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I Key Results and Transfer of Technology Resulted from the Current Grant

(1) The patented interspike interval decoding neural network technology has
already been transfer to the technology transfer company called BCM Technology
(Baylor College of Medicine Technology). BCM Technology has done an assessment
study on the neural network technology, and is studying the possibility of licensing
the technology to the industry.

(2) The novel cross-interval vector multiple-neuron spike train analysis
technique developed under this grant is intended to transfer the technology to a
multi-channel neural signal acquisition and neural signal processing hardware
manufacturer with software interfaces. The company is a Dallas based electronics
company called Spectrum Scientific. The company current designs and
manufactures multi-channel amplifiers and neural signal data acquisition modules.
The modules come in banks of 32-channels, which are capable of simultaneous
acquiring and processing data 32-channels at a time. Full-configured systems are
capable of processing multiples of 32-channels, up to 256 channels and beyond. The
cross-interval vector multi-channel spike thain analysis technique developed by the
PI will be incorporated into the multi-channel data acquisition system so that data
can be processed in real-time.

I (3) The cross-interval vector multi-neuron spike train analysis technique and
other multi-unit spike train analysis techniques will be packaged into a collection of
neural signal processing algorithms to be implemented on high-speed computers.
The technology is intended to be transferred to a company called CNS
(Computational Neural Systems) for development and implementation.

I (4) The MacNeuron neural simulation program developed under this grant will
be made available and distributed to all interested neuroscientists once the program
has gone through the beta-testing phase. The generic neural simulator will be of
great use to the scientific community to simulate biological neurons using to model
various neuron types by the specifications of the detailed neural elements.
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Project Progress Report

I The Neural Simulator (MacNeuron)

The neural simulator (called MacNeuron) is implemented on the Macintosh
computer. The neural simulator is capable of simulating the electrical properties of
a biological neuron which can be connected together with other neurons to form a
neural network. Two versions are available: one runs on the Macintosh II series
computer with the math coprocessor installed, the other runs without the math
coprocessor.

The neural simulator allows users to build a compartmental neuron,
simulate the generation of action potentials in neurons. It can record a-ny variablc5
,s-ociated with the neuron for graphical display and analysis. The variables include
voltage, time and ionic concentration, etc. Each of these variables can be plotted on
the graphical charts. The uniqueness of this neural simulator is the ability to
"observe" any internal variables of the neural system during simulation, in contrast
to other neural simulator where only a few predefined specific variables are
observable.

A Tutorial Manual is written to guide new users on how to use the neural
simulator. The tutorial also provides hands-on instructions of how to construct a
neuron and a network using the simulator.

A User's Guide Manual is also written describing the neural simulator. It
also serves as a reference manual describing its run-time environment. It also
serves as a guide to use the neural simulator program.

* The neural simulator is written in "an object-oriented programming
language", which utilizes the latest software engineering technology for code
development and code maintenance. This significantly reduces the development
time and effort in the implementation of the neural simulator. It also facilitates the
reusability of the code. Thus, it encourages other users to modify the existing code
and/or add extended features to the neural simulator. This will significantly extend
the life-time of the neural simulator. Furthermore, using an object-oriented design
reduces the chances of bugs that may exist in the program, thus providing a quality3 assurance of the program results.

This neural simulator MacNeuron has implemented the generically
changeable numerical algorithms for driving the neural simulator. Thus, it

Sprovides flexibility of using different efficient numerical algorithms without
extensive recoding of the program. It is another unique advantage of this neural
simulator over other existing neural simulator in its generalizabiltiy.

The program provides a window-based user-interface for building a network
of neuron. The building process of the simulation environment is provided by the
menu-driven window user-interface environment. A built-in text editor is
provided within the simulation program for entering the script-file in describing
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I the run-time environment. It also included the standalone plotting routines for
displaying the simulation results.

Two specific contributions are made in the neural simulation program. First,
the numerical simulation algorithms of neurons composed of patches of membrane
(using the compartmental model) are implemented. The numerical integration
routines are main computational engine for solving the systems of differential
equations describing the biophysics of the ionic channels and receptors. Second, the

i graphical plotting of the simulation results is implemented. Any variables
describing the simulation parameters can be plotted, thus providing visualization of
the simulation results.

3 (1) Numerical Simulation Environment

The numerical engine for driving the neural simulator is implemented. The
numerical integration algorithms used in this version is the conjugate gradient
Euler methods. The numerical algorithms are required to solve the system of
differential equations governing the dynamics of the ionic conductances, which is
the key component in the neural simulator. Since our programming design is
object-oriented, other numerical integration methods can be incorporated into our
simulation program easily. In fact, the user will be able to choose the specific
numerical methods at will when other numerical algorithms are implemented in
the program. This is the essential feature in our simulator that most other
simulators do not provide. Thus, it allows for flexibility for the user to choose
whether to maximize the speed or accuracy of the simulation runs. Starting and
stopping of simulation is done by a click of a "button".

(2) Graphical Plotting Display of Simulation Results

In the current implementation, the user can choose any two variables pair in
the simulation and plot them graphically on a chart. Any variables used in the
simulation can be "observed", and subsequently plotted on a graph. This provides
flexibility to the user, so that the user can choose any variables, such as voltage, ionic
concentration, gating activation variables, conductance, time, etc. can be observed
during the simulation. To provide an intuitive approach to the user in selecting the
plotting variable, the user needs only to "drag" any variable from a window which
displays the list of parameter and "drop" that variable into the "observer" window
and the "plot" window for plotting. Plotting of the results is done by clicking the
"plot" button.

Thus, the current version of MacNeuron provides some basic building block
for constructing a neuron for simulation. The incorporation of voltage-dependent
conductance ionic gating channels on membranes for simulation and generation of
action potentials can be accomplished currently in the simulator. Voltage step
stimulation can also be accomplished for experimental manipulation.

I
I
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Invention of the Interspike Interval Decoding Artificial Neural Network

A patent has been filed on the neural network signal decoding technology.
The invention is "An Interspike Interval Decoding Neural Network." used to
decode the time interval between firing of neurons from a serial representation to a
parallel representation. The neural network uses a unique architectural hierarchical
connectivity structure to process spike train signals. It also uses specific excitatory
and inhibitory connections for processing of signals using the hardwired

i configuration. This unique design of cascaded connectivity allows the network to
extract the interspike intervals of the input spike train and separate out the intervals
into a topographical map. As a result, the serial input spike train signal is converted
into a parallel distributed output spike train signal, where the topographical location
of the output represents the specific decoded interspike interval of the original spike
train.

A neural network using pulse-coded signal for processing is developed to
decode interspike interval between the firing of action potentials in neurons. The
neural network uses time-delays and appropriate excitatory and inhibitory
connections for signal processing. With appropriate connections using a cascaded
time-delay (or time-shifting) scheme, the signals are able to propagate to different
neurons appropriately by the exact time interval for extracting the firing intervals.
This neural network represents the outputs in a two-dimensional topographical
map configuration, where the location of neurons which fire at the output layer
represents the firing interval being decoded. The network, thus, able to extract
serial-code into parallel-code. That is, it converts from serial representation of firing
interval to parallel representation of firing by the location of the activated neurons.

The Multiple Spike Train Analysis Method

A new statistical multiple spike train analysis method, called cross-interval
vector, has also been developed. This statistical method is used to detect the spatio-
temporal correlation among many neurons. Since most conventional spike train
analysis methods are designed to extract correlation between two to three neurons,
this new method will provide quantitative analysis of a large number of neurons
recorded from a biological neural network. The ability to analyze the signals
generated by a large number of neurons is important in the understanding of how a
biological neural network may operate, from which the principles of operation may
be extracted.

This novel technique uses a vectorial measure to detect correlation between
firing patterns of multiple neurons simultaneously. The statistic utilizes two
random variables, the pre-cross interval and the post-cross interval, for the
construction of the cross-interval vector. A cross-interval is the time interval
between the occurrence of adjacent spikes in two different neurons. The statistics
provided by the occurrence times of the spikes in these neurons will provide us
with the estimate of the probability function of firing in these neurons. With the
probability of firing in neurons relative to one another known, the stochastic firing
characteristics of neural signals can be understood. The utilities of stochastic signal
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U processing by neurons can be extracted for better designs of artificial neural network
with extensive fault tolerant capability in the fuzziness of the signals used by the

I network.

Since this technique uses a vector to represent the preceding and succeeding
firing intervals (cross-intervals), this cross-interval vector represents the timing

I relationships between the firings of any neurons. To compute the statistical average
of the population, the resultant vector, which is the vectorial sum of the
population, can be used to represent the present the timing relationship of all
neurons relative to the reference neuron. Thus, this vectorial measure is used to
detect any correlational relationship between any reference neuron and the rest of
the population.

The vectorial statistical technique enables detection of correlated firing
pattern between any number of neurons. As with conventional correlation
techniques, the temporal correlation between the firing times of neurons can be
deduced. In addition, with this new technique, not only the temporal correlation,
but also the spatial correlation can be established. The spatial correlation among any
number of neurons is an important attribute that is unique to neural network signal
processing. With the combined spatio-temporal correlation, highly complex neural
signal processing scheme can be extracted from a network of neurons.

I Biological Neural Network Experimental Setup

A new biological neural network experimental setup is being set up currently
to record from a large number (in excess of 64) of neurons simultaneously here at
the Center for Network Neuroscience of the University of North Texas (after
moving from Baylor College of Medicine). The experimental results will be
incorporated with the simulation results to test the hypotheses of neural network
processing.

The experimental setup is capable of recording from up to 64 microelectrodes
photoetched on a silicon substrate. The closely spaced microelectrodes enable
recording of many neurons simultaneously from a network of neurons. These3 neurons can be cultured and grown on the microelectrode plates for subsequent
electrical recording and stimulation. Well-isolated electrical signals can be recorded
from these electrodes. Networks of biological neurons can be cultured on these
multi-microelectrodes, so that the electrical activity of these neurons can be
monitored simultaneously. Furthermore, electrical stimulation of specific neurons
in the network can be accomplished by delivering currents to the microelectrodes.

Successful electrical stimulation will provide a powerful experimental tool to
test the hypothesis of biological network learning since it will provide a means for
"training" the network with specific sequence, and observe the output of the
network by recording the electrical activity of neurons from the microelectrodes.

Two types of electrodes will be used. A 64-channel microelectrode photo-
etched on transparent glass plate will be used to record from neuronal cell culture.
A neural network can be grown on such electrode plate, which can then be recorded
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I and stimulated simultaneously. Since the electrode is also transparent, optical
imaging recording can be done simultaneously with the electrical recording. Such
recording can be done in vitro on cell culture or brain slice.

Another setup will also be used for recording in vivo. A multi-stranded
electrode bundle will be used to record from the cortices of animal implanted with
this electrode. Thus psychophysical experiments on learning and memory can be
done while recording from the activity of the neurons in the cortical network.

I
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I Publications produced during the grant period (1989 - 1992):

Tam, D. C. (1992) Vectorial phase-space analysis for detecting dynamical interactions
in firing patterns of biological neural networks. Proceedings of the
International Joint Conference on Neural Networks, June 1992. Vol.3 pp.97-

n 102.

Tam, D. C. (1992) Novel cross-interval maps for identifying attractors from multi-
unit neural firing patterns. In: Nonlinear Dynamical Analysis of the EEG..
(B. Jensen, ed.) World Scientific Publishing Co (in press)

Tam, D. C. (1992) A multi-neuronal vectoral phase-space analysis for detecting
dynamical interactions in firing patterns of biological neural networks. In:
Computational Neural Systems. (J. M. Bower, ed.) (in press)

n Tam, D. C. and Hutson, R. K. (1992) An object-oriented paradigm for the design of
realistic neural simulators. In: Computational Neural Systems. (J. M. Bower,3 ed.) (in press)

Tam, D. C. (1992) A novel vectorial phase-space analysis of spatio-temporal firing
patterns in biological neural networks. Proceedings of the Simulation
Technology Conference. (in press)

Tam, D. C. (1992) A generalizable object-oriented neural simulator for
reconstructing functional properties of biological neuronal networks.
Proceedings of the Simulation Technology Conference. (in press)

n Tam, D. C. (1992) Objec. oriented programming techniques for implementing
generalizable models. Proceedings of the Simulation Technology Conference.

I (in press)

Tam, D. C. (1992) A hybrid time-shifted neural network for analyzing biological
neuronal spike trains. Progress in Neural Networks (0. Omidvar, ed.) Vol. 2,
Ablex Publishing Corporation: Norwood, New Jersey. (in press)

Tam, D. C. (1991) Signal processing in multi-threshold neurons. In: Single Neuron
Computation (T. McKenna, J. Davis, and S. F. Zornetzer, eds.) Academic
Press, San Diego. pp. 481-501.

I Tam, D. C. (1991) Signal processing by multiplexing and demultiplexing in neurons.
In: Advances in Neural Information Processing Systems. (D. S. Touretzky,

I ed.), Morgan Kaufmann Publishers, San Mateo, California. pp. 282-288.

Alkon, D. L., Vogl, T. P, Blackwell, K. T. and Tam, D. C. (1991) Memory function in
neural and artificial networks. In: Neural Network Models of Conditioning
and Action. (M. L. Commons, S. Grossberg, J. E. R. Staddon, eds.) pp. 1-11.
Lawrence Erlbaum Associates: Hillsdale, New Jersey.
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I Tam, D. C. (1990) Decoding of firing intervals in a temporal-coded spike train using
a topographically mapped neural network. Proceedings of the International3 Joint Conference on Neural Networks, June, 1990. Vol. 3, pp. II-627-632.

Tam, D. C. (1990) Temporal-spatial coding transformation: Conversion of
frequency-code to place-code via a time-delayed neural network. Proceedings
of the International Joint Conference on Neural Networks (H. Caudill, eds.),
Jan., 1990. Vol. 1, pp. 1-130-133.

n Tam, D. C. (1989) The physiological basis and implications of differential motor
activation. Behavioral and Brain Sciences Vol. 12, pp. 669.

I Tam, D. C. (1989) A positive/negative reinforcement learning model for associative
search network. Proceedings of the First Annual IEEE Symposium on Parallel3 and Distributed Processing, 1989, (B. Shirazi, ed.) pp. 300-307.

Tam, D. C. and Perkel, D. H. (1989) Quantitative modeling of synaptic plasticity. In:
The Psychology of Learning and Motivation: Computational Models of
Learning in Simple Neural Systems, (R. D. Hawkins and G. H. Bower, eds.)
Vol. 23, pp. 1 - 30. Academic Press: San Diego.

I Tam, D. C. and Perkel, D. H. (1989) A model for temporal correlation of biological
neuronal spike trains. Proceedings of the IEEE International Joint Conference
on Neural Networks 1989. Vol. 1, pp. 1-781-786.
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Abstracts produced during the grant period (1989 - 1992):

3 Tam, D. C. (1992) A new multi-conditional statistical measure for detecting spatio-
temporally correlated firing patterns in multiple spike trains. Society for
Neuroscience Abstract. (in press)

Kenyon, G. T. and Tam, D. C. (1992) Using the assymptotic kolmogorov entropy to
identify deterministic structures in multi-unit spike trains. Society for
Neuroscience Abstract. (in press)

Zouridakis, G. and Tam, D. C. (1992) Multi-unit spike discrimination using wavelet
transforms. Society for Neuroscience Abstract. (in press)

Tam, D. C. and Kenyon, G. T. (1992) Novel Cross-Interval Maps for Identifying
Attractors from Multi-Unit Neural Firing Patterns. Second Annual
Conference on Nonlinear Dynamical Analysis of the EEG. (in press).

3 Tam, D. C. and Kenyon, G. T. (1992) A vectorial statistical method for detecting
correlated firing patterns in neurons. Biophysical Society Abstract. Vol. 16,
p.A175.

Kenyon, G. T. and Tam, D. C.(1992) An object-oriented paradigm for simulating
physiological processes in extended biological structures. Biophysical Society
Abstract. Vol. 16, p.A175.

Tam, D. C. (1992) Methods for investigating the neurophysiological functions of the
central nervous system. Society of Chinese Bioscientists Symposium
Abstract.

3 Tam, D. C. (1992) A vectorial statistical measure for detecting temporally correlated
firing patterns in multiple spike trains. Society of Chinese Bioscientists

* Symposium Abstract.

Tam, D. C. and Kenyon, G. T. (1991) A novel vectorial measure for detecting
temporally correlated firing patterns in multiple spike trains. Society for
Neuroscience Abstract. Vol. 17, p. 125.

Boney, D. G., Feinswog, L. J., Hutson, R. K., Kenyon, G. T. and Tam, D. C. (1991) An
object-oriented paradigm for simulating inter-connected neural systems.
Society for Neuroscience Abstract. Vol. 17, p. 126.

3 Tam, D. C. (1991) A vectorial statistical method for analyzing stochastic firing
patterns in large numbers of neurons in parallel. The Second Keck
Symposium on Computational Biology Abstract.
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I Feinswog, L. J., Hutson, R. K., Kenyon, G. T. and Tam, D. C. (1991) An object-
oriented paradigm for simulating neurophysiological processes. The Second
Keck Symposium on Computational Biology Abstract.

Tam, D. C. (1990) Functional significance of bi-threshold firing of neurons. Society
for Neuroscience Abstract. Vol. 16, p. 1091.

Tam, D. C. (1990) Hebbian synapse and its relation to cross-correlation function in
associative conditioning learning. Eighth Annual Conference on Biomedical
Engineering Research in Houston. p. 5.

Tam, D. C. (1990) Visual-motor integration: What role does cerebellar cortical
neurons participate in movement control in monkeys? Eighth Annual
Conference on Biomedical Engineering Research in Houston. p. 39.

I Tam, D. C. and McMullen, T. A. (1989) Hebbian synapses as cross-correlation
functions in delay line circuitry Society for Neuroscience Abstract Vol. 15, p.
777.

Alkon, D. L., Vogl, T. P., Blackwell, K. T. and Tam, D. C. (1989) Pattern recognition
and storage by an artificial network derived from biological systems. Neural
Network Models of Conditioning and Action: the Twelfth Symposium on
Models of Behavior at Harvard University.I
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i Patent awarded (1992):

An Interspike Interval Decoding Neural Network.

Patent Serial No. 07/630,463. (waiting for final patent number to be assigned by3 Patent office)

Patent description:
A multi-layered artificial neural network designed to decode the interspike

intervals of a spike train (a time series of pulse-coded signals) by mapping the one-
dimensional time-series signal (serial signal) into a topographically mapped spatio-
temporal (two-dimensional) output signal (parallel signal) using a specific
hardwired cascaded architectural design with excitatory and inhibitory connections.

