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Implementation of a Parallel Stochastic
Solving Method for Linearly Constrained
Concave Global Optimization Problems

Using Parallel Computing

M.F. McLaughlin

Abstract

A parallel stochastic algorithm is implemented for solving the linearly constrained
concave global optimization problem. The algorithm uses a multistart technique
which repeatedly employs two phases, the global phase and the local phase. The
global phase creates a random search direction to find a vertex of the linearly
constrained feasible region. The local phase begins from that vertex and solves for a
local minimum. The algorithm repeats the global and local phases to find all the
local minima. Because the total number of local minima is unknown, an optimal
bayesian estimate is used to determine when the algorithm can terminate by assessing
the probability that the global minimum has been found. The global minimum
solution is found by taking the smallest function value of all the local minima
vertices. The algorithm was programmed in FORTRAN on the Connection Machine
CM-2 and Cray X-MP EA/464 supercomputers. Computational results are presented
for more than 200 test problems in three categories: known problems from the
literature, randomly generated concave quadratic problems, and randomly generated
fixed-charge problems. The test problems from the literature were run on both the
Cray X-MP and the CM-2 and resulted in an analysis of the stochastic algorithm's
efficiency on each machine. Computational results from randomly generated
quadratic and fixed-charge functions resulted in an examination of how particular
characteristics affect the difficulty of the problem. Lastly, the stochastic algorithm's
performance on the Cray X-MP was analyzed and modeled using the timing results
for random concave quadratic function problems.
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Section I

Introduction

This paper considers the implementation of a parallel approach for solving the

problem:

global min '(x)
xEr

(GP)

where P(x) is an arbitrary differentiable strictly concave function, the feasible region

= { x : Ax < b, x Ž> 0 } is assumed to be nonempty and bounded, and x E R", A E

Rm x n, and b c Rm. This problem, in its most general form (GP), is known as the

linearly constrained concave global minimization problem.

Many special cases of this general problem (GP) exist and are of particular

interest. One special case is the concave quadratic global minimization problem. For

this type of problem, ''x) = 1A x'Qx + ct x where Q e R is symmetric and negative

definite (i.e., all eigenvalues of Q are < 0). This special case of the general concave

global minimization problem is known to be NP-hard (Phillips 1988), and therefore

the more general problem (GP) is also NP-hard. A problem is considered to be NP-

hard if it can be solved in nondeterministic polynomial time, but no known algorithm

solves it in deterministic polynomial time. Simply stated, this means that these

problems are intractable in the worst case and no method is known which can solve

them in polynomial time (Martin 1991). An NP-hard problem can have special cases

for which reasonable instances can be solved in polynomial time, but no algorithm is

known which exhibits polynomial behavior for all instances. Since this general
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problem (GP) is NP-hard, the computation time of the implemented algorithm is, in

the worst case, expected to increase exponentially in relation to the number of

problem variables (n).

One characteristic of the problem (GP) which is central to nearly all solution

techniques, including the parallel algorithm to be considered shortly, is that the global

minimum must occur at a vertex of the convex polytope K2. In fact, due to the strict

concavity of TI(x), every local minimum point must be a vertex of £2 (Phillips 1988).

More precisely, strict concavity of 'I(x) is required because, without it, a function

could meet a linear constraint in such a way as to have the entire active constraint be

a minimum function value. Hence, there would be infinitely many local and global

minima. Therefore, we require strict concavity of 'P(x) to force the minimum to

occur at a vertex. Because vertices are central to problem (GP), linear programming

is an essential part of any computational algorithm used to solve it.

Techniques used to solve concave minimization problems can be classified

into two general categories: deterministic and stochastic methods. Deterministic

methods solve the problem with certainty while stochastic methods invoke

probabilistic techniques to provide an answer within a range of certainty. Thus,

stochastic methods can often decrease the amount of time necessary to solve a

particular problem at the expense of not having absolute certainty in the answer.

There have been many deterministic techniques proposed for solving the

constrained concave global minimization problem of the general form (GP). Extreme

point ranking was the first method proposed (Cabot and Francis 1970). This

algorithm searches among the vertices of Q for the global minimum. Generally,

linear underestimating functions are used to speed up the search through logical

elimination. This type of algorithm is an example of vertex enumeration which has
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proven to be inefficient for even reasonably small sized problems. In the worst case,

vertex enumeration results in the need to test every vertex. Given a problem with n

variables and m linear constraints, the maximum number of vertices of the

polyhedron Q is :

mtT - .t I m- Fn + 211m- ,- -,ntLT2

m-n m-n

where int[] rounds down to the nearest integer (Chvital 1983). Obviously, as the

number of variables and constraints increase, the number of vertices increases

exponentially thus making it impossible to solve reasonably large sized problems

using a vertex enumeration algorithm.

