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The Domain-Specific Software Architecture Program

LTC Erik Mettala
DARPA SISTO

3701 N. Fairfax Drive
Arlington, VA 22203-1714

Marc H. Graham
Software Engineering Institute

Carnegie Mellon University
Pittsburgh, PA 15213

Abstract: The DARPA Domain Specific Software Architecture Program
(DSSA) is a five-year effort that has been active since July 1991. This
document contains an overview of the work being done in the program as of
July 1992.

Software architectures serve as frameworks for software reuse. Domain-
specific software architectures also serve as a common language in which
domain engineers can discuss, understand and teach the principles of their
craft.

There are six independent projects within the DSSA program. Four of these
projects are working in specific, militarily-significant domains. Those domains
are Avionics Navigation, Guidance and Flight Director for Helicopters;
Command and Control; Distributed Intelligent Control and Management for
Vehicle Management; Intelligent Guidance, Navigation and Control for
Missiles. In addition, there are two projects working on underlying support
technology: Hybrid (discrete and continuous, non-linear) Control and
Prototyping Technology.

This report contains brief descriptions from each project and an overview.

Introduction

System engineers design systems out of various materials: metals, hydraulics, electronics and
software. When working with material other than software, they use tools and components
specific to the task z' hand. Those artifacts are the packaged expertise of a host of other en-
gineering disciplines. The software in the system, on the other hand, is hand crafted by the
software engineers, uniquely for the system being built, but out of the same low-level, general
purpose building blocks for every system. The work being done in the DSSA program in do-
main-specific software development is meant to transform the relation of system and software
engineers into one in which software engineers create building blocks and construction tools
out of and with which system engineers create software subsystems.

In contrast to the DSSA program's vision of software development, Figure 1-1 illustrates the re-
lation of system and software design today. The figure is drawn from the perspective of a con-
trols engineer solving a problem using an iterative process of simulation and analysis. The

CMU/SEI-92-SR-9 1
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Figure 1-1 Hitting the Brick Wall!
solution takes the torm ot an "algorithm" that is well-cetined in control theory and is known to
be correct (within the accuracy of the analytic and simulation models). Before the algorithm
can be implemented, it hits the "brick wall" called the Software Specification. Behind the wall,
software engineers receive an unwieldy translation of the algoritV'm that has lost definitior and
quite possibly accuracy. The translation from the language of control theory to the language of
software cannot add anything; it can only introduce errors. domain-specific software develop-
ment tears down brick walls like these by applying the application engineer's problem-oriented
language more directly to the task of software construction.

Figure 1-1 should not imply that the DSSA program is concerned only with control applications
or only front-end issues such as algorithm design. The individual projects within DSSA cover
a wide range of software development activities, from concept formulation and prototyping,
software process design and measurement through software development, documentation
and maintenance. No single project tackles all these problems, but the program as a whole is
distinguished by its interest in the entire problem of software development.

2 Structure of the DSSA Program
The DSSA program is a five-year program that has been active since July 1991. There are six
independent projects in the program. Each project is led by an industrial research lab, each
has at least one academic partner, and each works with a military lab in the context of a spe-
cific research product. Four of the projects are applying themselves to specific military do-
mains. They are:

* Avionics Navigation, Guidance and Flight Director
Principal Contractor-. IBM Federal Sector Division
Principal Investigators: L(cu Coglianese, Mark Goodwin, Will Tracz.
Academic and Industrial Partners: Don Batory, University of Texas; Kirstie Bellman,
Aerospace Corporation; David Gries, Cornell; David McAllester, MIT; Rick Selby,
UC at Irvine; Dick Taylor, UC at Irvine
Military Lab Partner. Wright Aeronautical Laboratories.

2 CMU/SEI-92-S--9"



"* Command and Control
Principal Contractor: GTr- Federal Syztems
Principal Investigators: C ;stine Braun; William Hatch; Theodore Ruegseggcr
Academic Partners: Bob L -.zer, Martin Feather, Neil Goidman, Dave Wile,
USC/Information Scierces Institute; Bob Might, George Mason University
Military Lab Partner: US Army Communications and Electronics Command
(CECOM).

" Distributed Intelligent Control and Management (PICAM) for Vehicle
Management
Principal C.cwtractor. Teknowledge Federal Systems
Principal Investigators: Frederick Hayes-Roth, Lee Erman, Allan Terry
Academic Partners: Farbara Hayes-Roth, Gene Franklin, Stanford University
Military Lab Partner. US Army Armament Research. Development and Engineering
Center (ARDEC).

" Inteot 7gent Guidance, Navigation and Control
Principal Contractor: Honeywell Systems and Research Center
Principal Investigators: Mike Jackson, Steve Vesta;
Academic Partner: Ashok P grawal, U. of ,.'aryland
Military Lab Partner: Office of Naval Research (0,NR).

Two of the projects investigate enabling technologies under'ying domain-specific software
construction:

" Hybrid Control
Principal Contractor: ORA Corporation
Principal Investigators: Richard Platek, James H. Taylor
Academic Partners: Anil Nerode, John Guckenheimer, Cornell
Military Lab Partner: ARDEC.

"* Prototyplng Technology
Principal Contractor: TRW
Principal Investigator: Frank Belz
Academic Partner: David Luckham, Stanford
Military Lab Partner: ONR.

2.1 Overview of Technical Issues Raised by DSSA

2.1.1 Software Architectures
Within the DSSA program there are three distinct approaches to architectures. The IBM and
GTE projects are based on domain modelling approaches exemplified by the work of Prieto-
Diaz and Cohen, and are collected in a recent IEEE tutorial [Prieto-Diaz 87], [Kang 90], [Pri-
eto-Diaz 91]. This approach identifies the critical aspects (objects, operations and relation-
ships) in a domain or class of problems as the experts in the domain perceive them. These
aspects are represented in some way as a domain model.1 The model is independent of any
Snplementation. A software architecture is drawn from the model. Where the m',del describes

1. Domain modelling is a rich and evolving field to which the DSSA researchers are making varied contributions.The
reader should not assume that there is or will be a single DSSA domain modeling technology.

CMU/SEI-92-SR,9 3



a family of problems, the architecture describes a family of solutions. The architecture con-
strains possible solutions by setting, at various levels of abstraction and detail, a collection of
components and component interfaces.

Software architectures serve as frameworks for software reuse. As explained below, domain-
specific software development encompasses generative as well as reuse or compositional
techniques. Domain-specific software architectures also serve as a common language in
which domain engineers can discuss, understand and teach the principles of their craft. Par-
ticipation of the George Mason Center for C31 in the GTE project puts it in a favorable position
for influencing the consensus building process. Partnership with military laboratories is a way
in which each of the projects interacts with its user community.

The Teknowledge project is based in part on a particular software architecture, or "architectural
style", associated with the work of NIST in robotic control [Albus 89]. That architecture pro-
poses a multi-level hierarchy of controllers. The lowest level deals with control of individual
servomechanisms; the highest level controls the interaction of groups of groups of controllers.
Each controller has access to a "conceptually global" information base and world model. To
this structure, Teknowledge adds a two-level architecture for each controller. A "domain con-
troller" (DC) has responsibility for determining plans of action without regard for time con-
straints. A "meta-controller" directs the execution of the planned actions with the goal of
maximizing the use of scarce resources, particularly time constraints.

The Honeywell and ORA projects' concept of a software architecture is quite different. Honey-
well proposes multiple formal engineering models for the domain of guidance, navigation and
control. The models include differential and difference equations for the description of control
laws, scheduling theory and optimization for schedulability analysis and Markov processes for
the determination of reliability. Software architectures are derived from these formal models.
ORA is developing the mathematical field of hybrid (both discrete and continuous) control the-
ory as the basis of a software architecture.

2.1.2 Domain-specific Software Development
Various mechanisms of domain-specific software development are under investigation within
the projects. Compositional mechanisms facilitate reuse of existing artifacts, including soft-
ware. Generative mechanisms are used when needed components are not available.1 Con-
straint-based reasoning systems and module interconnection languages are critical underlying
technologies for software composition. Prototyping technologies underlie generation. The
TRW project serves as a technology conduit from the prototyping community into the DSSA
program.

1. Programming in third generation programming languages (e.g., Ada) is a form of software generation. Domain-
specific software development will not eliminate the need for such programming any more than third generation
languages eliminated the need for assembler programming. The aim is to drastically reduce the amount of such
programming.

4 CMU/SEI-92-SR-9



Parameterized mechanisms are both .' mpcitional and generative. In using a parameterized

software development mechanism, an engineer specifies the functionality, behavior and con-

straints on a system component by filling out a form. The recorded values drive the mechanism

in the creation of the specified component out of pre-existing software and software templates.

(See Batory's work in database management system generation [Batory 88].)

Parameter driven application generators are useful for domains whose variability is well under-

stood in advance. For domains whose variability is broader or less well understood, other

mechanisms are needed. These mechanisms may be domain independent or domain-spe-

cific.

The Honeywell and ORA projects are developing mechanisms specific to the domain of control

systems. Currently ORA seeks to improve the state of the art in control law generation, stress-

ing the development of non-linear control algorithms based on dynamical system simulation.

Honeywell is designing a language for the specification and analysis of control a!gorithms. The

software generated to implement those algorithms is analyzed for schedulability, bound to

hardware platforms, and composed with portions of a collection of runtime support modules to
produce a given application.

As an early test, the GTE project applied some of its ideas to message handling in command
and control systems. The project created a domain-specific message handling language for
describing the format, validation, and processing of C3 messages. A program generator trans-
lates this DSSA language into a domain independent specification language, AP5 [Cohen 87],
which is then translated into the target programming language. Initial results show a 100-fold

decrease in the amount of code needed to format, validate and process messages used in the

Army Tactical Command and Control System (ATCCS).

2.1.3 Process Issues

Domain-specific software development requires new processes to regulate the engineering

activities comprising system design. IBM and GTE are developing descriptions of processes
based on domain modelling paradigms. Both projects include measurement based process
improvement programs. They and others are investigating the use of process enactment lan-

guages. Teknowledge is developing a mixed-initiative process language, supporting interac-
tion among the application developer, core development environment, and the tools loosely
coupled to that environment.

Honeywell has proposed a process that organizes the efforts of control engineers, system

engineers, reliability engineers, safety engineers, etc., as well as software engineers [Krause
91]. Control software development is an interdisciplinary activity that requires an integrated
product development process, sometimes called "concurrent engineering".

2.1.4 Development Environments

Although tools and environments are an important product, the DSSA program is not an envi-
ronment program. Thus, the program looks to import much of the needed technology from oth-

CMU/SEI-92-SR-9 5



ers. In particular, it looks to STARS for reusability library frameworks; to Arcadia for various

features such as Chiron, Amadeus, APPL/A and possibly others; and to the PROTOTECH

community for prototyping and module interconnection. The program has formed a working

group on environment integration, infrastructure and tooling issues to more efficiently share

knowledge and expertise.

3 Role of the SEI

The Software Engineering Institute plays an important supporting role in the DSSA program.

The SEI is committed to being an integral component of DARPA and to accelerating the tran-

sition of technology from the research community into the DoD and the defense industry. The

SEI has developed expertise in the nature of technology transition and is able to assist the

DSSA projects and their military partners in planning for the transition of DSSA products into

the laboratories and eventually into the field. Even though the DSSA program is not yet

through the first year of its life, this planning has already begun.

Other opportunities for SEI support to DSSA are being explored. Some of these, at the time

this is being written, are as follows:

" Process Description. As mentioned earlier, DSSA contractors have an interest in
software process description. The SEI currently has a project that, in cooperation
with the STARS program, is involved in describing software processes. STARS has
a strong interest in the kinds of processes DSSA requires. Thus, the SEI can play a
role in the cross-fertilization of two DARPA programs.

" Software Development Environments. The SEI's Environment Focus Area has
expertise and interest in tool integration and environment frameworks. The DSSA
program's work in environments represents an opportunity for mutual benefit. Some
early meetings designed to realize this benefit will have been held by the time this is
published.
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Abstract: The DSSA-ADAGE (Domain-Specific Software Architecture-
Avionics Domain Application Generation Environment) Project is part of
DARPA's Domain-Specific Software Architecture Program. IBM, in cooperation
with researchers at the Aerospace Corporation, MIT, Cornell, the University of
Texas at Austin, and the University of California at Irvine, is striving to create a
workstation-based environment to support the development, maintenance, and
upgrade of avionics systems through the reuse of large portions of well-
designed and well-documented software. This paper qualifies the scope of the
ADAGE Project within the avionics domain and describes the project's
research goals and approach. The paper concludes with a summary of
progress made to date in defining an avionics architecture and domain model,
an avionics domain-specific vocabulary, and domain-engineering and
architecture-based development processes.1

1. This research was partially sponsored by DARPA and the Avionics Logistics Branch, Wright Laboratory, Wright-
Patterson AFB, OH, under contract F33615-91 -C-1 788.
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1 Introduction

DSSA-ADAGE is a joint industry/university research effort to apply leading edge basic
research to the avionics domain. DSSA-ADAGE is an extension to the large-scale avionics
reuse effort [Coglianese 87] (i.e., RASP (Reusable Avionics Software Project [Bunts 90]) and
software composition [Tracz 91 a] research at the Owego, NY Laboratory of IBM-Federal Sec-
tor Division (FSD), where software developers have created avionics software for over a
dozen fixed-wing aircraft and rotorcraft).

The avionics application domain encompasses the use of electronics to provide operator sup-
port for performing an assigned task with an aircraft or space vehicle.1 Typically, for each new
avionics system, systems developers create or re-create the software that provides the oper-
ator interface and integrates the electronics rather than reuse existing software. The goal of
the DSSA-ADAGE is to provide system develope s with the necessary environment to locate,
adapt, compose, generate, integrate, and evaluate avionics applications within the subdo-
mains of Navigation, Guidance, and Flight Director by analyzing a problem domain and creat-
ing/refining a set of standardized solutions within it.

1.1 The Avionics Problem Domain

An avionics system integrates the complex components of crew, airframe, powerplants, sen-
sors, and specialized subsystems into an intelligent airborne system for achieving specific mis-
sion objectives within time and space constraints. Within the overall DoD mission, these
objectivE can include delivery of ordnance on designated targets within a specified time 'Win-
dow", recording of electronic, geographic and other remotely detectable information over a
selected area within a specified time frame, or transport of personnel and material between
locations on a specified schedule. While executing these missions the airborne system may
need to meet other constraints, such as minimizing use of human resources, avoidance of
detection by surface/air/space based sensor systems, rendezvous and cooperation with other
friendly mission elements, or flight into adverse weather, at night, without external navigation
aids.