IU
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RESEARCH INTERESTS AND EXPERTISE

The primary research goal is to understand the parallel signal processing capabilities of
biological neurons, neural networks and their functions in the central nervous system. The research is
focused on computational neuroscience and the analysis of the signals encoded by multiple neurons in a
network. Two approaches are employed to study the function of the neural processing system:
theoretical modeling and experimental analysis. Theoretical studies include developing
computational models of the central nervous system, neural networks and single neurons to reproduce the
operating principles of neural processing. Special time-series statistical techniques (spike train
analytical methods) are developed to analyze the signals encoded in the firing patterns of neurons
with dynamical interactions. Experimental studies include in vivo neurophysiological experiments
studying the motor control, sensori-motor integration and learning functions by recording the firing
patterns of multiple neurons simultaneously from the motor and cerebellar cortices, and in vitro
experiments studying neuronal network dynamics in signal processing and synaptic plasticity in
learning and memory by recording the firing patterns of cultured neurons grown on a multi-
microelectrode plate. It is an attempt to bridge the gap between theories and experiments in
neuroscience by testing the hypotheses predicted in the models with specifically designed experiments.

RESEARCH PROJECTS
My research projects encompass in both experimental and theoretical neurophysiology. The

current research efforts are devoted to the understanding of neural dynamics in neural networks and

signal processing capabilities in network. The ultimate goal is to understand the parallel processing
and ensemble encoding schemes used by networks of neurons. To accomplish this goal, this problem is
tackled using multiple approaches (which are implemented in the multiple research projects):

(1) Experimental Approach: Perform experiments to record from multiple (identifiable)
neurons simultaneously in vitro and in vivo with specific physiological stimuli.

The in vitro project includes both cultured neuron preparation and, in near future, cultured slice
(organotypic slice) preparation. The in vitro experiments involve co-culturing cerebellar cortical
neurons with inferior olivary neurons on a multi-microelectrode plate for simultaneous multi-unit
recording from Purkinje cells and electrical stimulation of olivary neurons. This project is aimed at
uncovering principles of parallel signal processing in a network of neurons, the dynamics of a network
and the emerging properties of cooperative firings in neural networks.

The in vivo project includes recording from behaving animals with implanted multi-electrodes in
the cortical areas (cerebellum and motor cortex). This project is aimed at revealing principles for
sensori-motor control and movement coordination by networks of neurons. The experimental paradigm
for this study requires training rats to perform a motor task of bar pressing while recording from
cerebellar cortical neurons and monitoring the associated movement dynamic and kinetic parameters of
the animal. These experiments are aimed at acquiring neural data together with the associated
physiological parameters for revealing the "physiologically correct" underlying mechanisms of neural
signal processing and neural signal encoding in a network of neurons.

(2) Theoretical Approach: Model network activity by a large-scale neural simulator for
realistic modeling of biological neurons using well known biophysical and biochemical principles that
are revealed by experiments.

Complex interactions among neurons are studied by computer simulation of large number of neurons
to reveal phenomena may not be easily identified based on the properties of individual neurons. Based
on these simulations, mathematical and algorithmic formularization of the underlying theories
governing neural signal processing and signal encoding/decoding in the central and peripheral nervous
systems can be extracted from the salient features exhibited from the simulation results.

(3) Spike Train Analysis Approach: Analyze the signals generated by neurons either from
experimental results or simulation results in the context of network activity and physiological
functions.

Given the large number of multi-unit data recorded either from experimental preparations or
from computer simulation, the next crucial step is to analyze these multi-unit data and interpret them
with respect to the physiological functions of the animal. Multi-unit spike train analysis are one of
the necessary tools for analyzing the neural network data quantitatively within the context of
physiological functions and firing patterns in neurons. Several specially designed spike train
statistical analysis of stochastic point processes are developed to reveal the spatio-temproal dynamics
and interactions among multiple neurons based on the spike train signals.
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Tam, D. C. (1992) Vectorial phase-space analysis for detecting dynamical interactions in firing
patterns of biological neural networks. Proceedings of the International Joint Conference on3 Neural Networks, June 1992. Vol.3 pp.9 7 -10 2 .
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patterns. In: Nonlinear Dynamical Analysis of the EEG.. (B. Jensen, ed.) World Scientific
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Tam, D. C. and Hutson, R. K. (1992) An object-oriented paradigm for the design of realistic neural
simulators. In: Computational Neural Systems. 0. M. Bower, ed.) (in press)

Tam, D. C. (1992) A novel vectorial phase-space analysis of spatio-temporal firing patterns inIbiological neural networks. Proceedings of the Simulation Technology Conference. (in press)

Tam, D. C. (1992) A generalizable object-oriented neural simulator for reconstructing functional
properties of biological neuronal networks. Proceedings of the Simulation Technology
Conference. (in press)

Tam, D. C. (1992) Object-oriented programming techniques for implementing generalizable models.
Proceedings of the Simulation Technology Conference. (in press)

Tam, D. C. (1992) A hybrid time-shifted neural network for analyzing biological neuronal spike trains.
Progress in Neural Networks (0. Omidvar, ed.) Vol. 2, Ablex Publishing Corporation:
Norwood, New Jersey. (in press)

Tam, D. C. (1991) Signal processing in multi-threshold neurons. In: Single Neuron Computation (T.
McKenna, J. Davis, and S. F. Zornetzer, eds.) Academic Press, San Diego. pp. 481-501.

Tam, D. C. (1991) Signal processing by multiplexing and demultiplexing in neurons. In: Advances in
Neural Information Processing Systems. (D. S. Touretzky, ed.), Morgan Kaufmann Publishers,
San Mateo, California. pp. 282-288.

Alkon, D. L., Vogl, T. P, Blackwell, K. T. and Tam, D. C. (1991) Memory function in neural and
artificial networks. In: Neural Network Models of Conditioning and Action. (M. L. Commons, S.
Grossberg, J. E. R. Staddon, eds.) pp. 1-11. Lawrence Erlbaum Associates: Hillsdale, New
Jersey.

Tam, D. C. (1990) Decoding of firing intervals in a temporal-coded spike train using a topographically
mapped neural network. Proceedings of the International Joint Conference on Neural Networks,
June, 1990. Vol. 3, pp. 111-627-632.

Tam, D. C. (1990) Temporal-spatial coding transformation: Conversion of frequency-code to place-code
via a time-delayed neural network. Proceedings of the International Joint Conference on Neural
Networks (H. Caudill, eds.), Jan., 1990. Vol. 1, pp. 1-130-133.

Tam, D. C. (1989) The physiological basis and implications of differential motor activation.
Behavioral and Brain Sciences Vol. 12, pp. 669.

Tam, D. C. (1989) A positive/negative reinforcement learning model for associative search network.
Proceedings of the First Annual IEEE Symposium on Parallel and Distributed Processing, 1989,
(B. Shirazi, ed.) pp. 300-307.

4I



I
Tam, D. C. and Perkel, D. H. (1989) Quantitative modeling of synaptic plasticity. In: The Psychology

of Learning and Motivation: Computational Models of Learning in Simple Neural Systems, (R.
D. Hawkins and G. H. Bower, eds.) Vol. 23, pp. 1 - 30. Academic Press: San Diego.

Tam, D. C. and Perkel, D. H. (1989) A model for temporal correlation of biological neuronal spike
trains. Proceedings of the IEEE International Joint Conference on Neural Networks 1989. Vol. 1,
pp. 1-781-786.

Tam, D. C., Ebner, T. J., and Knox, C. K. (1988) Cross-interval histogram and cross-interspike interval
histogram correlation analysis of simultaneously recorded multiple spike train data. Journal of
Neuroscience Methods, Vol. 23, pp. 23-33.

15

I
I
I
I
I
I
U
I
I
I
I
I
I5



I

I ABSTRACTS

Tam, D. C. (1992) A new multi-conditional statistical measure for detecting spatio-temporally
correlated firing patterns in multiple spike trains. Society for Neuroscience Abstract. (in press)

Kenyon, G. T. and Tam, D. C. (1992) Using the assymptotic kolmogorov entropy to identify
deterministic structures in multi-unit spike trains. Society for Neuroscience Abstract. (in press)

Zouridakis, G. and Tam, D. C. (1992) Multi-unit spike discrimination using wavelet transforms.
Society for Neuroscience Abstract. (in press)

Tam, D. C. and Kenyon, G. T. (1992) Novel Cross-Interval Maps for Identifying Attractors from Multi-
Unit Neural Firing Patterns. Second Annual Conference on Nonlinear Dynamic•: Analysis of
the EEG. (in press).

Tam, D. C. and Kenyon, G. T. (1992) A vectorial statistical method for detecting correlated firingU patterns in neurons. Biophysical Society Abstract. Vol. 16, p.A175.

Kenyon, G. T. and Tam, D. C.(1992) An object-oriented paradigm for simulating physiological processes
in extended biological structures. Biophysical Society Abstract. Vol. 16, p.A175.

Tam, D. C. and Kenyon, G. T. (1991) A novel vectorial measure for detecting temporally correlated
firing patterns in multiple spike trains. Society for Neuroscience Abstract. Vol. 17, p. 125.

i Boney, D. G., Feinswog, L. J., Hutson, R. K., Kenyon, G. T. and Tam, D. C. (1991) An object-oriented
paradigm for simulating inter-connected neural systems. Society for Neuroscience Abstract.
Vol. 17, p. 126.

Tam, D. C. (1991) A vectorial statistical method for analyzing stochastic firing patterns in large
numbers of neurons in parallel. The Second Keck Symposium on Computational Biology
Abstract.

Feinswog, L. J., Hutson, R. K., Kenyon, G. T. and Tam, D. C. (1991) An object-oriented paradigm for
simulating neurophysiological processes. The Second Keck Symposium on Computational
Biology Abstract.

Tam, D. C. (1990) Functional significance of bi-threshold firing of neurons. Society for Neuroscience
Abstract. Vol. 16, p. 1091.

Tam, D. C. (1990) Hebbian synapse and its relation to cross-correlation function in associative
conditioning learning. Eighth Annual Conference on Biomedical Engineering Research in
Houston. p. 5.

Tam, D. C. (1990) Visual-motor integration: What role does cerebellar cortical neurons participate in
movement control in monkeys? Eighth Annual Conference on Biomedical Engineering Research
in Houston. p. 39.

Tam, D. C. and McMullen, T. A. (1989) Hebbian synapses as cross-correlation functions in delay line
circuitry Society for Neuroscience Abstract Vol. 15, p. 777.

Alkon, D. L., Vogl, T. P., Blackwell, K. T. and Tam, D. C. (1989) Pattern recognition and storage by an
artificial network derived from biological systems. Neural Network Models of Conditioning
and Action: the Twelfth Symposium on Models of Behavior at Harvard University.

6



I
Tam, D. C. and Perkel, D. H. (1988) Identification of firing patterns in multiple spike trains using a

neural network employing the back-propagation error correction learning algorithm. Society
for Neuroscience Abstract, Vol. 14, p. 260.

Ojakangas, C. L., Onstott, D. K., Tam, D. C., Ebner, T. J. (1988) Changes in hand kinematics during a
quantifiable learning paradigm in primates. Society for Neuroscience Abstract, Vol. 24, p. 260.

Tam, D. C., Perkel, D. H., and Tucker, W. S. (1988) Correlation of multiple neuronal spike trains using
the back-propagation error correction algorithm. INNS 88 International Neural Network
Society First Annual Meeting.

Tam, D. C., Perkel, D. H., and Tucker, W. S. (1988) Temporal correlation of multiple neuronal spike
trains using the back-propagation error correction algorithm. INNS 88 International Neural
Network Society First Annual Meeting.

Tam, D. C. (1988) An improved reinforcement learning model for associative search network. IEEE
International Conference on Neural Network 1988.

3 Tam, D. C., Ebner, T. J., and Knox, C. K. (1987) Correlation between Purkinje cell simple spike activity
and movement kinematics during closed-loop, visually guided multi-joint movement with
altered gain and delay feedback. Society for Neuroscience Abstract, Vol. 13, p.604.

Tam, D. C., Ebner, T. J., and Knox, C. K. (1986) Technique for evaluation of Purkinje cell activity during
closed-loop visually guided movement requiring continual fine movement error correction.
Society for Neuroscience Abstract, Vol. 12, p. 14 18 .

Tam, D. C., Knox, C. K., and Ebner, T. J. (1985) Cross-interval correlation of firing pattern of
simultaneously recorded neighboring cerebellar Purkinje cells. Society for Neuroscience
Abstract, Vol. 11, p.1035.

Tam, D. C., Ebner, T. J., and Bloedel, J. R. (1982) The response properties of DSCT cells to periodic
mechanical stimuli. Society for Neuroscience Abstract, Vol. 8, p. 957.

I
I
I
I
I
I
I
I



I
I
I
I
I 5

* -1-

S°10

AN INTERSPIKE INTERVAL DECODING NEURAL NETWORK

THIS INVENTION WAS MADE WITH GOVERNMENT FUNDS;
THE GOVERNMENT HAS CERTAIN RIGHTS IN THE INVENTION

I BACKGROUND OF THE INVENTION

2 1. Field of the Invention
20

* This invention relates to multi-layered

time-delayed neural networks useful in a variety of data

and signal processing, image recognition and other
2 computational tasks. In particular, the present invention

relates to a means to convert serially encoded temporal

firing intervals of a spike train waveform into a
spatially distributed topographical matrix in which the

interspike-interval and bandwidth information of the spike

train may be extracted.

2. Description of the Related Technology

I Topographical maps of neurons are found in the

central nervous system of biological organisms for the

I
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tonotopical representation of tones, somatotopical

representation of body surface, retinotopical 3
representation of the visual world, etc. These

topographical maps represent information based on the

spatial locations of the neurons. The signals encoded by

the biological neurons have characteristic pulse height i
and pulse width, and may be considered as pulse-coded

signals where the information is encoded in the time of

occurrence of the pulses. 3
10

This time-series of pulses is called a spike

train and the neuron information is contained in the

interspike-intervals between pulse firings from the

neurons. Thus, the signal information transmitted by a

neuron can be considered as "temporally-coded" by the time

intervals between pulses in the spike train. Various

methods of correlation analysis of spike trains in

biological neurons have been developed. See for example

"Neuronal spike trains and stochastic point process",

SPerkel, Gerstein and Moore, Biophys. J., Vol. 7, n
pp. 391-440 (1967); "Cross-interval histogram and

cross-interspike interval histogram correlation analysis

of simultaneously recorded multiple spike train data",
Tam, Ebner and Knox, Journal of Neuroscience Methods,

Vol. 23, pp. 23-33 (1967). I25

Given this serial transmission of the 1

temporally-coded interspike pulse train, the information

contained within the spike intervals may be decoded into n

parallel topographically distributed codes. Topographical
30

distribution of codes based on the location of the neurons

is called "place-code". By converting temporally-coded

signals into topographically distributed codes, the firing

intervals of neurons may be readily recognized as a i
particular neuron in a population ensemble. Thus,

I
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individual firing patterns may be distinguished such as

I burst-firing from long-interval firing and periodic firing

from non-periodic firing.I
Neural networks are characterized by a high

i degree of parallelism between numerous interconnected

simple processors. The neural network nomenclature is

derived from the similarity of such networks to biological

neural networks. See for example "Computing with Neural

Circuits: A Model", Hopfield and Tank, Vol. 233,
10

S10pp . 622-33 .

In general, neural networks are formed or modeled

using a number of simple processors or neurons arranged in

15 a highly interconnected pattern wherein each of the
neurons performs the simple task of updating its output

state based upon the value of signals presented to it as

inputs. The design of a neural network involves

determining the number, arrangement and weight of the
20 interconnections between neurons. The weight of a

connection corresponds to the biological synaptic strength

* and determines the degree in which the output signal on

one neuron will effect the other neurons to which it is

connected. Thus, each neuron or processor receives input
25 signals which are derived from the output or activation

states of other connected neurons.

These activation states or output signals are

3 linearly, typically resistively, operated on via the

connection weights and then summed. Summation may be
30
3O accomplished in an analog circuit which adds together all

input voltages to give a resultant voltage representative

of the sum of the inputs. This input signal summation is

then operated on by a non-linear processor function. such

as a threshold detector, to produce an updated output

activation state.
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SUMMARY OF THE INVENTION

Information contained within the firing intervals

of a temporally coded spike train may be decoded by a

multi-layered neural network having some of its inputs
5

delayed in time. This serially coded information can be

converted into a spatially distributed two dimensional i
topographical map with multiple output channels each

having decoded information serially presented for further 1
processing. The system and method of this invention is

well suited to perform the decoding, classifying and I
characterizing of the interspike-interval information and

bandwidth of a serially encoded spike train.

An object of the present invention is to decode

multiplexed pulse-coded signals embedded serially in an

incoming spike train into parallel distributed

topographically mapped individual channels.

Another object of the present invention is to20O extract the time variances of the incoming interspike

intervals by distributing these variances on a

two-dimensional output neuron array.

Yet another object of the present invention is to25
characterize the underlying stochastic processes of the

incoming spike train firing intervals.

The foregoing objects are achieved as is now

described. The system and method of this invention
30

implements a signal processing scheme for code conversion

using time delayed input and specifically connected neural

networks for ccmputing the interspike interval and

bandwidth information embedded in a serial temporal spike

train without requiring a learning mode.

351
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The system and method of this invention processes

a received input spike train comprised of a series of

pulses having a spike time interval wherein the time value

of the interval contains the information of interest.

This spike train input is applied to an undelayed input of

each of a plurality of first-layer neurons and

first-parallel-layer neurons. The undelayed input of each

the first neurons are effectively in parallel and receive

the undelayed spike train input simultaneously.

I0 The input spike train is also applied to a delay
means that time shifts the input spike train so as to

3 produce multiple cascaded replicas of the spike train

delayed by multiples of incremental time intervals

1 ("kAt"). For example, At may be equal to one (1)

millisecond ("msec") and k may represent values from 1 to

n. Thus, time shifted replicas of the input spike train

will begin 1 msec, 2 msec, 3 msec, 4 msec, . . . , and n
msec after the original spike train. These time delayed

20 versions of the spike train are systematically applied to20
inputs of the first-layer and first-parallel-layer

neurons. At may be any time value so long as the spike

interval time is greater than At.

2 Each first-layer and first-parallel-layer neurons

are assigned a position in a network of the system of this

invention. Each first neuron has a total number of inputs

dependent on its position in the network. For example,3the 1st neuron in the fiisL layeL has two inputs: one

undelayed input connected directly to the spike train, and

the other input connected to an output of the delay means
whereby the spike train is delayed by At. The 2nd

3 neuron has three inputs receiving the input spike train

and cascaded time delayed replicas thereof: input (1) is

3 undelayed, (2) is delayed by At and (3) is delayed by

I3
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2At. Similarly, the 3rd neuron has four inputs, the 4th

neuron has five inputs, and the nth neuron has n+l 3
inputs.