A cutting plane algorithm introduces additional linear constraints to reduce

the size of the feasible region without eliminating the global minimum from

consideration (Tui 1964). Branch and bound techniques partition the region defined

by the linear constraints and then eliminate certain sub-regions based on lower and

upper bounds on the global minimum (Falk and Soland 1969). Since it has

previously been shown that concave minimization is equivalent to bilinear

programming (Thieu 1980), deterministic algorithms used to solve bilinear

programming problems have also been applied to (GP). Lastly, approximating

subproblems (Falk and Hoffman 1976), where underestimation techniques are

applied to smaller regions of the overall problem, has been one of the most successful

techniques for solving concave minimization. However, none of these methods has

been successfully applied to problems of the form (GP) with n __ 25.

A stochastic process is a collection of random variables ordered over time,

which are all defined on a common sample space (Law and Kelton 1991). Stochastic
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models produce output that is an estimate of the true characteristics of the function to

within a particular degree of certainty. The algorithm presented in this paper is

stochastic because it repeatedly employs a random search procedure to find a vertex

from the defined and limited set of feasible region vertices. Stochastic methods have

previously been proposed for the unconstrained case of concave global minimization,

but never for the constrained case. Thus, the implemented algorithm will be

compared to the deterministic methods of solving (GP) to see if stochastic methods

are a feasible alternative to present day deterministic ones.

Although these and other deterministic algorithms have been proposed for

concave minimization, few have been extensively tested computationally. Those that

have been tested are generally limited to problems with a small number of variables

(n _ 25), and have been ineffective for large problems. One of the main goals of this

research is to extensively test the proposed stochastic approach for feasibility on a

large number of problems with a greater size than those previously tested.



Section 2

Applications

Many applications of the linearly constrained concave global optimization

problem exist in a variety of fields of interest. Two such examples are from the areas

of economic production and microchip design.

Economic production problems exist when a company's objective is to

maximize profit, but has limited man, facturing Icsources to be allocated. An

example is a textile company which has the ability to manufacture three products:

shirts, shorts, and pants. Each unit of each type of product produced costs a certain

amount in hours of labor and square yards of cloth, both of which are limited

resources. The limits on these resources are what create the linearly constrained

"feasible region" over which the negative of the profit function is minimized, (note

that the profit function is negated so that it can be applied to the general concave

minimization problem). The negative of the profit function is made up of the fixed

costs of production minus the aggregate profit of the produced goods. The aggregate

profit is simply the sum of each product multiplied by its per item profit, (sales price

minus variable cost). The fixed cost of production is the cost of renting a piece of

machinery to produce a good. Note that this cost is independent of the number of

items produced but depends only on which items are produced. This cost is what

makes this type of production problem a "fixed-charge" problem. Further details on

the exact formulation and results of computational testing of fixed-charge problems

are presented in section 13.

Microchip design is a second area to which problem (GP) can be applied.

The basic concept of microchip design is to pack the necessary components into the
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available area on the chin, while minimizing the distance between those elements

which must be electrically connected. The way in which problem (GP) applies to

mikrochip design involves two steps. First, the orientation and placement of the

components onto the chip are formulated as cc~nstraints. Linear inequalities which

relate to orientation must be created, since a, given rectangular component can be

aligned either vertically or horizontally. Likewise, the linear inequalities for packing

must take into account the limited height and width when placing the elements onto

the chip. Lastly, linear constraints are created to assure that no components overlap.

A concave quadratic distance formula, which is the aggregate distance between all

the components within the chip that need to be electrically connected, is then

minimized over the linear feasible space to provide a "minimum distance" chip

design.
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Section 3

Theory and Algorithm

The proposed global optimization algorithm is a multistart technique which

repeatedly employs two phases, the global phase and the local phase. The global

phase creates a random search direction to find a vertex on the feasible region Q.

The local phase begins from this vertex and attempts to find a local minimum.

