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ABSTRACT

This tutorial paper is focused on two topics, namelv: (i) to describt systeiii-
atic methodologies for selecting nonlitinr transformiations for blind equal-
ization algorithins ,and thus new types of culnulants), and (ii) to give an
overview of the existing blind equalization algorithms and point out their

strengths as well as weaknesses. It is shown it, this paper that all blind
equalization algorithmins belong in one of thi following three categories, (de-
pending where the nonlinear transformation is being applied on the data:
(i) the Bussgang algorithms, where the nonlinearity is in the output of the
adaptive equalization filter; (ii) the polyspectra (or tligher-Order Spectra)
algorithms, where the nonlinearity is in the input of the adaptive equal-
ization filter; and (iii) the algorithms where the nonlinearity is inside the
adaptive filter, i.e., the nonlinear filter or neural network. 'We describe
methodologies for selecting nonlinear transformations based on various op-
timality criteria such as MSE or MAP. We illustrate that such existing al-
gorithms as Sato, Benveniste-Goursat, Godard or CNIA, Stop-and-Go and
Donioho are indeed special case. of the Bussgang family of techniques when
the nonlinearity is memoryless. We present results that demonstrate the
polyspectra-based algorithms exhibit faster convergence rate than Bussgang
algorithms. However, this imnproved performance is at the expense of more
computations per iteration. We also show that blind equalizers based on
nonlinear filters or neural networks are more suited for channels that have
nonlinear distortions.

The Godard or CMA algorithm is probably the most widely used blind
equalizer in digital communications today due to its simplicity, low complex-
ity and constant modulus property. Its main drawbacks, however, are slow
convergence and no guarantee for global convergence starting from arbitrary
initial guess. We present a new method for blind equalization, the CRIMNO
algorithm ( i.e., criterion with memory nonlinearity), which is shown to have
the same advantages as Godard (simplicity, low complexity, constant modu-
lus property) and yet guaranteeing much faster convergence. The CRIMNO
algorithm is flexible enough to address blind deconvolution problems when
the input sequence is colored.
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1 INTRODUCTION

Blind deconvolution or equalization is a signal processing procedure that recovers the input

sequence applied to a linear time-invariant nonminimunim phase system from its output only.

Blind equalization algorithms are essentially adaptive filtering algorithms designed in such a way

that they do not need the external supply of a desired response to gmnerate the error signal ;n

the output of the adaptive filter. In other words, the adaptive algorithm is "blind" to the desired

response. However, the algorithm itsclf generates the desired response by applying a nonlinear

transformation on sequences involved in the adaptation process. All blind equalization algorithms

belong to one of the following three categories, depending where the nonlinear transformation is

being applied on the data:

"* The Bussgang algorithms, where the nonlinearity is in the output of the adaptive equal-

ization filter;

"* The Polyspectra (or Higher-Order Spectra) algorithms, where the nonlinearity is in the

input of the adaptive equalization filter;

"* The algorithms where the nonlinearity is inside the adaptive filter; i.e., the filter is non-

linear (e.g. Volterra) or neural network.

The purpose of this paper is to provide an overview of the existing blind equalization algo-

rithms and to discuss their advantages and limitations. Conventional equalization and carrier

recovery techniques used in multilevel digital communication systems usually require an initial

training period, during which a known data sequence (i.e., training sequence) is transmitted [43],

[45]. An alternative effective approach to this problem is to utilize blind equalizers which do riot

require any known training sequence during the startup period.
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The paper describes systematic methodologies for selecting the nonlinearity based on various

optimality criteria, such as mnaxinmum likelihood (NIL), mean-square error (NISE) or maximum

a posteriori (MAP). As an example, it is illustrated that such existing algorithms as Sato [46],

[471 Benveniste-Goursat [5], [6] Godard or CMA [22], [50] and Stop-and-Go [.11] are indeed spe-

cial cases of the family of Bussgang techniques where the nonlinearity is memoryless [3], [4]. It

is demonstrated that the polyspectra-based algorithms exhibit faster convergence rate than the

Bussgang algorithms. However, this improved performance is at the expense of more computa-

tional complexity. On the other hand, blind equalizers based on nonlinear filters are well suited

for channels that have nonlinear distortions [39], [40].

The Godard algorithm is probably the most widely used blind equalizer in digital communica-

tions today due to its simplicity, low computational complexity, and constant modulus property.

Its main drawbacks, however, is slow convergence and no guarantee for global convergence (con-

vergence starting from arbitrary initial guess). The paper describes the development of the

CRIMNO algorithm (i.e., criterion with memory nonlinearity) which is shown to have the same

advantages as Godard algorithm (simplicity, low complexity, constant modulus property) and yet

guaranteeing much faster convergence [121, [13]. Extension of the CRIMNO algorithm to the case

of colored input signals is also presented.

The polyspectra-based adaptive blind equalization algorithms are also described in the pa-

per. In particular, the Tricepstrum Equalization Algorithm (TEA) [24], the Power Cepstrumn

and Tricoherence Equalization Algorithm (POTEA) [7], and the Cross-Tricepstrum Equalization

Algorithm (CTEA) [8] are presented, as well as their advantages and limitations. It is shown

that these algorithms perform simultaneous identification and equalization of a nonminimum

phase communication channel from its output only. Simulations with PAM and QAM signals
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deluonstrate the eflectiveness of the polyspectra-bbased algorithms.

Fiially, tile paper provides at) overview of tile iieiir~d network based adaptive" equpalization

algoritlhins either with, or without a. training sequence [11], [201, [261, [271, [391, [.101, [.191.

2 DEFINITION OF BLIND EQUALIZATION PROBLEM

Let us consider the discrete- time linear trans iissioi channel whose iinpulse respoonse {f(i)} is

unknown and possibly tinie-varying. The intput data {j(i)} are assumed to be independent and

identically distributed (i.i.d.) random variables, with non-Gaussian probability density fuic t i.

Let us also assume, without loss of generality, that the sequence { (i)} has mean E{.r(i)} -r 0

and variance F{Ix(i)"j} = Q If x(i) is real, we may drop the magnitude function and simply

write E{x"(0i)}. Initially, noise : not taken into account in the output of the channel. From

Figure 2.1. it follows that the model we consider is

y(i) 0 f(i) * X(i)

SZf(k) x(I-k) (2.1)
k

where -*" denotes linear convolution and {y(i)} is the received sequence. The problem is to recon-

struct (or restore) the input sequence {x(i)} from the received sequence {y( i)} or, equivalently,

to identify the inverse filter (equalizer) {u(i)} for the channel.

From Figuru- 2.1, we see that the output sequence {.:(i)} of the equalizer is given by

,(i) = ,(i) * y(i)
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1u(1) * (f(i) * (1)

= u(i) * f(i) * .r(i). (2.2)

So, to achieve

i(i) =x(i -D (•2.3)

where D is a constant delay and 0 is a constant phase shift, it is required that

u(i) * f(i) = 6(i-D) (2.4

where

0, otherwise.

Performing the Fourier transform on (2.4), we obtain

U(,,) F(w) = e(O-D) (2.5)

In other words, the objective of the equalizer is to achieve a transfer function

1 jA-.D)
U(w) = (2.61F(w)

In general, D and 9 are unknown. However, the constant delay D does not affect the reconstruc-

tion of the original input sequence {x(i)}. The constant phase shift 0 can be removed by a carry

recovery technique. As such, in the sequel, it will be assumed that D = 0 and 0 = 0.

Blind equalization schemes may be classified into three categories; i.e., those which utilize
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nonliInearities in the output of the adIijpt ie e(l-uaIitI. ion hit er, t no.o which place the non limearitv

in the input of dhe adaptive e(pialization filth r, ainl tiio , i, wiicii ntilize adaptive nornllfiar e'qual-

ization filters. The B1lssgan" equtalization algorithins with niernorvless or memory nonlinearity

belong to the first category whereas the higher-order cmiil[int-hbased e(qualizers (TEA. POT FA,

etc.) belong to thle second ca tegorv, as they perforin memory nonlinear transformation on the

inptt daw a of the eqiualization filter. Blind equalizers ba-,d on nonlinear filters, sitch as the

Volterra filter or neural networks, belong to the third category. Figures 2.2 (a)-(c ) illustrate the,

block diagrams of the aforementioned thruee families of blind equializers.

3 PERFORMANCE MEASURES FOR ALGORITHM EVAL-

UATION

Four different performance measures are usually considered in simulation experiments for the

testing of the blind equalization algorithms: the time-average squared error (EASE). the tran-

sitional symbol error rate (SER), the residual intersymbol interference (ISI) and the discrete eve

patterns [-13], [441]. They are defined as follows.

Time-Average Squared Error(EASE or MSE)

At iteration ( i), the mean squiare error in the output of the equalizer is defined as

1 N

EASE = N Ix(i - D) - (i)1 2  (3.1)

where .(i) is the output of the equalizer at iteration (i) and x(i - D) is the corresponling true

value. Note that the delayv D, whtidi is introdtuced by the charmnel and the equalizer, does not

affect the recovery of the original inforination {x(i)}. However, it niu-t be takenr into accou:it in

• -" -" I I II; ]



the calculation of .I ;F. (i). The MSI,: (1) gives a neasirl' of both the noise and resi(dial ISI at

the e'utput of the equalizer.

Transitional Symbol Error Rate (SER)

The SI. I1 indicates the percentage oi wrongly (letected symbols in cortsective intervals of 500

Sy1111)0s, i.e.,

S -d, Wr,0i11 (letection, in .500 sviy bolsSLR = 0 (:3.2)
500

Residual IS1

The residufal IS1 in the output of equalizer :,; defiiied as fi ",)ws. Let {f(i)} be the chantnel impulse

response and {j (i)} the eq,:-'tizer tap coefflicients at iteration (i) Let, q(i) =f(i) * u(i), theD

•,Ii)2 - mm{,s~~
151(1) ' 3.3)max{ 1s(i)12} 1 .

Physically, this indicates the amount cf ISI present at the output of the equalizer due to imperfect

equalization.

Discrete eye patterns

Discrete eve patterns (or equalized signal constellation) consist of all possible values of the output

of the equalizer, f(i), at iteration (i), drawn in two-dimensional space. We say that the

eye pattern is open when-ver the ideal decoding thresholds are easily distinguishable between

neighboring equalized states.

In our simulations, all performance n.easures were calculated for many independent signal

and noise realizations. For the EASE, time averaging over 100 samples were performed for each

re;.-iation. The eve pattern at iteration (i) was obtained by drawing the output of eqi alizer for all

~ I



independent realizations and for a specific numlber of samples (for eahi realization) synmetrically

located around (i).

4 ALGORITHMS WITH NONLINEARITY IN THE OUT-

PUT OF THE EQUALIZATION FILTER

Let us assume that a guess for the impulse response of the inverse filter (equalizer), u0 (i) has

been selected. Then,

ug(i) * f(i) = (i) + c(i) (4.1)

where c(i) accounts for the difference (error) between our guess u,(i) and the actual values of

u(i). If we convolve the initial guess of the inverse filter, {u9 (i)}, with the received sequence,

{y(i)}, we obtain

i(i) = y(i) * u9 (i)

= x(i) * f(i) * ug(i). (4.2)

Combining (4.2) with(4.1), we obtain

c = x(i) * (6(i)+e(i))

= [x(i) * 6(i)1+ [x(i) * 401

= x(i) + n(i) (4.3)

10



where

71(1) = X(i) * {((0 (4.4)

is the "convolutional noise", namely, the residual ISI arising from the difference between our

guess ug(i) and the actual inverse filter u(i).

Our problem now is to utilize the deconvolved sequence {±(i)} to find the "best" estimate of

{T(i)}; namely, {d(i)}. Note that in adaptive-filter literature d(i) is used to represent the desired

response [25]. Two criteria are employed to determine the "best" estimate of x(i) from the given

1(i) . These are the mean-square error (MSE) and maximum a posteriori (MAP).

Since the transmitted sequence x(i) has a non-Gaussian probability density function, the MSE

and MAP estimates are nonlinear transformations of i(i). In general, the "best" estimate d(i) is

given by [3], [4], [23], [54].

d(i) = g[i(i01 (memoryless)

or

d(i) = g[i(i), i(i- 1),..., (i- m)] (mth - order memory) (4.5)

where g[.] is a nonlinear function with or without memory. The d(i) is fed back into the adaptive

equalization filter as shown in Figure 4.1. From tlhis figure, it is also apparent that the nonlinear

function g[.] is in the output of the equalization filter.

4.1 Optimum Selection of Nonlinearities

4.1.1 Nonlinearities with MSE Estimates

In summary, a well treated classical estimation problem is as follows:

11



l(i) = x(i)+ n(i) (4.6)

where

(i) n(i) is Gaussian. Note that if c(i) in (4.4) is long enough, the central limit theorem makes

the Gaussianity assumption for n(i) reasonable.

(ii) {x(i)} are independent, identically distributed (i.i.d.) and in generai non-Gaussian. The

pdfof x(i) is known; in digital communications the {x(i)} are usually equi-probable discrete

signal points.

(Hii) x(i) and n(i) are assumed independent.

Given the i(i), we seek the MSE estimate of x(i), namely, dmse(i).

From Van Trees [52, p. 58], it follows that the best MSE estimate of {x(i)} given {f'(i)} is

the mean of the a posteriori density, i.e.,

dmse(i) = dx xP.,/j(x/1.)

= E{x(Z)i(i)}. (4.7)

where Pi(xI)=P (/P(X) is the a posteriori density; Px/,(x/1) is Gaussian, N(x(i), Q h),

with Q, being the variance of {n(i)}; the a priori density P•(x) is the pdf of x(i), and P...(1)

behaves as a normalization constant in the integral of (4.7).

If x(i) is zero-mean Gaussian with variance Q,; i.e., P:(x) is N(O,Q,), (4.7) reduces to

12



dinse(i) = i(z) (4.8)

Q. + Q,

which, in turn, implies that g[i(i)] is a linear function. However, when P,(x) is non-Gaussian,

the integral (4.7) can not be reduced to a simple expression and g[.] will be a nonlinear function.

In the sequel, we show dmse(i) versus ý(i) when pdf P-,(x) is uniform and Laplace.

Uniform Distribution

The a priori pdf is given by

P1:(x) =Kx<4.9

0, otherwise.

Consequently, the a posteriori pdf takes the form

_ A (-7,r) - < x <A
/( = P< (4.10)

0, otherwise.

where

A, (x, i -1-2A ( exp

B, (i ) = 1 AI(x)dx.

Substituting (4.10) into (4.7), we obtain dmse(i) as a function of i. However, this relationship is

not easy to express analytically and is obtained by numerical integration as shown in Figure 4.2.

13



Liplace Distribution

The a priori density is given by

PA Xz) -- Aexp[-Alxl] (4.11)

and thus the a posteriori density takes the form

B2 (x,) (4.12)

where

A [ 1 (X -)2
~1(x) 1 AjxI - exp[-2-. T e Q p 2Q,

B 2 (i) - A 2 (x)dx.

Combining (4.12) with (4.7) and using numerical integration we obtain dmse vs i as shown in

Figure 4.3.

4.1.2 Nonlinearities with MAP Estimates

In this section we treat the estimation problem

.i(i) = x(i) + n•(i)

where n(i) is Gaussian and x(i) is i.i.d. non-Gaussian. However, we seek MAP estimate of x(i),

namely dmap(i) when 7z(i) is white or colored, or correlated with x(i). The colored noise case,

14



as well as the case of correlated noise with x(i), will result into a memory nonlinear relationship

between diinap and Ni); i.e., dniap(i) = g[.ý(i),'(i - U) .. ,(I- rn)]. If x(i) is Gaussian i. i.d.

and n(i) is white Gaussian, independent fromn 0), then the dmnap(i) is identical to dmse(i) and

is given by (4.8).

If we denote x = [x(i), x(i - 1) ... , x(1)] and i [N(i). '(i - 1) ... , N•)], then a posteriori

pdf is given by Van Trees [p. 58]

Pr(X) Pjj-(•/X) (4.13)

and the MAP estimate, dinap, of x given I is the value of x which maximizes f(2), where

f(x_) = nP1l(i/l) + fnPX(x_). (4.14)

where the denominator of (4.13) does not contribute to the maximization of £(x).

CASE I- White Gaussian Noise

In this case the n(i) is white, Gaussian N(O,Q,), and independent of x(i). It is also assumed

that .x(i)} are i.i.d. and non-Gaussian. Consequently, joint pdfs are expressed as products of

marginal pdfs and the MAP estimate at each iteration {i}, dmap(i), is obtained by maximizing

f(x(i)) = fnPjj_(,/x) + fnP,(I).

That is to say that the estimation problem is decoupled and the resulting relationship

dmap(i) vs ý(i), is memoryless.

The following memoryless nonlinearities can be derived.

15



Nol U Ifoti Dist '1 ibut1 lholl (0 I.,)d)

i ~X i A

S- , A J'i• - -,

Nole lha! map 00S, [lot dep,'lld oil),

(ii) Laplace D)istribution (.1.11)

S+ AQ,, .i(i) -

,tn.ip(i) - -,\ , _ i) < \Q (.I.1()

HIere the %[.A\P estimate depends on Q, . For the symmetric uniform and Laplace a priori distri-

butions the resulting a posteriori pdf, PT'jjr( _/x), is asymmetric.

Figures -1.4 and -. 5 ilhlustrate the MAP nemroryless nonlinearities.

CASE Ih: Colored Gaussian Noise

In this case we assume that n(i) is colored Gaussian N(O,_R) where R is m x rn correlation

matrix. On the other hand. {tn(i)}. Based on these assumptions, the nuinerator of (4.13) is

P-()" PTj( .r [ P.(x(i) )]"PUp(-/x) (4.17)

wvhere

exp -6 (x_- - x)
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aInd
Tit

For Inathenmatical tractabhiify., we cmisidor the cae in = 2 and derive the memory nonlinear

relationships d \op( i) s.

For m. = 2 the correla tion mat.rix takes the formi

R = ,,. Jpl< 1.(4t.18)

p I

For simplicity, we also define the following vectors

= = z_.(4.19)
X2 : (i- )

(i) Uniform Distribution (4.9)

Maximizing (4.17) is equivalent here to minimizing

J = (.x_ E)TR-(1 x) (4.20)

with the restrictions -A < x, <, A, -A < x2 < A. Hence, we seek a point in the area

X2 = {(xl,x 2) : -A < x, _< AT -A _< X2 :5 A} such that J is minimized. Differentiating J

17



(1! I q - I;t11jq) fi X ) X.,a (.1.22)

when J I-, miotsIde N-.. the nunumuunniII 1i ;whinevvd oil the himIIItlary of N~., TIhat is

d I 11ap 2 k A -sgni(.r'j + k~ I -k)f.[ii - !(ý2- "%S911[-;ýj)j

dýý2LNLnP - k) - A -sgii[12 ], + k - p(.x1 - Asgin[ij)j

fo r a X,2  (4.23)

w here

A, x> AI-A, x- < -A.

(ii) Laplace Distribution (4.11)

To obtaini the M AP estimate is equivalenit to n1fiflh1nzC

J = Ajxjj + AX 2 1 + I-[(i, _ X)T R-1 ( - x)1. (4.25)
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The necessary conditions are

Asgn[xi] + c(xl - :I) - cp(x 2 - -i2 ) = 0

Asgn[x 2] + c(x 2 - i2) - cp(xI - il) = 0. (4.26)

where c = Q . Clearly, (4.26) is a nonlinear system of equations. Two special cases

are the following: 1) when -A/c < l1 - pi2, £.2 - PXij •_ A/c, then dimap = 0, and 2)

when p = 0, the problem reduces to the case of white Gaussian noise.

4.2 The Bussgang Algorithms

Fig. 4.1 illustrates the Bussgang adaptive blind equalization algorithms when an LMS type or

stochastic gradient algorithm [53] is used for the adaptation of the equalizer coefficients, and the

nonlinearity g(')[.] is memoryless [3], [4], [23]. The following equations, consistent with the block

diagram of Fig. 4.1, describe the Bussgang family of algorithms:

_(i) = [ul (i),. . . , UN(i)]' equalizer taps

_u(0) = [0,.. .,1,. ... ,O]T initial tap values

y(i) = [y(i),. .. ,y(i - N + 1)]T input to the equalizer block of data

i 0, 1,2,... iteration index
(4.27)

i(i) = ui(i)y(i) equalizer output or reconstructed sequence

d(i) = g(i)[i(i)j = g(i)[uH(i)y(i)j output of n,-nlinearity

e(i) = d(i) - i(i) error sequence

_u(i + 1) = u_(i) + jiy(i) , e*(i) LMS-type adaptation
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4.2.1 Convergence Rate and Properties

From (,1.27) amd l.'igure .4.1, it is apparent that the output sequence of the nonlinear function,

d(i). "plays the role" of thie desired response or the training sequence. It is also

apparent that the Bussgang technique is simple to iinpleinent and understand, and it may be

viewed as a minor modification of the original LMS algorithm (the desired response of the original

LMS adaptation is a mernoryless transformation of the transversal filter output). As such, it is

expected that the technique will have convergence that will depend on the eigenvalue spread of

the autocorrelation matrix of the received data {y(i)}.

From (4.27), the LNIS adaptation equation for the equalizer coefficients is given by

LL(i d- 1) = ,_(i) + gi(i) e'(i) (4.28)

If we obtain the expected value (ensemble averaging) of (4.28), we have

EJR(i + 1)1 EfI(i)} + juE {Ywi (g(i)r[i(i] - Ol

- E{,_(i)} + jzE {y(i)g(L)[.(i)]} - yE{y(i)0(i)}. (4.29)

The adaptive algorithm converges in the mean when

S{_( i)g(L)'[•(=i)]} E{y(0i).,(i)} (equilibrium)

and it converges in the mean-square when

£ {,_ut(i)y(i)g(L r(i)j} -(20
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E •(i)g(')'[i(i)J} = E{i2(i)i(i)}. ((4.30)

Thus, it is required that the equalizer output i(i) be Bussgang at equilibrium.

Note that identity (4.30) states that the autocorrelation of 1(i) (right-hand side) equals the

cross correlation between i(i) and a nonlinear transformation of i(i) (left-hand side). Processes

which satisfy property (4.30) are said to be Bussgang [10]. In summary, the adaptive Bussgang

techniques converge when the equalizer output sequence, {.:(i)}, becomes Bussgang (necessary

condition).

A stochastic gradient algorithm (steepest descent) essentially minimizes iteratively a perfor-

mance index J(i) = E{G[:(i)]} with respect to the equalizer coefficients u(i). A more general

form of the equalizer taps adaptation equation (4.28) is [25]

u_(i + 1) = u(i) - itV.J(i) (4.31)

where V,,J(i) is the gradient of J(i). Differentiating J(i) by using the composite function rule,

we obtain

V•J(i) = -E{V•[i(i)].V[(i)}

= -E{y(i). V1 [G(i(i))]} (4.32)

By dropping the expectation operation, i.e., by using a single-point unbiased estimate,

we obtain
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V7,J(i) -y(i)e'(i) (4.33)

where

e*(i) = 7j[G(i(i))

- g(i"[j(i)]_ - '(i) (4.34)

Equation (4.3.4) shows the relationship between the nonlinear function g(i)[-] used in the Bussgang

Techniques with the nonlinear cost function G[-] which defines the performance index, J[-].

Example for one-dimensional modulation (PAM)

The first blind equalization algorithm was introduced by Sato in 1975 [47] for PANI signals. He

chose the simple nonlinear function

g(_i) = 'ysgn[i•] (4.35)

where -t is a gain parameter which must be chosen to satisfy the Bussgang property (4.30) i.e.,

E{i(i).-ysgn[(i(i)]} = E{Ii(i)12}

or

"- = E{N(i)j} /E{[i(i)I}. (4.3(6)
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We could also write Sato's algorithm in terms of

Ii5)=-- 1: (4.37)2

4.2.2 Extension to QAM modulation

The extension of Bussgang algorithms to two-dimensional constehations (QAM) is somewhat

straightforward [3), [41]. In the case of t,• independent quadrature carr-ers, the conditional

mean estimate of an equivalent complex transmitted symbol x given the complex observation

x = -±ýR j+ i can be written as

d = E{x /i} = g[iR] + Jg[-7-]. (4.38)

We keep the notation simple by omitting (i). For example, the Sato nonlinearity for OAM signals

takes the form [47).

g(i) = -ycsgn(i) = -y{sgn(iR] + j sgn[ij]}. (4.39)

It is clear that real and imaginary parts of the data can be estimated separately. The complex

data. equivalent of the adaptive Bussgang Techniques is described in (4.27), but with

g'i)[i(i) ' g9i)[[- (i)] + j 9( -)[iI(i)]. (4.40)

Consequently, the error sequence is

2i3(i)) Pg(01 - i(i) (4.41)
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For example, the "Stop-and.Go" algorithm introduced by Picchi and Prati [41] is an adaptive

Bussgang technique with the following nonlinearity

g[i(i)] = i(i) + -lAi(i) - -Ai(i)
2 2

1 - -1B5.(i) (4.42)

where 1(i) is defined as the quantizer (slicer) output in Figure 4.1 and (A, B) is a pair of integers

taking values (2,0) or (1, 1) or (1,-1) or (0,0). The values of (A, B) are generally different at

each iteration, and how they are chosen is described later in this section.

Another example of a Bussgang technique is the heuristic modification of the Sato algo-

rithm suggested by Benveniste and Goursat [5], [6]. In this case, the nonlinear function takes the

form

g[i(i)j = i(i) + kii(i) - k1 i(i) +

k2li(i) - i(i)" [Tcsgn[P(i)]- i(0)

or

g[i(i)] = i(i) + Ji(i) - .i(i)I {kfejargtp(i)x-i)]+

k2(-'csgn[E(i)] - i(i)]} (4.43)

where k2, k2 are constants. From (4.38) we observe that the Benveniste-Goursat error function
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[aiy be seen as a weighted stink of the l)ecision Directed (1)1)) [43] anti Satoi errors. ()n the

other hand the "Srop-and-Go" error function (4.37) is the weighted si•i of the 1)1) error antd

its conjugate. The weiglits of the two algoritlihis, however, are chosen in a coni pletely different

inanner.

4.2.3 Unknown Carrier Phase: The Constant Modulus Property

Equation (4.33) can be written in polar coordinates as

(I = E' {fx/.ij I r e' . (-.-t,

If we assume that all rotated constellations are equally likely, since the carrier phase is

unknown, then the conditional mean d in (-1.39) has the same argument as i, and is given by

d -- ý([IýJ]• e-1 ,,.r(. (4.45)

where ý[.] is a nonlinear function and 1j1 = x + ./, arg(.) arctan[i/IR]. Combining (4.39)

with (4.4u) we obtain [3]. [4], [23]

e(i) = d(i) - (i)

= -F •[ • I I ej- gt[ (0)1 (1 .(i

= (O d()[ x-f.(i0i1] - ]. (-1.46)

Hence. the error term is independent of any fixed phase rotation of the signal constellation.

Equation (4.27) also represents the Bussgang technique for the case of unknown carrier phase,
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provided we substitute e(i) in (4.27) by e(i) of (4.41).

Example: The Godard (or CMA) Algorithm [22], [50]

Under the assumption that all rotated constellations are equally Likely, Godard [22] suggested

that f[•Ii] in (4.41) be chosen as

Ul~i] = IjI + RplI.P- 1 - i:2P-1 (4.47)

where Rp is a real constant. As we shall see this form has some very nice properties. Special

cases of (4.42) include

f[I•JI + (t R .2)1,ýj- 1j213 (p = 2)

and

§([jj1]) = R, (p = ).

The parameter RP is a gain constant which has to be chosen according to (4.30). Since

g[l(i)] = )I(i)I (4.48)

combining (4.43) with (4.30), we obtain

E{ i(i)1 2 + RIpi(i)Ip- pi(i)1 2p} l E{fi(i)I 2 }

or

E{I(i)I (4.49)

2L{6±(i)IP4
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At perfect equalization, i(i) = x(i)ejo (assuming time delay D = 0), and thus

RP -= 1p, where mp= E{I?(i)IP}.

Combining (4.34) and 4.43), we obtain the Godard performance index nonlinearity, namely,

G(.(i)) = _1(Ji(0JP - Rp) (4.50)
2p

Fig. 4.6 summarizes the nonlinear functions of the Bussgang iterative techniques.

4.2.4 The Sato and Benveniste-Goursat Algorithms

Sato [461 introduced the first blind equalization scheme in 1975 by introducing the sign non-

linearity to generate the desired response of the adaptive scheme shown in Figure 4.1, i.e.,

d(i) = -' sgn [i(i)]. In 1986, Sato [471 extended his 1-D PAM algorithm to the multidimensional

blind equalization problem where all transmitted signals become vector processes and all impulse

responses (channel and equalizer) are square matrices. The extension, however, is straightfor-

ward. For example, in the two-dimensional case of QAM signals the "sign" nonlinearity becomes

the "complex sign" defined by (4.34). The error signal of the Satw algorithm

e,(i) = 7 cgn [i(i)] - ;i(i) (4.51)

is very noisy around the solution unless the transmitted sequence x(i) takes only the values ±1.

In other words, although e,(i) is zero-mean at the solution, it has a large variance. On the other

hand, the Decision Directed (DD) error signal eD(i) = i(i)--(i) ( see Figure 4.6) [33], though not

robost for blind equalizers, enjoys the property of being identically zero at the solution. Hence,
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Benveniste-Goursat [5] suggested the idea of combining (heuristically) both error signals in the

form of a weighted averaging as follows

eBG(i) = k, eD(i) + k2 es(i) IeD(i)I (4.52)

where kj, k2 are constants. The rationale behind the error expression (4.47) is the following.

Before the eye of the equalizer opens, IeD(i)( is large and thus the Sato error es(i) contributes to

the proper direction. At the opening of the eye and thereafter IeD(i)l becomes small and the DD

mode of the error eBG(i) takes over to speed up convergence and to achieve faster rate than the

original Sato algorithm with es(i). It is no wonder, therefore, that in our simulation experience

we have seen the Benveniste-Goursat (BG) algorithm exhibiting initially very slow convergence.

A faster convergence rate has been observed only after the eye opens. The Benveniste-Goursat

algorithm may be seen as the Sato algorithm that switches automatically to a DD one when the

eye of the equalizer opens. The extension of the Benveniste-Goursat algorithm to a Decision

Feedback Equalization (DFE) implementation [2] was given by Macchi et al. [32].

4.2.5 The Godard and Donoho (or Shalvi-Weinstein) Algorithms

The basic motivation behind the development of Godard's algorithm introduced in 1980 [22] was

to find a cost function that characterizes the amount of ISI at the equalizer output independently

of the carrier phase. Since the input sequence x(i) is i.i.d., the cost function that satisfies the

aforementioned conditions is

JP = E~.(j-xij)) .. 3
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which depends on the input sequence, For p = 2, and q = 2, j( 2 ) takes the form

J(2) = E{[i(i)14 + Ix(i)1 4 - 21i(i)12 Ix(i)I 2 } (4.54)

where w- assume that ETx 2(i)} = 0. However, (4.48) or (4.49) can not be used in practice because

{x(i)} is inaccessible. To avoid this difficulty, Godard [22] suggested the use of a dispersion

function

D(P) = E {( 1 () 1  p -Rp)q} (4.55)

which was shown to behave like the cost function J(P) and yet it is independent of the input

sequence. Note that RP is defined by (4.44). Assuming p = 2, q = 2, (4.49) and (4.50) can be

written as [22]

j( 2 ) =j,+j2+

14(E {IX(i)12})2 .lf(0)I 2 - 2(Lf{IX(i)I1)2}) 'I f(k) 12  (4.56)
k

and

D(2) = j, + j 2 +

{4(E{fx(i)12})2. lf(0)I2 - 2E{Jx(i)14}} •. f(k)12 + R2 - E{,x(i)141} (4..W7)
k

where E is taken for k $ 0 and

, = E{Ix(i)j4} (1 - If(O)2) + E{fz(i)14}1 i If(k)14 ,
k
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J2 = 2(E'flx 1)2}). Ifk)" - •ifk)l4} (4.51)

Comparing (4.51) with (1.52), we see that for D(*-) to be similar to J(2 ) , the following inequality

must be satisfied:

4(F'jl.x(i)' 2-})2 lf(0)1'2 - 2E{Ix(i)j"} > 0

or

if(0)12 > 2(E{lx(i)l})2 . (4.59)

Godard suggests (4.53) and f(i) = 0 for i t 0 as a way of initializing his algorithm.

Based on what has been reported in literature [50] and on our simulation experience, the

Godard algorithm has always converged to a minimum that opens the eye when Godard's initial-

ization procedure is being followed. The Godard algorithm is summarized in (4.2';) and Fig. 4.6.

Its convergence for p = 2 is better than p = 1. In addition, Godard noted that convergence im-

proves when the step size IL is divided by 2 at each 10,000 iterations [22]. The Constant Modulus

Algorithm (CMA), suggested independently by Treichler and Agee in 1983 [50), is the Godard

algorithm for p = 2 and R 2 = 1. Ding et al. [15] reported that the Godard-type algorithms

exhibit local (not global) undesirable minima.

Shalvi and Weinstein recently introduced [48] a blind equalization scheme based on the idea of

matching the kurtosis measures between the transmitted sequence {x(i)} and the reconstructed

sequence {.(i)} at the output of the equalizer. The kurtosis of the input complex sequence x(i),

is defined byv

IK(x(i)) = E{lx(i)14} - 2E2{Ix(i) 12} - IE{X2 (i)}11 2  (4.60)
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which is zero for complex Gaussian random variables. The important point made in [',8] is that

if E{li'(i)12} = E{Ix(i)12 }, then (1) IK((i))Il _ IK(x(i))I and (2) K(2(i))I = fK(x(i))I if

perfect equalization is achieved. Thus, the problem is to maximize the magnitude of the kurtobis

measure IK(.i(i))I in the output of the equalizer at each iteration subject to the constraint

E{ i(i)i 2} = E{Ix(i)02 }. One of the special cases of the Shalvi-Weinstein algorithm is the original

Godard algorithm. It has recendy been recently reported that the Shalvi-Weinstein algorithm was

originally introduced by Donoho [16] for real-valued signals and that the algorithm's convergence

is only guaranteed for infinite-length equalization filters.

4.2.6 The Stop-and-Go and Decision-Directed Algorithms

The basic idea behind the Stop-and-Go algorithm, which was proposed by Picchi and Prati

[41] in 1987, is to retain the advantages of simplicity and fast convergence (in open eye-pattern

conditions) of the Decision directed (DD) algorithm [33] while attempting to improve its blind

convergence capabilities.

The adaptation error eD(i) used in the DD algorithm is [33]

eD(i) * () () (4.61)

where i(i) is the output of the equalizer and i(i) the output of the threshold detector. Assuming

that the equalizer initial tap setting corresponds to a closed eye-pattern, eD(i) will be large most

of the time due to the large number of incorrect decisions i(i). Consequently, the DD algorithm

cannot converge in closed eye-pattern conditions.

In the Stop-and-Go algorithm, Picchi and Prati proposed the use of the error sequence
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1

e(i) = -{A(i)eD(i) + B(i)el(i)} (4.62)
2

where

A(i) IR(i) + 11(1)

B(i) = IR(i)- II(i)

and

1, if sgn[eD(i)]R = sgn[es(i)]R
IR(i) =

0, otherwise

ItI 1, if sgn[eD(i)]I = sgn[es(i)]l

0, otherwise.

Note that es(i) is the Sato error given by (4.46).

From the foregoing, it is clear that the Stop-and-Go algorithm is essentially the DD algorithm

when the eye is open. It is mostly during closed eye-pattern conditions that the Stop-and-

Go adaptation rule takes place. Also, it is clear that the Benveniste-Goursat and Stop-and-

Go algorithms have different convergence properties when the eye-pattern is closed and similar

convergence properties when the eye is open. The modifications of this algorithms have been

proposed to incorporate joint equalization and carrier recovery, decision feedback equalization [1]

as well as fractionally spaced equalization (21], [45].
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4.3 The CRIMNO Algorithm

Although the Bussgang algorithms are different from each other, as we have seen, they perform

only memoryless nonlinear transformations on the equalizer outputs to generate the desired re-

sponse. This, in turn, implies that the cost functions they attempt to minimize with respect

to the equalizer coefficients are also memoryless. These algorithms do not explicitly employ the

fact that the transmitted data are statistically independent, which is the essence of the new crite-

rion we introduce in this section. Since statistical independence of the transmitted data involves

more than one data symbols, this results in a memory nonlinear transformation on the equalizer

outputs and thus a memory nonlinear cost function.

4.3.1 Criterion with Memory Nonlinearity

As we have seen, Godard solves the blind equalization problem by proposing a cost function

which is independent of the transmitted data, and yet reaches its global minimum at perfect

equalization. The Godard cost function ( also known as the constant modulus algorithm (CMA)

[22] is given by (4.50) and (4.44).

Note that only the expected value of some function of the current equalizer output appears

in Godard's cost function. Therefore, the Godard criterion only makes use of the probability

distribution of the transmitted data. It does not explicitly use the fact that the transmitted data

are statistically independent.

Assume that perfect equalization is achievable and consider the situation where perfect equal-

ization has indeed been achieved. That is

i(i) = x(i - D)
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where d is some positive number, which accounts for the delay. Since th, transmi. td 41at;

x(i) are statistically independent from each other, so are the equalizer outputs i(i) at perfect

equalization. In addition, for most transmitted data constellations, the mean of transmitted data

x(i) is zero. Therefore, at perfect equalization , we have

E{c(i)'(i- l)} = E{z(i - D)x*(i - I - D)} = E{x(i - D)} -E{x(i - I - D)} = 0

By making use of this property and combining it with Godard's criterion, we obtain a new

criterion, called criterion with memory nonlinearity (CRIMNO), which is the minimization of the

following cost function:

M(P) = woE (J1 (i)1 P - Rp)2 + W1 jE{i(i).F(i - 1)}12 + + w,11E{(i)x E(i - M)112 . (4.63)

The rationale behind the CRIMNO is that since each term reaches its global minimum at

perfect equalization, by appropriately combining them, we can increase the convergence speed of

the corresponding CRIMNO algorithm [12], [13]. This is clearly demonstrated in the simulations

section.

Remarks:

1. Memory nonlinearity: the CRIMNO cost function depends not only on the current equalizer

output, but also on the previous equalizer outputs. As such, it results to a criterion with

memory nonlinearity. The parameter M determines the size of memory.

2. Generalization of the Godard criterion: when w0 = 1, wi = 0 for i $4 0, the CRIMNO

cost function reduces to the Godard cost function. Therefore, the CRIMNO criterion may

be seen as a generalization of the Godard criterion.
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3. Constant Modulus Property: the CRIMNO criterion preserves the constant modulus prop-

erty inherent in Godard.

4.3.2 CRIMNO Blind Equalization Algorithm

Define the equalizer coefficient vector u(i) [u 1 (i),'" , UN(i)]T, and the received signal vector

y(i) • [y(i),-.. -y(i- N+ 1)]T, where N is the length of the equalizer. Then the equalizer outputs

are

j(i _ 1) = YT(i- l). Zi), I = O, 1,._..,M , (4.64)

where superscript T denotes transposition of a vector.

Differentiating the cost function M(2) with respect to the equalizer coefficient vector u(i), we

obtain [12]

8a_(i) - 4woE[y*(i)i(i)(xi'(i)j2 - R 2 )]

+2w,[E(y_*(i - 1)()E•().i- 1)) + E(y_*(Oik(i- 1))E(.i(i).i*(i - 1))]

+2wm[Ey_(i - M)i(i))E(5'"(i)i(i- M))+ E(y_*(i)i(i- M))E(i(i -(i - M))]. (4.65)

By using the steepest descent method to search for the minimum point, we obtain

u(i + 1) = u(i) - a. {4woE[y_(i).(i)([i(i)I 2 - R 2]
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+2w.iy[L(y'(i- l).r(i))E{'(i)i( - 1)) + '(y'(0i)1(i- M))E(i(i•i(i- M))1(4.66)

wheie

iL') • [11 1(i) .. U..• ))T

In (4.6), the expectation are the ensemble averages taken with respect to transmitted data x(i)

while the channel impulse response f(i) and the equalizer coefficients u(i) are treated as fixed.

If we use single point estix1 ates for the ensemble averages, we obtain the stochastic gradient

CRIMNO algorithm:

__(i + 1) aui) - a[4wOy-(0)(i)(Ii(i)12 - R 2) + 2w,(y*(i - 1)•(i)l.(i - 1)12 + y*(i - I)(i -1)}I)

+... + 2wm(y((i):i(i - +((i - + - )1(i)12)]

- u_(i) - [y(i)•(i) * (4wol•(i)( 2 + 2wiji(i - 1)12 +-. + 2w.Pji(i - M)12 - 4w0 R2)

+2wly*(i - 1)i?(i - 1 t(i1 +.-.. + 2wmy/*(i -- I•i- ~a(~•.(1•7

Note that at each iteration, all equalizer outputs ,ý(i - 1), 1 = 0, 1,. .. , ! are recalculated using

current (most recent) equalizer coefficient vector u(i) via i(i - 1) -= y"T(i - l)Lt(i). This requires a

lot of computations. If, instead of using the current equalizer coefficient vector u(i). we use the

delayed equalizer coefficient vector _(i - 1) to calculate i(i - 1). Note that (for small step-si7-

which is required for the stability of stochastic gradient-type algorithm, the difference between

u_(i) and u(i - 1) is negligible. Then at each iteration we will need to calculate only one equalizer
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out put X( I ) ui.,ing t the cu:t'eiit eqI allizer coetIlic Iit vector u( i ).

4.3.3 Adaptive Weight CRIMNO Algorithm

Hihe shape of 'ie cost fiunction depends onl the choice of weight t't. So does the perfo'i ance of

tie CRIZ B NO algorithm. IIere, wr descl'i he anl ad hot way of adjijusting t I e weights on-linlte in the

bMind equalization process.

The basic i( ea is to estimate the value-s of' ail terms iii the C'RIMNO cost function over a

block of data and then set the weights used inl tlie, next block proportional to the deviattion., of

tie correspotidiuiŽ term'lls fromii their ideal values at perfect equalization. The rationale bhhitid

this scheme is that if one term iIn thte crithittias a large deviation frnni its ideal value, then in

the next block the weight ta.ssclited ý%itlh it will be set. equal to a large value, and consequently,

the gradient-descent method will bring it down quickly.

To elaborate on this idea, we rewrite the CRININO cost function as

A I() w• 0 JO + 1J1 + +-1 w1J.%, (4.68)

v here

JO = E(1i1(i)['- R-)2

J 1 E(5(i)i.(i- 1)K 1 < 1 < Il. (4.69)
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l~elih ,' ti h,' d,•.tiiei nq h, I i hL i ,i t le i h .1.) to,

11ýl-O J - •"l (,1.70)

hc1e ,Is tlie -110e of .1, perect equalization (J") - , 01 1, - At). Then the weights

.11," ",d.iiu ted k siiii thl, tollovi1i" foriiiulae:

I "oD(Jo) "ToD(Jo) < A

A -.oD(Jo) > A

D l(JI) I D(Jj) < A

w, = (,.71){A I D(JI) _> A

where A•0 > 0 ik the scaling constant for the first term, I > 0 is the scaling constant for the other

terms in the CRININO cost function, and A is a constraint on the maximum value of the weights

*O •uarantee thst tabilitv of the algorithim.

1lhe tRIN.iNO algorithiin with weights adjusted in this way is called adaptive weight CRIMNO

.: -1. Soiw in -dpth coininents are proviled below:

\\ he tih, deviatinl o, .l1 termis vary proportionally, the adaptive weight scheme be-

c,:,' a' adaptive step-si'e algorithm. Moreover, the adaptation is done automatically.

- , a, ti' h.i nnvoiwres, then weights decrease to zero. Hence, the adaptive

. 'RIINo() ru•im acquires as a byproduct the decreasing step-size, which has

, hb a:i inal 'trat,,v for equalization [511.

2 V .... ... . .,- ,,i,):: 1 • •IX .O a orithi , the shape of the cost function is changing.
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The local minima of the cost function are also changing. Thus, what is local minimum of

the cost function at one iteration may not be at the next iteration. However, whatever

the change of the weights, the global minimum does not change, and it always

corresponds to perfect equalization.