Both the first-layer and first-parallel-layer

neurons may be thought of as a linear cascade of neurons I
having a progressively increasing number of inputs wherein

these inputs receive successively increasing time delayed

replicas of the input spike train. The purpose of both 3
the first-layer and first-parallel-layer neurons are to

indicate when there is a time coincidence of spikes at the 5
inputs of each first neuron. Spike time coincidences at

two or more inputs of the first-layer neurons produces an

output. Similarly, spike time coincidences at three or
more inputs of the first-parallel-layer neurons produces

an output.

A first neuron may determine spike time and

delayed spike time coincidence at its inputs by adding

Stogether all of the input signal vo ltages . Add ing

together the input voltages produces an internal voltage

in the neuron representative of the sum of these input

voltages. This internal summation voltage can be compared

to a threshold voltage so as to perform a predefined

25 logical operation. U
For illustrative purposes assume that each first

neuron input spike has a voltage amplitude value of one

volt and the first-layer neurons have a threshold voltage

of greater than one volt. Whenever two cr more inputs
30

have spike voltages coincident in time, the internal

neuron voltage sum will be greater than one volt and an

output is produced. Thus the first-layer neurons perform

a logical operation representative of two or more input I
spike voltages being coincident in time.

35 I
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The first-parallel-layer neurons have a threshold

voltage of greater than two volts. Similarly, when three

or more inputs have spike voltages coincident in time, the

internal neuron voltage sum will be greater than two volts

and an output is produced. Thus the first-parallel-layer

neurons perform a logical operation representative of

three or more input spike voltages being coincident in

3 time.

A single neuron with two threshold values and two10 outputs may perform the same function as a first-layer and

a first-parallel-layer neuron combined. In addition, the

first-layer neurons inhibit their outputs after an input

spike time coincidence causes an output to occur. This

15 output inhibition is for a time period of (k-l)At where

k = 1 to n. For example, the 3rd first-layer neuron will

not produce another output for (3-1)At or 2At. Using
the above example 2At would equal 2 msec. This

inhibitory time is called the refractory period. This

Irefractory period is used to inhibit neuron outputs that
20

would normally occur given the input spike time

coincidence criteria mentioned above. A purpose of this

refractory period is to compensate for the effects of

* phase differences between the original spike train and its

time delayed replicas applied to the other inputs of the
25
25 first-layer neurons.

Normally, an interspike interval will fall within

a time delay window less than or equal to kAt. For

example, where k - 4 and At - 1 msec the spike interval
30

must be less than or equal to 4 msec for the 4th or
greater number first-layer neuron to fire (voltage signal

3 on output). However, a spike interval of 2 msec will also

cause the 4th or greater number first-layer neuron to

fire. Thus, the first-layer neurons detect and tire onS 35 the first and higher order interspike intervals.

I
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The first-parallel-layer neurons detect and fire

on the second and higher order interspike intervals 3
because its voltage threshold requires three on more

inputs have time coincident spikes. Therefore by

subtracting the outputs of the corresponding position

first-parallel-layer neurons from the outputs of the

corresponding position first-layer neurons, only the first

order interspike intervals will be detected. U
This subtraction process is performed in a

10 plurality of second-layer neurons which eliminate higher 3
order interspike interval detection. The outputs of the

first-layer and first-parallel-layer neurons are applied

to the inputs of the corresponding position second-layer

neurons. Each second-layer neuron has two inputs: one

excitatory arn the other inhibitory. The excitatory

second-layer neuron input receives the corresponding

position first-layer neuron output and the inhibitory 3
second-layer neuron input receives the corresponding

Sposition first-parallel-layer neuron output. Thus, for

example, the 3rd first-layer neuron and the 3rd

first-parallel-layer neuron outputs are connected to the

3rd second-layer neuron excitatory and inhibitory inputs

respectively.

25

An output from the second-layer neurons occur

when a corresponding position first-layer neuron output is

applied to the excitatory input of the corresponding

position second-layer neuron and there is no corresponding 3
position first-parallel-layer neuron output applied to the

30
inhibitory input of the second-layer neuron. Thus, if a

first-parallel-layer output occurs in time coincidence
with its corresponding position first-layer neuron output,

then the corresponding position second-layer neuron output I
in inhibited even though the excitatory input of the

35I
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1 second-layer neuron receives an output from the

corresponding position first-layer neuron. This is how

only the first order interspike intervals are detected.

3 Thus, an accurate representation of true first order

intervals with the time delay window is assured.

An interspike interval may be thought of as the

reciprocal of instantaneous frequency. The time delay

window, kAt, may also be thought of as a high-pass

10 filter where the interspike interval must be less than or10

equal in time to this window. Thus, this window sets the
lowest instantaneous frequency that can be detected.

3 Therefore, longer interspike intervals may be detected as

the number of first neuron inputs and time delays (k) are

15 increased.

Given the various high-pass filtered interspike
intervals possible, a plurality of band-pass filtered

intervals may be obtained by connecting a plurality of

third-layer neurons, configured in a two dimensional
20

matrix, to the second-layer neuron outputs. In addition,

the third-layer neuron matrix also characterizes the

bandwidth variations of these interspike intervals.

25 The third-layer neuron two dimensional matrix may25
consist of n columns and m rows (n,m) where the number of

third-layer neurons is equal to the product of n and m.

Each third-layer neuron has two inputs: one excitatory and

the other inhibitory. The (k,h) third-layer neuron's
excitatory input receives the k-th second-layer neuron

~output and its inhibitory input receives the h-thS30

second-layer neuron output for k - 1 to n and h - 1 to m

where n > m. In similar fashion to a second-layer

neuron, the output of a third-layer neuron only will fire

35 when its excitatory input has a spike voltage and its
inhibitory input has no spike voltage.

i
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As an example, let k - 6, h - 4 and 6t
1 msec; thus, the longest detectable spike interval is 6 3
msec and the shortest detectable spike interval is 4

msec. Any spike interval greater than 6 msec. or less 3
than 4 msec will not activate the output of the (6,4)

third-layer neuron. Thus, any output from the (6,4)

third-layer neuron will represent spike intervals from 4 I
to 6 msec with a bandwidth variance of 2 msec. U

Arranging the third-layer neuron matrix so that
10 interspike intervals are represented by a horizontal axis

(h) and the bandwidth of the interspike interval variances

are represented by the vertical axis (k) allows decoding

of temporal codes to spatial codes and, in addition, may
be used for the decoding of multiplexed signals. Since

the received interval times and their bandwidth variances
are readily discernible, each third-layer neuron output
may be further processed as a discrete channel of specific

information.
20

Uses for the third-layer neuron cutput

information are in speech recognition, visual image

recognition, etc. The system and method of this invention
allows processing of complex neural type signal

information similar to the type of nerve signal
information found in animals and man. This invention has

application, but is not limited to, image recognition of

radar signals, video images, sonar signatures, speech

patterns, and data compression and multiplexing as 3
30 possibly used between the retinal and the central nervous

system of a biological structure. 3

351 I
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I BRIEF DESCRIPTION OF THE DRAWINGS

The novel features believed characteristic of the

invention are set forth in the appended claims. The
invention itself; however, as well as a preferred mode of
use, further objects and advantages thereof, will best be
understood by reference to the following detailed

description of an illustrative embodiment when read in

conjunction with the accompanying drawings, wherein:

10
Figs. 1 through 4 are schematic illustrations of

the architecture of an interspike interval decoding neural
Snetwork in accordance with the system and method of the

present invention.

DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENT

I The system and method of the present invention

provides a novel neural network architecture in
combination with a signal delay means that represents an20
implementation of a signal processing scheme for code

I conversion using time for computing and coding that does
not require learning. This invention may be used to
decode multiplexed pulse coded signals embedded serially35 in an incoming spike train into parallelly distributed

topographically mapped demultiplexed channels having

unique information represented in each channel.

I The system and method of this invention comprises
three layers of neurons: (1) a first-layer andS30
first-parallel-layer, (2) a second-layer and (3) a

third-layer arranged in a two dimensional matrix form. In
addition a time delay means is used to time shift an

incoming spike train signal so as to produce multiple
cascaded time delayed replicas of this spike train.

U
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Referring now to the drawings, and particularly

to Fig. 1, the letters FL designates generally a 3
first-layer neural network with both direct and time

delayed signal inputs receiving an incoming spike train
representative of multiplexed coded information. Network

FL includes a plurality of processing units FL1 , FL 2 ,I

FL 3 , .. , FLk. Each processing unit is designed to

be suitable as a unit cell for integration in an analog
VLSI integrated circuit. The function of each processing 3
unit may also be simulated by software computer program

10 means.

Generally, a spike train, x(t), may be defined

as a time series of spikes (delta functions) with a total

15 of n+1 spikes:

n
x(t) - E 6(t-Tj)

j -o
Such that at time t - rj, there is a spike occurring

20 in the spike train given by the delta function, which

satisfies: I
1O, t-0

25 6(t) -

The time between spikes is the interspike-interval, Ij,

and may be defined as the time interval between any two
adjacent spikes

occurring at time T r and Tj-_I where:

30
Ij - -j-l' for O<j~n

I

I
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1 Each processing unit, FLi where i - 1 to k, has

a first input 10 receiving the undelayed spike train
signals and a second input 12 receiving a replica of the

spike train delayed in time by At. As the processing
unit number increases so does the number of its inputs

receiving the progressively time delayed replicas of the

spike train. For example, processing unit FL 2 also has
a third input 14 receiving a replica of the spike train

delayed in time by 2At, thus unit FLk has k+l inputs
with a k-th input 16 receiving a replica of the spike

train delayed in time by kAt.

I Therefore, as illustrated in Fig. 1, the k-th

neuron processing unit, FLk, in the first layer has k+l
15 inputs, each input receiving a progressively time delayed

replica of the spike train signal. Therefore, the input

spike train is delayed by times given by T - iAt, for

i - 0 to k.

20 A feature of the system and method of this

invention is the bandpass filtering of the interspike

intervals by the first-layer neuron processors. If the
sum of the inputs to the k-th first-layer neuron processor

3 is defined as:

25
k

Xk(t) - Ex(t-iAt)i=O

I and the interspike interval of the original undelayed

spike train falls within the time delay window,
30 Ij.<kAt, for 0<j<n, then the input sum may

defined as:

k
Xk(t) - Ex(t-iAt)>l

i-0
35
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1 Conversely, if I.>kAt, for 0<j<n, then
Xk(t)<l. Thus, if the threshold for the input sum is 3
set at greater than one, then the k-th neuron processor

output will fire only when the interspike interval, Ij,3
of the input spike train is within the time delay window,
kAt. The output of the k-th first-layer neuron

processor, FLk, may be represented by:

if Xk>l I
Yk(t)

10 t0, otherwise

Therefore, the k-th neuron first-layer processor may be

considered to encode a bandpass filtered input interspike

interval, 0<Iý•<kAt, wherein the k-th neuron output
20 will fire only if the original input spike train

15 contains an interspike interval below this cutoff interval

of kAt. I
In order to ensure that a first-layer neuron

processor output will fire with a pulse of duration At
20 only, given the various phase differences of the incoming

delayed replicas of the input spike train, a refractory

period of (k-l)At for the k-th neuron is used. The I
output of the k-th neuron is inhibited, even if the input
criteria are met, during the refractory time period. 3

25

If more than two spikes occur within the time 1
delay window, t - kAt, then the first-layer neuron

processor may be overestimating the cutoff interspike

interval, in which case the interspike intervals are
30 shorter than the cutoff interval, kAt. To prevent the

first-layer neurons from estimating higher order I
interspike intervals instead of the first order interspike
intervals, another set of neurons parallel to this 3
first-layer is added and connected in a similar fashion.

35I



-- -15-

1 These parallel neurons are called first-parallel-layer

neurons and have their inputs connected in the same

fashion as do the first-layer neuron inputs.I
Referring now to Fig. 2, first-parallel-layer

neuron processors, FPLi where i - 1 to k, function in
the same way as do the first-layer neuron processors

except that the input summation threshold is set at

greater than two instead of greater than one. The output
of the k-th first-parallel-layer neuron processor, FPLk'

[] 10

may be represented by:

iyk(t) , if Xk>2

I0, otherwise

* 15 Since the first-layer neuron processors detect

first and higher order interspike intervals and the

first-parallel-layer neuron processors detect second and

higher order interspike intervals, taking the difference

* between these two sets of neuron processors results in the
20 detection of only the first order interspike intervals.

The system and method of this invention obtains the
difference between the first-layer and first-parallel-

layer neuron outputs using second-layer neuron processors

connected to the respectively positioned first neuron
25 processor outputs.I

Referring now to Fig. 3, second-layer neuron
processors, SL. where i -1 to k, each have an

excitatory input 30 connected to the respective position

30 first-layer neuron output 20 and an inhibitory input 32

connected to the respective position first-parallel-layer

neuron output 22. The output of the k-th second-layer

neuron processor, SLk, may be represented by:

I 35
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i1, if 2>Xk(t)>l

Y"k(t) = Yk(t)-Y'k(t) -0, if otherwise3

This ensures an accurate estimation of the first order
interspike interval, 0<Ij<kAt, within the time

5 delay window kAt. I
Given that the k-th neuron processor output in

the second-layer indicates the first order interspike

intervals represented by 0<I.<kAt, and the h-th
10 second-layer neuron processor output indicates the first

order interspike intervals represented by i
0<I.<hAt, then the difference between the k-th and

h-th second-layer neuron processor outputs represents the
first order interspike intervals with a bandwidth of

15 hAt, i.e., (k-h)At<I.<kAt.

Referring now to Fig. 4, third-layer neuron

processors TLk,h, where k = 1 to n, h . 1 to m and n
> m, are arranged in a two dimensional matrix of n

20 columns and m rows (n,m). Each third-layer neuron I
processor has an excitatory input 50 connected tc the

output of the second-layer neuron located at a position
corresponding to the third-layer neuron column position
and an inhibitory input 52 connected to the output of the

25 second-layer neuron located at a position corresponding to

the third-layer neuron row position. As illustrated in

Fig. 4, each second-layer neuron output may be connected
to a plurality of third-layer neuron inputs. As may be
noted, only the third-layer neurons whose matrix column I

30 number k is greater than row number h are connected to the

corresponding position second-layer neurons.

35 I
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The output of the (k,h) third-layer neuron

processor, TLk,h, may be represented by:

k
1, if 2>_x(t-i~t)>l

i=k-h

y-.kh(t) -Y"k(t)-Y"h(t)- 0 o

3 Thus, the third-layer neuron processor located at the k-th

column and h-th row receives excitatory input from the

m10 k-th second-layer neuron output and inhibitory input from

the h-th second-layer neuron output. The (k,h) position

third-layer neuron processor indicates interspike
-- intervals within the range of (k-h)At and kAt when

there is an output from the k-th second-layer neuron and
15 an absence of an output from the h-th second-layer neuron.

The system and method of this invention may beI used to detect both the exact interspike intervals and

intervals with some variance. The interspike interval

20 accuracy and acceptable tolerance may be selected from the20
topographical location of third-layer neuron processors.

Thus, the interspike intervals of the input spike train

may be sorted into a distributed set of bandpass filtered

3 spike trains whose topological position within the

25 third-layer neuron processor output matrix indicates the
various interspike intervals and their associated

bandwidth intervals.

The system of the present invention, therefore,

is well adapted to carry out the objects and attain the30
ends and advantages mentioned as well as others inherent
therein. While a presently preferred embodiment of the

invention has been given for the purpose of disclosure,

numerous changes in the details of construction and

35
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arrangement of parts will readily suggest themselves to

those skilled in the art and which are encompassed within 3
the spirit of the invention and the scope of the appended

claims.

5
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CLAIMS:

What is claimed is:

1. A neural network interspike interval

decoding system for use in decoding multiplexed

pulse-coded signals embedded serially in an incoming spike

train waveform into parallel distributed topographically

mapped channels, said network being comprised of a

plurality of interconnected neurons wherein said network

*10 comprises:

means for time delay of the incoming spike

3 train by time intervals of At, said delay means

having a plurality of outputs providing replicas

* of the incoming spike train delayed in time by

kAt for k - 1 to n;

n first-layer neurons, each of said

first-layer neurons having one input connected to

the undelayed incoming spike train and k inputs

20 connected to said corresponding time delay meansm 20
outputs for k - 1 to n;

* each of said first-layer neurons having an

output means providing a first-layer neuron

3 output pulse of time duration At when at least

two of said corresponding first-layer neuron25
inputs have spikes coincident in time and no

I- previous output pulse has occurred within a time

of (k-l)At,

n first-parallel-layer neurons, each of said

30 first-parallel-layer neurons having one input

connected to the undelayed incoming spike train

and k inputs connected to said corresponding time

delay means outputs for k - 1 to n;

each of said first-parallel-layer neurons

35 having an output means providing a

I3
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first-parallel-layer neuron output pulse when at

least three of said corresponding 3
first-parallel-layer neuron inputs have spikes

coincident in time;

n second-layer neurons, each of said

second-layer neurons having an excitatory input

in communication with said corresponding position

first-layer neuron output and an inhibitory input

in communication with said corresponding position

first-parallel-layer neuron output;

each of said second-layer neurons having an

output means providing a second-layer neuron

output pulse only when there is a pulse on said 3
excitatory input and an absence of a pulse on

said inhibitory input;15 mn X m third-layer neurons arranged in a

matrix of n columns and m rows (n,m), each of

said third-layer (k,h) neurons having an 3
excitatory input connected to said corresponding

position k second-layer neuron output and an i20i
inhibitory input connected to said corresponding

h position second-layer neuron output for k -1 1

to n and h - 1 to m, where n > m; and

each of said third-layer neurons having an

output means providing a third-layer neuron
25

output pulse at matrix location (k,h) only when

there is a pulse on said k column third-layer i

excitatory input and an absence of a pulse on

said h row third-layer inhibitory input for k - 1 3
to n and h - 1 to m, where n > m.

