominator of (4.13) does not contribute to the maximization of ¢(z).

CASE I: White Gaussian Noise

In this case the n(¢) is white, Gaussian N(0,Q,), and independent of z(7). It is also assumed
that {z(:)} are i.i.d. and non-Gaussian. Consequently, joint pdfs are expressed as products of

marginal pdfs and the MAP estimate at each iteration {i}, dmap(¢), is obtained by maximizing

£(z(i)) = €nPz(Z/x) + (nPr(z).

That is to say that the estimation problem is decoupled and the resulting relationship
dmap(i) vs Z(1), is memoryless.

The following memoryless nonlinearities can be derived.

15




(1) Uniform Distribution (1.9)

diapte) 9 F). - A< F(I) < A (1.15)

AW Iy > A

Note that dpap does nocdepend on Q.

(1) Laplace Distribution (1.11)

F) 4 AQws F(i) < —AQn
dimap(d) = 0, =AY, <) <AQ, (:1.16)

i) = AQuy E(1) > AQ,.

Here the MAP estimate depends on Q.. For the symmetric uniform and Laplace a priori distri-
butions the resulting a posteriori pdf, P;/.(1/x), is asymmetric.
Figures 4.4 and 1.5 itlustrate the MAP memoryless nonlinearities.

CASE II: Colored Gaussian Noise

In this case we assume that n(7) is colored Gaussian N (0, R) where R is m X m correlation

matrix. On the other hand. {n({)}. Based on these assumptions, the numerator of (4.13) is

PJ_‘(£) - P J_(.i/i) = [H PI(I(l))} : Pi/_r_(;i_/i) (4.17)
=1

where

16




and
™"
IT Pty = [Pxto))™
1= 1
For mathematical tractability, we cousider the case m = 2 and derive the memory nonlinear

relationships dyapli) vs o

For m = 2 the correlation matrix takes the form

p
I =0Q,- . el < 1 (4.18)
p 1

For simplicity, we also define the following vectors

Iy A (1) i
= = E‘
K z; ) (i-1)
Ty \ z(1)
2 = z. (4.19)
T2 \ z(i-1)
(i) Uniform Distribution (4.9)
Maximizing (4.17) is equivalent here to minimizing
J = (E~z)TR Y &-12) (4.20)

with the restrictions -\ < z; € XA, —=A < z5 < A. Hence, we seek a point in the area

X2 ={(z1,22) : =2 <27 €\, =X < z; < A} such that J is minimized. Differentiating J

17




with respect to oy and rp wnd setting the derivative to zero we obtain

ry)

I} = pldy -oay) 0.

(Fs -

From (L2001 is apparent that il Fe Xy, that is — N <~ rp < XNand =\ < 5, <\, then

‘[llll.lp

for ce,

1+

‘llm;lp -

‘[.‘nl;Lp

when & is outside X, the minimum is achieved on the boundary of X, That is

d”nap = L . /\ . sgn[.i'l] + \l - L)fc[fl — ‘l)(A!"_g — :\S‘L’,H[.i‘)])]
dllllllp = (l - k) -A 'Sgn[j"[] + k- ft[j'l - /)(.i?( e Asgn[i‘;])]
for # ¢X

where
A, > A
fo(x) = r, |r]<A
-, T < —=A.

(i1) Laplace Distribution (4.11)

To obtain the MAP estimate is equivalent to minimize

|53
L]

J = Mz + Mzl + =[(F - 2)TR™Y

2|

18

(1.21)

(4.23)

(4.25)




The necessary conditions are

: Asgnfzy] 4+ c(xy — &) —cp(z—22) = O
. Asgn(zo] + ¢(z2 — £3) —ep(z1 - #1) = 0. (4.26)
where ¢ = s—-—. Clearly, (4.26) is a nonlinear system of equations. Two special cases

Qn{l-p*)"

are the following: 1) when —A/c < Z; — p#2, &2 — pZ1 < A/c, then dymap = 0, and 2)

when p = 0, the problem reduces to the case of white Gaussian noise.

4.2 The Bussgang Algorithms

Fig. 4.1 illustrates the Bussgang adaptive blind equalization algorithms when an LMS type or
stochastic gradient algorithm (53] is used for the adaptation of the equalizer coefficients, and the
nonlinearity ¢(*)[-] is memoryless [3], [4], [23]. The following equations, consistent with the block

diagram of Fig. 4.1, describe the Bussgang family of algorithms:

w(i) = [ui(d),...,un()T equalizer taps
w0) = [0,...,1,...,0/ initial tap values
y(@) = ([y(¢),...,y(i— N+1)]T  input to the equalizer block of data
: = 0,1,2,... iteration index
(4.27)
(i) = _qH(i)g(i) equalizer output or reconstructed sequence

d(i) = ¢W[Z(7)] :g(‘)[gH(i)y(i)] output of ncnlinearity
e(?) = d(z)— Z(7) error sequence

w(i+1) = u(i)+ py(i)- e (i) LMS-type adaptation

19
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4.2.1 Convergence Rate and Properties

From (4.27) and igure 4.1, it is apparent that the output sequence of the nonlinear function,

d(1). “plays the role” of the desired response or the training sequence. It is also

apparent that the Bussgang technique is simple to implemnent and understand, and it may be
viewed as a minor modification of the original LMS algorithm (the desired response of the original
LMS adaptation is @ memoryless transformation of the transversal filter output). As such, it is
expected that the technique will have convergence that will depend on the eigenvalue spread of
the autocorrelation matrix of the received data {y(:)}.

From (4.27), the LMS adaptation equation for the equalizer coeflicients is given by
u(i 4 1) = w(3) + pu(e) e(2) (4.28)
If we obtain the expected value (ensemble averaging) of (4.28), we have

E{w(i+ 1)} = E{u(d}+uE {y() (o9 F0)] - ()}

= E{u(i)} + uE {y(gVEO]} - nE{y()F (D). (4.29)
The adaptive algorithm converges in the mean when
E{y(e" 20} = E{y(d)& (i)} (equilibrium)
and it converges in the mean-square when
E{u" (il 20N} = B ) :

20




E{z()g™ 30|} = EEOFO). (4.30)

Thus, it is required that the equalizer output (i) be Bussgang at equilibrium.
Note that identity (4.30) states that the autocorrelation of Z(i) (right-hand side) equals the
cross correlation between Z(i) and a nonlinear transformation of £(¢) (left-hand side). Processes
which satisfy property (4.30) are said to be Bussgang [10]. In summary, the adaptive Bussgang
techniques converge when the equalizer output sequence, {Z(i)}, becomes Bussgang (necessary
condition).

A stochastic gradient algorithm (steepest descent) essentially minimizes iteratively a perfor-
mance index J(i) = E{G[#(i)]} with respect to the equalizer coefficients u(i). A more general

form of the equalizer taps adaptation equation (4.28) is [25)

u(i +1) = 1(i) - uVuJ(i) (4.31)

where V,J(%) is the gradient of J(i). Differentiating J(i) by using the composite function rule,

we obtain

V. J(3) —E{V.[2(3)] - V:[G(2())]}

I

—E{y(i) - Ve(G(Z()]} (+.32)

By dropping the expectation operation, i.e., by using a single-point unbiased estimate,

we obtain
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VJ() = —y(i)e(i)

where

e"(1) = Vi[G(E())]

= ¢'[#()] - 2°()

(4.33)

(4.34)

Equation (4.3.4) shows the relationship between the nonlinear function g'9[-] used in the Bussgang

Techniques with the nonlinear cost function G[-] which defines the performance index, J[-].

Example for one-dimensional modulation (PAM)

The first blind equalization algorithm was introduced by Sato in 1975 [47] for PAM signals. He

chose the simple nonlinear function

g(Z) = ~vsgn(z]

(4.35)

where 7 is a gain parameter which must be chosen to satisfy the Bussgang property (4.30) i.e.,

E{#(i)-ysgnl£()]} = E{|&()’}

or

E{z(0)*} /E{|z()I}-

It

2
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We could also write Sato’s algorithm in terms of
g (4.37)

4.2.2 Extension to QAM modulation

The extension of Bussgang algorithms to two-dimensional consteliations (QAM) is somewhat
straightforward (3], [4]. In the case of twe independent quadrature carriers, the conditivnal
mean estimate of an equivalent complex transmitted symbol z given the complex observation

Z = Zp + jZ; can be written as
d = E{r [t} = g[Zr] + jg(.). (4.38)

We keep the notation simple by omitting (7). For example, rhe Sato nonlinearity for OAM signals

takes the form [47].

9(Z) = yesgn(2) = y{sgn[Zr] + j sgn[Z,]}. (4.39

It is clear that real and imaginary parts of the data can Le estimated separately. The complex

data equivalent of the adaptive Bussgang Techniques is described in (4.27), but with

dD[E(1)] £ gV [2R()] + 5 9V [E1(3)). (4.40)

Consequently, the error sequence is

e(i) = {gVza(i)] - 2a(D)} +3 {gVE:1(D] - 2:(D)} - (4.41)
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For example, the "Stop-and-Go” algorithm introduced by Picchi and Prati [41]) is an adaptive

Bussgang technique with the following nonlinearity

o[2()] = i(i)+%Aa‘:(i)--;-Aa‘:(i)

+%B§'(i) - %Bi‘(i) (4.42)

where (i) is defined as the quantizer (slicer) output in Figure 4.1 and (A, B) is a pair of integers
té.king values (2,0) or (1,1) or (1,-1) or (0,0). The values of (A, B) are generally different at
each iteration, and how they are chosen is described later in this section.