3. The adaptive weight CRIMNO algorithm tends to move out of a local minimum of the cost

function quickly, if the cost function has local minima and the algorithm gets trapped in

one of them. This is based on the following arguments. In the adaptive weight CRIMNO

algorithm, the equalizer coefficient increment, Au(i+ 1) = u(i+ 1) -u(i) is a random vector,

the variance of which determines how fast the algorithm will move out of a local minimum.

The variance of the equalizer coefficient increment depends on the step-size c, gradient

Sand the weights w, (proportional to D(J1 )). The step-size and gradient are the same

with the fixed weight CRIMNO algorithm; we thus concentrate on the third one: w1 , or

equivalently D(JI). At a global minimum of the cost function, D(JI) are all small, thus,

the variance of the equalizer coefficient increment is small. Therefore, the algorithm will

remain neai the global minimum. However, that is not the case with a local minimum. In

that case, D(J1 ) will be large, therefore, the variance of the equalizer coefficient increment

will be large (relative ot the case at the global minimum), and the algorithm will move out

of that minimum quickly. Moreover, the larger the deviation D(Jd), the more quickly the

algorithm will move out of the local minimum.

4. Blocks of data are used to estimate {J11. The block length should be sufficiently long to

make the variances of the estimates small, but not long enough to make the weight update

fall behind.
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4.3.4 CRIMNO Extensions

In this section, the CRIMNO ideas, i.e., memory nonlinearity, are extended to the following cases:

(1) the case of correlated inputs; (2) the case when higher-order correlation terms [38] are utilized.

Colored CRIMNO

One of the key assumptions in the CRIMNO criterion is that the transmitted data are independent

and identically distributed (i.i.d). However, in practice, this may not be true for QAM signals.

Usually, in order to overcome the phase ambiguity caused by the squaring loop foi carrier recovery,

differential encoding techniques are used, which correlate the input data when the source symbols

are not equiprobable. Since the operations of differential encoding are known, the autocorrelations

of the input data can be derived. In the case where the autocorrelations of the input data are

known a priori, the CRIMNO criterion can be modified as follows:

M(P) = w0E(ji(i)jP-R P)2 + wiE(i(i)i*(i- 1) -/311 2 +" wm w A[rIE(.i(i):i'(i - M)) -,311 2 (4.72)

where 31- E(x(i)x*(i - 1)) are the known autocorrelations of the transmitted data.

Higher-Order Correlation CRIMNO

Here, a criterion which exploits the higher-order correlations, such as the fourth-order statistics

of the equalizer output, is given below:

Mfhp = woE([i(i)[P - Rp) 4r wj[E(•(i )•( i -P =l2))12

+ vjklE((i)1(i - j)N(i - k)F(i - 1)12 (4.73)
j,kj all different
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The performance of both (4.73) and (4.74) criteria needs to be investigated.

4.3.5 Computer Simulation

Computer simulations have been conducted to compare the performance of the adaptive weight

CRIMNO algorithm with that of the Godard (or CMA) algorithm. Fig. 4.6 shows the perfor-

mance of the adaptive weight CRIMNO algorithm, compared with that of the Godard algorithm

under the different step-sizes, including the optimum one: We see that the performance of the

adaptive weight CRIMNO algorithm is better than or approaches that of the Godard algorithm

with optimum step-size. Fig. 4.7 shows the performance of the adaptive weight CRIMNO algo-

rithm for different memory sizes (M = 2.4.6). Fig. 4.8 shows that the corresponding eye-patterns

at iteration 20000. We see that the larger the memory size M, the better the performance of

the adaptive weight CRIMNO algorithm. Table 4.2 lists the computational complexity of the

CRIMNO algorithm, the adaptive weight CRIMNO algorithm, and the Godard algorithm. We

see that there is only a little increase in computational complexity. Therefore, the performance

improvement is achieved at the expense of little increase in computational complexity.

5 ALGORITHMS WITH NONLINEARITY IN THE INPUT

OF THE EQUALIZATION FILTER

The Polyspectra Based Techniques

Another class of blind equalization algorithms are those algorithms which are based on higher-

order cumulants or polyspectra [361. such as the tricepstrum equalization algorithm (TEA)

[24], the power cepstrum and tricoberence equalization algorithm (POTEA) [7], and the cross-

tricepstrum equalization algorithm (CTEA) [8]. All these algorithms perform nonlinear transfor-
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mation on the input of the equalization filter. This nonlinear transformation, e.g. the generation

of the higher-order cumulants or polyspectra of the received data, is a memory nonlinear trans-

formation, because it employs both the present and the past values of the received data. The

use of the higher-order statistics of the received data is necessary for blind equalization, since

the correct phase information about the channel can not be extracted from only the second-order

statistics of the received data [14], [291, [34], [35], [371, [42].

5.1 Definitions and Properties: Cumulants and Higher Order Spectra

The readers are assumed to be somewhat familiar with the basic material of higher-order spectra.

However, some important properties which will be used in the subsequent sections are given.

5.1.1 Definitions

1. Definition of Cumulants:

Given a set of n real random variables {xl, x2 ,. , x,}, their nth joint cumulants of order

is defined as

16(j '•ln¢b(VI, V2,. ",Vn)
L(xi,,x2,..., x,.,) aV•a2 ()' ... aVn VI = V2= .=v = 0 (5.1)

where

(V1, V2,..,vn) = E{exp j(vix, + + Vnx,)}. (5.2)

Given a real stationary random sequence {x(i)} with zero mean, E{x(i)} = 0, then the

nth-order cumulant of the random sequence depends only on the time difference and is
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defined as

L.(-1,= -r2,." -',nn-1) j I (v1 ,v2 ,.-. ,v9 ) vn = v2 = v = 0 (5.3)

where rl, -r2 , - •., T,_1 are integers and

4ý((vi, v2 , ,v,n) = E {exp i (v 1 X(i) + v 2 X(i + ri) + ... + vX(i + r,• 1 ))} (5.4)

Given a set of real jointly stationary random sequences {xk(i)}, k = 1, 2,-.- , n with zero

mean, E{xk(i)} = 0, then the nth-order cross-cumulant of the sequences depends only on

the time difference and is defined as

A _)n 4Onln-t,,1,2"-.n(v1 V, n)1

,l.2....,n(rýr2,." "'r,-1' _,vlav 2  ".Vn V2 Vn = 0

(5.5)

where rl, r 2, - .. , r7- 1 are integers and

'.,1,2,...,((v1, v2, ... ,'v) = E {exp j (vlxl(i) + v2 X2 (i + rl) + + vnXn(i + ,,-I))}.

(5.6)

2. Definitions of Higher-Order Spectra.

Higher-order spectra are defined to be the Z-transforms of the corresponding cumulants

[34], [38]. Specifically, a nth-order spectrum of a real stationary zero mean random se-

quence {x(i)} is just the (n - 1)-dimensional Fourier transform of the nth-order cumulant

L,,,(r, r2,- ,) of the random sequence. That is
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n-i

x(z 1 , Z2 . .Zn- 1 ) :: L , L(71, 72, 7,n -I J ) Z77
Tr,r 2 ,",n- 1=1

When n = 2, 3,4 the corresponding spectrum is called power spectrum, bispectrum, and

trispectrum, respeectively.

A nth-order cross-spectrum of a set of real stationary zero mean random sequences {Xk(i)},

k = 1,2,.. -,n, is defined as the (n - 1) dimensional Z-transform of the nth-order cumulant

,,,(, r,..- . I,) of the random sequence, that is

n--1

S 1 ,1,2,...,n(Zl,Z 2 ," ",zn-1) • • 1,2,.. n(1,r2,- ",n-I) fi z-'. (5.8)
T1 Jr2 ,'"Tn-- -1

3. Definitions of coherence.

Coherence is defined as the higher-order spectrum normalized by the power spectrum.

Specifically, a nth-order coherence of a real stationary zero mean random sequence x(i) is

defined as

Rx~zl Z2," ", z-1) •S.(Zl' Z2' "" Zn-1)[R(z(z(z, Z2 Z,)=-1) ('5.9)
[S-(ZIS•(Z• ...Sx(z,-I)S(Flz= I I)1

An alternative definition for the nth-order coherence, which is equivalent to the above

definitions, is
1] [1

4. Definitions of Cepstrum of Higher-Order Spectrum

The cepstrum is defined as the inverse Z-transform of the log function of the spectrum.

Specifically, a cepstrum for the nth-order spectrum of a real stationary zero mean random
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sequence {x(i)} is defined as

C,,( r,. T2. , - _,), z -'- I- I (--, 2, . ,z _ ) (5.11)

A cepstrurn for the nth-order cross spectrum of a set of real stationary zero mean random

sequence {x(i)}, i = 1,2,.. .,n, is defined as

ex,1,2,...,n(7j, 72,, 7,n_1) z Z _ (5.12)..
•,-' " = n S , 1 ,2 ,...,nz--, z 2 , z,- (5.12)

When n = 2,3,4, the corresponding cepstrum is called power cepstrum, bicepstrum and

tricepstrum, respectively.

5.1.2 Properties

Some important properties of cumulants are shown below.

1. If xI, x2 ,. ., x,• can be divided into two or more groups which are statistically independent,

then the cumulant L(xi, x 2 ,. . ., xn) is zero.

Specifically, if {x(i)} are an independent, identically distributed random variables, the nth-

order cumulant of the sequence {x(i)} is

Lx(r 1 , r2., T- 1n-,) -y6(7,)b(r 2 )- .. 6(r.-) (5.13)

2. Cumulants of higher order (n > 3) are zero for Gaussian processes.
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3. If {x(i)} and {y(i)} are statistically independent random sequences and, z(i) = x(i) + y(i),

then

L (71,r 2 ,. . .,rn) = L.(r,,r2, 7 .... r ) + L,(ri, 72, ., 7n-). (5.14)

5.2 Tricepstrum Equalization Algorithm (TEA)

5.2.1 Problem Formulations

We assume that the received sequence after being demodulated, low-pass filtered and syn-

chronously sampled (at rate }) can be written as:

L 2

y(i) = z(i) + w(i) = E f(k)x(i - k) + w(i) (5.15)
k=-L1

where the nonminimum phase equivalent channel impulse response {f(i)} accounts for the trans-

mitter filter, non-ideal channel (or multipath propagation), and receiver filter impulse response;

the input data sequence {x(i)} is generally complex, non-Gaussian, white, i.i.d., with E{x(i)} =

0, E{x(i)3 } = 0 and Efx(i)4 } - 3[E{X(i) 2 }12 = 7- 5 0; for example {x(i)} could be a multi-level

symmetric PAM sequence or the complex baseband equivalent sequence of a symmetric QAM

signal; the additive noise {w(i)} is zero-mean, Gaussian, generally complex and statistically in-

dependent from {x(i)}; we also assume that the channel transfer function F(z) (Z-transform of

{f(i)}) admits the factorization [24]

F(z) = A. I(z- 1 )• O(z) (5.16)

the factor I(z-') = 1-lL(1-akz-) Iakl < 1, IckI < 1, is a minimum phase polynomial, i.e., with
[ k= (1 -- k

zeros and poles inside the unit circle. The factor O(z) =- 11L, (1 - bkZ), Ibkl < 1 is a maximum
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phase polynomial, i.e., with zeros outside the unit circle. The parameter A is a constant gain

factor. Finally, the sequence {y(i)} is the input to the blind equalizer.

5.2.2 Relations of Tricepstrum of the Linear Filter Output

The input to the channel, x(i), is a non-Gaussian i.i.d. random sequence, thus

Sx(ZI, z 2 , z 3 ) = Tr (5.17)

The trispectrum of the output, y(i), of the channel (linear filter) is

Sy(zl, z2 , z3 ) = -. F(zi)F(z2 )F(z 3)F(z'z2'zz3')

= •. A4 - I(Zj 1 )I(z2') I(zý')• I(zI, z2 , z3 ) O(zl) . O(z 2 ) • O(z 3 ) - 0(21 'z2'z,' 15.18)

Taking the logarithm of Sy(zl, z 2 , z3) and then the inverse Z-transform, after some manipulation,

we obtain [24]
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log(-'A 4) m= n=1=0

-1A(m) m > 0, n = l 0

n

1 A I > 0, = (n = 0-•A(O >O,m=n=O

1 B(-m) m< 0,n = = 0cYM n, 1) 2= r (5.19)
1B(-)') n < O,m= 1 0

1B(-') l<0,m=n=O

I B(n) m = n = I > 0
n

A(n) m = n = l < 0

0 otherwise

where, AM), B(J) are the minimum and maximum phase differential cepstrum parameters of the

system, corresponding to I(z-1) and O(z), respectively. They are defined as follows:

L3 L4 L2

A(~~f I~Zj B( -~~~ (5.20)
k=1 k=1 k=1

In addition, the following identity holds between the fourth-order cumulants Ly(m, n, 1) and the

tricepstrum cy(m, n, 1):

E {A(J)[L,(m - J, n, 1)- Ly(m + J, n + J, I + J)]} +
J=1

E {B(a)[ILy(m - J,n - J,l - J) - L,(m + J, n,1)]} -m - Ly(m,n,l) (5.21)
J=l
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where we define,
SJ-A(J), J=1,.o

J .Y(J,OO ) =

1 B(-J), J = -l,. ..- z

A(U), B(d), J = 1,2,... are the minimum and maximum phase cepstral coefficients respectively,

which are related to the zeros F(z). However, in practice, the summation terms in (5.21) can be

approximated by arbitrarily large but finite values because A(g} and B(J) decay exponentially as

J increases.

In practice the fourth-order cumulants Ly(.) in (5.21) need to be substituted by their estimates

L4(-) obtained from a finite length window of the received samples {g(i)}.

The TEA algorithm, uses (5.21) in order to form an overdetermined system of equations,

i.e., we have more equations than unknowns. Then, TEA solves this overdetermined system

of equations, adaptively, using an LMS adaptation algorithm. At each iteration an estimate of

the cepstral parameters {A(')} and {B(J)} is computed. The coefficients of the equalizer are

calculated for {A(')} and {B(d)} by means of the iterative formulas.

5.2.3 TEA Algorithm

Let:

{y(i)}: The received zero-mean synchronously sampled communication signal.

N 1, N 2 : Lengths of minimum and ma-ximum phase components of the equalizer.

p, q: Lengths of minimum and maximum phase cepstral parameters.

(m, n, 1): Estimated fourth-order moments of {y(i)} at iteration (i).

/i W)(j: Estimated second-order moments of {y(i)} at iteration (i).

(), n, 1): Estimated fourth-order cumulants of {y(i)} at iteration (i).

Symmetric PAM or QAM Signaling:
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In general, for 1-1) (e.g. PAM) ur 2-D (e.g. (:AN) signaling with symmetric constellations:

i0)(in, I) = i4(')(m,n, I)- /-i)(r) • ')(n- - )--1 j)(n).lti)(l- m)--Rj,)(l).Rji)(n -,,i) (5.22)

For symmetric square (L x L) QAM constellations:

n•0{m, n) : m. n, 1) (5.23)

and ( ),B() are the minimum and maximum phase differential cepstrum parameters at iter-

ation (i) respectively. L1 and L2 are the orders of the minimum phase and maximum phase

components of the FIR channel, respectively. Note that, {ai}, ail < 1 and {)}, Jbj < 1 are

the zeros of the minimum and ma.ximum phase components of the FIR channel, respectively.

{u(i)}: The coefficients of the equalizer at iteration (i).

{J:(i)}: The coefficients of the equalizer at iteration (i).

At iteration (i): i = 1,2,...

Step 1 Estimate adaptively the L(')(m,n,l), -M <_ r,n,l < M, from finite length win-

dow of {y(k)} as described below. M should be sufficiently large so that Ly(m, n, 1) a 0

for Iml, tnl, III > M. Assuming that at iteration (0) we have received the time samples

{ y(1), . . y(Iag )} we proceed as follows:

Stationary Case with Growing Rectangular Window

<(in, 1) (1 - TI(Oi)) Ml(-')(m, n, 1) - 77(i) y,(S')y(S', + mn)y(S' + n)y(S. + 1) (5.24)

)(J) ( - 77(0) i-l)kj) + .(1) y(Si)y(Si + j) (5.25)

where, 17(i) gS2 = min(i + 2lag, + 'lag - n, 4- 'lag - -l), S;= min(i +
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Iakg. It +!g - j). b'inalIy suhstitui, (.52.21) and (5.5.)25) iuto (,5.22) or (.7.23).

Nonstationary Case

First Way:

for i < It use (5.2-1), (5.25) with q( i) .

tor i > I us' (,.2-), (5.25) with ql(i) 26 .i1d (5.2,

'i should have a smatll value (0 < q < I), for exaiiiple I, = 0.01.

Second WVay: (for symmetric L-- QAM signaling)

Sirce in this case the second-order nionteut R,(J) = 0, we can use M•l(in, ,tI) with a fhrtting

factor w, 0 < w < I as follows. (S_', is as before):

(i + [lag).. 'IYi(m 1z) = w.-(i - I + 1,g).,~- 1)(m, n, 1) + y(S4)yt(54÷ im)y(S4+ 7)yd(574 +l1) (.5 -27)

and substitute (i + /1a,)" -"1•i)(in n, 1) for (in, n, 1) everywhere.

Tnird Way:

Formulas (5.24) and (5.25) could be used in nonstationary environments by reinitializing the

a1gorithm after certain number of iteration or when a channel change is detected,

Remarks:

e By using the symmetry properties of fourth-order cumulants only (2.t I) cumulants needS- • 24

to be calculated.

e The assumption that 1lag data have been received at iteration (0) avoids ill conditioaing

of the matrices of the system given in Step 3. It causes a delay to 'lag at the input of thr
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equalizer.

Step 2

Select p.q arbitrarily large so that At') -- 0 and B(-) -_ 0 for I > p and J > q. For example,

C' 110 very small constant)

.4ý1) -0 for I>p=int[log ]

B(J) - 0 for J > p = int [log C] (5.28)

where. in.'- denotes integer part and mazxail < o < 1, max bil < 0 < 1.

Define: u' = rnax(p.q).z < '-.s < z

Step 3

Using the relation:

P

Z {~' L~)( rt - n, n ) ~( + In + II+I)}+

{B" it))rn - J, n - ,I -1J)- ( ,n(m + J, n,)]} 1 m- (,nl) (5.29)
J=I

with rrt -, ...... -1, 1 . ,n= -z. 0. z andl= -s,...,O,..., to form the overde-

termjir~e' svstem of (iquations:

11(2). izi P'i(0) z =- 0, 1,2,.... (5.30)

•, [ is *.\N x (p ,- q)ý (whore NP, 2w x (2z + 1) x (2s + 1)) matrix with entries of the

forrr.. LJ."J n i ")(~A. 7, A): ......,j(',, /) , (T denotes transpose)(52= .. ...... (,)
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is the (p + q) x 1 vwctor of unknown cepstral parameters; i(i) is the Np x 1 vector with entries

of the form {-rn -](,1)}.

Step 4

Assume that initially &(O) = [0,..., 0]T. Update &(i) = [A(i),..., .(.,(1), ."", as follows

a (i + j) = a~)+ It( 1). j6H~i"ii,(.

ý(i + 1) = P(i) - P(i) d(i), 0 < M(i) < 2/tr{P"(i). P(i)} (5.32)

Step 5

Calculate the equalizer normalized coefficients. Initialize Zjiin(i,O) = Oinv(i,O) = I and the

estimate:

1k+1
iinv( i, k) = kn2() iviIk-n+1

ni2

k = 1,.,N, (5.33)

(•= 1: Z [ 7')] 6j,,(1, k -n + 1)

k = -1,.,-N2 (5.34)

where (i) is the iteration index taking values i = 1,2, 3... Then,

ftnorm(i, k) = linv(i, k) * 5i,(i, k), k = -N 2 ,..., 0,..., N 1  (5.35)

where {*} denotes linear convolution.

Step 6
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Estimate the gain factor .A(i) as follows: In step (1) we have already calculated:

k

Y,'(o) -- Q . -•(f(k)) 2  (5.36)
k

where Q, = E{(x(k))},j. = l{(x(k)) 4} - 3 Q. are known. Also:

k+i (-) '~~ - + 1, k=1 ,4i, k) E A("% -.. k-

.3(1, k) - V ' •) _).6(i,k-n+ 1), k = -1,...,q (5.37)
k G-()

TL=k+l

and f(i. k) = 1(i, k)*5(i, k), {*} denotes convolution, QO(i) = Zk(f(i, k)) 2, 7](i) =k(- .k))4.

Then (the sign of -, cannot be identified):D A (i)

For L-PAM Signaling:

1 (Q 1 .~(i~j(5.38)A•(i) " Qf Q]i••

For L 2-QAM Signaling:

,•) \,(-,<o))1 = . (,i2,o, (5.39)

since 2'-, < 0 for equi-probable L2 -QANI signaling.

Step 7

Let. y(i) = [y(i + N2),...,y(i - N 1)]T and [-Norr(i)] V[,orm(i,-N2) ... ,norm(j, N1 )]T. Fi-
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nally, the output of the TEA equalizer is:

-1 [f,.()]T y(i) (5.40)

.4(i)

While most of the Bussgang blind equalization algorithms, which are based on non-MSE cost

function minimization, have not been shown to be globally convergent and cases of their mis-

convergence have been encountered, the TEA algorithm, designed as described above, is a more

reliable alternative, as it guarantees convergence.

Remarks:

1. Since Gaussian noise is suppressed in the fourth-order cumulant domain, the identification

of the channel response does not take into account the observation noise. Consequently,

the proposed equalizers work under the zero-forcing (ZF) constraint. For the same reason,

we expect that the identification of the channel will be satisfactory even in low signal to

noise (SNR) conditions.

2. The ability of the tricepstrum method to identify separately the maximum and minimum

phase components of the channel makes possible the design and implementation of different

equalization structures.

3. In the recursive formulas (5.37) we used the following properties that relate time impulse

responses with cepstrum coefficients: (i) a channel and its inverse have opposite in sign cep-

strum coefficients, (ii) the cepstrum coefficients of the convolution of two minimum phase or

two maximum phase sequences, arc equa! to the sum of the corresponding cepstrum coeffi-

cients of the individual sequences and (iii) two finite impulse response (FIR) sequences with
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conjugate roots have also conjugate cepstrum coefficients. These become unique features

of the TEA equalizer when .,• compared with other equalization schemes.

4. The described algorithm is based only on the statistics of the received sequence {y(i)} and

does not take into account the decisions {f( i)} at the output of the equalizer. Consequently

wrong decisions (and thus error propagation effects) do not affect the convergence of the

proposed equalization schemes.

5. Instead of using the LMS algorithm to solve adaptively the system of equations (5.30).

one may employ a Recursive Least-Squares (RLS) algorithm [25] which will have a faster

convergence at the expense of even more computations.

5.2.4 Power Cepstrum and Tricoherence Equalization Algorithm (POTEA) [7]

5.2.5 Relations of Power Cepstrumn and Tricoherence of the Linear Filter Output

The problem is as formulated in Section 5.2.1, the channel output y(i) is the convolution of the

non-Gaussian i.i.d. random sequence x(i) with the channel impulse response f(i) plus some

noise. The cepstrum of the power spectrum of the channel output y(i), can be shown after some

algebr, to be equal to [7].

InIA 2I m = 0

- r' [A-(-) + Bf()] ti > 0CP,(m) n %1

( + B,(m)] in < 0

0 otherwise

56



where .4(k), B(k) are the uinilnuin and niaxinuim phlas, cepstral coeflicint s of ( Iz ). These are"

t= I

/j = Z b, (5.42)

where {ai} and {bi} axre the zeros of [((z) inside 41nd olltsidle of tHie unit circlek re1)ipCtiw-IV.

Remarks:

1. A(k), B(k) decay exponentially and thus their length can be truncated iii practi' e at k p.

so that A(p), B7(P) are arbitrarily small.

2. If the channel F(z) has cepstral coefficients A(k0, BM(, its inverse filter, U(z),

has cepstral coefficients -A(k), -B!k). It is also shown in [7] that. if we define S(

A(k) + B(k) and r,(k) = E{y(i + k)y*(i)} then the following relations holds:

p p

1 " S-(k)L-r,(n, - k)] + 1: S(,)[?.(1., + k)] = •,r(in ), rn = 1. 2, rp..l:fl
k=-I k=l

where p is some integer, the choice of which is discussed in [24]]. Now let his consider the

cepstrum of the tricoherence.

Z,( zI, ,2, [:;j)] 
(5bfl

It has been shown that the trispe(ctriinn of the received dat.a satisfies:
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Therefore,

" I (, ),) (Z3) ____ ((,. :

After some algebra, we obtain

luI:lni 0 = 2 0, = 0

_. .[ 1(m)_ T ) I it > 0.n 0, 1=0

-1 [.-4(-'n) - B-(--)] n < 0,7 =z 0, 1 0

¼A'(-')- B-(-)] M 0. n > 0.1 z 0

R~(r, n ) i ~-[A~) ~(~~n] m 0.n > 0, 1 =0 (~.7R ,( 7 n, n , l1) = 2 5 .t
2 1[.4(-) - IPf")] n, ,,i> 0

f-[A(-') - B(--)] in r , I < 0

_1.-.)•-_ B(')] m = o0, o. > 0

7'[A- in- = 0 . 1 0,1 < 0

0 -otherwise

Taking the logarithm of both sides of (5.44), we obtain,

R,(ZI,z 2 , z 3 ) { lnS.(Zi,z 2 . za3) - Z Z7 '2 , 1-),3 15.1

Differentiating with respect to Z 1 and performing inverse Z-transfornl. we obtain

2L,(m, n, 1) * L(-i. -r,, -1) * [-in R?(ni. n, 1)]

L;(-m, -n, -1) * [-mL,(m. n.)] + L:,,,mt., .l) * [mn(, ,i.,n.l7 (.. I•
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By defining the fo~lowing functions:

01(,f•t,) 7 l (-rn, -n,,-1) l.I(m,1)

0.(2. It,l) L9 (-m, -n,-I) w l,(,in, njl) (,..-)

are combining (5.49) and (5.50), we obtain:

201( m., n, 1) * [mR.(ri, n,/)] = 02( n), n, 1) + 9•(- 7, , -1) (5.; i)

Defining D(k) = A(k) - B*(k) and combining (5.47), we obtain:

p

E D(k)[01 (m - k. n - k, I- k) - 0 1(in - k.nl)1
k-1=

P

+ Z D(k)[91(n + k,n + k,l + k) - 01(7n + k. n./)]
k-1l

02 (m, n, 1) + 0:(-m, -n, -1) (5.•i

A rule of thumb is to define w = p, z < w/2, h < z and then take 7 = -w... ....... =

z, = -h...., h to form a linear overdetermined system to equations.

5.3 The POTEA Algorithm

In this section the POTEA algorithm is given in detail.

Let

N 1 , N2 : Lengths of minimum and maximum phase components of the equializor.

p: Length minimum and maxinmum phase cepstral paramelers,

At iteration i = 1,2,....
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Step 1 Estimate adaptively the 11ll i, 1) for -- All < to•,. _ I < A11. airid r-ý {,i ' for - <!

in < AT, fromi a finite length window of {y( It )}, and then gen,'r;It, thi, folowinl2 !r•lctri,

OG) ( in, n, I1) () -in, - a, -)*I~(r ,1

OW.2 (ti , n 1) 7- L (')( - ti, -- it, -I * tit 1 k .u I

Step 2 Choose p arbitrarily such that A(P t+) o 0, B3+t) 0 ;md d,'fi lhe :,. . 1.)

Step 3 Form the equations

p 
p

E s'k)[-,.(,, - k)] + s5(k)[r.,(,, + k)] = iii r,,( t,,). i, 1 ...... 2.)
k=l k=l

where S(k) A (k) + B-(k) k . p.

PZD-(k)[19(nl - k..n - k, I - k) - 01( ni - k, v.I)!

k=i

+ED (k) 0,( 71 +kn + k, I+ k) - 1 (m +k, n.1))
k=l

= .2 (m,n,1)+ 0*(-n,--1.-I)

and the following system of equations

where the matrices Pi. i, P. Q. b and ý are defined above.



Step 4 Solve adaptively the above systems employing LMS-type adaptation as follows:

et(i + 1) 40~i + P(i)p"(i1,wi (5.57)

b(i+ 1) +b(i)+j'(i)Q1 (i)i'(i) (5.58)

where

ý(i) = fi(i) - P(iwi~i)

o• q(i) - tr(ibI)

2o < (i < r p p

o < 2'(i) <

The algorithm at instant i minimizes the mean square error:

J(i) -=- E{•H(i)i•(i)}

,]'(i) = E•Hi•()

Step 5 Calculate A(k) and B(k) as follows:

A(k) S(k) + D(k) (k) S() - D(k)
2 B 2 (5.59)

Step 6 Calculate

k+•[)1 )(.0
k+1 An 1 q(i, k - n + 1), k = 1,.. N, (5.60)i ý( i, k ) = - ,

n=2
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0

q(ik) E [-B(' eqk- n + 1),k -1,...,-N 2  (5.61)
nk l

with initialization : iq(i,0) = 6eq(i,O) = 1. The normalized (A 1) estimate inom(i,k)

at iteration (i) is given by:

iiorm(i, k) =ieq(i, k) * 
6
,q(i, k) (5.62)

Step 7 Estimate gain factor A(i)

Step 8 The reconstructed transmitted sequence at iteration(i) is:

1 N1
E(i) ) .t.o.m(i, k)y(i - k) (5.63)

A( k=-N 2

Computational Complexity

In this section the computational complexity of POTEA is presented and compared with the

computational complexity of TEA.

PAM

POTEA: 3(2M+1) 3 + 3(2A1 + 1) + 2p(Np + p + 1) + N2 +•3 + (4M) 3 log 2 4M

TEA: 3(2M+1) 3 + 3(2M + 1) + (p + q)(2Np + 1) + N 2 +8N+3

QAM
POTEA: 3(2/+1) 3

____

POTEA: 4[3 3 + 2(2M + 1) + 2p(2Np + 4p + 2) + N2 +SN+3 + (4M)'1092 4M]

TEA: 4  + (p + q)(2Np + 1) ±N2-8N-3
66 4
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5.4 Cross-Tricepstrum Equalization Algorithm (CTEA) [81

5.4.1 Problem Formulations

Assume we have n measurements at each time index k, y.(k), i = 1,2,.. .n, where

y (k) = fi(k) * x(k) + ni(k) (5.64)

(shown in Figure 5.1 for n = 4) and

1. f1(k) is the impulse response of a discrete time linear time invariant system,

2. x(k) is a non-Gaussian, nth order white process with cumulant ýy 5 0,

3. ni(k) is zero-mean additive noise, with ni(k) independent of nj(k) for i $ j and independent

of x(k). No assumptions are made about pdf for whiteness (in time) of ni(k).

We also assume that each impulse response hi(k) is stable with no zeros on the unit circle and

that its Z transform F2(z) can be written as [8]

Fj(z) = AjIi(z-1 )Oi(Z) (5.65)

where the Ai are gain constants, the ri are integer linear phase factors,

SL,, [I -- aijz-')

is the minimum phase component and

L, 2

1 (z) = fl-(1 - b,1 :)
j=

1

63



is the maximum phase component, with zeros aij and poles ci inside and zeios b0 outside !he

unit circle (i.e. ]aij) < 1, 1bijI < 1, and IcijI < i).

5.4.2 Relation of Cross-Tricepstrum of the Linear Filter Output

With the above assumptions, the nth-order cross-spectrum of the yi(k) can be written as

n--I

S y , 1 ,2 ... n(ZI, z 2 ," ",zn- 1 ) = "YxFl(Zi)F2 (z 2 )".. "n-.I(z 7-1)Fn(J- z--) (5.66)

Taking the logarithm and performing inverse Z-transform on both sides, we obtain after some

algebra the following results:

In-yTx MI = rq2 M . =rn-1 = 0,

-(1/mj)Aj(m 1 ) mi > O,mj = O,j :_ i,

i = 1, 2.. .. , ,n- 1,

(1/mn1 )B1 (-rnz) rn1 < O,m =n - O,j $ i,

Cy,=,2,.,n(ml, m2, . n-1) < (5.67)
i = 1, 2,. .. ,n- 1,

-(1/m,)An(-m,) M1 = M 2 .... = m7 . 1 < 0,

-(1/Mn)B,2 (mn) mI = M2 ... = m, > 0,

0 otherwise

with

L, k L.4

AA(k) Z(ai,)k (,j)

j=I j=1
L,2 

k
Bi(k) L,2  (5.68)

j=6
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This results means that the n-th order cross-cepstrum is non-zero on n lines only in iVs domain

and that on each of these lines we find the complex cepstrum of a zero-linear phase, scaled versior

c,f one of the n impulse responses.

Now, to develop a least squares solution for the Ai and Bi, we take first partial derivatives of

the logarithm of (5.66), independently with respect to each of its variables, followed by inverse

' transforms. Letting Sy,1 ,2 _. ,,(min 2 , ... m,- 1 ) denote the n-th order cross cumulants of the

y,, we get the following n - 1 equations relating the cross cumulants to the cepstral coefficients:

s y,,,2,.... (M l i M,m -.., r n) * (M i c y,1,2 ..... n(M 1 J," 2,...,m Tn-1))

= -Mi Sin ,, .... (MI, mr2 ... m,! M-)

for i = 1,2, ... n - 1. Each equations involves an (n - 1) dimensional convolution. However,

plugging in (5.67) reduces each equation to a single finite summation:

00E Aj(k)Sy,i,2_....n(tI, t2,. . n .,t• 1) - B,(k)Sy,1,2....,n(Ui, U2,. ., u,-I)

k=?1

_-A,(k).Sy, 2,...,n(m, + k, m, + k,. .. , mi + k)

+Bn(k)Sy,,2_ n.. n( Mi - k,mn - k,.. ., m, - k)

=-minS, 1 ,2 .... (.nl, M2 , . .,m -M..) (5.69)

where

ti = mi -- k

ui = mi + k

tj = u 1 =im ji4i.
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From equation (5.68) the sums in (5.69) decay, so we can truncate them to pi and qi for

the ternis involving A, and B, respectively (see [8]) and rewrite (5.69) as a finite dimensional

vector dot product equation. Writing M > p, + qi + Pn + qn equations at M points in the n - 1

dimensional domain of S,,,. 2,..n we can form the oveirdetermined system

_Rin . =Cn I (5.70)

5.4.3 Cross-TEA (CTEA) Algorithm

In this section we describe the CTEA algorithm for blind equalization of QAM signals with four

receivers. The algorithm has two stages at each iteration:

1. Channel identification and deconvolution

2. Combining by use of a decision rule

Channel Identification and Deconvolution

Step 1. Estimate the cross-cumulants and kurtoses of the received data recursively.

Step 2. Form the systems of equations (5.70) and solve each system in turn to get the cepstral

coefficients for each channel'

Step 3. From the results of the previous step, estimate the forward and inverse channel impulse

responses up to a desired length.

Step 4. From the estimated forward impulse response and the kurtoses, estimate the gains A4j) for

each channel.

'The cepstral coefficients for channel four can be estimated from the solution of one of the three systems or an
average of all three.
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Step 5. With the estimated inverse response, fiin (k), and the estimated gain for eaclih cfannoI,

deconvolve to estimate the input symbol as

(i f(j) *
i',( ) = yi(j) * .irinv~k)

Combining Decision Rules

As illustrated in Figure 5.1, from the four estimates .i(j) we need to form a single quantized

decisions i(j). We describe here an optimal combining rule in the case of a perfect equalizer, as

well as three sub-optimal schemes, arithmetic mean. majority rule, and median (which for n = 4

channels is equivalent to a-trimmed mean with o = 1).

Optimal Decision for the Perfect Equalizer [8]

We consider the following assumptions:

1. x(k) is complex and uniformly distributed,

2. ui(k) is the perfect equalizer for fi(k), i.e. fi(k) * ui(k) = b(k), and

3. ni(k) are zero-mean, complex Gaussian variables with known variance aý and are indepen-

dent across channels..

Since we will do symbol by symbol detection, ve will drop the time index k for simplicity. With

these assumptions,

i = x + ni*ui X + hi.

Therefore, the conditional probability density of ;i given X, p(•ix), is complex Gaussian with

mean x and variance

71 ir Z u(k)(2

k
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Since the noise in each channel is independent, the maximum likelihood estimate i of x given

the four observations .r, (assuniftig x to be from a continuous distribution) is

1 - 2 -

Xl R

1 ia-2

where the subscript R and I denote real and imaginary parts respectively. Note that if the noise

has the same variance in all channels then this result reduces to the arithmetic man. If. on the

other hand, we assume that x belongs to a known discrete set V then we need to find i E D

which satisfies

mrin & -21i _12
;±EV

or equivalently

min E& 02 (ji2: - 2 (ZRi iR + ilii,))..iED.

Of course the assumptions of perfect equalization and known noise variance are not realistic in

practice so we describe below three sub-optimal combining rules which we tested in our simula-

tions.

Arithmetic Mean

Step 1. Form a soft decision statistic

4

(If information is available about the relative quality of the channels then a weighted mean

could be used.)
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Step 2. Put i(j) through a decision device to get i(j).

Majority Rule

Step 1. Put each estimate through a decision device to form four decision statistics i,(j).

Step 2. If there is a plurality among the ii(j) in one region of the decision space then that is the

decision. If there is a tie ( all four different or two votes for each of two decisions) use

a tie-breaking procedure. One method would be to pick the decision region that has the

smallest average squared decision error. For example, if i,(j) = 2 (j) 5 i 3 (j) = 4W:

2

Let d1 = Pi(j)- i,(Jl'

4

Let d2 = 1Z I(J)- _i,(j) 2

i=3

Then

Choose 1 (J) di :5 d2

Xi2(J) d 2 > di.

Median

Step 1. Order the real and imaginary parts of the A,(j) separately.
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Step 2. Set

REAL{I(j)} = median{REAL{ i(j)}}

IMAG({i(j)} = median {IMAG{ij(j)}}

Step 3. Put i(j) through the decision to get i(j).

5.5 Computer Simulations

Computer simulations has been employed to compare the performance of the blind equalization

algorithms. The performance metric used are those in Sections 2. And the following issues are

addressed.

5.5.1 TEA vs. Bussgang-type Algorithms

Fig. 5.2-5.4 show the performance of the TEA algorithm, compared with that of Bussgang-

type algorithms, such as Godard, Benveniste-Goursat. Stop-and-Go algorithms. We see that the

TEA algorithm opens the eye much faster than the Bussgang-type algorithms. This performance

improvement is achieved at the expense of larger computational complexity.

5.5.2 POTEA vs. TEA

Fig. 5.5-5.6 show the performance of the POTEA algorithm, compared with that of TEA. We

see that the POTEA algorithm converges faster than the TEA algorithm. The performance

improvement is achieved at the expense of further increase in computational complexity.
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5.5.3 CTEA vs. TEA

Fig. 5.7-5.8 show the performance of the CTEA algorithm compared with that of TEA algorithm.

We see that the CTEA algorithm converges faster than the TEA algorithm for some channels.

The performance improvement is achieved at the expense of further increase in computational

complexity.

6 ALGORITHM WITH NONLINEARITY INSIDE THE EQUAL-

IZA'_rION FILTER

Still another class of bind equalization algorithms are thcse algorithms which use Volterra filters

[9], [10] or neural networks [20], [26], (27]. This class of algorithms perform nonlinear operations

inside the equalization filter. It is therefore also be able to correctly extract the phase information

of the unknown channel from its output only. In this section, we will concentrate on those

algorithms based on neural network.

6.1 Review of Equalization Techniques Based on Neural Networks

Equalization is a technique which is used to combat the intersymbol interference caused by non-

ideal channels. Usually, equalizers are implemented using linear transversal filters [17], [18], [30],

[31]. However, when the unknown channel has deep spectral nulls or some severe nonlinear

distortions, such as phase jitter and frequency offset, linear equalizers are not powerful enough

to compensate all of these. That is why nonlinear filters, such as those implemented by Volterra

filter or neural network, come in and play an important role.

Neural Networks (NNWs) are mathematical models of theorized mind and brain activities.

The fundamental idea of NNWs is to organize many simple identical processing elements into
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layers to perform more sophisticated tasks. The properties of NNWs include: massive paral-

lelism; high computation rates; great capability for non-linear problems, continuous adaptation;

inherent fault tolerance and ease for VLSI implementation, etc. All these properties make NNWs

attractive to various applications. Several neural network based algorithms have been proposed

for equalization problems.

1 Multi-Layer Perceptron

The multi-layer Perceptron (MLP) [39], [40] is one of the most widely used implementations

of NNWs. It comprises a number of nodes which are arranged in layers, as shown in Figure

6.1. A node receives a number of inputs xi,x 2 ,- -,xn, which are then multiplied by a set

of weights wl, w2,..., wn and the resultant values are summed up. A constant v is added

to this weighted sum of inputs, known as the node threshold, and the output of the node

is obtained by evaluating a nonlinear (sigmoid) function, f(.), which is called activation

function.

The architecture of a perceptron can be described by a sequence of integers no, n 2 ,, nk.

where no is the dimension of the input to the network, and the number of nodes in each

successive layer, ordered from input to output, is ni, n 2 , -, nk. In this notation, the MLP

produces a nonlinear mapping g = R-ng -- RJ1k.

The updating of the connection coefficients of the MLP is done iteratively by using back-

propagation (BP) algorithm with the following formula.

(Wi+lVi+=) = (Wi, Vi) + -'Ai (6.1)
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anrd
d1c2

A - -(, 1) + •a",. (6.2)dI( IL,, v, )

2 Self-Organizing Feature Maps

The topology by self-organizing feature map (SONI), which is introduced by Kohonen [26],

[27] consists of two layers of nodes, referred to as input layer and output layer, which are

fully connected with different connection weights. The inputs to the SONI can be any

continuous values, whereas each of the output-layer node represent a pattern class that the

input vector may belong to. That means the outputs of SOMs are discrete values, and

therefore, the SOM is sometimes also referred to as learning vector quantizer.

The SOM works iteratively as follows. First, find the set of connection coefficients W.

which is the closest to the input vector Ak,

ii Ak - W'11= KImmi II Ak - i I. (6.3)

Second, perform the following quantization of the output-layer node:

J1, if II Ak - II1= min Ak - Wji
bg = (6.4)

0, otherwise.

and then move IV, closer to Ak using the equation

Sa(k). [ak- - Wijg], j - g

W = 3(k). [a', - W2j], j E N,,j i g (6.5)

0, j V N,
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where N, is the topological neighborhood of the winning node b2 which consists bg itself

and its direct neighbors up to the depth 1.2, .- , and o(k) and .3(k) are the learning rate

at time k.

6.2 The MLPs Equalization Algorithm for PAM and QAM Signals

The applications of EILP in equalization problems so far, have been limited to binary {o, 1} or

bipolar {-1. 1} valued data and real valued channel models [11], [20], [49]. In this section, we

introduce for the first time a new implementation structure of MLP which works well with

L-PANI (L > 2) and N-QAM (N-4) signals.

Looking into a MLP structure, we find out that it is the sigmoid function of the output

layer nodes that confines the network outputs to the range [-1, 1]. In our equalization problem,

the signals are equally spaced and symmetric with respect to either the original point of the

coordinate, or to the x and y axes. Thus we can just scale up the node function of the

output layer by a constant factor C which is large enough to cover our maximum

signal range, e.g., [-15,15] for 16-PAM or 256-QAM signals. So, for the output layer, we have

[30], [40]

1 - ecT
ftj(x) =- C C , (c > 1) (6.6)

as the activation function. For the hidden layers, we still use the sigmoid function

M1 x) 1 I- e'(6. 7)
1 + e&•

The idea of adding another constant a comes form the thought that a smaller a. equivalently,

a lower slope in Figure 6.2, would avoid high vibration, and in turn. decrease the chance of
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divergence in t he cours, of weilht adjust Inent

For complex challl"l models and QANI sigiials. we use complex connection coefficients to

get the weighted sum to which a complp.ex threshold is added. Then the sigmoid functions of

the real and the imaginary parts of the threshold added weighted sum are evaluated separately.

Again, for the output layer nodes. the outputs are multiplied by a constant C. Using the steepest

descent formula (Eq. 6.1, 6.2). we get the adaptation alqorithm of our new MLP equalizer which

is described in Table 6.1 [30], [40].