30
2. A method for creating a neural network

interspike interval decoding system for use in decoding

multiplexed pulse-coded signals embedded serially in an

incoming spike train into parallel distributed

I
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topographically mapped channels, said network being

comprised of a plurality of interconnected neurons having

n first-layer neurons each with one undelayed spike train

input and k time delayed inputs, n first-parallel-layer

neurons each with one undelayed spike train input and k

I* time delayed inputs, n second-layer neurons and an n X m

third-layer neuron matrix interconnected to decode the

firing interspike-intervals and bandwidth variations of

the spike train, said method comprising the steps of:

delaying in time the incoming spike train by

time intervals of kAt for k = 1 to n;

establishing n first-layer neurons, each of

I said first-layer neurons having one input

connected to the undelayed incoming spike train

and k inputs connected to said corresponding time
delayed spike train for k = 1 to n;

generating a first-layer neuron output pulse

of time duration At when at least two of said

corresponding first-layer neuron inputs have

spikes coincident in time and no previous output
20

pulse has occurred within a time of (k-l)At,

I establishing n first-parallel-layer neurons,

each of said first-parallel-layer neurons having

one input connected to the undelayed incoming

spike train and k inputs connected to said
25

corresponding time delayed spike train for k = 1

to n;

generating a first-parallel-layer neuron

I output pulse when at least three of said

corresponding first-parallel-layer neuron inputs
30

have spikes coincident in time;

establishing n second-layer neurons, each of

said second-layer neurons having an excitatory

inp.t in communication with said corresponding

I l35
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position first-layer neuron output and an
inhibitory input in communication with said 3
corresponding position first-parallel-layer

neuron output;

generating a second-layer neuron output

pulse only when there is a pulse on said

excitatory input and an absence of a pulse on

said inhibitory input;

establishing n X m third-layer neurons U
10 arranged in a matrix of n columns and m rows

(n,m), each of said third-layer (kh) neurons 3
having an excitatory input connected to said

corresponding position k second-layer neuron

output and an inhibitory input connected to said

15 corresponding h position second-layer neuron

output for k - 1 to n and h - 1 to m, where

n > m; and

generating a third-layer neuron output pulse

at matrix location (k,h) only when there is a

20 pulse on said k column third-layer excitatory I

input and an absence of a pulse on said h row

third-layer inhibitory input for k - 1 to n and h

I=1 to mi, where n > m.

I25

I
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U 1 ABSTRACT OF THE DISCLOSURE

A multi-layered neural network is disclosed that

converts an incoming temporally coded spike train into a

spatially distributed topographical map from which

interspike-interval and bandwidth information may be

extracted. This neural network may be used to decode

multiplexed pulse-coded signals embedded serially in an

incoming spike train into parallel distributed

10 topographically mapped channels. A signal processing and

code conversion algorithm not requiring learning is

provided.I
* 15
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10

AN INTERSPIKE INTERVAL DECODING NEURAL NETWORK

THIS INVENTION WAS MADE WITH GOVERNMENT FUNDS;
THE GOVERNMENT HAS CERTAIN RIGHTS IN THE INVENTION

BACKGROUND OF THE INVENTION

20 1. Field of the Invention

This invention relates to multi-layered

time-delayed neural networks useful in a variety of data

and signal processing, image recognition and other

computational tasks. In particular, the present invention I25
relates to a means to convert serially encoded temporal

firing intervals of a spike train waveform into a

spatially distributed topographical matrix in which the

interspike-interval and bandwidth information of the spike

train may be extracted.
30

2. Description of the Related Technology i

Topographical maps of neurons are found in the i
central nervous system of biological organisms for the

35I
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1 tonotopical representation of tones, somatotopicalI representation of body surface, retinotopical

representation of the visual world, etc. These

I topographical maps represent information based on the

spatial locations of the neurons. The signals encoded by

I the biological neurons have characteristic pulse height
and pulse width, and may be considered as pulse-coded

3 signals where the information is encoded in the time of

occurrence of the pulses.

10 This time-series of pulses is called a spike

train and the neuron information is contained in the3interspike-intervals between pulse firings from the

neurons. Thus, the signal information transmitted by a

I15 neuron can be considered as "temporally-coded" by the time

intervals between pulses in the spike train. Various
methods of correlation analysis of spike trains in

biological neurons have been developed. See for example

"Neuronal spike trains and stochastic point process",

20 Perkel, Gerstein and Moore, Biophys. J., Vol. 7,20
pp. 391-440 (1967); "Cross-interval histogram and

cross-interspike interval histogram correlation analysis

of simultaneously recorded multiple spike train data",

Tam, Ebner and Knox, Journal of Neuroscience Methods,

Vol. 23, pp. 23-33 (1967).
25

Given this serial transmission of the
temporally-coded interspike pulse train, the information

contained within the spike intervals may be decoded into

parallel topographically distributed codes. Topographical30
distribution of codes based on the location of the neurons
is called "place-code". By converting temporally-coded

signals into topographically distributed codes, the firing

intervals of neurons may be readily recognized as a

particular neuron in a population ensemble. Thus,

I3
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individual firing patterns may be distinguished such as

burst-firing from long-interval firing and periodic firingn
from non-periodic firing. l

Neural networks are characterized by a high5
degree of parallelism between numerous interconnected

simple processors. The neural network nomenclature is
derived from the similarity of such networks to biological
neural networks. See for example "Computing with Neural 3
Circuits: A Model", Hopfield and Tank, Vol. 233,

10 pp. 622-33. 1
In general, neural networks are formed or modeled I

using a number of simple processors or neurons arranged in

15 a highly interconnected pattern wherein each of the

neurons performs the simple task of updating its output
state based upon the value of signals presented to it as
inputs. The design of a neural network involves

determining the number, arrangement and weight of the
20 interconnections between neurons. The weight of a

connection corresponds to the biological synaptic strength
and determines the degree in which the output signal on
one neuron will effect the other neurons to which it is
connected. Thus, each neuron or processor receives input

25 signals which are derived from the output or activation
states of other connected neurons. I

These activation states or output signals are
linearly, typically resistively, operated on via the
connection weights and then summed. Summation may be30
accomplished in an analog circuit which adds together all
input voltages to give a resultant voltage representative

of the sum of the inputs. This input signal summation is

then operated on by a non-linear processor function. such
as a threshold detector, to produce an updated output
activation state.

I
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SUMMARY OF THE INVENTION

Information contained within the firing intervai•

of a temporally coded spike train may be decoded by a
multi-layered neural network having some of its inputs
delayed in time. This serially coded information can be
converted into a spatially distributed two dimensional

topographical map with multiple output channels each

having decoded information serially presented for further

10 processing. The system and method of this invention is
well suited to perform the decoding, classifying and
characterizing of the interspike-interval information and
bandwidth of a serially encoded spike train.

An object of the present invention is to decode
multiplexed pulse-coded signals embedded serially in an

incoming spike train into parallel distributed

topographically mapped individual channels.

20 Another object of the present invention is to

extract the time variances of the incoming interspike
intervals by distributing these variances on a

two-dimensional output neuron array.

25 Yet another object of the present invention is to25
characterize the underlying stochastic processes of the

incoming spike train firing intervals.

The foregoing objects are achieved as is now

described. The system and method of this invention30
implements a signal processing scheme for code conversion

using time delayed input and specifically connected neural
networks for computing the interspike interval and

bandwidth information embedded in a serial temporal spike

35 train without requiring a learning mode.
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The system and method of this invention processes

a received input spike train comprised of a series of U
pulses having a spike time interval wherein the time value
of the interval contains the information of interest.
This spike train input is applied to an undelayed input of
each of a plurality of first-layer neurons and I
first-parallel-layer neurons. The undelayed input of each
the first neurons are effectively in parallel and receive
the undelayed spike train input simultaneously. 3

10 The input spike train is also applied to a delay 5
means that time shifts the input spike train so as to
produce multiple cascaded replicas of the spike train

delayed by multiples of incremental time intervals
("kAt"). For example, At may be equal to one (1)

millisecond ("msec") and k may represent values from 1 to
n. Thus, time shifted replicas of the input spike train
will begin 1 msec, 2 msec, 3 msec, 4 msec, . . . , and n

msec after the original spike train. These time delayed
versions of the spike train are systematically applied to

20 inputs of the first-layer and first-parallel-layer

neurons. At may be any time value so long as the spike

interval time is greater than At.

Each first-layer and first-parallel-layer neurons 325
are assigned a position in a network of the system of this

invention. Each first neuron has a total number of inputs

dependent on its position in the network. For example,

the 1st neuron in the first layer has two inputs: one
undelayed input connected directly to the spike train, and
the other input connected to an output of the delay means

whereby the spike train is delayed by At. The 2nd i
neuron has three inputs receiving the input spike train
and cascaded time delayed replicas thereof: input (1) is

undelayed, (2) is delayed by At and (3) is delayed by

I
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2At. Similarly, the 3rd neuron has four inputs, the 4th

neuron has five inputs, . . and the nth neuron has n+l

inputs.

Both the first-layer and first-parallel-layer

neurons may be thought of as a linear cascade of neurons

having a progressively increasing number of inputs wherein

these inputs receive successively increasing time delayed

replicas of the input spike train. The purpose of both

the first-layer and first-parallel-layer neurons are to1indicate when there is a time coincidence of spikes at the

inputs of each first neuron. Spike time coincidences at

two or more inputs of the first-layer neurons produces an

output. Similarly, spike time coincidences at three or

I more inputs of the first-parallel-layer neurons produces
an output.

n A first neuron may determine spike time and

delayed spike time coincidence at its inputs by adding

20 together all of the input signal voltages. Adding

together the input voltages produces an internal voltage

in the neuron representative of the sum of these input
voltages. This internal summation voltage can be compared

to a threshold voltage so as to perform a predefined

25 logical operation.

I For illustrative purposes assume that each first

neuron input spike has a voltage amplitude value of one

volt and the first-layer neurons have a threshold voltage

of greater than one volt. Whenever two or more inputs

have spike voltages coincident in time, the internal

neuron voltage sum will be greater than one volt and an

output is produced. Thus the first-layer neurons perform

a logical operation representative of two or more input

spike voltages being coincident in time.
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The first-parallel-layer neurons have a threshold

voltage of greater than two volts. Similarly, when three U
or more innii,-c, ha,,e sp.ir' voltages coincident in time, the

internal neuron voltage sum will be greater than two volts

and an output is produced. Thus the first-parallel-layer

neurons perform a logical operation representative of

three or more input spike voltages being coincident in I
time. I

A single neuron with two threshold values and two
outputs may perform the same function as a first-layer and 5
a first-parallel-layer neuron combined. In addition, the

first-layer neurons inhibit their outputs after an input

spike time coincidence causes an output to occur. This

output inhibition is for a time period of (k-l)At where

k - 1 to n. For example, the 3rd first-layer neuron will

not produce another output for (3-1)At or 2At. Using

the above example 2At would equal 2 msec. This
inhibitory time is called the refractory period. This

Srefractory period is used to inhibit neuron outputs that

would normally occur given the input spike time

coincidence criteria mentioned above. A purpose of this

refractory period is to compensate for the effects of

phase differences between the original spike train and its

time delayed replicas applied to the other inputs of the I25
first-layer neurons. I

Normally, an interspike interval will fall within

a time delay window less than or equal to kAt. For

example, where k - 4 and At - 1 msec the spike interval30
must be less than or equal to 4 msec for the 4th or

greater number first-layer neuron to fire (voltage signal

on output). However, a spike interval of 2 msec will also

cause the 4th or greater number first-layer neuron to I
fire. Thus, the first-layer neurons detect and fire on

the first and higher order interspike intervals.

I
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The first-parallel-layer neurons detect and fire
on the second and higher order interspike intervals

because its voltage threshold requires three on more

inputs have time coincident spikes. Therefore by

subtracting the outputs of the corresponding position

first-parallel-layer neurons from the outputs of the

corresponding position first-layer neurons, only the first

order interspike intervals will be detected.

This subtraction process is performed in a
10

plurality of second-layer neurons which eliminate higher

order interspike interval detectior. The outputs of the

first-layer and first-parallel-layer neurons are applied

to the inputs of the corresponding position second-layer

3 neurons. Each second-layer neuron has two inputs: one

excitatory and the other inhibitory. The excitatory

second-layer neuron input receives the corresponding

position first-layer neuron output and the inhititory

second-layer neuron input receives the corresponding

position first-parallel-layer neuron output. Thus, for20
example, the 3rd first-layer neuron and the 3rd

first-parallel-layer neuron outputs are connected to the

3rd second-layer neuron excitatory and inhibitory inputs

respectively.

25
An output from the second-layer neurons occur

when a corresponding position first-layer neuron output is

applied to the excitatory input of the corresponding

position second-layer neuron and there is no corresponding

position first-parallel-layer neuron output applied to the30
inhibitory input of the second-layer neuron. Thus, if a

first-parallel-layer output occurs in time coincidence

with its corresponding position first-layer neuron output,

then the corresponding position second-layer neuron output

35 in inhibited even though the excitatory input of the

I3
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second-layer neuron receives an output from the
corresponding position first-layer neuron. This is how 3
only the first order interspike intervals are detected.

Thus, an accurate representation of true first order

intervals with the time delay window is assured.

An interspike interval may be thought of as the i
reciprocal of instantaneous frequency. The time delay

window, ktt, may also be thought of as a high-pass

filter where the interspike interval must be less than or10
equal in time to this window. Thus, this window sets the

lowest instantaneous frequency that can be detected.

Therefore, longer interspike intervals may be detected as

the number of first neuron inputs and time delays (k) are

15 increased.

Given the various high-pass filtered interspike

intervals possible, a plurality of band-pass filtered

intervals may be obtained by connecting a plurality of

Sthird-layer neurons , configured in a two dimensional

matrix, to the second-layer neuron outputs. In addition,

the third-layer neuron matrix also characterizes the

bandwidth variations of these interspike intervals.

The third-layer neuron two dimensional matrix may i25
consist of n columns and m rows (n,m) where the number of

third-layer neurons is equal to the product of n and m.

Each third-layer neuron has two inputs: one excitatory and

the other inhibitory. The (k,h) third-layer neuron's 3
excitatory input receives the k-th second-layer neuron30
output and its inhibitory input receives the h-th

second-layer neuron output for k - 1 to n and h - I to m

where n > m. In similar fashion to a second-layer

neuron, the output of a third-layer neuron only will fire

when its excitatory input has a spike voltage and its

inhibitory input has no spike voltage.

I
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As an example, let k - 6, h - 4 and At =

m n1 msec; thus, the longest detectable spike interval is 6
msec and the shortest detectable spike interval is 4

msec. Any spike interval greater than 6 msec. or less

than 4 msec will not activate the output of the (6,4)

third-layer neuron. Thus, any output from the (6,4)

third-layer neuron will represent spike intervals from 4

to 6 msec with a bandwidth variance of 2 msec.

Arranging the third-layer neuron matrix so that
interspike intervals are represented by a horizontal axis

(h) and the bandwidth of the interspike interval variances

3 are represented by the vertical axis (k) allows decoding

of temporal codes to spatial codes and, in addition, may

15 be used for the decoding of multiplexed signals. SinceI the received interval times and their bandwidth variances

are readily discernible, each third-layer neuron output

may be further processed as a discrete channel of specific

information.

*20

Uses for the third-layer neuron output

information are in speech recognition, visual image

recognition, etc. The system and method of this invention

allows processing of complex neural type signal
25 information similar to the type of nerve signal25

information found in animals and man. This invention has

Iapplication, but is not limited to, image recognition of

radar signals, video images, sonar signatures, speech

patterns, and data compression and multiplexing as

30 possibly used between the retinal and the central nervous

30 system of a biological structure.

3
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BRIEF DESCRIPTIO.1 CF THE DRAWINGS 1
The novel features believed characteristic of the

invention are set forth in the appended claims. The
invention itself; however, as well as a preferred mode of
,ise, further objects and advantages thereof, will best be

understood by reference to the following detailed
description of an illustrative embodiment when read in

conjunction with the accompanying drawings, wherein: 3
10 Figs. 1 through 4 are schematic illustrations of 5

the architecture of an interspike interval decoding neural

network in accordance with the system and method of the i

present invention.

DETAILED DESCRIPTIONOF THE PREFERRED EMBODIMENT

The system and method of the present invention 3
provides a novel neural network architecture in

combination with a signal delay means that represents an

implementation of a signal processing scheme for code

conversion using time for computing and coding that does

not require learning. This invention may be used to
decode multiplexed pulse coded signals embedded serially

in an incoming spike train into parallelly distributed i25
topographically mapped demultiplexed channels having

unique information represented in each channel.

The system and method of this invention comprises

three layers of neurons: (1) a first-layer and
30

first-parallel-layer, (2) a second-layer and (3) a

third-layer arranged in a two dimensional matrix form. In
addition a time delay means is used to time shift an

incoming spike train signal so as to produce multiple 3
cascaded time delayed replicas of this spike train.

I
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1 Referring now to the drawings, and particularly

to Fig. 1, the letters FL designates generally a

first-layer neural network with both direct and time

delayed signal inputs receiving an incoming spike train

representative of multiplexed coded information. Network

FL includes a plurality of processing units FL 1 , FL 2 ,

FL 3 , .. , FLk' Each processing unit is designed to

be suitable as a unit cell for integration in an analog

VLSI integrated circuit. The function of each processing

unit may also be simulated by software computer program

means.

Generally, a spike train, x(t), may be defined

as a time series of spikes (delta functions) with a total

15 of n+1 spikes:

n
x(t) -= 6(t-xj)j-0

Such that at time t = Tj, there is a spike occurring
20 in the spike train given by the delta function, which

I satisfies:

6(t) - i . 1, t-0

25 (0, t-0

The time between spikes is the interspike-interval, Ij,
and may be defined as the time interval between any two

adjacent spikes
occurring at time Tr. and r.I, where:

30 1 Tj - Tj-l' for O<j<n

i

i 3
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Each processing unit, FL. where i =1 to k, has
a first input 10 receiving the undelayed spike train

signals and a second input 12 receiving a replica of the

spike train delayed in time by At. As the processing

unit number increases so does the number of its inputs

receiving the progressively time delayed replicas of the

spike train. For example, processing unit FL 2 also has

a third input 14 receiving a replica of the spike train

delayed in time by 26t, thus unit FLk has k+! inputs
with a k-th input 16 receiving a replica of the spike

10 train delayed in time by kAt.

Therefore, as illustrated in Fig. 1, the k-th

neuron processing unit, FLk, in the first layer has k+1

15 inputs, each input receiving a progressively time delayed

replica of the spike train signal. Therefore, the input

spike train is delayed by times given by T - iAt, for

i - 0 to k.