Although the objective is to find the unknown global minimum of 'P(x), the

algorithm proceeds by finding all of the local minima, and hence the global minimum

is found as well. Unfortunately, the total number of local minima is unknown,

therefore, an optimal bayesian estimate of the number of local minima must be used

to determine at which point the algorithm can terminate. The resulting global

minimum is simply found by taking the smallest (in function value) of the local

minima.

The local phase of the stochastic method, which results in a local minimum,

requires the repeated solution of a series of linear programs. These linear programs

are based on the following theorem (for further details and proofs of theorems

presented in this section, see Phillips, Rosen, and Van Vliet 1991):

Theorem 1: Let v be a vertex of Q. If, starting from vertex v, V solves the linear

program

min V•V(v)' (x - v)

(LP)

then either



1) v = v' and hence v' is a Karush-Kuhn-Tucker point for problem (GP), or

2) v * v' and hence l(v') < T(v).

Note that theorem 1 solves for a vertex of (GP) which is a Karush-Kuhn-

Tucker point, but not necessarily a local minimum. The set of Karush-Kuhn-Tucker

points for a given problem (GP) is in fact a superset of all the local minima of the

problem. While in most instances when v = v', the vertex found is indeed a local

minimum, there are cases where it is not.

For example, when the gradient of I(v) is orthogonal to the active constraints

(those constraints which define the vertex), or a vertex coincides precisely with the

global maximum of 'P(x), then theorem I solves for a Karush-Kuhn-Tucker point

which is not a local minimum. Figure 3.1 shows the two-dimensional case of the

gradient of 'I(x) being orthogonal to the active constraint.

The two dimensions in Figure 3.1 represent the two variables over which the

function is minimized. The linearly constrained feasible region is the interior of the

triangular polytope. The global maximum of '"(x) is shown by the heavy dot, and

the level lines, those regions of constant function value, emanating from this point

show the progressively decreasing function values of 'I(x). Thus, the global

maximum lies at some value above the two-dimensional variable plane and the level

lines lie at some function value less than the global maximum. The concave function

is best envisioned as a "upside-down bowl" lying over the two-dimensional space of

the feasible region.

Figure 3.2 shows a two-dimensional example of a vertex of Q1 coinciding with

the global maximum of '+(x).
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Figure 3.1: Active Constraints Orthogonal to the Gradient of Y(x)
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Figure 3.2: Global Maximum Coinciding with a Vertex of the Feasible Region
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In Figure 3. 1, the lower right-hand vertex of the triangular feasible region

would be found as a Karush-Kuhn-Tucker point because the active constraint which

is the base of the triangle is orthogonal to the gradient at that vertex (the gradient

would be pointing right at the global max;mum). In Figure 3.2, the bottom vertex of

the feasible region polytope is not a local minimum since it coincides with the global

maximum of the concave function. However, this vertex will be found as a Karush-

Kuhn-Tucker point given the previous method of theorem 1. Although the proposed

algorithm uses the requirements for a Karush-Kuhn-Tucker point as an approximate

definition of a local minimum, the possible inconsistencies between the definitions,

demonstrated by Figures 3.1 and 3.2, should not greatly affect the progress of the

algorithm.

To be more precise, the probability that a vertex of the feasible region occurs

exactly at the global maximum of P(x) is low. Compound this with the fact that the

local phase of the algorithm follows the negative gradient of the function along

constraints to find a new vertex at a lesser function value. Thus, the local phase

could never find such a global maximum unless it is found first by the global phase's

random search. In such a case, the local phase would tern.: aiate at v = v' immediately

and the global maximum would indeed be classified as a local minimum. The

chances are similarly remote that the active constraints are orthogonal to the gradient

of TP(v), creating a "saddle point" coincident with the vertex.

Despite the fact that either of these events is improbable, the algorithm wili

not have a problem dealing with either of these situations if they were to arise.

Neither of the special cases in which Karush-Kuhn-Tucker points are incorrectly

classified as local minima could be considered as potential answers to (GP).

Obviously, the global maximum is not the global minimum of (GP). Likewise, a
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vertex which is a "saddle point" is a Karush-Kuhn-Tucker point that is not a local

minimum. In this case the vertex's active constraints are orthogonal to the function

gradient. Again, it is obvious that this vertex could not be the global minimum of

(GP). Therefore, when the algorithm terminates and searches those "estimated" local

minima it found, of which some are possibly Karush-Kuhn-Tucker points that are not

local minima, it will still retrieve the least of the actual local minima as the correct

answer for (GP).