Simulation are conducted to examine the performance of MILP equalizers. The equalizer is

implemented by the new MLP structure with only one output node. The input data to the

system xi are assumed to be independent of each other. The delayed input sequence Xz-j. where

d is channel dependent, is used as the training sequence. The performance of MILP equalizers is

evaluated by; calculating the mean square error (NISE) E[(x - 1)2] and the average symbol error

rate (SER) of the quantizer output. The eye pattern of equalizer outputs around certain number

of iterations is shown in Figure 6.3.

Figure 6.4 illustrates the performance comparison between MLP and LMS-based linear transver-

sal equalizer with the same number of inputs. The structure (the number of nodes in the hidden

laver) of the MLP has been tine-tuned through experiment. The step size p of the LMS-based

equalizer is also optimized (the biggest value without causing divergence). From Fig. 6, it ap-

pears that the new structure of NILP works no much better, as a channel equalizer, than the

simple linear adaptive equalizer. As a matter of fact, both methods end giving similar results.
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7 CONCLUSIONS

The purpose of this paper is to provide a tutorial review of ex-isting blind equalization algorithms

for digital communications. Three families of techniques have been described, namely, the Buss-

gang techniques, the polyspectra-based techniques, and methods based on nonlinear equalization

filters or neural networks. The complexity of the Bussgang techniques is approximately 2NV mul-

tiplications per iteration, where N is the order of the linear equalization filter. On the other

hand, the polyspectra-based techniques require approximately 1.V3 multiplications per iteration.

However, as it has been demonstrated in the paper, the polyspectra-based techniques achieve

significantly faster convergence rate than the Bussgang techniques. Finally, it is pointed out in

the paper that blind equalizers based on nonlinear filters or neural netwoiks are better suited for

equalization of channels with nonlinear distortions.
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Table 4.1 Nonlinear Functions of Bussgang Iterative Techniques.

90) = [ui,(i),"' u v(i)]T equalizer taps

y(i) = [y(i),-.-, y(i - N + 1)]T input to the equalizer block of data

At iteration{i}, -1 -

i(i) = L"(0) YO()

e(i) = g(i)P(0] - i(i)

u(i + 1) = u(i) + u y(i) e-(i)

Algorithm Nonlinear function: g[l(i)] =

LMS
training X(i) (linear)
mode

Decision
Directed •(i)
Mode

Sato y csgn Pi(i)0

Benveniste- '(i) + k1 (W(i) - -i(i)) + k.[:E(i) - i(i)[.

Goursat (-t csgu[i(i)] - 1(i))

Godard P i (i)I + RpI (i)jP-P - j(i)I2p-I}

p,q = 2

Stop-and-Go 1(i) + •.A (N(i) - iN(i)) + B (i)- (i))
(A,B) = (2.0), (1,1), (1,-1) or (0,3), depending
on the signs of DD and Sato errors
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Table 4.2 Comparison of Computational Complexity

CRIMNO Adaptive Weight CRIMNO
Godard (memory size M) (memory size M)

Version I Version II Version I
Real Multiplication 4N+5 4N+8M+5 MN+8M+4N+5 4N+1OM+5
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Table 6.1 Complex MLP adaptation algorithm.

1). Assign small random complex numbers to all the connections and
thresholds.

2). Forward propagate inputs through the network:

di~i+,j E ai, " w*,I,j + v,,j = ,1+,j + j . 5+l'j,
1=-1

di+,,j = f(h4+,,j) + i-f(ai+,,y),

where i = 1,. .- M (M is the number of layers), f(.) is the sigmoid
function, and get the output,

:i = C . aM1 .

3). Present the training signal to find the output error,

e I~ [I _ (ill/C2] /C + jeQ1 [I _ (±QI)2] IC

where eM = Xid - X.

4). Find the backpropagation error,
ff= -• [I - (a', )21, + j. Q -. [1 - (a, )21.,

where
n.+l

-i, - Wi'j', - ei+1l,-
1=1

5). Adjust connections and thresholds:

Wi,j,k(n + 1 = W., 3 ,k(n) +7 -e +,,j(n)- in)

v,(n + 1) = vij(n) + 0" eij N).

where "'" denotes conjugate operator. The momentum term can also
be added.

6). Back to Step 2.
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MOMENTS, CUMULANTS AND SOME APPLICATIONS TO

STATIONARY RANDOM PROCESSES

BY DAVID R. BRILLINGER*

University of California, Berkeley

The paper ranges over some basic ideas concerning moments and

cumulants, focusing on the case of random processes. Uses of moments

and cumulants in developing large sample approximate distributions, in

system identification and in inferring causal connections of a network of

point processes are presented.

1. Introduction. Moments and cumulants find many uses in main

stream statistics generally and with random processes particularly.

Moments reflect the parameters of distributions and hence, as via the

method of moments, may be used to estimate distributional parameters.

Moments may be employed to develop approximations to the statistical

distributions of quantities, such as sums in central limit theorems and asso-

ciated expansions. Moments may be used to study the independence of

variates. Moments unify diverse random processes, such as point

processes and random fields, and diverse domains, such as the line or

space -time.

2. Ordinary case. One can begin by asking: What is a moment? To

provide an answer to this question, consider the case of the 0-1 valued

*Research partially supported by NSF Grant DMS-8900613

AMS 1980 subject classifications. Primary 62M10, 62M99.

Key words and phrases. Coherence, cumulant, moment, partial coherence, point pro-
cess, system identification, time series.
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variates X, Y, Z. For these variates

E{XYZ} =Prob{X = 1,Y = 1,Z =1}
This provides an interpretation for a (third-order) moment in terms of a

quantity having a primitive existence, namely a probability. Higher-order

moments have a similar interpretation. One can proceed to general ran-

dom variables, by noting that these may be approximated by step (or sim-

ple) functions, see eg. Feller (1966), page 107.

Next one can ask: What is a cumulant? One answer is to say that it

is a combination of moments that vanishes when some subset of the vari-

ates is independent of the others. Suppose for example that X is indepen-

dent of (Y, Z). The third order joint cumulant may be defined by

cum{X, Y, Z I = (1)

E{XYZ} - E{XJE{YZ} - E{YJE{XZ} - E{Z}E{XY} + 2E{XIE{YJE{Z}

By substitution one quickly sees that this last expression vanishes in the

case that X is independent of (Y, Z).

Expresion (1) gives one definition of a joint cumulant. An alternate

way to proceed is to state that that cumulant is given by the coefficient of

i 3arpy in the Taylor expansion of

log[E { ei(ax +PY +'YZ))]

supposing one exists.

Taking the log here converts factorizations into additivities and one sees

immediately why the joint cumulants vanish in the case of independence.

Streitberg (1990) sets down a sequence of conditions that actually

characterize a cumulant. These are:

1. Symmetry
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cum{X 1 , X 2, I =cuMn{X 2,X 1, ...

2. Multilinearity

cum ciX 1, X 2 , } = cXCuM{ X 1, X 2 ,

cum{X1 +Y1 , X 2, - } =cum{X 1 , --. )+cum{YI, Y }

3. Moment property, if the moments of X and Y are identical up to order

k

cum {X} = cum {Y)
4. Normalization, in the expansion in terms of moments

cum {X 1, . ' ' , Xk I = E {XI ... Xk} +

5. Interaction, if a subset is independent of the remainder

cum [X 1, ... ,Xk = 0

Cumulants provide a measure of Gaussianity. If the variate X is nor-

mal, then

cumk {X) =0 (2)
for k > 2. (Here cumk denotes the joint cumulant of X with itself k

times.) Putting (2) together with the fact that the normal distribution is

determined by its moments, provides a particularly brief proof of the cen-

tral limit theorem. Namely suppose that X 1 , X 2, - are independent

and identically distributed with E {X) = 0 and var {X} = 1. Suppose all

moments exist for X. Consider

Sn = (X I + """ + Xn )/-n (3)
Then

k

cumk {Sn} = n cuMk {[ } / n2

which tends to 0 for k > 2, as n tends to infinity, and in consequence S.

has a limiting normal distribution.
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An error bound may be given for the degree of approximation of the

distribution of a random variable by a normal, via bounds on the cumu-

lants. In Rudzkis et al. (1978) the following result is developed. Con-

sider a variate Y with mean 0 and variance 1. Suppose that

H (k!)l+v
Ak-2

for some v > 0, H > 1, then in the interval 0•< u < 1/H

supIProb{Y < u} - (u)I <

where

I F2A 1/(1+2v)
8=-i3-----

7 6J
In the case of a sum, such as (3), one can take A = 'n for example.

3. Time series case. Consider a stationary time series X(t) with

domain t = 0, ±1, ±2, . If the k-th moment exists, from the sta-

tionarity, the moment function

E{X (t+u1) X(t+Ukl)X(t)}

will not depend on t, nor will the associated cumulant function

Ck(U1, " ,uk-1)

= cum {X(t+u 1),"" X(t+Uk-.l),X(t)} (4)

The Fourier transforms of these ck (.) give the higher-order spectra of the

series. These functions may be estimated given stretches of data.

It was indicated, by property 5 above, that a joint cumulant measures

statistical dependence. This suggests formalizing the intuitive notation that

values at a distance in time are not strongly dependent via

I • ... E_ 1Ck (U1, . ,Uk-l) 1 < 00 (5)

U1 Uk-I
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for k = 2, . It is now direct to provide a central limit theorem for

sums of values of a stationary time series. One has

T
cumk{ X(t)/ 4Y}

=ck(tI-tk, ,tk _l-tk) k/2
t I tk

Uk U)]/ kI

Z c 2 (u) k = 2

and

-*0 k>2

following (5), giving the limit normal distribution.

Another aspect of the use of cumulants is that a calculus exists for

manipulating polynomials in basic variates. Suppose that

Y = g(X 1 , • . . , XL)

aiI ... iLX1 ... X• (6)

One has directly from (6) that

EfYk} = Y, 0, . m E{X • XiL

but perhaps more usefully, there are rules due to Fisher, see Leonov and

Shiryaev (1959), Speed (1983), providing an expression

cUmk{Y) =Y(5 cum{XJ[j j eCi} "'" cum{X j "j e P}
a

where cy = (ci, " "", ap) is a partition of subscripts into blocks and the

are coefficients.

A time series analog of an expansion, like (6) for ordinary variates, is
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provided by the Volterra expansion

Y(t) = aO + E a l(t-u)X(u) + E• a2(t-U l,t-u2)X(ulI)X(u2) + "" 7)

U UlU 2

Using the Cramer representation of the process, namely

X(t) = e it XdZx (k)

(7) may be written

U0 + f eit)A I((X)dZx(k) + ff e'X A2(Xi,K2)dZx(XI)dZx(Q) + "'"

in terms of the Fourier transforms of the a I(.), a 2(.), --- This form

often simplifies the development of particular analytic results.

Consideration now turns to the use of moments and cumulants in the

identification of nonlinear systems. In the case of a polynomial system

like (7), Lee and Schetzen (1965) develop estimates of the functzi:ns

a ,(.), a 2(.), via empirical moments of the form

I T-1-Y X (t+Ul1) ... X(t+uk)r(t)

for the case that the input, X (.), is Gaussian white noise.

For the case of stationary Gaussian input and a quadratic system

Y(t) = a 0 + E al(t-u)X(u) + E a 2(t-UI,t-u2)X(ul)X(u2) + noise
U u l,U 2

Tick (1961) developed an estimation procedure as follows. Define the

cross-spectrum and cross-bispectrum via

cum [ dZX (X),dZy (g) I = 8(X+gt)fxy (,)d Xd g.t

cum {dZx(X 1),dZx(X 2),dZy(X3)} = 8(kl+X,2+X3)fjY (X1 ,?2)d kdXd,3
respectively. One has

f yX(X) = A I(?.)fxx(k)

fxxY(-Xl,- 2 ) = 2A 2(-Xl,- 4 2)fxx( X.)fxx(X2)
relations from which estimates of the transfer functions, A, may be
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developed, based on estimates of the spectra that appear.

Another system that may be identified, in a like manner, takes the

form, for input X (.) and output Y (.),

U(t) = a (t-u)X (u)
U

V(t) = G[U (i)]

Y(t) = J.t + • b(t-u)V(u) + noise
u

i.e. involves an instantaneous nonlinearity, G [.j, and two linear filters. In

the case that X (.) is stationary Gaussian, one can develop the relationships

f yx (?,) = L IA ()•)B (X)f xx (k)

fxxy(X)l,-2) = L2A (-X1 )A (-?,ý2)B (-X-Xý2)fxx(XlI)fxx(X 2)

where L 1, L 2 are constants. See Korenberg (1973) and Brillinger (1977).

Estimates of the identifiable unknowns may be developed based on est:-

mates of the spectra appearing.

4. Point process case. Consider isolated points, tk, scattered along

the real line. Let N (t) count the number in (O,t] and dN (t) the number in

the small interval (t,t+dt]. Typically dN(t) will be 0 or 1.

The k-th order product density of the point process N(.) is Pk(.)

given by

E{dN(t 1 ) ... dN(tk)}

=Prob {dN(t 1 )=l, • • • ,dN(tk)=l }

=Pk (t 1, " , tk )dt I ... dtk•

for t 1, , tk distinct and k = 1, 2, • • • This relates to the moments
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of the process as foliows. Write N(k) = N(N-) ... (N-k+l), then the

k-th factorial moment of N (t) is

t t

E{UNt)(k)} = f ... JfPk(tl1, ' tk)dtI dtk
0 0

The corresponding cumulant density is given by

cum {dN(t 1), ...- , dN (tk )) = qk (t, I I . , tk )dt I ... dtk

for t 1 , k distinct. The k -th factorial cumulant of N (t) is now

t t
f "'". . fqk (t 1, """, tk )dt I ... dtk

0 0
In the case of a Poisson prc-ess, the product densities will be given by

Pk(tl, , tk) = p(t 1 ) ... p(tk)

with p (t) the intensity of the process and the cumulant densities will van-

ish fork > 1.

As an example of the use of moments to derive an alternate limit

theorem, suppose one has N I(.), " - - , N, (.) i.i.d.copies of a point process

N(.). Suppose they are superposed and rescaled to form the point process

mn (t) = N 1( t) + .. + Nn(t)

n n
The k-th factorial cumulant of this process is

ton O/nf f. n qk(t 1, " ' tk )dtl I "'" dtk
0 0

Sn(t)k qk (0, ' ,0)
n

for large n, assuming continuity at 0. This cumulant tends to tq (O) for

k = 1 and to 0 for k > I and in consquence one has a Poisson limit for

the variate M, (0).

5. Extensions. The preceding results and definitions extend quite

directly to the cases of: a spatial process X (x,v), a marked point process
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X Mj 5(t -tj), a hybrid process X (Tj) and a line process, for example.
J

6. An example. In this section second-order moments and cumulants

are employed to infer the causal connections amongst some contemporane-

ous point processes.

Consider the stationary bivariate point process (M, N) with points 'rk

and yI respectively. In what follows an estimate of the product density of

order 2 will be needed. The parameter is defined via

PMN (u) dudt = E {dM (t +u )dN (t)}

= Prob{dM(t+u)= 1, dN(t)= 1I
This last suggests basing an estimate on the count

# {Iltk - 7- - 1 1 < h (8)

for some small binwidth h. Details are given in Brillinger (1976). One

result is that it appears more pertinent to graph the square root of the esti-

mate. In the case that the processes M and N are independent, one will
have PMN (u) = PMPN, which possibility may be examined via the statistic

(8).

The suggested estimate will be illustrated with some neurophysiologi-

cal data. Concern in the experiment was with auditory paths in the brain

of the cat. To collect data, microelectrodes were inserted with location

tuned to sound response. Data was recorded when the neurons were firing

spontaneously. Also responses were evoked experimentally by 200 msec.

noise bursts, that were applied every 1000 msec., via speakers inserted in

the ears. The firing times of 8 neurons were recorded. Figure 1 provides

the data itself for 4 selected cells, 2 in the case with stimulation, 2 when

the firing is spontaneous. Each horizontal line plots firings as a function
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of time since stimulus initiation in a 1000 msec. time period. The

stimulus was applied 505 times in these examples. In the stimulated case

one notices vertical darkening corresponding to excess firing just after the

stimulus has been applied. Neurophysiologists speak of locking. In the

spontaneous case no locking is apparent. There is some evidence of non-

stationarity in this case.

Figure 2 provides the square root of a multiple of (8). The horizontal

dashed lines are ±2 standard errors about a horizontal line corresponding

to independence in the stationary case. One infers that the cell pairs are

associated in each case. However in the stimulated case one has to wonder

if the apparent association of units 6 and 7 is not due to the fact that the

cells are being stimulated at the same times.

Fourier techniques provide one means to address this concern. Write

k

dN(Q) = e
1

for the dataO0•,,y,Y <T. ForX Oonehas

E Id, (.)du(X)} z 2nT fMN(X)

with fMN(.) the cross-spectrum kiven by

JMN()L = 1 -j e -"" qMN(U ) du

A useful quantity for measuring the association of M and N may now be

defined. It is the coherence,

I RMN (X) 12 = tfuN (?) 12 / fMM (X)fNN (X)

with the interpretation

Ili ra Icorr I{d T(X), d T (),} 12

It satisfies 0 5 I RMN(X) 12 < 1, with greater association corresponding to
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values nearer 1. Figure 3 provides coherence estimates for the cell pairs

of Figure 2. This evidence of association is in accord with that of Figure

2. Ihe dashed horizontal line provides the 95% point of the null distribu-

tion of the coherence estimate.

To return to the driving question of how to "remove" the effects of

the stimulus, one can consider the partial coherence. This has the interpre-

tation

lim Icorr {dT - tT, dT __ P3dT} 12

with x, 03 regression coeffici.e.nts and S referring to the process of stimulus

times. Suppressing the dependence on k the partial coherence is given by

I RMVIS is2 where

RMN - RMSRSN
RAN IS -N IIRMS 12)(-IRNS 12)

Figure 4 provides the estimated partial coherence of neurons 6 and 7 in

the stimulated case. The level apparent in the top graph of Figure 3 has

fallen off substantially suggesting that the association evidenced in Figures

2 and 3 is due to the stimulus.

For interests sake Figure 5 provides the coherence estimate for neu-

rons 3 and 4 in the case of applied stimulation. One might wonder if they

would become more strongly associated in the presence of stimulation.

The results do not suggest that this has happened.

7. Conclusions. In summary, moments and cumulants may be

employed to develop approximations to distributions, approximations such

as the normal or the Poisson. They may be employed in system

identification. They may be used to infer the "wiring" diagram of a col-

lection of interacting point processes.
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The approach presented is nonparanmetric, not based on special sto-

chastic processes described by finite dimensional parameters. Brillinger

(1991) provides a variety of references concerning the work pre 1980 on

higher moments and spectra.
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Figure Legends

Figure 1. Rastor plot of the firing times of 4 neurons in successive 1000

msec. periods. There are 505 horizontal lines of firing times.

Figire 2. The square root of a multiple of the quantity (6). Were the

processes independent and stationary then about 5% of the values should

lie outside the band defined by the two horizontal dashed lines.

Figure 3. Estimated coherences of cells 6 and 7 in the stimulated case and

3 and 4 when the firing is spontaneous.

Figure 4. Estimated partial couierence of cells 6 and 7 "removing" the

effect of the stimulus.

Figure 5. The estimated coherence of cells 3 and 4 in the case of stimula-

tion.
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Units 6&7, partial coherence
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Abstract

(':•m ,icir finite nixtiire inodo,1+ of tlip forrn, o((:; Q) f f(.r; a)dQ(0)
where f -a ý1:rrain(tric dens.ityv and Q is a discrete probability mea-
sure. An important and difficult statistical problem concerns the de-
teriuiiiation of the number of support points (usually known as com-

poneents) of Q from a sample of observations from g. For an important
class of CXpionential family models we have the following result: if P
has noi., than p components. and Q is an appropriately chosen p
co0lc,:, n: approx-imationi of P then g(x'; P) - g(x: Q) demonstrates a
pr(,scilhid -i n change bwhavior, as does the corresponding difference
in the & i1trni}uti nii functions. These strong structural properties have
implications for diagnostic plots for the number of components in a
£mter,. tixitur,..

1 Introduction

C',,1i her It f,,1il v of urn ivItrit c 1)r,)klalility densities f( a': 0). with respect to

S,,i,' (, fi it(, I,' , ,(. ' ) laram letoriz/ed by Q. Frequently. intorest

"*TV ;ald-., •.,,, IIv NSF gr;ants DMS-9106S95 to Liinlsy and DMS-
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lies in mixtures of such densities. The random variable X is said to have a

xnixt ure distrilbution G(.; Q) if X has density

.q(x; Q) = If (x;0)dQ(0), (1)

and the mixing distribution Q is a probability measure on Q. If Q has a

finite number of support points v _= v(Q) then we say Q is a finite mixing

distribution and we write Q,, = E 7r(,) with 01,.. . , 0,, being the support

points (often called components) and 7,z,. .. , 7r, being the weights.

A problem of longstanding interest in such models is inference on the

unknown value of zv(Q). At the simplest level, this is the problem of deter-

mining if z, equals 1, the one component model, or is greater than 1, the

multicomponent model. Shaked (1980) presented important results for thi.S

pro-blem whein the component densities f(x; 9) are one parameter exponential

family. Wo extend his results in two directions, generalizing to the discrim-

ination between v = p versus v > p, and moving beyond the one parameter

exponential family to the normal mixture model in which each component

has a differei't inean, but the same unknown variance.

H(re we summarize Shaked's sign crossings results. Suppose we wish to

contrast a Iflulticomponent model g(x; Q) with a plausible one component

model f(x: P). Choose•, = 0* for the one component model so that the

observed variable X has the same me'an under both densities:

J xg(x: Q) d,- (x) J I Xf (x- P') (I, ()

Our notat in fr 1his last eqipat]ion will Iw, F[-;N ] = E[X:;9. Shaked

sh, w'wd that .,(.: (]) -f(.r:p') has exactly two sign chaniges. iii the ord,'r
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+ -,+), as x traverses the sample space. That is, g(x; Q) has heavier tails

than f(.r: 0). Moreover, the difference in distribution functions G(x; Q) -

F(x: 9") has exactly one sign change, in the order (+,-).

WVe extend his results as follows: let P, the nominal true mixing distribu-

tion, satisfy v(P) > p; choose Qp, a candidate p-point probability measure,

such that it satisfies

E[X k;P] = E[X 0, Q -=1 k 0,1-.. 2p -1. (2)

(In Section 2 we show how to solve for Qp.) Then, in Theorem 3.2, we show

that g(x; P)-!/(.rx Q,,) has exactly 21) sign changes in the order (+, -,..., -,

unless it is identically zero (the case of nonidentifiable P). An exact sign

change result for the difference in distribution functions is also given in Sec-

tion 3. in Section 4. these results are extended to normal densities with

unknown vari;ialc(e.

Before procecding to the mathematical verification of these results, we

offer a fw Lif collLutcnts on their potential application. In Figure 1, we

pl,,t ý(x: P) -- '(.x Q,)/ ! (x: P) for the case when f(x; 9) is Poisson, P

puts mass 1,3 ca, h at (1.3 and 5), and 02 is constructed to match moments

as specified in (2). \Ve note tle clear tilimodality of this function, in constrast

to the uiiiiuodality of the density ,(x; P) (Figure 2).

Shaked dci. ,ons;t rated that hi siS.'n l ( hange results could be used for di-

agln(-,tc tl,.,.k " t, , ct mu i, if th I l 1;tt a wer' from a mixture of specified

expoln'nti f1 fuil * (dnsi i s ratl hr t l;II a one component model. These

id,.a, •,'i•' fu , I ,. ,,,l ii Lin,ii1 iv and RoI 2cr (1992). W hen interest

h ii a> ,>-i , til .wil,, 4 'I f , u t in a finite mixture, the oscillation

129



results obtaii,'Id in this article have clcear iIplIications for diagnostics plots.

In a comlpaIi& , paper these results are used to develop diagnostic plots for

the case of normal mean inixtrires with unknown variance (Roeder 1992).

2 Background

2.1 The mnodels under investigation

We will be interested in compoTnent densities f(.r: 9) where both x and 0 have

ranges in the real numbers. say x C T C R and 0 E [L. ul C Q. Furthermore.

f(.: .) s;tisfijs reguilaritv conditions which will be expounded in this subsec-

tion. Although the most important apllication of the results to follow is the

one paramctcr cxponential family, the results readily extend to other cases

of interest for which we need the following terminology.

A rral fun, tion of two variables. K(x, 0), ranging over linearly ordered sets

T and .? is said to be htal~ly positive (TP) if certain deterininantal inequalities

l,,Il (1, adin 196S. p. 11, 15). For instance. the functions exp(0x") ani I(.r <

P) are I P. In adlition. many density functiions occuring in statistical theory

are TP. Fcor example, the one parameter exponential family with density

function K(.r: ) z exp{.r - &'(9)}. Other examples include the noncentral-t

andt noncentiaI-\ ,clinsities. III fact, all of the densities mentioned above are

stritlv TP ( STP: 1,arlin 1968. 1). 12). For a Iiior, extensive list, see IKarlin

196S. p. 117). Wc will say that f( .r 1, i m an STP-inll I if f(3'ý9) is trictlhy

t,,1lv t,,>ilij iII .X awl (.
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2.2 Background on moments and exponential fami-
lies

In order to apply our results in a particular model we need to establish two

important structural features for the component densities f(x; 0). Our first

requirement is as follows: suppose that P is a mixing distribution with p

or more support points. Then we need to be able to construct a p-point

distribution Qp such that the first 2p - 1 moments of g(x; P) and g(x; Qp)

match. satisfying (2). Fortunately, there exists an important class of expo-

nential families (the quadratic variance class) in which Q, satisfying (2) can

be shown to exist. This class includes the normal, gamma. Poisson and bi-

nomial distributions. Thil following is a brief review of techniques found in

Lindsay (1989).

In the quadratic variance family of exponential family models (Morris

1983). for each Ik, there exists a polynomial of degree k. call it ýk(X), such

that J (X)f(X: 0)d';(x) =( - p0)k (3)

for mean value parameter p. The choice of p/ is arbitrarv so we set it to

zero. For example. in the Poisson with mean p. EIX] = p, E[X(X- 1)i =

j12, E[X(X - 1)(-Y - 2)] =- p and so furth. In addition, a classical moment

result indicatrs that for a giwe distribution P with no fewer than p-points

of support. thcre exists a uniqui dist1trilltion 0,, with exactly p-points of

support s,,ih tl~at

ff 'dQ,(p) =f /lp(. k= 1..21. - 1. (4)

"Ihus iint, grUimig, l,,,th silh, ,,f 4(3; with r,- .t to do(11( ) and !Pý ,:). and.I

121



using (4) yieldls

EL,,k(X), P] = E[.k(X); Qp]. k- 1....2p- 1. (5)

Finally, the map taking (1, x .... x 2p-I) -- (. 0 (r), (•(),.. 2v-I(X)) is in-

vertible, so (5) implies (2).

More details on solving (5) for Qp are given in Lindsay (1989). The solu-

tions can be obtained algebraically for p 2. For arbitrary p, the problem

involves solving a degree p polynomial for its p real roots.

3 One parameter models

In this section we obtain sign change results for one parameter models. The

following notation (Karlin 1968, p. 20) will be used. Let a(r) be defined on

I where I is a subset of the real line. The number of sign changes of a in I

is defined by

S-(a) =sup S[a(.r).....(a,.)] (6)

where S- (y, y ... • ,,) is the number of sign changes of the indicated sequence.

zero terms being discarded, and the supremum is extended over all sets

X 1 < X < ... < (x', C I): m < cc. (7)

We assume throughout that f(x;0) is an STP kernel and that P and

Q7, satisfy (2). The following notation will be used throughout this section:

91 - .;(.i : P) :2=- (.r; Ql,). GI =- G(xr: P) and G2 =- G(x': Q,,).

Remark lii tl, f,,l,,wing resuit we will give exact sign change results for

1- , with tl•( ,rvi,, "'thl .,liff,.r,,, :H - ' S i not id'entically zero". If
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such an equality in densities occurs, it is clear that there is an identifiability

problem: both P and Qp are generating the same distribution. The results of

Lindsay and Roeder (1992) can be used to determine exactly when this will

occur. If the sample space is infinite, it will not occur. If the sample space has

N points. then ,p-point distributions QP are identifial le when p _< (NV - 1)/2,

and so 9g - _2 cannot be identically zero. If both P and Qp have more than

(A- - 1)//2 points, then 91 -92 cannot have exactly 2p sign changes, since we

can have at most N - 1 sign changes as we traverse the sample space. Thus

our result proves that P and Q, generate the same density. U

Lemma 3.1 P.'ovu1K,: qt - g2 is noý idci~icalij zero, S-(91 - g2) < 2p.

Proof Dcfine the measure ,t\(P) bN

d\(o) = I(P + Q,)(o).

Let

P! T> . p({ ) 07' (1 ),{ if i E {0, . }

and

{ Q1,({9};,/1P({O}) Q I{9})I if 0_

Th nieu" a1 l , ' and t'.Isions (of lh, tRalun-Nikodyvi derivatives (!P/d\ and

Wt', , p, l\ The,rm 3.1 (1)) o4 Karthn (196S). noting that 1) )- q (P)

', a ,,Ii cx(,i ( ,t l , il at th, Nu jlut of 0),,. N% (If' it can , W, ;ItiV¶.

If,' , it, l1 it Il;IOxiI10ui iu ,f 24 - i) ,li n.•,.. iE aulii'> ,uuilt theI,
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implies that integration witli respect to the STP kernel f(x;9) will result in

a function..t - q, with no more sign changes in x than p'(0) - q*(O) has

in 0 relative to d\. This establishes an upper bound of 2p sign changes in

.I - !7-,. E

Theorem 3.2 Provided 91 - g2 is not idertically zero, S-(g1 - g9) = 2p,

u,itls 4ýgn clhaungcs in the order (+, -,...,-, +).

Proof From Lemma 1, we obtain an upper bound on the number of sign

changs of 2 1,. Because f x'(9 1 - 92)(x)dt,(x) = 0, for k 1. 2p - 1, any

polyn1inlal A(,,) nf degree < 2p - 1 satisfies

J-(x)(91 - •2)(x)d-(x) = 0.

Suppo,,se S-(,/, - g2) < 2p - 1. Then we can cotnstruct a polynomial A(x)

thnat 9atchs '1 - Y2 in sign (i.e.. it has single roots exactly at the roots of

S- • 1). It fflc'ws that A4(X)( 9 1 - 92) > 0, and since it has zero integral

it nouit b1 zce'r,:; except for a set of -;-measure zero. Hence either 91 = g2. or

9' .- , has 'l, sign changes. U

Remark -\Ao is clear from the proof f,)l this result, our oscillation results still

hell if w'. 1,,,plac, ax in ý2) with any system of functions oDk(X), such as x% k

tprovidI,1 thatt one can. construct a polynomial A(r) = aktk(z) wh -h has

aMN i f j,(,ji, 1 set of 2p - 1 zeroes. Such an approach could be usel in

iu11,I )NIAI; (,1 t]l,' ro,!1st ness of the sainple l moments in applications by using

1t, . I \ali,,I ý, -I. ,t ais ok(r) --- x -X'. The next thcorem. however. uses

,.j " i" i. f (,iii ,f XA U
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Theorem 3.3 ProvidedGl-G 2 is not identically zero, S-(GI-G 2) = 2p-1,

with qign changes in the order(+,-. +,-). The roots occur between the

roots of gi - g2.

Proof An upper bound is obtained on the number of sign changes by ap-

pealing to the sign change behavior of g1 - 92. The function G, - G 2 is

increasing on the int rvals [a, bj where g, - 92 > 0:

G,(b) - G2 (b) - (Gi(a) - G2(a)) = JI[a < x < b] (g, - g2 )(x) d(x) Ž 0.

From this it follows that G, - G2 has at most one crossing in each interval

where g, - g9 is constant in sign. but has none in the first or last interval.

Hence S-(G1 - G2) < 2p- 1. Integration by parts gives

0 Jxd(G1 G,)(x) JIG 2 - G-](x)dx,

and more generally

0 k J d(G, - G2 )(x) Jk-l[ 0 2 - G, ](x) dx,

up to k =2p- 1. Now, follow the proof of Theorem 3.2. If G 2 - G, had

2p - 2 or fewer sign changes, a polynomial A(x) of degree 2p - 2 could be

constructed with matching signs. Hence A(x)[G 2 - Gi](x) > 0, but has zero

integral. The result follows. U

For continuous X, a diagnostic plot based on a nonparametric empirical

analog of G, - G0 can be constructed directhv. Let Fn, the empirical distribu-

tion function. bc an estiinatc( of the alle"gd (hist ribut ion CG and let d2 be an

estinmatc of G, constructc,, INy using the method of moments estimates of the
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p-component iliodcl. Naturally, F,, and G2 have 2p- 1 moments in common.

It f0llows th t if ',, - G2 has the appropriate sign change behavior, then

the data provide some support for using more than p components. On the

other hand, if a p-point mixture is the correct model, then the asymptotic

properties of F,, - d2 can be obtained from empirical process theory.

4 Normal Mean Mixtures with Unspecified Variance

In this section we consider a mixture model of great interest - the normal

mean mixture. \Ve use the following notation: let f((x; j, r) denote the den-

sity of a _V(/1, 7) random variable and let g(X; Q,r) = ff(X; P, r)dQ(p) de-

note a mixture of normals with corresponding distribution function G(x; Q, r).

If - were known. then this is just a special case of the previous section: how-

ever, in I~,rCticx 7 will typically be unknown and hence we treat it as a free

parameter. In this section we extend our results to this case. We first present

an existence theorem, due to Lindsay (1989), which extends the classic mo-

mient reesults 1,r,'sentcd in Section 2 to normal mixtures.

Theorem .1.1 If Q is a distribution with more than p-points, then. there

exzist.s a uliiquLL p-point distribution Q, and variance 7r > r such that

J1kG(.z-: Q IJdG(x;Q,7) for k=0.1,.. . 2p. (8)

Proof \Vhil,. this is not explicitly stated in Lindsay (1989). it is a conse-

01, 1,, ((,f L,,iit .5A M all Theorem 5C. In the latter. replace til empirical

1wi1 !!" N!%- with till' 1x1 ,nT1 Of X unic11r (*(.: 0. 7). U
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Theorem 4.2 If (Q,, r,) satisfies (8) for Q = Qp+1, a p + 1 -ptint distribu-

tion, then

g(x; Q +i, r) - g(x; Qp, T')

has exactly 2p + 2 sign changes, occuring in the order (-, ... , +,-).

Proof Since 7-p > 7, we can represent the above difference as

g(x; Q, r) - g(x; QP, 7r)

where Q; is the convolution of Qp with a normal distribution with mean zero

and variance rp - r. By the same argument as in Lemma 1, this means there

are a maximum of 2p + 2 sign changes. The polynomial argument used in

the proof of Theorem 3.2 can now be used together with (8) to show that

there are at least 2p + 1 sign changes. Moreover, since Q• has more mass

in the tails than the discrete Qp+•, the difference g(x: Q, r) - g(x; Q'., r) will

have a negative sign in both tails, and so must have an even number of sign

changes, hence 2p + 2. U

Theorem 4.3 G(x; Q,T) - G(x. Qp, rp) has exactly 2 p + 1 sign changes, in

the order (-.+t..., +).

Proof A similar argument to Theorem .3.3. U

Graphical techniques, such as the normal scores plot (Harding 1948,

Cassie 1954) and the modified percentile plot (Fowlkes 1979) have played

an important role in identifying whether data follows a mixture of two nor-

mal distributii;is. The geometric characterizations obtaine(l herein extend

the arsenal of lpotential diagnostic plots for normal mixtures.
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5 Discussion

Our results above, in the normal case, in(licate that

g(x; Q2, T) - g(X; ,Pi 02)

has 4 sign changes in the order (-, +,-, +,-) provided p is the mean of

Q2 and o,2 = Var(X) = T + Var(Q 2). For this case a supplementary result

is available from Roeder (1992). If we instead examine the ratio R(x) -

g(x; Q2, 7)/g(3'; ,, a,2 ), we obtain a function proportional to a bimodal normal

density. By combining the two results we can see that R(x) is bimodal and

that both modes are greater than 1.

In the normal model, with r,1  2 = 1/2, the density g(X: Q2, r) is

bimodal if and only if the two separate supports pi and PL2 satisfy lit, -

/121 > 2r (Pobertson and Fryer 1969). Thus the ratio function is much more

sensitive to the e.xistence of two support points than is the density itself.

This sensitivity continues to exist even for very small support weights -r .

References

[1] Cassie. R.M. (19.54). Some Uses of Probability Paper in the Analysis

of Size Frequency Distributions. Australian Journal of Mlarine Fisheries

and Freshwater Research 5: 513-522.

[2] Fowlkus. E.B. (1979). Some Methods for Studying the Mixture of Two

Normal (Lognorinal) Distributions. Journal of the American Statistical

.Ass•,cjati ,n 17:

138



[3] Harding. J.P. (1949). The Use of Probability Paper for the Graphical

Analysis of Polvmodal Frequency Distributions. Journal of Marine Bilol-

ogy Association 28: 141-153.

[41 Karlin. S. (1968). Total Positivity, Vol 1. Stanford University Press,

Stanford, California.

[5] Lindsay. B.G. (1989). Moment Matrices: Applications in Mixtures An-

nals of Statistics 17: 722-740.

[6] Lindsay. B.G. and Roeder, K. (1992a). Residual Diagnostics for Mixture

Models. Journal of the American Statistical Association, in press.

[7] Lindsay. B.G. and Roeder. K. (1992b). Uniqueness of Estimation and

IdentifiAbilitv in Mixture Models. Yale University technical report.

[8] Morris. C.N. (1983). Natural Exponential Families with Quadratic Vari-

ance Functions: Statistical Theory. Statistical Theory 11: 515-529.

[91 Rolwrtrroii. C.A. and Fryer J.G. (1969). Some Descriptive Properties of

Normal Mixtures. Skind. Aktur. Tidskr 52: 137-146.

[iWI Roedcr. E,. (1992). A Nonparametric Method for Assessing the Num-

ber of Coinponents in a Mixture of Normals. Yale University Tc, hnical

R e(,I"rt.

[11i Shakod, M. (1980). On Mixtures from Exponential Families. Journal of

the I,,val Statirtical Society. B. 42: 192-198.

139



Difference in Densities

HIO

04

o

C)

3-Pt Mixed Density

0

01 2345678910

140



I irobablity and Moment Calculations tor

Elliptically Contoured Distributions

by Satish Iyengar

Department of Mathematics and Statistics

University of Pittsburgh

h :uIi)Iwort"I ,by t he ()IO'fi' vf • , R tmr, h grani ,•l) -' [ 1 mw J I .

141



Abstract

The normal distribution has long been the usual model for the analysis of multivariate data.

Moment and probability calculations for the multivariate normal are used in applications such

as the construction of confidence sets, the assessment of error rates in signal processing, and the

construction of optimal quantizers. Recently, the family of elliptically contoured distributions,

which includes the normal, has been extensively studied. In this paper, we discuss moment and

probability calculations for this broader class, paying particular attention to the approximation

of tail probabilities.
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1 Introduction

The normal distribution has long been the usual model for the analysis of miiultivariate

data. Moment and probability calculations for the multivariate normal have therefore been wtll

studied for various cases of interezt. In statistics, a common application of such quantities is

the construction of confidence sets for parameters of th, normal distribution. Other examples

include the assessment of error rate probabilities in signal processing, the ccnstruc! oyf optimnal

quantizers for a Gaussian process, and the computation of a high order correlation coetficient of

the outputs from a zero-memory non-linear device with Gaussian inputs.

The general problem is still intractable, owhi, Lo the great difficulty in evaluating high

dhlne,.,,,2 integrals, but advances in computing technology and recent research has yielded

innovative Monte Carlo and numerical integration techniques. These advances have widened

the scope of such investigations to include other multivariate distributions. For instance, there

are the elliptically contoured distributions and the mnultivariate Pearson family of distributions.

both of whiich include the multivariate normal. Elliptically contoured distributions, in particular,

have been extensively developed: see the collection of papers about them that was recently edited

by Anderson and Fang [2].

In this paper, we study the computation of probabilities and moments for certain ellipticatly

conlourel (list ributions, and discuss their applications. There are, of course, many c(lasses of

events whose probabilities are of interest, and many functions whose exl)ect ations are of intecrest.

Our foccus will be on the evaluation of tail probabilities, aii(l on met hiods fmr coiputitng pr,(li( !

nuomnents, amid other non-linear functions of the coinponents of the ranmdomn vector. In Sci lon 2.

we introduce ellijptically contoured (list ributions, and describe t heir properties. hlistoric'aflyY, mli

'uieit miiethiods have been associated withIi Pearson's family of distributions. Since soiie lli ptically

contolure(d (list rihutioms are also natural nimmltivariate versions of sonic of Pearsmi's listribultio,.
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we briefly describe this connection also. In Section 3, we discuss applications of tail probabili-

ties, and describe methods for approximating them accurately. These methods include Monte

Carlo with importance sampling, and asymptotic approximations that generalize Mills' ratio for

the normal distribution. In Section 4, we turn to moment calculations for elliptically contoured

distributions using one of three tools: the characteristic function, a stochastic representation,

and a certain partial differential equation satisfied by sufficiently smooth elliptically contoured

densities.

2 Elliptically Contoured Distributions and Pearson Families

A p-dimensional vector X has an elliptically contoured distribution if there is a non-negative

definite matrix E = (oij) such that the characteristic function of X is f(t( = eit'II4,(tiEt), where

V is a real-valued function on IR+ = [O,oo). Then X has the stochastic representation

X = /I + r72l/ 2UP, (1)

where /i is the center of symmetry, the radial part 7 is a non-negative random variable, and

Up is uniformly distributed on 11p, the surface of the unit sphere in p-dimensions; r and Up are

independent. The matrix F,'/ 2 is a square root of E: for computations, it is convenient to take

E1/2 to be the lower triangular matrix from the Cholesky decomposition, or the non-negative

definite symmetric square root derived from the spectral representation of E. When X has a

density f, it is of the form

f (-; 11, E) -I -½g(Q), (2)

where Q = Q(x, l., E) = (x - -)'Y-l(x -- p), g : IR+ -- l11+,

apj rP-g(r 2 )dr 1, (3)
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and ap is the area of fp; the level curves of f are ellipses determined by {x : Q = c}. In this case,

r has the density hl(r) = aprP-Ig(r 2). Examples of elliptically contoured distributions include

the normal, for which g(r) = 0(r) = e -r 2, and the p-variate t distribution with v degrees of

freedom, for which

r((p + v)/2) , Qiv)_(p+,/2.
f..(z ,E) =( )p/2r(-/2) (1 + (4)

Another example is due to Iyengar [12] (see also [15]):

rfp/2 k, (X , ,7- ý(/77) exp(-Q/,7). (5)
fP'k(Xl'*'Z rl) (k + p/2)

where r/ > 0 and k > 0. When k = 0, (5) yields the normal distribution. For the bivariate

case, Kotz [20] has also studied this family. The uniform distribution on QP is yet another

example which will be used for moment calculations below; it does not have a density. For

further discussion of elliptically contoured distributions, see Anderson and Fang 12], Das Gupta,

et a]. [8], and Cambanis, et al. [5].

In one dimension, Pearson's family of distributions is defined by the following differential

equation satisfied by their densities (see Cram6r [7]):

d logf(x) _ x+a
dx - bo + bix+b 2  (6)

Within this family, the first four moments determine the distribution. Several types of Pearson

distributions (depending on a, bo, bl, and b2) have been identified. In addition to the normal,

the common types are the beta (Type II), gamma (Type III), and Student's t (Type VII). The

elliptically contoured distributions given by (4), and (5) are multivariate versions of Types VII

and III, respectively. For example, when R = I and it = 0, the density for the p-variate t

distribution with v degrees of freedom, satisfies the following differential equation:

V log fý,,,( x; O, 1 ) _ P+ (7)
(p + uX
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However, there is an important difference betweev (41) and (5). For (5), if y = 0 and k > 0, then

the dei~.Lty at the origin is 0, and the modal value, or peak, of the density occurs on the surface

of the ellipsoid {x : xE-lx = kil}. On the other hand, the density in (4) has its peak at the

origin, and it is unimodal. Several results that apply to the normal and (4) do not generalize to

(5); see Tong [34] for further details.

