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An Example
James Hendlert
Leonard Dickens

Department of Computer Science
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ABSTRACT

In this paper we describe a shell which has been developed to allow an integration
of neural network and expert systems technology. The system, SCRuFFy, is based
on an analysis of the different abilities and time courses of NN and Al systems.
Critical to the processing of this system is a temporal pattern matcher which
is used to mediate between the two subsystems, providing a "signal to symbol"
mapping. This mapping allows the expert system to reason about the time course
of signals which are classified by a connectionist netwo) which is trained via
classical back-propagation of error during a separate training phase. An example
of the simulated control of the temperature of an underwater welding robot is
presented to demonstrate these capabilities.

INTRODUCTION

Steels (1989) has pointed out that connectionist networks can perform, heuristic
classification tasks in a matter different than, but comparable to, the heuristic
classification used in many expert systems. He argues that the distinction of
which to use should be based on an analysis of features of the domain, rather
than based on pre-theoretical biases. In addition he outlines a set of criteria
to determine those situations in which a statistically-based classification method
(such as the connectionist back-propagation algorithm) can be used: the cost of
observation should be low, the features of the class may or may not all be present,
the set of classes is known prior to classification time, the categorizations are
based on statistical criteria, and hierarchical structure of the classes is either not
necessary or used in only a limited manner.

One type of operation fitting these criteria is the categorization of sensor sig-
nals into classes. Typically, sensor data is obtainti cheaply at a high rate of speed,
features of the class may be underdetermined (necessitating a learning algorithm),
classification of the signals is desired to match known categories, classification is
based on high-order statistical correlations between features in the signal, and
no hierarchical categorization of the signals is typically performed. Thus, it is
no surprise that one of the greatest successes of connectionist models is in the
classification of sensor signals.

Making intelligent decisions based on .i6,,,ls received from sensors,bowever,
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does not fit these criteria at all. Such decisions may require merging a long time
history of sensor results, all features of a situation may need to be present before
expensive corrective operations would be authorized, the set of all possible prob-
lems may not be known, the recognition of a problem is often context dependent,
and hierarchical structure is often used in the decision making processes. Thus,
the connectionist approach seems less suited to such tasks than to the classifica-
tion tasks themselves, and such decision making remains the domain of traditional
Al systems.

Unfortunately, this dichotomy of utility leads to a major problem for those
who wish to work in domains such as those for the control of mechanical systems
in which sensor feedback is needed to monitor the status of ongoing processes. For
example, given an automated robot working in a hostile domain (for example an
underwater welder or space based system), the controller needs to interpret sensor
signals to determine whether normal operating conditions are being observed, or
whether some error condition is occuring. If the latter, corrective action needs
to be taken - perhaps adjusting the system or even shutting it down to prevent
serious damage. As argued above, this sort of application requires the classification
of sensor signals, deliverable using the connectionist framework, and symbolic
decision making, not well suited to that approach.

The differences in the computing metaphors underlying symbolic AI and con-
nectionist systems have led researchers to conclude that these approaches are
either separate paradigms (Smolenksy, 1990) or fill different computational niches
(Dyer, 1988). Faced with developing systems needing multiple capabilities, re-
search has generally focused on drastically extending the capabilities of one sort
of reasoning or the other. This includes efforts to produce symbolic reasoning
using connectionist systems (cf. Shastri, 1985) or to use traditional Al techniques
to handle the sorts of perceptual tasks currently solved most successfully by con-
nectionist networks2.

In this paper we describe an alternative: a system which integrates a connec-
tionist classifier and a symbolic reasoner. Based on an analysis of the differing
criteria for heuristic classifiers and complex decision makers, we have targeted a
hybrid system as the best way of developing applications such as the sensor-based
control systems described above. To facilitate the near-term development of such
systems we have been working on the development of an applications-oriented
shell providing an integration of a connectionist back propagation learning net-
work with an OPS5-based expert system development language. In this paper
we describe the architecture of our system, give a simple example of its use, and
describe extensions to the prototype shell which are currently uderway.