The core requirements of most advanced avionics systems include the capability to navigate,
provide guidance, and provide flight direction (see Figure 1-1). Navigation is the ability to esti-
mate the aircraft state relative to one or more reference frames. Guidance contains algorithms
which analyze temporal and spatial mission objectives to produce desired lateral, vertical,
and/or speed profiles based on aircraft performance characteristics and selected optimization
criteria. Flight direction accepts the error signals and recommends control inputs to the crew
(or aircraft automatic flight control system for coupled flight) which will null out the error signals
thus locating the aircraft on the desired path.

1. Portions of this paper are based on "DSSA Case study: Navigation, Guidance, and Flight Director Design and
Development", by Lou Coglianese, Roy Smith, and Will Tracz, which appeared in the proceedings of the 1992
IEEE Symposium on Computer-Aided Control System Design (CACSD'92), March 1992.

10 CMU/SEI-92-SR-9



Ultimately the success of any integrated system hinges on the ability of the operators to

access system capabilities and accurately interpret system data in a timely fashion [Smith 91 ].

Integrated avionics systems provide controls and displays giving the flight crew access to sys-

tem data and situational data tailored to mission tasks.
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Figure 1-1 Typical Pilot In the Loop Navigation, Guidance, and Flight Director

1.2 DSSA-ADAGE Research Objectives

The DSSA-ADAGE project's research focuses on:

1. avionics requirements analysis and application synthesis through compo-
nent-based, semi-automated composition,

2. architecture-based avionics system instantiation and verification through
constraint-based reasoning, and

3. hypermedia-based environments integrated with domain-specific processes
interpreted by process-centered, measurement-driven development tools for
end-to-end lifecycle support.

1.3 DSSA-ADAGE Approach

The DSSA-ADAGE approach is based on the premise that although the probiems in Naviga-

tion, Guidance, and Flight Director are difficult, many of the solutions are well understood. For
any new system, there will be several features that will require new and innovative techniques,
but many more can be built by combining and adapting existing solutions. Therefore, analysts
can identify constraints inherent in the avionics domain and define portions that can be brought
under control. Concepts in the domain can be organized both from the perspective of the phys-
ical problems that they solve and from the way the components work together in a computer
program to solve them. This organization of components, interfaces and behaviors is referred

CMU/SEI-92-SR-9 11



to as a Domain-Specific Software Architecture (DSSA). A DSSA not only provides a frame-
work for reusable software components, but it also organizes design rationale and structures
adaptability.

The DSSA-ADAGE team is building an architecture and a hypermedia-based environment
that assists analysts and software developers in automating avionics development. The
ADAGE environment, depicted in Figure 1-2, relies on:

"* hypermedia representation of design record knowledge to facilitate software
understanding,

" wrapping components with pedigree [Bellman 90] information to be used in analysis,
modelling, development, and integration,

"* constraint-based reasoning tools to reduce the user's adaptation and selection
workload, software composition technology (Tracz 91 b] to construct analyses,
models, simulations and real-time software for embedded systems by combining
components and user selections with implementation models, and

"* a formal representation ([Osterweil 87], [Sutton 90]) of iterative spiral development
process models and process measurement tools [Selby 91] to guide user actions.

DSSA-ADAGE : Avionics Domain Applicaicon Generation Environment
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1.4 Progress to Date

The DSSA-ADAGE project came under contract in September of 1991. Most of the effort spent

during the first quarter focused on gathering momentum. Team members working with domain

experts defined and applied a domain engineering and component-based application genera-

tion process that afforded academic team members the opportunity to understand avionics

domain terminology and concepts.

Lou Coglianese provided a preliminary avionics architecture definition of Navigation, Guid-

ance and Flight Director at the first team meeting on September 26-27. Navigation analysis

focused on models of data sources, the aircraft state vector, earth and atmospheric models,
and relational coordinate models. The initial avionics domain knowledge engineering process

results were sent out for review by team members and external sources. As a result, Sholom

Cohen, at SEI, recognized the preliminary architecture to be similar to that used on the CAMP

(Common Ada Missile Package) System (with the exclusion of a pilot in the loop).

Don Batc, y has created a preliminary version of domain model (i.e., a layered software archi-

tecture model for the avionics domain. The goal is to apply the GenVoca [Batory 911 design/-
domain-modeling concepts to avionics software. Work on the ADAGE environment work

started prior to coming under contract through the efforts of Ken Anderson, a University of Cal-
ifornia at Irvine graduate student. Ken successfully ported a portion of the Arcadia [Taylor 88]
and ANNA tool suites to an IBM RS/6000.

Dick Taylor has evaluated current multi-media system capabilities and has defined the require-
ments for hypermedia extensions for Chiron [Keller 91].

The preliminary draft of the ADAGE Domain Engineering Process Description has been com-
pleted and is serving as a strawman for further definition and discussion. An outline of the
ADAGE Component-Based Application Development Process Description (previously
referred to as the ADAGE Megaprogramming Process Description) is also being reviewed.
Finally, a draft version of the Avionics Domain Dictionary is being circulated for review among
team members.
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Abstract: GTE is the Command and Control contractor for the Domain-
Specific Software Architectures program. The objective of this program is to
develop and demonstrate an architecture-driven, component-based capability
for the automated generation of command and control (C2) applications. Such
a capability will significantly reduce the cost of C2 application development and
will lead to improved system quality and reliability through the use of proven
architectures and components.

A major focus of GTE's approach is the automated generation of application
components in particular subdomains. Our initial work in this area has
concentrated in the message handling subdomain; we have defined and
prototyped an approach that can automate one of the most software-intensive
parts of C2 systems development.

This paper provides an overview of the GTE team's DSSA approach and then
presents our work on automated support for message processing.1

1 The DSSA Concept

DSSA is based on the concept of an accepted generic software architecture for the target

domain. As defined by DSSA, a software architecture describes the topology of software com-

ponents, specifies the component interfaces, and identifies computational models associated

with those components. The architecture must apply to a wide range of systems in the chosen

1. ©1992 IEEE. Reprinted, with permission, from Proceedings of the 1992 IEEE Symposium on Computer Aided
Control System Design; Napa, California, March 17-19, 1992; pp. 129-136. Permission to copy without fee all or
part of this material is granted provided that the copies are not made or distributed for direct commercial advan-
tage, the IEEE copyright notice and the title of the publication and its date appear, and notice is given that copying
is by permission of the Institute of Electrical and Electronics Engineers. To copy otherwise, or to republish, re-
quires a fee and specific permission.
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domain; thus it must be general an, flexible. It must be established with tie consensus of prac-

titioners in the domain.

Once an architecture is established, components that conform to the architecture, i.e., that

implement elements of its functionality in conformance with its interfaces, will be acquired.

They may be acquired by identifying and modifying (if required) existing componento or by

specifically creating them. One of the ways they may be created is through automated com-

ponent generation. DARPA ha!. sponsored work in this area at USC Information Sciences

Institute such as the AP5 application generator project, and is interested in incorporating this
or related techi 1,-Iogy.

The existence of a domain-specific architecture and conformant component base will dictate

a significantly different approach to software application development. The developer will not

wait until detailed design or implementation to search for r3use opportunities; instead, he/she

will be driven by the architecture throughout. The architecture and component base will help
define requiremc.its and allow construction of rapid prototypes. Design will use the architec-

ture as a starting point. Design and development tools will be automated to "walk through" the
architecture and assist the developer in the selection of appropriate components. The ultimate
goal is to significantly automate the generation of applications. A major DSSA task is to define
such a software lifecycle model and to prototype a supporting toolset.

These activities will be accompanied by extensive interaction with the development commu-
nity for the target domain, and by technology transition activities. One aspect of this is that
each domain team is working closely with a DoD agency that carries out major developments
in the designated area. The GTE team is working with the US 1,rmy Communications and Elec-
tronics Command.

2 Why Command and Control?

There are many reasons why the command and control domain is an excellent target for DSSA

technology. It is a high payoff area; command and control systems are needed even in the cur-
rent military climate. (This is particularly true when one recognizes that applications such as
drug interdiction fall within the C2 "umbrella".) It is a well-understood area; most of the pro-
cessing performed in C2 applications is not algorithmically complex. However, C2 applications
are very large, and much of this size comes from repeated similar processing, such as parsing
hundreds of types of messages. In addition to this commonality within applications, there is
much commonality across applications. Multiple C2 systems must handle the same message
types, display the same kinds of world maps, etc.

The kinds of commonality in C2 applications are very well-suited to DSSA techniques. In some
areas, components can be reused identically; these can be placed in the DSSA component
base and highly optimized. In other areas, components will be very similar in nature but differ
in the particulars, e.g., message parsing. These areas are a natural fit to the DSSA component
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generation technology, allowing a table-driven generator to quickly create the needed specific
component instances.

3 GTE's Approach
Figure 3-1 illustrates GTE's overall appr•,ach to the DSSA program.

Initially, project work will follow two parallel threads. The first will define a software process
model appropriate to architecture-driven software development and will develop a toolset to
support that process. The second will est.blish a capability that implements the process for
the command and control domair, based on a C2 architecture and a set of reusable C2 com-
ponents.
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Figure 3-1 GTE's DSSA Approach

The DSSA process model will address ill aspects of the software lite cycle. It will describe
activities for establishing system requirements, developing the software system, and sustain-
ing the system after delivery. The DSSA toolset will support all of these activities, automating
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them as far as possible. In particular, it will automate system development activities by using

the architecture as a template, guiding the selection of available reusable components, and

automating the generation of specific required components. The toolset will be constructed
insofar as possible from available tools, both commercial products and products of the
research community. In particular, it will make use of USC/ISI's AP5 application generator,
DARPA/ STARS reuse libraries, and DARPAlPrototech tools. Open tool interfaces will be
emphasized to minimize specific tool dependencies, thus making the toolset usable in the wid-

est range of environments.

Fundamental to the C2 DSSA capability is the development of a C2 software architecture. This

starts with development of a multi-viewpoint domain model, created through interaction with
all elements of the DoD C2 community. The automated Requirements Driven Development
(RDD) methodology will be used in model creation. From this, an object-oriented software
architecture will be developed. The architecture will tie back to the multi-viewpoint model so
that mappings to different views of the domain functional decomposition are apparent. George
Mason University's Center for C31 will play a major part in this modeling and consensus-build-
ing activity. A base of components conforming to the architecture will then be developed. Many
of these will be existing components, perhaps modified to fit the architecture. Others will be
automatically generated using AP5.

The DSSA capability will be demonstrated by development of a prototype C2 system, most
likely an element of the Army Tactical Command and Control System (ATCCS). An indepen-
dent metrics/validation task will assess the effectiveness of the approach and gather metrics.
The methodology and toolset will be revised based on findings and further necessary research
will be identified.

Throughout the program, a technology transfer task will present results in conferences,
papers, seminars, and short courses. The George Mason University Center for C31 will serve
as a focal point for technology transfer.

4 Application Generation

4.1 The Technology

Application generators are tools that permit software developers to create software application
programs in a much higher-level language tailored to the application domain. These programs
are automatically translated by the application generator to a lower-level language, thus "gen-
erating applications". This greatly reduces the effort required to create working applications,
typically by at least an order of magnitude. The benefits are analogous to those achieved by
moving from assembly language development to use of standard procedural languages such
as FORTRAN, C, and Aca.

Fourth Generation Languages (4GLs) are application generators for DBMS-oriented informa-

tion system applications. Because 4GLs focus on a narrow class of applications, they can
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include very powerful constructs that allow software to be developed quickly and easily by
those familiar with the application domain. Management Information System (MIS) developers
using 4GLs achieve productivity improvements of as much as 50-100 times over traditional
(usually COBOL) language users.

Application generators can be (and have been) developed for other types of applications as
well. They are best suited to narrow domains, or subdomains of large domains such as C2.
Because they require a domain-specific vocabulary for expressing applications, they are gen-
erally unique to the domain or subdomain and not easily modified to handle other domains.
Creation of an application generator for a particular domain, furthermore, is a significant under-
taking. Development of an application generator is most appropriate in domains that are well-
understood and in which many different developments perform primarily the same kinds of
processing.

4.2 The AP5 Approach

USC Information Sciences Institute (ISI) has developed a capability (called AP5) that supports
the development of application generators. AP5 is based on the concept of relational abstrac-
tion. The application developer identifies abstract data objects and the logical relationship
among them. Effectively, the developer has access to a "virtual database" expressed suc-
cinctly in terms of the known structure of the domain's data model. Application behavior is then
expressed in terms of these data objects, accessing them associatively via queries and mod-
ifying them based on values of other objects. This allows the user to concentrate on behavior
rather than representation, and provides the power to express that behavior at a very high
level.

Providing an AP5 application generator for a particular subdomain requires the development
of a domain-specific language for that domain. This is a relatively straightforward task because
the language, regardless of domain, involves the same fairly simple set of relation-oriented
constructs for expressing data relationships, validations, and actions. It is also a critical task,
because the expressive capability of this language is what provides the application generator's
power. A translator is then developed to map the language to an underlying program genera-
tor, which produces executable procedural code. This is also not too complex, as all languages
contain similar constructs. Most of the work is done by the underlying generator. (Currently the
system generates LISP; an Ada generator is in development.)

A drawback to many existing application generators is poor efficiency of the generated code.
This has, in many cases, made these generators suitable only for developing prototypes. AP5
addresses this proble' n by allowing the user to specify annotations that provide guidance to
the translator on desired implementations of specific operations. These annotations can be
added incrementally while tuning to achieve desired performance.
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AP5 can play a key role in the C2 DSSA program. We anticipate that a number of C2 subdo-
mains will be amenable to this approach. By developing generators for those subdomains we
can achieve two major advances in productivity:

"* DSSA users can use the generators to create specific components in the subdomain

with far less effort.

"* DSSA architects can use the generators to create reusable subsystems that can
then form part of the component base available to DSSA users.

We have already identified the message handling subdomain as a candidate for AP5 technol-
ogy; a tentative choice for the next area to tackle is fusion processing.

Figure 4-1 shows the activity flow that will be followed: identifying classes of components (sub-
domains) to be addressed, based on the architecture; defining domain-specific languages and
producing generators; developing annotations to permit optimization; and generating reusable
application components.

domain
model

component

specifications annotations

specific
architecture

perspec. specic s
tivesim lmne in.&ts

corn nent components
classes

~model )

consnsusspecific
languages

Figure 4-1 DSSA Application Generation Activity Flow

5 C2 Message Handling
As indicated in Figure 5-1, the message handling subsystem is one of the key interfaces
between a C2 system and the "outside world". It provides a means of communicating informa-
tion between different C2 systems and to/from other C2 resources (such as vehicles and
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weapon installations). Messages may be text or bit streams; we will deal here with text mes-
sages. Some text messages are free-form, but most today follow standard prescribed formats;
we will deal with formatted messages.