3 Tail Probabilities

If X is a random variable with density f and cumulative distribution function F, the tail

probability of X refers to

0= 1- F(a) f(x) dx (8)

for large values of a. In many statistical applications, such as hypothesis testing, the tail

probability of interest is around 0.05. For such cases, the computation of, say, p-values is usually

straightforward. In other applications, especially in engineering, much smaller probabilities are

of interest. For instance, in signal processing, the tail probability arises as the error rate of

a complex communications system (Scharf [30], Wessel, et al. [35]); and in reliability theory,

it arises as the failure rate of a system component (Lawless [22]). Often such systems have

redundancies built into them, so that their error or failure rates are very low. A simple model

of failure regards X as an overall index of stress, and considers very large values of the failure

threshold, a.

In this formulation of the problem, two difficulties arise. First, the usual quadrature rules

and Monte Carlo methods for evaluating 0 are not sufficiently accurate, so specialized methods

are needed for evaluating tail probabilities. We will turn to some of these methods below. Next,

the basis for the choice of probabilisitic model (that is, F) is tenuous. This is because for a

complex system, the theoretical derivation of F based on individual component characteristics is
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intractable; also, data to estimate 0 is sparse since the event of interest is rare. While information

about the central region (near the mean or median) of F is usually available, the tail behavior

is usually unknown, so extrapolation is necessary. One way of addressing this problem is to

consider a wide range of plausible models for the tail behavior to derive a range of values for the

tail probability. For one example of just such an approach, see Lavine [21], who studied shuttle

O-ring data.

Multivariate versions of this problcu• arise in similar fashion: for instance, a system with

two components may fail when each component's stress exceeds its respective threshold, leading

to the failure probability P(X1 >_ a,, X2 > a2 ). A number of new difficulties also arise. First,

multiple integration is still a hard problem in general, so with few exceptions multivariate tail

probabilities are not well studied. Also, a tail region can take on many shapes, for example,

{x : x, ý_ al,x 2 Ž_ a 2 }, {x : a1lX 1 + a2x 2 _ a}, or {x :x + x2 > a2 }. Below, we restrict

attention to convex regions that are far from the center of the distribution, eliminating the last

example from consideration.

There are two main sources of error in assessing tail probabilities. The first is numerical:

it is generally hard to evaluate a small quantity with small relative error. For a deterministic

method, if 0 is an approximation to 0, the relative error is (0 - 0)/0. For a Monte Carlo method,

the coefficient of variation (the ratio of the standard deviation to the mean of an estimator) is

a measure of the relative error. If the unbiased estimator 9,, of 0 is an average of n independent

replicates, its squared coefficient of variation (cv 2 ) is

var(0,,) 1 "E(02 ) ]
cv2(&i)- 02 = n [ 2 1 (9)

Below, we study the use of Monte Carlo with importance sampling to derive estimators for

which the cv 2 is small. If B is a tail region, and f is the density, importance sampling uses the
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expression

0= g- ggx dx= l(x)g(x)dx, (10)

for some "sampling density" g to get an unbiased estimator which is the average of n independent

replicates (over the set B) of the likelihood ratio 1(Y), where Y has density g. We seek those g

for which the cv2 is bounded as the tail probability tends to zero.

The second source of error is statistical: the uncertainty in the choice of the model F makes

the tail probability estimate uncertain, even if there were no numerical error. There are several

ways to address this issue. One is to introduce a plausible family of models, and compute a

range of tail probabilities for that family. Another is to follow the approach of Johnstone [19],

for the Pearson family. He estimates the parameters of the family from available data, and

then provides an estimate of a given quantile with its standard error. Yet another approach is

Bayesian: first model the uncertainty in F by putting a prior on it, and then use available data

to compute the posterior distribution of the tail probability.

We start with the univariate case to motivate the multivariate case below. If X has density

f, l'H6pital's rule says that with suitable regularity, the asymptotic behavior of P(X > a)/f(a)

is the same as that of r(a) = -f(a)/f'(a). The regularity conditions are that f'(t) $ 0 for all

sufficiently large t, and that the ratio r(a) have a limit as a - o; these conditions are met in

many cases of interest. Writing

f(x)dx = r(a)f(a) r AX +fa~d, (11)

a 00 fo (a~ffa)

it is clear that (under the same regularity conditions) the last integral in (11) approaches 1 as

a - o; thus, it is bounded away from 0, and estimating it with good relative accuracy can

Ve done using importance sampling. This heuristic has been extended by Gray and Wang [11,

where the generalized jackknife is used for evaluating univariate tail probabilities. The method

sijggestPod below may be regarded as a Monte Carlo analog of that procedure.
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For the normal distribution, (11) yields

"j O(x)dx = ¢(a) F a(x + a)d, _ (a___ [0 eX 2/2ae-adx, (12)

a J O(a) -a Jo

which siggests the estimator

ý=-(a) e- T2/2, (13)
a

where T has the exponential density, ae -t for t > 0. Now, let 4k(x) and O(x) denote the

univariate standard normal distribution and density functions, respectively, and let

M(X) =-1P(-X) = 1 1-e-'2 /2 xextdt (14)
q¢(x)

denote Mills' ratio. Since M is a convex, decreasing function (Iyengar [13]), the following

inequalities are easy to prove:

x 1X < M(x) < I for x > 0. (15)

These inequalities, in turn, imply that

c\ M(a/v2) . 1 2 (16)v()-M(a)2a-vF a 2

as a --+ oo, so that the cv 2 tends to zero as a increases. This estimator results from the sampling

density g(t) = aea-(t-a) for t > a. The deterministic analog of this result is that

0 ¢(a)/a- 1(-a) 1 1
0 < D(-a) - aM(o) a2 ' (17)

so that the relative error in approximating P(-a) by 0(a)/a decreases to zero as a increases.

The phenomenon observed in (16) is quite general: for a wide class of problems, the coefficient

of variation actually tends to zero, hence the relative accuracy improves as the threshold a

increases. In addition, this method is feasible since the calculation of r(a) depends on the

differentiation of the density rather than its integration; since the behavior of the tail probability

149



is already captured by r(a)f(a), the evaluation of the remaining integral by Monte Carlo provides

a correction term. In practice, either (11) or one of the following two expressions for 0 is also

useful:

0 = r(a)f(a) - fj(a + x/a)dx = r(a)f(a) a x)dx. (18)JO ar(a)f (a) 0 r(a)f~q)

Two other examples illustrate this technique. The first involves the generalized inverse

Gaussian distribution, whose density is

f(t I a,3A) - (a//)x/2 t'-iexp 1-(at + 13/t)] fort > 0, (19)
2KA\((aO13)/ 2 ) 211

where K,\ is the modified Bessel function of the third kind with index A. The parameter space

is the union of the following three sets: {a > 0,/3 > 01, {a = 0,3 > 0, ,\ < 0}, and {a > 0,13 =

0, A > 0}. This family includes the gamma, the inverse Gaussian, the hyperbola distribution,

and their reciprocals, in the sense that if X has density f(t I a,,3, A), then X- 1 has density

f(t 13, a, -A). For the case a > 0, 3 > 0, this method yields the estimator

2 f(a Ia,3,A)e,/2a(1+ 2T)A--exP [a1 a-3 1 (20)

a aa 1 a +2I

for sufficiently large a, where T has a standard exponential density. The second example is the

t distribution with k degrees of freedom, with density fk(x) proportional to (1 + x2 /k)-(k+1)/2,

for which the estimator is

a fk(a) (k + a2 )y 2 (k+1)/2
k j ka + a 2Y 2 I (21)

where Y has the Pareto density k/yk+1 for y >_ 1. In both cases, the cv 2 decreases to zero as

a - oo. Detailed proofs of these and related results are given in [17].

We now turn to the multivariate case. In 1962, Slepian [32] proved the following inequality.

Let X -, Ný(0, E = (aij)) and Y -, Np(O,T = (rij)) with aij Ž rij and aii = -ii; then for any

vector a, P(X > a) Ž P(Y > a), where x > a means that xi ,> ai for all i. Slepian derived
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this result using Plackett's identity (see Section 4 below) in a study of one-sided boundary

crossing problems for Gaussian processes. Since Slepian proved his inequality, his result has

been generalized in a number of ways. For instance, the inequality holds for all elliptically

contoured distributions: see Das Gupta, et al. [8] and Tong [34] for such results.

When 'ij >_ 0 for all i and j, the inequality PE(X > a) >_ PI(X > a) yields a lower bound

which can be easily computed for the normal, since then it is a product of univariate normal

probabilities. However, this lower bound often gives a poor approximation (see Iyengar [14]), so

that Slepian's inequality is more useful for theoretical investigations. Thus, in this section, we

describe alternative methods that provide good approximations.

Suppose that X is a p-variate vector which has an elliptically contoured distribution with

density I E 1-2 g(x'E-lx); further, let term "tail region" refer to a closed convex region B

that is far from 0 (of course, B should have non-empty interior, else the probability will be

zero). If E = L'L is the Cholesky decomposition of E, then Z = L-1X has the density

f(z) = f(z;0,l) = g(z'z), and P(X E B) = P(Z E A = L-'B). Since A is closed and

convex, it contains a unique point, a, that is closest to the origin: IaI•_IzI, for z E A, and A is

contained in the half plane (z : z'a > a'a}. Since Z has a spherically symmetric distribution,

A can be rotated so that a = re1 , where el is the unit vector in the z, direction, and r =IaI.

Note that r = r(A) depends upon the set A; for notational convenience, this dependence will be

suppressed. Next, if 3 = La, then 0 minimizes the Mahalanobis distance, (x'E-1x) 1/2 , of points

in B to the origin; also, B is contained in the half plane Ix : x'O-/3 Ž> •,•-31}. Of course,

the problem of finding 0 is a quadratic programming problem which can be solved using known

techniques. For any set A, matrix D, and vector c, let DA + c denote the set, {Dx + c : x E A).

To estimate 9 = P(Z E A), ordinary Monte Carlo averages n independent replicates of

I(Z E A), where I is an indicator function. This estimator's variance is (0 - 02)/n. An
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alternative approach is to use f(z - a) as a sampling function (Wessel, et al. [35] refer to this

as improved importance sampling). The expression

0= f{(z) f f(z a) f(+0)f(z)dz (22)"0 AZ - --a)f ~ f (Z)

suggests the unbiased estimator

""= + C)I(Z E A - a). (23)
f(Z)

If g is a decreasing function - that is, f is unimodal, as is the case with the p-variate normal

or t, but not the family given in (5) - then f(z) !_ f(z - a) for z E A, and

A f(z) -a dz<0, (24)E( =.A f(-z--a)fz ~ <O,(4

so that b has a smaller variance (and smaller cv 2 ) than ordinary Monte Carlo. However, it can

be shown that for several cases (the normal and the t), the cv 2 tends to infinity as a -* o (see

[171). Thus, we turn to multivariate analogs of the method described in (12) above.

Although a direct generalization of (12) is not available, the analog is to write A0 = A - a,

and

0 f(z) dz = f(o)L f(z + a) dz (25)

and to manipulate the ratio f(z + a)/f(a) to derive an estimator that has bounded cv 2 as the

region A moves outward to infinity. Just as in the one-dimensional case, there is no generic

method that will work for all g; and unlike the one-dimensional case, the shape of A (or equiv-

alently the shape of B and the dependence among the random variables as given by E) plays

an important role in the choice of sampling function. We now sketch the details for the normal

and t distributions.

For the normal with density Op(z) = 0,(z; 0, 1), (25) becomes

9=kMaOL kA 0 + p(a) dz 101 (JAo L al e-IlZ-Z1Op- I(u)dudzl, (26)

152



where u = (z 2 ,. . ., zp). Next, for the t density fp(z) = fp,,,(z; 0, 1), a slight modification of (12)

is needed. Let A1 = A/ lal to get

/:f~) V laP2 (p+v-)/2 /z V+ laJ2 (p+-')/ 2 d. (7
1 f z V Z1(a) lal, = ( v+ Ja121Z)(

Now using the sampling density which is proportional to lzl-(P+') on A,, we get

9 = ((i (V+ laP') IfI (+a,)/2 dz (8S=JA1  V+ 1a121z12 ) IzlP+'(

Such expressions provide guidelines on the nature of the sampling function to use for im-

portance sampling. The specific choice depends, as mentioned before, on the nature of A,

specificaiiy, on Ehe shape of A near the origin (or A1 near the point el). In particular, let

B = {x : x, >_ bi,x 2 > b2 }, where the bi are positive; without loss of generality, suppose that

b, < b2 . When the correlation between X1 and X 2 is p, the point, /f, that is closest to the origin

(using Mahalanobis distance) is

(bl,b 2 ) if p < bl/b 2

/3 = (29)

(pb 2,b 2) if p_ b1 /b 2.

Transforming to the independent case and rotating so that the nearest point, a, is in the el

direction gives {([b'R-1 b]1/ 2,0) if p < bl/b 2
(30)

(b2 ,0) ifp >_bu/bi2 .

The region A is given in Figures 1 for p < bl/b 2, and 2 for p >_ b1/b 2. Since the nature of

A0 = A - a at the origin is determined by the difference p - b1 /b 2, the ratio bl/b 2 will be

preserved in the calculations above: in effect, the region B will be moved outward towards

infinity in the direction of the vector b = (bl, b2).

{FIGURES IIERE}
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We will now provide some of the details for the normal distribution; for a fuller ac ntt,

see [17]. When the correlation coefficient p is not large (p < b1/b 2 when bl :5 b2 ), the bivariat,.

sampling function consisted of a product of two exponential densities, and when p is large, the

sampling function consisted of the product of an exponential and a normal. This is intuitively

plausible, since for small p, the bivariate normal density is not far from the independent case,

while for large p, it is not far from the singular casp, for which the exponential given in (113)

yields accurate estimates. Transforming back to X (with P12 = p), the estimators are given by

the following. For p < bl/b 2 ,

02 (b; E)(1 - p2)e -T'R-'T/2 (31)

(b, - pb2)(b2 - pbi)(

where T = (T 1 , T2 ) has independent exponentially distributed components with mean vector

((l - p2)/(bi - pb2 ), (1 - p2)/(b, - pb2 )). And for p >_ b1/b 2 it is

O(b2) eT2/2I[(T, U) E Aol, (32)
b2

where T and U are independent with densities a ea Ie t and 0(u), respectively, and A0 =

A - (b2 , 0) is the translate of the set given in Figure 2. For both of these cases, it can be shown

that the cv 2 for the estimators given above all tend to zero as a --* oo, that is, as the tail

probability diminishes. The proof for the normal case is given in [17]. We omit the proof for

the t distribution. Instead, we turn to the key quantity that is used in the proofs, Mills' ratio.

Several definitions of the multivariate iormal Mills' ratio are available. The first definition

is due to Savage, [29] for the case of orthants:

MI(B; R)- P(X E B) (33)
.Op(b; R)

for X , Np(0, R). Another definition is gotten by first transforming to the spherically symmetric

case with Z, A, and a replacing X, B, and 0 respectively. For r =Ial let

M2(A; I) = P(Z E A) (34)
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This definition applies to convex regions A, not just orthants. However, the two definitions do

not coincide when B is an orthant. For R $ I,

M2(P(Z E A) 2r 2 P((35)
(27r)(p-) 1 [2 0p(a; I) (2, RI) Op (0; R)

so that the two definitions differ in two respects. First, in place of 3, it uses the vertex b;

for example, when (bl,b 2) = (1,2) and p = 0.95, (031,032) = (1.9,2). This is an important

difference, because when the correlation is high, importance sampling centered at b can be much

worse than that centered even at the origin (see [17]). Second, the new definition has the factor

(27r/I 27rR 1)1/2; this is not an important difference, but it does mean that proper comparisons

of the two must first adjust for this factor.

For the multivariate normal, the following inequalities for M2 generalize (15):

1
M 2(A; I) < -P[(T, U) E Ao], (36)

r

and 1[ 2
t' -rM2(;I) > ! P[(T, U) E A01 - I re . 2 ]~ud

> P[(T, U) E Ao] - -re (37)
r 10

= -P[(T, U) E Ao] - ,
r r

where (T, U) is as in (32). When A = L- 1 B, where B is a quadrant, explicit expressions for

the bounds in (36) and the first line of (37) are available. Such inequalities are not available for

M1 . These inequalities are used in [17] to prove that the estimators in (31) and (32) have cv2

tending to zero as a -- 0o.

Mills' ratio for elliptically contoured densities are defined analogously: the numerator is

P(X E B), while the denominator is either Op(b; R) or Op(4; R) for All and M2 , respectively.

In [91, Fang and Xu give a detailed account of Ml They show that if X has an elliptically
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contoured distribution given by (2), where g is a non-increasing function, then the function

-P(X E B) is a Schur convex function; they use this fact, along with standard majorization

results to provide inequalities for M 1 . A detailed study of the analog of M 2 for other elliptically

contoured distributions has not yet been done.

4 Computation of Moments

In his paper, Bri~linger [4] noted that a moment generalizes the notion of a probability, since

the latter is the first moment of an indicator function, which is a building block of integrable

functions. Here, we use the term moment to denote the expected value, when it exists, of some

function of a random vector, that is, E[g(X)] = E[g(Xi,...,Xp)]. Conventionally, (product)

moments are defined as E [p IU X!k'], where ki are non-negative integers. In this section, we

discuss three methods for competing moments for elliptically contoured distributions. The first

uses the characteristic function when it is available, the second uses the stochastic representation

(1) when the moments of T are available, and the third uses several partial differential equations

that are given below. Throughout, let X = p + r'l/ 2 UP, as in (1).

The first two methods, which are due to Li [23], are of course equivalent; computational

convenience dictates the choice of method. Let the kth moment (when it exists) of the vector

X be given by the matrix Fk(X), where

=(k)) = E[X ® X'1® X...® X'] if k is even
]Pk(X) (1fr) = (38)

1 E[X®X'®X... ®X'X] ifkis odd,

where 0 denotes the Kronecker product, which has k terms in (38). This definition reduces to the

usual mean vector and covariance matrix when k = 1 and 2, respectively; F 1 (X) = i whenever

the first moment exists. For k > 3, the following recipe tells us where to find E [H-I , Xk] (With

- 1 ki = k) in [k(X): if the terms in the product are strung out thus, (k) = E(X Xi2 ... XI)
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then
[(k+1)/2]

r = 1+ 1j (i 2j- - 1) P[(k+1)/2]-j (39)
j=1

and
[k/2]

S= 1+ E 02 - 1) p[k/2]-, (40)
j=1

where [a] is the greatest integer in a.

Using this notation, the matrices FPk(X) can be expressed in two ways. First, if the charac-

teristic function is known, repeated differentiation of it gives the following expressions for k = 2

and 3:

r 2 (X) = '- '(O)E,

r 3 (X) = p ®,' ® j - 20(0)[1 E + E ® y + vec(E)'], (41)

where vec(E) = (Ul1, 0'21 ,. . .,I p1,. .. ,lp ... ,OPP)' strings out the columns of E into one long

vector.

This formulation is useful for the family (5), for the characteristic function is given by

77k~;') = e-,1 t / 4 Z1 (k) F(p/2 )(-7t/ 4 )-, (42)
7n=o m (m + p/2)

so that -24'(0) = q(2k + p)/2p. A proof of this result is given in Iyengar and Tong [15]. When

the characteristic function is not available, but the moments of r are available, t•.. representation

(for ,i = 0 and E = I) X = TUp implies that Fk(X) = rkFk(Up). Since Fk(Up) can be derived

from the known properties of the normal distribution, -2V'(0) is replaced by E(r2 )/p in (41).

For instance, for the multivariate t, the characteristic function is intractable, but the density of

7 is proportional to

r P-(1 + r 2 /v)-(p+-)/2, r > 0, (43)

which yields the finite moments upon integration. Expressions for the fourth moment F4 that

involve 0'(0) or E(r 4 ) are given in [23]; even higher order moments can be computed along
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the lines outlined there. Since quadratic forms in elliptically contoured distributions arise in

standard testing procedures (see Anderson and Fang [2]), Li also provides expressions for their

moments.

In a related study, Xu and Fang [36] define an n x p matrix has a matrix elliptically contoured

density if TX has the same distribution as X for every n x n orthogonal matrix T. The density

then has the form cn,pf(x'x); if Y = X E/ 2 for a p x p covariance matrix E, the density of Y is

given by

C, p JEJ-n/2 f(•-1/2yIyE•-1/2). (4

In their paper, Xu and Fang give the expected values of zonal polynomials and other symmetric

functions of W = Y'Y. The expressions are rather involved, so we omit them.

The third method of computing moments has a longer history. In 1958, Price [27] proved

the following result. Let Np(,u, E) denote a p-variate normal with mean 1L and covariance matrix

S= (aij). Suppose that X = (X i,..., X p) has a N p(p, E) distribution (written X - N p(i, E)),

and let g1(X 1 ),. .. , qp(Xp) be differentiable functions of the components of X, each admitting a

Laplace transform; then

- E gk(Xk)l = E I7 gk(Xk) for i $ j. (45)a(7iJ .9 io X 1

Conversely, if this identity holds for arbitrary g..... , gp (with both expectations above defined)

then X has a multivariate normal distribution. Price and others used this theorem to facilitate

studies in signal processing. In particular, suppose that a zero-memory non-linear input-output

device with Gaussian input Xi that yields output g,(Xi). The pth-order correlation coefficient

of the outputs is a quantity of interest which requires the computation of the expectation of

fl-i gk(Xk). The differential equation of Price's theorem provides a useful computational tool for

such calculations. Consider the following trivial example: if Il(k) = E(X1 X 2 ), wilt, e, P12 - p
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is the coitelation between the standardized variates X 1 and X2, then h'(p) 1, and h(p) = p

follows.

Although Price's theorem is an elegant result, it has several limitations. In fact, Pawula

[25] (see also Papoulis [24]) noted that when p = 2, and the right hand side of (45) can be

evaluated explicitly, there is a single differential equation to solve. But for larger p, there are

p(p- 1)/2 differential equations to solve simultaneously. Furthermore, Price's result only applied

to a product of functions of individual components only. Pawula used a result of Plackett [26] to

overcome these limitations. In 1954, Plackett proved the following identity while investigating

a reduction formula for multivariate normal probabilities: if the density of a Np(ji, E) variate is

0,(x - pi, E), then

a a2

Op(X - i; E) - Op(x -- I; E), for i 7 j. (46)
00,ij ax.9x,

For the case i j, we have the diffusion equation

a 1 a2
S6p(x - Yu; E) = -O--p(X - ]t; 2). (47)

Pawula used Plackett's identity to extend Price's theorem thus: if g(xl,... , xp) is sufficiently

smooth and vanishes rapidly near infinity, then

E[g(X . = E [ 2g(xi, .. ,X,) for i 5 j. (48)

This extension allowed the study of more general functions, such as the "linear rectifier correla-

tor," g(xI, X2 ) =Ix1 + X2 1 - lxI - x 21.

Pawula then used the following method, also due to Plackett, to reduce the number of

differential equations to solve from p(p - 1)/2 to one. For a given E define a line between it and

the identity matrix I, Et = (1 - t)I + tE for 0 < t < 1. The chain rule then gives

C- tP(X - JL; Yt) = ai j Z a p (X - it; 0t), (19)
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so that

a E[ g(X,., X[ ) ] = Et .(Xl,.., XP)J (50)

where Ft denotes the expectation with respect to N(p, Et). When the right hand side of (50) can

be evaluated, a single ordinary differential equation results. By solving it, Pawula showed how

to compute the moments of various functions of X, such as products of Hermite polynomials or

error functions. In some cases, higher order derivatives with respect to t are needed: they are

just iterates of the partial differential operator on thf rig1,t of (50).

The search for bounds for certain probabilities and expectations has recently led to several

generalizations of Plackett's identity to eliptically contoured distributions. The first is a result

of Joag-dev, et al. [18] which only requires that g in (2) be differentiable:

a P
9)=- (E ,kXk)f(X; A,) (51)

Sk=1

where 0 ik is the i, k element of E-1. Another is due to Iyengar ([12], see also Iyengar and Tong

[15]), who proved the following identity for fp,k:

0 f / k! r(± + m) 02 (52)
0, m!2 r( + k) o 0 fp 'm(Z;I','?).(j

rn=0 2

This specializes to Plackett's identity when k = 0. Finally, Gordon [10] proved a definitive

version of Plackett's identity for elliptically contoured densities (the proof of which he traced

back to [8,18]). HIe showed that the following two statements about functions g and h, each

mapping IR+ into itself and vanishing at so, are equivalent:

h(t) -1 1' g(r) dr (53)

and

0 g02

-- g (x) (10x), (54)
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where gE(x) =IvI1-/2 g(x'E-7x), and similarly for h. When g is an exponential or an appropri-

ately chosen gamma density the identities of Plackett and Iyengar, (46) and (52), respectively,

follow. Next, for the p-variate t with v degrees of freedom, we have

h(t) F((p+ v)/2) v + t)-(p+-2)/2 " (55)(rv)p/2 F(v/2) (p +-- 2)(1

These extensions of Plackett's identity have been used principally for theoretical investiga-

tions, in particular, for studying the nature of the dependence among the components of X. A

systematic study of their use for the computation of moments of various functions (other than

the usual product moments given by Fk) has not yet been done. The mathematical basis for

Plackett's identity goes back to the 19th century work of Schlitii [31] on hyperspherical sim-

plices, and the lattf, wof'k of the geometer Coxeter [6]. For more on the geometrical aspects of

Plackett's identity and related issues, see Abrahamson [1] Iyeugar [161 and Ruben [28].

5 Conclusion

In this paper, we have discussed recent developments in probability and moment calculations

for elliptically contoured distributions. These developments should allow the use of models other

than the multivariate normal for high dimensional data. Clearly, much more work needs to be

done. For instance, since Monte Carlo is an increasingly popular method for assessing the

performance of various systems, a more systematic study of appropriate sampling functions is

needed. Only the beginnings of such a study are given here.
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Legends for the two Figures

FIGURE 1: p < bil/b2 ; A is bounded by L1 and L2.

(b2 - pb2)L1 2  = ( - pb)(l- (b'R-'b)1 / 2), for z 1 >_ (b'R-'b)1/ 2

-b 1 _- p2 )1/2
L2 : Z2 = (b, - pb2) -(z, - (b'R-lb)'/) for zi >_ (b'R-lb)/

FIGURE 2: p Ž bi/b 2; A is bounded by L1 and L 2.

L, Z2 =(pzl -- bl) frz !b

(pb2 - bl)

L2 :z = b2 , for z2 • (pb p 2)1/)
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Abstract

In this paper we discuss the problem discriminating among various non-linear time
series models. 'While the method we propose is of a general nature we consider a re-
stricted class of models that share an identical AR(1) equivalent correlation function
structure ;hence, identical spectral density. Consequently, the possibility of discriminat-
ing among them on tlie basis of second order moments is t heoretically, and practically.
impossible. The approach being taken is aimed at discriminating among the models
on the basis of higher order moments i.e. the higher order cuimnulant structure. Specif-
ically. we shall focus on the 3.l-order cumiulant structures as our initial step beyond
the conventional covariance structure.

Key Words : Time series, Linear, Non-linear, Gaussianity. Stationarity. Au-
toregressive. Exponential Models. PAlR(l), AR (I)) EAR(1), TEAIR(1), NEA R(I).
Robertson's Fixed and Random Models, Correlation and (Cumulant Structure.
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1Introduction

Statistical methods based onl moment iinforim at ion liave bieeii used extensively. 111 termns of*

miodel identification the time series literaltiire has been (levot itg a c:onsiderabl)e attenti onl to

the problem of identifying the p) and~ of ordler undi~er I lie general linear frainwork of A kM A( p~q)

modelling. Second order correlation informiat ion (e.g. acf and Ipacf) became a mxain tool in the

p~rocess of of selectilng p and of. 'While second order in format ion is of paramount, Importance

in the case where the roots of the AR anid MA polynomials remain outsidle the unit circle.

higher order cumnulant, information b~ecomes crucial in deciding onl the locations of thle zeros,

or poles of possibly noni-invertilble, non-causal and non-Gaussiaii ARMIA models. Of course

there are manv very useful statistical tools for solving the above mentIioned problems whilch

are not based on momients. For example, the use of information b~ased criteria such as AIC,

MAIC and BIC in selecting orders of anl AR\HA ninodel. the use, of MLE in locating root~s

of a muixed phase ARMA process. ect .Whl thlese non-moentin based methods might be

more efficient than m-oments methods, thie moments methods are generally simpler. easier

and intuitvely appealing both in theory and comp~utat ion. It, is often the case thiat one needs

the initial point supplied by such a niet hod to start anl eflicient. but complicated non-inoment

based met hod.

The in trod uction of non-li near t~ime series modlels in recent, years (e.g. bilinear, threshliold.

ranrdom coefihcienit . ect .) amplified the impnlortance of uisinig higher ordler ci iii-lant infornia-

tion in d iscriminat inrg among the various iion-I ired r miodel~s, It was shown that. dIifferent1

models are ca pablde of prod licinrg an Ideiit.ical1 correlat ion hinc(1ilon of th lie i ia r a tit oregiress ive1

type; t iii s. giving rise to a (lass of modlels cliaract erizedl as 2" -order equiva lent . oiisc'-

y ien t l. efforts liiave 1 ecii diverted'( to th liellialYvSis of' tie higher order (liiiiiil1anit striict iire wit]tit

liel hlope of exploditnig differences aiiiorig, tIcIleiodlels at highler order correlatilonl d('peiidcI(-iic

strinci ure. Thell basic Idea uIIIderlYi ng t lie scia rcli for Hii ornIa t (ion iiit Ilie Ii ighier order cii niii Ia iii

st riict ire Inl order to dlist irigilikhi two iiiodeleh uia; hc Slitlld as fo)llows. 'WitIII 1iii cli (d'~So
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moment determination. moment sequlenc'es of two dIifferent, st ochiastic processes canniot be

- identical. Specifically, given I wo stat ioiiarY series { A,, j { Y I t here exists, (111, U.2 . UIk)

such that. kth r-orler mome nts orciniili t 11it lags ( 111 112...UIk) of { Xt } and I r

not equal. i.e.

CA11 112, u Il) 54 Cyt i, 112 . Uk.).

In practice, one, hopes that the above is t rue for a smiall or'der k, and the difference is large

relative toagiveni sample size. Otherwise. the search for adiscriminat~ory, oe nte11(1

order curmirlant st ructure might turn out to be fruit less.

The problemn of djiscrimination amnong non- linear time series models has been considered byv

manyv authors. Lawrence and Lewis [2.1] considered special :3rd-order structure of the formi

wher R~arth linear autoregressive resi(lul oodr 1) for RCA and PAR models

Within the class of bilinear models Li [26] and G1abr [10] considered quantities of the form

respectively. Auest a( and Tjosthei m [4] considered the lie se of now pIa~iaiiietr inc mt,lIo(ls aimiied

at the condit ioinal rileali and variance of variouis nion-linear tinme series miodels. Anderson [1],

approached this problem differently by ob~servinig (Ii IFerences in the sample p~athus genieratedl

by the exponential family. Usinig a fluctunat ing type statistic he was ablle to discriminia te

amiong simu11lated t races for a reasona ble nmmm ber of obsc rvat ions. liIi his work thle mnoiment s

(10 not play a. role in thle proposed d iscri mi nat ion jproce(l ire and as, suich n iaY provide anl

alternative in sit nations where miomieiits 11p to thle desiiml-c order do iiot exist. [I'saY [:371

offers- a very general met hod for select inrg a moH del depeindinmg on Ilie, ivpe of clia ra c cris't ic

One( is iii icrested to inv(est igatIe.

%Vc lpropos.e a new approach li( reliesý (mi 1ie comiject ire fiat Ilie in form11at is requir-ed fory

(liscri nih at 1oin an111mg Ole mmi lels)" 1" a v i a ll m,' l 1)1( )Ig-la oi rd ler n nnem or cqlmi vaclý 1( % l.
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in the higher order cumulant. st ructuire. SpecI ica li. w shal cI oncenltrat e on r attentio loll

the third( order cumulant. st rUCtIlire given1 1,v

C(11 II ,'(XY - /1,)( X,_. -- - i')1 (1.1I)

T1he family of exp~onenitial I i e series models ViH II Ie t he fra niwork widtin iii viih we slAial

show the paramietric equali ty of the correlat ion ( hence. thle spectralI density) funtct ions, and

the wayv in which the theoretical higher order ciiiiiiaii st 11(1Inre points oil to thledifferences

among the riodels. Wve (lernlost rate thle 111(1110( for a rest.ricted1 case where we considler a

farnil of non-li near time series riiodels withI known marginal (list rik1)11 ois anl(l a common

A R( I) equi va lent correlation si ruct ure Thiis famnil v onsists of marginal ex ponenii aill dis-

tribuited tilie series miodels which idnclde

"* ( i) P rod uct Autoregressive Model [ PA 1( (I)

"* (ii) EXponlerit ial Ant ore", ressive Model [ FN R ( I

"* (iii) Tr ansp~osed1 Fxpoien t ial Auitoregressive Model [ '1' LARH(1)

"* (iv) Newer l'X l)OTiCIi Iial A ut oregressi ye Mm 1(1 [ NELAR( I )

"* ( v) Robert Soli's Fixed Model

"* (vi) Robert Soils R~andom iM odel

lIn add~itioni we shall colnisiiler I he liiiear aitil or(''2rcssi v( 1110(1 with Iixponent ial innovat ion

process whiclh we shall call ARE(1 I ). As oppos'ed to i lie famiilY Iierit ioiied abiove the ARV( Ij )

dhoes not have a known marg.inial distribuht ion hlowever, its' rnoincn is cmi hile cornputled. Ti h

model1(. I liow inili. ski res thle saiiHI COFehi ldionl St rul t Wiii a ielo IhC ~ 1M - iil ('X )ICoii iaIla fiilii v.

'lie underlYing oliji'et ye is to disc~riiiiiriat alurloiu reali','ations" prodiicml bY the rhlodek>

We (01risiiler. Thius tavsk is inpo.s-ilile tiaorniul 5i11(( Ilw hie 1v l idejkitcal >c oml orC) de

170
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weakms at Oniari MY cani be adlieved by app)lyiKg ani a ppropriat IN iai llriat ion eqg. 1iiie'arI

filter'in g.

2. I'lic' tie 1!1W5(ries, v iewed ats a stoc hasti v Jxiovs. J&.1 EI T1 . is ani out Jlit. froil it

/jn e ni l/hr whlose' inp1 uit is thle while 11lt.i(t process~ { 1,1 lieiiee. ihe ob)servedI saiiih)e

realizat ion call be represented as a lWnar fiiiicioii or past arm prethi(seilo vues of { /, -

aL oiie si(Ic~d represent ationi.

Iii recent Years thle va&hold or thoise tw~ini assunqii lptbs - as re'amonabIlt approxi'Oi iiatiomis to

saniiih)e t race realhiza tions - ha!ý been qutest joned as diatIa froin a wider variet~y of' souirces-

becantvi a vailablie. Conupled with1 advancues in thle fieild of non-I inear ivita ilics (dceteriniisiiis c

chlaos thieories), resea rch ini t~t liHeld of non-st at ionarv, iioii-linear aiii iioi-( ,a issian t iniie

series niiitliodologv have beenl ill p)rogress. Suibseqrieiit efforts to bring iioin-iiiear tion' series

lit erat ure un der one iun ified hraniiewoik resiult ed in thle plibii u jat.ion of' books like lPriest. ev

[29] andi long [31 'hPi reader is also ref erred to Mo1 ldier [28] lor a collect ion of pape'rs oil

tieory, ('011put ationl ia nethods andh a pphic-at ionis in thle airea of 'ion- liiir signd al ulcessi g.

Tong [36] d iscnisses prop)erties of thle Gaulssiani statjoilar in iiea r model (G(SI LM) which ilnay

piossibly be violate :~

"* (a) Ti e series t ha t exhlibi t st ron gasynilnijet c 1 ehiavior caii ot I ex(Npecic~d to conl i riii

to thle C;S I. I. Such ii iocels are (ha ract erized b~y svnll riiii c joint (linliullt ive (luiisit v

BMlitils andI that rule.s out as~vuiniciie c salipic reahi/at iols.

"* ( b) [lie (,SIAI\ does not give rise 1() cuhusters oh' out liens c.g. sllidhehibust of large

uiuagliit lihes at ir-regullar I inile intervals.. Observed t ilie Series iii socio-eroliol Iiii related

phieliollmiea ho tend to I'N i bit groli ps od' oul1(15.s

"* (c) Saulllnple t iace that dellorist rate PSInt lui cy'lec, calnl no e iiodeled bvY i (~Il ii

Ilmi-' gr.ssioi fuinct ions, at lag, (k) i.e. 41~X are, all lineail (due t i) thle aIssuewd
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* (d ) rihe Gaussian process { A, I is reversible i.e. (XA1 ...... ,X", )' has the same dist~ribit ion

as (A,V........ X, )'. Rieversibility is violated in the presence of differences in the rat~e at

which a sample pathI rises t~o its maxima, and the rate at. which it falls away from it.

One, simple way for investigating departulres fromn reversilbilit.y is to plot thec sampIle on

a t ranisparency and then turn it over. If thle mirror Image is siniilar to the origi nal plot

fieni the series may be assumed reversible -Irreversib~le ot herwise.

Onec could also test formally for G'aussianitv and linearity. Following tBrillinger [6], who

pointed( out to the potential of' using the bispect ral density function as lie basis for classifyinig

a process as linear (and possibly G'aussian) or non-linear, Subba lRao and] Gabr [35) and

Hinnich [13] developed formnal t~ests for linearity and Gauissianit v. The tests are based o

heC constan cv of the niormalizedl bispectral densit V funIctII 1ionuder the assumption that { ,

Iia ve a l inear represeritat ion. Tong [36]) Iprovid es a com-preheiisi ve revilew of t ests for li nearit v

and] normality. 1PriestleY [29] considers the case where a stationiarY process does not fit into a

linear representat~ion andl concludes tha~t "a fortiori nmany types of iion-st ationary processes

would also fall outside the domain of' linear models." InI summary, observed time series (10

not necessarily con formn to niodels such as the GSL NI. The degree to which a tlime seriels

realizat ion represent s a trace gene rated by t.c he SIALM has a direct. bea ring on thle usefihulness

of esti mat iii an A H MA ( p~) mnodel. For puirposes of predhiction, forecasting and~ conitrol one

is bet~ter ol* takinrg adlvanitage of' thle non- linear (hence, non -C(aussiaii) st ruc tmire of' t he (hat a

duiirinrg thle nmodelinhg stage,. If' Inrdeed ie ( SLIM NIis' deenied Hinnppropriale ot .~ic hias t he choice

amionig several familiesý of iioii-linear miodels. We sliall turn to sonic ()h t hese explicitly InI

sect m io3.
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3 AR(1) Type Exponential Models (EAR)

T[he fa [I Ii Iv of modle Is we conlsidler I re is I hI a I of 1 lhe rpn ( a1)111 fui Ij oiigiv i Ssmil' liO(hes. whcI jei

is conlpowl( of' tlie FAR\ P () anid its geTeal izatIioll to I lie h1(1 I.ipos d .ijwii ( filauatlo j110~re.S.S,

mlodel TEAR( I ). and t he I?( w( r(.rponrunhil lu/otig jSimim( NIKA 1?( 1) modu~el. This typ~e of* t iliir

series miodels veep roposed byl Ga ver a 11( Lewis [1IJ. aW ra lice a nd LeAw is [20. 21]. J1acobs

and LWis [I 1. 1 a"rarice [1 !] an 111 urler developed by Law tantce and Lewis 122. 23. 2.1]. Also

we considi(er Robert sois F ixedl and Rantdonm mlodels [311]. and( the Produc nt A nioregressi ye

PTAR() modelI proposed byv N clensvie [27] -I %lee all ii iodels beintg rest ricted to a first order

autoregressive sI riict iire.

In contitrast wvith ot her niol- linear time series nlodlels (eqg. Liii iea r a nd I Ihirs hlad) th iis (lass

of tiiodlels is ali atltenpt, to cap11ilre thle b~ehiavior of, possill o)bm01 sr"Al, thn ilii( seris lU)C55

withI explicit marginal exponien tial (list rilbut ions. Tefamily I of ENLAP uiodels is ad vocalted

as a way of relaxing thle assui rupion of nmargitin 1 auissiaiiit~y wh ichi undi~erlies I lie (iaurssiali

linlear stat ionary niuodel . Thie reasons behindi( thle choice of thle ex pomienth inI(ist rikLit iti as

I lie marginial (lisri Lut~iou are gi ven hin Gayer- Lewis [I1] anrd Lawranice a 11(] Lewis [23]. Thie

st andlardl linear Ii st. ordIer autoregressive process. Aft{( 1). withI exponential inpl, )i A RIK( I ).

will be usedl for compularison puurposes in section 5. Th'Iiis Ii iodel has anl idenitical correlat ion

and spectral denisityv funictiolns as (10 thle m odels ielit iolied above Ahowevexr, 'iis marginal

(list ribut ion is tiot kniowni, thuos, it is not. to b~e conisideredl as all exponiential model but

rather as a W nar ARP(1) moi(del withI expoietit a!iinput . 'I'lie fact that ii is liniea r eniables us

to (list iriguilisli it froni a :.. ot her lionl- linear iiiodel. withI or wititalli iderit ial I rorrelalioni

st runtill'c. b~asedl onl thle hieoret ical result stat'ing t hat I pro(ces's withi a linear representlat ion

has a fala (constalit ) normnalized Lisped mal thelsitv. for muore (1(1ails see Sibba Rlao andl ( ahl

1.74



3.1 PAR(1) Model

A ;\ Iut u iii I 'xt 'i11sioI I of tI lIc Ii i I Iar AI I~ (I iio le was piroposed( i Nh Mi cn/ic 1271 ;iiiid coni st Is

ofal ciiiUXpolifl I iat iol of ltheI l(inea I iiodelt suc htfl li I lthe aditlive formii is I ('Iiit 11 lt eforii I ''

(listrii(l)ited tilii i'wMiles whr lthi e oult' utt11 scriits lias dii ex ponlial Ina ,iia iil (list riil hu olt of

Imi nv *icjl l{

whew' (1 (0I. 1) at l K ' is gi \('i lqIX if ii xliii of itt ol i Oh) 7r) and it epoulicit I n Ii 'i on m

rado lit L ii \ iid isi iifpcl('p lif ei olf each oilielr.

th IIis IiOlld (Il tiIl'eis ho1011 I lie ot I wis W%,( 'oniislTl inl two aisf('fs. First 1, 16t inlOl n o l I i lOp m 5w

dot's iiot posess at knvl 1W iPa id 111(1 ,ie, deiisit.\ fii lift ilf~l d ld its Ii iglelc ord~er i 111I st lint- urlA

i's (Xpi('sf'fl ill 1 filO1-s of lihe ii ionleii s of XV, oilyI . Scconld, Me nlote, that (3. 1 ) iila b e linearized

I,\ takiiig lie logs of hUSI sidles oA the ('(J it lol. As5 such1 it is c lassified as;i altri.wlt

linc(al U iIlt'dl i.e,. ii lion- Iilieal I iiode! which can bie liniearized . It fromL'i ithi ile follow ing

mi odells whIiichi ciiilot bcl~'ii iarlixc'( dI lto ItheIir swvit chl rtt iial11 it antd are t o he coiisifh'i '

3.2 EAR(1) Model

fi \{ \1 ( -( .\ (
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W\e definle all F.AR( I ) Iiiodel its.

-t pXt-l +i: (1.3)

- j' pA1 .withI prob~. p

'~pAX -I+- h"'t with prob. ( I - po)(3)

wi thI (0 :K p < I ) a nd j 1, 1 being ait i.i.(l sequ~eil( c, defined by'~

{ wit pr~iOb. p (3()
1 ihprob. I - p.

I~ rider this formurlat ion { A1 } is marginally (list ril)ted as anl exymOin jal ramliont variab~le

with paramieter A..

Ga ver and Lewis [11] Point out 'to several chiaracterist ics of* H ie LA R( I) modell:

"* Se!tn p =u P y) ielIds thle special case where { XQ is a sequence of i .i.d exponential

randlomi \arialdles.