A feature of the system and method of this

invention is the bandpass filtering of the interspike

intervals by the first-layer neuron processors. If the

sum of the inputs to the k-th first-layer neuron processor

is defined as:

25
k

Xk(t) - Ex(t-iAt)

i-0

and the interspike interval of the original undelayed

spike train falls within the time delay window,
30 I.<kAt, for 0<j<n, then the input sum may

defined as:

Xk(t) - Ex(t-iAt)>l
i-0

35I
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1 Conversely, if I.>kAt, for 0<j<n, then)
Xk(t)<l. Thus, if the threshold for the input sum is
set at greater than one, then the k-th neuron processor
output will fire only when the interspike interval, I.,

of the input spike train is within the time delay window,
kAt. The output of the k-th first-layer neuron

processor, FLk' may be represented by:

1, if Xk>

10 t0, otherwise

Therefore, the k-th neuron first-layer processor may be
considered to encode a bandpass filtered input interspike

interval, 0<I.<kAt, wherein the k-th neuron output)
20 will fire only if the original input spike train

15 contains an interspike interval below this cutoff interval

of kAt.

In order to ensure that a first-layer neuron
processor output will fire with a pulse of duration At

20 only, given the various phase differences of the incoming

delayed replicas of the input spike train, a refractory

period of (k-l)At for the k-th neuron is used. The

output of the k-th neuron is inhibited, even if the input
criteria are met, during the refractory time period.

25

I If more than two spikes occur within the time

delay window, T - kAt, then the first-layer neuron
processor may be overestimating the cutoff interspike

interval, in which case the interspike intervals are
I 30 shorter than the cutoff interval, kAt. To prevent the

first-layer neurons from estimating higher order

interspike intervals instead of the first order interspike

intervals, another set of neurons parallel to this

first-layer is added and connected in a similar fashion.

I
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These parallel neurons are called first-parallel-layer
neurons and have their inputs connected in the same

fashion as do the first-layer neuron inputs.

Referring now to Fig. 2, first-parallel-layer
neuron processors, FPLi where i - 1 to k, function in

the same way as do the first-layer neuron processors

except that the input summation threshold is set at

greater than two instead of greater than one. The output 3
of the k-th first-parallel-layer neuron processor, FPLk,

may be represented by: 3

y s (t) 1 if Xk>2 I
M0, otherwise

15 Since the first-layer neuron processors detect

first and higher order interspike intervals and the

first-parallel-layer neuron processors detect second and

higher order interspike intervals, taking the difference

between these two sets of neuron processors results in the

20 detection of only the first order interspike intervals.

The system and method of this invention obtains the

difference between the first-layer and first-parallel- i
layer neuron outputs using second-layer neuron processors

connected to the respectively positioned first neuron 3
25 processor outputs.

i
Referring now to Fig. 3, second-layer neuron

processors, SLi where i - 1 to k, each have an

excitatory input 30 connected to the respective position
30 first-layer neuron output 20 and an inhibitory input 32

connected to the respective position first-parallel-layer i
neuron output 22. The output of the k-th second-layer

neuron processor, SLk' may be represented by: 3

35I
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1y"k(t) - Yk(t)-Y'k(t) - 1, if 2>Xk(t)>l
t0, if otherwise

This ensures an accurate estimation of the first order

interspike interval, 0<I.<kAt, within the time)
5 delay window kAt.

Given that the k-th neuron processor output in

the second-layer indicates the first order interspike

intervals represented by 0<I.<kAt, and the h-th

10 second-layer neuron processor output indicates the first

order interspike intervals represented by

0<Ii<hAt, then the difference between the k-th andJ

h-th second-layer neuron processor outputs represents the

first order interspike intervals with a bandwidth of

15 hAt, i.e., (k-h)At<I.<kAt.

I Referring now to Fig. 4, third-layer neuron

processors TLk,h, where k - 1 to n, h - 1 to m and n

> m, are arranged in a two dimensional matrix of n

20 columns and m rows (n,m). Each third-layer neuron

processor has an excitatory input 50 connected to the

output of the second-layer neuron located at a position

corresponding to the third-layer neuron column position

I and an inhibitory input 52 connected to the output of the

25 second-layer neuron located at a position corresponding to

the third-layer neuron row position. As illustrated in

Fig. 4, each second-layer neuron output may be connected

to a plurality of third-layer neuron inputs. As may be

noted, only the third-layer neurons whose matrix column

30 number k is greater than row number h are connected to the

corresponding position second-layer neurons.

I

I
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The output of the (kh) third-layer neuron

processor, TLk,h, may be represented by: 3
k

1,if 2>Ex(t-i~t)>l

Y"'kh(t)uY"k(t)-Y"h(t)- 1 , otherwiseI

Thus, the third-layer neuron processor located at the k-th

column and h-th row receives excitatory input from the 3
k-th second-layer neuron output and inhibitory input from

10 the h-th second-layer neuron output. The (k,h) position 3
third-layer neuron processor indicates interspike

intervals within the range of (k-h)&t and kAt when
there is an output from the k-th second-layer neuron and
an absence of an output from the h-th second-layer neuron. a

The system and method of this invention may be

used to detect both the exact interspike intervals and 3
intervals with some variance. The interspike interval

20 accuracy and acceptable tolerance may be selected from the 3
topographical location of third-layer neuron processors.

Thus, the interspike intervals of the input spike train

may be sorted into a distributed set of bandpass filtered

spike trains whose topological position within the

25 third-layer neuron processor output matrix indicates the
various interspike intervals and their associated

bandwidth intervals. 3
The system of the present invention, therefore, 3

is well adapted to carry out the objects and attain the

ends and advantages mentioned as well as others inherent

therein. While a presently preferred embodiment of the

invention has been given for the purpose of disclosure,

numerous changes in the details of construction and

35I
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arrangement of parts will readily suggest themselves to

Ithose skilled in the art and which are encompassed within

the spirit of the invention and the scope of the appended

I claims.

I 5

I
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1 CLAIMS:

What is claimed is:

1. A neural network interspike interval

5 decoding system for use in decoding multiplexed

pulse-coded signals embedded serially in an incoming spike

train waveform into parallel distributed topographically I
mapped channels, said network being comprised of a
plurality of interconnected neurons wherein said network i

10 comprises:

means for time delay of the incoming spike
train by time intervals of At, said delay means

having a plurality of outputs providing replicas
15 of the incoming spike train delayed in time by

kAt for k - 1 to n;

n first-layer neurons, each of said
first-layer neurons having one input connected to i

the undelayed incoming spike train and k inputs
20 connected to said corresponding time delay means

outputs for k - 1 to n;

each of said first-layer neurons having an 3
output means providing a first-layer neuron

output pulse of time duration At when at least

two of said corresponding first-layer neuron
inputs have spikes coincident in time and no
previous output pulse has occurred within a time 3
of (k-l)At,

n first-parallel-layer neurons, each of said 3
first-parallel-layer neurons having one input

connected to the undelayed incoming spike train

and k inputs connected to said corresponding time

delay means outputs for k - 1 to n;

each of said first-parallel-layer neurons
having an output means providing a

i
| i | n .I
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first-parallel-layer neuron output pulse when at

least three of said corresponding

first-parallel-layer neuron inputs have spikes

coincident in time;
n second-layer neurons, each of said

second-layer neurons having an excitatory input

in communication with said corresponding position

first-layer neuron output and an inhibitory input

in communication with said corresponding position

first-parallel-layer neuron output;10
each of said second-layer neurons having an

output means providing a second-layer neuron

output pulse only when there is a pulse on said

excitatory input and an absence of a pulse on

said inhibitory input;15
n X m third-layer neurons arranged in a

iratrix of n columns and m rows (n,m), each of

said third-layer (k,h) neurons having an

excitatory input connected to said corresponding

position k second-layer neuron output and an20
inhibitory input connected to said corresponding

h position second-layer neuron output for k - 1

to n and h - 1 to m, where n > m; and

each of said third-layer neurons having an

25 output means providing a third-layer neuron

output pulse at matrix location (k,h) only when

there is a pulse on said k column third-layer

excitatory input and an absence of a pulse on

said h row third-layer inhibitory input for k = 1

to n and h - 1 to m, where n > m.
30

2. A method for creating a neural network

interspike interval decoding system for use in decoding

multiplexed pulse-coded signals embedded serially in an

incoming spike train into parallel distributed35
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topographically mapped channels, said network being
comprised of a plurality of interconnected neurons having I

n first-layer neurons each with one undelayed spike train

input and k time delayed inputs, n first-parallel-layer
neurons each with one undelayed spike train input and k

time delayed inputs, n second-layer neurons and an n X m

third-layer neuron matrix interconnected to decode the

firing interspike-intervals and bandwidth variations of

the spike train, said method comprising the steps of: I

10 delaying in time the incoming spike train by

time intervals of kAt for k = 1 to n; 3
establishing n first-layer neurons, each of

said first-layer neurons having one input 3
connected to the undelayed incoming spike train

Sand k inputs connected to said corresponding time15

delayed spike train for k = 1 to n;

generating a first-layer neuron output pulse
of time duration At when at least two of said i
corresponding first-layer neuron inputs have

spikes coincident in time and no previous output

pulse has occurred within a time of (k-l)At,

establishing n first-parallel-layer neurons,
each of said first-parallel-layer neurons having

one input connected to the undelayed incoming I
25 spike train and k inputs connected to said

corresponding time delayed spike train for k - 1

to n;

generating a first-parallel-layer neuron

output pulse when at least three of said

30 corresponding first-parallel-layer neuron inputs

have spikes coincident in time;

establishing n second-layer neurons, each of
said second-layer neurons having an excitatory I
input in communication with said corresponding

35II
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position first-layer neuron output and an

inhibitory input in communication with said

corresponding position first-parallel-layer

neuron output;

5 generating a second-layer neuron output

pulse only when there is a pulse on said

excitatory input and an absence of a pulse on

said inhibitory input;

establishing n X m third-layer neurons

10 arranged in a matrix of n columns and m rows

(n,m), each of said third-layer (k,h) neurons

having an excitatory input connected to said

corresponding position k second-layer neuron

output and an inhibitory input connected to said

15 corLesponding h position second-layer neuron

output for k - 1 to n and h . 1 to m, where

n > m; and

generating a third-layer neuron output pulse

at matrix location (k,h) only when there is a

pulse on said k column third-layer excitatory20
input and an absence of a pulse on said h row

third-layer inhibitory input for k - 1 to n and h

- 1 to m, where n > m.

25

30

35
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ABSTRACT OF THE DISCLOSURE

A multi-layered neural network is disclosed that

converts an incoming temporally coded spike train into a

5 spatially distributed topographical map from which

interspike-interval and bandwidth information may be

extracted. This neural network may be used to decode

multiplexed pulse-coded signals embedded serially in an

incoming spike train into parallel distributed

10 topographically mapped channels. A signal processing and

code conversion algorithm not requiring learning is

provided. i
151

i
20 1

i

251

I
30

I
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2 I
0 The MacNeuron Tutorial

0. 1 What is MacNeuron? U
MaclNeuron is a tool for simulating custom designed neural systems.

0. 2 About this Tutorial

This tutorial provides a self contained introduction to the MacNeuron application. Each ex- I
ample utilizes a step by step approach, allowing you to follow along on your own Macintosh com-

puter. After completing this tutorial, you should feel confident enough to begin experimenting with 3
MacNeuron on your own. Also consult the MacNeuron Reference Manual for a comprehensive

review of all the features built in to the MacNeuron application.

note: MacNeuron is still very much in development and many features that will ultimately be part of the application

have not yet been incorporated or are still getting the 'bugs' worked out . To avoid rewriting this tutorial with each

revised version of MacNeuron, this tutorial has been written, as much as possible, with the 'final' version in mind.

Occasionally, this creates discrepancies between what is written in the tutorial and what is actually appearing on the I
screen. Where such discrepancies occur, temporary text, such as this, may be inserted to clear up possible confusion.

In such cases, the tutorial should be read as a guide to the final form that MacNeuron is expected to take. n

1 Example I: Running the MacNeuron Application I
1. 1 Getting Started 3

The MacNeuron icon (version 0.3) looks like this:

MacNeuron (vO.3)

Click on the MacNeuron icon to select it:

Start MacNeuron by double clicking on the MacNeuron icon. (Alternatively, you can select

the MacNeuron icon and then choose "Open..." from the File menu).

I
I
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1.2 Main MacNeuron Window

MacNeuron will start up with a New window called Untitled. This is the main window of

the application. The name of this main window will change when the file is saved, just like any

other standard Macintosh program.

...... Unt t e ......

~~.............. ................ ............. ........

SShow') Hide - New,... lDuplicate I"Delete

al. Ism =

1.3 Resizing the Main MacNeuron Window Partitions

This main window contains two parts (or partitions). When the resize box at the lower

right comer of the window is enlarged, the second half (lower partition) of the window will show

up:

_-=-."iiUntitled

[~~~~~ ~~ .h, ..• .1 ,,. .. .I°•"' J. .''

I I .... . i .. . ... .... . .. . . .... ...



4

By holding down the mouse button at the window-partition divider (the shaded thick line

between the two partitions) and "draging" the divider up or down, the relative partition sizes can be

adjusted. Note that the cursor changes from a pointer to a cross-hair when it is on the window

partition divider.

1.4 Simulation List (Upper Partition)

The upper partition of this main window consists of nested lists containing all the objects

(neurons, conductances, compartments, networks, drivers, graphs, etc...) currently in the simula-

tion. The upper portion of the window also provides a palette of tools for performing useful opera- 3
tions on the listed items. For instance, selecting a particular neuron from the list and then clicking

the show button will cause the window for that neuron to be displayed. There are also tools for

hiding, deleting and duplicating any of the objects in the list. Examples of these operations are

provided later in the tutorial.

1.5 Simulation Language (Lower Partition)

The lower partition of the main window is a text window where circuits may be specified 3
using a high level language, called "macro", which provides the same functionality as the iconic

user interface, but offers a powerful alternative for performing large numbers of similar operations.

1.6 What 's Next?

We are now ready to go the next example. To close the Untitled window, click in the close I
box in the upper left comer. It is not necessary to close the Untitled window in order to proceed,

but doing so will reduce unnecessary clutter on your screen. 3
2 Example II: Simulating a Previously Constructed Neural Circuit I
2.1 Opening Existing Files 3

At the top of the screen is the menu bar. To open an existing file, pull down the File menu

from the menu bar and select "Open..." 3
I
I
I
I
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A sta.,Jard dialog box will appear asking you to select a file. Open the file called Hodgkin-

thuxley Model (it would be a good idea copy this file first)•

comnpartment (1)-•i.,
capacitance (1 :!) {)

leak membrane conductance (1 :0) (2). :
:active membrane conductance (1 :0) {3} :i!
active membrane conductance (1 :0) {4}
Default Global Params I
HH m gate [1]1(1 a•) (3) iiii
HH h gate [21 (1 :0) (3) •: ::
HH n gate [11](1 :.0) (4)..:::
compartment (2)

capacitance (2 :0) (1I) ii

active membrane conductance (2 :0) (3)
HH mgate (1l](2 :0)(3}

. .l//. ... ... ... .... ........ ¢.

H lodgkin-tuxly Model is a two compartment circuit representing a short axona) segment

containing active membrane conductances. The main window contains a single object called

"Smulation Root'. As we will see, everything in the simulation "grows out" of the Simulation
Root, which therefore acts as a landmark from which any other object in the simulation can be

found.

Deal Glba Pam I



6 U
The simulation list currently contains all the objects in the simulation. Usually, the Simulation Root is the first ob-

ject in the list.

2.2 Simulation Root Window 3
Double click on the Simulation Root to open its window (alternatively, select the Simula-

tion Root by clicking on it once and then click "ShoW' in the main window's command pane):

-•iiiii ii ....- Simulation Root J[]
~I

,o, .. ..... ...... ... o ......°. o , ° o , ~ , ,............ ...... ,,..... .. .... ......... .. .

Integration Driver iConjugateGradientimplicitEulerDriver....... W... A .u . ......G.r.•......................................................
S................................... I....................................................................................

delta time 0.0000OOOOO+t0 ms

parameters
[7]

Default Global Params 1 I
HH m activation HH Rate Function Parameters 21
HH 'm' inactivation HH Rate Function Parameters
HH h vactivation HH Rate Function Parameters 4
RH h inactivation RH Rate Function Parameters 5 1
HH n' activation HH Rate Function Parameters 6
HH 'n' inactivation HH Rate Function Parameters 6ý

S[t] I
observers

Observer...... .... ..

..... ................. '.....:-~

......... I

You will have to manipulate the various panes inside the simulation root window in order to achieve the configura- I
tion shown. Currently, the default window organization is not ideal. This will be the case with essentially all the

windows appearing in the tutorial.

I
I
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The simulation root points to all the main object categories, or hierarchies, which make up

the simulation:

root-neur9.(0") : The top of the physiological hierarchy. This could also be a network or a brain.
S........ ....... ............ ..... ....... ....................... .

Integr.ation Driver.C .u.a.rad....tmp..t•ue..rDrIver. : The object which implements the particu-

lar numerical integration algorithm chosen to drive the simulation. The currently selected driver

uses conjugate gradient descent to solve a matrix of coupled linear equations resulting from an

implicit integration time step.

Ii rete : Objects in this list contain parameters which can be shared by multiple simulation

objects. This allows the same parameters, such as those characterizing voltage dependent conduc-

tance channels, to be used by more than one voltage-activated gate.

" --'obs-ervyrs. :List of objects which contain other objects for recording and ploting simulation

data.

2.2 Root Neuron Window

Select Show from the root neuron's pull down menu to activate its window:

neuon(0) ý21-

Neuron (0) contains two compartments and has ent.network ....i.m..u.....o....R.o....
Fs naptic linksSi [emptyj

Simulation Root

do~lt --comr-me--rnt(2)
............ .. ----- -

....................... ................................................-. :.:•.:: !..•.::: :•.::.::: ::•

no synaptic links. Since neuron (0) is the root
physiological object, the network which contains it "••-

(parent network) is the simulation root. Ciick on the text
"compartment (1)" (in the list of compartments sub-window) to highlight it
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2.2 Compartment Window I
Activate the window for compartment (1) by list cor artments3

double clicking on its text or by selecting Show from New

the tools pull down menu (You may also wish to close Duplicate

the neuron (0) window as it will no longer be needed). Delete

Select Aill

Compartment (1) displays its parent neuron, in Select ....

this case the root neuron, neuron (0), a list of links to o
other compartments (or to "ground" as

______compartment (1) _ __ indicated by a '0' symbol) and the

OK electrical potential. Keep this window
S.available since we will observe the

paetnurnnuo (0)((|eeticlptnil Ke hswno

p~arent neuron neuron (0) potential in this compartment during the

compartment links simulation:
[51"I

capacitance (1 :0) {1)}
leak membrane conductance (1 :0) (2)
active membrane conductance (1 :0) {3}
active membrane conductance (1 %6) (41 2 bevr
axial conductance (2:1 : :Return to the Simulation Root and

. . . . ... .. .... ..... ....... ....- ----potential state var:State Var (voltaqe -6.2e-2 )h
:•;' "'•;:ii• i• : :.'••!:i~~i~•ii:..:•: ::::,i iii• •ii: :i...[ • Observer . ]

activate the Observer located in the Observers sub- Number of graphslil

window:
aGraphs

The Observer watches the specified Data Pairsinear .r.

and ensures that new values are recorded as the simula- i.........

tion progresses. The Observer also keeps track of the < I
different graphs employed to display the data. . ata m----

DData Pairs

2.4 Graphs E
voltage (volts) vs. time• !.!.•:•..(z.o.. • : •.•. .... ... :

Many of the graphical capabilities ultimately to be included in

MacNeuron are still being developed. What is described here u

represents an intermediate stage. Some of the windows employed 7 l:"
~~I

I I mmmmm I m I II~II~ll ~ l - I



9

represent temporary 'patches' and therefore possess minimal

functionality. Such windows will be replaced in the next Linear Graph_
version of MacNeuron. OK 1111c,

Activate Linear Graph found in the Graph Data s
Dta P air

sub-window (You may also want to close the Ob- (11

server window as it will not be needed for the fol- voltage (volts) vs. time (see)

Linear Graph contains a list of those Data Use Default Limits ? .T~r.u.....