C2 messages are created by humans (on the transmitting side of the interface) according to a
written description of the formats. The receiving side parses the message (according to an
encoded understanding of the standard format), validates it for correctness, and places the
received information in the database for use by other parts of the system (for example, deci-
sion support).
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CENTER Direct

Execute

MMI
raw data

D VC Sprocessed ProceSomed

p~ocPss• , s po ess messages

data messages msae

Fusion MessageComm
Processor Handler NW
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SENSORS r wdata m s a e

DATA BASE

Figure 5-1 C2 System Operations

There are several standard families of messages, such as NATO and JINTACCS messages.
Each of these can include several hundred message types; for example, there are approxi-
mately 300 NATO message types. (Many types of messages are shared by several message
families.) Message formats are described in massive documents using ad hoc, non-standard
description methods. Typically the descriptions involve much prose. For example, Figure 5-2
shows the description for a single line in one type of message. Furthermore, it is not a com-
plete description; many field descriptions cross-reference to other descriptions.

A message consists of a number of such lines (called datasets-- may be more than one phys-
ical line) grouped together in an envelope (which contains from/to information, classification
level, etc.). While each type of message can contain only certain kinds of datasets, many are
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Data Set ID: MSGID

Fld Element Descriptive Name Descript. M Edit Rule Remarks

1 Message Code Name 25 AN x 1. Must be a member of the
approved set of message code
words.

2. Originator 25 AN x ',lust be a plain! angu-ge a. Plair' language addresses are
address or approved short validated against values found
title in the references

3. Message Serial Number 3 N a 1. Positive integer between a. May be required for specific
the values 001 to 999. messages.

2. Out of sequence may indi- b. Sequence is restarted on 1
cate missing message. See Jan each year. May be rolled
rules for specific msg. code over when upper limit is reached.
word. c. For Command authorities serial

may be validated to maintain order
when processing reports.

4. As-of-Month 3 AN a 1. Standard abbreviation for a. Required if serial number is
month message sent. used and as-of-DTG not present.

b. Not allowed if as-of-DTG not
present.

5. As-of-Year 4 N 0 1. May not be a future year. a. As-of-Month must be present.

-I

Figure 5-2 Example Message Line Description
optional and their order is generally not prescribed (though there are exceptions). Validity ot
datasets can depend on other datasets in the message. Each dataset contains a prescribed
sequence of fields, separated by slashes, with a required order and a well- defined format.
Field validity can depend on values in other fields of that dataset as well as in other datasets
in the message. Figure 5-3 is an example message (excluding the envelope).

The code involved in writing the software to implement message handling is extensive and
error prone. Working from the prose specification, programmers write code to extract each
field from each dataset, validate it according to the specified rules, translate it to the appropri-
ate internal representation, build database update transactions, and write to the database.
Typically, a single message type can take from 5000 - 100,000 lines of HOL code. The Navy
WWMCCS system uses approximately 4 million lines of code to implement 30 message types.
Clearly this is a part of C2 system development that should be considered for automation.

6 Automating C2 Message Handling Using AP5
To automate C2 message handling using AP5, we have developed a language specific to the
message handling subdomain that provides constructs for specifying message formats, for
indicating required validations, and for describing desired database updates.
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NATOUNCLASSIFIED

SIC: NSR

EXER /OPEN GATE 91//

MSGID /NAVSITREP/CINCIBERLANT/135/DEC/91//

PART /I/HOSTILE//
FORCE /OR523/3/37000NO-012000W3/145/17K/H//

Shit /OR523AiKARA/'-iCG/-/UP,'/

SHIP /OR523B/KRESTA//

SHIP /OR523C/KRESTA//

SUBTK /OR734/33000N6-O1000OWI/095/9K/M//

SUB /OR734/TANGO//
PART /II/UNKNOWN/NC//

PART /III/FRIENDLY//

FORCE /CTU 405.1.2/5/420015N2-1333440W8/175/20K//
FORCE /CTU 387.3.2/2/36010NO-004380W5/090/5K//

AMPN /MINE SWEEPING GROUP...//

AIRTK /934/33000N6-010000W1//

AMPN /ONE P-3 SEARCHIN BOX...!/

Figure 5-3 Example Formatted Message

6.1 Specifying Message Formats

Message formats are described in a simple set language that indicates which datasets are
allowed and which are optional for a particular message type. For example,

type SPOT =(FORCE), (SHIPTKIAIRTKIAIRCRAFT),
SHIP

would indicate that a SPOT message consists of an optional FORCE dataset, an optional
occurrence of one of the SHIPTK, AIRTK, or AIRCRAFT datasets, and a required SHIP
dataset.

Message format descriptions can be accompanied by validations that indicate which combi-
nations of datasets are valid. For example,

type SPOT = (FORCE), (SHIPTKIAIRTKIAIRCRAFT),
SHIP

validations
disallow MSGID.message-serial-number;
require SHIP.location
no SHIPTK and no AIRTK requires FORCE;

indicates that the message-serial-number field of the MSGID dataset must not be present, the
location field of the SHIP dataset must be present, and, if no SHIPTK dataset and no AIRTK
dataset is present, the FORCE dataset must be present.
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6.2 Specifying Datasets

Dataset formats are described in terms of the fields that make up the dataset and the format
of each of those fields. Fields are ordered, so each dataset is characterized by a sequence of
fields. Optional fields are indicated by parenthesizing them. Mutually exclusive fields are indi-
cated by alternative bars. As for message formats, dataset descriptions can include valida-
tions. For example, a dataset description of a MSGID dataset might be:

dataset MSGID = message-code-name (originator)
(message-serial-number) (as-of-month)
(as-of-year) (as-of-DTG)

validations
as-of-DTG precludes as-of-month;
as-of-DTG precludes as-of-year;
as-of-year requires as-of-month;
message-code-name /= SPOT requires originator;
message-serial-number and no as-of-DTG

requires as-of-month;
field message-code-name = A*26;
field originator - A*25;
field message-serial-number = N 3;
field as-of-mc--h - month;
field as-of-yet. N 4;
-- as-of-DTG in orm: DDHHMMZS MMMYY
field as-of-DGT - day, hour, minute, (Z), SUM1, month,

year;
field SUM1 = N 1;
field day = N2;
field hour - N 2;
field minute = N 2;
field month = A 3;
field year - N 2;

6.3 Specifying Database Transactions
The C2 message description language also includes a means for describing the transactions
to be carried out for each received message. An example of a segment of such a specification
is:

{insert msg_Orig_c (ORIGINATOR - PROSIGN.FN,
MSGTYPE = MSGLJ.Code,
MSGDTG - sortable-date (ENVELOPE.DTG),
CLASSIFY = classificationcode(ENVELOPE.Sec));

The database update language also includes tests of field values, so that updates can be con-
ditional on those values, and a capability to allow a sequence of updates to be named and
reused in other update instructions. This simple language provides all the power needed to
describe the database transactions resulting from received messages.
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7 Implications

Clearly, automated generation of message handling software can save greatly on the labor

involved in creating such software. A message handling subsystem that requires 4 million lines

of HOL code should require less than 1% of that in the message description language.

Perhaps more significantly, there will be little reason to write most of the code more than once.
The code required to parsO and validate a message of a particular type is not specific to the
system being implemented. Once the message specification is developed in the message
description language, it can be reused. Minor changes in the specification of required data-
base updates can be easily implemented for individual systems.

An even more far-reaching impact of this work is the development of a precise, unambiguous
way of describing message formats. Rather than the ad hoc prose descriptions now used in
describing message formats, the message description language can be used directly. This will
eliminate errors in understanding and correctly implementing message descriptions.

This precise message description mechanism, along with the built-in incentive to reuse mes-
sage description implementations, will contribute substantially to the development of more
error-free message handling subsystems. A major aspect of this benefit is improved interop-
erability, as systems will no longer be dependent on the programmers' understanding of mes-
sage formats. All implementations will share a common understanding and be able to
interoperate with the full power and precision envisioned for formatted messages.
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Abstract: We are developing a generic control architecture suitable for use as
a single intelligent agent or as multiple cooperating agents. The generic
architecture combines a task-oriented domain controller with a meta-controller
that schedules activities within the domain controller. The domain controller
provides functions for model-based situation assessment and planning, and
inter-controller communication. Typically, these functions are performed by
modules taken from a repository of reusable software. In tasks that are simple,
deterministic or time-stressed, the modules may be compiled into or replaced
by conventional control algorithms. In complex, distributed, cooperative, non-
deterministic or unstressed situations, these modules will usually exploit
knowledge-based reasoning and deliberative control.

To improve the controller development process, we are combining many of the
best ideas from software engineering and knowledge engineering in a software
environment. This environment includes a blackboard-like development
workspace to represent both the software under development and the software
development process itself. In this workspace, controllers are realized by
mapping requirements into specializations of the generic controller
architecture. The workspace also provides mechanisms for triggering
applications of software tools, including knowledge-based software design
assistants.

This paper explains our general approach, illustrating it in the context of our
current demonstration task.1

1. The work described in this paper was partly supported by DARPA and the US Army ARDEC, Picatinny Arsenal,
under contract DAAA21-92-C-0128.
01992 IEEE. Reprinted, with permission, from Proceedings of the 1992 IEEE Symposium on Computer Aided
Control System Design; Napa, California, March 17-19, 1992; pp. 129-136. Permission to copy without fee all or
part of this material is granted provided that the copies are not made or distributed for direct commercial advan-
tage, the IEEE copyright notice and the title of the publication and its date appear, and notice is given that copying
is by permission of the Institute of Electrical and Electronics Engineers. To copy otherwise, or to republish, re-
quires a fee and specific permission.
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1 Introduction
We have recently begun a four-year effort to develop a new technology foundation and asso-
ciated methodology for the rapid development of high-performance intelligent controllers.
These controllers will be employed in distributed intelligent control and management (DICAM)
applications. Examples of such applications include intelligent highway systems, military com-
mand and control systems, and factory floor control systems. Our near-term domain of app!i-
cation is vehicle management systems, where one or more controllers may be employed to
control a single vehicle, and these composite controllertvehicles are further aggregated and
organized into higher-levels of control and capability. In a military context, for example, a single
controller may be used for each subsystem within a tank, each tank system may be controlled
by collectively organizing its subsystems, the overall tank may be controlled by another con-
troller that coordinates the tank system controllers, several tanks may combine to form a pla-
toon with its own control level, one or more platoons may form a battalion, and so on.

Our research project is one of several sponsored by DARPA (Advanced Research Projects
Agency of the US Defense Department) and the US Army to advance the technology for
domain-specific software architecture (DSSA). An overview of our DICAM-DSSA research
focus is depicted in Figure 1-1. The actual vehicle management task concerns a howitzer, a
tank-like vehicle that aims at more distant targets. The project has four principal focus ele-
ments. First, we are formulating a reference architecture for intelligent control. Second, we are
supporting the construction of applications in a development workspace in which system
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Figure 1-1 Focus Elements of Our DICAM-DSSA Research
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requirements are ultimately satisfied by choosing design components that specialize and par-
ticularize components of the generic reference architecture. Many of the specialized modules
and particular data used to instantiate a design are taken from a repository. The entire devel-
opment process is supported by a rich array of development tools, which incorporate numer-
ous techniques from both software engineering (e.g., control law specifiers, code generators,
protocols, compilers, and debuggers) and knowledge engineering (e.g., domain modeler,
requirements manager, and various knowledge-based design assistants). In short, our
DICAM-DSSA fuses knowledge engineering (KE) and software engineering (SE) approaches
both within the intelligent real-time control software being developed and in the software devel-
opment process itself.

Our project integrates KE and SE in three principal ways. First, in order to develop intelligent
controllers we need to develop a hybrid control technology that combines key concepts from
real-time software engineering with the knowledge-based deliberative reasoning concepts of
knowledge engineering. Second, we need to apply concepts, methods and tools from KE
directly in the software development process. This paper highlights six principal KE elements
involved in this process: knowledge-based models for domain analysis; classification for tax-
onomies, abstraction and specialization; blackboard methods of incremental problem-solving
for system design and development; constraint specification and processing in software
requiremcrnts management; and knowledge-based expert systems for providing software
development and design assistance. The third category of relationships covers applications of
SE methods to KE. In particular, we believe that there are many conventional and important
SE concepts, methods and tools that need to be applied to the development of knowledge-
based intelligent systems. This paper describes seven which are central to our project: real-
time systems, database-centered design, hierarchical systems, distributed systems, reference
architectures, repositories, and multi-tool software engineering environments.

The paper is organized as follows. Section 2 describes the DICAM framework. Section 3 dis-
cusses the kinds of application systems our project will focus on constructing. Section 4 char-
acterizes the development methodology we are supporting. Section 5 describes the
development environment we are assembling. Section 6 specifies our current status and
plans, and includes a scenario showing the kinds of planned development facilities. Section 7
itemizes the various KE/SE relationships listed in the preceding paragraph. Section 8 briefly
relates our work with other similar research. Section 9 summarizes the principal points of the
paper.

2 The DICAM Framework
We are developing DICAM simultaneously as a "model" or framework for understanding con-
trol problems and as an architecture and related environment for building controllers. There
are many reasons why we seek to formulate such a unifying framework. Foremost among
these is our belief that the difficult, time-consuming and often unsatisfactory process of con-
troller development would benefit from a more "standard" but flexible approach. Our DICAM
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framework provides a generic but customizable model of controllers that seems to unify a vari-
ety of views and experiences in the control, software and knowledge engineering disciplines.
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Figure 2-1 The DICAM Reference Architecture

Figure 2-1 Illustrates the DICAM Reference Architecture. As with the seven-layer model of
OSI, this reference architecture provides a general model of controller applications that pre-
scribes the key system components and their interrelationships. DICAM is closely related to
the NASANBS reference model for telerobot control systems (NASREM) [Albus 89]. The ref-
erence architecture includes two principal components in any distributed intelligent control and
management application. First, an information base and world model (IB/WM) is a conceptu-
ally centralized database/knowledge base that represents the state of the world. It can be
viewed as a three-dimensional structure. The first dimension, shown in the y-axis in the figure,
stratifies stored information at high to low-levels of aggregation to serve the needs of control-
lers with corresponding levels of responsibility. The second dimension, shown in the z-axis in
the figure, corresponds to the different meta-types of information that must be stored. Here,
we have shown four meta-types, termed data, propositions, rules and plans. The data meta-
type includes all types typically representable in a conventional database (e.g., an RDB). Prop-
ositions and rules correspond to the types of information typically stored in an expert system
shell or Prolog program. Plans include the conditional, generally concurrent, action specifica-
tions that controllers generate and execute to make their controlled machinery achieve goals.
The third dimension, shown in the x-axis, is 4hat of time. Controllers need to look at recent past
history, use current state information to make decisions, and forecast future expected situa-
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tions to determine whether behavior changes are required. The specific elements of an IB/WM
required for an application are specified by means of an 1B schema, analogous to a database

schema. The specific abstract datatypes (ADTs) contained in the IB schema are used to stan-

dardize the representation of information that is shared among or communicated between
controllers.