Another exam—iﬁe of a Bussgang technique is the heuristic modification of the Sato algo-
rithm suggested by Benveniste and Goursat [5], [6]. In this case, the nonlinear function takes the

form

9[2(1)] = Z(3) + kiz(i) — k1Z()) +

ka|2(3) — £(3)] - [yesgn[Z(2)] - £(3)]
or

gl#())]) = #(i)+ |2(3) — #()]  {kyeJRrBED-Z(]

. ka[yesgn[Z(?)] - 2(2)]} (4.43)
where k2, k; are constants. From (4.38) we observe that the Benveniste-Goursat error function
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may be seen as a weighted sum of the Decision Directed (DD) [43] and Sato errors. On the
other hand the “Stop-and-Go™ error function (1.37) is the weighted sum of the DD error and
its conjugate. The weights of the two algorithms, however, are chosen in a completely different

manner.

4.2.3 Unknown Carrier Phase: The Constant Modulus Property

Equation (4.33) can be written in polar coordinates as
— f M - 20 .
d = 1’.1.17/.1} =re?. (1.41)

If we assume that all rotated constellations are equally likely, since the carrier phase is

unknown, then the conditional mean d in (4.39) has the same argument as z, and is given by

d = g[|z]] - & &) (4.45)

where g[] is a nonlinear function and |I| = /2% + %3, arg(Z) = arctan[Z;/Zg]. Combining (4.39)

with (4.4u) we obtain [3]. [4]. [23]

e( 1)

d(i) - (i)
= LR o] 2(1)

= i(i)[g”i—(li)” - 1]. (4.46)

te(2)]

Hence. the error term is independent of any fixed phase rotation of the signal constellation.

Equation {4.27) also represents the Bussgang technique for the case of unknown carrier phase,

25




provided we substitute e(z) in (4.27) by e(i) of (4.41).
Example: The Godard (or CMA) Algorithm [22], {50]
Under the assumption that all rotated constellations are equally likely, Godard {22] suggested

that §[|Z]] in (4.41) be chosen as
G0 = 1]+ Ryl — [z (4.47)

where R, is a real constant. As we shall see this form has some very nice properties. Special
cases of (4.42) include

allE) = (L+ RIEI =12 (p=2)

and

giz]) = Re  (p=1).

The parameter R, is a gain constant which has to be chosen according to {4.30). Since

2o 2()4ll2()I] :
g{z(?)] = 12(3)] (4.48)

combining (4.43) with (4.30), we obtain
E{JZG)* + Rpl2(D)P - 21|} = E{12(:)|*}

or
E{|z(:)*"}

= TGP

(4.49)
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At perfect equalization, #(i) = z(i)e’? (assuming time delay D = 0), and thus
R, = —=%, where m, = E{]Z(:)"}.
Combining (4.34) and 4.43), we obtain the Godard performance index nonlinearity, namely,
GE®) = g (EOF - Fy) (4.50)

Fig. 4.6 summarizes the nonlinear functions of the Bussgang iterative techniques.

4.2.4 The Sato and Benveniste-Goursat Algorithms

Sato [46] introduced the first blind equalization scheme in 1975 by introducing the sign non-
linearity to generate the desired response of the adaptive scheme shown in Figure 4.1, i.e.,
d(t) = v sgn [£(¢)]. In 1986, Sato [47] extended his 1-D PAM algorithm to the multidimensional
blind equalization problem where all transmitted signals become vector processes and all impulse
responses (channel and equalizer) are square matrices. The extension, however, is straightfor-
ward. For example, in the two-dimensional case of QAM signals the “sign” nonlinearity becomes

the “complex sign” defined by (4.34). The error signal of the Sato algorithm

e,(i) = 7 cgn [8(i)] - &(i) (4.51)

is very noisy around the solution unless the transmitted sequence z(7) takes only the values +1.
In other words, although e,(¢) is zero-mean at the solution, it has a large variance. On the other
hand, the Decision Directed (DD) error signal ep(z) = Z(¢)—(7) ( see Figure 4.6) [33], though not

robost for blind equalizers, enjoys the property of being identically zero at the solution. Hence,
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Benveniste-Goursat [5] suggested the idea of combining (heuristically) both error signals in the

form of a weighted averaging as follows

epc(i) = k1 ep(i) + k2 es(i) lep(?)] (4.52)

where ky,k, are constants. The rationale behind the error expression (4.47) is the following.
Before the eye of the equalizer opens, |ep(?)| is large and thus the Sato error es(i) contributes to
the proper direction. At the opening of the eye and thereafter |ep(i)| becomes small and the DD
mode of the error egg(i) takes over to speed up convergence and to achieve faster rate than the
original Sato algorithm with eg(¢). It is no wonder, therefore, that in our simulation experience
we have seen the Benveniste-Goursat (BG) algorithm exhibiting initially very slow convergence.

A faster convergence rate has been observed only after the eye opens. The Benveniste-Goursat
algorithm may be seen as the Sato algorithm that switches automatically to a DD one when the
eye of the equalizer opens. The extension of the Benveniste-Goursat algorithm to a Decision

Feedback Equalization (DFE) implementation (2] was given by Macchi et al. [32].

4.2.5 The Godard and Donoho (or Shalvi-Weinstein) Algorithms

The basic motivation behind the development of Godard’s algorithm introduced in 1980 {22] was
to find a cost function that characterizes the amount of ISI at the equalizer output independently
of the carrier phase. Since the input sequence z(i) is i.i.d., the cost function that satisfies the

aforementioned conditions is

JP = E{(12(3) P} z(i)")}, (4.53)
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which depends on the input sequence, For p = 2, and ¢ = 2, J(?) takes the form
IO = B0l + |2l - 2126 Pl=()1%) (4.54)

where wo assume that E{z%(:)} = 0. However, (4.48) or (4.49) can not be used in practice because
{z(i)} is inaccessible. To avoid this difficulty, Godard [22] suggested the use of a dispersion
function

D® = E{(12()P - Rp)"} (4.55)

which was shown to behave like the cost function J() and yet it is independent of the input
sequence. Note that R, is defined by (4.44). Assuming p = 2, ¢ = 2, (4.49) and (4.50) can be

written as [22]

J® =g+ I+

{4(B{=? - 1O - 2 L{I=())?} - 1R (4.56)
k
and

DO = + 1o+

{4(B{=()P)? - 1£(0) — 2E{1=()|'}} - {Z SR + RS -~ E{lz(i)l“}} (4.57)
k

where Y is taken for k # 0 and

ho= E{lz(OF} (1~ 1£0)) + E{lz()I*} - 21 (R,
k
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Jy o= '.’th'{lrm;"’}r'-{(Zlﬂk)l"’) -Zlf(k)l‘}v (4.58)
S k

Comparing (+.51) with (-£.52), we see that for D% to be similar to J*) | the following inequality
must be satisfied:

HELOFD? 1O = 2E{=()*} > 0

or

E{jz(O"}

| F(0)f* >

Godard suggests (4.53) and f(i) = 0 for i # 0 as a way of initializing his algorithm.

Based on what has been reported in literature [50] and on our simulation experience, the
Godard algorithm has always converged to a minimum that opens the eye when Godard’s initial-
ization procedure is being followed. The Godard algorithm is summarized in (4.27) and Fig. 4.6.
Its convergence for p = 2 is better than p = 1. In addition, Godard noted that convergence im-
proves when the step size  is divided by 2 at each 10,000 iterations {22]. The Constant Modulus
Algorithm (CMA), suggested independently by Treichler and Agee in 1983 [50], is the Godard
algorithm for p = 2 and R; = 1. Ding et al. [15] reported that the Godard-type algorithms
exhibit local (not global) undesirable minima.

Shalvi and Weinstein recently introduced [48] a blind equalization scheme based on the idea of
matching the kurtosis measures between the transmitted sequence {z(:)} and the reconstructed
sequence {Z(¢)} at the output of the equalizer. The kurtosis ot the input complex sequence r(z),

is defined by

K(z(i)) = E{lz(D'} - 2E{[z())I*} - |E{=2()]})? (4.60)
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which is zero for complex Gaussian random variables. The important point made in [48] is that
if E{|2(0)°} = E{e()}, then (1) [N(E) < [N (2() and (2)  [K(2(2)] = [K(x(2))] if
perfect equalization is achieved. Thus, the problem is to maximize the magnitude of the kurtosis
measure |A(Z(:))| in the output of the equalizer at each iteration subject to the constraint
E{|3(i)]*} = E{]x(:)|*}. One of the special cases of the Shalvi-Weinstein algorithm is the original
Godard algorithm. It has recencly been recently reported that the Shalvi- Weinstein algorithm was
originally introduced by Donoho [16] for real-valued signals and that the algorithm’s convergence

is only guaranteed for infinite-length equalization filters.

4.2.6 The Stop-and-Go and Decision-Directed Algorithms

The basic idea behind the Stop-and-Go algorithm, which was proposed by Picchi and Prati
[41] in 1987, is to retain the advantages of simplicity and fast convergence (in open eye-pattern
conditions) of the Decision directed (DD) algorithm [33] while attempting to improve its blind
convergence capabilities.