Although finding a Karush-Kuhn-Tucker point that is not a local minimum

will not affect the answer that the proposed stochastic algorithm finds, it will have an

effect on the optimal bayesian estimate of the number of local minima. Therefore,

this potential problem could adversely affect the running time of the algorithm.

However, since it would be a very rare occurrence, it is not expected to be a major

problem in the computational implementation of the stochastic algorithm.

The proposed stochastic method is based on solving a series of linear

programs of the form (LP). The local phase will solve problem (LP) repeatedly for

Karush-Kuhn-Tucker points, which include the set of local minima, until the optimal

bayesian estimate shows that based on the number of "global phase" trials run and the

number of distinct local minima found, all existing local minima have been found.

For a strictly concave function, the number of Karush-Kuhn-Tucker points, and

hence the number of local minima, is finite because Karush-Kuhn-Tucker points only

occur at vertices (with the possible exception of the global maximum), and therefore

Q has a finite number of vertices. Hence, let K = {v1 , v2 , ... ,vi } represent the set of

Karush-Kuhn-Tucker vertices of Ql for problem (GP).
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We now define the region of attraction of a Karush-Kuhn-Tucker vertex v E

K, denoted by R(v), to be the set of all search directions u E Rn such that the

following local search procedure results in obtaining the vertex v:

1. Set j := 1 and solve the linear program

min u x

to get to the vertex zo.

2. Starting from vertex z,-, solve the linear program

min V'(zj.1) (x - Zj)

to get the vertex zj.

3. If TF(z 1) * T(z,_,) then set j := j + 1 and go to step (2).

Otherwise stop.

The region of attraction for a specific Karush-Kuhn-Tucker point is simply

that set of search directions which, when following the procedure above, results in

obtaining that same Karush-Kuhn-Tucker vertex. Theorem 2, below, tells us that

every Karush-Kuhn-Tucker point has at least one search direction in its region of

attraction, and therefore can be found by the stochastic algorithm using some search

direction. It also tells us that every possible search direction will lead to a Karush-

Kuhn-Tucker point since the union of all the regions of attraction for a given problem

results in R'.

Theorem 2: The regions of attraction R(v,), R(v 2), .... R(v•) are nonempty and

R(v,) u R(v2) u ... u R(v,) = Rn.
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Finally, theorem 3 tells us that if we take an infinite number of uniform

random search directions, then we are certain to find every possible Karush-Kuhn-

Tucker vertex, and hence all local (and therefore global) minima as well.

Theorem 3: If the search directions ul, u2, ..... uN are chosen from a uniform

distribution over Rn , then as N -400, every vi E K, for i = 1, ... , ic, will be found

with probability 1.

The algorithm can terminate once all of the Karush-Kuhn-Tucker vertices v E

K have been found. Unfortunately, the number of Karush-Kuhn-Tucker vertices, K,

is unknown. Theorem 3 states that given an infinite number of random search trials,

the set of Karush-Kuhn-Tucker points can be found with certainty. Obviously,

running an infinite number of trials is computationally impossible. Hence, some

reliable method of estimating Kc is necessary to practically implement the algorithm.

As mentioned earlier, only in certain rare cases is a Karush-Kuhn-Tucker point of

problem (GP) not also a local minimum of T'(x) over the feasible region, Q.

Therefore, a reliable method for approximating the number of local minima can also

be used to estimate the number of Karush-Kuhn-Tucker vertices, r,. This estimate of

the number of local minima is called an optimal bayesian estimate and was adapted

from theorems put forth by Boender and Rinnooy Kan (1987) and is summarized as

theorem 4:

Theorem 4: Let co be the number of different observed local minima obtained as a

result of performing N uniformly distributed random local searches. The optimal

bayesian estimate of the number of local minima, for N > co + 3, is:
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o*,(N- 1)

N-c0-2

Byrd, Dert, Rinnooy Kan, and Schnabel (1990) suggest that a practical

implementation of theorem 4 would terminate the algorithm when this estimate

exceeds co by less than 0.5. A more general stopping rule would terminate the

algorithm when:

o, *(N- 1)

for some 0 < 8 < 1. The right hand side of this expression can be rewritten in the

form:

) + Co

(SRI)

Thus, (SR1) uses the optimal bayesian estimate of the number of local

minima to terminate. The constant 8 allows a variation in the "strictness" of the

stopping criteria. A larger 5 requires fewer "global phase" trials (N) to be run per

unique local minimum than a smaller 8.