The second principal component of the DICAM reference architecture is a collection of semi-

autonomous interconnacted controllers. These controllers are differentiated in terms of the

scope of behavior they address, the resources they control, and the time frame spanned by

their decisions. "High-level" controllers typically address overall coordination of numerous indi-

viduals c: organizations of individuals. These top-level controllers are concerned with long

time frames and delegate nearly all tasks to their subordinates for executi in. "Low-level" con-

trollers, in applications such as manufacturing, vehicle management or robotics, usually have
millisecond time constants and have tight coupling of sensor feedback to actuators through
servo-control loops. The intermediate levels provide distinct controllers for each natural cluster
of concerns. The time constants for decisions between adjacent levels, typically, vary by a fac-

tor of 10 ([Albus 89], [Newell 91]). In a space application that requires seven levels (,f hierar-
chy, for example, the lowest-level controllers may have a millisecond response requirement,
and the top-level controller may plan and control activities spanning a few days.

Figure 2-2 depicts the internal structure of an individual controller in the reference architecture.
The controller is actually divided into two separate but interrelated components called the
domain controller (DC) and the meta-controller (MC). The DC contains several modular ;,unc-
tions and prescribes how they interact using dataflow conventions. The functions include
sensing, input filtering, situation assessment, planning, plan assumption analysis, execution
and effector activation. Each function is shown with a corresponding rectangle. Situation
Assessment (SA) interprets incoming sensor information and determines the identity of envi-
ronmental objects, their location and relative motion, and so forth. In nearly all systems today,
SA is performed using a combination of templates, rules and scripts in a knowledge process-
ing approach. These programs follow closely the path originally developed in Hearsay-Il
[Erman 88]. Methods of planning today are performed in less systematic or routine ways. Typ-
ically, however, knowledge engineers work with experts to identify critical goals such as acci-

dent avoidance or maximum velocity, anid then define parameterized plans whose execution
would achieve the corresponding goals. In real time the best generic plans are selected and
then customized or particularized to instantiate the plan with the current situation as context.
Typically, the plans prescribe a sequence of actions to be performed over time, and there may
be multiple concurrent action streams for different effectors or subordinates. Plans generally
continue as long as no major changes in the situation arise that negate their critical assump-
tions. Reports from subordinates detail the outcome of the various subgoals that were dele-
gated during plan execution. The controller tracks the resu!',s to determine whether continuing
the plan is appropriate or changes or failures have made replanning necessary
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Figure 2-2 Individual Controller Reference Architecture:
Domain Control & Meta-Control

Persistent storage is provided by state ob~jects, sh~own here as ovals. In particular, the local
view of the integrated IBWM is updated by the sensing, filtering, and situation assessing func-
tions. Proposed plans and executing plans are maintained in a plan cache. The critical
assumption analyzer determines which presuppositions of the cached plans need to be con-
tinually verified or, equivalently, which critical assumptions make the plans vulnerable. These
assumptions are used to drive input analysis. Several messages flow into and out of the DC.
The inputs include messages received from a superior controller specifying goals for the con-

II troller, messages from sibling controllers at the same level (such as another vehicle in theII same group), and messages from subordinates, typically reporting on the outcomes of their
efforts. Outputs include subgoals assigned to subordinates for delegated execution as well as
messages to siblings, for example, to report on current plan execution objectives or status or
to request operating resources.

Although this general DC structure has proved effective in applications such as the Pilot's
Associate ([Smith 89], [Lark 90]) and robotics [Becker 89], datafiow programs in general
exploit only weak knowledge about when to execute functions. The general rule is to compute
a'iy function when all of its inputs are available. However, there are often too many possible
instantiations to execute all simultaneously, or even with a small delay. Thus, in situations
where more knowledge is required to achieve excellent results with scarce resources, a meta-

level of control is required ([Garvey 89], [Hayes-Roth 85], [Hayes-Roth 90a]). Our meta-con-
troller is based on the knowledge-based scheduler of the BB1 blackboard system. This con-
troller utilizes three basic functions to determine on a cyclical basis which pending action is
best to execute next: an agenda manager to store and evaluate pending actions; a scheduler
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to determine the next action based on the degree of fit between goals of a control plan and

actions pending on the agenda; and an executor, which gives control to the selected actions.

The DICAM architecture provides several appealing features that can simrp!,fy and improve
both knowledge engineering and software engineering. We consider five of these briefly:

" The DICAM architecture provides a standardized or generic control framework that
can be customized for a wide variety of applications.

" The model is recursive, or fractal, in that the same approach to control can be appliea
at various levels, with different time scales and different domains and scope.

" It designates several specific modular capabilities that combine to produce intelligent
control. This makes it easier to develop libraries of reusable controller functions, with
as much domain-specialization as is useful. Furthermore, it makes it more likely that
the field will formulate and adopt generic approaches to SA and planning tasks,
which would improve both the quality of the software and make possible improved
task-specific KE environments for such tasks as knowledge acquisition and KB
validation.

" It highlights the importance of information sharing and a corresponding IB schema
for building integrated intelligent controllers. This should facilitate emergence of
standard datatypes for such items as situation models and plans. Because
successful development of intelligent controllers requires a combination of effective
KE and SE, and requires integration of functions both within individual controllers
and between multiple semi-autonomous controllers, precise ADTs, messages, and
protocols are highly desirable. Thus, formulation and adoption of an lB schema is a
key to advancing SE and KE for intelligent control.

"* The DICAM framework suggests a means of unifying conventional control
engineering with knowledge-based Al approaches to control. Where the former
addresses fast, closed-loop, deterministic, algorithmic solutions to relatively simple
and well-specified control problems, the latter is concerned with deliberative, non-
deterministic, heuristic solutions to complex and open-ended control problems. We
believe that the best solution to any control problem will require a particular mixture
of these complementary general approaches. We expect the reference controller,
consisting of the DC and MC, to be able to model and specify all such mixtures of
control approach. Then, with appropriate compiling techniques, one framework for
control could be used to generate high-performance controllers for a wide variety of
applications.

3 Controllers in Application:
Automated & Mixed Initiative

Although our own research project is focused on technology for producing controllers, it is the
applications of controllers that are the end use. In other words, our technology will be evalu-
ated ultimately in terms of the quality of control applications that it helps make possible.

There are two broad classes of applications that we are concerned with: (1) automated or
"computer-based" control and (2) human-in-the-loop or "mixed initiative" control. Because the
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automated case is simpler, we elaborate it further here before considering the mixed initiative
case.

3.1 Automated Control

In automated control, the controller is a computer-based system, and it is solely responsible
for control. Control of complex systems is divided among cooperating controllers as shown in
Figure 3-1.
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Figure 3-1 Controller Interactions

Communications upward and downward are composed of two basic classes of messages:

"* Commands, requests and goals that are inputs to the module.

"* Reply, result, error or exception messages sent from the module to the sender from
whom it originally received its own task assignment.

Note that controllers are generally persistent. They take on tasks that are temporary and con-
tinue until the tasks are completed, regardless of interruptions.

For an autonomous control system to be successful, it need only achieve high performance
on various objectives such as risk avoidance, throughput or travel time, etc. Success or failure
on the task can be attributed directly to the effectiveness of the individuals and their
cooperation
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3.2 Mixed Initiative Control

In contrast with an automated controller, the mixed initiative controller with a "person in the
loop" is more complicated, and the metrics for system performance are generally more sub-
jective. Figure 3-2 illustrates how we are currently integrating the human into our generic con-
trol approach. In place of the automated control comprising only the DC and MC, the mixed-
initiative controller also includes a human-computer interface (HCI) module and a human (usu-
ally just one per controller). The HCI determines what information to supply from the computer
to the person and how to interpret the information provided by the human's actions. Mixed-
initiative controllers can vary over several additional dimensions corresponding to: (1) the dis-
tribution of authority between person and machine; (2) the distribution of tasks; (3) the band-
width of communication between the two; (4) the comparative intelligence levels of the two;
and (5) the principal value sought from the computer system, from active idea generation and
improved information presentation to more passive decision assessment or error monitoring.

Depending on the specific values on these dimensions pertinent to a particular application, the
HCI will be appropriately specialized. Typical in applications like those of the Pilot's Associate,
where the HCI was called the "pilot-vehicle interface (PVI)", and our howitzer demonstration
task, the HCI is a combination of expert, advisor, monitor, assistant and clerk. In both appli-
cations, the human is the ultimate and only authority, but the human generally delegates
authority for routine decision-making to the computer system during training sessions and pre-
flight or pre-battle mission initialization or set-up activities. Furthermore, because policies or
practicalities may dictate that only humans can make some kinds of decisions, our architecture
must be capable of modeling systems in which humans directly perform some DC or MC func-
tions. In this way, a full model of the mixed-initiative controller would show a partitioning of DC
and MC functions and an assignment of some of them to the human as processor. The meth-
odology we are developing supports this complication explicitly by separating the specification
of functionality from processor allocation decisions. More generally, particular components
within the domain controller and meta-controller may require replacement or customization to
support human interaction and implement the HCI.

In short, humans ;re "in the loop" for three basic reasons. First, organizations today for histor-

ical reasons are largely defined in terms of human roles. In these contexts, humans are per-
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In short, humans are "in the loop" for three basic reasons. First, organizations today for histor-
ical reasons are largely defined in terms of human roles. In these contexts, humans are per-
ceived as the active controlling agents and current practices are based on human approaches,
skills, and policies. Computers are not seen as team members, generally, so the computer-
based controllers are used in limited supporting ways. Second, humans are almost every-
where designated as the responsible decision-makers. Therefore, computer-based controllers
in many such contexts are perceived primarily as decision-support systems. Third, humans
are in many cases the ideal information processors where information is subjective, visual, or
potentially critical. Therefore, systems must be built around these strengths, focusing on mak-
ing the computer non-interfering and complementary. Because of these important reasons, the
DICAM architecture and associated environment must be capable of representing, supporting
and developing intelligent control systems which have arbitrary mixtures of human and com-
puter-based initiative, cooperation, and authority.

4 The Development Methodology
Our basic methodology for development of DICAM applications consists of a blackboard-like
environment where the "blackboard" is a development workspace and the "knowledge
sources" are system developers augmented by a wide variety of computer-based tools, includ-
ing some expert systems that are capable of autonomous development activity.
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Figure 4-1 The Development Workspace
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4.1 Development Workspace

The development workspace contains a representation of the emerging system being devel-
oped incrementally over time. Its elements represent nearly independent decisions or specifi-
cations, linked into a "web" of mutually supporting decisions that both specify the system
design and justify it. We have combined three lines of research in formulating this development
workspace. First, we have drawn on the blackboard model and opportunistic reasoning
([Erman 80], [Hayes-Roth 79], [Hayes-Roth 86]) as an organizing methodology for incremental
design and development processes. Second, we have adopted the emphasis of the domain
analysis and domain-specific architecture approach to software specification, reuse and rapid
development [Prieto-Diaz 91]. Lastly, we have adopted and generalized the approach of mod-
ule-oriented programming from our previous research on ABE ([Erman 1988], [Hayes-Roth
89], [Hayes-Roth 91]). This includes the ideas of recursive modular composition, distributed
control through message passing using ADTs, system construction through module composi-
tion, and system realization by deferred binding of processors to modules.

Specifically, the workspace provides a multi-faceted, multi-level representation of DICAM soft-
ware applications. It provides means for describing the domain model, i.e., the general char-
acteristics of the task and environment in which the vehicle or machinery will operate. The
general domain model is then augmented with specialized information about the specific appli-
cation being built, such as how many vehicles, the distances to be travelled, the specific
threats and so forth that the application will address.

At a lower, more concrete level, the workspace provides means for representing the functional
components and the physical resources that make up the controlled system, and it describes
how the functional components are composed and how they are implemented using specific
processors, communication capabilities or other machinery.

In addition, the workspace provides means for representing the status of the software devel-
opment process, including the history of activities and characteristics of the current overall
development.

As is typical of blackboard systems, the workspace provides means of representing decisions
and using state changes to trigger the invocation of appropriate tools. Decisions in this work-
space range from abstract characterizations of components such as requirements or goals to
particular specifications, including detailed functional characterization or specific software or
hardware packages that realize the required capability. We have not yet settled upon final or
formal representation sublanguages for each level, but are considering various alternatives
that are being suggested in other groups' efforts to conceive potentially standardizable
descriptions of modules and module interfaces (e.g., the DARPA module interconnect formal-
ism, the DoD STARS repositories, etc.). Regardless of which specific formalism is used, the
description of modules must include input/output datatypes, function characterizations, imple-
mentation requirements, domain assumptions, and performance metrics. When making a
design decision, the developer specifies (or the development system infers) some or all of
these attributes along with his or her name and some rationale. As in all blackboard systems,
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decisions are changeable, and multiple competing decisions may coexist. Ultimately, those
decisions that form the best coherent "web" win: these decisions constitute the overall system

specification, from requirements to implementation, which particularizes the domain and appli-

cation models.

4.2 Development Methods and Tools

We intend to support a wide variety of development processes. In fact, the most general model
we support is opportunistic design, where developers move freely around in the workspace of
decisions as interesting situations arise. Typical decisions are to add a requirement to a com-
ponent specification, to derive a new requirement at a lower level deemed necessary or desir-
able to helping satisfy some requirement at a higher level, and to implement a function by
selecting a module from the repository. Also, we anticipate that most systems will be designed
by redesigning old systems, so we provide means for storing, browsing, and retrieving old
designs from a repository. The components of the library correspond to the types of objects
previously discussed: DC & MC components and whole systems; domain and application
models and components thereof; and requirements on, specifications for, and implementa-
tions of functional modules and compositions thereof. Similar library services are available to
support creation and reuse of abstract datatypes (ADTs) that are used by the IB/WM schema
and within intermodule messages. In short, the developers can assemble a system from old
or new parts, potentially in any order they wish.

Most organizations, however, will want to suggest or impose a prescriptive process model (a
process plan) upon the development process. This would determine which concerns would
need to be addressed first, and might constrain all decisions to accord with some set of rules.
We will support this by allowing organizations to implement their own process models using a
pattern-directed system that monitors the process state and suggests or enforces use of par-
ticular tools when corresponding key events occur. This means, in effect, the prescriptive pro-
cess model is the control plan for the development process. This allows us to support any
methodology explicitly.