The adaptation error ep(z) used in the DD algorithm is [33]

ep(i) = (i) — (i) (4.61)

where () is the output of the equalizer and Z(:) the output of the threshold detector. Assuming
that the equalizer initial tap setting corresponds to a closed eye-pattern, ep(t¢) will be large most
of the time due to the large number of incorrect decisions £(i). Consequently, the DD algorithm
cannot converge in closed eye-pattern conditions.

In the Stop-and-Go algorithm, Picchi and Prati proposed the use of the error sequence
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e(i) = S{A(en(i) + B)epi)} (4.62)

where
A()) = Ig(d) + I;(3)
B(i) = In()- Ii(i)
and
‘ 1, if sgn[eD(i)]R = sgn[es(i)]R
Ir(i) =
0, otherwise
. 1, if sgnlep(i)); = sgnles(i)]r
Ir(2) =

0, otherwise.

Note that eg(¢) is the Sato error given by (4.46).

From the foregoing, it is clear that the Stop-and-Go algorithm is essentially the DD algorithm
when the eye is open. It is mostly during closed eye-pattern conditions that the Stop-and-
Go adaptation rule takes place. Also, it is clear that the Benveniste-Goursat and Stop-and-
Go algorithms have different convergence properties when the eye-pattern is closed and similar
convergence properties when the eye is open. The modifications of this algorithms have been
proposed to incorporate joint equalization and carrier recovery, decision feedback equalization [1]

as well as fractionally spaced equalization [21], [45].
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4.3 The CRIMNO Algorithm

Although the Bussgang algorithms are different from each other, as we have seen, they perform
only memoryless nonlinear transformations on the equalizer outputs to generate the desired re-
sponse. This, in turn, implies that the cost functions they attempt to minimize with respect
to the equalizer coefficients are also memoryless. These algorithms do not explicitly employ the
fact that the transmitted data are statistically independent, which is the essence of the new crite-
rion we introduce in this section. Since statistical independence of the transmitted data involves
more than one data symbols, this results in a memory nonlinear transformation on the equalizer

outputs and thus a memory nonlinear cost function.

4.3.1 Criterion with Memory Nonlinearity

As we have seen, Godard solves the blind equalization problem by proposing a cost function
which is independent of the transmitted data, and yet reaches its global minimum at perfect
equalization. The Godard cost function ( also known as the constant modulus algorithm (CMA)
[22] is given by (4.50) and (4.44). ]

Note that only the expected value of some function of the current equalizer output appears
in Godard’s cost function. Therefore, the Godard criterion only makes use of the probability
distribution of the transmitted data. It does not explicitly use the fact that the transmitted data
are statistically independent.

Assume that perfect equalization is achievable and consider the situation where perfect equal-

ization has indeed been achieved. That is

33




where d is some positive number, which accounts for the delay. Since the transmitted dita
z(i) are statistically independent from each other, so are the equalizer outpucs (i) at perfect
equalization. In addition, for most transmitted data constellations, the mean of transmitted data

z(t) is zero. Therefore, at perfect equalization , we have

E{3(3)i"(i =)} = E{z(i - D)z*(i =1 = D)} = E{z(i — D)} - E{z"(i =~ D)} = 0

By making use of this property and combining it with Godard’s criterion, we obtain a new
criterion, called criterion with memory nonlinearity (CRIMNO), which is the minimization of the

following cost function:

M® = woE (|2(3)|P — Ry)® + wy [E{2(1)Z°(i ~ D} + -+ wa| E{E()F"(i = M)}*.  (4.63)

The rationale behind the CRIMNO is that since each term reaches its global minimum at
perfect equalization, by appropriately combining them, we can increase the convergence speed of
the corresponding CRIMNO algorithm [12], [13]. This is clearly demonstrated in the simulations
section.

Remarks:

1. Memory nonlinearity: the CRIMNO cost function depends not only on the current equalizer
output, but also on the previous equalizer outputs. As such, it results to a criterion with

memory nonlinearity. The parameter M determines the size of memory.

2. Generalization of the Godard criterion: when wg = 1, w; = 0 for ¢ # 0, the CRIMNO
cost function reduces to the Godard cost function. Therefore, the CRIMNO criterion may

be seen as a generalization of the Godard criterion.
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3. Constant Modulus Property: the CRIMNO criterion preserves the constant modulus prop-

erty inherent in Godard.

4.3.2 CRIMNO Blind Equalization Algorithm

Define the equalizer coefficient vector u(7) = (u1(3), -+, un(i)]?, and the received signal vector

y(%) 2 [(3), -+, y(i— N+1)]T, where VN is the length of the equalizer. Then the equalizer outputs

are

-0 =y (i~ 1) u(@), {=0,1,---, M, (4.64)

where superscript T denotes transposition of a vector.
Differentiating the cost function M(?) with respect to the equalizer coefficient vector u(i), we

obtain [12]

M3
du(i)

2wy [E(y™ (2 — D)) E(E7()2( ~ 1)) + E(y7()2(e — 1) E(2(2)&"(: - 1))]

= 4wo [y ()Z(1)(12(3)|* ~ R2)]

+...

+2wp E(y" (i — M)Z(i))E(3"(5)3(i— M)+ E(y"(1)3(i — M) E(3()E(i = M))]. (4.65)

By using the steepest descent method to search for the minimum point, we obtain

u(i +1) = (i) - a - {4wo Bly" (1)E(1)(12(2)]* ~ Ro]
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+2w1[E(y_'(i ~ DIENEE ()20 - 1)+ E(yT ()= D) E(E(DHI (0 - 1))
+ ...

2w E(y (i = MDE(D)) E(E ()2 = M) + E(y ()2 = M))E(E(5)2"(i — M))}(4.66)

wheje

(i) £ [y (i), a7

In (4.6), the expectation are the ensemble averages taken with respect to transmitted data z(:)
while the channel impulse response f(i) and the equalizer coefficients u(i) are treated as fixed.
If we use single point estnsates for the ensemble averages, we obtain the stociastic gradient

CRIMNO algorithm:

i+ 1) = u(i) - afdwey" (NZENIEN? = R2) + 2wi(y™(i = DE(IEE ~ DIF + 37 — DI — D]E(HIP)
+ -4 2wa (YT (DE(DIE(E = M)+ y7 (i = M)E(i — M)|2(i)]%)]
= (i) - aly"()F() * (4wel 2 + 2wr|E(i — VP + - + 2war|2(i - M)|* — 4woR2)

+2wiy" (i — 1D)E( = DIEE2 + -+ + 2wary™( = MEG ~ M) 2] (4.67)

Note that at each iteration, all equalizer outputs #(¢ —1),! = 0,1,---, M are recalculated using
current (most recent) equalizer coefficient vector u(i) via z(i —!) = yT(i —~ Du(?). This requires a
lot of computations. If, instead of using the current equalizer coefficient vector u(i)}, we use the
delayed equalizer coefficient vector u(¢ — ) to calculate #(i — [). Note that (for small step-siz~

which is required for the stability of stochastic gradient-type algorithm, the difference between

u(?) and u(i—!) is negligible. Then at each iteration we will need to calculate only one equalizer
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output I(¢) using the current equalizer coetliciont vector u(?f).

1.3.3 Adaptive Weight CRIMNO Algorithm

Phe shape of the cost function depends on the choice of weight wy. So does the performance of
the CRIMNO algorithm. Here. wo describe an ad hoe way of adjusting the weights on-line in the
blind equalization process.

The basic icea is to estimate the vidues of all terms in the CRIMNO cost function over a
block of data and then set the weights used in the next block proportional to the deviation. of
the corresponding terms frow their ideal vadues at perfect equalization. The rationale behind
this scheme is that if one term in the criterion has a lacge deviation from its ideal value, then in
the next block the weight associated with it will be set equal to a large value, and consequently,
the gradient-descent method will bring it down quickly.

To elaborate on this idea, we rewrite the CRIMNO cost function as

M@ = wgdo+wydy + -+ wardyy, (1.6%)

where

Jo = E(HDP - R,

Jo= |EFEHDE (=D 1<I< M. (4.69)
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Detine the deviation of the Joh teenn D7) by

A V) ~
DO S - 8, (1.70)

R . . - o e .
where JV i the value o J; at perfect equalization (Jl( V=0, 1= 1,---, Al'). Then the weights

are adjusted wsing the following formulae:

1w D(Jo) voD(Jp) < A
Wy =

A 10 D(Jg) > A

1D(J) 1D < A

A 1D(J) > A

where Ay > 0 is the scaling constant for the first term, v > 0 is the scaling constant for the other
terms in the CRIMNO cost function, and A is a constraint on the maximum value of the weights
to guarantee the stability of the algorithm.

Fhe CRIMNO algorithm with weights adjusted in this way is called adaptive weight CRIMNO

alzorithm. Some in-depth comments are provided below:

Lo Wihen the deviations of all terms vary proportionally, the adaptive weight scheme be-
com-s an adaptive step-size algorithm. Moreover, the adaptation is done automatically.

o wien the alaorithm converges, then weights decrease to zero. Hence, the adaptive

welxns CRININO aleorithm acquires as a byproduct the decreasing step-size, which has

Beer prosen to be an optimal strategy for equalization [51].

2B i iapelve weishs CRININOQ algorithn, the shape of the cost function is changing.
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The local minima of the cost function are also changing. Thus, what is local minimum of
the cost function at one iteration may not be at the next iteration. However, whatever
the change of the weights, the global minimum does not change, and it always

corresponds to perfect equalization.