"* 'ý' is nIot a cwil illiolls randiomi v'ariable. Thijs Feat 1i[( (list iiigiislies (3.5) fromi te ut, sual

linear' AMl I )eqilat ionl wit It (aumssia ri 1 exponent ial inpul.t

"* T~ i'f'Jel'('5( ltiton (3.7, i,- ()te of' it idllI and illed (Ulinll~ihiilt ioll of' all i~ii expolwiel it

ill('m1f-s: I liH (dl 1 he ,imll i tq- ()It it ( mi lpl )l cr.

re0 n1c I I i ti k i I ) 1 ' ;1I iý ( 'dl K I'ý,'el 1 eler , (sc ktrI n c ;w' I d Ixw - ý'!2 is mida

'eilate to t he H l ple 1 pat it u l'at ' ýj. S 'ill( ;tlV. Ithe nl(d~dl u,1c l iidlk- pat(1 It Wfil h(1

1;1 \ ''- e iff'fll' ' "Ii , I V 1,4' I ' 1%1 ] 1 (d dc jt i ý x i 4. 111 rIIý 11 i - ' ( 1 1" t 1



3.3 TEAR(1) Model

A\ na~tmo ci'o1et rsioi of thle EAU( (1) iiioW' i-, to irit 'rclarge I lii robc ()X I a l (*d

lThs 11)(' riot affec!th e i'(xp)onen't ial (A) [ila~gliml d1ish1)11 OW of N,. t'm r('f)Iicirg 1) 1Lv

I. - (I we ob~taini thle transposul I .iR~1 1/10/ (Itta (jI T.-i' IARl( ) iiiodel

{j -I + ( I - ~i(It wtIi)IOl. (3.7)

(I -o) PJt ~ witll prlob. I - o

xx*I ere

I ithI prob).o

Note t hat ill this case thle innlovatitoin process i,, it (011ililiOls ialildolii variable scalled by

it contiialit I - nI. Thel lnfaidiol of a siriiilat ('i pathI. for it large' o. shows gvoriietrijeali v

(listribhiute runls of risillg values (i.e. I, =I) foliowi'd by sliarpJ declines, whl(l theI sel'ctiton

(1 =0 is mladle. Thie delin~iie (iii(' to thle exclusion of thle prteviouis value A

Thie l'IK;\l(1) miodel is (llcus~sed byV lmmmwraiie d Lewis P22] as an xtenisoti ofd lE A k( )

illollel. I loweiver,'. Ilt.AH(I ) is also at special k.ýe of :\rroldls [3] expolieritii ind ' drv hriL

loast irioltiox tls. !J)p'(tftcally. (lfi'tl(' thle iaildoiii vartal)Ies

-I ila inlold if 1r' t

if' atol only if' V', IU. I K t.....

xx (I n' ', ;t [V i .i A. BC b I' o 110 111 1) T-ti Il I d a o na ;IIii I Ic'~ xvi Ill V h I 'ii dr i I r' i hi It I 'I 0 h t ide a i x I HY I )
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3.4 NEAR(1) Model

Thie PreViolus tw\o niodels. FAH\l( I ) and! 'i..\ l( I ). aie special cases of a lilone Ilexifile liiodlel

in whlichi { Xt1 I in (3.8) is s"Ad~ I, a (OMfbchill 3: 1 lUls, simuiilatedl r('alizat ions generail (SI

by such mnodel are of iontrst as it iiia chircnnveo tIe problelm of geouliet rically (list rihiited

runs of fAlling or increasing alues wvhich miighit not, be ap~plicab~le. Specifically, let i ,'

denote~ th liettiule series variables am! l Il e a set1inice of anl i.i.d liniit 1iieaii expoiieuillial

rauidonu vWari kls act ing as thle Winijat ion proce~ss. The NI;AI( I) model( 1s (l(4 iwdl as

Nt 5 + {\%,ill) pitri)b1. (o3.1

with prj~ob. I -o0

J IJ,X -I + z (3.12)

whiere

k"L wit Ii prob. 1)(13
2 -j )1, wit Ii prob. I - 1)3.3

f 0 wiIt I 1 ) ol). 1 0

I with Ii )iol. o

wit Ii I z I -o ad 1 (1 .) The plaramlet ers o and~ 3 are' dlowed to ta;ke' vahlies

over t lie uoiniaiji definied bY I <C o. 3 <C I with fl . 3 $4 I. Selting (o I tKI< I)ii

(3.1 2) yNIels thei F-AlI?( I ) r model1. wheire f ix in I(3, I =: It C V <C I) give rise to the 1''1Al(

Mode(hl. B~othi are ('Nt tenli c'ases of at NLR IK. I proles>.- We niot thfat duei to th li (istlibiii

otinal assumnpt ion liiiierlv irg { LQ}. thle inn uovat ion process is riot allowed to take oil ieqal ye

vale I~e I)/j I) t is obv IouIhow tI IIe (oIct oh I Ai tlI 4li2 I rIie 1 iit p1  t

f.l2). lhe switch fro mp oneliier pieve to the Otkhi in runtrolled 1Lv mu c~ternal raiidnc

lti('(fidt ,11ii with hi dlt't~li( at Pk ,tu h~iu i-l~tii 1
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3.5 Robertson's Fixed and Random models

Robcrtson [:31] suggest e(l two exfpoticnleia I Iiii0(lls whIIcih wes shallI refer to as Robertson Is fixedl

andI randlom mnodels. OHur miain concern is to shiow t liat d iese miodels canHnrot beC idlentifiedI

via tHie correlation or spectral (leilsi tv furict ions Jhencc. onte hias to explore the highier ordier

cunmnlant structuire.

3.5.1 The Fixed Model

Consider the following swit chirig structunre

x -I in 31, with prob. .1
{ I,, wNith prob). I - (315

where 31 is a fixedl constant, E, Ihas a truncatedi exponeritial distribut~ion given by{ J 0 < ( < -1n,3

0 ot herw ise (.6

wi t i thec mna gi iial (list ri ilt ion of' Xt beinrg cx ponen tial wit Ii unli imeanu. \Iterniat ively. (3 5)

miay be representedI usi ng an indilcator rara nlo variable 1.C.

X , t - I -11 3 ) + (I1 11) 1-:1

wl Ici c

J I~viIiprob). 1 3

3.5.2 The Random model

On'v ruina V ýuimaIcilz 11e ti fixedl bYjdiIL a Ilowilr i rz3Ito bccwroiCit \01m n 11 a aLi wtel

il r i> i it 11X I I- i h 1I aIj~IIH i, .w it l (kII o iIa I 11) 1114, ri] i IIe I ri rva 0.1 S'pclII(itlka . let A', 11,1%,
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the represelitation
V~ -\'- -/n.It withl prob. 3,it(.

1, { I -t with prob. I -- ( .l

o0 stated In l(,lhs of an indi(cator random varlialh

-t = lt(.\•_ - 13,t) + (1 - I,)l', (3.20

xwhiere

i I with prob. 3t3{ 0 with proh. I -/. (3.21)

"I lie robabhility d(ellsitv assigied to 3, is a beta density with parameters (a, ,2)

{ o( + l)(1 -, o)()"+-1)0 <,3< 1 , 0 >0.2
"{0 o1l herwise. (3.22

The (list riit,ution of l•,3t is oht ained using t lie standard transformation of variables technique.

Let Y = hn 3 theln

{ o,(o + 1)(l -,) - < . < 0 . o- > 0 (3.23)
"fY(l) 0I ot herw*ISO. (•2•

The( protbalbility de(esiv f[unction for L', is al)propriately ,m odifie,

•- .fi~ <(3.24)
0 )=otherwise.

\VIt hili t his fram'vework ol(' not lies I hial I he random variables It and i 'h, are 110 llohdeplielt

as I lh1,v hot ih iIVolVx, I 1le iixiug ,fist rilnilt ion 3,. 1 lie Ihiargilial (lis riIlit lion of X., Ihogh.,

te,,lairi, expo•, litial wit h lTil nlali hv ('onst ruc ion. \We remark I hat all t hiese o11(1l( atre

ýtatolilarv ill , l i de l sellm i.e. slri(liv stat ioNary.

3.6 Summary
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s ARE(l)

\, ".\ ", (3.25)

e PAR(l)

"\ " - (:3.26)

• EAR(1)

{pfX - with p)rob). p (:.27)
"Pt Xt, l + 1"'t wit It prolb. I - p

* TEAR(l) (p I -n)

> A'-i + (I - o))/' with prob. o (3.28)

Vt (I - a)P", with prol). 1 - (

* NEAR(l):

wi 1P).x_ + Wit w ih pro . (3.29){ L� wvithi prob. I - n

Et with prob. 1)
b= . with prob. I -(1)

1 -P -1 b

* Roberston's Fixed Model

{ ,-j - /,,I x with prob. :13
.E with p)rob. I - 3

wvhere

_- 0 < < -1n3

* Roberston's Random Model

f ,, 1 - /u 3 t with p)rol). 3(

',", -ob I - 3,'(

I - it0t i < xv 1i 5

./ (( -) - I N) It 1h erxwi s( e

{ )v +•• 1)(1 0 < 3 < I . o > 0J'.,,~~( t I4 I cl w) *t m(r," '.
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l'ahle 1: ( oriiclaIloll [iiiiii cons

A\It IQi I) PAR\( I ) FIAI:\1( I) ['F, A l( t ) Nl'FAlR( I ) I~0t ctsoi5 i's~i Ro)1515Iand~omt

[or all mtod(els, hill Robertsoi's atid IAl= ( I), the inplhut, process { Lt} is assuilihi(l to be an

i.i.d exponjenlt ial s- qlenccol iltji lled•lld, wit Ihe X('except,ioll of ARF(I)t lieout put { .'X

has a iii•arginal expolnential (list ril)itjiolt with Ill(eai onie. The (orrelation hiict iolbs for thlie

variolus rhtodel(' ate gi vetn ini table I.

Figiires 1-3 , ol-a, i , tll •ilmltlad traces ptoduiced bY the ,'va l05s models. Nol(' that we indexed

the paramtutr ,,'ahles o( each iitoclel s1ch thhat tle colr'lat iofl'nictions produce idlenitical

result s i.e ,)(., ) = (0. 1 ).s (0.5")., (0.7-5Y.

4 Higher Order Cumulants

ILt {\t} be a real valued stict ly stat ioi•ary randomt process anid let 101(,12-.. . .) t, the

ktl'-ordt'r p~rtodlct m ento•'• i.e'.

For a stat ion•ya-vr process of or(ler A, we can write (.I ) a.s-

//It i-l12 ..... 'k) - m((0, 2 - 11t. -- 1..... . - ). (1.2)

No\w let tlit4 ciaracterisl ic f•ilict ion (I, ) of {J.\V } Ihe (0'eliled by

, (' i. 2 ..... ) tic I, +( 4 I,•1.:2
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theu the Taylor series expansion of (1.3) a bo Lt ii he origin is ghiven by

2j . .\.A, Xt, .. . N,1 ) + 0(I _ Ik) dtF (4.4)

k

"Y 0 .( ()( )[.\. . \ .14 -(f § k) (4.5)

= ,,IC . 1101,( • 2,., . . k) + o(I(k) (41.6)

where 1 { i= a} ai t(l = t)C,,I - .... .•t (.t,.rt. .. . t) being the joint cutiulal ive

dist ribut1ion fui ncttion .

The logar ilhnl of the cf (.1.3) is (]efilied as the c uinnlant generating fuincl ion (cgf)

'A' .G (, .. Ck) = og{ I,[ ltg .X, +11. .+k\ 1,)]} (4.7)

such that (1'(112 ..... 10 t lhe 'th-order joint, cumulanit of t lie set of ranIdoin variables

{ -CI, .\t I.. .. .. }. is t he (7oefficient of (u, ('2.. Q) inI tire Taylor series expansion of (4.7)

about. the origin. Spec(ificall.lv

(x1 i"(C 2  C + )>x 1 - . u1 .t. . t,) + I(j C k) (.1.2)

whereC3 ( l1. ..... t ( i ll(a¥tit (X, .. . ) . \Ve not(e that the ('uinulant of o(rder

'real-(1r than two arc all z<ero for a ( atnissiall p)roce(ess. Tlhis feati'r1 is used extl-nsivelv in signtal

;iroessilnrg to sUi)J)l(vs (;ailssiai loise.

The relationship l)(tiwetin ilOlmiertis anl(l c(ilrnilaitis wert formaliz ,ed hY Leoniov anl(d Shirvae\

[25] anrd are given Lv

wher' the sinum is taken over all partlit ions I0, i.,- ) .. which is a parlili)i (Io f (of .

R{elationshiIp (.1.9) in iie's that we caln wrile Ire )ilrlie'illts ill 1lernw (If Owe ,llnIi flutis arlid if
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heIcei(C th Invers~ion~iI of' (4.9) pe'I(s

ai Iif' th pro )1)cess is k'1-ior(IQI SI ai1ionlaiV el we(1 WI'l w1 r 'Viii 4

7t ((I. T2 . . k

A''-(irdlr j)4)1v1iloilial Il(II culiliaLllis o)! orde(r noI hijgheri 1iaii I.. Conlsider Owli specifiC (dS('S

2(., ~ -= Ilid'

vi lcre
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Consequently, one may write ( :j(.SI -S) III I It( m lori

I~( ~ 1+. VfS -jk[1( \.t+,. ) ± kIltt, + ~ + ' \,~XS) 2j/IU

and C'4 (S 15 ;2, *;3 ) ii le X rssed a S

('(r. .S, it) E[X.V ,~.X+r V+X 1+1,l (4.12)

- ~~(kiXiVt+s-r--t+jj -] + E[JtXX+,X1 +,] + IiXA+X+1+ IIA 1N+v A±I)

+ 2p,. FX A~+,. i [XX +]± XX±

+4 E[VtV r,] + I'A V +-]+ L,\tul)

For a det aildc account of the relations bet weeni moments and (iiinnla nts thfe readIer Is adlvised

to consult Kendall, Stunart and~ Ord [1(3]. Cumnulamit sand their relationshipwt spectral analysis

are dliscussed byv SesaY [3,1] andl Rosenblatt [33]. Sesavy [34] discusses thec various uses of'

cunu lant~s an cunl ii ~laidk spect ra , specifically

"* C) 111111lant spectra I ise 'ICliii test~s aimed at (Iiscrimit nat jug bet weeni Ii neial.l(l iton-li uea r

non 1-Gassa processes (see Subbat H ao a nd Ga 1)1 [35]).

" 1The a~sYm ptot ic dist ri hlt loll', III sonI t non- Iinear thliorY may be 01) aimned using('In i

lilain .

"* Tiime r-eversihi litY mla v be( le(t (rinine(l 1)Y veivig(~ . ......... k-I)

or. eyiiva11let lY I lhe iimiagimitrv part of I lie V`/ order spect ru m 1,, eqiual to tero.

"* Cross-cui [immllait IIS. anid (ro's-cimmniiiilait Spectrma. call be 115(1 inII lhe e't Imilat iol of thle

paramieters of it non-lriear differnceic eqlithmat thlroughi th liese o)f t1a"IC niI'll' lit IonS

that airise Iin the Volterra expimisioi (Sce Priestvc J301]).
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5 The :3"'-Order Cumularit Structure

IIIIe follow in 11,we shll I ii' '>111 tie (J[ýo F (.111 -,iIi 11,11i'111iv for aiiof Ihle Ii iodels

d se ssiITTi sect loll 3. lor cach (4)1 the illo iis at clo:sei torn sl.oi ll Ion to Ih 3<T olnI(1 icr Cl11ii Wif i

st 1.110 Ilie Is givenI. Hi''lse solilit loils are lha'15Cl Ol 4'lo'eco Foirm expr essioils oht alliedi for I 114

exp('ct at lon ternms whichi (bicllie I lie 31 -onle dcii iiia >1 it 1,1 ife. [For all - Ilii A R~ Li1 I j Ii i4)4e1

- tI lie ouit pl'it processý is ( iri1i i list 1hille L it,(Ia al ei (mcpn4*i la Ircu" %%i ices W l lii t Inea II. Ilhe

resiult s presclite IT)I Ii Illis sect ioni are h a., 1~ ')it liii Iliela rin h111; 1 en Io li i ijý,Ol (111 Lv

'Ille lpin )1i proces's is iki i~e as, all I.d expIolwIeltj pro ci 'ss Wit ih t 1 n11 Ileanl: 114.'l(c. %%-Itl Ii ii'.i

(.il I 1101 (licilss statlcd a lm ly. ;X 141 01 111(1 PARI~( I It1) i 111i FMi ia~ foli ;tI Clamý. Ill 11i is

r'eslpeci. sj 1' Ili i Ow e' loil process Is' dhleld I)Y1 ;ivI su( Sf lcice of I.d j ii liii lledti ('xpfolwIiel a

-aildioti variables aiiiii a huNtiireV of eNIlMIClietll anid uilliforrn raliomoi varjlahl)s. respectIlveiv..

1IW li l t 11)4 Ii 1(.4101 4) at Ilixiii i , (1" st-iii111tloll il ~4l 4(11 sIoils ta uiioill II ioii'l Im! liii. 441 oI~ li) iah-

1 lie si 1-11(1 III- of t ie IfIllioil 14)1 Plo0''55" Talhies 2, 3 andi I ilit the T'-oiriei Illna sl rI't 1111v

for I liese I4114111>. We recalIl Ii hat I ie, iiioiieis 1111 I]dr Ii ves.ý, t I Ioil ae gi y veil LI)Y 3.25)-3.3 11

Thc follovwIng c ('Nf)1('5I(J11 iffl4 lls4'i i'IT taLeis 2. 3. 1. 5ý ;ili G

02) 1 0

j~ 7

2(7)
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"i-i(I ni-t

21I I p

-- I

L 
+1 2)

F. __ IA -- _

-- 2)

G vllIl( I/n~il,;1m III tl~ f;Ih~ -i I __. I~ ieo
()1,11111 w c -rck i~ i [III( loll an ld lll (ýd or hc' Il m lc

p II; w - l %tiw 1 ,'w ý l ll .w m d ik

$)It(,HHU)I Ill.oldc () illlw lý ý'L ll p II , pl m l~ ( 2). tilJm o l Io d k (I
til w ]-( ,Ii[I dI -- dc [I/~1w7 - (4 114 Iý( - I)I 1,1 11,( i il ~ ifII I(W ý 9 1 il
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Table 2: 31- Order ('i umulardt riiet tire re eIl( 1iiiea r Mod1(.

ARE(1) _____

C((0.0) P___ - 3/1.z,2IPx + 2j1_______________
C(O, T) -2,Ux,.2/Ij]

C(7, T) (ý2 T - Jpxj',21, 7 - f7)

+-I'x,h2( + jf,Iý2[iT) -

+2/1,-(6 111(T)]

+1213[ 2,e/7] + 2p:
(,(I, I + 7)- (,T-+2/ 9 /~[(ý + t( T)

II~[I~2 T + 67+1 + (b} +/1,+y(7-~) + 5(T +-t +) I }

b'I. b + 7 P')x:
+2 6T/r y(h - 5 (h) ±Iý{s/( + j- {j- 2(1)

_______________P, I'[',{ -I- <7'*@}+w (T) +-- (T + 1h) + 2 h)} + 2p,K

Lall : 3''4()Ir(ler (i ll 11lant St ructurec Thei I ntrinsicallyv Lineia r Model

______ PAR(1)

(C(0. T) -j [Px,,Y +2 - 2 Iir~o+ ii

iise-t as- a olfr(l~'lhltI"np IOe rd(15'flltl 10'(l ese a list

to~~~C 7,trs 7aettesaeo h 1 odi(l~ltlts 1( ~,sefgr . e

tsed asoce a i tio fo sisriilmmtlose forrii c and L.\ I s I). tKAI nor arad ~thet sons ir;ed odelstC.

WV1ri t suich SnlIthpe c Jhrc'ssiOils are iHot a v Illa bh for t tie rellia i il g mlodels It Is poss Ih c to

In vest Iga t I the tletiavior. of t hiese ratl los" mlilileria I lv. Two of, I the ;i bo)ve ratillmsI IIrI will (It) hc h
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Tlable 4: 3"-1ordler ('11ijinnirt. Strulcture : 'Ilie lilt riniisallY \(.on ii1ilel \lodcll

EAR(1) TEAR(1) ___

2r 9 'r-_ _ _ _ _
T. T-( 2p (1-[1 + T( 1 0') 6A'

-+' [2(o3)7( + ''I ) 4- .3
±II{>,1p7) j-AT

-1 (o, I ) T p, 2 * ( T ,,ý(

\(()

C(I +7) 2 + 7+-2 )2~(o3)7 I[3 + (oH' L*)

(Ohh +111 T) 2io oT t" lis atjSIi(i ifit + i h V Il t 111 to -I ih li eysia a

I~~~~~~~~~~~ 2is (n, (7)laI~ui~eatoi It~taLii~ il eo i a o a olltdsr i i i

aiiio~ig lie tii~~l5. hlie(oiiipiltil ratio> a~ li2r(1 o .l o) t he 1a~~) nexd L

[2 89)7 'I



Robertsoni's Fixed Model Hobei'tsoii's Ranidomu Model

c(o 2(10

'(O 0T) 2.___ V) 2" ~)(

C('T. T r 23'~( ~1 -rh4) 1y[ 27,1

+ I(T ) a~ 11( -[ I- ( _ T T

6 1-1+ )-.lr (j - hl113) -1 +

-4 h[v2 .(2), + (I c]

Ta~) 24- --( Ii)+~/) ~

Cu 11 1/ rat r r p 23 +T-( (-1) ad1 P () Ion a + i 7dltlaIcas.Nt a-I

atr ith vepratca gr oup NF.AR( I) aind IPAl( I) i fogres al additiona shows .hat le d ranesar

sHilla-r and miuchi sina lieu t han thle ra riges ol le vert ical a~xis 1,or. Ilieothber Illiodles.

6 Methodology

Ini 1h1 1tolluw ing wxe priopose (I (liscrinijutlat loll procedure t hat Iiiav lbc al)Iliecl to (1 li mlodlels

midrlu Hivex(tglatioli (3.2.-)-(3.3.II) or to dII\ scl ofcomptjnt irig mioddls.
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ldl~l 6~: ýliat jof )f lic 3'''-Oid'r ( Cuimilanit Structmvr(

EAR(1) 'LEAR(i) Robertson's Fixed Model

U0r) p I +( -)T I - T/10

p ((2 - (v) 13(1-In)

C(0.7~) p2 0h[I -+ 1(1 I 1 )] 3`0( I 1/113)

C 1h,1 ) 2- +T1 , iF- h h
C( rr) +T 1I-)

('(h~h +T) p2/1-- 1) h(I-o) 3i-iuI

//+ T) 7___2-,t__

Oilr ob~jectI ve is to idlenitIr ifx te mlo- t Coml ,jIa!tiA aIud ,: In C4 A 1 , ;,t S pc I f ica in'.v

given { t}~ infl~ a mro(lel il (E Af such thiat in ll

Procedure:

1. Compuite -Ilk. u.) , k =0, 1.2 .... a C I integer. We call It, the empirical

k`-oh(r(lerl cuinutla t sitructinre based oni t he (hat a I Xt 1>1

2. I~or each In C Al

(a) Est imat e u lsing {1V I',,}__~ the paramiet er 0 ,n (possibly a vector) for model nIl.

(hb) ('on piite ('0_(Ill(.... Ilk) for nodlel m empirically or isli ig t hie t hecoretical ('tiliii-

Ian I st riict lire. \Ve shall (-all it Method 1 If the ('ollijpiat ion of t lie ciinmlait.

si rotireim is (lone tsi rig the ktiowii theoretical cutimrilarit 51 riwic ir-e. We shall (call

it Method 2 if t he coipuitat ion of ilhe cii InnI~iat stru'lct ur( is (lbile elu1pi rical lv

1)asedl on { AX, } 1

3. Civenl Hie ab~ove (pjl~it it ies we seek to Timimiiize. for a iioili

A\ It ernia Iivelv,
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whiere fa.. (Al, . .. A k) is tI lIe A.'1 -otdel(' spu I-( I urI ( i.e. F)oly~spel) I'l If ). Thli generalI

(list~aice nileaslire riiay I)c spect iei~ as e.g.ý

There alrv several Amue, that I""!( to b~e consisdered uni ider t lie proposed! procedun re. 11 nust

various" prpert ies of thIe tiio(el such as .,t a~t ioiiaril y. ergo(Iicil y, 11uloeliet coni(it ions', 1nioltierit

ca lcntlat ionls. pa rartiet (a t i ilat on and sbudatiniIIio aspetI s of satiple I races ninust. be Wiivst i-

gat ed . Second. stWIs ica I properties of I lhe loriiia U, ('1satist~ics based oti (6. 1 ) or (6.2) Inave

to be st ud ie(I. In order to (10 so I he saminpling plroperties of I lhe proposed procedutre Tuimst b)e

inivest iga ted. In the fol lowving set iOn we conids( er H ie Si 11111laioni aspects of (6. 1) arid presenil

sornx sinintlat ion tesnilts fo bot )1hi met ods I and1 2.

7 Simulation Results

III order to verifyL th e possibli lit of discri pit rg aiiuotig the inlvrious nwi() les oii thle basis of

tiei r respect ive 3`i -order curuinlatit smirfaces, it is necessary to obta ini reason a Ide agreenioini1s

anlonig thle thm lieore il anid shniuilat~ed ciniiiiait s. Intth le following we discuss issues reat ed

to thle silt int a tont aspects of tine sa niple traces, coirelat ioufn hincttiots. 3''-o le ciii nnilanti

s"nifaces and( rat ios.

7.1 Simulating Sample Tr~aces

I lie SWuniAM It aspects of Ihle NI'AHR( I ) ruodel arh( its special cases.~ F.AI( I ) aiid TE'ARI( I)

werC Coiisidlered hy La wrauice ani' Lewis [201~. Thie algorit finn t hey give is being uised( ini our

sirtiuilat ion to genlerate saliiple realizations for thle Ih~~ I fariliiv. [lie slitbases, lKAl( I

arid 'I VAR I~ ). are siriliiilied by set tinig to =0.99) .1 -I !) awld (:4 - , 0~¶ (1 <, I'

respect ively. iii thle sanune proigra ni Ithat genleral es thle siruiiilawd'( pat lis for N IK.\ l (I ii1io c!.
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W'e follow Lawrarice and l.ew'is inI seOtlinig th' I o'e(i( i ('.a . paraelieters to 0.99 so to avoid

comiplications fii t he siinulatioii of' I he I 'ac(s.

Robertson's fixed and randomi filo(dld. are It(' l'i'arli, I)Y two difh'ri progra ins. One l vwhich

allows a selectionl of a brai(h 111wit1 i fixe'(l )oal)bilitv and ol(' which allows the selectioD

of a branch with a random prOl a hil]ty generat('( accordiing to a beta rando(0 variable with

para met ers (o..2). '[he input signal is a truncatedI (Ixt)oniiliail lielice, n1(551s to betsr ril-

la t'(l accordingly. Since iio IMIS1, sulroutite is available we genirate a realization fromri a

runicated expon'entilal random variable itsing t lie cuiiiilative (list riibul ion function techni ique.

Realizations from I Ithe AR( 1) model are easily simiulated and no iurt lher explainations are re-

(liired. Mc Kenzic [27] disciusses t he simulat lio of PAR(I) mo(els. Thi( innovation process

V't is geiieralted accor(ling t~o

where U is (list riiited as a niformii (0., 7) s(,qnen('e of random variables whiich is indepenident

of IV. - a se(qtien ce of exponeni i i ean oi(e rando(m variabl es. '[l(e fuiction t) is defined Iby

Thus. { i} is generatedi as a. inixtu ire of liifori aldl eXpol'eit lial sc('qunces of independent

rarndoli va rnables.

All the simlulatedl paths are geinerate( FOIRTRA-N programs that call IMISL subroltill(Is

which are used to sirmilate co't iillols iiiiit'ori. beta aiid (expoonential rI'alizatI.ons.

7.2 Simulating Higher Order Moments

One F"()RTRAN pro'grali is emTployed in simuilating the ('orrelal ionl I'll nicths. l V'l-order ci'-

IrlIIlaril suirlfaces anid certain slic',e of tIliesc surfaces . Silioothiiiig ('consi•heral ions Iead uls to

siiiiilatle each model 3(1 Irlies where tle Imigt I ll "a('h sioiiulatel trace i M 1(( data poililts.
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'Fable 7: lDistartic Measurve (6i. 1 (0.25)'

_____________________PýR-( 1) -EA7R_(1)TER. 1) N-14EAR( 1) R~obvrf.s-ou.'Fixd1 -Robertson's Raidomr

PAR(1) _ 0.26 0.21 (0.17 01.06 0.58 04
EAR(1 ) 0.018 0.0tS 0.68 0.08 1.40 1.141

TEAR(i) 0.78 0.70 0.0 18 01_7 0.08 00

NE.AR( 1) 0.12 0.0)9 0.31 01.008 0.8-1 0.63
Robvrtson's Fixed 1.80 1.G.5 -0.22 1.06 0.02 0.07

RbronsRandom 0.73 0.6f; 0).02 -0.w1 0.12 10.05

'I'he prograin com p ut es two ex pec t ation ins : E[rx tý\+rb I,0%er thI e ranIIge of l ags (0 to 9, ai Id

IjN1 Xt1+r- N+r+,] , over the range of lags, -9 to -9. ihet, the smoothed emtpirical correlat jolt

function aitd the sm~oot hed 3r-i-order cuititulant surface are comtpitted utsintg their delehiilt oits.

Ili th, conpiptat~ions of the expect ation terims we uise

L[AIA+, Yn'i -oo t X t+r

LA~~tr~~rs]__ 1010 t1

1010 YZ Xt ti-rCt+r+s

I n order t o (h termnil te how a ccu ratIr It lie s1n timulatIed citi i u ant su Irfaces n ia t~ch t heir I Itheoret IcalI

cout erpa rts We' [)lot OW lTieemIri-cal correlat ion flintct ions. t he emipirical C(I(T, T ) slice and thle

complete simiulat~ed surfaces Iin figures 7-9. This is donie for various paramiet~er values and~

shown for t hose that correspound to p(s) =(0.5)'.

7.3 Discrimination Procedure : Method 1

't'he results of tIto' slitiilatll Stil - l(I are suilnl t11aized III tables 7.12. lalkles 7-9 are ex~tmiples,

of i vpical valules oht a iteol l) a s'ill'mt illru of Olte siimiilhtion. TFables 10)-.12 providie thle propor-

tiolis of correct tilodlel iocleitt tII'(l oionOt of31) repet itlobits Note tItal III table 7 thte dhiagonlal

Ilime (ojlai ris t he inirliuil1it1ii values of rows 2- .-. Th is is preciselY how we woiuld expect Ilwt

procedhure to per'forim [',)! allY paiailet(1 va Ie iiiofexi ugdC11 a Standardized correclatiloll fututet11)11.

I lowever. error-ms oCCuIr- aIt thle first andl last rows where t lie Ihic hod ails" to ()Slect I lie correct
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JIable S: D)istance .Mcasure (I.l) : p(.s) = (0.5)'

_ __ fPAR,(i) - EAR TEAR'() 'NEAR.(l) Robertson's Fix(-d Robertson's Rapdonm
PAR(1) 0.67 OIl A.7.1 .02 I 14 ..4
EAR(1 ) _ 0.07 0.01 2.2.1 0.)M 3.:3.1 3.12

TEAR( 1) 3:.5!9 2.97 0. .-, ..19 0.087 0.10)
NEAR.(1) 0.6(1 0.37 ().i(3 0.0)5 1.67 1 .69

I ohertsonis Fixed .. 2 1.27 0.3,2 2.Af; 0.06 0. 13
Robertson's Random 2.30 [lo 0.07 0.7, 0.20 0.A2

Table 9: Dist anlce Mleasure (6. 1): p(s.) (t0.75)'

PAR(1) r EAR(1) TEAR(1) NEAR(l) Robertson's Fixed Robertson's Raloni
PAR.(1) 1.91 1.12 2.23 0.03 f.07 -1 t3.02
EAR(1 ) 1.82 (0.02 "53 0.85, 7.79) 7J"9

TEAR.( 1) 1.. 1 1.85 0.,V; 1.25 0.7i 0.93
NEAR( 1) 1 .S3 0.l 3.261 0.09 ,1.19 1.15

Robertson's Fixed 4.82 1.59 0.31 1.3 (.57 10.70
Robertson's Random ( .43 10.38 0,.5 1 5,32 0.24 0. 0q

model. The I' PA R () model is b)eing identified as a NEAR(1) niodel and lRobertson's Randoml

model is being idenitified as a TFAtH(1) model. The theoretical plots of t Ie :3rd-order cuinu-

Iant struct ire support this confusion as thley show that these mo(els produce very similar

sUrfaces that are hard to distingnish. In table 8 we note that the procedure fails again

to select PAR(l) and Roberson's random models. Errors occur at Lhe first and last two

rows of table 9 where the procedure fails to distiiguish PA( I ). tile fix and raridom mod-

rIs. 1h(c incorrect selectionl that appears in the above tables is collsistent with our previous

remark r('gar(ling t he gronl)ing of' the lmodels into (Ithree cat egorie's. Pobertson'rs models and

TELAI(1) were idet itified as sharing a very sin i lar -1 .-order c11mularit st ri'tture and so were

PAH( 1) and TEIAMR I ). Thus, otn(, would exp('ct to have dlifficlulties in ,liscrinfliIat inIg amtiong

flnoldIs that belong to tlhe sallie i anlily. The l)alttrill established ill th(' plreviouls llles is

conisistenit in th( :0 repetitions vwe consid er ill tables 1it-12. PAl\( I) is conlsisjtitlv c,.iflised

with NINAR( I), and lT';;A\( I ) and Poierison's Mlode('ls stand oUt1 as a separate (lass. flhe

ranld-nt llo'cl is Y large 1i1c(' iardesl to iderntifv and typically is ilmistaken for ll'.lW1)

Mnodel. AlIthough lhe p)rocedur'e is siic(('5+sfuil ihi idelityivilg I'VAIH(I ) ani 1ihe" Iic ' ilxed el it
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Table 10: Proport i ons ol (Correcl htentilicat "n p(.) (0.25)')

_ PAR(l) EAR(l) TEAR(l) NEAR(l) Robertson's Fixed Robertson's Random

PAR(1) 0.0 0.0 0.0 ! 0 0.0 0.0

EAR(l) 0.03 0.97 0.0 0.0 0.0 0(.0

TEAR(l) 0.0 0.0 1.0 01) 0.0 0.0

NEAR(l) 0.0 0.0 0.0 1.0 0.0 0.0

Robertson's Fixed 0.0 0.0 0.) 0.0 0.73 0.27

Robertson's Random 0.0 0.0 0.7 o.0 0.03 0.27

Table 11: Proportions of C'oirect Identifi:alio • p(,s) - (0.5)'S

PAR(l) EAR__) TEAR(1) NEAR(l) Robertson's Fixed Robertson's Random

PAR() 1 0 0.0 0.0 E(.0 I .(0 0.0 0.0

EAR(1) 0.0 1.0 0.0 0.0 0.0 0.0
M 0.0 0.0 0.7 0.03 0.27 0.0

NEAR( 1 ) 0.0 0.0 0.0 1.0 0.0 0.0
RIobertson's Fixed (0.0 0.0 0.17 0.0 0.83 0.0

Robertson's Random 0.0 0.) 6.(;3 00 0.37 (0.0

Table 12: P~roport ions of (Correct Men iificat ion p(,S) = (0.75 ):

PAR(l) EAR(I) TEAR( I) NEAR(I) Robertson's Fixtd Robertson's Rando)m

PAIR (1) 0.0 0).0 0.0 I0 0.0 0.0

EAR.( 1) 0.0 1.0 (0.0 (0.0 0.0 0.0

TEARJ(1) 0.0 0(.) 0 ((.7 ((.07 0.2" 0(.0

NEAR,(1) 0.o (0o o.0 1.0 0.0 0.0

Robertson', Fixed ((i 4).0 0.47 (1.0) 0..53 (0.0

Robertson's Ran(donm I (.0) .o17
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Val f3:AI (1)ormi of ICo1)rf t.Sici' IiXc(I f il O)itS~' adu

TE Itetsi' (1)C~ 0. 1 Robrtsn' Fie ob .sn'0 an i

RIfo)(Ft~soi'-s Randomi U. 1 7 0. 10. 73

VidtIe I I: P roporl ions" oF 'oirectt Idet'ii¶ hat l p " o0

K -TEAR1(1) Robertsoni's Fixed Rj obertson's Rano

Rol)ertson's I xed U1.2 TLl 0.27

Rober't son's Rado 0 0.2,

anid 3, ̀ -ordctr (iillai si tit miV one tiiav tchoose t o accepIt 'cali ol, It he~~ I t11uiiasjompt lukte

wit Ii ati\ of I hat g. ol1l11.

To retindY this probh'le we mlay applY liIn' proposed tiisetitiijiial loll procedinir to tlie I",

t1,drhet iitiiialatt s1 run tiref lothIlese I lree Itiodels. ()ie rIlav argue thai suite I lie ,ilodels share

;il Idnetit a 2`1-~~orulel mioment'i st itit0 illS' nut1 it 5ilikiii .i :~T~ t'l t r e ir iiiila lit st rliot ire-(bitt too

;itiil1i sotl(i i 'etns(ii ot be capt uired bY (6I I). thlen it miighit be possible to tt'\S'il

I heir trct' nleitY ith rouighi I lie seof (lie l"' ordercnriiiilaiil sirm-lu ire. hilcades 13-I .c notitiit

thel re'sult, of I lic~ Sjiiiilat lonl st ittl applied ito (ile V'4 -otdtr tittituil1ati t Irliie lilt'ofl''IKA

Mnid IBoIcft'r C t Illstodelt' . [lie choioce atllnotg i ti'iodels :1. not nlt'ar eiit as (lit' pitiptit ltlli"

Table I *':lroport Motis of ( 0rr-et' I tl(lelit Iilna lon )z (0. 75)'

r'VEAl-(I ) Hoberfsol'_S_ FixedI wrsns Random
0.hi30 .3 R o l11

Rohertson's Fixed .13 ((. 57(.)
0.(1.T(0. 1 -7 t1 06
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Tlable W : lProporIt ions of' C orrect Identi Hicti oii: p( .s) ý= (0.25)'

___AIRE(1) PAR(1) EAR(1) TEAII(1) NEA-R(IF11 Ith'sFixt-d II Iudu
ARE(1 ) 1.) 00.0 0.0) WO .) (

PAR(I) 0.0 0.73 0.0 0.0 0.217 0.0 0.0

EAR(1 ) ((5 (U) 01)0. (M)(1,07 0.) 0(.0
TEAIR(1) 0.0 ).0 :13V(onH
NEAR.(I ) 0.0 0.:3 0.0:t 0.0 0.67 0 (.0 0.0~

Rob's' Fixed 0.0) 00 0.0 ~0.07 0.0(1 0.67 0.i26
Roh'" ~ ~ ~ -- )- Hano:u ----.---J03 (.)(.30.17

of c'orrect idlCnt ilicat loll arellt ot harge elioligli to elialble it retastJllab(' de(grtet of' discririitriat 'loll

poe ailong thle thriiee compi1 etilng iliotel(s. 'I'lis result was ('xel~edto ho1I )lod given thlie

tieoretical1 exp~ressionls as exp~re'ssed thlroughi Ilthe plots for I lie I Ieorl-cical I "i-orhie etiiiiti11lait

Aricmt ore. figiure 1o. Ill these phlots th lielotlels arle shotwn i to1 produice' si tijlar behiavioir at

variouls framles of' ('( r~s't): tHils. there is 111) rt'asoii to e'xpect at high dltgrtev ot discrriiiiuiatitOn

pwralinong th lie ioolels oil thle basis tif thle propose'd proed~ulre amol tI( he Illl~ll

si 1.11(1 tII re.

7.4 Discrimination Procedure :Method 2

Ill thl('ls 16)-18 we providethtIle resuilts of otiil 'liiitlaI ionl st iidY according to (().1) lms'et oil

lie e'lipi)rical cuililitlaiit sI met lire onlY. Note' dIat we adlltded\~ K I ) f'or comp~arisoni pill.-

pose5s. Sinict the nial-gliml miomienits of' Ak Ff 1) are diffecrent rot I'loi Oit reriiaitiinig nIioth(ls we

sI antariz'ii'its tiitaii to t'(1 iiit onie soth i i'aio ieCM explCCjonent'ml ilioNt ol proe(C.'Sl(tlie

Q. Le hiher ordler iiioiiiet'its ant' tiot Ioth ue e0 la (tthIIhose of t lit' e~pouleit'ti al

Miodels. th'le resullts Inll 1;1l1es 16--IS are I)Y largeI 'otlisistct'it wil thI Ile resultls o1)1 iiit'd,(

tin41.t herIlt previous" iit't hod. 'Ilb' rima iii 1Ift're lit.) appe)(ars It) lbei In lit' Imiproved sepa rat ion

boet t''i PAR I () and! N h'AR( (I) uindt'r Ilt' setotid nict hod whuib' tooler Ih lirt' 1 Iiuet hoth. which

intvokctd th lt' leorct 0311 c~lllnitlhailt S1 ruitI tii. PAR( i ) Is ((tolistalit lv mliitakeii for N lKAR( I)

WV'oe ito' m tt)ho 2 with ti hit l''o cheipirital euirniihanilit -sIutt ltire- 1,01. ' ll:\( I )atId Robe'rt

.,i01) ridt'l... lT'e r't'sullts are slotintu1ari/et iti Iablh's P1-1)1. i'rgtirt' I I cottai'lts I lie ilotls of
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AR ( YTAB1)IIEAIV I? 1 Ati) N NEA Iti (1) R.1" F ixidIi h1'.W It;11itdiý

EAR,() t' u I () 1. A 11tl

I'EARi(1) - 0. (). 1) 1 61 1)
NEAR( 0J .1 1 00

Il-b an~dom 0 UA) 0-- - - - - - - - - -t

FARlE(1) 0.0 0.00 ) W0ii

TEAR (]) 01 1I) tt i Ii

TEA ( 1) 0. 0ii Ui 0.0in

Fix~-I Ill (i) - _______

he( -1 111Ill lit i edt I~ -ord r(f'i 11111Ill lt ilt "-1 it t)Ill I I n for It i, 1 t'C Iv II111I i es 1; c I I Ii iI'il ~Ii Ii )Ii lII

8 Conclusions

AW lie f 1ol l)l i of ()I( ! 1ii~i 1011 dit)1I0I~n MAOI-) -l ;Ir I iiit, Mt 1i's initels ' IS ttisif'ieref ill'fi

Pd(tlI't tftrnIigh l l(fi' filiiiilY Of CNIMX1)tiidi it 110i~Ck>. Ill t is s"tt'tili( ciis( WC alre at1 let to tdevelop

hltile I 9: IPrtptliI mu>' of Correct'e IIetftitilical m i (0.2,)5)'

____TEAR(i) Robertson's FixedI Robertson's Random
EAR( 1) 0.It0. 27 1::

Robertson'-s Fix-ed - 0.13 -_ohi -L 3
~Robertson's Random 0. 1t) --- t.: 2
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L'a Ye 20: P roportw iof Cot w( Ir hldti~i dI Io It I( I mI

- TE-A-R (1) I11Iobert sot's Fixed-4 Riobertson' Random
TEAR(l) 5 [7- (21 1.

Robertson's Fiaedo 0. 27) 0. 137

-- ~TEAH(I) Robertson's Fixed Roertson's Random
TEAR(1) III.31.i)

Robertson's Randoml 0(.27 0A)( 0. 1:3

prUopose is iiot lest r(1ctedl to Ie[( clitssof ANl()) lYpc Itiodlesr 01the ula of llodels For which

alt h ir Iresiiii 5 f~or Ih .I~',-ol-c l(4 t'il i fit11 SI -lict tile are( available. FI Is a geiteral proceduire

\%It iiii' )1 (i poenial forita wide i-;-, iig of iiou liiiear miodeles. It P, IIIe~ Ihe liinder-st alililig

Ifit lit dife litl Itiodels (a litiot have aii itlelticai l~litllielt sequeleice henictce. thle dliscriniiiiat loll

alliolig I ei otihriejsilde at somie sliae in) tie higher order ritittilal.i si ruidtire.c

III oiur Specific cast, we' 8at'( able to obt1aini a sýigllifiratti iliploveniciiet ill mil I (iscri rl liltiliairY

PoWer fjl"Is liv go)ilig ofte sief) above (Ihe I raditi 1Olii s((oltId ord~er iiioilieit aiiaIlvsIs i'e. 1lie

Correlat ionl fillict ioul. While Second ordler Iliolwilelt phivy a (ldioiliit ilig role ill hlicle- Itiode!

di'SCr-illilNal11T loll ;1" hyaeVer-Y liltujied Ill tie lioli-Illieal r e When thle 2'-odr Ls

to providle ('liotigli '1liformial oI 0IWe propose to) applY high"ler order Itiollielit aiialvsis for the

purpi1ose of' niod'l dls"crinl-iIIatlolil
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MOMENTS IN STATISTICS:
APPROXIMATIONS TO DENSITIES AND

GOODNESS-OF-FIT

Michael A. Stephens,
Simon Fraser University, Burnaby, B. C., Canada V5A IS6

Summary

In this article we discuss ways in which moments are used (a) to approximate
distributions, and (b) to test fit to a given distribution.