Pairs to be ploted, as well parameters for specify- Use. Default Grids? Tre

V .. . . . . . . . . . . . . .. . . . . . . . . . . . . .... . . . . . . . ... . ! i~

ing the range of data to be included, intervals be- X min 0.O00000000e.+O ....

O.O000000e.O......

tween major and minor tic marks, axis labels, etc ... Xmx .......... e....... ....O•:

There is also an option for generating reasonable Y mm, "O OOOOOOOe'+0O ............... i:•:

default values for these parameters. X major incremrentsi.9 • 'O."OOOOOe+O!i~!

Save this window as it will be needed to t minor increfments? ............. o
plot tho be r lts o e simulation. o major incrementsfault Grids? Oy0e'.O

Y minor 0. 0

............................. . -.. :.. .- .. ......:...:...:: : .. -...-.= ...........

2.5 Drivers X label time. (se) ailbst.
Y labelmvoltag. (o le

Ther is lso n op ion or g nera ing easo abl . ....................... ...................................

Return to the simulation root and activate Titlevs.................. .....................

the Conjugate Gradient Implicit Euler Driver lo- [ •ii~ii:iiTiii~lii':IITj'2,ii
cated in the integration driver sub-window:

The integration driver contains sub-windows for specifying the end points of the integra-

tion, the length of each integration time step, the maximum percentage error (needs to be set very
low due to the inherent stiffness of the circuit), the maximum number of iterations (number of

conjugate-gradient descents) per time step and the actual number of iterations used during the pre-
vious time step.

................. l I l I I I
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Cici Conj ae~radietlmpi rtEulerDrieer tt

~I
s tar t tim ei ..O. .''..o. 0 . g.o. 0* ' .9.. 0 .e .*..9 . .................. . M SS ,o p................ ..... ..........

...a i *e r *i * - . .o o .o 9 0 9 .o e .- .... *................... .... ...- * ... r es t r s a e.. ... .. .. ... ...... ........ ..... .. ... .. I
data interval time: 2.OOOOOOOOOe-I m

m ax ite a~i ns i• ........................ ........... ...... . . . . . .. ..max % error,: 1 .OOOOOOOOoe-8

. ........... ...... .. . ..... .........

init In tegratio n anterartion Step I

There are also several command buttons. A particular state, such as the equilibrium state,

can be saved and then later restored using the buttons "save state" and "restore state". The "sit in- I
tegration" button initializes the integration (used only after everything in the simulation is in place)

and the simulation may be performed either in step mode or all at once, using the "step" and "start I
integration" buttons, respectively.

2.6 RunningI

To establish a baseline, hit the "dit integration" and "start integration" buttons in the inte-

gration driver window (Hodgkin-Hsxley Model should have started out in steady state but you

can hit the "restore state" bctton in the integration driver window to be sure). The cursor will

I

change to a stop watch while the simulation is running.

At the moment, the cursor does not change shape while the simulation is running and nothing on your Screen Ve-

sponds tc mouse- clicks during this time. Additionally, the integration algorithms havt not yet been optimized and

therefore integrations may take a little while, depending on which computer you are using (the above baseline cali-I

bration takes a few seconds on a li1i).

Activate the widow for compartment (1) (use the Window menu if it has become buried).

Alas, the window menu is yet correctly implemented, so you will have to move things out of the way in order to

find what you're looking for. I
I
I



Since we are at steady state, it is necessary to change the potential from the steady state

value (in this case by hand) in order to get something going. Select the potential sub-window and

change the voltage to -40.0 mV.

To facilitate development, State Var objects have been temporarily introduced into MacNeuron. Open a State Var

just like any other window and edit its value in the usual way. A very important point to remember is that all State

Var objects use MKS units, so 40.0 mV must be written as 0.040. State Var objects will be removed in the

next version of MacNeuron.

You can now close of the compartment (1) widow.

Activate the integration driver window, change the start and stop times to 10.0 and

50.0 msec, respectively, and restart the integration.

2.7 Ploting

Activate the Linear Graph window and hit the "Plot" button. A plot of the voltage in com-

partment (1) vs time should appear:

voltage vs time
.i ....... .... .......... ....... .f -.......... I........... .......... ........... ii........... .......... Ti.......... -.

.. ... .... ... . ... .. ...................

o 0.00

...... ...... ..... i.. ........... ........... -.......... ............ i........... ......... ". . ....°°........... .......... ..... ... .......... ........... .I .......... ........... i........... ...........i ...... ..
S........... i........... ..... ... .......... ........... .......... ........... i........... .......... ...........

0

-0.05 .0 0 ........... .......... ... .... .... ....... .......... .......... ........... ........... .......... ..........
. ... ............. .

I L I I I

0.00 0.01 0.02 0.03 0.04 0.05

time (sec)

Currently, "Plot" uses a temporary window with almost no functionality. One pathological feature of this window is

that the grow box is hidden. Clicking where you expect the grow bow to be brings it into view. This window does
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not close in the usual way either, as clicking in the close box does nothing. As mentioned previously, this window I
is merely a temporary patch while more sophisticated plotting windows are being developed.

2.8 What's Next?

Select "Close" from the File menu. MacNeuron will prompt you to save your changes,

including the results of the simulation, and then all windows associated with Hodgkin-Huxley

Model should disappear.

MacNeuon does not currently save simulation data, so there is no reason to save any of your changes to Hodgkin-

Huxley Model. This will be fixed in the next version of MacNeuron.

Now that we have seen a bit of how MacNeuron works, we are ready to learn how to

build neural circuits from sc;ratch. I
3 Example III: Building Neural Circuits

3.1 New Files I

Select "New..." from the File menu in the MacNeuron menu bar at the top of the screen.

A new main window, called "Untitled", will appear on the screen (if you have just launched Mac-

Neuron, or do so now, the "Untitled" window will come up automatically). Choose Save from the

File menu and save this file as Example III.

3.2 M aking a Sim ulation Root -_-_ --------_-_ ---------------

The first object in any simula- Make a new CDataDisplay:

tion is the Simulation Root. Click on Membrane Conductance 3
"New..." in the main window's corn- Leak Membrane Conductance

Active Membrane Conductance
mand pane. This causes the following Capacitance

dialog box to appear: Electrode
Voltage Compartment

HH Gate
Only a Simulation Root can be HH m Gate I

HH h Gate
made at this point, so this is the only HH n Gate

object which appears. Default Global Parameters
Generic HH Rate Function Parameters

Currently, the user is Presented a list ( .cancel
containing all possible objects. I

I
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To make a Simulation Root, either select "Simulation Root" and hit "OK" ("Return" ac-

complishes the same thing) or double cick on "Simulation Root".

Simulation Root may be also called Global Parameters.

3.3 Making a Root Neuron

Select "New..." from the pull down menu in the Root sub-widow:

Select "neuron " from the "Make a new" dia-

log box and click "OK". ED Simulation Root-

3.4 Making a Compartment

Select "Show" from the pull down menu in the name Sijmu ... u.1 t. n".9...R-.o"o't"
Neuron Root sub-widow containing neuron (0) to ro

activate its.winlow. 
snow

T im ie+Change.,. .
Select "New" from the "tools" pull down

menu in the list of compartments sub-widow (in the .....................

neuron (O).window):

neuron (0) Select "Voltage Compartment" from the "Make a

UK faU ll new" dialog box and click "OK".

parent nworki.m.....a.t........ Root.... 3.5 Making Compartment Links
synptic links In the list of compartments sub-widow, double
[emptyI

---- ---------- click on the text "compartment (1)" or select "Show"

from the "tools" pull down menu while

"compartment (1)" is selected.

-------- - _.... .. .... Select "New" from the "tools" pull down menu
list of compartments in the compartment links sub-widow (in the compart-

ow ment (1). window):

plicate :Select "Capacitance" from the "Make a new

Delete dialog box and click "OK".

Select All
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Make a new "Leak Membrane ------ ---_ --

Conductance" and two new "A ctive compartment (1)____

Membrane Conductanc'ýs" in the same OK 1I1 al

way. There should now be four item s in.......t....................................

the compartment links sub-widow. potential state .va .rl S .tate .Var (voltage o 0 e+0 o

compartment links

3.6 Setting the Leak Membrane capacitance (1 :) (1)

leak membrane condctac (1r 2Conductanceeactv membrane conductance 0. :a) (2)I

Doube clck n th tet "Lak ctive membran conductac (1o)rMembrane Conductanc (1:uctn) (I in) the)
com part en clinks su -w do (in te t h"ea 

......~~U~g II~ (.'~ ~iw~ r~*T

compartment (1). window):

lnecmpartmentsI...::::::1111:....

membrane conductance F.0.OOOOOOOe+o 1A
specific resistancef 1 ... OOOe .......... KO-cm^2

reversal potential: 0,000000000e+0 EmV3

Change the specific resistance to 3.0 kQ-cmA2 and click "OK":

specific resistancel 3 O0OOOrjbO)+O KQ-cm^23

Change the re'versal potential to -50.0 mV and click "OK":

reversal potertial -5.0QQOQQOQ0*1+ mv3

Close the Leak Membrane Co-nductance window.
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3.7 Setting the Active Membrane Conductance: Na+ channel

Double click on the text "Active Membrane Conductance (1:0) (3j" in the compartment

links sub-widow (in the compartment (1).window):

-- actiiuemembrane€-onduc-tanc-e--(-•) (3) E2=1-

linked compartments....

comartment (1)

max conductance O.000000000e+0 1 /Q
•.................... .. , °. ........... ........ ,,,.

specific resistance.+ ......................... c 2

reversal potential! 0o~opoopooOe+0 mVrev rsa pot.......... ...0 .... 0....O.e......... ....................................

conductance IState Var (conductance O.e+0 )conductance •~.S...t..a..t.....V.9.."...................................... ( o d c a c . :.. +........ ..................................................... :!

gates
[empty]

F.. 7....

Change the specific resistance to 0.0083... kQ-cm^2 and click "OK":

specific resistance .......... ý1 5 KO-cm2^

Change the reversal potential to 55.0 mV and click "OK":

reversal potential my:OOOOCOtI mr

Change the conductance to 8.7e-12 112 and click "OK":

conductance [State Var (conductance = 8.7e-1 2 )

Select "New" from the "tools" pull down menu in the gates sub-widow:

Select "HH m Gate" from the "Make a new" dialog box and click "OK".
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Make a new "HH h Gate" as well. There should now be two items in the gates sub- I
widow.

3.8 Setting the HH m Gate

Double click on the text "HH m Gate [1] (1:0)

{3)" in the gates sub-widow (in the Active Membrane I
Conductance (1:0) f3) window): gates

Gate activation is governed by an equation of the HH m gate (1 (1 :5) {3)

form: HH h gate (2] (1 :Z) (3)

dm/dt = a(1-m) - bm I
where the activation (inactivation) rate is given by a (03). These are also displayed in terms of the

steady-state gate activation and the inverse instantaneous time constant.

Select "New" from the "-> rateparams" sub-window:

Select "HH 'i' Gate Activation Rate Function Parameters" from the "Make a new" dia-

log box and click "OK".

Do the same for the "<- rate params" sub-window, to make a "HH 'i' Gate Inactivation

Rate Function Parameters" object.

3.9 Setting the HH 'W' I
Gate Activation Rate Func- - .H m gate [11 (I : ) {3) 1 I .

tion Parameters -

D ouble click on the text .............................................................................
"RH 'in' GatetAcvationostate va.ae Vargt aciation 0 .0e+O 0

activationstate at......... t...... .. t...#...a. ý ...!ti..ya.t~i.on..9.....O. ...•....+..9..... ....
"H H Wm G ate A ctivation Rate ..... I..............................::::::................................ *-***

F un cionPar metrs" in t e "> m ltilicty .:.............,..o.o.....,e.... ......................................
active conductance active menrbrane conductance (1 :if) (3)

rate params" sub-widow (in the activation rateO.:OO.O.OOOOOOe+O /ms

HH m Gate [1] (1:0) f3) win- j t raeOOOOOe+0 m

dow): activation (0oo0) O6 66.OO,... d --oo.
The instantaneous activa- decay time O.'66.O 0"0 '.OO 6'. ms

tion rate, a, is governed by an -> rate params

equation of the form: <- rate phowms¶ Sho
Change..

------ --
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aM0 = (A + BV)/(C + exp[(V+D)/F] --

Set the parameters A, B, C, D, and F HH 'm' actiuation HH Rate F - _-A

as shown:

The command button "make default".

causes this parameter object (and thus these [restore defau
parameters) to be used by all existing HH m IOvpar m e ers t b us d y a l xi tin H m ...................................................................

Gates which do not currently have a parame- . ............................... /m
......p............ooo.o.. . 1................................. . . /(m s * mters object assigned to their "-> rateparams" 1. ...... .. ................. ..OO...O .. .

sub-widow. The "make global" command D I3.5OOOOOOOOe+1 mv
...........................................................................

button makes these parameters universal for F-1 .000000000e+1 I mV
all HH m Gates regardless of whether or not yrl 7,
other parameters have been previously as-

signed to them. Hitting "restore defaults" causes the original parameter values (hard coded into

MacNeuron ) to be restored.

Close the HH 'i' Gate Activation Rate Function Parameters window.

Ht n3.10 Setting the HH 'in Gate Inacti-
vation Rate Function Parameters

Following 3.9, set the HH 'i' Gate

make default make global j Inactivation Rate Function Parameters as
INN 0191111= d 01 shown

retre defaults ...... .... .... Z ............ , h w

A:O:: .............. i/ms Close the HH 'i' Gate Inactivation

B: 0000000000+0 1 : /(ms * mV) Rate Function Parameters window.

DI 6000000000e+1. mV 3.11 Setting the HH h Gate
F:i 1800000000e+ I:M............ 000 ............ Follow the steps analogous to thoseS....... : ;"'': i ........;:" i...........i ................

Sin 3.8-3.10 to configure the

HH h Gate [1] (1:0) {3}.

3.12 Setting the HH 'h' Gate Activation Rate Function Parameters

Set the iH 'h' Gate Activation Rate Function Parameters as shown:
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Er=ae demault [aegoa

BF 20000000000e+1 AmV M
...... I ................................

3.13................ Setn t.e.H....Gate.nactvatio.Rat. Funcio..arameers.

A:: 0.000000000e+0 1m

D:: 6000000000e+0I:M

FF23.pooboboOOe+1 mV

3.14 Setting the ActiVe Maembr ctiane iondRactane Fucto Phann meters

ASe ine 3.7 coWgr Gthe "ActvtivnRae Mebrnectonductanter (1s0 showan fllws

---- --- ---- --- I
HN Winacluaton H Rat BEI
------ ----- --- ----------
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m ax t em rn conductance War 0O0000e)

linked compartments

[I]

fcompartment (1)

ma× ..........................................................................

m ax -5duta 0 .00000 0e-1 1 /ms

•................................................................ °.........

rev rsa po ent al .-..7..:...O...0....0..0..0..0... ........ ............................ I .........
spcifuc rne•Sitacel 2ar (c7ondctne- = 5.0-I0

Beeslptnia:-i 0 000 000000e-2 I / ms V

Fgates

•-. . . . ..: . : : : : ::.. .: : : : : : : . :, . , . -

3.15 Setting the HH 'n' Gate Activation Rate Function Parameters

Set the HH Wn Gate Activation Rate Function Parameters as shown:

UR HH Wn actiuation HH Rate Fu FRR=4

015 oooolOOOOOe+1 I1mY i~

F :1..m.......:.......
F i- 1 000C0000e+1 1: /mS

...... .. .. . . . . . . :................. ............. ....... .. -.... :.... ... . . :.......... • ...... . . . . . . . . . . .: ..

I • NI I I ................... . . . ..........
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3.16 Setting the HH 'n' Gate Inactivation Rate Function Parameters 3
Set the HH Vn Gate Inactivation Rate Function Parameters as shown:I

---- HH Wn inactivation HH Rate 10-L=-i

S~I

.......... •i• . ...... ! ! ; i! i !'':' .. . . . : , . . I
We avenowbuitaoe defaulete madk en

Eresor defaults

gether~~ ~~~~~~Sl two such11 1hnes 1aen ntwrkmigmis'..o'l."...

A[ 1.250000000e-i 1 /ms

B 0.0 0 0 0 0 : ...................... 1 /(ms *my)_ý

C' 0.000000000e+0

D:: 6.000000000e+I :mV3
F8OO000+1 my ZVI\

3.17 Duplicating Compartments

We have now built one complete Hodgkin-

Huxley compartment, containing a capacitance, a

leak membrane resistance, a voltage-gated Na+ - -

ron window ( ~~~Elneuron (0))adslcthcopr-k!ltofoprtet

I

channel, and a voltage-gated K+ channel. To con- --(0)
struct a short length of axonal fiber, we string to- O no

gether two such channels. i..................

Does this mean, you ask in despair, that we synpi inks

have to go through the labor of building another [empty I

compartment? Fortunately, this is not necessary,

becase ac~eronhassophisticated built in

mechanisms for duplicating obet with complex
internal structure. To see this, activatethe root neu-

ron window (neuron (0)) and select the compart- ls fcmatet

ment (1) object located in the list of compartments3

sub-window. An identical compartment can be

added to the neuron simply by choosing

"duplicate" from the tools pull down menu:......I...................