. The adaptive weight CRIMNO algorithm tends to move out of a local minimum of the cost
function quickly, if the cost function has local minima and the algorithm gets trapped in
one of them. This is based on the following arguments. In the adaptive weight CRIMNO
algorithm, the equalizer coefficient increment, Au(i+1) = u(i+1)~u(?) is a random vector,
the variance of which determines how fast the algorithm will move out of a local minimum.
The variance of the equalizer coefficient increment depends on the step-size «, gradient
%‘% and the weights w; (proportional to D(J;)). The step-size and gradient are the same
with the fixed weight CRIMNO algorithm; we thus concentrate on the third one: wy, or
equivalently D(J;). At a global minimum of the cost function, D(J;) are all small, thus,
the variance of the equalizer coeflicient increment is small. Therefore, the algorithm will
remain near the global minimum. However, that is not the case with a local minimum. In
that case, D(J;) will be large, therefore, the variance of the equalizer coefficient increment
will be large (relative ot the case at the global minimum), and the algorithm will move out

of that minimum quickly. Moreover, the larger the deviation D(J;), the more quickly the

algorithm will move out of the local minimum.

. Blocks of data are used to estimate {J;}. The block length should be sufficiently long to
make the variances of the estimates small, but not long enough to make the weight update

fall behind.
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4.3.4 CRIMNO Extensions

In this section, the CRIMNO ideas, i.e., memory nonlinearity, are extended to the following cases:

(1) the case of correlated inputs; (2) tire case when higher-order correlation terms [38] are utilized.

Colored CRIMNO

One of the key assumptions in the CRIMNO criterion is that the transmitted data are independent
and identically distributed (¢.:.d). However, in practice, this may not be true for QAM signals.
Usually, in order to overcome the phase ambiguity caused by the squaring loop for carrier recovery,
differential encoding techniques are used, which correlate the input data when the source symbols
are not equiprobable. Since the operations of differential encoding are known, the autocorrelations
of the input data can be derived. In the case where the autocorrelations of the input data are

known a priori, the CRIMNO criterion can be modified as foliows:

MP) = woE(12(0)|P — Rp)? +wi| E(3()&"(i— 1) = B[+ -+ wy | E(F()2™ (i — M) - Bur]® (4.72)

where g, 2 E(z(i)z*(i ~ 1)) are the known autocorrelations of the transmitted data.
Higher-Order Correlation CRIMNO
Here, a criterion which exploits the higher-order correlations, such as the fourth-order statistics

of the equalizer output, is given below:

MP) = woE(

)P~ Rp)* 4+ D wi|E(E()E (i~ )?
!

+ > vl EGG(0)E*(i — 5)E(i = k)E(i = D)]? (4.73)
sk all different
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The performance of both (4.73) and (4.74) criteria needs to be investigated.

4.3.5 Computer Simulation

Computer simulations have been conducted to compare the performance of the adaptive weight
CRIMNO algorithm with that of the Godard (or CMA) algorithm. Fig. 4.6 shows the perfor-
mance of the adaptive weight CRIMNO algorithm, compared with that of the Godard algorithm
under the different step-sizes, including the optimum one: We see that the performance of the
adaptive weight CRIMNO algorithm is better than or approaches that of the Godard algorithm
with optimum step-size. Fig. 4.7 shows the performance of the adaptive weight CRIMNO algo-
rithm for different memory sizes (M = 2.4.6). Fig. 4.8 shows that the corresponding eye-patterns
at iteration 20000. We see that the larger the memory size M, the better the performance of
the adaptive weight CRIMNO algorithm. Table 4.2 lists the computational complexity of the
CRIMNO algorithm, the adaptive weight CRIMNO algorithm, and the Godard algorithm. We
see that there is only a little increase in computational complexity. Therefore, the performance

improvement is achieved at the expense of little increase in computational complexity.

5 ALGORITHMS WITH NONLINEARITY IN THE INPUT

OF THE EQUALIZATION FILTER

The Polyspectra Based Techniques

Another class of blind equalization algorithms are those algorithms which are based on higher-

order cumulants or polyspectra [36]. such as the tricepstrum equalization algorithm (TEA)
T

[24], the power cepstrum and tricoherence equalization algorithm (POTEA) [7], and the cross-

tricepstrum equalization algorithm (CTEA) [8]. All these algorithms perform nonlinear transfor-
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mation on the input of the equalization filter. This nonlinear transformation, e.g. the generation
of the higher-order cumulants or polyspectra of the received data, is a memory nonlinear trans-
formation, because it employs both the present and the past values of the received data. The
use of the higher-order statistics of the received data is necessary for blind equalization, since
the correct phase information about the channel can not be extracted from only the second-order

statistics of the received data [14], [29], [34], [35], [37], [42].

5.1 Definitions and Properties: Cumulants and Higher Order Spectra

The readers are assumed to be somewhat familiar with the basic material of higher-order spectra.

However, some important properties which will be used in the subsequent sections are given.

5.1.1 Definitions

1. Definition of Cumulants:
Given a set of n real random variables {z,,z,,---,z,}, their nth joint cumulants of order

is defined as

RO nd(vy,ve, -+, V)
dvydvy - - - Ovy

A, . -
L(zy,z2, - zn) = (—]) .v1=v2=---=vn=0 (5.1)

where

(b(vl, Vg, Un) = E{exP j(lel +--+ vnxn)}' (5'2)

Given a real stationary random sequence {z(:)} with zero mean, E{z(i)} = 0, then the

nth-order cumulant of the random sequence depends only on the time difference and is
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defined as

ananI(vl7 V2, ,vn)

A
LI v y "y Tp— = -7 )" = = e =V = .
(Tl T2 ' 1) ( _]) 8018‘02 — -B'Un l (%] V2 [ 0 (5 3)
where 71,73, -+, Th—1 are integers and
®.(vy,v2, - +,v,) = E{exp j(n1z(d) + vaz(i + 71) + - - + vp2(2 + Tno1))} (5.4)

Given a set of real jointlv stationary random sequences {zx(¢)}, k = 1,2,---,n with zero
mean, E{zk(i)} = 0, then the nth-order cross-cumulant of the sequences depends only on

the time difference and is defined as

6"11’1@_@‘1,2'...'71(”1 U I Un)
dv10v,y -+ - Bv,

A .
Lz,1,2,~--,n(7‘1, T2y, Tn—l) = (—J)n

where 71,72, -, Th—1 are integers and

¢3,1'2,...,n(1)1, V2, v'vn) =F {exp j(lel(i) + ‘Uz:l:z(i + Tl) +-0 4 vnzn(i + Tn—l))} .

(5.6)

. Definitions of Higher-Order Spectra.

Higher-order spectra are defined to be the Z-transforms of the corresponding cumulants
[34], [38]. Specifically, a nth-order spectrum of a real stationary zero mean random se-
quence {z(%)} is just the (n — 1)-dimensional Fourier transform of the nth-order cumulant

L.(7y,73,--+,Th-1) of the random sequence. That is
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-1

e )

n-1

g faX 7T

Se(z1y2327 1 2nm1) = E Lr(ThT?v"'yTn-l)HZ[ L (5.
=1

T1T2, " Tn—1
When n = 2,3,4 the corresponding spectrum is called power spectrum, bispectrum, and
trispectrum, respectively.
A nth-order cross-spectrum of a set of real stationary zero mean random sequences {z(7)},

k=1,2,---,n,is defined as the (n — 1) dimensional Z-transform of the nth-order cumulant

Lyy2,.n(T1,72,- - Th_y) of the random sequence, that is
n-1
S tno1) 2 o 5
£,1.2,-0n(21, 22, 1, Znm1) = Z Lza2,n(T1,72, 0, Tnt) H ST (5.8)
T1,72, Tn—1 I=1

. Definitions of coherence.

Coherence is defined as the higher-order spectrum normalized by the power spectrum.
Specifically, a nth-order coherence of a real stationary zero mean random sequence z(i) is

defined as

S.t(zl, 22,000y zn—l)
[S2(21)Sz(22) - - - Sal(2n1) ST 27 ]2

A
R.!:(31732""1zn—1) = (59)

An alternative definition for the nth-order coherence, which is equivalent to the above

definitions, is

-

)e 51(21,22,"',2,1_1) z

5.10)
—1 _—1 —1 (
51;(&1 2 BT g |

R(21,22,-,2n1

. Definitions of Cepstrum of Higher-Order Spectrum

The cepstrum is defined as the inverse Z-transform of the log function of the spectrum.

Specifically, a cepstrum for the nth-order spectrum of a real stationary zero mean random
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sequence {z(i)} is defined as

AN
CI(TI’T'Zv' . '»Tn—l) =Z l[l”' SI(‘ZI,:'Z’""ZYI.—I)] (5-11)

A cepstrum for the nth-order cross spectrum of a set of real stationary zero mean random

sequence {z(2)},¢=1,2,---,n, is defined as

A
cr,l,?.--~,n(T11 T2y 'Tn—l) =2Z ! [ln S.L‘,l,?.-'-.n(zlv 22y, zn—l)] (5‘12)

When n = 2,3,4, the corresponding cepstrum is called power cepstrum, bicepstrum and

tricepstrum, respectively.

5.1.2 Properties

Some important properties of cumulants are shown below.

1. If 21,23, --,%n can be divided into two or more groups which are statistically independent,

then the cumulant L(z,,z,,---,z,) is zero.