Other aspects of the methodology are too numerous to describe in detail; however, Table 1
presents these and their key elements concisely.
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Aspect Elements

Opportunistic Design Multiple levels and representations
Abstract to particular characterizations
Incremental decisions
Linked decisions form design web
Prescriptive process models permitted
Humans and computer tools cooperate

Controller Generic modules
Architecture Flexible, tailorable controllers

Schema of ADTs for IB/WM
Message processing using ADTs
and intermodule protocols

Distributed control
Fractal control model

Information Shared data managed by IB/WM
Base/World Model Conceptually centralized, single-copy,

but allows physical partitioning
Typically distributed
Time response must satisfy requirements
ranging from sub-millisecond to a few seconds

Different levels of aggregation
Different meta-types: data, propositions,
rules, plans

Temporally organized and continually renewing

KB Design Assistants Mini-expert systems watch process stateand advise user at key events
Tool-use expert systems help humans
apply development tools

Repository Stores and uses partial matches to reirieve
"components" at any level

Components classified in taxonomy
from generic to particular

Domain-specific customizations available
to particularize generics

Engineering Foci Domain modeling
Requirements engineeringKnowledge engineering, about DICAM and

DICAM development tools and methods
Performance objectives, measurement
and attainment

Component Goals & Constraints
Characterization Models: Behavior, timing, functionalityInterfaces

Datatypes
Module partners
Conversation types
Protocols
Messages to other devices
Resource/environment prerequisites

Table 1 Aspects of the Development Methodology
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5 Development Support Environment

We are assembling an Application Development Support Environment (ADSE) for DICAM
applications. It is depicted in Figure 5-1. In addition to the Development Workspace, the ADSE
contains several other principal features which we describe briefly in the following paragraphs.
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Figure 5-1 The Application Development Support Environment (ADSE)

A To-Do List is provided that keeps an agenda of pending tasks for the software developers.
The To-Do list is a central interface between the developer and the development support envi-
ronment. Actions on this list are generated either by the Process Plan, by Knowledge-Based
Design Assistants (KBDAs), or by developers themselves. As with blackboard systems,
actions are triggered (i.e., enabled) when the state of the Workspace matches a pattern of
interest. In some cases, as specified in the Process Plan (see next), a triggered action is exe-
cuted automatically; in other cases, it is up to the developer to choose if and when to initiate
the action.
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A Process Plan is supported that effectively maps patterns of interest found in the Develop-
ment Workspace and the current To-Do List into proposed actions. The proposed actions
(shown as Pz) in the figure might include any of the following: make a specific design decision;
apply a particular tool to a particular design component with certain parameters; raise the pri-
ority on doing one pending task over others, etc. Our plan is to support a wide variety of SE
methodologies by providing a general mechanism for representing and implementing corre-
sponding process plans.

A Repository of reusable components is provided that stores, classifies, and searches for pre-
viously used Development Workspace structures. Typically these include reusable domain
models, application characteristics, generic function modules, specific implementation mod-
ules, and data to customize or particularize generic functions for specific application domains.

A Tool Registry provides mechanisms for enrolling software development tools, describing
their required inputs and associated outputs in terms of patterns that match characteristics
found in the Workspace or Process Plan and, finally, providing Tool Activators that can auto-
mate or semi-automate invocation and application of tools. The tools consist of compilers, gen-
erators, simulators, expert system shells, etc.

Lastly, the ADSE incorporates specialized tools called KBDAs that provide knowledge-based
assistance in to the software development process. These tools can include, for exanmAple:
requirements analyzers that suggest appropriate reusable components; redesign advisors
that suggest ways to modify an existing design in light of a change in requirements or capabil-
ities; and intelligent interfaces that set up and run complex tools to assist a developer in gen-
erating or analyzing some code.

Aside from the overall project focus on DICAM applications, which affects the types of tools,
models, and compositions we construct and the kinds of knowledge appropriate for the repos-
itory and KBDAs, our ADSE should prove generally applicable to software development.

To implement the ADSE we are using a number of "off-the-shelf' technologies. Chief among
these are: ABE [Hayes-Roth 91], as an integration environment for tools, a composition frame-
work for modular, real-time applications, and a catalog and classification system for the reuse
repository; BB1 as an incremental workspace, process model interpreter, and agenda man-
ager; M.4, a commercial expert system shell, for building the KBDAs; and the Requirements
Manager (RM), a DARPA-sponsored software product for collecting, managing, and evaluat-
ing application requirements and validating application designs against requirements [Fiksel
90]. We are also evaluating many other commercial and research SE tools for use in the ADSE
[cf. NIST 91].

6 Status and Plans
We are currently applying the general approach described in this paper to demonstration prob-
lems chosen from defense applications. As an example, consider the task of achieving intelli-
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gent control of field artillery systems, such as mobile howitzers. Howitzers, like other military
vehicles, are self-propelled, mobile vehicles with offensive guns. Their primary mission is
ground-based artillery shelling of over-the-horizon targets. They are very similar to tanks,
armored personal carriers, and helicopters in general information processing terms. Thus, all
military vehicles of this sort share elements of the domain model, but differ increasingly as
these models and the corresponding application model become detailed.

Information Base
& World Model

piring Bathey Higher
Headquarters. Platoon

Th gnealDIAMar hitctue issei Le adef r AryVhclLaae ent aysems(e

Che of Chief of
system. HeiSection "ection

Sub- Control Loading Driving

i anngn cn m b Gripper StomatedFir Engine

thCannennoletntion b mixed-initiative co ntrol

Figure 6-1 Specializing the Generic DICAM Controller Structure
for a Particular Howitzer

The general DICAM architecture is specialized for Army Vehicle Management Systems (see

Figure 6-1) by the selection of levels: battalion, battery, platoon, vehicle (section), system, sub-
system. Here it is further specialized for the hypothetical "ABC Howitzer" by the selection of
functional controllers and their relationships. Each group of ABC howitzers is headed by a Pla-
toon Leader who reports to higher headquarters. The Chief of Section of each vehicle reports
to the Platoon Leader and is responsible for the Gun Control, Loading, and Driving functions.

The Gun Control, Loading, and Driving functions might be individually manned or automated.
The functions below them are typically not separately manned. At this level of description,
there is no distinction between automated and mixed-initiative Controller functionalities.

Following the domain-specific approach, after developing the generic domain model, the next
task for system developers is to elaborate the application model. The current task application
model is illustrated in Figure 6-2. The figure shows an enumeration of desired functionalities
associated with each level of control. The vertical lines connecting several functions indicate
generic functions that appear repeatedly across different control levels, such as tasking sub-
ordinates with subgoals or performing external and system status analyses as part of situation
assessment. These functionalities are also common across the analogous components in
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other vehicles: tanks, missile launchers, infantry fighting vehicles, etc. Thus, there are two lev-
els of functional similarity:

"* across different components within a vehicle, as shown here, and

"* across the similar components in different vehicles.

Component Functionalities:
Vehicle Components: __ _

,...t stak subordinates
rp Ort to Platoon Leader

i•ntor vehicle's performance envelope over time
Chief of Section assess overall external situationSCommand -. 00

itpslIo and fire cannon
Iure;prto Chief of Section

Cnntrol nfotr cannon supplies & performance over time

HI recognize targets
4c. nrol engine

1 i f • nronitor fuel, oil, & movement capabilities over timeLoadig I r~port to Chief of Section

assess Immediate environs

JEef utve: subgoals to subordinates
Common Functionalities. .within a otole:Ete(:utlve: messages to superiorswti a controller

NSuation Assessment: system status

*Situation Assessment: external status

Figure 6-2 Informal Task Application Model for a Portion of the Howitzer Example

To convert the informal task analysis into a more formal, explicit application model, the system
developer selects from among generic functionalities in the reference architecture, specializ-
ing and customizing them for the particular needs of the target vehicle. This is illustrated in
Figure 6-3. In that figure we see, for example, that the functions of the Chief of Section in the
areas of planning, situation assessment and meta-control are mapped into specific functional
requirements. These specifications include a requirement that site selection for moving the
vehicle be completed within 25 minutes, that future fuel levels be estimated with less than 10%
error, that evaluations by situation assessment of candidate sites be completed in less than a
minute, etc.
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Figure 6-3 Building the Application Model
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Figure 6-4 Partial Layout of the Repository

44 CMU/SE I-92-SR-9



Our approach toward organizing the repository is illustrated in Figure 6-4. Classifications are
maintained for controllers themselves, including modular, parametric and particular implemen-

tations; for domain and application models; for information bases at various levcls of complete-
ness; and for components of controllers including modules of domain controllers and meta
controllers.

6.1 A Partial Development Scenario

Our research on the DICAM-DSSA program began late in 1991 and will continue through
1995. Our current emphasis is on assembling an initial infrastructure for the ADSE, developing
a taxonomy of controllers to help classify and organize controller elements in the repository,
initial software development for the hybrid controller itself, and domain analysis and design for
a DICAM-DSSA demonstration in the howitzer domain. We now present a brief toir of some
of the initial elements in this demonstration, with the following overall sequence:

"* The scenario starts in the midst of an on-going design project

"* The user changes some requirements, then evaluates them to see where the design
needs work

"• These changes cause tasks to be posted to the To-Do list

"* The user gets advice on one of these tasks from a design advisor

"* The advisor helps in the selection of a more capable processor and also helps in
propagating the effects of the decision

"* The user decides to fix another problem by finding an appropriate module from some
other vehicle's design

"* The user queries the repository for this module, examines the alternatives, and
selects one

The goal of this scenario is to give a flavor of the ADSE by showing the use of various tools
and typical interactions. This brief scenario assumes the user is designing the ABC Howitzer
section chief's decision support system by modifying that of a missile launcher and borrowing
relevant pieces from a tank design. Design is focused at this point on the reconnaissanca,
selection, and occupation of position (RSOP) and its Site Assessment module.

Figure 6-5 shows the Requirements Manager in use for specifying and tracking the hierarchi-
cal requirements for the RSOP's Site Evaluation capability. The user can evaluate which
requirements are satisfied using a variety of more or less sophisticated evaluation methods,
including simulation and analysis.

In Figure 6-6, each requirement has a status showing the result of most recent evaluation, and
the time of that evaluation. Here the user selected a Site Evaluation module from another
design and checked to see what doesn't work. Among nther problems, it looks like it is too slow
as is. When a requirement fails evaluation, the requirements manager can automatically post
a tasK to the To-Do list to effect some change that will allow the requirement to be satisfied.
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Figure 6-7 Checking the To-Do List
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Figure 6-8 Getting More Details on the Task
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Figure 6-9 Getting Advice on How to Complete the Task

Figure 6-7 illustrates the To-Do list, a central interfact can be user and ADSE to communicate

focus and open tasks. The interface uses an outline metaphor. Tasks have three possible sta-

tus values: not started, in progress, done. The user can button a task and ask for details or for

advice on how to do it. At any point the user can edit the list and change status values; so can

tools in the ADSE. Note that a task to fix the failed full evaluation time requirement from Figure
6-6 has been posted.

In Figure 6-8, the user has asked for more details on the new task. This display shows a textual
description along with reasons for its being posted. The user can edit this information when

ieappropriate.

Figure 6-9 illustrates what happens when the user asks for advice on how to satisfy the task.
This might be stored text or a KBDA might compute what can be done. The Do It button fires

up ones the user has selected. The absence of a box means the ADSE cannot help work on

this task. Do It for Change to a faster processor puts the user in the editor and allows deft-
nition or editing of a new processor specification.

Figure 6-10 shows what happens when a process program or script executes. This script
begins by showing the user what processor is currently specified and invites the user to
request advice, which the user does. In this case advice is provided by a KBDA which special-

izes in selecting appropriate processors
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Figure 6-11 KBDA Conducts a Dialog with the User
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Figure 6-12 User Selects from the Choices Offered

In Figure 6-11, the processor specialist KBDA begins by first collecting and evaluating user
requirements and design flexibilities. Then it queries the repository to see which candidate pro-
cessors it can recommend.

Figure 6-12 shows that the KBDA finds two candidate processors for this user, and it presents
each along with a rating of goodness. The "CF is a "certainty factor" computed by the under-
lying expert system shell. The user selects the first one listed as best fitting the design objec-
tives and replaces the old processor with this new one.

In Figure 6-13, we see how another KBDA helps manage the many possible effects of a design
decision. This KBDA helps the user by propagating the more mechanical effects, copying the
contents of the old processors attribute values into corresponding ones in the description of
the new one. It notices one of the modules assigned to the processor has no obvious imple-
mentation version for the 386. This is posted to the To-do list for resolution.

The KBDA's results show up in the to-do list in Figure 6-14. The user has made progress on
the task of fixing evaluation time by adding a new, faster processor for the application. This
also spawned some new subtasks. A new task to find a 386 version of the route generation
module has been posted, even though it is not an explicit child of the "fix processor speed"
task. Since the processor has been selected, the task is characterized quite specifically. The
user still need to re-evaluate requirements and to test that this design change really works.
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Figure 6-14 Results of a KBDA Reflected In the To-Do List
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Figure 6-17 User Browses RSOP Requirements

The KBDA didn't find any "obvious" matches for the route generation module. The user
decides in Figure 6-15 to query the repository for modules that might work from other vehicles.
Figure 6-16 shows that the query found three hits and lists them along with its rating of their fit.

Finally, in Figure 6-17, the user looks at details of the top-rated candidate, which apparently
looks excellent. The user selects it for inclusion in the current design and subsequently inte-
grates this selection into the overall design web.

7 Mappings BeL nr. KE And SE 'n DICAM

Our research focuses on distributed intelligent control and management. Although our partic-
ular demonstration will initially be in the area of military vehicles, all of which share "move-and-
shoot" domain models, we expect the technology and methodology will generalize to other
intelligent control domains, such as factory management and control systems, which is a prin-
cipal area in which we wish to leverage these results.

Intelligent control requires a blend of both SE and KE technology and methods. The traditional
SE approach to control has been autonomous, real-time, closed-loop, and deterministic. The
traditional KE approach has been toward human-in-the-loop, deliberative, non-real-time, prob-
lem-solving systems. This project requires integrating these two approaches to produce hybrid

control which is deliberative and real-time, operates at different levels of granularity, and spans
many levels of concern from high-level objective setting to low-level fast servo-controlled

behaviors.
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While the preceding paragraphs addressed the relationships between SE and KE within the
DICAM applications, the two technologies must also be combined to support the development
process. As previously discussed, we are using techniques and tools that originated in KE to
support the incremental development process, including the formulation and development of
DC and MC components, blackboard-like environment, knowledge-based advisors, and the
domain and application models. On the other hand, we are using techniques and tools that
originated in SE to support the tool integration, real-time systems specification, requirements
management, domain analysis, and software engineering environments composed of myriad
tools.

A key objective in this program is the reuse of software components. Given that the strategy
for achieving this rests on the use of a reference architecture, generic module specifications,
and domain-specific customizations, it appears that reuse is precisely the application of knowl-
edge engineering to software engineering. That is, we seek to acquire and encode knowledge
about software components that makes it possible to automate software engineering deci-
sions.