Select All1



Automatically, a new compartment, identical to the first, is created and added to the root

neuron. All of the internal structure of the original is reproduced as well. This is a general feature

of MacNeuron: Whenever a complex object is duplicated, whether it is a compartment, a neuron,

or a network, the entire hierarchy of internal structure is reproduced.

3.18 Chaining Compartments Together with Axial Conductances

All we have left to do join the two compartments together.

Activate the window fo, compartment (1) and select New from the compartment links

pull down menu. When the Make a

new dialog box appears, choose a__ ial conductance (1:z) (51}

Axial Conductance and click OK. iK

Activate the Axial Conduc- linked compartments

tance window:

comartment (1)

As it stands, the Axial Con-

ductance connects compartment (1) _,. ,.._ ,.,,

to ground. In order to join the other axial conductance 7 '.'8"53'981'34e-3'' .... .............. I /Q

end of the axial conductance to the diameter 1 ... e6666666o ;;6...............................• ................ •...............,.........................•,,, •,,, ,..........

second compartment, we use a length:: ...0 .....O0e+O

drop in technique. plasmic resistance:: 10 00e2 ------ Q/cm

3.19 Moving Objects to and

from Other Objects

Parameter values and objects can be moved to and from other objects easily. All it needs is

to hold down the option-key while pressing the mouse button over the selected item. An arrow

icon (•?) will appears along with an outline of the selected item. The selected item can then be

"dragged", i.e., you can hold down the mouse and move it to the window of another object.

"Drop in" the selected item into the appropriate sub-window or editable box and the corresponding

changes will be made. If a parameter value is dragged and dropped into another parameter box,

that value will be become the new value. Likewise, an object is added to another objects list simply

by dropping it in the appropriate sub-window.

Drag compartment (2) from the root neuron window over to the Axial Conductance win-

dow and drop it in the linked compartments sub-window. The title of the window should change

to reflect the fact that the Axial Conductance now joins compartment (1) with compartment (2),

and the compartment (2) object should now appear in the linked compartments sub-window.



likdcompartments(1

axial conductance! 7.853981 634e-3I

diameteri 1.0 0 0 .................... .OOO OOO..+ ....

length:: 1 .OOOOOOOO0e+O01

plasmic resistance: 1.000000000et2 0/cm

.7



1. Startup MacNeuron program

The MacNeuron (version 0.2.3) program's icon looks like this:

MacNeuzonvO,2.3

Start executing (launching) the MacNeuron (version 0.2.3) program by selecting

the program icon:

MacNeuron vO.O.3

Launch the MacNeuron application program as usual in the Macintosh

environment by double-clicking on the icon or selecting the "Open...t" menu-item

from the "File" menu.

2. Main MacNeuron Window

When the program first starts looks like the following:

Z" File Edit Objects Macros Font Size Style Windows

The program will startup with a "New" window called "Untitled". This is the

main window of the application. The name of this main window will change

when the file is saved, just like any other standard Macintosh program.



I

2.1. Resizing the Main MacNeuron Window Partitions

This main window contains two parts (or partitions). When the resize box at

the lower right corner of the window is enlarged, the second half (partition) of the I
window will show up. The window will appear as follows:

t File Edit Objects Macros Font Size Style lWfindows
S.... ............................... -"t"A

I

I
I
I

.. . . . ... ....

Alternatively, one can hold-down the mouse button at the window-partition

divider (the shaded thick line between the two partitions) and "drag" the divider up
or down to change the size of the partition. Initially, the partition divider is at the

bottom of the window, but it can be dragged up to show the lower window partition.

2.2. Neuronal Network Description. User-Interface Window Partitions

The upper partition of this main window lists all the objects (neurons,
conductances, compartments, networks, etc...) currently in the simulation. The

upper portion of the window also provides a palette of tools for performing useful
operations on the listed items. For instance, selecting a particular neuron from the

list and then clicking the show button will cause the window for that neuron to be

displayed. There are also tools for hiding, deleting and duplicating any of the objects

in the list. Procedures for building the simulation will be described later in User's

IGuide.

2I

I I I, , • 2



2.3. Neuronal Simulation Language Description. Text-Window Partitions

The lower partition of the main window is the text window where the

simulation language is specified. A text-based language, called "macro", can be used

to specify the simulation without recourse to the iconic user-interface. This allows

the simulation to be built in a "batch-mode" or hands-off modality.

This window is also a text-editor, where the macro language description can

be entered directly into the MacNeuron program. It is not necessary to exit the

MacNeuron application to write the description.

The details of the macro language syntax for specifying the run-time

environment will be given later in the User's Guide.

3. Main Menu Description

3.1. V Apple Menu Description

File Edit Objects Niarros Font Size StyJle Windows

Pulling-down the 4 Menu will show the "About MacNeuron..." as the first

item.

The "About MacNeuron..." will display the program logo as well as the

available memory space for the program to run at the bottom of the logo window.

3
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587612 bytes (573K) aOailable.

I
3.1.1. Memory Space Available and Allocation

To find out how much memory is available at anytime while inside the 3
simulator environment, select the "About MacNeuron..." from the Apple Menu as

shown above. The memory available depends on the complexity of the ncuronal 3
network specified and other run-time user-interface environments.

To increase or decrease the size of the memory allocation, quit the program. 3
Select the MacNeuron program icon under Finder, and select the "Get Info" menu-
item from the File Menu. An Info window similar to the one below will be

displayed.

4m



3 ~Locked
MacNeuron vO.2.3

3Kind: application
Size: 388,536 bytes used, 380K on disk

3 ~Vhere: CNS-.Development, UFP 580 (SCSI
*0)

Created: Mon, Jun 24, 1991, 7:15 PM
Modified: Wed, Jun 26, 1991, 12:16 AM
Version: MacNeuron, Division of

Neuroscience, Baylor College of

version 0.2.3

3 Suggested Memory Size (K): 1024

Application Memory9 Size (K):

U Change the size of the MacNeuron program by selecting the Application Memory
Size (K) box and edit the changes in Kilobytes.

3.2. File Menu Description

& . ý Edit Objects Macros Font Size Style Windows

Sv s................... ..............-................

Page.........

I
.I

DIlct Deet
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The File Menu has its usual standard Macintosh-menu items for file I
operations such as opening and closing files, saving and printing files, creating new
files, quitting the application, etc.

When the program is first launched, a new file is created automatically for
the user and appears as the "Untitled" main MacNeuron description window. This
would also be the consequence of clicking the "New" menu-item in the File Menu.

To close this main window, select the "Close" menu-item or click on the close-
box of the window at the upper-left corner of the window as usual. A warning
dialog-box will be displayed is you have not saved the file before to make sure that 3
you don't loose any valuable work.

Save changes to "Untitled" before
closing?

_'" e ] I
No Cancel i 3

Select the appropriate button or press the Return-key of the keyboard to select
the highlighted button, which is "Yes" in this case.

3.3. Edit Menu Description I
HFile Objects Macros Font Size Style Windows

I

....... ..

Show o Dulct Delete

.... ... ... ......... ...
6..... .... 3. ..



The Edit Menu has its usual standard Macintosh-menu items for editing.

The Cut, Copy, Paste and Clear menu items can be used with the text window for

editing the simulation macro description language (which is a lower sub-window in

the main window).

3.4. Objects Menu Description
SFilIe Edit MHacros Font Size Style Wlindow s

Objects in the MacNeuron program are the implementations of the

components of a neuron or a network. The currently available objects in MacNeuron

include brain, network, neuron, voltage compartment, conductance, axial conductance,

membrane conductance, leakage conductance, capacitance, electrode, active conductance,

HH gate (Hodgkin-Huxley), compartment link, neuron link, network link, etc. as well as

objects for displaying data.

A list of the available objects will be displayed in a dialog box when the

"New..." menu item from the Objects Menu is selected.

Make a new C-DataDisplay:

C-DataDisplay
Neuron
Network
Brain
Compartment Link
Neuron Link
Net Link
Conductance
Axial Conductance
Leak Membrane Conductance
Capacitance
Electrode
Voltage Compartment

I .n.cel

I 7



I

The other menu items, such as Duplicate, Delete, Show and Hide are dimmed I
initially since no object exists until a new objects is created first.

3.4.1. Creating New Objects from the Objects Menu I
To create new objects, select the desired object in the above dialog box, and

click the "OK" button. Alternatively, you can double-click on the selected object

without clicking on the "OK" button to create that new object. To abort the creation

of a new objects, click the "Cancer' button.

Once the new object is created or "Newed", a new window associated with that

new object will pop up. In the above example, since the brain object is selected for

creation, the brain window will pop up as the front window. The detailed

descriptions and utilities of this new object window will be discussed later in this 3
User's Guide.

3.5. Macros Menu Description I
File Edit Objects Z Font Size Style ll1indows

I
Macros are groups of commands specified by the user in the simulation macro

description language. The simulation description language--MacNeuron Script--is a•

Pascal-like language that allows a hands-off specification of the simulation bypassing

the iconic user-interface. Such a feature is very useful for constructing large

simulations intended to run in a batch or background mode. Details of the language
syntax will be given later in the User's Guide.

If the text of MacNeuron Script is entered in the text-editor window at the lower I[
partition of the main window, selecting the "Check Syntax" menu item from the
Macros Menu will check the syntax of the MacNeuron Script entered by the user. If•

there are any syntax errors, the appropriate error message will be displayed in a
wanigdialog box. The location of the offending error will be highlighted in the

text-editor window to allow for easy recognition by the user. I

Onetesyntax has been checked, and there are no syntax errors, the macros I

defined in the MacNeuron Script will be displayed as extra menu items appended to
the end of the Macros Menu lists. Ma•,ros are basicaiiy groups of commands that the 3
user specifies in the MacNeuron Script so that those groups of commands can be l

I

8 .....



executed as a menu command available in the menu-item list. The user can

therefore create his/her own menu-item list on-the-fly within the MacNeuron user

environment.

For instance, if the user groups a set of commands that specify the description

of all the compartments of a Purkinje neuron into a single macros command called
"Create Purkinje Cell", then a Purkinje cell can be created with just a mouse click
from the Macros Menu. Thus, multiple Purkiitje cells can be created easily by
"pulling down" the Macros Menu and selecting the "Create Purkinje Cell" menu item

that was defined by the user in the MacNeuron Script in the text-editor window.

3.6. Font Menu Description

w File Edit Objects Macr-os i Size Style Wlindows

I~.... . . . . . . . . .. .... ..

-•....... .............. ................

• • .J2; .•.iJ• .•.:• .g !:...iJiiJ i?. ... .. • [!.:...?•?•.:..... ......

The Font selected by this menu will alter the font used in the text-editor sub-
window of the main MacNeuron window. The available fonts are the fonts that are

installed in the System file of your Macintosh disk. The actual font-type displayed

in the Fon' Menu above is generated by a utility program called SuitcaseTM installed
'n the System, otherwise the •ysterr-f:ont will be used tce di.sply the various fo~nts

available. Geneva is the default font.

I 9



3.7. Size Menu Description3

SFile Edit Objects Macros Font Styfle Windows

Show I Hide Duplicatee

24

The Size selected by this menu will alter the font size used in the text-editor
sub-window of the main MacNeuron window. The default font size is 9 points.3

3.8. Style Menu Description

SFile Edit Objects M1acros Font SieWindows

0 nt I itnlerin et NPUI rI

The Style selected by this menu will alter the font style used in the text-editor
sub-window of the main MacNeuron window. Plain-Te-xt is the default style.

3.9. Windows Menu DescriptionI

io File Edit Objects Macros Font Size Styjle i

:=M
ýUnlitl~d .. .... .~nd u............... ....

......... .. . . t1

Obj Chs

10



The Windows Menu lists all the available windows, and allows all of them to

be selected as the active window (the front window).

3.9.1. Main Window Menu-Item

The "Untitled" window is the main MacNeuron window if it has not been

saved before. If an existing file is opened, the name of that file is displayed in that
menu-item location. Selecting it will make that window active (it will appear as the

front window).

3.9.2. Log Window Menu-Item

The Log Window is a text display window where the program keeps a log of the
history of the simulation. The user can also select specific parameters to be output

into this Log Window. Selecting it will make that window active (it will appear as the

front window).

If the program is run in unattended batch-mode, the specified simulation

textual output and any error messages will be displayed in this Log Window. If there
are critical errors that require user's intervention (such as File-Not-Found) while

running in batch-mode, the program will wait for a "time-out" period. If no user's
action is taken after the time-out, a default value (such as a default file-name) will

be used. This will allow for unattended continued simulation over-night without
creating halting the program waiting for the user's response.

3.9.3. Object Window Menu-Item

The Object Window is a window where the contents (and the parameters) of an

object are displayed. Selecting it will make that window active (it will appear as the
front window). For instance, if the object is a neuron, then the contents of that
neuron, i.e., its parameters will be displayed in this object window.

4. Main MacNeuron User-Interface Description Window

SFile Edit Objects Macros Font Size Style Windows

Hide New... (~ Duplicate Delete 0 items

II
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I

The main MacNeuron user-interface description window (the upper partition 3
of the Main window) contains five buttons. These five buttons are the same as the
menu items listed under the Object Menu (see Object Menu Description above). 3
Their use is interchangeable. That is, the buttons function the same as the menu

items in the Object Menu. 3
4.1. Show Button

When the "Show" button is pressed, it will show the object that is selected in a I
separate Object Window. Since, at this point, no objects are created yet, there is
nothing to show. The "0 items" is indicated at the upper-right of the window to
show the number of object-items created so far.

Once objects are created, they will be listed in the shaded region of the
window. Select the object by clicking on the item in the list, and click the "Show"

button. The Object Window associated with that selected object will pop up (open). 3
The contents of that object (i.e., its parameters) will be displayed in the Object
Window.

4.2. Hide Button

When the "Hide" button is pressed, it will hide (close) the Object Window. U
Which Object Window will be closed depends upon the selected objects in the object
list displayed in this window.

4.3. New... Button

SFile Edit Objects Macros Font Size Style Windows

When the "New..." button is pressed, a list of the available objects will be

displayed in a dialog box. Select the object to be created as described above (see the

Creating New Objects from the Objects Menu Section).

I
I
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Make a new CDataDisplay.

C..-DataDisplay
Neuron
Network
Brain
Compartment Link
Neuron Link
Net Link
Conductance
Axial Conductance

Leak Membrane Conductance
Capacitance
Electrode
Voltage Compartment

4.4. Duplicate Button

When the "Duplicate" button is pressed, the selected objects in the object list

I displayed in this window will be duplicated.

4.5. Delete Button

When the "Delete" button is pressed, the selected objects in the object list

displayed in this window will be deleted.

13
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5. Brain Object Window 3
V File Edit Objects Macros Font Size Style Wl1indows

T.
IPTA

brain nmebbrai

The Brain Object window is a window where the contents (and parameters) of
the brain are displayed. Selecting it will make that window active (it will appear as I

the front window). For instance, since in this case the object is a brain, theŽ content of
that brain, i.e., its parameters, will be displayed in this object window. The title of 3
this Brain Object window will be called by the name of the object, i.e., the brain byi

default. The name of the Brain Object can be changed, as it will be discussed later.I

5.1. List of Netwi.ork Objects Window

w File Edit Objects Mac~ros Fontt Size Style Wlindows

G KCIancel
R brain iI

list of networks

brain name R.t Brain .

I
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There are usually two sets of items to be displayed in a Brain Object window.

The first set of items is the "list of other objects under its hierarchy". In this

example, the brain is composed of a list of networks. Similarly, a network is composed

of a list of neurons. A neuron is composed of a list of compartments, etc. Thus, the

anatomical structure of a brain, a network, a neuron, etc., can be specified

hierarchically.

In this example, since the brain has just been created, the list of networks is not

specified yet. So "[empty]" is indicated in the "list ,.,f networks" sub-window.

Note that the "list of networks" sub-window is highlighted (i.e., a thick dark

square outlines the window. This is the item which is currently selected. You can

change the selected item by pressing the "*-ab" key in the keyboard to "tab over" to

the next field as in any Macintosh application environment. The next item is the

"brain name" which will be highlighted.

Alternatively, you can use the mouse to move the pointer over the "brain

name" box and edit the text as usual. The "brain name" box will be selected (or

highlighted), and the text can be changed accordingly.

In the example shown above, the name is changed into "Rat Brain". Press the

"OK' button to confirm the changes or press the "Cancel" button to cancel and revert

the changes. When the "OK" button is press, the new name "Rat Brain" will be

reflected in the title bar of the current "Brain" window as the new "Rat Brain"

window. This new brain name is also reflected in the item list of the main window,

which is still called "Untitled" presently (half-hidden behind the "Rat Brain" window

in the above example).

Note that the appearance of the layout arrangement of the selectable items

such as the "list of networks" sub-window and the "brain name" box can be rearranged

by the user. Holding down the command-key (or the "apple-clover" key) of the

Macintosh keyboard while pressing the mouse button over the selected item will

change the cursor into a four-arrow sign (4.), indicating that the user can ncw

move that item to a new lo-ation within the window. This four-arrow sign will

also appear when the cursor is placed above the name field of the "list of networks"

sub-window without holding down the command key.

For instance, the layout of the "Rat Brain" window can be re-arranged to look

like the following by the user:
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list of networks3

5.1.1. Pop-up Menu in the List of Aetworkv Window3

Duplicte

Select All

Sort byj na ae ................................ .
SSort byj haatdle

When the tool icon (4S%) at the upper-left corner of the List of Objects sub-I

window is pressed, a pop-up menu will appear as described below.

5.1.2. Show Menu-Item froA-n the Pop-up Menu

The Show Menu-Item shows the selected network from the list of networks

created so far. A Network Object window will pop-up displaying the contents

(parameters) of the network.3

Alternatively, the selected item (from the lists of networks) can be double-

clicked to show the Netivork OhjceU window.



5.1.3. New Menu Item from the Pop-up Menu

The New Menu Item creates a new network and numbers it sequentially with

an integer number in parenthesis. The new network will be displayed in the shaded

region of the list cf networks window.

5.1.4. Duplicate Menu Item from the Pop-up Menu

The Duplicate Menu Item clones a new network and numbers the newly

cloned network sequentially with an integer number in parenthesis. The new

network will be displayed in the shaded region of the list of networks window.

5.1.5. Delete Menu Item from the Pop-up Menu

The Delete Menu Item removes a selected existing network from the list of

networks displayed in the shaded region of the list of networks window.

5.1.6. Select All Menu Item from the Pop-up Menu

The Select All Menu Item selects all the existing networks from the list of

networks displayed in the shaded region of the list of networks window.

5.1.7. Sort by name Menu Item from the Pop-up Menu

The Sort by name Menu Item re-orders the existing networks in alphabetical

order using the name of the network displayed in the shaded region of the list of

networks window.