Specifically, if {z(7)} are an independent, identically distributed random variables, the nth-

order cumulant of the sequence {z(7)} is

Lr,7m2--, Tn-l) = 75(7'1)5(72) o '5(Tn—1) (5-13)

2. Cumulants of higher order (n > 3) are zero for Gaussian processes.
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3. If {z(4)} and {y(¢)} are statistically independent random sequences and, z2(i) = z(i) + y(7),

then

Lz(rla T2, "7y Tn-—l) = L.‘L‘(Tlv T2y, Tn-—l) + Ly(le T2y, Tn—l)' (5'14)

5.2 Tricepstrum Equalization Algorithin (TEA)
5.2.1 Problem Formulations

We assume that the received sequence after being demodulated, low-pass filtered and syn-

chronously sampled (at rate 71:) can be written as:

y(1) = 2(1) + w(i) = Z f(k)z(i~ k) + w(?) (5.15)

k=-IL1

where the nonminimum phase equivalent channel impulse response {f(¢)} accounts for the trans-
mitter filter, non-ideal channel (or multipath propagation), and receiver filter impulse response;
the input data sequence {z(i)} is generally complex, non-Gaussian, white, i.i.d., with E{z(7)} =
0, E{z(:)®} = 0 and E{z(4)*} - 3{E{z(:)?}]? = 7. # 0; for example {z()} could be a multi-level
symmetric PAM sequence or the complex baseband equivalent sequence of a symmetric QAM
signal; the additive noise {w(¢)} is zero-mean, Gaussian, generally complex and statistically in-
dependent from {z(%)}; we also assume that the channel transfer function F(z) (Z-transform of

{f(3)}) admits the factorization [24]

F(z)=A-I(z71)-O(2) (5.16)

the factor I(z71) = Hl_T‘i—'—l%—f"—z— lag| < 1,lex| < 1, is a minimum phase polynomial, i.e., with
k=1

zeros and poles inside the unit circle. The factor O(z) = H{‘;l(l = bkz),|bx] < 1is a maximum
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phase polynomial, i.e., with zeros outside the unit circle. The parameter A is a constant gain

factor. Finally, the sequence {y(z)} is the input to the blind equalizer.

5.2.2 Relations of Tricepstrum of the Linear Filter Qutput

The input to the channel, z(7), is a non-Gaussian i.i.d. random sequence, thus

Sz(z1,22,23) = V- (5.17)

The trispectrum of the output, y(¢), of the channel (linear filter) is

Sy(z1,22,23) = Yo F(21) F(22) F(23) F(27 25 23 %)

=y A* - Iz I(27Y) - I(231) - I(21, 22, 23) O(21) - O(22) - O(23) - O(27 25125 1)5.18)

Taking the logarithm of S, (2, 23, z3) and then the inverse Z-transform, after some manipulation,

we obtain [24]
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log(7:4%) m=n=10=0

~LAm) m>on=1=0
-4 as>om=I1=0
~140 I>0,m=n=0
%B(—m) m<0n=[{=0

< (5.19)
%B(_n) n<0m=1=0

N} =

cy(m,n,l) =

%B('l) l<0,m=n=0
—-;II-B(") m=n=10>0
éA(") m=n=1<0

0 otherwise

\

where, A(), B() are the minimum and maximum phase differential cepstrum parameters of the

system, corresponding to I(z~!) and O(z), respectively. They are defined as follows:
ry def & £ def &
AN E Z al - Z e BU) = Z b (5.20)
k=1 k=1 k=1

In addition, the following identity holds between the fourth-order cumulants Ly(m,n,!) and the

tricepstrum cy(m, n,1):

3 {A(")[Ly(m —dm )= Ly(m+ Jn+ L1+ D)} +
J=

1
S {BO(Ly(m - Jn = J1=0) = Ly(m + J,n,D)]} = =m - Ly(m,n,1)  (5.21)
J=1
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where we define,

AV T =1,...

J - ey(J,0,0) =
B-D, J=-1,...- .

AW B J = 1,2,... are the minimum and maximum phase cepstral coefficients respectively,
which are related to the zeros F/(z). However, in practice, the summation terms in (5.21) can be
approximated by arbitrarily large but finite values because A(Y) and B() decay exponentially as
J increases.

In practice the fourth-order cumulants Ly() in (5.21) need to be substituted by their estimates
L,(-) obtained from a finite length window of the received samples {y(i)}.

The TEA algorithm, uses (5.21) in order to form an overdetermined system of equations,
i.e., we have more equations than unknowns. Then, TEA solves this overdetermined system
of equations, adaptively, using an LMS adaptation algorithm. At each iteratior an estimate of
the cepstral parameters {A)} and {B)} is computed. The coefficients of the equalizer are

calculated for {4V} and {BM)} by means of the iterative formulas.

5.2.3 TEA Algorithm

Let:
{y(D)}: The received zero-mean synchronously sampled communication signal.
Ny, Ng: Lengths of minimum and maximum phase components of the equalizer.
P,q: Lengths of minimum and maximum phase cepstral parameters.

le‘(,i)(m, n,1):  Estimated fourth-order moments of {y(¢)} at iteration (7).
Iég(,i)(j): Estimated second-order moments of {y(i)} at iteration (3).

igi)(m, n,l):  Estimated fourth-order cumulants of {y(¢)} at iteration (7).

Symmetric PAM or QAM Signaling:
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In general, for 1-D (e.g. PAM) or 2-D (e.g. QAM) signaling with symmetric constellations:

LY (im0 = M (m,n, 1) = R (m) - RO (0 = D-RO ()} RO - my-ROURD(r - 0) (5.22)

For symmetric square (L x L) QAM constellations:

LW(m,n, 1y = 3 (m.n,1) (5.23)

and Ag)).Bfi‘])) are the minimura and maximum phase differential cepstrum parameters at iter-
ation (t) respectively. L; and L, are the orders of the minimum phase and maximum phase

components of the FIR channel, respectively. Note that, {a;}, la,} < 1 and {bl_} [b] < 1 are

the zeros of the minimum and maximum phase components of the FIR channel, respectively.

{u(i)}:  The coefficients of the equalizer at iteration ().

{#(9)}:  The coefficients of the equalizer at iteration (7).
At iteration (z): i=1,2,...

Step 1 Estimate adaptively the Lg,i)(m,n,l), ~M < m,n,0 < M, from finite length win-
dow of {y(k)} as described below. M should be sufficiently large so that L,(m,n,I) ~ 0
for |m|, |n|, [{| > M. Assuming that at iteration (0) we have received the time samples
{y(1),...y( Ilag)} we proceed as follows:

Stationary Case with Growing Rectangular Window

MO (m,n ) = (1= n(i) - M m,n, 1)+ 900 - 5(SHY(SE + m)y(Si+ n)y(Si+ 1) (:

ut
]
=
~—

RO(GY = (1= n(0))- RE=Dj) 4 0(i) - y(S3)y(S3 + 7) (5.25)
where, n(i) = ﬁa—é S} = min(i + Ilag,‘i + [lag - m,i+ [la.g -n,t+ [lag — 1), 8% = min(7 +
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Nt + flqe — J)- Finally substitucec (5.2:0) and (H.25) into (5.22) or {(5.23).
Nonstationary Case
First Way:

|

K ouse (5.24),(5.25) with n(i) = ———
Lt Il;lg,

fn s !

1/

for > A use (5.24),(5.25) with y(¢) = = fixed (H.20}

1 should have a small value (0 < 1 < 1), for example 5 = 0.01.
Second Way: (for symmetric L°- QAM signaling)
Since in this case the second-order moment £,(5) = 0, we can use M, (m, n.l) with a forgetting

factor w.0 < w < 1 as follows. (8§ is as before):

(4 flag)-.iyii)(r7z. nd)=w-(i— 1+[lag)-.'176“‘1)(m. n, )+ y(SDY(Si+ m)y(Si+r)y(Si+1) (5.27)

and substitute (1 + I5,) - ;1"1;"’(,”. n. 1) for [,gi)(rrz, n.l) everywhere.

Thnird Way:

Formulas (5.24) aud (5.23) could be used in nonstationary environments by reinitializing the
algorithm after certain number of iteration or when a channel change is detected,

Remarks:

. . 2\ ?
e By using the symmetry properties of fourth-order cumulants only i—'zj—”— cumulants need

to be calculated.

e The assumption that [ ., data have been received at iteration (0) avoids ill conditioaing

lag

of the matrices of the system given in Step 3. It causes a delay to Ilag at the input of the
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equalicer.

Step 2
Select p.q arbitrarily large so that 4D
=10

. very small constant)

AD ~0

BY) ~ 0

~ 0 and BY) ~ 0 for I > p and J > ¢. For example,

for I >p=int [log g}

for J>p=nt [log %] (5.28)

where. int-| denotes integer part and mazie;| < a < 1, maz|b]| < 3 < 1.

Define: w =mar(p.q).2< §,8< 2.
Step 3

Using the relation:

F
(I [ 7()

S {A LY m - 1 -

=1

1

Z{ (1)

J=1
with m = —w.....—=1,1..... w.n = -2z,
termined svstem of equations:

Py - ali)

whe  Fiois N, x (p+ q) (where )V,

PR 2t -
forr P00 v on ly = Lo r N aley

Lm+ILn+ Li+ D]} +

B [i,;”(m —Jn—Jl=J)=LP(m+ J,n,z)}} = —m-LP(m,n,1) (5.29)

..,0,...,8 to form the overde-

pli)  i=0,1,2.... (5.30)

2w x (22 + 1) x (2s + 1)) matrix with entries of the

= {‘-itf)’, .. .,fiit})), [}((xl)), .. .,Bf?))]r (T denotes transpose)
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is the (p + q) x 1 vector of unknown cepstral parameters; p(z) is the N, x 1 vector with entries

of the form {—m - Ly(m, n,0)}.