THE SCRuFFy HYBRID SYSTEM SHELL

We have developed the SCRuFFy3 system as a prototyne shel! fur rtie develop-
ment of applications which require the merging of connectionist and symbolic
techniques, such as the control systems described in the introduction. A diagram

2 As an example of this, consider the work in Al models of machine vision, which often involve
pushing symbolic reasoning to the pixel level (cf. Canning et.al., 1987).

3 SCRuFFy: Signals Connections and Rules - Fun For everyone.
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Figure 1: Flow of Control in SCRuFFy

of the flow of control in the system is shown in Figure 1. A sensor signal feeds
through a digital signal processing program which converts it into a vector of
discrete values. A set of known signals is gathered, and these are used to train
a back propagation network to perform the signal classification task. Once the
network is trained, the flow of control is for a new signal to be received, to be
sampled, and to be classified using the connectionist network. The output of this
process is then fed into a symbolic analysis program - a program which tracks
the changes in signal classification over time and produces symbolic information
describing the time course of the signal. This symbolic information is put onto a
blackboard (or working memory) and thus a traditional blackboard-based expert
reasoning system can make control decisions based on this information.

The heart of the SCRuFFy system is a "temporal pattern matcher", which
provides an interface between the continuous signal sampling and classification,
provided by the analog connectionist system, and the expert system used in mak-
"ng the control decisions. The pattern matcher is based on the observation that

the particular activation patterns from the connectionist component for a given
signai wifl usually be less interesting to the expert system-based reasoning than
will the pattern of a set of signals over time. For example, in a simple application,
we might have 10 outputs coming from the connectionist system. Two of these
might be indicators of normal operation, while the S others represent different
kinds of errors. If a controller takes no action until one of the error signals is the



highest output, then this may result in drastic corrective actions needing to be
taken. However, a recognition that one of the errors is increasing over time, even
though it is not currently the highest value, could allow a less drastic response.

We have based our patterns on the temporal relations discussed by Allen and
Koomen (1983). These include relations such as "before, after, during, etc." which
are specified for temporal intervals. These patterns are used to reason about the
time course of a set of signal samples, rather than a single input. The heart of tha
matcher is an array, which keeps track of sample values for each of the outputs
produced by the connectionist classifier. (The number of past outputs stored is a
user specifiable parameter.) The matcher then examines its rules to see if any of
them have conditions which are satisfied4 .

Rules for the matcher are specified over intervals using predicates. For exam-
ple, a ru!e can check for the predicate "increasing" over an interval of time. When
the set of predicates are all matched, a set of associated actions can be taken.
Variables can be bound, thus providing a standard production-rule-like method
for associating the patterns and actions. In addition, the actions taken can in-
clude posting items on the blackboard used by the expert system. For example,
the rule:

(R carbon-leakage
(highest SIGNAL-B)
(decreasing (recent ?Sigtype))
(not (eq ?Sigtype SIGNAL-B))

(format t "-%Carbon leakage noted!")
(post-to-blackboard NOTED CARBON-LEAKAGE <current-time>))

could be used to recognize a situation where the connectionist network produces
a set of outputs where signal type "B" is the highest, but a "non-B" signal is
decreasing over a small set of samples5 . When this is recognized two actions are
taken: a message is printed out, and a working memory element indicating carbon
leakage is posted for the expert system.

EXAMPLE

As an example of the use of SCRuFFy, we have developed a very simple expert
system for the control of an underwater welding robot using information from
an acoustic sensor. The system is fed an acoustic signal (which is randomly
supplied via a simulator which uses actual signals sampled from a 1MHz sensor).
This acoustic signal is analyzed by the back propagation network to produce
a four element vector, representing the relative classification strengths of normal
welding and three known error conditions. When the system notices an increasing
strength in one -,f +he error signals, even if it is not the highest component of the
classification vector, it can suggest repair actions to be taken, such as reducing the
temperature or shutting down the welder. Actual control of a complex system has

"4A Rete-like algorithm can be used for efficiency, although our current implementation uses
a simpler matching procedure.