1 Approximating distributions using moments

Solomon and Stephens (1977) give a number of examples of statistics X for
which the first few, or even all, the moments or cumulants may be found, but
whose density f(r) and distribution F(x), assumed continuous, are intractable.
A good example is the statistic S whose distribution is the weighted sum of
independent chi-square variables, each with one degree of freedom, written

k

S = E \,(U,)2 (1)
i=1

where ui are i. i. d. N(O, 1), and A, are known weights. Many quantities in statis-
tics have distributions (often asymptotic distributions) like S; for example, the
Pearson X 2 statistic, used in testing fit to a distribution when the distribution
tested contains unknown parameters which are e.,Imated by maximising the
usual likelihood, rather than the multinomial likelihood, has this distribution
with some A, i 1. Other goodness-of-fit statistics, of Cramer-von Mises type,
based on the empirical distribution function (EDF), also have such asymptotic
distributions (see, for example, many examples in Stephens, 1986a).

One of the first examples of S to be taoulated, for k = 2, involved errors in
target hitting during World War 2: tables for S were produced with some labour
by Grad and Solomon (1955) using analytic methods. These have been extended
by various authors to higher values of k, but the analysis after k = 5 or 6 rapidly
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becomes very difficult. Thus in general it is difficult to find exact percentage
points of S, but the cumulants tc,, r = 1,2,..., are very easily obtained:

k
icr =Z••,2"- 1 ,•- 1)! (2)

i= 1

2 Moments and cumulants

In this section we list definitions. The r-th moment about the origin of a random
variable X, or equivalently of its distribution f(x), will bc called A; the r-th
moment about the mean will be IL,. The moment generating function Mx(t) of
X is defined by

Mx (t) = j ef(z) dx; (3)

when expar.ded as a Taylor series,

p't2  j't 3
Mx(t) = 1 +Pt + _ ..+ __ +.-. (4)

where p = p' is the mean of X.
Cumulants rc, are defined through the cumulant generating function Cx (t) =

log Mx(t), where "log" refers to natural logarithm. Then

/c2t2 /3t 3  •tCx(t) = Kit + -7.2 + IC t +... + ,--.+.. r
2! 3! (5)

Thus in pri.ciple we must find Mx(t) before finding Cx(t).
The following relationships exist between low-order moments and cumulants:

1C = Ui = p; PC2 = P2 = 0-2; tC3 = p3; K4 = p4 - 3p2. Further relationships may
be found in Kendall and Stuart (1977, vol 1).

Suppose Z = X 1 + X 2 + X 3 + .. . + Xk where Xi are independent random
variables. Then a property of moment generating functions is

Mz(t) = Mx, (t) Mx,(i)Mx(t) .. (t)

so that
Cz(t) = Cx1 (t) + Cx (t) +... + Cx (t), (6)

and it quickly follows, using obvious notation, that

K,(Z) = K,(Xl) + K,(X2) +...+ KTXk. (7)

This additive property makes it very easy to find cumulants of sums of inde-
pendent random variables, and hence, for example, the cumulants of S.
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Two important Mx(t) are those of the N(p,a2) distribution, Mx(t) =

exp(p-t- a+2t 2/2), and the X2 distribution, Mx(t) = 1/(1 - 2t)P/ 2 . Finally,
it is easily shown that u.(aX + 1) = ,*!(X). for r > 2, where a and b are any

reai constants, and trz(aX + b) = arPr(X), r > 2.
As an example, consider S. If X has a x2 distribution, the MGF of X

is 1/(1 - 2t)1/ 2 ; thus Cx(t = -•log(l - 2t), and expansion gives Cx(t)

t +2t2+E + At'+.! "'Thus the r-th cumulant of X is tC,. = 2r- 1 (r - 1)!,that of A1X is A[I3r, and by the additive property (7), the r-th cumulant of S

is given by the expression (2).

3 Mathematical approximations

The approximations in this section are called "mathematical" because they are
based on mathematical analysis, with known properties of accuracy and conver-
gence, in contrast to those to be considered later.

Suppose n(t) is the standard normal density

n(t) = e-'/21V2 (8)

and let f(x) be the (continuous) density of X. Then it is (nearly always) possible
to expand f(z) as

f(x) = n(x) {1 + •(P2 - 1)H 2(x) + 6 U3 H 3(x) + 2(A4 - 6ti2 + 3)H 4(x) +..

(9)
called a Gram-Charlicr series. The 14(x) are Hermite polynomials. Lists of
Hermite polynomials, and also conditions for convergence, etc., are given in
Kendall and Stuart (1977, vol. 1).

The basic technique involved in deriving (9) rests on the fact that Hermite
polynomials are orthogonal with respect to the kernel n(x); thus

f 0i L Hjnx)dx { (10)

Then if f(x) = F, cjn(x)1Ij(x), multiplication by Ilj(x) on both sides, and
integration, gives

c= j (.) TH (x) dxT/j!

When worked out, c2 = (p2 - 1)/2, c3 = J&3/ 6 , etc.
If an infinite set of moments is available, as for S, the density can be ap-

proximated very accurately using a Gram-Charlier series of sufficient length, but
there are many statistics in practical applications for which it is difficult even
to get the first four moments - see Solomon and Stephens (1977) for examples.
There are two other important drawbacks:
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1. A k-term fit might, at any one value of x, be worse than a (k - 1)-term
fit.

9.. Gram-Charlier series with finite numbers of moments car, give a negative
density f(z), particularly in the tails.

3.1 Percentage points approximation

A Gram-Charlier-type expansion can also be found for F(x), the distribution
function of X; this can be inverted to give a percentage point for a given cumu-
lative area a. Thus suppose F(xa) = a; we want an approximation to x,. A
Cornish-Fisher expansion gives r - ý as a series in Hermite polynomials in
z, or (more practically useful) in ý, where ý is the percentile corresponding to
a for the normal distribution, that is, ý is the solution of

J_ n(r)dx = a. (11)

Again, problems can arise with the convergence to the desired x,. For more
details on mathematical expansions of Gram-Charlier or Cornish-Fisher type,
see Kendall and Stuart (1977, vol. 1).

4 Pearson curves and other systems

We now turn to a method of approximation which can be thought of as "laying
one curve upon another" - the approximating curve has parameters which can
be varied to make a good fit. The parameters are usually chosen by matching
moments or cumulants. Percentage points of the approximating curve, which
are tabulated or otherwise easily found, are then used as approximations to the
desired points.

A family of approximating curves is the Pearson system, where the (contin-
uous) density f(x) is approximated by f* (x), given by

1 df*(x) a a+z (12)
f*(x) dx bo + bIx + b2X2"

According to the values of the constants a, bo, bl, b2 , integration of the right-
hand side will take many forms, giving great flexibility to the system of densities
f*(x). With considerable algebra (see Elderton and Johnson, 1969, for details),
the constants may be put in terms of the moments:

Suppose A = 10pi!,2- 18p1 - 12p2; then (13)
_ 3(p4 + 3~

a M A + (14)
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bo= -11 2(4P2/ 4 - 3p)(15)
A

b1  = -a; (16)

b2  -- -( 2
P2P4 - 3/i3 - 12p3) (17)

A

Thus knowledge of the first four moments or cumulants of X will fix the con-
stants above: a further constant C enters on integrating, but is fixed by the fact
that the total integral of f*(x) must be 1.

4.1 Percentage points

When the constants are known, the density f*(x) may be integrated and per-
centage points solved for numerically. Over the years, this was done, at first
very laboriously, for a small range of possibilities, but a quite extensive tab-
ulation was made, using electronic computers, in the late '60s. These tables
are in Biometrika Tables for Statisticians, vol. II. The form of the tables is
as follows. The percentage points for X, the standardised X-variable given by
X = (x - u)/ol, are plotted in a two-way table indexed by the skewness and
kurtosis parameters g, and /32. These are defined by

/,1 = and/3 2 =L - (18)

they have been defined to be scale-free, and V70-1 takes the sign of p3. /01
measures skewness: a large (positive) V/-j means the curve is skewed towards
positive values (long tail is to the right) and vice versa for negative vrl. A
large /32 (always positive) means the density has heavy tails. Of course, all
symmetric distributions have /3f = 0; a benchmark to measure kurtosis is the
normal distribution for which /32 = 3. Since K4 = p4 - 3p2, the parameter
7-2 = /02 - 3 = .4/C can also be regarded as measuring kurtosis, with value
72 = 0 for the normal distribution.

Suppose, for a given S, we have V31- = 0.8 and /32 = 4.6. To use Biometrika
Tables, one enters the appropriate v/j table, V = 0.8, and travels down
the left-hand column until the /2 value, 4.6, is reached. Along the row are 17
tabulated percentage points for X, from a = 0.00 to a = 1.00. Interpolation
must be used for V /'3l, 2 values not explicitly given.

4.2 Un peu d'histoire

At this point, perhaps, it might be permitted to enliven the account with what
the Guide Michelin calls un peu d'histoire. At the time Biometrika Tables Vol.
11 were being prepared, I was fortunate enough to know Professor E. S. Pear-
son, then retired but still very active, especially as Editor of Biometrika. He
had collaborated with workers in the U. S. to get the tables (Johnson, Nixon,
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Amos and Pearson, 1963) and had carefully compiled the full set by hand. lie
had introduced me to Pearson curves, which, to put it mildly, did not figure
prominently in statistical training of the day, and had shown me how effective
they could be. He gave me a copy of the tables to use. I undertook to write
a Fortran prograrr on the IBM 650, to interpolate and find points, given the
first four moments. All 20 tables were then typed onto punched cards; in the
end, I got it down to approximately 45 minutes per table. This is not such a
dramatic piece of history as Michelin usually provides (assignations and assas-
sinations often play a prominent role), but a diminishing generation of modern
readers will still empathise with the fears of losing the boxes of cards, getting
them wet in the snows of Montr4al, etc., not to mention the awful discovery of
a wrongly-typed number!

Since then, programs have been written to integrate the density equation
for f*(x) numerically and to solve for xa for given ar, or to provide the tail
area for given x; one of these, kindly given to me by Amos and Daniel (1971),
has been added to my program; this greatly increases the range of fl, and /362
for which Pearson curve approximations can be found. However, points are
still output from both the Amos and Daniel part of the program and by the
Biometrika Tables part, ostensibly as a check where available, but truthfully as
a sentimental tribute to E. S. P.

Later on, Charles Davis and I (Davis and Stephens, 1983) added to the
program to enable a fit to be made using knowledge of an end point (for example,
that the left-hand endpoint of S is zero) and three moments. This is especially
valuable for the type of statistic for which each successive moment requires
exponentially increasing hard work - for example, the distribution of areas, or
perimeters, of polygons formed by randomly dropping lines on a plane - see
Solomon and Stephens (1977). The Pearson-curve fitting program is available
from the author.

Further developments have included algorithms to facilitate use of Pearson
curves - see, for example, Bowman and Shenton (1979a, 1979b).

4.3 Accuracy of Pearson curve fits

(a) Pearson curve densities are unimodal, or possibly J- or U-shaped, but never
multimodal. They are also never negative.

(b) Percentage points or tail areas found from Pearson curve fitting have been
found, for unimodal long-tailed distributions, to be very accurate in the
long tail, at least for tail areas bigger then 0.005, or the 0.5% point.
Pearson and Tukey (1965) discuss this issue; Solomon and Stephens (1977)
give comparisons. (In making comparisons, one must of course compare
the Pearson curve fit with the correct x,, or the correct area for given x,
for a distribution which is not itself a member of the Pearson family.)
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(c) Davis (1975) has made extensive comparisons with Gram-Charlier fits using
only four nomeiits. Pearson curve fits are better than Gram-Charlier fits
everywhere except for distributions very close to the normal, as measured
by the 0/31 2 values.

4.4 Other systems

Johnson (1949) has proposed another family (divided into three parts) of curves
defined by four moments: for example, the Su curves are those given by the
relation

S= y + 6sinh-1X (19)

where X = (x - ol)/u, and y, 6 are to be chosen to make the distribution of
Sas close as possible to N(0, 1). A discussion, and tables to facilitate the

calculation of y and 6, are in Biometrika Tables for Statisticians Vol. 11. Other
authors have also proposed families of distributions, but they have not come
into such common use for the purpose of approximating percentage points.

5 Use of higher moments

We now turn to the first of two interesting questions - can higher moments
be used to improve the accuracy of Pearson curve fits in the long tail of the
distribution? The long tail will be supposed to lie to the right, as for the
distribution of S; then, since higher values of x will contribute more to the
higher moments than smaller values, we might suppose that fits using higher
moments will improve accuracy. Unfortunately it is not easy to establish the
four constants in terms of higher moments - of course, only four of these would
be needed to fix the constants. A recursion formula exists to generate higher
moments, for r = 2,3,...:

rbop'r-, + {(r + 1)b, + a}u' + {(r + 2)b2 + i}/r+j = 0 (20)

In this recursion, the constants a, bo, b, and b2 occur, and this means that one
cannot reverse the recursion and generate, say, it and o,2 from /I3, /4, p5 and p6.

Nevertheless, one can generate the fifth and sixth moments of the Pearson
curve with the same first four moments of, say, S, and compare them with the
true fifth and sixth moments of S. The first two moments are then slightly
changed, and the procedure successively repeated, until the third, fourth, fifth
and sixth moments of each curve match. This will mean that the mean and
variance of the Pearson curve will not be exactly the same as those for S,
although they will be close, and this will probably make a worse fit in the lower
tail; but for higher x the fit could improve. I have made some comparisons using
this procedure, but, as one might expect, there appears to be no systematic
improvement. In discussion, when this paper was first presented, the suggestion

224



was made to use Least Squares to make "closest" fits, in order to compare the
six moments. More work is needed to compare Pearson curve fits along these
various lines, but it is not likely that the improvement will be sure, or will
extend to points far into the tails. In the end it must be remembered that one
curve is simply being laid on top of another, with only four parameters to vary,
and there is no mathematical analysis that will guarantee accuracy.

Other methods for developing accuracy in the extreme tails include numerical
inversion of the Characteristic Function (essentially the MGF with it replacing t,
where i = V1-'T), or saddlepoint approximations. A method due to Imhof (1961)
uses nuri..-rical inversion for distributions such as S, but the computer time
needed increases rapidly as the distance into the tails increases (to give small
tail areas). Field (1992) has recently examined saddle-point approximations for
S. These would seem to give more promise of tail-end accuracy in the long run.

6 Use of sample moments

The second interesting question is: how accurate are Pearson curve fits when
sample moments are used to make the fit? In the earliest days, this was the use
to which Pearson curves were applied - to find a smooth density to describe
a set of data, such as lengths of beans, or width of skulls. Kendall and Stuart
(1977, Vol. 1 ) gives details of such a fit. In general, the Pearson curves will give
very good fits to a unimodal set of data, or even to J-shaped or U-shaped sets,
but it is important to assess the accuracy of extrapolation from the sample to
the supposed population from which it came. More precisely, we ask how close
the sample fit estimate of, say, the upper-tail 5% point is to the true population
5% point, and, further, whether or not the Pearson-curve point is better than
the estimated point derived from choosing the appropriate order statistic - in a
sample of 1000, the 951st value in ascending order, or in a sample of size 10000,
the 950ist value. Some investigation of these questions has been undertaken in
two quite different ways, by Johnstone (1988) and by myself (Stephens, 1991).

The accuracy of the Pearson curve point will depend on:

1. the sample size n,

2. the a-level (tail area) of the point required,

3. the true skewness and kurtosis of the density approximated,

4. higher moments.

Johnstone gives a small study, for samples from populations with the following
range of parameters:

[ 1 10.0 0.0 1.0 1.0 2.0
312 3.3 4.0 5.25 6.0 7.5
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Johnstone gives plots of the estimated coefficient of variation, CV, of the
Pearson curve x, against - loga , where the base of logarithrs is 10. Thus the
CV of the estimated xo.al is plotted against 2, that of the estimated xO.o0i is
plotted against 3, etc. The coefficient of variation is estimated using a Taylor
series approximation. As one might expect, the CV goes up markedly as a gets
smaller (so -log a gets larger on the x-axis), and the steepness of the rise is
greater for the more skew distributions.

In Stephens (1991), Monte Carlo samples were taken from populations for
which exact percentage points could be found, and the exact points were com-
pared with those obtained from (a) Pearson curve fits using the moments of
each sample, and (b) the order statistic estimate from each sample. The order
statistic estimate will be asymptotically unbiased, while one can say nothing
exact about the point obtained by laying one curve on another; recall that sam-
ple moments, especially the third and fourth, are extremely variable, even for
quite large samples. Tihe results showed, as expected, that the Pearson curve
points were more biased. However, somewhat surprisingly, they had smaller
mean square error. Therefore, it might well be preferable to use the Pearson
curve points, although, again, more investigations should be made especially if
the points required are far into the tail.

7 Goodness of fit using moments

In this second part of the paper, we discuss how moments are used in Goodness-
of-Fit, that is, to test whether a random sample comes from a given (continuous)
distribution. The distribution will often have unknown parameters, which must
be estimated from the given sample.

7.1 Tests based on skewness and kurtosis

Suppose the r-th sample moment m, about the mean is defined by

n
i=1

The sample skewness and sample kurtosis are then defined by

bj = 2,b2 = a4 (22)

These statistics are not unbiased estimates of )3 1 and 32, but they are consistent,
that is, the bias diminishes with increasing sample size. The sample skewness
and kurtosis are time-honoured statistics for testing normality, having been used
in a rather ad hoc manner for most of this century; bi is compared with zero,

226



and 6ý with 3, the value of f02 for the normal distribution. However, distribu-
tion theory of b, and b2 is difficult, and it is only since computers have been
available that extensive and reliable tables of significance points have existed for
these statistics. Further, b, and b- can be combined to give one overall statistic
(d'Agostino and Pearson, 1973, 1974; d'Agostino, 1986). For other distributions
Bowman and Shenton (1986) have also given tables for these statistics. Stud-
ies havc shown that skewness and kurtosis, especially combined, provide good
omnibus tests for normality, although less is known for other distributions. For
the important discrete distribution, the Poisson, all cumulants are equal to the
mean, denoted by the parameter A; a time-honoured test for the Poisson is
based on the ratio of sample variance to sample mean, which of course should
be about one. Again, this simple statistic appears to compete well with others
in terms of power.

7.2 A formal technique based on moments

Perhaps because of the variability of sample moments, which makes calculation
of significance points difficult for statistics based on these moments when calcu-
late - from samples of reasonable size, it took some time to formalize a technique
based on moments. Curland and Dahiya (1970) and Dahiya and Gurland (1972)
have however devised a general procedure. The essential steps are as follows:

1. A vector C of length s, say, must be found, whose components (i are func-
tions of the theoretical moments, and such that each component (i is linear
in the parameters. (This might involve re-parametrising the distribution
from its usual form).

2. The estimate h of( is obtained by replacing theoretical moments by sam-
ple moments.

3. The test statistic is then based on the difference h -

Suppose that E is the covariance matrix of h, 0 is the q-vector of unknown
parameters, and W is the s x q matrix such that C = WO. Then define

0, = n(h - W9)'t-'(h - WO),

where 0 = (W'E-1 W)-'W't-lh. The statistic 6 is the regression estimate of
0 obtained by generalized least squares, and t is E with the estimate 9 used
wherever 0 appears.

Gurland and Dahiya (1970, 1972) showed that, asymptotically, the test
statistic Qt has the x2 distribution with t = s-q degrees of freedom. Currie and
Stephens (1986, 1990) have studied the procedure, and show several properties
of Qt. Among these are the fact that the test statistic Qt can be broken into
t components, each with asymptotic distribution X2, and each testing different
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features of th, distribution. Each component is a function of moments or cumu-
lants. For example, consider the test for normality, that ;s, for the distr;bution
A,(p., IT2) Gurland and Dahiva (1970) took (= {I, ogP 2 , pa, lcg(P 4 /3)}, so

1 0

that h' {.I,logm 2 ,m 3 ,,,og(Mn 4 /3)}. The matrix W is W [ 0 ] and

0 2

o0 l~~ TIhe test statistic Q2 becomes ei+e, where the two components

are j = TIm/6m", and ý2 = (3na/S){log(m 4 /3ran)}. Thus the u,thod leads to
nrb/6 and (3n/8) log(b 2/3) as test statistics, equivalent to the "old-fashioned"
b, and b2 .

However, it should be noted that the components are not unique; they de-
pend on how ( is formed. Currie and Stephens (1986, 1990) discuss these
questions in some detail,

8 Components of other goodness-of-fit statis-
tics

Other goodness-of-fit statistics also have components which are functions of
moments. The oldest of these was proposed by Neyman (1937), in connection
with a test for uniformity.

A test for a fully specified continuous distribution (that is, all parameters
known) can always be converted to a test for uniformity by ineans of the Prob-
ability Integral Transformation, and a test for the exponential distribution can
also be so converted, even when the scale and origin parameters are not known,
so that Neynian's test has wider applicability than it might at first appear. (For
details of these transformations, see Stephens, 1986a, 1986b).

Neym..i's test is as follows: suppose the test is that Z has a uniform distri-
bution between 0 and 1. written (1(0, 1). On the alternative, let the logarithm
of the density of Z be expanded as a series of Legendre polynomials:

log(f(:)) = A(c){1 + cuLI(z) + c2L2 (z) + caLa(z) + . .-}, (23)

where the ci are coefficicnts, components of the vector c, Li(z) is the i-th
Legendre polynomial, and A(c) is a normalising constant.

A test for uniformity is then a test that all ci = 0. The estimates of c, are

n

ýj = Z4 LG(-) (24)
j=1

where zj, z2 .. , z, is the given sample.
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The' first few l~egvrndre polynominals are best. expr(essed in terms of y = z-0.5.
Thben

[.,(-) 2 2v'iy, (25)

L-2) ,,(6y- - 0.5), (26)

= V'7(20y 3 - 3y), (27)

so that the estimate cl becomes a function of the first moment about the known
mea, ,.5, the second estimae r 2 becomes a function of the sccond mom-.it, C3

a function of both the third and the first moments, etc.
Neyman shows that the suitably normalised tj have asymptotic N(0, 1) dis-

tributions, and his overall test statistic is the sum of the squares of these nor-
malised estimates. Thus the overall statistic has an asymptotic X2 distribution,
just as for the Dahiya-Curland statistic, and the individual terms, based on
moments, are the components of the overall test statistic.

9 EDF statistics

Another import ant family of goodness-of-fit. statistics is that derived from the
Empirical Distribution Flunction (1EDF) of the z-sample. This family includes
the well-known Kolmogorov-Smirnov statistic and the Cramer-von Mises family
of statistics (for details and tests for many distributions based on these, see
Stephens, 1986a).

One of the most important of the Cramer-von Mises class is A2 , introduced
bv Anderson and Darling (1954). The definition of A2 is based on an integral
involving the difference between the EDF and the tested distribution F(x) (with
parameters estimated if necessary). The working formula is

A" -n 1 1: (2i - 1) [log z(i) + log(1 - z(,+i -x))] , (28)
n

where zi = F(.ri), and z(i) are the order statistics.
As an omnibus test statistic, A2 has been shown to perform well in many

test situations.
Andrson and Darling showed that the asymptotic distribution of A 2 is,

like, S of Section 1, a summ of weighted X2 variables. The individual terms
in the sum can again be regarded as components of the entire statistic, and
Stephens (1974) has investigated these components in some detail. A remarkable
result is that they too are based on Legendre polynomials, so that they are
effectively the same as the Neyman components, based on moments of the z-
sample. There has been some investigation of components of these and other
statistics, as individual test statistics for the distribution under test; references
are given by Stephens(1986a). As for the Giirland-Dahiya components, they can
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be expected to the sensitive io diff.rent, departures from the tested distribution.
The complete test statistics of Neyman and of Anderson-Darling combine the
sam,, coi•pon, ts. but withi different weightings.
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Abstract

fliigher-ordler statistics (110S) are now verY wide],J qvusd. Two areas, where OweY
begin receiving con~idleraIble attention are array and( speechi processing. ThIiis pa por
describes some recent al)Ilicat ions of II OS in b~othI areas by the authors [F-1 ]-[20].

III our speech processing applicat ion, we (denmonst rate a wva ' to better discrimnaii~te
between voiced and unvoiced speech. '[his is accomplished by observing thle behavior
of a cuminulant- based adaptive filter., and makes use of t he fact Ihat unvoiced speech Is
Gaussian, whereas voiced speech is definitely non101-Gaussianl. We have also shown a wvay,
to utilize the prediction residual from the adaptive filter to estimate thle p~itch Period
for voiced speech.

Ar ray processing encompasses aI mult it ude of problems. incluiding lbeam forming
and (lirection-of-arrival C DOA ) estinmation. We have dlevelop~ed fotirthl-order cuniulant-
lbasedl blind optimnum beainforming algorithbins thfat out perform existing niet hods. Thle
term blind indlicat es t hiat our methods (Ic not require aI priori k nowledge of array gVolt-

et ry and] DO A, nor t hey are afIfec ted by Tin lti path propagat1ion and presence of sin art
jam iners. Extensive sii mulat ions s uppor10111Ol theoretical claimis onl thle opt ininalit v of
our lbeam formfing procedure.

1 Introduction
Our work onl speech processing describes a met hod Ihat consists of a dp ve jre~itor ; a voicinig
(lecisionl ( \/1k). and a pitch period est iiiiaor. lThe foculs of till., st idy YIs onl robuisl de; et ionl of
speechl st ate aInd 'st inlat ion of l l J)el.lprioil. hIlk s a('(( )tfllslied by, observilng I he~ be'h;1vior of ;III
adlapt xe 1 )rodict or \khInch piocv'Sse' III(' spe(chi >ignial. Ifightl ier oder staItistVal arialY'I, i- proposod

for discriminalion oif spis'chi III,,~ ( uu11itg h' 'ir y )!, he' u'ivilua:I,_.,I iJ;dh with h!
of the pred(iction-error residual; vihI& iii' 'ci-I~oII lnt indm. hýnt ii (ov;Iiiinu'al tu eutliilat hsi
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predictiotn methods are investigated and Itie( fal1ler i-s -iijnw Io he Il, 11101 rlllll- xvaN- <if inakiig,

( V/UV ) dlecision. Pitch estimation is arccntiilish!"A I Ap ivti i cot' atli-llbas(I allpracheis 1that

operate on the energy estimate of the cunitlati-nisehi pnicut lion residual ratheri thanit the origiiial

speech signal. Pitch esthnation by, our met lid y I !"i ir perfiutiatice, than currentl e~ xist ing,
hatch pruiedlures.

Array processing work, as described in thins lmlwr. adnldves thei problem ofI hlltu op1 multin

heamiforming for a noti- Ca ssian Wei redl signal in thle ''tsetic () o tite leren pue. Sen.ýiir rvsJpon.ý,
location uncertainty and use of sample WttHOtic cani severel degrado I 1 ie efortiaice of opt itiumti

beam-formners. liti this papein we p~rop~ose blind1( est imatiotn of H ie soi ceseerring vect or ill thle proý-
ence of inuhtpife. (lirctiotta. correlated or coherent Ca iusian ti itvrfoerers via. Iig-ighr-order s a lis:tics.
In this way. we employ thle statistical characteristics ofth lieci red .igtualI to mna ke H ip micesa ry diii
crirnina fion, wit hotit any a-priori knowleilge of array manaiifold and1( direrthion-of-a rri val in forrmaia lo
about the desi red signal. NNe then himprove our met hod to uitlize At lidlat a in a. more effbicient tman-
ner. In any application, only satmplle statistics are available, so we propose a robust heaniformnijg
approach that employs the( steering vector est imnate obtaitied h 'v ctnuiulantt-base!d sgtal procensi ag.
We fuirt her propose a mnethiod that em ploys hothI covdarinc and ctinulaiit iriformaitinti to 10111 at

Wiiite sa ni pe effects. We a nal * ze thei effects of in tilt ipat It propagat ion otin I lie recepi ion of t lie olesired
signal. We show t hat. even in thle presenice of rohemretie cumuol anlt -hasedl hean iforintq rsidil hehiayes
as thr 0o)timum lbeaniforttter t hat inaxitnies thle Signal to Ititerferenice plus Noise RIat in (SIN'R ).
Fimially, weo propose an a(IAl~ive version of onur AlgoritIini . nulat ions (leniotist ate thle excellent

pe-rftiamitce of our approach in a w'.ide vatriety, of sit uat ionts.

2 Cumnulant-Based Adaptive Analysis of Speech Sig-
nals

Voiced / 1Uivoiced (V /UV ) decisiotn is an iimnport anit problem tin slpeech p rocessinmg.gAllmnsl all s leecli

coding, recognition an1)0 speaker idenit ificationt sysemis requli re I his itiformationt for ani elfect ive

processing of speech (data. In addition, low-delay speech processing, systems require t his dvciýioti
he p~rovidhed in real-time. lIn [2] some cornnonlv m ployn vd featutres are iescriHed. antid a su hset of
tlietn are tisedl to train an artificial nietural net work to perfortm \/VIV dlecisioni.

Irt frainie-based anialysis of spieechi signals. feature ext ract-r k pis.plb)Itite on the cu1rrenit bloc

of data. and a decision is given at the( enol of the period. Vor t his reason. fraine- hased mtethIod,,
arem ricapable of t racking rap~id changes in signal chiaract erist ics. Irantsitioiis ofho liWtate of speech

wit hi n a fraime perinod affect thle dlecisiots resultitng from a fra rue- based anralyzer . Ini genieraI. Ithis

mrixedl state of speech withint a period cati tiot he idmIOtP ife and itncorrect dlecisrions will lie mnail'.
lii is will olegrale the, perforniance oft lieoverall speech lirocesi tg systemii. Ini ado n bitii t.Iamirii'-baed

analysis jutroolttcs delay. which may tnt! he toeralile it low-delay syst enis.
Severe iion-stationarity observed iti speehi signials antd lw-delay reumeuitnt s (t thle "initi ci-

p)(rir~y speechi processinig systetus tuot ivate the uise, of adaptive algorit Inns for feat ire exilatrid i

in place of t heir hatch counterparts. In general. adlapt ive processinig te-iiriqies are ileigtieu to
mminiiuii/e soitme least-sqtiares error critrioin. TIheir use is tiot ivated lby thle assitulit ltin thati t Iii

p~rocesse's are Gaussianl atid th lierform(tiatnce analysis is t tact a Ie wit 1i t his assu ni pt iou [3": 1iw-
ever. t his apiproachi igmiores, the inoi-( ;auýits-im tiat ire-4 of t lie, iiiId'ul\ ii : igil

Adpie plredlictIion 1f t~ lie conimg Agnail aind coil iildhli>1ý uiiiiiitciirti oh proih'll't'1'li t '1m 1(.iv
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Figuire 1 : lv j) 43 s[peech siiiiilds: a) I 1ilvuiccu ýf)4''li. (1)) \V(ACd >Tlwi .

illakir's dlet(itjgcli caiigo.s III tlit, sped! v;I! chilraci eristil-" of tit(- prnee,ýs; posihlu. We ni~j cmý,do

suh~l a iiieas all ct-o-. After ani(V'~ all adlaptive' lillit will r4Clquire aI Iwr~~ o( lwI tl
lor- ti( le iiw con1figuration. lDii ring this loarnoing perfol. pred'hiction error power wijlltiipr l;

increase. Ibis ob)servationI W lVsed III [37A. to de4tect ahlwilp i changes ili t I"ait( (4i'Urs-,v R)

parameters of a linear process. 11'a lat ilce formi Is 1!'uld rat her Omtha a finilt inpiike respq-onse (FlR)

filter. retlect ionl coefficienuts will b~e alvaiL lble for monitoring phirposes. Ili addit ion. sllIv'ite

Filt ers exhibijt betteor learniiig chara~cteristics t han their FIR (-ill]liiteorlart >'. Tlii ImaY ithiprove ilw'

abilit , to localize tite vvelit wl~eni predict) tn error power k~ illoiiiorell

III tilils stiid , we, shal iietutei lie applicatlionl of aldaptive tprc(lictohin- li'o~lk to) detect
V 1/1,V iialsitioiis inl sp4eech sicnlsll: lieiic*,'\oexelts (If ltlf(.1C-0wt \vi'h \/1,V orI UV/V rninrs

Our appioa( I il xiiiake tlie( qwvech productio mel odel inn u acrou iii ýlitd litlz( Lie :o,. lii : a i souoiild-
order si tistifes of spevchi signials'.

2.1 Speech Production Model
Tlte State of speech signal belomgs to t lii e Cate-ories: voji~ed Iiiv(4i(ed ll amd siltnice. "ilent pu'riels

call be do014cttel easliyI~ 1w ioiiitoriiui¶.v/r(4 (B ss~ni rate anld enlerg of t lie receivel Wiia- ~t ~j
thlis reason,. we shiall coituent nalte oln voluetI/lllIv(i nued classiliiaI ioul of sprech

Uhixu)4('(i sounids i-''' l' w rnin uiiuY ;It coý1.1f(1 ;0 -ii' poilit ~li t 1 r tr;ia

al tiihd aitr Hiioiigh ti' O (w15 collir nno al aI h~ii.ih vu'lncit', lo pumhlic' nlii.' ui
a. broit'l s[n(t ruitui l~oise sohinue t', xuite t h1w vocal I jra't Tle v'etil'. colicIt;iaI 'i is 111!ied( Ill

lie i~~~- fra 1 n'uu'11 4iil l-,f I' p-0iut 1I1 forn lliiouuuu'u 54)illlld. llt I it(' ýpv1iruinui I- 14 el liveix tl.11

whluut c(,!IpiJ;iiu'u wijth IiIhatf of1 y44(4'4 ý,-pe l. D)1,4 14 ito hrp illillilfi (of' 1;hildoii ll 'A (I., ili\41
\4 ill ill"

proltditiloi of uliii\4,uu'4 s'wvcil. ( lw~i i tbi>' ]K aI kvali( ;iflI- I ill rxcit1h ol Ari It'll,

;issmliulitiuil i., ýali1'aiul hY W,11, 1731. Ill his \wik. Ii 1w~nr bl iw 1 111 1,iw-d io ,nl 1'\
It lia< len huhlild I thalt b1jsp4i ii 1 Iit l ui'd' .11 hlc tivv. 14,11( in /14) . buti [W. !i 'It' 1ý 1 Ii'
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F'igutre 2: Adja cent samptile corrla! I )iti J sT,)(((11 S Iit ;i s

just t he opposi te.A I vpical un voiced segment of s peech Ii s shown Il i],, Ia-

\oicod sounds are Ipro(hitced( by forcing ail- Ihroliigith ill( otli \Witl i tlie' of~ III, vocae

cords adljusted so that. t hey vibrate ill a relaxatijon os(illit loll. 1Illeroblv promil icillo (Jlý pcl&Iiuic

Pulses of air whici, oxcitv thle vocal tract. This excit ationi is clea.rlY lioli4 ;:Iuislsia i. 'lH ei- g

concen frat ion i~s in dw liJow-frequeiJci , v sidle of filie spect rI'lI ill thli forml of a fill)ida m11il Ii(libI('t
itil(l it~s harmonoics. Ili addilion. voiced souinds hlave Iiiore energyv ilhaln 11voiced seiliils . A- t v'ncal

voiced Speech segment is shown inl Fig. lb).
For voicedl sounds, thle vocal tract can be mtodelled as anu all-pole 11 linaT <1 ,l ti. TI'l >ýa lii Ijdll()I.

also holds for univoicedl soujnds buit the Al? order is less. C orrelat ion bet Weilil ýýjacv dtinu awniesf !ý

high11 for voiced Sol) ids. On t lie( ot her hiand, unvoiced ,,Ievch resemblesý whit, min( nse ~iii' it >j-rt v c! ii Ill

is relatively flat, ' ieldinig Small correlation between adjaceiit Cai ~~.(oivelat i I(oelll e

voiced afl(l un voiced cases are illlust rated iii Fig. 2.
rThe difrereiices ili Ith li ecit atioii anid correlat iiio p)fl) 1 wiot for In-, Iw at b.,~ i1" ;,Iissiah v

discriminate between thlumui however. %%,illI second-order tai ist n-s eI icanl oily I],, Ill cerrok'l m 41

properties but canl not utilize the iniformuation about fhe' ('xcit atii iiiodl. IlKý uiot~vaiii- th 1'i!*.'
of higher-order ci umil a nts of s peecli signals.

2.2 Our Approach

hat.iou a ruolig adjacerit sa iii ple".Ill on xciaiotthni uuel ik Ju li ' i . . ." In ii, -all %., 4 ;111i

hatch-tYpe jirtliodi', for oIvaii--l owiliil pod~ iiii ~uet purni im I ''I I),ia.' tow )>Il

highier-order hlaitii- iwevi I h ll'o iKii~il np I i t plier 11 '~' ~~'
ideiltifýiui Ilie julven'', el1 ;1 11alýii ~i Illn driviti bY vhi'- i i 114,1(o h ie, t (Irl ' W '''u- lll t .1-



s , stell idlent iti(at lol prob~lemi. lire svstinr undi~er cor~isioiatOl(liln line app~roximiate by( I)V it M?

Model, so ail l FIR predictionl fill er will whli-i; e ihe specim r oni'f Ihle inucoi niiig signal.I We' ,hall

* ~investigate the differences betweenl cliiiila lit -aird covar'iance-hase"l adaptiv predicE(it ion milit ods in

thIiis section.

2.2.1 Second-order statistics based adaptive filtering

Correlation-based adaptive prediction filters tend to mnrimiziiie thle ireilici iou error power ;it thle

out put of the( filter. Snice correfation arriorig adjacent samiiples is higi for voiced signjals, we (-;Il

remove a large proJportioii or eniergy from I lie originail S1)(4411 signail usn piiril' On. Onr t le (it her
hrandl in the case of lufvoicedl sorinil, LP~ vii inot be that successful duie t i)smiall correlation allioll;4
sanqp les herefore. a comparison ofthle in pi signlal power withi th le owr in the prdicth in reid na)
will reveal tile state of the Speech Signal.

Lattice predlict~ion filers enable unonit oring ti6 variation of predictio o11 rror. power wvitl modri)el

ordler dute to t heir specific st ruct ure. Anutorvg1-''sive idloverslc o can he pe(rfoirmied byv
selecting thle tap which result s il ii inrrilniri lpredlict ion-error powker. l'liis leads to atiot her dis-
crifiriration b~et ween voiced and un rvoicedl soiuids , Since thIis ordler will he relat ively lower for 111o
unvoiced case.

2.2.2 Fourthi-order statistics based adaptive filtering

fInt iris sect ion, we shall inivestigate the b~ehavior of a fouirtli-crdie cuminur a nt- based adlat ie fite.
Ani adaptive algorit hun for estimnat ing thle p~aramuet ers oif iouist atlouia rv All processes, excited by
noii-Gaitssian signals is propowed in [t;5b aiid soine iiodlilicait ons are sil"gp sted in~ [22] Me ised

tihe mret hod of (6-1, Whicwh is il the softwnare packago Hi. - 45n' (triadiemiiark of Un it ed Signriais
and Systenis, lirc. ) (331. The ideas fOr thle covarianmce- b~asedl filer direct ly a pply in t his case wTit i
one important ex'ep~t ion: tihe cnnuimlant-baseml adaplt ive filtr pirovidles thle soir~itu to thle crinviiiant -

based normal equiat ion s, and thiiis solnt ion is not thle onre !ht lirin ii mizes thle p~redhict ion - error power:
however, one, may argue that if tihe Speech prodluct ion syst ei (anr ibe idhenitified accurrately, thlen thle

p~redlict ion error shouid b(Ie close to tilIe miii miiiinri possible va~luie.
With higher-order statstcs we have tire diversity of irsije' the( excitatlioin iaforrrat ion: Flo

voicedI Sounds ,I ihe excitation is iii- ursa~hence, tire speech prodict ion mechanlisml can bie

ideiitified b~y curmrrant.-lased All equations. On tire orther' hand. for uiivoceil souinds the excit ath in

riot be abl(P to i(i(ntify Mhe sy.,4(m (1)(1n, siniitrf r //I/(i 10o assocja(lid oillifjin-jiiiicc Wailni /.al ou,

critcrion, prccdirion-rco poil'( m iay a cbitarily inccc csc. lii thiis case. a (iir i ilarit- hasedl filter iiiav

even amplify tire speechsignal making the poxx'er redmiction by pre'diction comprlarisoin mrore clear
Hriat when rising a covaria rce- based met hod.

lo validate our iieas about covariairceamid cu [firll ii it -based adaptive plietictiohl of speech sgas
Nv performned Somie eXperillieirts rusing dlat a frorit the liM IT speech reco-guirtion (lat abase. H 1e
reslilts verify on rt clairms anrd are pirovidled iii tire, next sect ion.

'A rumuknit -based filter providles r lie( Sol lit ion of (.iIi ill latit -basedl niorniiat 'iimii mn ;ii air;eapniv xeish imi

liowevir, thIis set of q~ualimris liecornis t rivuia wheii tie inutpr t, I, iiwidyI, is ;u als~i liii.ir
* lif'(iiiis( lighgini than swcoril-oriler ciiriiilaiits, of ( 'alissj;,i pr'~-, ;in ,r/i
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2.3 Experiments

We start our experiments by investigating tihe prediction performance of correlation-an(l cumulant-
based linear predictors in voiced speech case. An indication of l)erformance is the energy of
prediction-error residual at the output of the filter. For this purpose, we selected a voice(] speech
segment from the TIMIT database and performed adaptive filtering based on both correlation and
cumulants. We expected that the correlation-based filter would yield betlter performance, since it is
designed to minimize prediction-error power. The original speech signal is scaled so that estimate
of its variance is unity. The results of this experiment are shown in Fig. 3. Energy values rep)orted
in this figure represent the estimate of the variance of the signal averaged over the data window.
Interestingly enough, the cumulant-based filter performed better than its covariance counterpart,
although the latter is designed to minimize the power of the prediction residual. We repeated this
experiment with other speech segments and in all of the cases. cumulant-based filter outperformed
covariance-based filter.

In voiced speech, a conventional system identification approach for estimating the AR param-
eters, using a least-squares fit procedure, suffers due to the nature of the excitation sequence. It is
known that, for voiced speech, the source is definitelv non-Gaussian ; it is quasi-periodic in nature
with spiky excitations. The impulsive nature of the excitation in voiced speech is exploited in [40],
by making a Bernoulli-Gaussian assumption to develop a inultipulse coding scheme. In [39] , a
robust linear prediction algorithm is proposed which takes into account the non-Gaussian nat fire of
source excitation for voiced speech by assuming the excitation is from a mixture distril)ution. such
that a large portion of the excitation sequence is from a normal (list ribution with small variance
while a small portion comes from an unknown (list ribultion of higher variance. Such a distribution
is called heavy-tailed Gaussian. Based on the above mixture model, a linear prediction algorithm
is devised which employs robust statistical procedures ( developed in [34) ) that operate in a batch
mode. Although satisfactory performance is observed, the method can not track the transitions
in the input data. This points out a very important fact : conventional linear prediction can be
unsatisfactory d(ie to incorrect modelling of the excitation. Of course, this carries over to the
adaptive domain, i.e., a correlation-based adaptive algorithm may not be able to yield the best
possible fit in the presence of outliers in the data. On the other hand, a non-Gaussian excitation
is required) by higher-order-statistics-based identification algorithms. A cumulant-based adaptive
filter is able to reduce the power in the signal by effective prediction, although it is not based oii a
criterion for minimizing the power of prediction residual. Power reduction nmav be even more t han
that provided by a covariance-based filter (life to the just described outlier problem.

To analyze the behavior of adaptive piredictors in voiced and unvoiced speech states, we sele(ted
a 250 misec period of speech segment in whiich there are two I ransitions: voiced (0-75 insec), uinvoicedl
(75- 190 iisec) and again voiced (190-250 nisoc). This sign al is shown iii Fig. 4.