Step 4
Assume that initially @(0) = [0, ...,0]T. Update a(s) = [A(1),..., ./igf)’, B(1),..., B((f))]T as follows
a(i+1) = a(i)+ p1)- PHGEY - €(), (5.31)
éi+1) = p(i)~ P(i)-a(i), 0< p(i)<2/tr{P(i)- P(i)} (5.32)
Step 5
Calculate the equalizer normalized coeflicients. Initialize zim,(i,O) = 6iny(1,0) = 1 and the
estimate:
. 1Ly
tin (i, 6) = T Z;[A(i) ] tinu(i k= n + 1)
k=1,.... M (5.33)

1 n(l—-n - .
6,‘,-“,(1:,}6) = ’E Z [_Bg;l) )] . Oinv(lvk -n+ 1)
n=k+1

k=—1,...,—N2 (534)
where () is the iteration index taking values i = 1,2,3... Then,
Tinorm (7, k) = Tiny(1, k) % 0iny(3, k), k = =Nq,...,0,..., N (5.35)

where {*} denotes linear convolution.

Step 6
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Estimate the gain factor A(i) as follows: In step (1) we have already calculated:

£11(0,0,0) ~ 7, Z(f

M0y~ Q. }: (5.36)

where Q; = E{(z(k))*}, 7: = E{(r(k))*} - 3- Q2 are known. Also:

R | R .

ik) = ¢ .»x{j‘)“’-i(i,k—n+1), k=1,....p
1 o .

oik) = SOB Y ik -nt1), k=-1,...,q (5.37)
n=k+1

and f(i.k) = i(i, k)+6(i, k), {*} denotes convolution, Q ;(i) = T4 (f(i, k)% 7j(i) = Thlfi. k)"

Then (the sign of ;17_) cannot be identified):

For L-PAM Signaling:

For L*-QAM Signaling:

1. < 727 5(2) ) = ]t - eiT (5.39)
A()) 7~ \10,0,0)

£
N
o~
@
,-:’\;2
=N
ol
o]
N
\-—/
-

since v, < 0 for equi-probable L?-QAM signaling.
Step 7

Let, y(i) = [y(i + Na)s ooy y(i = NOIT and [Zpprn ()] = [inorm (i, =N2)o -« - ftnorm (i, N)JT . Fi-
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nally, the output of the TEA equalizer is:

.. 1 . . :
I(l) = m * [ﬂnorm(l)]T ) 3_/,(2) (540)

While most of the Bussgang blind equalization algorithms, which are based on non-MSE cost
function minimization, have not been shown to be globally convergent and cases of their mis-
convergence have been encountered, the TEA algorithm, designed as described above, is a more
reliable alternative, as it guarantees convergence.

Remarks:

1. Since Gaussian noise is suppressed in the fourth-order cumulant domain, the identification
of the channel response does not take into account the observation noise. Consequently,
the proposed equalizers work under the zero-forcing (ZF) constraint. For the same reason,
we expect that the identification of the channel will be satisfactory even in low signal to

noise (SNR) conditions.

2. The ability of the tricepstrum method to identify separately the maximum and minimum
phase components of the channel makes possible the design and implementation of different

equalization structures.

3. In the recursive formulas (5.37) we used the following properties that relate time impulse
responses with cepstrum coefficients: (i) a channel and its inverse have opposite in sign cep-
strum coefficients, (ii) the cepstrum coefficients of the convolution of two minimum phase or
two maximum phase sequences, arz equal to the sum of the corresponding cepstrum coeffi-

cients of the individual sequences and (iii) two finite impulse response (FIR) sequences with
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conjugate roots have also conjugate cepstrum coefficients. These become unique features

of the TEA equalizer when is compared with other equalization schemes.

4. The described algorithm is based only on the statistics of the received sequence {y(:)} and
does not take into account the decisions {Z{i)} at the output of the equalizer. Consequently
wrong decisions (and thus error propagation effects) do not affect the convergence of the

proposed equalization schemes.

5. Instead of using the LMS algorithm to solve adaptively the system of equations (5.30).
one may employ a Recursive Least-Squares (RLS) algorithm [25] which will have a faster

convergence at the expense of even more computations.

5.2.4 Power Cepstrum and Tricoherence Equalization Algorithm (POTEA) [7]
5.2.5 Relations of Power Cepstrum and Tricoherence of the Linear Filter Output

The problem is as formulated in Section 5.2.1, the channel output y() is the convolution of the
non-Gaussian i.i.d. random sequence z(i) with the channel impulse response f(i) plus some
noise. The cepstrum of the power spectrum of the channel output y(z), can be shown after some

algebra to be equal to [7].

lnlA'zl m =0
~L{A*tm 4 Bt™] m >0
ey, (m) = (5.41)

7—;—[:’1("") + B =™ m<o

otherwise

<
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where A% B(*) are the minimum and maximum phase cepstral coefficients of F{z). These are :

l- Ly
:\(k) = Z(Lf‘ —Z(‘f
=1 1=1
L
B = ST (5.42)
1=

where {a;} and {b;} are the zeros of F(z) inside and outside of the unit circle respectively.

Remarks:

1. A® | B() decay exponentially and thus their length can be truncated in practice at k = p.

so that AP B(P) are arbitrarily small.

2. If the channel F(z) has cepstral coefficients A B} jts inverse filter, ['(z),

has cepstral coefficients —A®), —B%*)_ It is also shown in [7] that if we define %) 2
A 4+ B*(®) and r,(k) 2 E{y(i+ k)y*(¥)} . then the following relations holds:
14 . P
Z 5'“"’[-—ry(m - k)] + Z .S"“{rﬂm + k)] = mry(m), m=1.---2p (5.13)
k=1 k=1

where p is some integer. the choice of which is discussed in [24]. Now let us consider the

cepstrum of the tricoherence.

1
Sy(z1. 22, 23) : :
Ry(zy.2505) = {—,—"_h--_ :—} (5.1
CHERMRE LI

It has been shown that the trispectrum of the received data satisfies:

Sy(f.’1 Pots N C;;) po ‘/1.]“.(:{_1 )I'.(:;g)l‘v'(l‘-:] )!‘.(:r’:;].}:] ) (;')V'(,',}
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Therefore,

F* iz (:f '(:7':’.':’l
Ry(z1,22.23) = _)i‘ e ('—' R (5.6
(M )[ )I (r2azy)
After some algebra, we obtain
{n]. 4y} m=0.n=0,{=0
__;1_1[‘_1‘(771.) _ B(Hl)] m>0.n = D.l =10
~Lgtm o gt om0 = 0.0= 0
~ 1[40~ B(m)] m=0.n>0.0:<0
1 —%[A‘(*”) ~-B"M m=0.n>00=0
Ry(m,n,l) = 5 (5.47)
B %[A‘(m) — B m=n=101>0
Ligl=m) - pr{=m)] m=n=1{<0
% 4= B)] m=0,n=0,[>0
—%[A"“") — B‘(“""] m=0,n=0,{<0
{ 0 otherwise
Taking the logarithm of both sides of (5.4:1), we obtain,
1 -1 - -
Ry(.'i’l,:g,:g): §[ln9y(: 1, 3)~lllqy\ A ,..,l,..\jl) ().'1‘\’»
Differentiating with respect to Z; and performing inverse Z-transform. we obtain
2L,(m,n, )+ L (~m.—n, =)+ [-mR,(m.n,l)]
= Ly(~=m,—n, =)« [-mLy(m.n D]+ Ly(m.n. D)« [mL(m.n.1)] (5.9




By defining the following functions:

8,(m,n,l) 2 L(=m,—n, =)« [ (m.nl)

8,(m.n,l)

Ly(-m,~n,~l)yeml,(m,nl) (7.50)

are combining (5.49) and (5.50), we obtain:

201 (m,n, )« [mRy(m,n, )] = 0,(m,n, 1)+ 05(—m, —n, ~{) (5.

N1
NS
—_—

Defining D) = A®*) — B=(¥) and combining (5.47). we obtain:

P
ST D WG (m~ kon -k~ k)= 6;(m — k.n.D)
k—=1

P
+ Z D®NG (m+k.n+ k. L+ k) =0 (m+ k.n.D)

k—=1
= Oy(m,n.l) + 63(—-m, —n, 1) (5.52)
A rule of thumb is to define w = p, z < w/2, h < z and then take m = —w, ..., —=1.1..... w. o=
—z,...2, l = —=h,...,h to form a linear overdetermined system to equations.

5.3 The POTEA Algorithm

In this section the POTEA algorithm is given in detail.

Let

Ny, Nj3: Lengths of minimum and maximum phase components of the equalizer.
p: Length minimum and maximum phase cepstral parameters,

At iteration ¢ = 1,2,....
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Step 1 Estimate adaptively the l,gn(m.n,l) for =My < mon,l < My and rf,”(m) for — A, <

m < Ms from a finite length window of {y(n)}, and then generate the following functions:

9&“(771.7},1) = L;(‘)(—m,—n,—t')*1,21'}(171.7?,1)
O.Ei)({zt,rz,l) = L;(‘)(~m,——n,-—[;* m/‘f/‘?(m.n,l)
Step 2 Choose p arbitrarily such that APt ~ 0 Bt = 0 and define o= opooo 00D

Step 3 Form the equations

4 P
Z S*EN—ry(m — k)] + Z S®,(m 4+ B = mrymede mo= 1,2 (5.93)
k=1 k=1

where S%) = AK) 4 B=(K) k= 1,...,p.