8 Related Research
The DICAM-DSSA program integrates and extends research in many subareas of both SE
and KE. We briefly mention some of the research related to our work in a few of the key areas.

Our efforts to develop a standard framework for hybrid control that combines conventional and
Al approaches, uses a conceptually centralized information base and world model, and has a
fractal or recursive, hierarchical structure synthesizes the following related results. Albus and
his colleagues at NIST developed the NASREM hierarchical model of control which has mul-
tiple levels and a shared world model ([Albus 88], [Albus 89], [Albus 90]). The hierarchical,
message-passing organization of robot control was developed by numerous investigators
([Becker 89], [Miller 91], [Schoppers 87], [Zeigler 90]). Our work is informed by conventional
control theory and practice ([Bollinger 88], [Franklin 80]), Al approaches to intelligent control
([Boureau 89], [Collinot 90], [Erman 90], [Garvey 87], [Garvey 89], [Hayes-Roth 90a], [Hayes-
Roth 90b], [Hayes-Roth 90c], [Hayes-Roth 90d], [Hayes-Roth 89], [Washington 89]), and var-
ious approaches to distributed control ([Erman 73], [Coleman 90], [Herget 90]).

Our work relies upon and extends much earlier work in distributed situation assessment
([Lesser 80], [Steeb 81]).

Intelligent control has been a focus of investigations in both manufacturing ([Murdock 90],
[Pardee 90]) and planning ([Darwiche 89], [Fox 91], [Hayes-Roth 79], [Hayes-Roth 88), [Wash-
ington 90]), especially as used in mixed-initiative control systems such as the Pilors Associate
([Smith 89], [Smith 88], [Telles 88]).

Our approach to developing software designs by finding good partial matuhes to requirements
relies on previous work on these topics ([Fiksel 90], [Hayes-Roth 79], [Prieto-Diaz 91]).
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Related work on design as assembly ([Bhansali 91], [Hayes-Roth 86]) is also highly relevant.
These themes are central to the recent great interest in domain analysis and software reuse
([Brooks 87], [DARPA 90], [Prieto-Diaz 91 ]).

Software engineering environments ([Erman 88], [Hayes-Roth 89], [Hayes-Roth 91], [NIST
91]) are a major topic of interest that overlaps and informs our work. The specific requirements
of real-time system specification and construction (cf. [Lark 90]) have also influenced our over-
all approach. The particular approach, that of incremental development, we are supporting
here is motivated in part by its superiority over more rigid, waterfall approaches [Boehm 88].

Knowledge-based assistants for planning, design and engineering ([Bhansali 91], [Daube 89],
[Fiksel 891, [Fox 91], [Frederick 90], [Nicklaus 88]) are a central element of our ADSE.
Although software development advisory systems are still rare, the need for them and the con-
ception of them is widely perceived ([Floyd 71], [Green 83], [Moriconi 79], [Waters 85]).

9 Conclusions
The DICAM-DSSA project we have described exploits and combines many facets and tech-
niques of both SE and KE. By focusing on intelligent control applications, we are forced to
combine and relate the largely complementary perspectives the two fields apply to control sys-
tems, namely, formal and algorithmic vs. rich and knowledge intensive. Furthermore, by focus-
ing on the need to build systems more quickly and reliably, we have needed to apply KE
techniques directly to the domain of SE. This is most apparent in the development of reusable
domain and application models, the blackboard-like approach to the representation and con-
trol of the software development process itself, the classificatory organization to the reuse
repository, and the provision of software development advisors (KBDAs). In order to address
the requirements for building controllers for realistic, critical applications, we have needed to
provide a SE methodology and environment that is somewhat traditional in its support for real-
time systems engineering and the application of many, diverse software tools. To meet that
requirement we have formulated an application development support environment (ADSE)
capable of specifying and realizing practical controllers using both conventional and knowl-
edge-based tools. Furthermore, the ADSE provides means for implementing varic s software
development processes and assisting developers with such tools as a To-Do assistant and
other KBDAs.
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Abstract: Honeywell and the University of Maryland are developing a domain-
specific software architecture for intelligent (adaptive) guidance, navigation and
control for aerospace applications. Some distinguishing aspects of our domain
are a need to adapt to a variety of specialized target hardware systems,
requirements for high reliability and system certification, and increasing
demands for functional integration and high performance computing. Our
approach exhibits three major themes: an extensive reliance on formal models,
a provision of multiple views corresponding to multiple areas of skills and
requirements, and an open toolset and layered architecture. 1

1 Introduction

Honeywell and the University of Maryland are currently developing a software architecture for
intelligent (adaptive) guidance, navigation and control as part of the DARPA DSSA program.
In addition to providing a classification of operations and data types appropriate for our
domain, our architecture will also provide standard interfaces (standard control and data flow
mechanisms) that will facilitate component reuse.

An important aspect Yf our program is that the architecture itself will be amenable to automatic

analysis, configuration and population. Thus, abstract and easily manipulable representations
for our architecture, together with tools to analyze, configure and populate it, are important
products of our program.

Another important aspect is that we must address multiple system requirements. Real-time

performance, hardware requirements, and reliability must also be considered, not just GN

1. Supported by DARPAIONR Contract No. N00014-91-C-0195.
@1992 IEEE. Reprinted, with permission, from Proceedings of the 1992 IEEE Symposium on Computer Aided

ControlSystem Design; Napa, California, March 17-19, 1992; pp. 110-116. Permission to copy without fee all or
part of this material is granted provided that the copies are not made or distributed for direct commercial advan-

tage, the IEEE copyright notice and the title of the publication and its date appear, and notice is given that copying
is by permission of the Institute of Electrical and Electronics Engineers. To copy otherwise, or to republish, re-
quires a fee and specific permission.
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functionality. The software architecture must be based on technologies from multiple areas,
just as engineers from many disciplines are involved in designing and building an actual con-
trol system.

We have identified three central themes that we believe will allow us to achieve our goals.
First, we are making heavy use of formal models in the development of our architecture. Sec-
ond, we are providing multiple views corresponding to different skills and requirements. Third,

we are utilizing an open toolset in conjunction with a layered architecture.

1.1 Formal Models

The first major theme of our approach is a reliance on formal models to the maximum extent
possible. Examples of formal models that play an important role in our program are systems
of differential and difference equations, scheduling theory and combinatorial optimization,
Markov processes, etc. Our approach is to derive the software architecture from formal models
rather than attempt to construct approximate models for some convenient or pre-existing soft-
ware architecture. One of the major research goals we are addressing is to do this in a way
that satisfies two conditions.

First, a software architecture must represent an integration of multiple formal models. This is
complicated by the need to configure an architecture. Neither formal models nor architectures
apply to a single problem instance. Instead, they are both parameterized in a number of ways.
For example, a control system might be parameterized by linear state space operators, num-
ber of processes and their frequencies, number of target system processors, hardware fault
rates, etc. Parameters may be more complicated than individual values and may extend to
structural aspects of a system, for example the interconnect or data flow pattern between a set
of processes. When an architecture is configured according to the parameters and structures
of ane formal model, it is necessary that this be done in a way that preserves consistency with
all the other applicable formal models and specifications.

Second, a software arc"itecture should be as precisely modeled by each applicable formal
model as possible. Our goal extends beyond the use of formal models as design guides. To
the maximum extent possible, there should be a precise mapping between elements of the
final software and elements of each formal model. For example, it should ideally be possible
to map each machine instruction to the parameter of the real-time scheduling model that
accounts for that instruction's execution time. Another way to describe this is that we are striv-
ing towards a methodology for formal verification in-the-large.

We anticipate a number of benefits from the use of formal models. In addition to architecture
configurability and verification, the notation associated with a formal model provides a starting
point for machine-processable specifications and representations. Because of the precise
relationships between software a-zhitectures and formal models, the analytic predictions
made using the formal models should be highly accurate. This will enable rapid design evalu-
ation and trade-off studies and should lead to significant improvements in system quality.
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Many formal models have associated optimization techniques that can be used to automati-
cally synthesize good designs (e.g., synthesis and rate monotonic scheduling).

1.2 Multiple Views

The second major theme of our approach is to provide multiple views into an architecture that
correspond to standard engineering disciplines, requirements categories, and groups of
related tools and models. Actual systems are complex and require the skills of many disci-
plines, not just those traditionally associated with the field of controls. Computer system engi-
neers, safety and reliability engineers, software engineers, as well as program managers and
administrators, must all cooperate in order to produce an acceptable system. We can identify
two areas in which we have goals that we believe will provide significant benefits.

One of our research goals in this area is to develop uniform user interfaces and specification
and design languages within each view. Associated with each view are a variety of design syn-
thesis, design analysis and evaluation, and code selection and generation tools. A common
user interface with a common design and specification capture language would greatly facili-
tate more extensive design and analysis tasks within a view.

A second research goal is to facilitate the exchange of evaluation and trade-off information
between views in a way that enables multi-disciplinary concurrent engineering and integrated
product development. Analysis information obtained in one view may be of great interest in
another view, especially when presented in a way that is meaningful and relevant in that view.
For example, information about scheduling feasibility obtained by the computer system engi-
neer, such as allowable changes in process frequencies and execution times, are also of inter-
est to the control engineer. More elaborate capabilities than information sharing are desirable,
such as allowing an engineer to "can" a system-specific analysis in some process program-
ming or script language in a way that allows many design questions asked by specialists in
other areas to be answered automatically.

1.3 Open, Layered Architecture
The third major theme of our approach is to provide an open toolset and a layered architecture.
Generally equivalent tools should be substitutable for one another. The architecture should be
layered in such a way that groups of tools correspond to architecture layers, where toolsets
and layers can be added or removed for each particular project as needed.

Many vendors provide many tools to perform design synthesis and analysis, and hopefully
many run-time modules will increasingly be drawn from software repositories. Rather than tie
ourselves to a particular toolset, our goal is to facilitate the integration of new tools and mod-
ules into the overall product. In some cases, different sites will have a preference among
roughly similar tools (e.g., MATLAB versus XMath versus HoneyX). In other cases, internal
and/or highly specialized tools may be required for certain markets or projects (e.g., multi-body
dynamics and flexible structures).
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Domains, like systems, are hierarchical. Guidance, navigation and feedback control can be
viewed as subdomains within the overall field of control science, just as control implementation
can be viewed as a subdomain within the overall field of embedded computing. One of our
major goals is to develop a toolset and architecture that is extensible to related domains. In
particular, it should be possible to add new views, toolsets, and layers to our IGN architecture
(e.g., display management, signal and image processing, and diagnostics).

2 Architecture Views
We will first walk through a simple design scenario to help better explain our concept of view
before outlining the set of views we are assembling. Figure 2-1 gives an example of two views
we are working to provide into our domain-specific software architecture: guidance, navigation
and control; and resource scheduling and allocation. We begin our scenario with a control
engineer usinc a GN view to develop a control algorithm.

Guidance, Navigation & Control Resource Scheduling & Allocation

control task scheduling
diagram and allocation

satbility feasibility
robusnessutiliz~ation

ousenesitvt critical times
Ie w maximum times

control control HWISW schedulegenerator analbinder analyzer

task timing task code

performance _ _ _ _ _ _

model

partition
specification

exectiF Ada executable

Figure 2-1 Example Architecture Views

The control engineer develops a plant model and controller design expressed in some conve-
nient specification language, most likely a mixed visual/textual language. Synthesis, analysis,
and simulation tools are available to help develop and evaluate the plant model and controller
design. Stability, performance, and robustness criteria are typical concerns at this point in the
development process. When the control engineer is satisfied with the preliminary controller
de. jn, too are available to generate software to implement the control functions and to gen-
er, . timing and data flow specifications.
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The machine representation of an overall software architecture may be viewed as a set of log-
ically distinct configurable specifications or templates, ignoring for the moment the specific

representation and consistency maintenance techniques used. In the example of Figure 2-1,

the timing data is used to configure a performance model, and the data flow specifications and

software are used to configure and populate a run-time executive template. These then
become available in the resource scheduling and allocation view for use by the computer sys-

tem engineer.

The computer system engineer employs a variety of scheduling and combinatorial optimiza-

tion tools. For example, simulated annealing might be used to allocate processes to proces-
sors and data flows to hardware interconnects, and rate monotonic scheduling might be used
to schedule the processes assigned to each particular processor. Analysis tools provide an
indication of scheduling feasibility and processor utilization. Analysis tools can also provide
useful sensitivity analysis information, such as how much a process frequency or execution
time can be changed and still preserve feasibility (or must be changed to achieve feasibility).
This latter information is also of great interest to the control engineer, and when relayed back
to the GN view provides a basis for rapid, multi-disciplinary design iteration.

Figure 2-2 shows six views that are useful in the development of IGN software. Each of these
views consists of an appropriate specification and design capture interface together with
appropriate synthesis, analysis, and generation tools. All these tools access a common archi-
tecture and component library, which in the final product may be some mixture of integrated
workspaces, persistent storage managers, representation-to-representation translators, and
consistency maintenance tools. The first two of these views have already been introduced.

The source structure view will allow the software engineer to examine and compose the soft-
ware at the source (e.g., Ada) level, providing such standard capabilities as cross-referencing,
graphical display of data and control flows, etc. These capabilities are characteristic of existing
Computer Aided Software Engineering (CASE) toolsets.

What we plan to provide in our documentation view is management of hypertext/hypermedia
capabilities that are pervasively provided throughout the interfaces for all views. For example,
it should be possible for the control engineer to call up a hypertext card to document a partic-
ular transform in a particular diagram, or the software engineer to call up a hypertext card to
document a particular data flow in a particular package. This view should also contain capa-
bilities to search, extract and format information in various ways (e.g., 2167A documents).

Dependability includes not only reliability in the face of hardware faults (i.e., classical hardware
fault-tolerance), but also notions of security, testing, certification, plant model validation, and
any other verification validation issues. Like documentation, dependability provides a central-
ized view of activities that may occur in other views. For example, different forms of testing will
be conducted in the GN, the resource allocation and scheduling, and the source structure
views, where all testing might be tracked and traced to various requirements within this view.
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and practices, will inevitably vary from site to site. We include this view to emphasize its impor-

tance within an overall development toolset and the need to flexibly adapt to varying environ-

ments.

There are substantial numbers of pre-existing tools in all these views. The goal of our project

is not to reimplement this or that tool, but rather to develop a software architecture for IGN that

integrates all these aspects. In some sense, the details of tool selection and tool infrastructure

will be driven by the software architecture, just as architecture development will be driven by

the various formal models and requirements.

3 Architecture Layers

Figure 3-1 shows some proposed layers in our IGN architecture. In our system, a layer carries

the traditional connotation of a block of software that may but need not be present in the final

system. We also wish this term to connote the associated views and tools used to specify, ana-

lyze, and generate that layer of application software.