We used an order teni predictor for adap)tive filterinng of the s peech waveforni. Figure 5 shows
lie l) red ict ion -error froii a covariarice-base(d filter. Observe thiat a li adIap t ive filter based ()n a
power iniimization criierion will Iurn off during lhe iuvoiced pe(,rio(l hience, this segment pa's's,
undlisiorted thirough fitle filter. Tito reason for this (as explain(ed previously) is thle sniall adjacelir -
saiiple correlation for unvoic'e(d sotids which iiakes the process uniprdictable. To nmirinirize t1li
out put 1mowr .tlie filter turns off: however, diui'rig voiced smnieilts (leconivolution is sticcessfuil. \Nt'(

obsorve a q.iasi-periodic ltls-e traih fhor tlie predictioin residuial. whiich is ii accordance wilti lieo
excitatiou uiiodel for voiced speec•. proiductioi.
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Figure 5: Prediction residIual from- covartance-based adlaptive filter: (a) first 125 misecs. (b)
last 125 misecs.

Figure 6 depicts tile cumulant-1)ased filter residlual. During voiced periods, successful (lecon-
volut ion is possible since tile excitation is non-Gaussian. arid again a (juasi-periodlic p~ulse train is
observed at the out put of the filter. Now, however, thle filter amplifies Ohe speechl signal during
tile unlvoicedl segment. As explainedI before, during this modIe of operation, the system identifica-
tion task is ill-posedl, and, since this filter has no power minimization criterion, the power of the
prediction residual becomes higher thlan the unvoiced speech signal.

To make better comparisons conlcernling the energy of the original speech aild p~redictionl resid-
uals, obtained via thle two different filters, we illust rate the energy estimates in Fig. 7. Energy
is estimat~ed by first squaring the signal and then performing low-pass filtering using a U5 lpoint

hlamming window. Fig. 7 shows that, by comparing tile predliction-residllal power anl:i the originlal-
signal power, it is p)ossible to maike reliable X/['V (decisionls. \Viti I lie cllnlllant-lbased method.
even bett~er results are ob~tainedl, because it amilplifies tile inp~ut kdat adu iring univoiced p~eriodIs.

rhe ob~servationis fromi t his experimenlt, validate our earlier staterilents: however, using a predic-
tor may bring additional adlvantages as well. One important by' -product is pitch period estimation.
Pitch period is thle timledifferenice between theciquasi-periodic excitation puilses during voiced speechl.

A fter the V/UV' (let ect ion step, better pitch estimation Is p~ossiblle by' op~erat ing oil thle energy est i-
inate of predict ion- residliial r at her t han onl thle origi nalI speech signial. From Fig. 7. wve observe thiat
lie Peaks inl thle enlergy es t i inate seq ueiice are spac(ed IlY a pit ch period durini ig voicedl periodls and
h ley- are sharper t han filie ones inl the Originial speechI Signal (Ilme to ('011lbi ned filterl'ing anlo squmaring

opera t :onls. Con 'q iien t l. we may apply thle correla tion -based a pp roach described in [18] to thle

energy estimiate sequience, for a reliable. simpilpe b)w rolmist calcuilat ion of plitcli pvriodl In [181. pitch
est i rnatiomi is acceomilpl isliedl as follows: lowv-pa filteredI speech sig-nail is mm ail* t H to 111ree levels:
- 1.0.1 alid I lie cirrolatioii sequence of this (plantWizd signlal is obt aimieil. ('ovarialice calculat ion is
siullple "'Itl I thle (11laIntizPel Se(1 lielcv. sinlce it (-all he performiiil (illY liv addiit ion 'ial. a peak-

1iickimig metliod il Iiiiatf-s 1 lie pitcli peril d. Pilek-seoirchIS psjerfrmiied wli 114 lie piisshuh range of valueos
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3.1.2 Covatia i ice- Based Approaches

Currently l\ ise( IhI~gl I- resolnit ion meothid s of, D)OA est imat ion an1(dli inii muii- variance dist ortionless

[Cs p1)1se bea Inifun iinJg (NIVIM) l ) employ ,vIhe cova nailice niat rix of sigmials received by thle array. The

wilvefroiit (ova na llice ii at riix . S. is definied a., tlie(. cova na uce of t he soulrce signals- as received at the

reliereence poi ii . i.e.. at senlsor )

S 7 ~(t) z"( (6)

where (. )" (eliotes comiplex (1111 jilgitt I Iritislpose. t'simg I lie receivedlsg a mmodlel in (1). wvecan
C"X prC5 tie( AWx1 Al Cilrii na moe mat rix R of ii may mnleasuremmlemit 5 inl t ie( followinge two walys:

R r(I) r11 (t) } ASA" + R,, (T2 a(0,1) a1 1 (0,,) + R,, (7)

where R,;~ is I lie iioise,( (ovalriamice miat lix.

R"=L j 11(t) nil() (8)

imt(l. R,,I., istli covaItianic( miatiri o'tlie miidesiredls"ils ~.

Ili 1,enieril. t1 liuoise coiiai-imiiie moatimix. R- is uinkniowni. \\i ,oi iiie test rictiolis oil array oil-

emit atioillit ;111iioise uovaniaiicl' s 1(1 llclr. solwippdljroaChies f'or high resoluiot D~ lOA estiniatioti are

lpnipl)1)(ih Ill [.i7.Tt~l 1fiat do noit reqirtiio Ill-) imiformitat ion: however. I liese technliques have their litni-
tat Ohs (111ie to iiiyolvedl assllilpt otis. IVemi1 withI compillete knowledge of' Iolse covariance structure,

sourlce locitlizatiionl is still limipossible wit hunt the knowledge of arraty nmanifold. In [56]. ESPRIU
tlgor-it iiii Is devised to overcommiv hil. prohlilem: however. FSPRI{ requires transitionallY equiv-

alenit sulllmrralvs wit I kiiowii iispilaemiiemit \'eCt Oms. which niav also be Imipractical (lime, to all the

colust raimit s omil am-raýY or~ieiit at oh. Inl [211 anii iemdciiisi o ae heaýmifum-unimig appl-oach is

plropfosed %hilch tilt'ime lie illeitIifiahii x titi' sigiial slib.jImce;11( aami idllabilit y of thle steenli

'.~u mfummiatI iiil f,)[m th lo sgmil of, mlit (mst. (Ol(od re511115 '((O uit~imielv limoele m hiseý assumilpticoms:

lliivevm. t his hut hlod cilm l'ot liaiiolle colieremvit iiit~tef'Ormi(( an id sat ifdlY ((Iorolw noli(1.

Ii [9 1.51- . blimid (st im~i~ia (JliIol tlniiig, vectors fuOr mioldepelild~lit ('ilt lters 1., (h5(iscusMhe with the
1l011im Im, iitiliis.ioii:

MliindEJ mll (di ý(it.licc stveitimig (((toris ir.S iiit po'iSslhlv with olii svcoiild-oP(IC

biat> O.llmtfijhlii liiglir-tll ormisilm d-ler cilitiilatits. it i.s possible to estlimliate

sluime steol'iii Vltfl Jill 4],11) a4 s a;lev f~iwlo.t

NlVD)R bvl Inmmiommililt-, is, ati altowf te-it Illlioadl for simiili-((ver%. T his a pproaili however.

rI-qui~lls'ý kmuowledg. d) tilt, steoiiig, \.(.tiui ln tiell(' it'hi source Jill to a" scl C f-Ictuim atiol ulses thle

lCi\iiillE ~tiit ixfl R,1 (d l viý(,d g ii~ ltI>l'I'lhue Ilitpiiit of, mit, \lI)HI hea miflormmie *q(I)

(Ii ill ' 1w 15 d a

Ili f ) -vl ri R-=F H a) ) I" r( I) 1

(V ~ ~ ~ ~ ~ i litptv llitil ff Im.it ?ou iiiitttlaii t~~~ii io'sflmis'lua o IM Owdeijew sigmi~il amid vw

['11)1 il Ili, above ~ iiii i, 111r Ilit \hIhDl? fwulumiilm-iiim luim kmmO\%uI',,, of a(fO,1 ).

liuuitl klii~ht'dLc'- ;111,1\ Ill;I14d I t. I - tIlt pls-IhI i Jltdloimtiitl a(O j) veit Imi tIliv ;i,( Ill k mium
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0,1. Thrfi r'fOr. N\l \ I Iwald0 l)(itiigiit caII iii)! h' lireclt l V applliedl 14 iii plh lici li audi ;idd onl. thle

MVI \ 1Ije heiin )1Iivii( I-, (fulle 5('iisilletoi''I iuu ini dssiiie(ms'd iO locatll- ;(151(I characiteristics [ 1-

- 12.1 1.29. 70. 161.
III iiiaiiv iilullicat ioiis. 111ll ipat h prop~iatnu take plau', resudlil~ ii i cudierejit sourices. ('hole-

('lice preseilt 5 a scrious, prob~ivii to D)O.\ iliethods: it leads to1 a siniigiai souurcv covarianice matrix

S, f~oi which It is iiot potssiblelto ei (51iliath sourtice locaiiiions e'xcept ill S014 arr' .- c~f(dl' Oil igti id-

toi-s f IS- 19).61I-62.66~.7 1.7-5]. Ill tLie( \l \ L) case. sourfce cohlerenlcy doues liot ropresent a problem ats

long d, t heie Is It)110~C soi(e (oirlatedh with the dIesiredh signal: howover. ti s sittilationl is ra~rely m'et

fit piact ice. Ill genevral. I lie desIred .,ga Sn subject to miiiti path pijropagation . and~ performiance
ofNV ?aprahdpae eee 7)ITý Anl optiiiiiii beaiiif'oritiiing, procedure has been sug-

ietell [61 tou overmouje I lie cohevrence problemu Lw ulsinug a liiiea r ariraY uif eleineits with Ii dentical

dLirec~tioinal (Lilarictierist ics.

are threfor lookig fora mtetho 11(1 1 cat (iiover-collivealL f114se probflemis. fiit fLie iixt sectionl.

s'.' pie-a'iit ali appi-o~i h II ha a( coIiill IeIv. thils byv cmuiniiiuii cuiiiiilaiit-hased blind estimuation and
\h \I) b eaiiifoi iiligl"

3.2 Cumulant-Based Optimum Beamforming
Ill I Lu', priexioti-" -wcl 1)11. \%( disli' ssd I lie pr obleim ofI ojptiiiiiii Leanill oriii Ilug anid~ coniclud(ed thLat it

11 ot. p(.Ssilk, t IiIo"\ rvia desiieul siIllii I lie pre>(' jce ol' uiiilt iple itiitrfereis. uniknowi sens-or

1101is(0 C"(Jriaid ý i(t' iiiltijot ip piopiagalioul aluii wit Liuitl aliv it, Oiiiila Oiol ýii l)Oi iiiiNIV uiIiaiifolo. Ill

this sect iou. Wve )iopo.sa' a iliillt Lihu Iioverucoiie these probleims. W~e propose a I \vo-steh pioced tire:
LIgll" ei-idei-st a t ist ic, fui bliniid ('1iiluilatl () th Le soiii(( st(''iti'2, %,(,(-t-i. Ikdlow.ed i6Y NIVI bi)? eaim-

¼i-11iiig) ba:sd ()Ii seioid(-oldi(Lrs titi of, i''ie ied signials i( ieiig\( i '1iiaefidN

bY thu, fir-st step.

3.2.1 Estimnationi of dLesired signal steer-ing vector-

Ill thins sect ion. wke iiiplov cinniulants11 of i'civo(. sigilals. to ('sliiiiie the steering, vector oll the
desired signal up1 to) a coiistý11 ankhci or. Iliird-ordeýr cili iiiilaiits are.( 111iid ti siginals with YII siiiuetrnc

pioba Alit v deliilit v lici ntoh. Oiitli other han ud . iiiosIt signails ill coliii iiuiiciit ion eiiviroliiuenets hlave
sviiii' ti.c (elilsit I. fiuiict uu. I% ici niotvit' Il le se of, foit IIIII-ordler ciiiiiiitluit S2. Vir-st, we definle

uiuiicolsilu'i th li' l oii t c I, .... c'uuuu i

Pluiiu(''>>'. \\'' fldli(' ja';fi:;~i1 ieii ud in 'li 1i 12. Siicint'u or iii'' iiial-. arel iiidepeiu-
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Usinig prop)ert if's of uiiiiiialiit 'X ()lwlt

\vliere ;j~denlotesý 1iw --c vo/lh of II( lie juuth-order ciiiiulaiit of' thle desired sig-nal. Defining
.1, 1 ;(6,~(111(0,( ) we have III( following" expression for- thle Al xI vector C:

c .3~a(6L)(

Observe t hat thle vector c is ai r plian ot ( s(ring c('cor 01 //o d(lsir( d sigOnl tip) to a1 .scalf factor.
WVe "lhow III t lie lieNt ISelt ionl how t1 li> iifo in ,1-lat Miol (.,II be uisedl to recover thec desi red signal.

3.2.2 Interference Rejection

With Ii le knowled-e of 1 ilie s "Ieeiii vector of, I lie deslired signal. iwterlePreiee rejection is possible
lingIhle 1followiiii" nHI iill)II- v;Iariwiic dilot olioilire"s responlse fornuu itlatoll: finid thle Weight vector

w t ha 1li minilixo in c power tW1 1 R w. i at(li ow put of lIeI( beam formier s;ubject to the constraint
w/ " - ý 11"hire C i obti rjied via tiel ciiiilauit-based (-st iiuuatioil procedure described in Sub-

]oMtio 3-2.. I [lie, xollit ion to t his opt iiziiialion prioblemii is wvell-kniowni [s]. and c-an be expressed

whecre Ilie coll-ist alt (C11 R- c-- k~ lir-ew it i ordheu to illaiitainn ilie ljiiear conistraint.
Dloui Io lie (((lIislt raiit C I.thei power. 1iiiiiiiiiiiiatoil procedure does not cancel ille desired

si-gnal. but reject, all ilit lib'reiiiew ((Jll liolloiltl alild seilsor iloise ini lie best1 possible manner. Not~e
bhat t his is, ;lcollijhislied \Vithlout kiiOwledge, of covariatice ;Iriti-ore of Interference siginals. senisor

ltiols or. a rratv uiia iif1old. Ililie Ito ao'lw. wi( rofei- to t lie hlrocos-sor Iii ( 16) as CU MI. The proof
hlat Ill- is chili kila i biisewl Ila ill loiil~ wr i l.'iil i''l 10 to lie nixiamlllii SI NI? pr~ce'ssoi is prlovided in

Sect (oli 3.t. where, tIIe wtlvr~ll inuilt ipat 11 case isý I rIatedl.

3.3 Robust Beainforming

iiIn InsI. \til e lirstI proloe.e, ýIll approaich l iat it ilizo, t li roceivevl data Ill tlie estimnationi of
lie ouirie stc(iiilw %ector III ; a tlileel(willIIt ilIatiwer. W\e thleni u-ws a25 m etho~d t hat tises botlh

.111111 1lalit s all d co v~it al ice 'iii iii li n ll liii (1( ýoliev scetijirio>,. Ii uiiill . \%e ('1pllloY a tobulst 111(4110(

3.3.1 Efficient Utilization of Array Data

II Ill 14. prvi(li ll' \%0i ;Ip4l Ii~ lwilto 1()I, b liiid ist 111liolao of 1w dv Ilired source steering

oillY Iicii' f'i('lt ciiv 1fi~ii,\ i¶Iii ;- ~rrav1of~ lllllit oxml. 1' Oiwreic stifiiiol ui beo ll], (1iiois. de oradin

l1 1 1i 1 lit v 1f lii4 tii I l~ I\ I Il I tV tilil t Ie I I Iil Ii I' ft Ii fi Is i- Ii 1i r j ii Ie ( Ie t II
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Define the mnatrix C wvj ith the ( k./) th It letuctit

('k. C( cIt? 1k ( t) r 1'k( t1k). 7-1 () rt) where k., I =.I...M. (11)

With true statistics, Ithe cross-cumlulant miatrix C will have rank 1, since all its columns are scaled

replicas of the desired( ,otirce steering vector; however. with sample statistics this condition never

holds. The left singuilar vector of C with the largest singular value can be used as the estimate of

the desired source steering vector removing the effects of noise. Ini this way, we utilize array data
miore efficiently t 3. The heamiforiner that employs the steering vector estimate obtained in the wvay
described above is referred to a~s the (UMŽ1 beamnformner in the seqluel.

Ini addition, the 'total Least Squares algorithm, that takes the errors in both the received data

covariance miatrix estimate and the steering vector estimate into account. is a better choice for
comtputitig the 0 1 )tilfliun weight. vector, as suggested in (78], but it is computation ally expensive.

If extra. comnputationts are feasible, wie suggest the use of the Constraiaied Total Least Squares
algorithmn [11, for even better numierical1 results.

3.3.2 Covarianice-Cumulanit (C2 ) Approach

IIn ,Omle array procps.,ittg applications, sensor nioise covariance structure has a definite structure
eniabliing a wltitenimg operation oii tie receivedl data. The principal eigenvectors of the covariance
irtatrix of thi~s processed dlata reveal thie snibspa~ce spanned by the steerinig vectors of directional
signals illunitiitating the arraY [.581. Hence. the steering vector estimate obtained by the cumulant-
bamsedl approach call lbe implrovedl by' projecting this estimiate on the subspace spanned by the
principal eigelivectors, of lthe covariatict mat rix. This improved estimate canl thcni be used in the
hearlitorinling lprocedlnre of Section 3.2.2. The inotivation behind this a~pproachI is that covariance
e.stirnates exhibit less variance than ciminulamit estimates. but in the covariance domain we canl not
idlentifY the source steering vector if there are( multiple sources. This procedure y ields an estimate of
h le steering vector frotin covariance-nitat rix inlOrination by employing thle cuinulant -based estimate

a.,, side Iniforniation. .A mitathem atical tle~srilptiolt of' this approach is presented below:

I . From the received data. est inmate the covarianice miatrix R andl thle (desired signal steering
Vec(tor. C by the c urnitlanI- based proced u re.

2. Performt ani ei-geiieconmposit ion of' the saminple cova riance inn trix. to reveal the signal and
itoise sIlL paces: t live igentvectors of R withI I hie repeatedl iniiii iii intit eigen valnte span the noise
sub lpace [5S] . \khtile thle rest, span the signal sutbspace.

:1 Assumite I li sigiial smi Lpaco is (.1 + 1) dimrenmsiontal. Then. thle basisý vectors for the signtal
stitbspace. otJItiii ed front thle eigeitdeconiipositiolt procedu tre. c-ait le sorted lin an l Mx(J + 1
mat rix E,~ wvit I thle coIn inn .,pace ideittical to the signial sumbspace.

1.Vroject thle cimlm 1itla fit - hats(d 51 eeri lig vector estiimate c. on) thle signal 511 bspace to obtamn anl

Hittproveil eMfIllinti C, 1 c,,,, 1,

3AX tItI-thod t1t;1t litilizo. th, ;nrr;i.\ Idai; n.y'tinl nni c fllicl,itintl I. prf., mild Ij!]

249



3.3.3 Robustness Constraint

Any estimation procedure is inevitably subject to errors. MVDR beaniforining is extremely sensitive
to mismatch [11-12.1-1.16.29,70.76]. especially in high SNR conditions and in arrays with large
number of elements. A variety of constraints have been summarized in [68] assuming perfect
knowledge of element characteristics and locations: however, in our case these methods are not
applicable since there is no available informati,)n about the array manifold to design effective

constraints.
Errors in the steering vector estimate result in signal cancellation. This mismatch condition,

arising from non-perfect estimation, can be viewed as the problem of optimum beamforming with
an array of sensors at slightly perturbed locations. In (15], a method that constrains the white
noise gain of the processor is proposed for the solution of the latter problem. In this section, we
use the same approach to alleviate the effects of estimation errors in cumulant-based optimum
bea iforming.

li order to understand the lnismatch problem and find a way to alleviate its effects, we need
to analyze the problem analytically. Consider the power response of a beamformer with a weight
vector w. as a function of DOA 9. defined as

J(0) = w a(9)[2 (18)

with a(9) denoting the steering vector for aim arrival from 9. The (derivative. OP(O)/09, can be
expressed. as "O 0,,f()1O(9

O 7(O_ ) = 2 { w a(O) [ H19)
O0

1=1

Now consider the following scenario: we have an MV\DR processor looking at 61,. which is the
expected DOA for the desired signal. Instead. the source illuminates the array from Oa which is
very close but not equal to 0_,. In this case. t lie bealnformer treats the desired signal as interference
and nulls it: however. due to the (list ort ionless response constraint for 0.. and since time angles are
very close, the derivative OP(O)/09 must be large in magnitude for 9 between 9 d and 0o. From
the derivative expression (19). it is clear that this is possible only if the norm of the weight vector
increases. since the inner product. w11a(O). and, the derivatives. 11 1-11( 9} , are bounded. In
this situation. the constraint is maintaiied by increasing the angle between tile weight vector and
the look-direction steering vcctor. This phenomena was exploited in [77]. for tuning the beamtormer
to acquire a weak de(sired signal in t lie presence of strong interference.

Note that the white-noise amplification factor for any processor with a weight vector w is w Hw:

hence, thie iulling phenomena can be l)revented if lie white noise level at t ite processor is sufficiently
high so that outl)u t powr iiniminization criterion limits the increase in tlie iioriii of w. This can be
achieved by pert urbinig tlhe covariance matrix estimnate of array measurements by a scaled identity
iiiatrix as.

RP =R+ I (20)

wher' ( is a iioii-ilegatlve paralneter which adjusts lihe St rengt hi oh perturbation. Alternatively. it
is. po.s"i)le to coii a 1t1rj ,0 1't10l SNR. SN l, . defined as

SNI?, = S.NI? -- 10 1 1 (1-0-- ) (21)
(7.
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We I ele dierni-inc Ike w\eighlt vector. i,.

.\recenit moethod pl-r(sviite cill [I .7] p)''ol-'iis ills Il)is procedure' ill all a~dapt ive la.stiioii l *v it simlejl

scabhig o1* thle weigh) 1-'ei'tvi. Ill oul.r IaN. 10' doi iImt have ;-oiJace I)0.\ inl~rl 0a1 t 60on, but we do have

anl est illiat e of, thle stecriiig vector'. It is t licetoi01c possible to use t his est~imate inl place of a(O,, ) inl
(22) to formuiltate thle ('liilmilit-lbased piroce(ssor with limiited signal miillinig propert~y.

3.4 Multipath Phenomena
Ligeidecoii psit on bsed ig- i col uniio liict.iods [,1.17.26-27 .3(i.3S,',56.6iO-(i 1,69,711 have prove'n

to be elfect iv.e Illeaii of, obtaining bearling cest iniates of farl-fheld tiar-rowblaid sources from nloisy

illedis iiIVIlents Thei'piItul alceo is alIgorithms111 is severely degraded whlen coherenice is present.
Several Illeithod. h im,\' beeii p roposed to sotlve t he cohierviit Isignalls pr'oblemi withi restrlictions Oil

ar\gcoiiictY i( [IS- 19.G[ I-6h2,66.71 1.7.71: htowever. wilth lack of' knowledge of' array manifold it, is not

lit.)siblol to solve the( colicience problemi .\IVM 1)1eait iloriiiiimig allso tailds, to perltorili optimlally,'
whenlit ci' leI.t' necI( signalsd ar ic orrelated w\t111 Ilie desired signal [Ti1.78]. lii sonme scewllalos, eveii

Ilie conivenitioiial bea litii1oi'liiei out pei'Oriiiis t lie NI \ I) approachi due to signal canicellationi inl the
NIV\ IM bea III 161rrner.

Ini Sectioni 3.2. \we shiowedl t hat lthe ciiini1ilant -blascii beamIllor01Iiier is [lot affectedl by thle presence
of coiieremice aliion" jot crI'rIimig (;aiissiaii signals ats (long ats tiey. atre niot correlated with the desired
signal. Thle samle is not possible 1r1 liigli-resotnitioi DO.\ e'st imoation methiods: but. the MVDI?
hea mIl lormnler mlay' perform equlally well ift' Ie I(l esiredt signal steering vector is known anmd a. satisfactory
(,-, iinja v' of'R is iivaia ble. Ill t huis sect loll. we shlow thatl t tie ctimiilamit -basedt approach is not, affected
1),\ t lie presecncc of, iuultipatil p)rop)agat ioll of* thte desired signal. Ilii addi~ion, we show t hat thu
til11l/i ih i -bii.'i(I //oc( 550/o ultrls otit to bJ( I& titaxt tlll(l/- ra tio-co iitbiii r [5] thati lu.ilthstb SINI?.

\\It tie k presi'lii'e of Imiiult hpat Ii propagatiloll or siliart Jamminllg. our1 signal model Iin 1 changes
Ito

N. .1 .

0'I iiw xcii o' vetos 1 u9li, (1 iOliir h olNPldngsern ecoso h

r~) ab'.) a~flt 1,). a' I a(0)1, AD1 /it 4nt (25)
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we can reduce the signal model for inultipath phenomena to the single-ray propagation model of
Section 3.1.1,

r(t) =b d(t) + A i(t) + n(t) (26)

because we can view the vector b as a gencrahied steering vector for a single desired signal although
it may not be a vector in the array manifold. Therefore, following our work in Section 3.2, cumulant-
based blind estimation procedure will yield

c = 34 b (27)

where /4 = 1b,12 bi -MA4 , in which b, is the first comnponent of b. Incorporating (27) into the
constrained power minimization procedure, we obtain the following weight vector,

w,, 3 R- 1 e = 34,43 R-1 b (28)

where 3. (c R-l c )- 1 .
Next, we find an alternate expression for wcm,. Recall that the optimization problem which

results in WCU7,1 is: mminiimize wHRw subject to w11c = 1, or by (27), wHb = 1/34. We call express
the output power in the following way by using (9) and (26),

w11Rw = a2 I wTI b 12 + wHR,,w (29)

but. due to the constraint w"b = 1/34, the first termi in the above expression is a constant.
Therefore, the original optimization problem can be translated into : minimize w 1R~w, subject
to wile = I or equivalently. w1lb = 1/.34. The solution to this problem is

w.,, = "J6 R-1 c (30)

where '16 =(c 1 1 R--1 c)-1 Of course, this solution can also be expressed in termns of b, as

w•... = 3-. R-1 b (31)

where .3:7 J136.

Note that although (30) and (311) are alternate expressions for w ,. they are not the way to
actually compute w CU,,,, since Rt, is not available in general.

Next., we deterniine the weight vector that yields the mnaximum SINR. SINR can be expressed
as a functioi of the weight vector of the bealmiform'er, as

2wn b Ibu W
SINI?(w) =ad wH R,, w (32)

S1/21/
Diefininig. v =RU w s~o fhat w R= R, v. wv' can reexpress (32), as

SINI? (w) :--I: SIM ( R,'/' v) = , I v" RV,/ b (vH v (33)

A pplyinig the Schwarz iiiequality [501 to (33). w, find that

SINM (w)= SINU ( R--1/ 2 v) < 7,211 RI-1/2 b 112 = 712b"RI'-b (34)
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wVhere equality holds it and onlY if

in Which 11, is it iioii-Ze()1 conistanit. Conlsequentily, the optimnum weight vector WSINH. which yields
tile imiaxinii Ii S INI. caiii be determni ed from w =R-1 2 v and (3-5). as

wsNI{,j = 38 R-1 b (36)

Based onf t iiis derivation, some commiiienits are inI order. It Is clear-, by coinparing (31) and (36),
that the cumulaiit- based heamifornier does iiideed y ield tw lie axima in po~silible SIN R, since WCUM

is just a scaledl ver-sion ot WSINK I'flTis o)ser'Vation prov'es that the cumulaitt-bhased beamformer is
opti mal. III adldit ion. W,,,, canl be comnput ed fromi the, received dlat a. wvhiereas WSINR, as linple-
inented inl (3~6 ), requires, knowledge of R, whiichi call nlot be dleterminied fromIi the received data, InI
thle Presence of thle desired signal. Vijially. note thatl robuist. approaches presentedl in Section 3.3
are direct lY aplplica ble iii thle prieseince ofinmulti pathi.

3.5 Adaptive Processing
III real- world aippl~li(at bus, aidapt i e beali 1i01r iiiilii, is a ii i iiiport anlt req uireii ieiit, e-specially when the
(desired signial source, is ill relaltiXe Illot on wit h respvct to t lie arra\. [iii t his section. we address t his

problemu bY prov idin ii an-est iima~te and ()I plug t.\p (fifdaptive iilg( tml u for the ('UN m1 iethod.
The bealiiiform finrg proceduare ( 16) requires tihe iii verso of thle salipille (ovarijanice mlatrix to coin1-

pate the weights. W\e (-;il estimnate thle c:ovariaince itiatrix recurisivel~y, as

ft=(1I - (I )kt- I + aIr(1)r/"U) (37)

Since we nleed to proliagalte I lie inlverse of R,,we Use the Sherman- Morrison formula [461. to obtain

71 ~ ~ 'ii - R-! 1 r(t)r11(t)RT! 12 .(8

(~[ -rIIW1R-lir~tiI

wvith RiI - A wlierv' Is- af large positive 1111111w)e. ;1iii1 (1i contriols filie learimigri rate for second-order

lO coiiipuIt e thli weighft vector., we also iee th Ile cumiiia ut -based ('stiiiat e of ti,', source steering
Xvctor C. wXe Canl est inat e it recilrsively as"

cj1) (1- fd~- )+ o[ i()r'(1)rdtl) - 2p(I)q(t) - r(01,Mt) (39)

wit hi 11i auixilarY processes, (lefitioe as

pf 1) 1 + (1)1

I Ie ;iix~ihiarv ;11.( roq'sdi lulirfl IIIode to iriipleiiieiit I lIe( cross-correlait Wiontu ill I I1). Thie
1IO~d valuevs Ir M 111v a IIxihaIr pr.;eIle ban heet to zvro. lDiffereutI~ leatriling rites' are ovided
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to em iphasize thle fa ct 111at Ii ighlr '-o1(4 st ati st ics requiri e longer periods to acquire tilie required

in form ationi.
Wec call performi adapt ive' ht'a ibnt i rmig bY comlputing t he weight vector at each timle as

w(l) R'() (40)

and obtain the array out put. ats

Adaptive versions Of ('UM'2 and (.2 inndhods will appear- lin a later publication.

3.6 Simulations

Ini this~ section we present various experiments to illustrate tile performance of cumnulant -based
beaniforining. Ini all of the experiiments, we employedl a uniformly spaced linear array, rather than an
arbitrary geometry. 'This is (lone for two reasons: Cova~riarice-based techiqii~ues are mainly designed
for thil, ty pe of array st ructuir(e. v". the spatial smroothing algorithiri [4L49616,6.7.7] so 0 a

it will lie p)ossihle to coinparre 1)01h p~revious and future work wvith our current results. Ini addition,
allowing a sufficient niumnber of inlultilpath ray' s, it is possible to represent any arbitrary steering
vector by' tile linear array, since the steering vectors of the uniformly s-paced isotropic linear array
exhibit Vanderrnionde ,t ructic Irie. res ulIti rig inl Iiniear rI v itidependent v-ectors for different DOA 's. Ini
all batch type of exlperimeneits. Ilie record length is 1000) sniapshots arid tilie array has 10 isotropic
elements with uniformn half-wavelenigtii spacing.

3.6.1 Experiment 1: Desired Signal in White-Noise

lit this exp~erimlent, wve emlploy thle linear array dlescribed above For optininim reception of a, BPSK
s'it al. which is expected to arrivxe fromt broadside in thle presence of temporally and spatially white.
eqtial power. circul~arlv Svnmtinetric sensor noise: however. thle desired source illunminates the array
frontr 5" broadlside.

Ouir first M%'D VIl{ eamnforiner. MNV 1)11 looks to broadside. i.e.. a mismatch condition. Our
second \I VDR beainforrner. NIVDR).I uses exact knowledge of' DOA of thle desired signal. We also
elirploy* tilie ctiintmitt - based beamrforimmer of' Sectioii 3- 2. ('lbNI1 . aiid thle iimproved cumtulant-based
beanimformn-Ier C U N2 Of Sectoti 33.1 \%'e investigate the p~erformanaice of' thiese processors for the
following two elemniit al SNRI levels: 20 (113 for a st ronig signal arid 0 dHB for a weak- signal. Note

hiat thle whlite- noise gainl of any.% process-or is limited to 10 dB by' tilietn ninber of sensors [15].
TFite beamiipa-ttern resp~onse.- (1IS). anid w hite- noise gainis of these beaniforniers are( presented

itt Fig. 9 for SN R=20 di13 All responses are normalized to have a iinaxiiuinti value of 0 dB. For
courtparisori putirpose's. II( he0)1irtiimr beaitinforinnrr resp~onse. calcula ted by riv sing t ruie statistics in ( 16).
is, pr-esented ats the dashied ctirves . Observe tIriat due to thle mrismratchm condition. -NINDR r nulls tile
desi red signal. More interestirrglv. Hire NVI \1)R processor t hat ut ilizes thre true DOA litiformlat ion1
does root imiiprove tIrIe SN RI. dirle to t Ire iii stnlat (It a risinrg fromt I Ire uise of a samiple-data cova riance
Intriarix . 'Flre c1m11iii) ir - basedl processor.s. (1 Nl arid "'N1 I2- Yieldl excellent1 performance witlibomt

airY vkn owledge of' sot rce DO A. // t.s t'( y i .tprpt~au it)/ lobso, rt that tin /)( iforrurnco of Calmittlatit-
ba. dftIC(~AOsare /sei Mal pIMa hl of the .111-191? wilh .rutivi k-iuow) look-dirc /()/)t.

'A' performedr~t 100 Nolonre-( 'arlo rumsto invest igate tire perlorrrr11alce itt aI Iet ter wvaY. Thel( results,
are givert ill Ta ble I.
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FI gi e9 1 dicI IIpa t I W Ildwite-liolse "allis (f' proi(J u'5s II i sillgle realizatioin fOr S'NR

20 d B (a) NIVD)R 1  1) MVlR 2 , (c) C1 (d) (TI'UM. Thie opt iiiuiiil patterni is II I st ratedl
Ill (lashed lilies f,0r (ollialsol51 purposes.
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Figure 11: Power of cuinniant-hased I)eamnlOrfling: (a) receix ed signal at the referen-e ele-

mtent at SNR ==0 dIB. (1)) ou1tPlt. Of ('tL\12 processor.

Front these results, it is clear I hat cuniulant-based processors are superior and the extra comnpu-
tation involved in CUNM2 reduces the variations. Note. also, that. variations in the MVDR processors
are significantly larger thani those of the cuntulaut- based counterparts. This agreezn with the previ-
ous ienzarlks abont the sonsitivitY of .\J\'JII processinig to experimiienital conditions-. in a high-S.NR

environment.

'Fable 1: Results from 100 Mont e-(arlo Runs for Experiment I

White-Noise Gain (dB)

ProCeSsor SN l{It2Od B SNR =0dB
Mean Std. Meanl Std.

M VDItR -38. 1:30 1..-79 0.41:3 0.281
MvI)H. 0.17F~9 I1.3 60 9.5S3 I .1311

c' v I 9.95-1 0.015 ]9.0 5S 0.359

"('UM 2  9.990 10.003 1 9.959 10.014

v'performtedJ thle ',alu ei x periin(' for 01 dB1 SMN contdi tion. Yigure 10 ill tist rates, the( bealm-
pattIern response~s all 11( White,- nloise gains" of thle processors. Monte- ( arlo results are also given in1
TFable 1 . In this low- S.N? IConldit jolt. MVD1) results are exp~ected to imitprove since the mismatch
conidit ions for the (desired Signal will b~e mtasked 1) thle lpres('fc( of white noise of comparable power.

as explainted inl Section:3.3. .M\ 1)1 pr(ocessor oe (lo('t11 offer a signtifi cant gain (Iue( to the persistent
liitistitatchclt(thid itll bilt NlVI? \i1 vie'ld.s aI iiwal-opt iiultll resultl since prm-ic'eie of higher-Ic' I noise

miasks thle tijisitatrt dIe, lo t Ii' use (,I at saiiiple-coviriaiice matrmix. I'liepmouaneof(N
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Fiurt, 12: BeamlOriumIitg fill t.he presevceý of spat ta Ix colored noise: (a) Spatial Power Spectra]I

Deuisit v of' noise. (bh) lBeanipat terni of ( I.N1 processor. Thie optiniun pattern is illustrated

Ill (la'she( lines for (Xll iipariSon1 pu rj)OSe'S.

I)irJcessor is slightly, below than t hat of' MIV 1).2 anid exhibits more variations. This is due to the
iniefficienlt use of the( array dat a. since a high-Lvel of noise corrupts the cumulanit estimates and

will Ci UM, there )J-e 1)o precautionis to comnbat these errors. As expected. CIM 2 overcomes this
p~roblemi by ushig S\ [. Rtesults inl Table I nidcate that CUMN2 achieves the best performance w.*th

iiiiiUiivariat ions.

F iiiahl *v. to (ellenon' 4rate the po0wer of cuniulanit -based beamiforuninig. we illustrate the received
siginal anld thle outputl of ('[NI 2 proces~sor for S.NR =0) dB case inl Fig. 11. It is clear that ('FM 2 is
cap~able of suifficienlt nloise rejectionI for p)erforminig correct decisionis.

3.6.2 Experim-ent 2: Spatially Colored Noise and Multipath Propagation

Ill III IS ex perinlienit. we Ilivest igate t ie( perlormuiace of the proposedl a pproachi iii the( presence of
spat iallv coloredl noise. W\e cnnl)loY the linear arra., ot h le previous exp~erliment. We assume that th.,
I[lolse field Is createdl bY a set of point sou rces dhist ribiited sYnimiiet ricallY ablou t the broadside oft","
lint ar arrayý. As suggested inl [617j. this source struicture is typical wheni tilie noise field is spherically
or cvlind~ricall V isotropi)c. fIn this case. tile uioise covarianice inat rix is svmiinetric-Toeplitz. InI our

c" eritiui .we uwe the( flolowi it st ilct iire for the covaraiance ri atrix of' miidesired c,,imploieit s.

R,, 0. j .) = .s ,-) (42)

The spatial power ,poct ruI'Iil of 1uiiiuleliedl comipoiients is illuist rat,,d tin Fig. 12a. It is clear
that miost of' thfLe noi.o lea;ks iinto lite >ýst eni frouii broadside. TFit tlcsire(I sigiial illumliniates thle
arra'y froml broadside. %6t I1 alli S \ ? of 10 O B. Io Ilii"t ralte Ilie op~t unum ci (olill)iiiiig plropc .v of our1
approach . we iniplante il ai exact replica~ of I lie des-ired sign~al illu~iminatig I le ariaY front 60>. where
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I Ide 2: IRt'itlt s Iro.tiI 100) Nlott( () aR un- I () V lt' e.lci'ielt 2

ct . \1 23.6 11 0.0 I7

i~iid H''\. i~ O,!P.. 4''~witeli ('(til~lpýIe( to ti at front br'oadlside. [he beanipattein Of "N'1 2

pri'~ I- u-1 'b ! 1 12). I' (-(if on pa rj-ýon purposes. wve present thle response of the optimum

1 iii I.~>..i it' 1i tttia iiirtiaio as a dashed (-ti ve. The maximum- possible SNR
it,)t Iph! I 1,`. 1 B tf'r 1t It I(ttllf. It I- ('leatr t hat thfe respontse of ('17M, is almost identical

Tk I h!t I It I lit (ap hoii 6 o nti: hw ft Iiprocessors ciii plasize the signal Illumlinating the arraN

1 a)l i~ Till liai 1)li hl II t II 01 111s> i ., t ii egiflt. Wec performned 10 (U N onte-C(arlo rui is
t'' tll "ii li.,w1)14 t, iii 4,ow d (it kble 2. It clat tht't both cumiui'iut-bascu

p H' -Hi-pw' hin. 1 itI %\i.lI. 1 114' 1'Iii~mn fotr li, phenlltitnitcii k the presence of the niultipath

ton)Ii 60 1I Iioeil'i 'k'i> Inock,,ritid that viiitualk'. iticricses the effective SNR. which, inl
Imil ýillojat14- Ill' th If"lý t mt'0II~IM on erroi Nocte thaot Ihe peak of' the be.-nipattein is slighitly

411'.0 hil GOu i . Ill i'rI1. It) y(feiv' le~.it erlereticlle. Stimilar' hehavior is observed inl covariance-

bhlood d~I*''tH) no-4-. rli\ i f'> itrial oil Ini tlivpelt'selitce (f ('ooreI nit~se resulting inl biased estimates

3.6.3 Experimient 3: Effects of Robustness Constraint

Iltill, I *'X1)wiIIfIltI1 %%, illhiistt'ate fill elfhect.ý ol tie roliotted ('ontv~tM1in ol Se('tion 3.3.3. on a C'UM,

ill t lie pr (te1)'white Itoo~e. \\e eitilo ,v t lie sante ai'raY Žý litI lie p~reviouis exp~erimnents.

\V 'tilu I N~.~ic tli'.pre'~r ~e ie datai ittcfficienitlY. mid rehirsajbitapoc.lit

()Ill 4N'rlIlwiiTiil. %ýf' wi~idoi~l t'le .'it tat it \lII S.N R ~(M l. hI-gmte 1:3 illutstr'ates. the beanipatterns
I 'I NIjo ~~'if*r ,ev4erad 'SN Ui \'jies 1., i>cleat frontl the reY-,ullt, that. it, the( pert'urblationt

i 'a'.iii.' pat bra- I titl btter >iiic e nidsittatcl due to esttinialioit errors lin the steeu'ing
ur e~t ti t' tt IllIk,t-d by t~e' pv itc4 (f Viiti tal inritsted~~ level of inise. This mnethod should
od ~~~~) '.a(tgvi hfpeetc dimiintei". hecaulle \viii ii1dlv i ticromi:itg lie ntoise leC''l results ilt

dl'I iiw_ the oi pa bli7 v d 4tlie a 'a v h.lI 1 win titling the, ditectiotialitie'ft id

3. 6.4 Expertuicine 41: NMult ipile Interferers

Ill till- *'::jemiillwiit. v",' Owl.t pruhOh'iii1 4d hn'tIIlul(iiitiitg' ill a1 tuttttip;at2t clivii'ottitient1 Ill the
pl- 11 . , llll~jl-ý i' uinii''0 \\l, 'ip lri'- ýan'atla% 1o In Ilie piexinas experitlitehit . IThe

Hli ' I i t i iti~ II 1h, 1 11111 ipilti ' uIt ivi Ii k b ,ý 3.i'u '1 ii/~ae, 1 'e('e iv 4l ruct ilre ae
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(c) -1 (1 U 13. (d ) -20 (113. '-]ie( opt i mumII pat tern is illust rated(I i dashed lines for comparisonl

DI )I v to 1i pnesIIce o4f(.()11erelIIt watv'li-oI Its. ýsecoI Il(I-of(I ei statistics arCv not s p at ia.IlIN st at ion ary along
t Ie( arIra , : liclicc. It i. fhut ii'alliiligfiil to (lelilie SIM ? at an aiilaY t'ellelwit. Inlsteadl. we' compute the

SIMN I altw Ie lilt put ot' tlie opt illial priiCVe"NOl bN elliplovlihg 11rilv statistics. Thie maximuml possible
S IN W,, is, foit lii from 3-1 )t to ble 12.674T7 d 1. rll a bll' IL We' ol1e al ( U'%12 perlorluIIIS very
wdel lilliler. t Ie-seý, pee4 c(uilofit O~jI I. , 10 rII Ii I I I ce (Jf CU Mi IIs effectIed by. st ro I Ig i IIt erfere I,- si I Ice t his
j)j10iE',0l1 io. loe 1)It liilix'e all (f 11li availlable iliformllltlon. Iinallv. we o)bserveý that MVI)R withI
co nec t lojok-u leicloi-aiicl lie dulesilei s4igial duev to ioliereuice. Note, that (TNl., exhibits less

,hp giuili ulilfff illiiglit i1I)110t ' iw it p I;ilmi (4i thle jitocessms. %%,I' llilst ilt I'tliv e h amp;at teruls 1'or

NIV\I)I iiid CUM, ill Vigý. 1 I. \\e bcils('Ii t 14' 'giol wilere I lie, waiveriiiits are r-eceived by. the array.