"SThe interval "recent" is used to indicate a number of samples set by the user as a parameter.



not yet been attempted, instead, diagnostic messages describing what is occuring
and what actions are suggested are the outputs of the system.

The following is an example of SCRuFFy running on acoustic data. Comments
are indicated in italics, output from the expert system component (i.e. system
control decisions) are indicated by SMALL UPPERCASE text. The example uses
signals from a simulator designed to show particular behaviors. In this case, we
see SCRuFFy taking actions to control "streaming," a particular error condition
arising ;v the welding.

; The expert system is initialized

= * INITIALIZING EXPERT SYSTEM
"" INPUT WATER TEMPERALTURE: 021
* * INPUT WATER DEPTH: 030

; the contezt information provided by water depth and temperature
; is used by the SCRuFFy's expert system component.

; the first signal is sampled
Signal (after DSP) is:

0.727 0.672 0.508 0.738 0.56 0.633 0.144 0.429 0.196 0.554 0.658 0.483
0.602 0.41 0.371 0.955 0.225 0.796 0.021 0.922 0.447 0.255 0.549 0.855
0.97 0.807 0.77 6 0.641 0.834 0.674 0.581 0.726 0.005 0.716 0.073
0.664 0.69 0.191 0.905 0.367 0.427 0.844 0.783 0.078 0.403 0.453 0.775
0.989 0.292 0.726 0.355 0.335 0.61 0.12 0.723 0.629 0.857 0.889 0.864
0.63 0.369 0.406 0.246 0.617 0.552 0.014 0.09 3 0,633 0.704 0.682
0.592 0.615 0.769 0.945 0.893 0.512 0.68 0.587 0.473 0.681 0.732 0.475
0.956 0.142 0.986 0.947 0.827 0.82 0.602 0.764 0.209 0.884 0.788 0.208
0.301 0.036 0.304 0.351 0.347 0.249 0.124 0.352 0.922 0.272 0.618
0.768 0.92 7 0.554 0.925 0.057 0.321 0.09 0.171 0.527 0.86 0.231
0.768 0.111 0.798 0.78 0.891 0.786 0.905 0.678 0.751 0.981 0.957 0.732
; This signal is input to the pre-trained connectionist network
Output from Connectionist network is:
.9296 .0145 .0759 .0465
And the output is recorded for use by the temporal pattern matcher

The temporal pattern matcher finds any patterns that match
Output from temporal pattern matcher:

Normal operation.
A is highest, and no increasing minors

; Control is then transferred to the expert systems
Trazrsferring control to Expert System:

m = NORMAL OPERATION OF WELDER

; and diagnostic or control messages are produced

... ; Several normal signals are omitted

;another signal is sampled
Signal (after DSP) is:

... ; signals are deleted to save space
Output from Connectionist network is:

.9405 .0323 0.005 .2729
Output from temporal pattern matcher:

Normal operation.



A is highest, but increasing error signal B
; this time, a temporal pattern fires representing an increase in
; an error signal
Transferring control to Expert System:

l m EVIDENCE OF STREAMING INCREASING
s CONTROL: NO ACTION TO BE TAKEN AT THIS TIME

; Given the error rates of neural network processing, it is
; possible that tis is network error, so we wait for another
; signal to confiryn the error.

;The next signal
Signal (after DSP) is:

Output from Connectionist network is:
.9227 .2279 .0311 .0148
Output from temporal pattern matcher:

Normal operation.
A is highest, but increasing error signal B

Transferring control to Expert System:

EVIDENCE OF STREAMING INCREASING PERSISTENTLY

CONTROL: DECREASE TEMPERATURE (MINOR = .2)

. CHANGING WELDING TEMPERATURE: WAS 40 - NOW 39.8

,-this time, an action is taken, since the error is repeated.

Signal (after DSP) is:

Output from Connectionist network is:
.4158 .5424 .2176 .0037
Output from temporal pattern matcher:

Time 1010:
Channel B is highest.