Navigation m - Guidance -

ControlH - VPS

Event Compiler

Reliability Transformer

Compiled Kernel

Figure 3-1 Architecture Layers

3.1 Guidance, Nav ControlH

Our initial approach is based on a common specification and design language called ControlH.
ControlH provides all the basic operations and operators required for traditional control system

specification, as well as features required for adaptive and nonlinear control. As illustrated in
Figure 3-2, this language is intended to provide a common interface for both synthesis and

analysis, simulation, and code generation tools. The preliminary language design calls for
mixed visual and textual entry, and in greatest generality ControlH could be termed a user
interface rather than a language in the traditional sense.
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We plan to build the subdomains of navigation ano guidance on top of the basic ControlH
capabilities. Our current approach is to make the ControlH layer extensible. Navigation and
guidance will be provided by integrating specialized capture, synthesis, and analysis tools and
specialized run-time module implementations into the basic ControlH toolset and module
library. This will inevitably impact the ControlH interface to some extent, and one of the
rese-uCh issues we must deal with is defining ControlH in a way that allows extensions to be
madE n a regular manner without propagating major changes throughout the language (e.g.,
new menu options, new operator attributes, and new predefined operators and operand
types).

design evaluation data

Analysis

ContrlH • Simulation

Generation

Ada & compiled kernel specs

Figure 3-2 ControlH Specification and Interface

Note that simulation uses the same source modules generated for the final system. That is,
the simulator supports the same functional component interfaces as the real-time, reliable ker-
nel. There are two important consequences of this. First, the simulations utilize the final oper-
ational flight software for the control functions, eliminating an important source of
inconsistency and error in current practice. Second, the plant model (or portions thereof) can
be used to generate code that is executed in real-time, facilitating hybrid testing of the actual
digital control system.

3.2 Kernel, Reliability Events
The lowest level of our architecture is a compiled kernel. This layer provides secure, hard real-
time, fault-tolerant scheduling and communication for periodic and aperiodic processes in
multi-processor systems. The associated toolset supports a domain-specific module intercon-
nect language. That is, users identify source modules to be included in a system and specify
how those modules are to be scheduled, how they communicate, and how thy are bound to
"various hardware resources in the target. The toolset performs hard real-time schedule feasi-
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bility and sensitivity analysis; timing, data, and control security verification; reliability analysis;
and then automatically assembles the modules into the final system, generating all necessary
scheduling and communication code automatically.

Statically generating the kernel code provides two major advantages. First, it eliminates the
need for many run-time services that must otherwise be provided by an executive (e.g., pro-
cess creation and message routing). This can lead to significant improvements in efficiency as
well as reductions in the amount of flight software that must be certified. Second, it facilitates
a static analysis and verification of kernel behavior.

The reliability analysis performed by the compiled kernel toolset is based in part on a specifi-
cation of the redundancy management approach used. There are several viable approaches
for redundancy management (e.g., error masking and reconfiguration) and several alternative
consensus protocols to select from (e.g., triple modular redundancy and Byzantine protocols).
We plan to provide a tool to help transform a nonredundant specification into a redundant one
and assist in performing the necessary trade-offs.

Discrete Event Dynamic Systems (DEDS) design and analysts is becoming increasingly
important in modern control systems. There are a number of models for DEDS, each of which
serves a different purpose. The lower layers of our system are primarily concerned with the
para-functional requirements of reliability and performance, and we are basing our initial event
processing and analysis layer on queueing theory and queueing network models.

Eventually, all real-time scheduling and communication, discrete event and mode change pro-
cessing, and hardware redundancy management are likely to be provided using a largely uni-
form user interface, analogous to the way we hope to obtain navigation and guidance
capabilities as extensions to ControlH. In the short term, this is complicated by the need to use
specialized forms of specification for queueing systems and redundancy management
schemes. An active area of research for us will be to better integrate reliability, real-time
resource allocation and scheduling, and discrete event specification and analysis, within a
common conceptual framework and user interface.

3.3 Domain Extension

One of our goals is to provide as extensible a product as possible. This may be accomplished
through the addition of new analysis tools and source modules within a view, as we observed
for ControlH. This may also be accomplished by the addition of entirely new layers and views.
Figure 3-1 shows two such layers that do not fall cleanly within our domain of IGN but for which
existing tools can be easily integrated with our DSSA product.

The Virtual Application Prototyping System (VAPS) is a commercial tool used to rapidly proto-
type cockpit display systems. The VAPS code generator is being modified to produce opera-
tional Ada flight software, and such a tool is easily integrated into the overall DSSA system.
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Uke many organizations, we have an instrumentation system to support real-time testing,
debugging and performance measurement in multi-processor targets. As with the layers and
views of our DSSA product, instrumentation is specified using a high-level experimentation
language that is compiled into the necessary event and data monitoring code. There are also
data collection and analysis tools. Such tools can provide powerful development support when
integrated into a DSSA product.

4 Conclusion

Within our domain there are a number of generally accepted formal models, as well as a num-
ber of analysis tools, for GN real-time scheduling and resource allocation, event processing,
and hardware fault-tolerance and reliability. What has been lacking is a common software
architecture that supports requirements in all these fields, is subject to accurate analysis, can
be automatically configured and populated, and serves as a core around which a complete
integrated development system for IGN software cen be built.
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Abstract: The ORA-Cornell University team in the DARPA DSSA project is
concerned with the domain of hierarchical, distributed, intelligent, hybrid control
for nonlinear systems. By "hybrid" we mean that the resulting system is
comprised of both digital and analog elements. The motivation for this focus is
as follows: Software for linear control is a fairly mature field with several
rommercial CAD environments in use containing facilities for automatic
generation of code. These environments can be viewed as moderately
successful instances of DSSA. The vendors do provide some capability for
designing, analyzing, and implementing nonlinear controls, but this is generally
ad hoc and rudimentary in form. Our team is developing both a mathematical
theory of nonlinear hybrid control and corresponding prototype software tools
which support, where possible, the automatic generation of control laws and
real-time software implementations. This theory is being tested on real physical
control problems, and a CAD environment is being developed to encapsulate
the theory and make it available to control engineers. The basis of the
environment is a flexible package to simulate, analyze and visualize hybrid
systems behavior in terms of dynamical systems with discontinuous vector
fields. CAD tools for design will be integrated with this package. 1

The Domain

As part of the DARPA Domain-Specific Software Architecture (DSSA) program a team con-
sisting of ORA Corporation and Cornell University's Mathematics Sciences Institute (MSI) is
investigating an environment for the design, implementation and evaluation of hierarchical,
distributed, intelligent, hybrid control. The effort is being monitoreld by Dr.Norman Coleman's
laboratory at the U.S. Army's Armament Research, Development and Engineering Center
(ARDEC).

The present stress in the effort is on hybridcontrol, by which we mean an integrated approach
to continuous physical devices (mechanical, electrical, hydrmulic, etc.) being controlled by dis-
crete computational units (digital cpus). The customary approach to digital control of physical

1. The work described in this article was partially funded as a part of the DARPA-sponsored DSSA Project under
Contract No. DAAA21-92-C-0013, for US Army AMCCOM, Picatinny Arsenal, NJ 07806-5000.
@1992 IEEE. Reprinted, with permission, trom Proceedings of the 1992 IEEE Symoosium on Computer Aided
Con' 'System Design; Napa, California, March 17-19, 1992; p. 137. Permission to copy without fee all or part
of this material is granted provided that the copies are not made or distributed for direct commercial advantage,
the IEEE copyright notice and the title of the publication and its date appear, and notice is given that copying is
by permission of the Institute of Electrical and Electronics Engineers. To copy otherwise, or to republish, requires
a fee and specific permission.
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processes is to either take the world's point of view or the computer's point of view. In the
fomier, the control problem is solved mathematically using continuous math and the solutions

are implemented using a digital computer to calculate approximations to the continuous con-

trols. These approximations are generally close enough for practical purposes. In the latter
case, the continuous world is replaced by a sampled world anu the problem is viewed entirely
as an exercise in discrete math. In hybrid control, one attempts to study the problem without
either reducing the discrete to the continuous or the continuous to the discrete.

2 The Approach
At the present time the mathematical theory does not exist to analyze or design hybrid control
problems rigorously. Most textbooks in control theory present parallel chapters on continuous
and discrete control with, for example, the Laplace transform in the former being replaced by
the z transform in the latter. On the other hand, one can claim that in practice control engineers
deal with hybrid control all the time. It is not unusual in the history of control theory that practice
leads the development of theory. The flyball governor was introduced in the early nineteenth
century as a piece of effective technology. The theory behind it was first explored in 1868 by
James Clerk Maxwell in his paper "On Governors", which established the field of mathemati-
cal control theory [Maxwell 68]. Similarly, a mathematical theory of hybrid control which deals
with mixed logico-differential equations should establish a rationale for what practitioners deal-
ing with the digital control of continuous processes have learned to do through experiment and
tuning.

The development of the mathematics of hybrid control under this effort is proceding at Cornell
and ORA. The Nerode-Kohn paper at the recent IEEE Symposium on Computer-Aided Con-
trol System Design reports on some findings [Nerode-Kohn 92]; other work under this effort is
reported in Nerode's "Hybrid Systems: A Survey and Models" [Nerode 92] and Yakhnis' "A
Concurrency Games Approach To Hybrid Systems". In the latter paper, a game-theoretic
approach to hybrid control is outlined which will support automated extraction of winning strat-
egies (i.e., effective control laws) from game formulations of the control problem.

Another innovative approach underpinning our effort is the use of nonlinear dynamical sys-
tems theory to support the design and analysis of hybrid controls. To support this, we are work-
ing to adapt simulation tools from this area toi solve hybrid control problems. In the last two
decades, the mathematics of dynamical systems has made significant progress in both the
worlds of pure and applied science [Guckenheimer 83]. Under the provocative name of
"chaos" this mathematics has caught the popular imagination and its vocabularly is entering
common educated discourse [Stewart 89]. In addition, the problem of controlling chaos is
attracting wide scale attention in the scientific world ([Ott 90], [Bradley 92]).

In our project we are adapting and further enhancing the package dstool which has been
developed at Cornell under the direction of John Guckenheimer and his students. This tool is
available by Internet ftp from Cornell and we are presently changing it so that it can be used
to analyze and simulate hybrid dynamical systems. Principal changes are the integration of
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trajectories defined by discontinuous vector fields and the extension of algorithms for deter-
mining fixed points, bifurcations, and the onset of chaotic behavior. This is done by adopting
a manifold-descriptive approach to phase space; that is, the phase space is covered by
patches with coordinate transformations when patches overlap.

Finally, there have been recent advances in the area of frequency-domain methods for the
effective synthesis of nonlinear controllers that hold substantial promise as a means of auto-
matically generating control algorithms and software for nonlinear hybrid control ([O'Donnell
91], [Taylor 90]). In addition, we have recently conceived of an extension to this approach that
can be used as a way to synthesize fuzzy controllers. These approaches will be integrated with
the ORA hybrid control environment to assess their usefulness as DSSA generators.

In order to focus our early efforts we are applying our emerging nonlinear control and hybrid
system theories to the ARDEC test fixture called the Advanced Testbed 1000 (ATB1 000) \cit-
e{mattice}. This is a physical simulation (scale model) of a gun with a flexible barrel which can
be aimed and is subject to base motion and recoil disturbances. The control problem is to point
the tip of the barrel using actuators attached to the barrel's base. Motion pictures of the cannon
on the Apache helicopter show that during firing the tip of the cannon appears to behave quite
chaotically. Since it is the tip which determines the targeting of the gun the Apache is known
as an "area weapon" as opposed to a point weapon. The ability to control its firing would
greatly enhance the military value of the Apache. The ARDEC test fixture is designed to phys-
ically simulate situations like the Apache helicopter.

3 Conclusion
The creation of methods and software tools for the automatic generation of instances of
DSSAs for nonlinear hybrid control problems holds great potential for reducing the cost of real-
time embedded control software for practical applications. The work under the DSSA Program
in general and this contract in particular-should help to realize this promise.
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Abstract: In DARPA's ProtoTech Program, exploration of the prototyping
process and innovative technologies to support that process has led to an
emphasis on (i) multilingual prototyping, (ii) component-based architectures,
(iii) architecture evolution, and (iv) rapid derivation of prototypes from pre-
existing components and specifications of behavior and connectivity
requirements. These emphases match needs within the DSSA program;
consequently a team of ProtoTech participants (TRW, Stanford, and Maryland)
is focused on bringing early maturing technology from the Prototyping Program
into the DSSA program. For example, it is unifying the technology (developed
at Stanford for modelling, prototyping, and analyzing prototypes of distributed,
time-sensitive systems), with the Polylith module interconnection technology
(developed at Maryland for building multi-lingual distributed applications out of
pre-existing components). This DSSA team is using such ProtoTech
technologies as RAPIDE and Polylith to model and prototype architectures
under development by the other, domain-based DSSA teams. Using the same
modelling techniques on all these domains, we are seeking to identify
commonalities between the DSSA teams' products. Such commonality can
increase the results from the DSSA program by suggesting the development of
common technology to be used by most or all teams where appropriate. This
process of identifying commonalities is interwoven with the process of
transferring the ProtoTech technology into use by the other DSSA teams.1

1 Introduction

Prototyping has an essential role in the development of domain-specific software architectures
(DSSAs) and in the new reuse-based software development processes and technology that
will result from their use. Successful prototyping enables rapid evaluation of hypothesized
architectures and proposed implementations. This is important during the initial formulation of

1. This work is supported by the Defense Advanced Research Projects Agency and the Office of Naval Research
under Contract N00014-91 -J-0173.
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domain-specific architectures, and even more important in the evolution of those architectures
and components satisfying them. Prototyping technology in common use today, however, is
unlikely to be sufficient for the new demands of DSSA-based development. The ProtoTech
Program is developing prototyping technology expected to live up to those demands, among
others, and thereby to contribute to the full realization of the DSSA Program goals.

The ProtoTech Program is a collaborative effort involving several teams of industrial and aca-
demic participants, described elsewhere in these proceedings. The ProtoTech teams have
been cooperatively exploring alternate hypotheses regarding both the nature of prototyping
processes and the kind of technological innovation that can most effectively improve our ability
to conduct prototyping processes. These investigations have led to an emphasis in the Proto-
Tech community on multilingual prototyping, component-based architectures, evolution of
architectures, and rapid derivation of executable versions of prototypes both from pre-existing
components and from specifications of behavior and connectivity requirements. These con-
cerns correspond, point by point, with needs within any DSSA-based approach to software
development.