One particular characteristic of this stopping rule that merits consideration is

the relation of the number of local searches performed, N, to the number of local

minima found, w). Note that as new local minima are found, the number of trials that

must be run increases quadratically. It would seem that as more local minima are

found by the algorithm, then less trials are needed to find the global minimum.

However, this stopping rule states that as more local minima are found by the

algorithm, the number of trials must increase quadratically to satisfy the bayesian
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stopping criteria. This factor is especially detrimental in larger problems since the

number of local minima tends to increase exponentially in relation to the number of

problem variables. This led to the development of the stopping rule based on the

following theorem, also from Boender and Rinnooy Kan (1987):

Theorem 5: Let co be the number of different observed local minima obtained as a

result of performing N uniformly distributed random local searches. The optimal

bayesian estimate of the total relative volume of the observed regions of attraction,

for N >_ (o + 2, is:

(N - - 1) * (N + o)

N*(N- 1)

Note that this value can be rewritten as:

(03 (o +1)
N,(N- 1)"

Which satisfies the relation:

o*(0 + 1) + 2
1N,(NI ) ->lI- [!Ný ' -- .

Thus, we can develop a stopping rule based on t, the fraction of the domain

explored. This second stopping rule terminates the algorithm when:

[0 3+112• 2 t
N1) -

or, rewritten in the form similar to (SRI) as:
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(0+1
NŽ:-+15 1--t

(SR2)

Thus, (SR2) uses the optimal bayesian estimate of the total relative volume

observed to terminate the program. Note that in (SR2), N and co are linearly related

and thus (SR2) is a much more effective stopping criteria for larger problems.

Figures 3.3 and 3.4 compare the stopping rules graphically.

900-

800- (SRI)

.- 700- (SMc)

o600-
I...

( 500-

0400
S300-

S200-

100-

0
0 1 2 3 4 5 6 7 8 9 1011 R. 1314 15 i6I?1 6 1920

Number of Unique Local Minima

Figure 3.3: Comparison of Stopping Criteria for Low Numbers of Local Minima
( 8 = 0.5, t = 0.999)
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90
go--

80- (SRI)

(SI2)70-

o 60

"10
z 040

30-

20-

10-
0 --a ... . . . . ....

0 20 40 60 80 100 120 140 160 18o 260
Number of Unique Ioal Minima

Figure 3.4: Comparison of Stopping Criteria for Greater Numbers of Local Minima

( 8 = 0.5, t = 0.999)

From the graphs it is easy to see the relationship between the two stopping

rules. These figures used a reasonably standard value of 0.5 for the strictness of

(SRI), but a rigorous value of 0.999 for the fraction of domain explored in (SR2).

Figure 3.3 shows that for problems with a small number of unique local minima, W,

(SRI) needs fewer number of trials, N, to terminate the algorithm than (SR2). This

advantage continues up to about 15 local minima. Beyond 15 local minima, (SR2)

needs fewer trials to terminate. The progression of the stopping rules is much more

dramatic in Figure 3.4. (SRI) continues its quadratic relation between the number of

trials necessary to terminate and the number of unique local minima. Meanwhile,
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this relationship is linear for (SR2). For a reasonably sized problem with 200 unique

local minima, (SRI) would have to run more than ten times the number of trials than

(SR2). Obviously, (SR2) benefits even more over (SRI) as the problems increase in

size.

Based on the presented theorems and stopping rules, a stochastic algorithm for

solving problem (GP) can now be presented. Using P to represent the number of

available processors, K to represent the set of all Karush-Kuhn-Tucker vertices found

by the local search procedure, 0o = IKI, and N as the number of random search

directions, then this procedure is as follows:

Stochastic Algorithm (', 12, 8, t, P):

1. Find a feasible vertex v E 91.

Set v(1) :=v(2) . vM .

Set o:= 0, N := 0, and K := ({.

For i := 1, 2, ... , P (in parallel) do steps (2) through (12):

2. Pick a random vector u~') e Rn.

Setji:= l and N:= N + 1.