P
ST DR[O (m — kyn = k1= k) = 0i(m = k,n. 1]
k=1

14
+3 " DW[6 (m + k,n+ kil + k) - 6yim + konD)]
k=1

= Gy(m,n, )+ 03(—m.,—-n.~1) {(5.54)
and the following system ol equations

P& = ]3 Lo

(Q»
o~
i

=

(_..)_,—)hl)

where the matrices P.a.p.Q.b and § are defined above.
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Step 4 Solve adaptively the above systems employing LMS-type adaptation as follows:

a(i+1) = a(i)+ p()PY()e()

bi+1) = b(i)+u'()QM (1))

where

i 2
0 < )< i
0 < pJ(¥)< 2

g (G70)

The algorithm at instant : minimizes the mean square error:

~

J(i)

i

E{e"(1)e(i)}

HOREERACHOL0)

Step 5 Calculate A®) and B(® as follows:

Step 6 Calculate

k+1

- . 1 n=1}n .

begli k) = 2 YA (k= n b 1)k = 1 Ny
n=2
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. 1 & ).
bealih) = 2 Z Bf}) Noeg(iyk=n+1),k=—1,...,- N, (5.61)
n=k+

with initialization : 1eq(i,0) = 6¢4(4,0) = 1. The normalized (A = 1) estimate Lnorm (2, k)

at iteration (i) is given by:
inorm (1, k) = Teg(1, k) * beq(i, k) (5.62)

Step 7 Estimate gain factor A(i)

Step 8 The reconstructed transmitted sequence at iteration(s) is:

z(i) = }__: Unorm (1, k)y(i — k) (5.63)

A(z) k=

Computational Complexity
In this section the computational complexity of POTEA is presented and compared with the

computational complexity of TEA.

PAM

POTEA: 3GM+1E 4 3(9M 1 1)+ 2p(N, + p + 1) + 2248YE3 | (4M)3log, 4M

TEA: 2031 4 320 + 1) + (p+ q)(2N, + 1) + 2E48NE2
QAM

POTEA: 4[22M+1° 4 9201 + 1) + 2p(2N, + 4p + 2) + MABNE3 4 (401)3og, 4 M]

3 7
TEA: 4{CME 4 (51 q)(2N, + 1) + M48N43)
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5.4 Cross-Tricepstrum Equalization Algorithm (CTEA) (8]
5.4.1 Problem Formulations

Assume we have n measurements at each time index k, y:{k),i = 1,2,...n, where

yi(k) = fi(k) x z(k) + ni(k) (5.64)

(shown in Figure 5.1 for n = 4) and
1. fi(k) is the impulse response of a discrete time linear time invariant system,
2. z(k) is a non-Gaussian, nth order white process with cumulant v, # 0,

3. ni(k) is zero-mean additive noise, with n;(k) independent of n;(k) for ¢ # j and indeperdent

of z(k). No assumptions are made about pdf for whiteness (in time) of n;{k).

We also assume that each impulse response h;(k) is stable with no zeros on the unit circle and

that its Z transform F;(z) can be written as 8]

Fi(2) = Aili(z71)0(2) (5.65)

where the A; are gain coustants, the r; are integer linear phase factors,

L, i
HJ;:(] —a;;271)

1._‘(3_1) =
41— cij=1)

is the minimum phase component and

Lt?

O,‘(Z) = H(l - b,-jz)

i=1
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is the maximum phase component, with zeros a;; and poles ¢;; inside and zeios b;; outside the
unit circle (i.e. Ja;;| < 1,]b;5] < 1, and {ei5] < 1).
5.4.2 Relation of Cross-Tricepstrum of the Linear Filter Qutput

With the above assumptions, the nth-order cross-spectrum of the y;(k) can be written as

n-1
Sy,1,2,...,n(zla 225000, zn—l) = 71:F1(31)F2(z2) e 'Fn—l(zn—l )Fn( H :,'—1) (5-66)

=1

Taking the logarithm and performing inverse Z-transform on both sides, we obtain after some

algebra the following results:

Invy, my=my=...=Mu_1 =0,

—(l/m,)A,(m,) m; > 07 m; = 01] < i’

(1/mi)Bi(-m;) m; < 0,m; =0,7 # 1,
Cy,1,2,n (M1, Moy ooy Mpy) = (5.67)

1=1,2,...,n-1,

—(1/mp)An(-my,) my=me=...=m,u_; <0,
—(l/mn)Bn(mn) mi =My =...= Muy_] > 0,
0 otherwise
\
with
L13 LM
Aik) =3 () =Y ()t
j:l j:l
P
Bi(k) = > (b~ (5.68)
=1
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This results means that the n-th order cross-cepstrum is non-zero on n lines oaly in iis domain
and that on each of these lines we find the complex cepstrum of a zero-linear phase, scaled versior
of one of the n impulse responses.

Now, to develop a least squares solution for the A; and B;, we take first partial derivatives of
the logarithm of (5.66), independently with respect to each of its variables, followed by inverse
Z transforms. Letting Sy12,..n(m1,m2,...,my_1) denote the n-th order cross cumulants of the

y;i. we get the following n — 1 equations relating the cross cumulants to the cepstral coefficients:

Sy,;,?,...n(ml’ Mo, ..., mn) * (mi Cy,1,2,...,n(mlv ma,..., mn—l))

= —-my Sy.l,2,...n(m1a Moy ...y mn—l)

for ¢ == 1,2,...n — 1. Each equations involves an (n — 1) dimensional convolution. However,

plugging in (5.67) reduces each equation to a single finite summation:

[s o}
Z Ai(k)Syi2..n(tista, . oytnoy) — Bi(k)Sy 12, U1, u2,. . ., Un—1)
k=1

—An(k)sy,l‘Z,...,n(mi + k» mg + k’ vy My + k)

+Bn(k)Sy'1,2‘m_n(mi - k, my — IC, vy My — k)

= —m;Sy1.2,..n(M1, My, ..., Mp_1) (5.69)
where
t;, = m;—k
U, = m;+k
t, = u;=m; JF1
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From equation (5.68) the sums in (5.69) decay, so we can truncate them to pi and ¢; for
the terms involving A; and B, respectively (see [8]) and rewrite (5.69) as a finite dimensional

vector dot product equation. Writing M > p, + ¢; + pa + ¢ equations at M points in the n — 1

Rin-Ci = (5.70)

5.4.3 Cross-TEA (CTEA) Algorithm

In this section we describe the CTEA algorithm for blind equalization of QAM signals with four

receivers. The algorithm has two stages at each iteration:
1. Channel identification and deconvolution
2. Combining by use of a decision rule

Channel Identification and Deconvolution

Step 1. Estimate the cross-cumulants and kurtoses of the received data recursively.

Step 2. Form the systems of equations (5.70) and solve each system in turn to get the cepstral

coefficients for each channel!

Step 3. From the results of the previous step, estimate the forward and inverse channel impulse

responses up to a desired length.

Step 4. From the estimated forward impulse response and the kurtoses, estimate the gains Afj ) for

~ each channel.

!The cepstral coefficients for channel four can be estimated from the solution of one of the three systems or an ~
average of all three.
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Step 5. With the estimated inverse response, f,.(ﬁw(k), and the estimated gain for each chinnel,

deconvolve to estimate the input symbol as

1

S 3y = ol 3 (SIS
rl(]) - _4‘j)yl(J)* fi,inV(k)

Combining Decision Rules

As illustrated in Figure 5.1, from the four estimates ;(j) we need to form a single quantized
decisions £(j). We describe here an optimal combining rule in the case of a perfect equalizer, as
well as three sub-optimal schemes, arithmetic mean, majority rule, and median (which forn = 4
channels is equivalent to o-trimmed mean with a = 1).

Optimal Decision for the Perfect Equalizer [8]

We consider the following assumptions:
1. z(k) is complex and uniformly distributed,
2. u;(k) is the perfect equalizer for fi(k), i.e. fi(k)* u;(k) = 6(k), and

3. n;(k) are zero-mean, complex Gaussian variables with known variance o? and are indepen-

dent across channels.,

Since we will do symbol by symbol detection, e will drop the time index k for simplicity. With
these assumptions,

fa) -
I; =T+ n*u; =+ n,;.

Therefore, the conditional probability density of & given X, p(Z[z), is complex Gaussian with

mean r and variance

6% =0y |ui(k)[%
k
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Since the noise in each channel is independent, the maximum likelihood estimate £ of & given

the four observations F; (assunming r to be from a continuous distribution) is

I[{ = '}
2.0,
- — .
Li'[ — %Zt (rx Ti1
3ot

where the subscript R and I denote real and imaginary parts respectively. Note that if the noise
has the same variance in all channels then this result reduces to the arithmetic man. If. on the
other hand. we assume that z belongs to a known discrete set D then we need to find £ € D
which satisfies

-2

min Y 7%, — &
IED =

or equivalently

min &i—z (|i|2 - 2{Zpz;r + 51571',1)) .
Z€D :

Of course the assumptions of perfect equalization and known noise variance are not realistic in
practice so we describe below three sub-optimal combining rules which we tested in our simula-

tions.