Some of the ProtoTech investigations are already capable of improving the prototyping prac-
tice, others will begin bearing fruit in the near future, and still others are likely to achieve their
first real impact in a few years. While several participants in the ProtoTech program are also
members of domain-based DSSA teams, the DSSA team consisting of three members of the
CPL/CPS community, TRW, Stanford and the University of Maryland, is attempting to bring
selected early-maturing ProtoTech technologies to bear in multiple DSSA team efforts and,
through the process of interacting with those teams, to identify commonalities among them
that can be exploited in the DSSA program.

2 Our Research Hypothesis
The DSSA program is based upon the observations that (i) distinct software applications can
have common architectures, (ii) such common architectures can enable efficient reuse of com-
ponents across such applications, and (iii) such common architectures are most easily recog-
nized in specific application domains, in part because the body of widely understood concepts
for a particular problem domain helps to overcome substantial differences in the representa-
tions of the applications.

We hypothesize that the kinds of generalizations that enable the identification of common
architectures within a problem domain can be applied to identify (sub)architectures that are
common to applications in several domains.

We are testing that hypothesis by employing technology from the ProtoTech program to rep-
resent architectures and to analyze them. Specifically, the Prototyping Language and System
[Belz 90], developed by the Stanford/TRW team and the Polylith Software Bus [Purtilo 92], a
module interconnection system developed by the University of Maryland, emphasize the evo-
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lutionary development of application architectures as part of the process of prototyping appli-
cations. These are the principal technologies from the ProtoTech program that we are using to:

"* identify common architectural components among the architectures of the domain-
focussed DSSA contractors,

"* define modular components, separating interfaces from (possibly multiple)
implementations,

"* specify component interfaces, including where appropriate specification of functional
behavior, concurrent behavior consisting of synchronization and inter-
communication, and timing requirements,

"* specify the topology of distributed dataflow and control of communication between
components,

"* identify generic components from which different components of separate domain
architectures can be derived by well defined development paths,

"* deliver a specialized version of an architecture description language and system
(derived from RAPIDE and Polylith) for modelling and evaluating DSSA
architectures,

"• show how this architecture description system can serve as a Module
Interconnection Facility sufficient to support the interoperability requirements of the
DSSA architectures, i.e., provide an ability to define architectures whose
components are implemented in multiple languages (such as Ada, C++ and VHDL),

"* show how this technology could be incorporated in tools developed under the DSSA
program for eventual inclusion in software development environments,

"• provide feedback to the ProtoTech Program to ensure that its technology is
applicable to the DSSA Program.

If we successfully demonstrate our hypothesis, we expect the consequences to include an
improved ability within the DSSA program to generate architecture-based application compo-
nents and tools, with a reduced risk that the program will generate several isolated domains,
each with incompatible tools to support rapid application development. The latter risk is cur-
rently the state of practice with fourth generation technology and its amelioration is a signifi-
cant, if implicit, goal of the DSSA program.

3 The Enabling Technology
Among the ProtoTech technologies, our work will rely extensively on the Prototyping Lan-
guage and Tooltet, the Polylith module interconnection technology, and the results of Proto-
Tech's Module Interconnect Formalism Working Group (MIF WG) efforts.

The RAPIDE Prototyping Language and Toolset
RAPIDE is a prototyping language with supporting tools that provide features for specifying
and building prototypes of distributed time-sensitive systems. Many of the concepts embodied
in have evolved from prior work at Stanford ([Augustin 901, [Luckham 871, [Luckham 90]).

CMU/SEI-92-SR-9 79



Two versions of RAPIDE have been defined: RAPIDE 0.2, a preliminary proof-of-principal ver-
sion, with tools; and RAPIDE 1.0, a full prototyping language, designed as a language frame-
work which can be tailored to meet domain-specific requirements as needed. RAPIDE has the
following features:

"* Module Specifications: Module interface specifications contain:

" general properties of module operations, independent of any
implementation details, so that varying implementations are possible.
These properties include definition of values returned by module
functions, timing behavior of module operations, and exception
propagation situations.
These specifications are equally suitable for software modules and for
hardware modules. They permit a variety of currently separate techniques
to be used in specifying DSSA's, including input/output specifications,
finite state machine transitions, and interval timing specifications.

"* Requirements needed from the using environment in order for a module
to operate effectively; these include generic parameter restrictions, and
other reuse requirements.
These specifications, which deal primarily with reuse and reconfiguration
of modules, provide critical data for a variety of tools supporting
configuration of architectures and reuse of components.

" Communication Architectures: Communication architectures define how the
modules in a system communicate, what kinds of data, timing and data throughputs
are allowed, and the synchronization or independence of operation between
modules. In general, communication architectures can be dynamic, or variable
during the system operation.

" Design Hierarchy: RAPIDE 1.0 provides powerful and simple features based on
object-oriented inheritance [Mitchell 91], and mapping constructs to capture design
hierarchy. Mappings are a new language concept, and are based on the concept of
patterns of events. This feature is used to capture design decisions (i.e., designer
knowledge) involving hierarchical refinement of components. Using pattern
mappings it is possible to specify in RAPIDE how a component module, which has
been specified abstractly at one level in a system design, is expanded into a detailed
architecture at a lower design level. Design hierarchy is a critical and often used tool
in architecture specification. One such example is the refinement of a
communication system into layers of protocols, each layer being more and more
detailed and hardware-specific.

" Executable Prototypes: allows prototype systems to be implemented in a simple
concurrent rule-based language, or RAPIDE 1.0) in other languages such as Ada or
VHDL. Implementations of both modules and communication architectures are
supported. The primary purpose is two-fold: (i) to build executable models rapidly for
analysis of requirements, and to support gradual evolution of systems from either
early prototypes or one application to another. RAPIDE allows implementations of
components to be introduced into the system one component at a time, and tested
in the overall system design framework containing prototypes or implementations of
all other modules.
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" Derivation Histories: The RAPIDE support system will keep a history of how
various versions of module components and architectures are built out of previous
versions. This facility will be based on an object-oriented inheritance feature of the
language. It is a powerful facility in reconfiguring systems to meet new requirements
while at the same time ensuring against various kinds of errors.

" Tools for Analytical Prototyplng: The present RAPIDE system is based on the
model of distributed computations as partially ordered sets of events (Posets)
[Meldal 91]. The ordering between events expresses whether an event caused
another event or whether two events occurred independently. Timing of events by
means of timestamps is also included in RAPIDE computations. According to
modem theory of concurrent computation, the Poset model provides the most
accurate information about behavior of a distributed system, and has demonstrable
advantages over the use of linear traces. The RAPIDE toolsuite provides graphical
capabilities for manipulating and viewing partially ordered and timed computations,
and also tools for automatically checking specifications against such computations.
Other toois are currently being designed and built to support: (i) analysis of
architecture specifications using subtype and inheritance information,
(ii) reconfiguration of architectures to meet changes in requirements, including, for
example, selection of modules for reconfiguration of an architecture, (iii) test data
generation from specifications to support the use of DSSA's to test specific
applications, (iv) transition from RAPIDE systems to specific Ada implementations.

" Processes of Evolutionary System Development: The RAPIDE 1.0 language and
support system is designed to support processes of gradual evolution of systems.
The type system captures the development paths of both components and
architectures. It provides a basis for checking some aspects of the correctness of
such reuse activities as component replacements. The runtime analysis tools based
on Posets with timing provide a capability to analyze changes in communication,
synchronization, and timing, and compatibility with requirements. The design
hierarchy features allow low level detailed implementations to be compared for
consistency with high level specifications.
The sum total of these capabilities is a powerful support system for developing
rigorous processes of system evolution and refinement based on behavioral
prototyping and analysis in conjunction with formal specifications.

Status of Prototyping in RAPIDE
The capabilities described above are supported by an experimental prototype toolset. Exper-
iments demonstrating the ability to prototype in RAPIDE a wide variety of small example sys-
tems from differing domains have been carried out. Examples of small systems include a
communication protocol, a telephone PBX, a disk controller, a satellite communication sched-
uler, and simple hardware devices including a 16-bit CPU, and examples drawn from other
DSSA projects: a helicopter on-board flight program from the IBM avionics-domain effort, and
the controller/meta-controller model from the CIMFLEXITeknowledge effort. The architectures
of some of these examples involve three or four levels of hierarchical refinement. Development
of a set of guidelines for evolutionary prototyping is underway.
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Polylith

Our planned experiments entail comparing and evaluating ;oftware that has been developed
for specific domains by several contractors. Success in tnese experiments requires that we
have a practical way to integrate such software. This requirement directly corresponds to one
from the ProtoTech program, where the focus is on rapid configuration of prototyping appara-
tus. Available software components must be easy to use, without regard for their implementa-
tion language or original execution platform.

The Polylith software interconnection system at the University of Maryland helps meet these
requirements for ProtoTech ([Callahan 91], [Purtilo 88], [Purtilo 91 a], [Purtilo 91 b], [Purtilo 92]).
Polylith provides:

1. a module interconnection language (MIL) for developers to express their soft-
ware configurations abstractly.

2. a packaging system for analyzing configurations and then generating all
stubs, build commands and other interfacing structures according to the
developer's abstract interfacing decisions.

3. a run-time system providing various forms of communication support for a
configuration's components, especially those from diverse languages and
platforms. This run-time system is referred to as an implementation of the
'software bus', described below.

A version of Polylith has been distributed for use within the ProtoTech community, and is now
being used as the carrier for many of the community's ideas. The version of Polylith that has
resulted from evolution within ProtoTech will form a new baseline for use in our DSSA activi-
ties.

Whether for prototyping or for experimenting with heterogeneous domain-specific software,
the critical problem within interconnection is clear: current ad-hoc methods for interconnecting
software forces programs to become intricately coupled with their environment. The compo-
nents of a realistic application are not cohesive, since they must serve many functional and
non-functional requirements at the same time. Examples of non-functional requirements that
apply to application components are coercion of data representation and relocation of the data
by available media. These requirements accumulate primarily due to limitations in the inter-
connection system, such as the mixing of host platforms or implementation languages. This
coupling limits reuse of components within prototyping environments, and would impede
DSSA experiments with components having diverse origins.

To solve this problem, we postulated a new software organization to encapsulate communica-
tion and data transformation tasks. This is the software bus organization, where an 'abstract
bus' is the specification of interfacing properties to be encapsulated, and a 'run-time bus' is a
program that implements the developer's encapsulated decisions. This allows developers to
decouple the implementation of interfacing requirements from the treatment of functional
requirements. Thus programmers are able to code without having to pay constant attention to
constraints imposed by the underlying architectures, language processors or communication
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media. Such constraints cannot be completely ignored, but our primary result is that they can
be isolated for independent treatment without loss of performance at run time. Moreover, once

the application has been built for one execution environment, then tailoring the interface needs

for execution in other environments is a separate and automated activity.

Describing the direct relation between arbitrary software components is difficult. Describing
how an arbitrary component relates to the abstract bus is easier, and, once this is done, devel-
opers have a common basis for relating that component to others that have been similarly

specified. The Polylith system demonstrates our software bus organization (currently on Unix

platforms), and continues to evolve as the ProtoTech Module Interconnection Formalism (MIF)
Working Group converges towards specification of a 'prototyping bus' suitable for use within
the community. For DSSA, we will adopt the software bus organization to serve both pragmatic

interconnection needs and abstract module comparison activities.

The Module Interconnection Formalism Working Group

The ProtoTech program achieves a substantial interaction through technology-specific work-
ing groups. Among the most important to DSSA is the Module Interconnection Formalism
Working Group (MIF WG). This Working Group is charged with developing and formalizing
emerging community consensus on desirable models and technologies for module intercon-
nection of incrementally-developed systems of the future.

The MIF WG must address a very broad set of services, requirements, and scenarios. Exam-
ples of these issues are value passing mechanisms, inter-language integration, inter-machine
integration, transmission of values having abstract types, pointer data, stream data, synchro-
nization, generalized exception handling, implementation of call-back mechanisms, implicit
versus explicit invocation, and performance considerations.

The need for a component-based approach is clear, and there appears to be a general con-
sensus within the MIF WG that a high-level notation for describing the components and their
interconnections is needed. There is also consensus that formalisms are needed that support
definition of interconnection service layer, the "prototyping bus". In some cases, the Polylith
interconnection system has been used to prototype these capabilities to enhance the discus-
sion.

Our approach, using the Polylith software interconnection system in union with is entirely com-
patible with the consensus emerging from the MIF working group.

4 Melding Research and Technology Transfer

Our effort is both a research and a technology transfer task. We are interweaving both aspects
of our effort, making each work on behalf of the other.

Achieving technology transfer is a complex process, involving management of many organi-

zational, interpersonal, and technical factors [Przybylinski 91]. Our approach emphasizes the
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commitment process, which we merge with our experimental method. The commitment pro-
cess, as described in Przybylinski, Fowler, and Maher, has three phases: Information Transi-
tion (contact, awareness, understanding), Pilot Test (trial use), and Technology Transition
(adoption, institutionalization). Correspondingly, we have a three-phase model of technology
transfer. For each domain-based DSSA team we will go through these three phases; we will
overlap our interaction with the teams over time.

Phase 1: "In-house" investigations. In this phase we determine the
applicability of the ProtoTech technology to the needs of the domain-based
project. Our team exerts the effort involved; we develop executable
architecture descriptions that serve as illustrative prototypes addressing
architectural issues the domain-based team is grappling with. A precondition
for this investigation is a prior identification on the part of the domain-based
team that there is some potential applicability of the technology. Expected
positive postconditions include recognition by the domain-based team that
the technology is in fact applicable, and worth investing in further.

Phase 2: Collaborative investigation. In this phase we demonstrate that the
technology is applicable, and begin the adaptation of the domain-team
process to include the technology. The heart of the activity is pilot architecture
prototy:.e development, in which both our team and the domain-based team
share the effort of using the prototyping technology in the pilot. Preconditions
include satisfactory completion of Phase 1, management commitment on the
domain-based team, available resources, and appropriate timing. Expected
positive postconditions include increased commitment to the technology by
the domain-based team, improved understanding by our team of the
commonality of the pilot architecture with those of other teams, and useful
feedback to the ProtoTech community about the requirements on prototyping
tpchnology imposed by DSSA-based development approaches.

Phase 3: Client usage. The purpose of this phase is to integrate the use of
the technology in the domain-based team's process. The activity is selected
and conducted solely by the domain team. This phase requires mature,
robust technology, successful Phase 2 investigation, and management
commitment. Expected post-conditions include improved acceptance,
understanding and feedback.

The principal research objective, to identify important commonalities among the approaches
of the separate domain-based teams, is well served by the three-phase model. Phase 1 cre-
ates intimate involvement with the team, their architectural approach and artifacts. It also starts
the process of identifying common elements of the teams' approaches by using a common
representation technology for the designs and architectures from the domain-teams. By phase
3, all parties have a very clear pictures of the architectures, the technology we have provided
to represent that architecture, and the commonalities among the architectures.
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