Transferring control to Expert System:

***S"***** NON-OPERATING SIGNAL TYPE STREAMING ENCOUNTERED

S * ERROR OCCURS AFTER INCREASE

; it is recognized that this is not a transient- since previous
; action was taken for this type of error.

= CONTROL: DECREASE TEMPERATURE (MAJOR = 2.5)

* CHANGING WELDING TEMPERATURE: WAS 39.8 - NOW 37.3
; so a more drastic control measure is suggested by the
; expert reasoner.

FUTURE WORK

The hybrid system described in this paper is based primarily on an analysis of the
differing capabilities of the connectionist and symbolic approaches, and on the dif-
ferent temporal properties of continuous and discrete systems. The temporal pat-
tern matcher provides an interface between these components, allowing a smooth
integration. Such components are clearly necessary to any systems integration of
these technologies. In the longer term, however, the design of our current system,
providing only a "feed-forward" model of computation (no feedback loops) is con-



sidered to be quite a limitation. The overall system is a "loosely-coupled" hybrid
model' and cannot take self-modifying actions.

The current system provides a mapping from signals through to "control"
actions proposed by the expert system reasoning component. There is no reason
that these control actions could not be self-modifying, that is, changing the various
parameters and rules used by the system itself. Thus, in addition to control of an
external system, the current model can be extended for self control. The major
forms of self-modification we are currently examining include:

"• Changing the temporal patterns: Upon the receipt of external information
(or via internal decisions), the system can modify the set of temporal pat-
terns of interest.

"• Changing network parameters and/or output multipliers: Neural networks
are governed by a set of parameters (learning rate, momentum, etc.). Con-
trolling these parameters dynamically is an area just starting to be explored.
As control models are developed, "intelligent" control (using the expert sys-
tem) can be implemented, and experimented with, in this framework.

"* Changing network configuration: Certain sorts of network models (such
as Hopfield networks for minimal cost paths) have structural constraints
depending on external information (path cost between nodes, etc.) When
information is discovered during processing, it may reflect a change in this
information, and thus necessitate dynamic reconfiguration of the network.

In addition, the current model provides for a single network reporting to a
single temporal pattern-matcher. However, the blackboard architecture on which
SCRuFFy is based provides a natural mechanism foi the integration of multiple
knowledge sources. A hierarchical model of the temporal patterns (in which pat-
terns found for a given network can be compared with other patterns for other
networks) can provide for a merging of the data from various sensors. By explor-
ing the use of such patterns, coupled with the parameter changes described above,
we believe this framework will allow for experimentation with varying models of
multi-sensor systems.

CONCLUSIONS

In this paper we have described a shell which was developed to allow an inte-
gration of neural network and expert systems technology. The system, SCRuFFy,
is based on an analysis of the different abilities and time courses of neural network
and Al systems. Critical to the processing of this system is a temporal pattern
matcher which is used to mediate between the two subsystems, providing a "sig-
nal to symbol" mapping. This mapping allows the expert system to reason about
the time course of signals which are classified by a connectionist network which is
trained via classical back-propagation of error during a separate training phase.
An example of the simulated control of the temperature of an underwater welding
robot was presented to demonstrate these capabilities.

"6See (Hendler, 1999b) for a discussion of loosely and tightly coupled hybrid models.



As a final, more "philosophical" note, we wish to point out that the design
and motivation of the SCRuFFy system derives largely from a careful analvis
of the problem-solving exhibited by connectionist and symbolic systems (Steels,
1989; Hendler, 1989b). The techniques used in this analysis were not special to
either approach, but rather derived from examining the information processing
features of the two so-called paradigms. Such an analysis, common in the expert
systems community, but often ignored by neural network developers, enables the
strengths and weaknesses of the approaches to be identified, and allows the design
of component based systems, such as SCRuFFy, which can exploit the appropriate
technologies for the particular aspects of problems which are being solved. Thus,
in short, we agree strongly with Steels in his contention that "when this analy-
sis is made ... the differences between expert systems and connectionist problem
solving are relatively marginal as far as operation is concerned." By viewing the
technologies in this light, it is easier to see that they can be viewed as cooperating,
rather than competing, approaches.
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