3. Starting from vertex v0) solve the linear program
t

min u) x
tx t

to get the vertex z0o' .
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4. Starting from vertex zj,_•°• solve the linear program

0(i) (i)
min V-r(zj, ) (x - zji

to get the vertex zi

5. If P( z.i i)) * zp(zi)-1) then set ji := ji + I and go to step (4).

6. Set v0') := z).

7. If K K { zKiu ) then set K := K u ( z I and co := o + 1.i.i

8. If N < (o + 2 then go to step (2).

Wo+l
9. If NI _ +1then go to step (12).

10. If N < o + 3 then go to step (2).

(ii +0)o

11. If N < 8 -+r w + 2 then go to step (2).

12. Stop all processors (i = 1, 2, ... , P) and set 'V := min TP(z) z E K .

Ideally, the stochastic nature of this algorithm will allow it to solve (GP) in

less computing time than previous deterministic methods. Also, the new stopping

rule developed from theorem 5 should allow the algorithm to terminate after fewer

"global phase" trials relative to the number of unique local minima found. Thus, the

hope for this proposed stochastic algorithm is that the implementation on the parallel

Cray X-MP and Connection Machine CM-2 supercomputers will accurately solve

larger, more difficult problems in less computation time.
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Section 4

Parallel Computing and the Stochastic Algorithm

Parallel computing concerns the use of computers to process information

utilizing concurrent manipulation of data elements belonging to one or more

processors. It is a relatively young field, with the first parallel machines being

introduced in the late 1970's. Although the field is relatively new, it is of great

importance because it presents a method to significantly increase speed of

computation (Quinn 19F-1). Many different architectures exist for today's parallel

computers. The stochastic method was implemented on machines exhibiting two of

these architectures. The Cray X-MP EA/464 has a multiple instruction stream,

multiple data stream (MIMD) architecture and the Thinkiaig Machines Corporation

Connection Machine 2 (CM-2) has a single instruction stream, multiple data strez m

(SIMD) architecture.

A MIMD architecture implies multiple instruction and multiple data streams

and is a more general model of parallel computing than SIMD. An instruction

stream is the sequence of instructions performed by the machine anc a data stream is

the sequence of data manipulated by the instruction stream (Lazou 1988). MIMD

machines usually contain several central processors which operate independently in

parallel and asynchionously. The processors execute different instruction streams

which can operate on that processor's memory area and/or the area of common

memory to which access is shared by all processors.

A SIMD computer uses a single instruction stream but multiple data streams.

It achieves multiple data streams from the singit :nstruction stream using the

processor array architecture. A processor array is a computer implemented as a set
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of identical synchronized processing elements capable of simultaneously performing

the same operation on different data (Quinn 1987). Although these elements run in

parallel, it is possible to mask certain processors to ignore a particular instruction on

a certain piece of data, thus allowing for if.. .then... else statements and other control

structures used in data manipulation.

It is easy to see that the stochastic algorittnm presented in sectio" 3 is designed

for use on a MIMD machine. The algorithm allows steps tw, nrough twelve to be

run on a number of separate processors, P. These processors are executing the same

series of instructions asynchronously and independent of one another (with the

exception of certain common data manipulations which must be synchronized), thus

creating multiple instruction streams. This allows for a significant speedup of

execution time, based on the number of independent processors on which these

parallel steps can be run.

Since the stochastic algorithm was designed to run on a computer with a

MIMD architecture, the question exists as to how to run it in parallel on a machine

with SIMD architecture. Since a SIMD computer such as the CM-2 uses a single

instruction stream, then when implementing the algorithm put forth in section 3, we

must assume that the number of available independent processors is one. Therefore,

steps two through twelve are being executed sequentially on only one processor, not

in parallel. If not running steps two through twelve in parallel, where does the

parallel implementation of the stochastic algorithm occur when running on a SIMD

machine?

The answer to the above question lies in the methods applied in the individual

steps of the stochastic algorithm. The bulk of the computation occurs in steps three

and four of the algorithm. These steps, and step one, involve the solution of a linear
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program. A linear program is the minimization or maximization of a linear function

subject to a finite number of linear constraints, either inequalities and/or equalities