It 1, observe Ow MViat dI., leJ\IJ wesoiuIe l null) thejlainie 11011 -1-, Ps ilice it. llillititi11 the(

!(,()k diwtect imi out i~ifii fuilO Ift md tlv h)e to iijlihui/.1 11lieotpjit power li ,v ihestlictivelY ('omIlbIllilig

liw m114,e4elit 011elsit . O I lieu ollii 1ouIuld. (I M N Iis hililild to( ;i.)im iutfrr and, as, ill
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Table 3: Signal structure for lExperiment -

Source Power (dB) Multipati) Coeff. DOA
(0.0,-0.5) -10o

(0.9895.-0.0311) -2"

(1.0o0.0) o0

BPSK to (-0.6472,-0.4702) 6W
(-0.8,0.0) so

(0.1414,0.141.4) 111
L (0.0462A0.0191) 180

.J A N M ERJ 10 (1.0,0.0) 267
(0.5657.0.5657) :320

.JAMMER 2  10 (1.0,0.0) - 11

NOISE 0

0 . --------

& -10 -- - - -

F -20 -

S-30

m -40
SINRn< -29.573 dH

-50.
- 20 - 1 0 10 20 30 40Angie of Arrival

(a)

0 -20

-30

-50-
-20 -1 0 10 20 30 40

Angle c)f Arrival

l"ilre 1I1: liea ll )patterlis anld arrav "ai s of iprocessors: ýa) [\I\I) with correct look (ir((-

tiono. (b) (" ý. The o)ti~llillil patle(r: is illuistratwd in dashed hne's fo0 (comupariSOn purposes.
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Table 1. [Result s f rom 10 IO loiit e-(arlo Runs for Experimene t 4

Pro(cessor SINRc, (dB3)

Mean Std
IM VD1? -28.424 .1.405
c'um 1  4.110 2. 11s
(I'M, 2  10.290 0. 74 6

-2 11.879 10.627]

Experinient 2. it estuinat es h le g( t OralliZ(d( steering vector of the desired signal and combines the
w a vefr-o iitI s t o enhI IancI -e S IN R a t t IIe ouIitpu)1t . (T, 12M puIit s a. n ull oni thIIe j a ini iIierI fr omn - I1ý', dfest rItct Iv ely
('oluhines the wav.efrojiits frorin the( first ja inni#'r bY weight-phasing rather than null-steering. and
relinforces tit( WaV('foh-iits rozii thle desired SourYCe.

FillY e iM)pleiieiit f ile 0 fbeaiflforiiier suggeosted1 in Section 3.3.2: we first estimate the
steerinig vectlor ats done for ('U NI. but thleu Itirt her project it into the subspace spankned by the

tpriwii(ipal eigelii\ect ors of' I ie( samiple covairia iie inal rix. We use the resultant vector as the estimate
of, the desired] signal st eeri iigy vector. ;1a( un oiistruct anl M."DR beanitfornwi' based onl it. The
perforiiiatille of' t lie resultalitt processor is (tetfloist rated Ili Table -1.

Wve otiserve thfat bYv (ollibi lil iii hg c u muiitats with Ii ovariance Iiifornmat ion. we obtain the best
recsutlts.

3.6.5 Experiment 5: Adaptive Processing

Ilii this sect ion. we deiomist rate the resulitts fromin the adaptive version of CU M, approach as described
ill Sectionl 3.J5. We emiifplov 1 lie 10 etemnemi iiiiforiii linear array of previous experiments. Tihe initial
p~at terni of the lbeaniii ormer is desigiied to to isot ropic . b), let ti rig C(0) =[I.) .. 0.0] T. Desired signal
illuin itat es tlie( arraty fromn broadside withI SN111 (M. AOnl janiiiier withI power equal to that of the
dlesiredl source is preseiit at. 310. Note, t hat thlere is no iioist at ionaritv involved inl this experiment:
ourl aiuiii is to deleiioiist rate I lie ('volu lioll of, lie( beaiuif,01mniiig fpi'()('n' aim1 iniic(ato the data leingths
requliredf for1 cuiiiiuutaiit ~ii~d cova-ikiamiut ('stiiiat ionl. Tracking properties will bie included ii 0o1r fuitutre

wkork. i II cl(Ii ItfIig u'omIIIpii l~r I,'s k\\it 11;1( iitapt Iye vei's Ioiis of ('I \ f aId (1 2 p~roessors .
Vuii it to 15 itt listi-iat ''iltu Leaniiipa tIerii of titie adaptive ('NI' .'mProce'ssor as lttile evolves, After

(00 siiap"stiot, i.tlii l(' iiiif~it ptI('I'il Vs' .11 it close to isot ropic7 At :0t0 siiapsliot.s. c-ovarmance matrix
est illiate is iiiiproveot iiidic(atizug t tue preselicue of desired signiui froini broadside. At this tunie p)oint.

tIli cituInuIa it I- blaM'u 1 (,,r etimi vtor es't mi itei vhIas, iiot minat litredl. so it cait not prevent thle desired
.'.i" uial trloutl being' ca ucelled . After 500) >dafot5 tuiiuilaiit est iiiates get wtettel'. amid there is at

teiidoiicv to caiiel t I(' nilt erfer'oiuce rat tier luaul thle (desired sigiial. Vinall~y, after 700 siiaplslots the(

rou~~i t lt \is tul' It 'Il tr'ie lice Llv 1111iil ootteillif.

3.6.6 Experimient 6: Effects of Data Lenigth

- li Il (tik.~o It iolt. we( euilitjov tielti-'a 11 rlo r of FLxpo'riniiiiu . w"it i tw t ,ie..iiii( niiu comuoit ioii. ad1
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NI V)112 Figure 16 demonost rates the variation of white- noise gain of thle processors with data
length. for 0dB and( 20db SN R levels. Each point onl the plots is obtained by averaging the results
[romn 50 Mlonte- (arlo sinunlat ionls.

From Fig. Iba. it is clear that (U NI2 outperforms all the processors. including MVDR 2 Which
utilizes the correct look dlirectilon for all data lengths. Furthermore, small sample properties of
('17M 2 are (Iiiite imlpressive, motivating further- research for developing its adaptive version. Low
SNR masks the mnismnatch in M%-DR 2 duie to the use of sample covariance matrix; hence, as can be
seen from Fig. 16a. ('tMI is inferior to MVI\DR 2.

Figures 161b and( 16c. indicate the( effect of higher SNR on performance. CUM, and CUM 2

performn almost identical for all data lengths. Trheir gain is larger than 9 dB even for less than .50
snapshots. M VDR 2 c-all not recover iii this experiment since the mismatch results in severe signal
cancellation. We (10 not include the re-ipoiise of MIVDI)1 . because Its, performance drifts around
-35 (lB3.

ihf.,qirtsalts indlicatc that outi approaLchII~ 1(1.5 ry promising small samnph behavior that deserves
tub.'. rc( ýat( I. This wvill be a topic of anot her p~aper'.

3.7 Conclusions
W~e hav e Di e~entedl 0)t i Iinin lbealnlOrlning algorithmns for rion-Gaussian signals, which are based
onl fon rthl-order c u inulaut s of' the (lat a receivedl by thle array. Our proposed methods do not make
aii ,V ash. inipt ion a honi thle sensor loca tions aiid characteristics, i.e., theY are blind beaniforming
methods. (uinitlauit-based estinmat ion is einpllovedl to identify the steering vector of the signal
of Interest aiill MIV IR beantformning using this estimate is used to remiove Gaussian interfierence
com iponent s. We havye u iggestedl several a pproaches to combat effects of estimation errors. We have
alsot illip l~lenlet ed a recl rsive v'ersionl of' tie met hod to eniable real- time beamformuing. Simulation
experiments (demlonst rate thle lperfori-iauce of our- approaches ]in a wide variety* of situations. It is
iliport ant to emph~lasiz.e t hat the proposed methods, outperform an NIVD R beamiformner with an
exactlyv known look -d irection01.

[in our hiltire work. we shall add ress tlie( problem of optimum beainforuiing inl thle presence
of' mult ipie nion-GCaii-ssaiai initerferers and (lesignl of adaptive algori thms with better convergence

lpiolerties.S

4 Final Comments

lIII t III' pa per. xw e di in nial-i/edl onll Ie( etit re'ear-cl results onl the app~llicat ions of ctnmnulants in speech

al md arii d\1' v r rsigl" Ih lie eilit arde voer ' promising. and( encourage ftirt her study tin these area~s.
We a ck iiowled' Ie th at especial lY in. speech. prIoce'ssinug. cunitnilan t applications ale still ill a very'

hpreiiiat ire state. ArYp ioce~s.i rig. however. captziired more attention, part ic iiar i N, after tilie excel-
lent work iii [9). Oiili thother hand, array processintg Iias miila%, practical problenis. such as unknown
ý4eIISOr gainI/phase factor". arrav ii ap.' caIi brat ionl. a iid IDOA estiminat ion for coherent son rces inl col-
Ore(ld IIoi,,.'. It is urilc aliii lo develp1) cuni.'ilant-based soluitions to t ho.,e practical problems that still
lack r('mlabs~l11' oliti. whenl miilYv con~d-o)rdev statistics, are elrrllovedl
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Moments and Wavelets in
Signal Estimation

Abstract: The problem of generalized nonparametric function estimation has
received considerable attention over the last two decades. Most of the approaches have
assumed smoothness of the function to be estimated generally in the form of continuity
of higher order derivatives and/or bounded variation and have used convolutioL kernels
or splines as the estimation devices. Generally focus has been on density estimation or
nonparametric regression. The spline and kernel-based methods may be inappropriate if
either smoothness assumptions are violated or if additional side conditions are present.
Wegman (1984) introduced a general framework for optimal nonparametric function
estimatica which 6pplies to a much wider class of problems than simply density
estimation or nonparametric regression. In this framework, a class of admissible
estimators is regarded as a compact, convex subset of a Banach function space and a
convex objective functional is to be optimized over this set. Recent work on wavelets
suggests a powerful method for constructing orthonormal bases to span the set of
admissible estimators. Moreover, older work on frames has re-emerged to some level of
piominence because of the work on wavelets. The optimal estimates can be computed
as weighted linear combinations of the orthonormal bases. The weight coefficients are
computed as moments of the basis functions. We illustrate these methods with some
numerical exaruiples.
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Moments and Wave-ets in
Signal Estimation

1. Introduction.

The method of moments is a time-honored traditional technique in statistical

inference while wavelet analysis has recently burst upon the mathematical scene to

capture the enthusiasm and imagination of many applied mathematicians and engineers

both because of their important applications in signal and image processing and other

engineering applications and also because of the inherent elegance of the techniques. In

this paper we bring these tools together to illustrate their application to transient signal

processing. Wavelets are described in detail in a number of locations. Much of the

fundamental work was done by Daubfchies and is reported in Daubechies, Grossmann

and Meyer (1986) and Daubechies (1988). Hell and Walnut (1989) provide a survey

from a mathematical perspective while Rioul and Vetterli (1991) provide a survey from

a more engineering perspective. The new book by Chui (1992) is an excellent integrated

treatment which I believe is more mathematically sophisticated than the author

supposes. In spite of its title as an introduction, it requires somewhat more

mathematical depth and maturity and is best regarded as more of a monograph.

This present paper describes the basic wavelet theory in the context of the

general statistical problem of nonparametric function estimation. It will be sbow that

traditional moment based techniques have an interesting and useful connection to

modern nonparametric functional inference for signal processing via wavelets. Wegman

(1984) describes a basic framework for optimal nonparametric function estimation. This

framework captures the optimal estimation of a wide variety of practical function

estimation problems in a common theoretical construct. Wegman (1984), however, only

discusses the existence of such optimal estimators. In the present paper, we are

interested in conibining this optimality framework with more general wavelet

algorithms as comlptational ,levices for general optimal nonparametric function

estimation. A new application of optimal nonparametric function estmation is found in

Le and Wegman (1991). A. o,,cond application will be discussed in this paper.

In section 2, we discuiss the optimal nonparainwtric function estimation

framiewoirk. In sect ion 3. we turn to a dit;cussion of the general function analytic

framework which lehols to 1,ases a;ipi fr;mes. Secttion 4 introduces the notion of a

wawveet 1 asis and ,tn'll )st rat s o a ,(, iwicti pp it1 Fourier series and Parseval's



Theorem. In section 5 we turn to transient signal estimation, develop an optimization

criterion and illustrate the computation of a transient signal estimator.

2. Optimal Nonparametric Function Estimation.

Consider a general function, f(x), to be estimated based on some sampled data,
say x1 , x2,. .-.,xn. This is, in fact, the most elementary estimation problem in statistical

inference. Often the function, f, in question is the probability distribution function or

the probability density function and most frequently the approach taken is to place the

function within a parametric family indexed by some parameter, say 0. Rather than

estimate f directly, the parameter 0 is estimated with fo then being estimated by f6 = f"

Under a variety of circumstances, it is much more desirable to take a nonparametric

approach so as to avoid problems associated with misspecification of parametric family.

This is particularly the case when data is relaively plentiful and the information

captured by the parametric model is not needed for statistical efficiency.

Probability density estimation and nonparametric, nonlinear regression are

probably the two most widely studied .-ametric function estimation problems.

However, other problems of interest which immediately come to mind are spectral

density estimation, transfer function estimation, impulse response function estimation,

all in the time series setting, and failure rate function estimation and survival function

estimation in the reliability/biometry setting. While it may be the case that we simply

may want an unconstrained estimate of the function, it is more often the case that we

wish to impose one or more constraints, for example, positivity, smoothness, isotonicity,

convexity, transi'nce and fixed discontinuities to name a few appropriate constraints.

By far, the most common assumption is smoothness and frequently the estimation is via

a kernel or convolution smoother. We would like to formulate an optimal

nonparametric framework.

We formulate the optimization problem as follows. Let N be a Hilbert space of

functions over R, the real numbers (or C, the complex numbers). For purposes of the

present paper, we assume R rather than C unless otherwise specified. The techniques we

outline here are not liilited to a discussion of L2)(R) although quite often we do take X

to be L,. In this case, we take

-f , f(x) g(x) ,t/,(x),

where p is Lebesgiie ineastire. \Ve em phasize that this is mnt albsOlutely required. As



usual 11 f = <Tf, f 7. A functional .L:l,--R is linear if

L(af+,6g) = aL(f) +j3L(g), for every f, g E X and a, 3 E R.

L. is convex on S C % if

.(tf+ (1 - t)g) _< t(f) + (1 - t)L(g), for every f, g E S with 0 < t < 1.

L is concave if the inequality is reversed. £ is strictly convex (concave) on S if the

inequality is strict. I. is uniformly convex on S if

tL.(f) + (1 - t)L.(g) - L.(tf + (1 - t)g) > ct(1 - t) II f-g 112

for everyf, g ES andO<t<l.

We wish to use L as the general objective functional in our optimization

framework. For example, if we are concerned with likelihood, we may consider the log

likelihood,

.L(f) = • log f(xi), xi are a random sample from f.
i=1

If we have censored samples we may wish to consider

n n
L.(g) Z log g(xi) + ( (1 b6) log G(xi),

ijl i=1

xi again a random sample, 6i a censoring random variable, G =1-G, and
X

G(x) = g(u) du. This is the censored log likelihood. Another example is the

penalized least squares. In this case

11 2 b

2.(g) : (Yi-.g(xi))2 +A (Lg(u))2 d(i.
a

Here L is a differential operator and the solution of this optimization problem over

appropriate spaces is called a penalizevl smoothing L-spline. If L = D2 then the solution

is the familiar cubic spline.

The basic idea is to constrict S C X where S is the collection of functions, g,
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which satisfy our desired constraints such as smoothness or isotonicity. We wish tc

optimize 1(g) over S. The optimized estimator will be an element of S and hence will

inherit whatever properties we choose for S. The estimator will optimize L(g) and

hence will be chosen according to whatever optimization criterion appeals to the

investigator. In this sense we can construct designer estimators, i.e. estimators that are

designed by the investigator to suit the specifics of the problem at hand.

Of course, in a wide variety of rather disparate contexts, many of these

estimators are already known. However, they may be proven to exist in a general

framework according to the following theorem.

Theorem 2.1:

Consider the following optimization problem:

Minimize (maximize) 1(f) subject to f E S C N.

Then
a. If % is finite dimensional, L is continuous and convex (concave) and S is closed

and bounded, then there exists at least one solution.

b. If X is infinite dimensional, L is continuous and convex (concave) and S is

closed, bounded and convex, then there exists at least one solution.
c. If L in a. or b. is strictly convex (concave), the solution is unique.

d. If % is infinite dimensional, I is continuous and uniformly convex (concave)

and S is closed and convex, then there exists a unique solution.

Proof: A full proof is given in Wegman (1984). For completeness, we outline the basic

elemenms here. a. For the finite dimensional case, S closed and bounded implies that S

is compact. Choose fn E S such that L(fn) converges to inf{l(f): f E S}. Because of

compactness, there is a convergent subsequence fnk having a limit, say f.. By

continuity of 1

L(f.) = hill (fn ) inf{1(f): f E S}.
k--.oo k

f. is the required optiiiz(-r. For part b., we have the same basic idea except that S

closed, bounded and convX implies that S is weakly compact. We use the weak

conitiniuitv of -. Uniqiiemiev follows by supposing both f. and f., are both minimizers.

Then

.(tf, + (1 - t)f,,) < t.(f,) + (1 - t).(f.,) = inf{.f.(f): f E S}.
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This implies that neither f, nor f*, is a minimizer which is a contradiction. 0

This theorem gives us unified framework for the construction of optimal

nonparametric function estimators. It does not, however, give us a definitive method

for construction of nonparametric function estimators. We give a constructive

framework in the next several sections. In closing this section we refer the reader to

Wegman (1984) for the complete proof of Theorem 2.1 and many more examples of the

use of this result.

3. Bases and Subspaces.

In this section, we discuss the basic theory of spanning bases and their

application to function estimation. Consider f, g E %. f is said to be orthogonal to g

written f -L g if < f, g > = 0. An element f is normal if 11 f 11 = 1. A family of elements,

say {eA: A E A} is orthonormal if each element is normal and if for any pair el, e2 in the

family, e1 I e2. A family {eA: A E A} is complete in S C X if the only element in S which

is orthogonal to every eA, A E A is 0. A basis or base of S is a complete orthonormal

family in S. A Hilbert space has a countable basis if and only if it is separable, i.e. if

and only if it has a countable dense subset. Ordinary Lp spaces are separable. We are

now in a position to state the basic result characterizing bases of Hilbert spaces or

subspaces. We write span({eA•}) to be the minimal subspace containing {eA}. This is

the space generated by the elements {eAl.

Theorem 3.1:

Let % be a separable Hilbert space. If k is an orthonormal family in ,

then the following are equivalent.

a. {ekl Iis a bal for N.

b. If fE X and f l. ek for every k, then f = 0.

c. If f E X, then f = < f, ek > ek. (orthogonal series expansion)
k I

d. Iff, gE, then <fg> = <f,e-k> <g,ek>.

f if fE , I1fH' 1 i<f, k 2. (Parseval's Theorem)

Proof:

a => b: Trivial bv definitioln.

b => c: W, claim %=i N an( {ck} ). If not there is f $ 0, f E X such that

f • span( {ek}). Tlis limplies that f ± ek for every k. But f - ek for every k and f #: 0 is a

contradiction to the {e(} being a basis. Let Nk = spa•(tek). Then X span( Uk= ) =
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Sk~k. This implies that for f E M,

(3-1) f= F ck ek-

Substituting (3.1) in the expression for the inner product yields

<f, ej> = < Ekckek, ej> = F_ ck<ek,ej>.

By the orthonormal property, <ek, ej > = 1,if k = j and = 0, otherwise. It follows that

<f, e3 > =c . Thus

(3.2) f= f, ek>ek-
k I

c=>d: <f,g> = <f, • <g, ek>ek> =• <g, ek> <f, ek>.
kl k=1

d=>e: Letf=ginpartd.

e => a: If f E and fL ek for every k implies < f, ek > = 0 for every k. This in

turn implies that f If 0. Thus f = 0. This finally implies {ek}k is a basis. 0

Thus given any basis {ek}k, we can exactly write f= , ck ek and we can
N k =I

estimate f by , ck ek. Thus a computational algorithm for the optimal nonparametric
k=I

function estimator can be based on this result from Theorem 3.1.c. However, this does

not yet take into account the "design" set, S. In order to more carefully study the

structure of S we consider the following result. In the following discussion let S C %.

Then define S ={f E %: f 1 S}.

Theorem 3.2:

If S C % is a subset of X, then

a. S ' is a subspace of N and S nS - c_ {0}

b.S S•5' span(S)

c, S is a subspace if and only if S = S ±

Proof: c, -is a linear manifold. To see this if fI, f2 E S i, then for every g E S,

<aIfI+a 2 f2 , g> =a,< fl. g> +a 2 <f 2 , g> =a,.0+a2.0---0. Thus alf 1+a 2 f2 ES-L-

This implies S .-l is a linear manifold which is sufficient to show that S ±1 is a subspace
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provided we can show S .- is closed. To see this if f E closure (S _), then there exists

{fn}- S 1-L such that f=lim fn and for every gES, <fn, g> =0. But <f, g> =

lim <fn, g> =lia0m=0. This implies f±S which in turn implies fES 1-. Part bn-+mo n-.#00

follows from part a by replacing S by S ± Part c is straightforward application of the

two previous parts. 0

Suppose now that we have a basis for N, call it {ek}lU. 1. This basis obviously

also spans subset S of % and hence any of our "designer" functions in S can be written

in terms of the basis, {ek}k.. 1. The unnecessary basis elements will simply have

coefficients of 0. In a sense, however, this basis is too rich and in a noisy estimation

setting superfluous basis elements will only contribute to estimating noise. As part of

our "designer" set, S, philosophy, we would like to have a minimal basis set for S.

Theorem 3.2 gives us a test for this condition. Consider a basis {ekl}k = for . Form

Bs which is to be a basis for S. We define Bs by the following routine. If there is a

g E S such that < g, ek > :A 0, then let ek E BS. If on the other hand there is a

g ES ± such that <g, ek> j 0, then let ekE Bs . Unfortunately, it may not be that

BsnBs ±. = 0. But this algorithm yields {ek} = BsuBs 5 .. Moreover S c span(Bs).
Thus we may be able to eliminate unnecessary basis elements. We may also be able to

re-normalize the basis elements using a Gram-Schmidt orthogonalization procedure to

make BS _ BS . Usually if we know the properties of the set, S, we desire and the

nature of the basis set {eh.}, it will be straightforward to construct a test function, g,
with which to construct the basis set, Bs. If S is a subspace, then S = span(Bs). In any

case we can carry out our estimation by

(3.3) f= E Ekek.
ek E Bs

In a completely noiseless setting (3.1) is really an equality in norm, i.e.

if- Zkckekk = 0. If N is L.,(p), with p Lebesgiie measure, then (3.1) is really

(3.4) f E- k('ck.., almost everywhere p with ck = < f, ek >.

This choice of ck is a rmziiinimn norm choice. However, in a noisy setting, i.e. where we

do not know f exactly, we cannot compute ck directly. However, we may be able to

estimate ck by standard inference techniques.
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Example 3.1. Norm Estimate. The minimum norm estimate of ck is the choice which

minimizes 1if- E kckek 11, i.e. ck = < f, ek >. In the L 2 context,

< f, ek > = Jf(x) ek(X) dp(x).
R

If f is a probability density function, then < f, ek > = E[ek] which can simply be

estimated by n 1 • lek(xj), where xj, j = 1,...,n is the sample of observations. We

note that the major approach to estimating the weighting coefficients is via a traditional

method of moments.

Example 3.2. General Form of Estimate. In the general context with optimization

functional .I. we have

(3.5) 4Df)= ( eBckek)=-({ck}).
ek E B9,

Since (3.5) is a function of a countable number of variables, {ck}, we can find the

normal equations and with the appropriate choice of basis, find a solution. For this we

will typically assume L is twice differentiable with respect to all ck. A wide variety of

bases have been studied. These include Laguerre polynomials, Hermite polynomials and

other orthonormal systems. Perhaps the most well-known orthonormal system is the

system of fundamental sinusoids which span L2(0, 27r). One might reasonable guess

that wavelets form another orthogonal system. We discuss the connection in the next

section.

4. Fourier Analysis and Wavelets.
4.1 Bases for L2 (O, 2-r).

Let us consider the set of square-integrable functions on (0, 27r) which we denote

by L2(0, 2ir). L2 (0, 2ir) is a Hilbert space and a traditional choice of an orthonormal

basis for this space has been ek(x) = eik, the complex sinusoids. Thus any f in L2(0,2r)

has the Fourier representation by Theorem 3.1.c

f(x) = Z ck eikx
k=- -too

where the constants ck are the Fourier coefficients defined by
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21r

Ck = -f f(x)e - ik-dx.

0

This pair of equations represent the discrete Fourier transform and the inverse Fourier

transform and is the foundation of harmonic analysis. An interesting feature of this

complex sinusoids as a base for L2(0, 2r) is that ek(x) = eikx can be generated from the

superpositions of dilations of a single function, e(x) = ez-. By this we mean that

ek(x) =e(kx), k=..-, -1, 0, 1, ..-

These are integral dilations in the sense that kE J, the integers. The concept of

dilations of a fixed generating function is central to the formation of wavelet bases as we

shall see shortly.

A well known consequence of Theorem 3.1.e for the complex sinusoid basis is the

Parseval Theorem. For this base, we have

Theorem 4.1: (Parseval's Theorem):

Sf =J f(x) I2dx= 0 12
d0 k= -00

Equation (4.1) is known as Parseval's Theorem in harmonic analysis and states that the

square norm in the frequency domain is equal to the square norm in the time domain.

While the space L,(0, 27r) is an extremely useful one, for general problems in

nonparametric function estimation we are much more interested in L2 (R). We can

think of L2(0, 27r) as with functions on the finite support (0, 27r) or as periodic functions

on R. In the latter case it is clear that the infinitely periodic functions of L2(0, 2r) and

the square integrable functions of L2(R) are very different. In the latter case the

function, f(x) E L2(R), must converge to 0 as x-+ ± o. The generating function e(x) = eix

clearly does not have that 1ehavior and is inappropriate as a basis generating function

for L2 (R). What is needed is a generating function, e(x), which also has the property

that e(x)-*0 as x-.+±,x. Tloii we want to genera>., a basis from a function which will

decay to 0 relatively rapidly. i.e. we want little waves or wavelets.
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4.2 Wavelet Bases.

Let us begin by considering a generating function 4, which we will think of as our

mother wavelet or basic wavelet. The idea is that, just as with the sinusoids, we wish to

consider a superposition of dilations of the basic waveform V'. For technical convergence

reasons which we shall explain later we wish to consider dyadic dilations rather than

simply integral translations. Thus for the first pass, we are inclined to consider

Oj(x) = 2j 2/'(2J/ 2x). Unfortunately, because of the decay of 4, to 0 as x-.+t±oo, the

elements {0j} are not sufficient to be a basis for L2(R). We accommodate this by

adding translates to get the doubly indexed functions ,j, k(x) = 2j/20(2Jx - k). We

choose 4 such that

' W dw exists.

Here i is the Fourier transform of V,. Under certain choices of V), 'j,k forms a doubly

indexed orthonormal basis for L2 (actually also for Sobolev spaces of higher order as

well). As we shall see in the next section, a wavelet basis due to the dilation-translation

nature of its basis elements admits an interpretation of a simultaneous time-frequency

decomposition of f. Moreover using wavelets, fewer basis elements are required for

fitting sharp changes or discontinuities. This implies faster convergence in "non-

smooth" situations by the introduction of "localized" basis elements.

Example 3.1 Continued: Notice that
ck = < f, j, k> = 0 2j/ 2 l 2ix - k) f(x) dx.

In the density estimation case

cj,k = E ( 2 j/2 q'2jx -k)).
Thus a natural estimator is

Fj, k n qi (2ixi -k),

where xi, i = 1,....,n is the set of observations. Again we are simply using a method of

moments estimator.

Notice that we can construct a Parseval's Theorem for Wavelets.
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Theorem 4.2: (Parseval's Theorem for Wavelets)

,00 00 00 12)

(4.2) If112  1 If(x)1 2 dx= E• _ I cj, k = Z E I Icj, k
-00 j= -oo k= -0o k= -o0 j= -o "

At this stage we are left with the problem of constructing an appropriate mother

wavelet, 7p, suitable for constructing the basis. To do this we turn to the device of

multiresolution analysis.

4.3 Multiresolution Analysis.

To understand multiresolution analysis let us first consider the construction of

space Wj=span{lj,k: kEJ}. That is we fix the dilation and consider the space

generated by all possible translates. We may write L2(R) as a direct sum of the W P

L9(R) = 1 Wj so that any function f E L2(R) may be written as
E J f(x) =...+d+_ (x) +d0 (x) +dl(x) +.-.

where d, - W). If V, is an orthogonal wavelet, then W J_ Wk, k # j. We shall assume

the unknown /, to be an orthogonal wavelet in what follows. Notice that as j increases,

the basic wavelet form V)(2Jx - k) contracts representing higher "frequencies." For each

j we may consider the direct sum Vj given by:

i-I
)-j -- IVj='+ Wj- 2 +Wj - 1 1 Win.

The Vj are closed subspaces and represent spaces of functions with all "frequencies" at

or below a given level of resolution. The set of spaces {Vj} has the following properties:

1) They are nested in the sense that V j _ Vj + 1, JE J.

2) Closure (u jE JVj) = L2(R).

3) njE JVj={O}.

4) V+I=VVj+Wj.

5) f(x) E Vj if and only if f(2x) E Vj + 1, J E J.

1), 4) and 5) follow directly from the definition of V P 2) is a straightforward conse-

quence of the fact that u j E J Wj = L2(R). 3) follows because of the orthogonality

property.

Any f E L2(R) can be projected into V As we have seen with j increasing the
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the "frequency" of the wavelet increases which can be interpreted as higher resolution.

Thus the projection, P ,f, of f into Vj is an increasingly higher resolution approximation

to f as j-,oo. Conversely, as J- -oo, P jf is an increasingly blurred (smoothed) approxi-

mation to f. We shall take V0 as the reference subapace. Suppose now that we can find

a function 0 and that we can define j, k(x) = 2J/20(2Jx - k) such that

VO = span{4)0,k: kE J}.

Then by property 5), Vj = span{Pj,k: k E J}. While we began our discussion with the

notion of wavelets and have seen some of the consequences, we could have actually

begun a discussion with the function q.

Definition. A function 0 generates a multiresolution analysis if it generates a nested

sequence of spaces having properties 1), 2), 3) and 5) such that {10,k, kE J} forms a

basis for V0 . If so, then 0 is called the scaling function.

For the final discussion of this section, let us consider a multiresolution analysis

in which {Vj} are generated by a scaling function 0 E , 2',I and {Wj} are generated by

a mother wavelet function 4' E L2(R). Any function f E L2(R) can be approximated as

closely as desired by fm for some sufficiently large m E J. Notice fm= fm- I + dm- I

where fm - 1 E Vm - 1 and dm - I c Wm - 1. This process can be recursively applied say I

times until we have f ý- fm= dm- I +dm - 2 +" .+dm - i +fm - 1. Notice that fm - i is a

highly smoothed version of the function. Indeed, this suggests that a statistical

procedure might be to form a highly smoothed (even overly smoothed) approximation

to a function to be estimated. The sequence dm - through dm - 1 form the higher

resolution wavelet approximations. Many of the wavelet coefficients cm - i,k used for

constructing dm - i, i = I..., 1 are likely to be 0 and hence can contribute to a very

parsimonious representation of the function f. Indeed, a wavelet decomposition is a

natural suggestion for a technology for high definition television (HDTV). If fm-'

represents the lower resolution conventional NTSC TV signal, then to reconstruct a

high resolution image all that is needed is the difference signal which could be

parsimoniously represented by the wavelet coefficients cm _ i, k, I= I,...,I and k EJ, most

of which would be 0.

Most importantly, however, is the observation that the scaling function 4) E V0
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and the mother wavelet V, E W0 implies that both are in V 1. Since V1 is generated by

0l,k(x) = 2"/26(2x-k), there are sequences {g(k)} and {h(k)} such that

(4.3) O(x) = E g(k)0(2x- k) and V,(x) = 1 h(k)q0(2x- k).
kEJ kEJ

This remarkable result gives us a construction for the mother wavelet in terms of the

scaling function. These equations are called the two-scale difference equations. We can

give a time series interpretation to these equations. Lets consider an original discrete

time function, f(n), to which we apply the filter

y(n) = E g(k)f(2n -k).
keJ

First of all we note that there is a scale change due to subsampling by two, i.e. a shift

by two in f(n) results in a shift of one in y(n). The scale of y is only half that of f.

Otherwise this is a low pass filter with impulse response function g. Let us consider

iterating this equation so that

(4.4) y(j)(n) = • g(k)y(j- ')(2n- k).

Notice that if this procedure converges, it converges to a fixed point which will be qf.

This iterative procedure with repeated down sampling by two is suggestive of a method
for constructing wavelets. If g is a finite impulse response (FIR) filter of length 1, the

construction of a complementary high-pass filter is accomplished with a FIR filter, h,

whose impulse response is given by h(l- 1 - n) = ( - 1)" g(n). This scheme is called susb-

band coding in the electrical engineering literature. The low-pass band is given by

(4.5) y0(n) = E g(k)f(2n- k)
kEJ

while the high-pass band is given by

(4.6) yI(n) = E h(k)f(2n-k).
kEJ

The filter impulses as ,hefined form an orthonormal set so that the f may be

reconstructed by
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(4.7) f(n) = Z [y 0 (k)g(2k- n)+ vl(k)h(2k- 7)].
k E JI

The sub-band coding scheme may be repeatedly applied to form the nested sequence pf

V,. The nested sequence of {Vj} is then essentially obtained by recursively

downsampling and filtering a function with a low-pass filter whose impulse response

function is g( .).

4.4 Construction of Scaling Functions and Mother Wavelets.

We have already hinted that the scaling function may be constructed as the

fixed point of the down-sampled, low-passed filter equation (4.4). This can be

formalized by considering what statisticians would call the generating funntion of g(n)

and what electrical engineers call the z-transform of g(.).

(4.8) G(z) = 1 g(j) zJ.
jEJ

Notice if z = e -i/2 then (4.8) is essentially the Fourier transform of the impulse

response function g(.). In this case, the first equation in (4.3) may be written as

(4.9) : G(z) (ý), with z = e -

This, of course, follows because the Fourier transform of a convolution is the

corresponding product of the F G irier transforms. This recursive equation may be

iterated to obtain

(4.10) r() f G(e- ./k
k=1

We may take ý to be continuous and o(0) = 1. Based on (4.10) we may recover .)

and based on this result, the equation h(1- 1 - n) = ( - 1)' g(n) and the second equation

of (4.3) we may recover the mother wavelet, ý,(.). Thus Daubechies' original

construction shows that waiv,.lcts with compact support can be based on finite impulse

response filters which w;,: riginally motivated Iy multiresolution analysis. Theorem

4.3 below summarizes the ,_,,'t'ral form of Daubechics' result.
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Theorem 4.3: (Daubeduies' Wavelet Construction):

Let g(n) be a sequence such that

a. E Ig(n)l lnlE<ooforsomeE>O,
nEJ

b. E g(n-2j)g(n-2k)=6jk,
n)EJ

c. E g(n)
nEJ

Suppose that j(w) = G(e - iw/2) = 2- 1/2 g(n) e - inw/2 can be written as

nEJ

g12: (l + f- iu/2)N ] '[ f(n) e -inw ]2]

where n E J

d. Z If(n) I InI'<ooforsomee>O
nEJ

e. supERI Z]nf(n) e-inw/2I < 2 N-l

Define

h(,n) ( - 1)"g( -n,+ ),
00• = ; (e - iw l2k) ,

k=I
V'(x) = y h(k)O(2x - k).

kEJ

Then the orthonormal wavelet basis is Vkjk determined by the mother wavelet 1k.

Moreover, if g(n) = 0 for I n I > n0 , then the wavelets so determined have compact

support. 0

We state this result without proof which may be found n Daubechies (1988). We

note that Daubechies also shows that the mother wavelet, Vk, cannot be an even function

and also have a compact support. The exception to this is the trivial constant function

which gives rise to the so-called Haar basis. Daubechies illustrates this computation

with the example of g given by g(0) = (1 + ,/3)/8, g(1) = (3 + V/3)/8, g(2) =(3-v/)/8

and, finally, g(3) = (1 - v/3)/8. This wavelet is illustrated in Figure 4.1.
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Figure 4.1a. Daubechies' Scaling Function using 4-term FIR filter.
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Figure 4.lb. Daubechies' Mother Wavelet using 4-term FIR filter.
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5. Transient Signal Function Estimation.

Now with the basic construction of wavelets in hand, we can turn to the

transient signal processing application. Wavelets have as one of their prime

applications transient signal processing. In particular, since the most effective wavelets

are those with compact support, they are a natural basis for transient signal estimation.

However, if we are to exploit them in the context of optimal nonparametric function

estimation, we must construct an optimality criterion for transient signals. The

discussion below outlines an approach to transient signal estimation set in the context of

optimal nonparametric function estimation. A fuller treatment can be found in Le and

Wegman (1992). We first consider signals. It is well-known that there is no non-zero
function in L2(R) which is both band-limited and time-limited. This being the case, we

will assume the signal to be hard band-limited, i.e. with no energy outside a fixed

interval, say I-v, v], but soft ime-limited, i.e. with minimal energy in the tails. This

particular example demonstrates an elegant applicatia of moments to signal processing.

5.1 Measuring of Out-of-Band Energy

Let L2(R) be the set of square-integrable, real-valued functions and let

h(t) E L2(R). Denote by f(w) the Fourier transform of f(t) such that f E L2(R). We

assume f is frequency band-limited so that ff(w) = 0, for IwI >v. We propose
approximating the class of band-limited time-transient functions by considering

functions whose energy time spread is confined to some small level s0 . As a measure of

the energy time-spread, we will use analogies to concepts from probability theory to

define various moments of j f(t) 2, which plays the role of the energy distribution

function. Assuming that

fO it jjjf(t) 11dt < oo, j= l1, 2,... k,

-00O

the kth moment of the energy distribution will now be defined as follows
00

m I = f tk If(t) 12dt.

-00

For k = 2, we have the 2nd moment of the energy distribution function as a measure of

the energy time spread, given as
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-00
m2=f t2 I f(t) 12 dt.

-- 00

Remark: The factor t' serves as a weight on the energy function which is used to

control the degree of spreading in I f(t) I. A larger k value implies that more weight is

applied at the tail-end of the energy distribution function and, therefore, the process of

minimizing Mk requires that more energy be centrally concentrated.

5.2 Optimal Estimation of Band-Limited Processes

For - v and v real numbers, and m and p integers, where -oo < - v < v < 00, and

m > 0 and p > 1, the Sobolev space W',P[ - v, v] of complex-valued functions f on

v, v] is given by:

WMP[-_ ,I = {f (w): f(k)(w) , k = 0, 1, ... m, i-, are absolutely continuous

and, f f((w)IP dw < oo}.
- I/

We consider observing an actual process, r(t), and we let f(w) be the Fourier transform

of the observed process, r(t). The Fourier transform of the observed process, r(t), will

then be modeled as i(w) = j(w) + ý(w) where, ý(w) is the spectrum of a stationary noise
process, j(w) E W"'[-v, Ll . The fact that f belongs to the class wm , '[ - i'] of band-

limited signals implies that the support of I f(t) 12 is not bounded. The objective is,

then, to find a function f(w) E Wm,2[ - vvl which best fits the Fourier transform F(w) of

the observed process r(t) with minimum time-energy spread; specifically we would like

to minimize the following functional with k < m

(5.1) min [E•-(f (wi)-'(wj))2] subject to t2k f(t) 12 dt <so,
5. E '2[- V•,•] J=,

where f(t) is the inverse Fourier transform corresponding to f(W) in jm' 2[ -, V1.

5.3 Moment Connection via Parseval's Theorem

A rather elegant extension of Parseval's Theorem can be constructed under

appropriate regularity conditions. The Parseval's Theorem for continuous Fourier trans-

form pairs is
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V If(w) 12 dw 00- 1 f(t) 12 dt.

But we know
f 2( r = __ 0f(t) e - it dt.

Take kth derivatives with respect to w

akif(W) 119U.k 27 •-• j -tk 0t)e t0

so that

?(k)(w) Df(w) is the Fourier transform of (-it)k f(t).

We can apply Parseval's Theorem to this Fourier transform pair to obtain

Theorem 5.1:
f v f (k)W) 12 dw = -1 00 ot2k If(t) 12 dt. 0

Thus, our optimization problem (5.1) can now be reformulated as

(5.2) min (f(wj) - F(wj))2 I subject to If'(1)(w) 12 dw <-st
f E W m, 2( -

VL 
_

Using standard Lagrange multiplier techniques, this in turn may be reformulated

as

(5.3) mrin EZ(f(W)fi))2+ A (k)(W) 2du.
f E iy' 2 [-V, Li] j=1-/

Indeed expression (5.3) is the form of optimization problem which results in a solution

which is a generalized polynomial spline of degree 2k- 1. This result may be

substantially generalized by the theorem given below which is developed in Le and

Wegman (1992).

Theorem 5.2: Let ,(w) be a band-limited spectral process with transient inverse Fourier

transform and f(w) be the observed spectral process defined over some finite band

-L < w < v. We model this spectral process as
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w+= +

where ý(w) is some stationary white noise process. Let A be the time spread measure,

defined as follows:

A(f)= ohA(f) + ajAf)

where, +00
Ad~) = •It2k If(t) 12dt,

and where ak and a, are the appropriately chosen weights. Here f is the inverse Fourier

transform of f belonging to L2(R). Then, the optimal band-limited representation in the

Sobolev space V'A2[ - v,v] is fA\(w) where f'\(w) is the solution to the problem:

minimize • [f(wj) - f(wj)]2 + AA(f)
E V mn2 [ - V,]j j=I

f'\ is a generalized L-spline, and A is known as the smoothing parameter. 0

For a general discussion of L-splines, see Wegman and Wright (1983). Notice

that if A(f) = Ak(f) for some large k, then we are constructing a band-limited transient

signal estimator with little energy in the tail of the signal estimate, f\, where f\ is the

inverse Fourier transform of f'* If k = 1, then

-00 -Li

and our solution is the well-known cubic spline. However, much more interesting and

physically meaningful solutions may be found. If A(f)= aoAo(f) + aA&.(f), then for k

odd +00A~f=1 If(t) 12dt 2a1 t2k If(t) 12t

Thus, we may also want to impose a total energy restriction on the estimated signal

space. This imposed restriction may, for example, have resulted from a requirement to

minimize channel bandwidth utilization from data transmission systems. Such

modification, thus, yields the following optimization problem for k odd
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mi I f W)1

min [ E (f'(w,) - f(•., ))2 • XM A, f I f(L) 12 d, + A2 J j,(k)(w) 2 dw ].f" E -" L/_ ,L) i=1 -LI -Li

Hence, by our theorem the optimal solution is again an L-splile.

5.4 Computing Band-limited Transient Estimators and Example

The rather elegant result that our band-limited transient estimators are

generalized L-splines makes the numerical computation of the estimators rather more

routine since algorithms already exist for computing L-splines. The fact that we can

impose total energy limits as well as tail-energy limits is an unexpected bonus. Our

interpretation of Theorem 5.2 is as follows. We recommend doing an initial spectral

estimation to establish the bandwidth, - v < w < v, over which we want to estimate i(w)

(or more precise!i the signal, g(t), its inverse Fourier transform). This initial spectral
estinate will also allow us to select the sampling frequencies, w3 . We recommend

selecting these w3j as the frequencies with the largest spectral mass. Notice that we may

regard a transient signal, g(t), as the product of a signal of infinite support with an

indicator function of a closed interval. It is well-known that Fourier transform of an

indicator finction is the so-called Dirichlet kernel which has a large central lobe and

decreasing side lobes. By choosing sampling frequencies w3 at the location of the central

and side lobes, our technique allows us to to recover the indicator to an excellent

approximation. Thus not only do we estimate the transient signal because of the

penalty term for out-of-band energy, but because of the choice of sampling frequencies

as well. Figure 5.1 graphically illustrates the results of our technique.
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