5.1.8. Sort by handle Menu Item from the Pop-up Menu

The Sort by handle Menu Item re-orders the existing networks in internal

order managed by the computer of the network (called the handle to the network).

6. Cerebellar Cortical Network Example

We will use the pre-built Cerebellar Cortical Network file as an example.

17



ICerebeliar Cortical Network ------

Show HII ide IIIINew... Dupicate I26 items

Left Cerebellar Cortical Network (1)
rneuron (I ,1)

compartment (I ,1 ,1 1
compartment (2,1 ,1)
axial conductance (1 ,1,1 :2,1 ,1)
neuron (2,1)
compartment (1 ,2,1)
compartment (2,2,1)
axial conductance (1 ,2,1 :2,2,1)
axial conductance (1 ,1,1 :1 ,2,1)
neuron link (1 ,1 :2,1)
Right Cerebellar Network (2)
neuron (1,2)
compartment (1 ,1 ,2)
compartment (2,1,2)
axial conductance (1,1,2:2,1,2)
neuron (2,2)
compartment (1 ,2,2)
compartment (2,2,2)

axial conductance (1 ,2,2:2,2,2)
neuron link (1,2:2,2)
axial conductance (1 ,1,2:1,2,2)
axial conductance (1 ,1,1 :1 ,l ,2) I
neuron link (1 ,1 :1 ,2)

t ork -syapse (1_:.2)...

7. Network Object Window

The Network Object window is a window where the contents (and parameters)

of the network are displayed. Selecting it will make that window active (it will 3
appear as the front window). For instance, since in this case the object is a network,

the content of that network, i.e., its parameters will be displayed in this object I

window. The title of this Network Object window will be the name of the object, i.e.,

the network (1) by default. The name of the Network Object can be changed, as it will

be discussed later.

Since the simulated neural network is constructed hierarchically, we will use

family-tree terminology to refer to the hierarchical structure, such as parent object,

sibling links, etc.

I
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In this example, the parent object of this newly created network is the Rat

Brain. The name of this network can be changed to another name, say Cerebellar

Cortical Network.

E 0 Left Cerebellar Cortical Network 01)

[ n lnet ok ed n etwork:2

silinge lnetoksII _ _ __I__I_ 
_

Inetwor~k sy naps. ( :2)

l ist of neurons
[21

neuron (1,1)
[nneuroan(2 1)-

network name Wft Cerebell~ar Cortical Network

7.1. Network Links Sub-Window . . .

. . . . . . . . . . . . .. ;

This shows the list of network synapses to which the current network is
connected. The numeric indices in parentheses refer to the network and the

3 19



network synapse by their number (i.e., their name for identity). It shows that Left

Cerebellar Network (1) is connected to the Right Cerebellar Network (2) by specifying

Network Synapse (1:2).

7.2. Linked Networks Sub-Window

This shows the list of connected networks. It is connected to the Right

Cerebellar Network (2).

7.3. Sibling Links Sub-Window

This shows the list of sibling networks that it is connected to. Its sibling link

is Network Synapse (1:2).

7.4. List of Neurons Sub-Window

This shows the list of neurons that it is connected to. It has two neurons:

Neuron (1,1) and Neuron (2,1).

I

I
I
I
I
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8. Neuron Object Window

synaptic links

neuron link ( 1 ,i:2,1)
[neuron link (1 1 2)

I 
linked neur 

ons

[1]3 n~~euron:(21*~

sibling links

neuron link 0(1,i-2 1

I *1list of compartments
[2]

.0compartment (21,1)

[compartment 

(2,1 1 : ::~ 
::;: 

: 
.

8.1. Synaptic Links Sub-Window

I This shows the list of neurons to which the current neuron is connected. The

numeric indices in parentheses refer to the unique neuron and network3 identification numbers. It shows that neuron (1) in the Left Cerebellar Network (1) is
connected to the neuron (2) in the Left Cerebellar Network (1) as specified by Neuron3 Link (1,1:2:1).

21
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8.2. Linked Neurons Sub-Window I
This shows the list of connected neurons. It is connected to Neuron (2).

8.3. Sibling Links Sub-Window

This shows the list of sibling neuron to which it is connected. Its sibling link

is Neuron Link (1,1:2,1).

8.4. List of Compartments Sub-Window I
This shows the list of compartments to which it is connected. It has two

neurons: Compartment (1,1,1) and Compartment (2,1,1). That is, Compartment (1) in

Neuron (1) in Left Cerebellar Network (1) and Compartment (2) in Neuron (1) in Left

Cerebellar Network (1).

I
I
I
I
U
I
I
I
I
I
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9. Compartment Object Window

S:>arent neuronineuron Q(1,1

compartment linksI [3)

axial conductance (1,1,1:2,1,1)
axial conductance (1 , 1, :1 2,,1)
axial conductance (1,1 J 0 1,1 ,2)

linked compartments
[1]

ompartment (2,1 ,1)

axial conductance

I potential:: 0'*.00000000e+O 6-*, mV.........

9.1. Compartment Links Sub-Window

I This shows the list of axial conductances to which the current compartment is

connected. The numeric indices in parentheses refer to the axial conductance by

their number (i.e., their name for identity).

9.2. Linked Compartments Sub-Window

I This shows the list of connected compartments. It is connected to the

Compartments (2) in Neuron (1) in Left Cerebellar Network (1).

I



9.3. Sibling Links Sub-Window I
This shows the list of sibling axial conductances to which it is connected.

9.4. Potential Box

This shows potential of the compartment in mV.

10. Axial Conductance Object Window 3

4 linked 

compartments

[2]I

compartment (1 ,1,1)

: I

~I

[empty I

~I I

~I
............ ........

"...."....................."I

diameter' 
1.000000000e+O 

i

le gt 
: ........ .....................

o....o.. 
........ 

....,..,....... 
........ ,.

1engthl 
1 .O00000000 

0+O 40I

Axial conductance object includes the conductance, as well as the connection

between adjacent patches of compartmental membranes.

4I
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10.1. Linked Compartments Sub-Window

This shows the list of connected compartments.

10.2. Parallel Links Sub-Window

This shows the list of sibling axial conductance to which it is connected.

10.3. Parent Links Sub-Window

This shows the list of parent axial conductance to which the current

compartment is connected.

10.4. Make Synaptic Links Button

It asks if synaptic links will be added.

25



11. Neuron Link Object WindowI

neuron (I 1
neuron (2, 1)

..............

compartment links

[111
axial conductance (1 1 1 -1 2,1).

paralent links
[empty]

[M ke Synmaptic Links?J

Neuron link object is the connection between adjacent neurons.

11.1. Linked Neurons Sub-Window

This shows the list of connected neurons.I
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11.2. Compartment Links Sub-Window

I This shows the list of compartments to which it is connected.

I 11.3. Parallel Links Sub-Window

This shows the list of parallel links to which the current neuron is connected.

11.4. Parent Links Sub-Window

This shows the list of parent links to which the current neuron is connected.

11.5. Make Synaptic Links Button

It asks if synaptic links will be added.

i 12. Moving Objects to and from Other Objects

Parameter values and objects can be moved to and from other objects easily.
All it needs is to hold down the option-key in the keyboard while pressing the

mouse key over the selected item. An arrow icon (r) will show up with an

outline of the selected item showing. That selected item can be "dragged", i.e., you

can hold down the mouse and move it to the window of another object. "Drop in"
the selected item into the appropriate window or an editable box will make the

corresponding changes. If a parameter value is dragged and dropped into another

parameter box, that value will be become the new value. If an object is dragged and

I dropped into another object link, then these objects will become connected.

13. Neuronal Simulation Language Description Macro

The neuronal simulation language can be used to describe the morphology

(and parameters) of the neuron and neural network, as well as describe the flow of

control of the run-time environment of the simulation. Special macros are groups

of commands specified by the user to execute the described commands and

procedures for the execution and construction of the neural simulation. The macros

are specified in the text-editor window, and the corresponding macros commands

appear as menu-items appended to the Macros Menu. Thus, the macros can be

executed by the user easily with a single menu command.
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13. Neuronal Simulation Language I
The macros language can be written in the text-editor (the lower partition of

the main window). It can be saved into a file for future references.

The language is very similar to the existing Pascal programming language

with most of the Pascal syntax for creating variables, and for control such as "for-

loops", "repeat-loops" and "while-loops". Data types of integers, reals and booleans aze

defined as in Pascal. Subroutines that help modularize groups of commands are

also available in the language, and are implemented as procedures and functions.

Such functions and procedures can be used as "libraries" for building neurons from 3
its components, and for specifying similar structures by calling these procedures

repetitively with one change in the parameter-list, so that similar neurons can be

built with different parameters specified by a procedure call.

In addition to the standard Pascal facility, the macros are constructed like a 3
pro-edure as shown in the following example:

macro makeneuronmacrocommand "make_10_neuronmacro";
var

cerebellar neuron: object;
i: integer;

begin
for i:= 1 to 10 do
begin

cerebellarneuron:= new(neuron); {create 10 neurons)
cerebellar neuron.name:= "Cerebellar Neuron";

end;
end;

macro make brain macro command "make rat brain macro";
var

rat-brain: object;
begin_

ratbrain:= new(brain); (create a brain)
ratbrain.name:= "Rat Brain";

end; .

macro make networ macro command "make network macro";
var

leftcerebellarnetwork: object;
begin

leftcerebellarnetwork:= new(brain); (create a network)
leftcerebellarnetwork.name:= "Left Cerebellar Network";

end;

In the above example the first macro creates 10 cerebellar neurons, which will

appear when the "Check Syntax" menu-item is executed. The macro is executed by

M



pulling down the Macro Menu and selecting the "make_10_neuronmacro" menu-

item.

When the "makeratbrainmacro" is executed, the second macro creates a

brain and calls it "Rat Brain".

When the "make network macro" is executed, the third macro creates a

network and calls it "Left Cerebellar Network",

29
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14. Example 2 1
TI_ fileHodgkin-Huxley Model simulates a compartmental neuron with

voltage-activated conductances. A list of all the objects in the simulation appears
below.

_EE" ........... Hodgkin-V'uHley Model ....._ _ ___......................

Showi Liid - Ne.. Duplicate Dlt
Example
State Var (time 1 .Oe-1 )
compartment (1)
capacitance (1 :8) (1}
leak membrane conductance (1 :0) {2}
active membrane conductance 01 :) (3})active membrane conductance (1 :0) (3)....
active membrane conductance (1 :0) (4)
Default Global Params I
HH m gate [1] (1 :0) (3) .
HH h gate [21 (1 :0) {3)
RH n gate (I1] (1 :0) (4)

compartment (2)I
capacitance (2 :0) (1}
leak membrane conductance (2 :9) {2}
active membrane conductance (2 :0) (3)

HR m gate [11 (2:0) (3)
HR h gate [2] (2:0) (3)
active membrane conductance (2 :0) (4)
Ha n gate [ n11 (2:1) {:) 1
axial conductance (2:1H:) (5J,5)
H H'm' activation HH Rate Function Parameters 2
H W ainactivation H Rate Function Parameters 3

HH 'h inactivation HH Rate Function Parameters 5HH W inactivation. .HHi RaeFnto Prmtr
HH 'n' activation HH Rate Function Parameters 6
HR 'n inacý, Yation HH Rate Function Parameters 7I
ConjugateGradient ImplicitEulerDriver
Observer
Linear Graph
voltage (volts) vs. time (sec)
State Var (voltage = -6.2e-2 )
State Var (conductance = 8.9e-12 )1
State Vat (gate activation =4.1e-2)
State Var (gate activation = 6.8e-1 )

State Var (conductance = 5.0e-10 )
State Var (gate activation = 2.9e-1 )
State Var (voltage = -6.2e-2 )
State Var (conductance = 8.9e-12 )1
State Vat (gate activation =4.1 e-2 )=:

State Var (gate activation = 6.8e-1 ) I
State Var (conductance = 5.0e-10 )0
State Var (gate activation = 2.9e-1 ) 3

31I
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15. Active Conductance Window
F. active membrane conductance (lg) (3)} r9

'linked compartments

Icompartment (1)

max conductance: 1 .885709876e-7 1 /Q

specific re sistance 8! :33CIO.OOe-3 KKO-cm¢2r e v r s a p te r ti li.. ............................................... I....................... m
..... ... ....... * o... +.... ...... *........... *......... .. .

reversal potential: 5.500000000e+1 mV
conductance State Var (conductance = 8.9e-1 2 )

gates

12]

HH m gate [1] (1 :0) {3)
HH h gate [2](1 :){3}

Active Conductance includes a several new features that allow the user to

simulated voltage gated activity.

15.1. Linked Compartments Sub-Window

Like the passive conductance windows described earlier, active conductances

contain a sub-window which lists the compartments that it joins. In this case, there

is only one compartment, and therefore the conductance is to ground by default.

15.2. Max Conductance and Specific Resistance Sub-Windows

The max conductance sub-window displays the maximum value of the

conductance. This value is not directly editable but is computed from the specific

membrane resistance. and the surface area adjacent membrane.
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15.3. Reversal Potential Sub-Window I
The reversal potential gives the potential difference across the conductance

for which no current will flow.

15.4. Conductance State Var Sub-Window

The conductance state var is a dynamical variable which records the current

value of the conductance. 3
15.5. Gate List Sub-Window

The Gate List implements the active properties of conductance. They are

described below.

16. HH Gate Window

The HH Gate Window describes a voltage activated gate. They are currently

implemented in three varieties, m, h, and n, following the convention of Hodgkin

and Huxley.

I
Iactivation state vat[IState Var (gate activation = 4.1 e-2

rnultipl oit9 "".........................................................................: I
multiplicity :3...0..O..0..O..O.0e+*O .........

• . ..................... ...... ..... ..... ...... ..... .... ..... ....... ............. ... ... ... ..

active conductance i ...m . ..e n e o.d. .t.a. .e . ...:0)... .....................................

activation rate* 1949378474e-1 1 /ms IS........................................................ ........

inactivation rate 4 4.462637338e+0 1 I/ms

activation (00): 4.18 8336e-2activation (oo) 4..:...........5.3..,....4.-.. 2".... .................... ......
d,¢,utime;•Ti• 6 '5"• : .............. .............. ~

decay time 2.4095.imsS......................................................................................................................................
rate par rns:HH .mactivation HH Rate Function Parameters 2

........... .:...:L ,,. ...^. ,,. ...,,,,...., .......,•,, ....,'..,'.3• ,...... ", . ...... .. I ................ ...r . ........ .........<- rate params:iHH 'm' inactivation HH Rate Function Parameters 3

16.1. Activation State Var Sub-Window

The activation state var is a dynamical variable which records the current

value of the gate activation.

I
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16.2.Multiplicity Sub-Window

The multiplicity sub-window specifies the power or weight of the gate in

determining the total conductance through the channel. It is typically an integer

* and may be thought of as the number of identical (and independent) voltage

activated gates in series.

I 16.3 Active Conductance Sub-Window

Reference to the active conductance object.

16.4Activation Rates Sub-Windows

3 Gate activation is governed by an equation of the form:

dm/dt = a(1-m) - Pm

where the activation (inactivation) rate is given by a (13). These are also displayed in

terms of the steady-state gate activation and the inverse instantaneous time

n constant.

16.5 Activation Rate Function Parameters Sub-Windows

The instantaneous activation rate, a, is governed by an equation of the form:

a(V) = (A + BV)/(C + exp[(V+D)/F]

where the parameters A-F are stored in separate parameters objects.

17. HH Rate Function Parameters Window

Gates in the model can have their own local parameters which can be shared

by other gates by clicking on the "make default" button. This automatically causes

all gates of the right type to use these parameters by default.

i
I

I

I
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ZIIHH Win activation IIH Rate Function Parameters I

[mkedefaults

trestr dfut

AP35 0%OO~q+0 1 /ms
B -1.OOOOOOOO0e-i 1 /(ms *mv)

C:-i OOOOOOOO0e+O

D: 3.500000000e+i mV
F::-I .OOOOOOOOe+1 mY

18. Integration Driver WindowI

The integration driver advances the simulation through time.3

max~~~ 
O I eror 

1 OOOOO,

max * iteraton s 3e r di n i p ict u e~

OK iterations

~intgraton~itegrtimsaestart tie::*7 ..5..00''..0..0 0 0 .r'estore st t ...... mste

........ ....... ...... ... .... ...... .. .. .. ... .. .. .. .. ... .. .. ..... .. .. .. .. .... .. .. ..
stoptime: i.0000000e2 M

3......... ...........
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18.1 stop, stop, and interval time Sub-Windows

The start, stop, and interval time sub-windows control the duration and time

resolution of the simulation.

18.2 max % error, max # iterations, and # iterations Sub-Windows

The max % error sub-window controls the number of conjugate gradient

iterations per integration time step. Such iterations are performed until either the

largest % change from the previous iteration is less than max % error or max
number iterations has been exceeded. The # iterations window gives the actual
number of iterations performed for that time step.

18.3 Init and Start Integration Command-Buttons

The Init Integration button initialized the integration. The integration must

be initialize before the start button is clicked or an error message results. The Start

Integration button begins the integration, which proceeds until the exit conditions

are satisfied.

18.4 Save and Restore State Command-Buttons

The Save and Restore buttons save and restore the current or saved values of

all dynamical variables.

18.5 Step Command-Button

Step advances the simulation one time step.

19. Graphical Display

The current version of the application has been enhanced with graphical

capabilities as the following example shows.

19.1 Observer Window

Events in the application can be observed through an "Observer" window,

which allows the user to organize his "Graphs" and "Data pairs". Currently, the

observer can only be driven by updates to the global time, but this is expected to
change in future implementations.
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Lmbear ofGraphsfI-.... cI*q
. .. ... ..................... . ...............

Data Pairs

voltag (volS) vs. time (see)1

.. ......

19.2 Data Pairs and State Vars

E Laeuoltage (volts) us1ie(

Sybl TypEE IZIei
L ainbe :S*..ta Typ e '**V* ar-* 1inO10 -
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......= .. .... S ta te V a r (v o lta g e - 4 .0 e - 2 )=

ISimulation Object::ý compar-t-m *en t *('1 ')"''.
saved value i-6.197168907e-2I........................................................................

Dynamical variables (State Vars ) are added to Data Pairs to construct

coordinate pairs that can then be graphed. As show above, dynamical variables may

also be edited directly by the user. Here, the membrane voltage has been forcibly

depolarized by approximately 20.0 mV.

19.3 Linear Graph Window

Axis labels and title can be specified by the user by editing in the appropriate

windows. Linear Graph uses default values for the other plot parameters unless

overridden by the user.
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