Arithmetic Mean

Step 1. Form a soft decision statistic
4

im=i;hm-

(If information is available about the relative quality of the channels then a weighted mean

could be used.)
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Step 2. Put Z(j) through a decision device to get 2(j).
Majority Rule

Step 1. Put each estimate through a decision device to form four decision statistics Zi(7).

Step 2. If there is a plurality among the #,(7) in one region of the decision space then that is the
decision. If there is a tie ( all four different or two votes for each of two decisions) use
a tie-breaking procedure. One method would be to pick the decision region that has the

smallest average squared decision error. For example, if £,(j) = 22(7) # 23(J) = Z4(7):

2
Let dy = Y |&(5)— &)

=1

4
Let dp = Y |&:(5) - &)

1=3

Then

Choose 1,(j) di <d;

iz(]) d2 > dl.

Median

Step 1. Order the real and imaginary parts of the z,(j) separately.
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Step 2. Set

REAL{2#(j)} = median{REAL{Z;(j)}}

IMAG{#(j)} = median{IMAG{#(j)}}

Step 3. Put Z(j) through the decision to get £(j).

5.5 Computer Simulations

Computer simulations has been employed to compare the performance of the blind equalization
algorithms. The performance metric used are those in Sections 2. And the following issues are

addressed.

5.5.1 TEA vs. Bussgang-type Algorithms

Fig. 5.2-5.4 show the performance of the TEA algorithm, compared with that of Bussgang-
type algorithms, such as Godard, Benveniste-Goursat. Stop-and-Go algorithms. We see that the
TEA algorithm opens the eye much faster than the Bussgang-type algorithms. This performance

improvement is achieved at the expense of larger computational complexity.

5.5.2 POTEA vs. TEA

Fig. 5.5-5.6 show the performance of the POTEA algorithin, compared with that of TEA. We
see that the POTEA algorithm converges faster than the TEA algorithm. The performance

improvement is achieved at the expense of further increase in computational complexity.
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5.5.3 CTEA vs. TEA

Fig. 5.7-5.8 show the performance of the CTEA algorithm compared with that of TEA algorithm.
We see that the CTEA algorithm converges faster than the TEA algorithm for some channels.
The performance improvement is achieved at the expense of further increase in computational

complexity.

6 ALGORITHM WITH NONLINEARITY INSIDE THE EQUAL-

IZATION FILTER

Still another class of bind equalization algorithms are these algorithins which use Volterra filters
[9], [10] or neural networks {20], [26], [27]. This class of algorithms perform nonlinear operations
inside the equalization filter. It is therefore also be able to correctly extract the phase information
of the unknown channel from its output only. In this section, we will concentrate on those

algorithms based on neural network.

6.1 Review of Equalization Techniques Based on Neural Networks

Equalization is a technique which is used to combat the intersymbol interference caused by non-
ideal channels. Usually, equalizers are implemented using linear transversal filters [17], [18], [30],
[31]. However, when the unknown channel has deep spectral nulls or some severe nonlinear
distortions, such as phase jitter and frequency offset, linear equalizers are not powerful enough
to compensate all of these. That is why nonlinear filters, such as those implemented by Volterra
filter or neural network, come in and play an important role.

Neural Networks {(NNWs) are mathematical models of theorized mind and brain activities.

The fundamental idea of NNWs is to organize many simple identical processing elements into
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layers to perform more sophisticated tasks. The properties of NNWs include: massive paral-
lelism; high computation rates; great capability for non-linear problems, continuous adaptation;
inherent fault tolerance and ease for VLSI implementation, etc. All these properties make NNWs
attractive to various applications. Several neural network based algorithms have been proposed

for equalization problems.

1 Multi-Layer Perceptron
The multi-layer Perceptron (MLP) [39], [40] is one of the most widely used implementations
of NNWs. It comprises a number of nodes which are arranged in layers, as shown in Figure
6.1. A node receives a number of inputs 1,25, -, Z,, which are then multiplied by a set
of weights wy, wy, -+, w, and the resultant values are summed up. A constant v is added
to this weighted sum of inputs, known as the node threshold, and the output of the node
is obtained by evaluating a nonlinear (sigmoid) function, f(.), which is called activation

function.

The architecture of a perceptron can be described by a sequence of integers ng, na, - - -, nk.
where ng is the dimension of the input to the network, and the number of nodes in each
successive layer, ordered from input to output, is ny,n2,---,nt. In this notation, the MLP

produces a nonlinear mapping g = R™ — R"*.

The updating of the connection coefficients of the MLP is done iteratively by using back-

propagation (BP) algorithm with the following formula:

(Wigr, vig1) = (wi,vi) + A4 (6.1)
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and

l,'l
Ay= (o) = «
d{w,,v;)

oAy (6.2)

2 Self-Organizing Feature Maps

The topology by self-organizing feature map (SOM), which is introduced by Kohonen [26],
[27] consists of two layers of nodes, referred to as input layer and output layer, which are
fully connected with different connection weights. The inputs to the SOM can be any
continuous values, whereas each of the output-layer node represent a pattern class that the

input vector may belong to. That means the outputs of SOMs are discrete values, and

therefore, the SOM is sometimes also referred to as learning vector quantizer.

The SOM works iteratively as follows. First, find the set of connection coefficients W

which is the closest to the input vector Ag,
. F .
I Ak = W, ll= win ) 4 = W 1] (6.3)

Second, perform the following quantization of the output-layer node:

1, if || Ak = Wy [l= min || Ax — W; ||
by = (6.4)

0, otherwise.

and then move W, closer to A using the equation

a(k)-[af = W], j=g

AvViJ = B(k)- [a* — W”,‘j], JENLITHg (6.5)

Ly

0. JE€ Ny,




where N, is the topological neighborhood of the winning node b, which consists b, itself
and its direct neighbors up to the depth 1.2,---, and a(k) and 3(k) are the learning rate

at time k.

6.2 The MLPs Equalization Algorithm for PAM and QAM Signals

The applications of MLP in equalization problems so far. have been limited to binary {0,1} or
bipolar {—1.1} valued data and real valued channel models {11}, [20], [49]. In this section, we
introduce for the first time a new implementation structure of MLP which works well with
L-PAM (L > 2) and N-QAM (N;4) signals.

Looking into a MLP structure, we find out that it is the sigmoid function of the output
laver nodes that confines the network outputs to the range [—!,1]. In our equalization problem,
the signals are equally spaced and symmetric with respect to either the original point of the
coordinate, or to the z and y axes. Thus we can just scale up the node function of the
output layer by a constant factor C which is large enough to cover our maximum
signal range, e.g., [-15,15] for 16-PAM or 256-QAM! signals. So, for the output laver, we have

[30], [40]

l_eOI.‘L‘

f;’\](l‘) =C- 1+€a1.7

(e21) (6.6)

as the activation function. For the hidden layers. we still use the sigmoid function

1_601“

filz) = 13 s

The idea of adding another constant a comes form the thought that a smaller a. equivalently,

a lower slope in Figure 6.2, would avoid high vibration, and in turn. decrease the chance of
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divergence in the course of weight adjustment.

For complex channel models and QAM signals, we use complex connection coefficients to
get the weighted sum to which a compiex threshold is added. Then the sigmoid functions of
the real and the imaginary parts of the threshold added weighted sum are evaluated separately.
Again, for the output layer nodes. the outputs are multiplied by a constant C'. Using the steepest
descent formula (Eq. 6.1, 6.2). we get the adaptation algorithm of our new MLP equalizer which
is described in Table 6.1 [30], [40].

Simulation are conducted to examine the performance of MLP eqnalizers. The equalizer is
implemented by the new MLP structure with only one output node. The input data to the
system z; are assumed to be independent of each other. The delayed input sequence z,_;. where
d is channel dependent, is used as the training sequence. The performance of MLP equalizers is
evaluated by calculating the mean square error (MSE) Ef(z — 5:)2] and the average symbol error
rate (SER) of the quantizer output. The eye pattern of equalizer outputs around certain number
of iterations is shown in Figure 6.3.

Figure 6.4 illustrates the performance comparison between MLP and LMS-based linear transver-
sa}l equalizer with the same number of inputs. The structure (the number of nodes in the hidden
layer) of the MLP has been hne-tuned througl experiment. The step size p of the LMS-based
equalizer is also optimized (the biggest value without causing divergence). From Fig. 6, it ap-
pears that the new structure of MLP works no much better. as a channel equalizer. than the

simple linear adaptive equalizer. As a matter of fact, both methods end giving similar results.
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7 CONCLUSIONS

The purpose of this paper is to provide a tutorial review of existing blind equalization algorithms
for digital communications. Three farilies of techniques have been described, namely, the Buss-
gang techniques, the polyspectra-based techniques, and methods based on nonlinear equalization
filters or neural networks. The complexity of the Bussgang techniques is approximately 2.V mul-
tiplications per iteration, where N is the order of the linear equalization filter. On the other
hand, the polyspectra-based techniques require approximately %;\'3 multiplications per iteration.
However. as it has been demonstrated in the paper, the polyspectra-based techniques achieve
significantly faster convergence rate than the Bussgang techniques. Finally, it is pointed out in
the paper that blind equalizers based on nonlirear filters or neural netwoiks are better suited for

equalization of channels with nonlinear distortions.
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