(Chvital 1983). When implementing the stochastic algorithm, the revised simplex

method was used for solving the linear programs in these steps. The revised simplex

method frequently employs array calculations and manipulation. Often the

calculations being executed are equivalent processes performed on several elements

of the simplex method's data arrays. An example of this type of procedure would be

the multiplication of every element in an array by a constant. This quality lends itself

to parallelism on a processor array. The processor array can assign each of its

individual processing units to perform the calculations necessary on an element in the

data array. Thus, similar calculations on corresponding elements in the data array

can be spread over the many calculating elements in the processor array. Using this

technique, the stochastic algorithm achieves parallelism over individual array

calculations, which are individual steps in the instruction stream, and are necessary to

solve the linear programs in steps one, three, and four.
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Section 5

Cray X-MP Specifications

The Cray X-MP, first released in 1983, is basically an improvement on the

single processor supercomputer Cray-1. It has a faster clock cycle, an improved

memory bandwidth, increased maximum memory size and up to four vectored,

tightly-coupled processors (Quinn 1987).

The computational section of a Cray X-MP contains up to four CPUs with

scalar and vector processing modes. Each CPU has fourteen fully segmented

functional units and can access the 64-bit word basic addressable memory unit. The

inter-CPU communications and control unit including a 64-bit real time clock

handles interprocessor communications (Lazou 1988). These CPUs are not

connected, but rather rely on Inter-CPU communication and control hardware as

shown in Figure 5. 1.

A single CPU in the Cray X-MP has a series of operating registers. There are

eight 24-bit address registers which are supported by 64 24-bit rapid access

intermediate registers. There are eight 64-bit scalar registers supported by 64 64-bit

rapid access intermediate registers. Also, there are eight 64-element vector registers

with each element consisting of a 64-bit word. A scalar instruction performs some

function obtaining operands from two scalar registers and entering the result in

another scalar register. A vector instruction works the same way using the vector

registers. A special register, the vector length register, determines the number of

operations to be performed by the vector instruction. Other special registers exist for

communication between the processors.
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Inter-CPU
Communica-

tion
and

Control

CPU 3CPU 4

Figure 5.1: Cray X-MP Multiprocessor Configuration

A single Cray X-MP processor also contains four instruction buffers. These

buffers each have 128 16-bit parcels to hold the 16 and 32-bit Cray instructions.

Each is associated with a base address register which determines whether the current

instruction resides in a buffer or needs to be read in from the central memory unit.

The central memory unit contains up to 16 million 64-bit words arranged in up to 64

banks. The transfer rate from memory to a vector register is three words per clock

period per CPU. The effective transfer rate from memory to a scalar or address

register is one word every two clock periods. The transfer rate from memory to the

instruction buffers is eight words per clock period.

Each CPU also contains fourteen functional units. The two address functional

units provide 24-bit results using addition, subtraction, and multiplication. The four
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scalar functional units provide 64-bit results to integer adds, shifts, logical operators

and population, parity, and leading zero functions. The five functional units used for

vectcr operations provide 64-bit CPUs on the same functions as the scalar units.

There are three floating-point functional units used for both scalar and vector

operations. They perform floating additions, multiplications, and reciprocal

approximations.

The interconnection section of a Cray X-MP is composed of five clusters of

registers for interprocessor communications and synchronization. Each cluster of

shared registers consists of eight 24-bit address registers, eight 64-bit scalar registers,

and 32 one-bit synchronization registers. Any processor may access a cluster which

has been allocated to it in either user or monitor mode. The mode determines

interruption and synchronization of the cluster communications. The hardware also

includes a built-in system for detecting deadlock within a cluster and a 64-bit real

time clock which is shared by all the processors.

The Cray X-MP EA/464 system which was used is located at the University

of Minnesota Supercomputer Institute (MSI), Minneapolis, Minnesota. It is a four-

processor vector machine with an 8.5 nanosecond clock period. It is capable of 950

Mflops at peak performance and has 64 megawords of common memory which is

available to all four processors. It runs the UNICOS 5.1 operating system, a variant

of UNIX System V, developed by Cray Research, Inc. (MSC User Guide - MSI

Edition 1991).

On the Cray X-MP EA/464 at MSI, the stochastic algorithm was coded in

CFT77, a full ANSI FORTRAN 77 standard dialect which is portable across all Cray

systems. It contains all features required by the ANSI FORTRAN 77 standard and

contains some extensions compatible with the proposed ANSI FORTRAN 90
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standard and VAX FORTRAN. Likewise, it is capable of generating vectorized code

and supports automatic parallelization. In general, CFT77 offers the most features

and nroduces the fastest code of any of the FORTRAN compilers available on Cray

supercomputers.
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Section 6

Connection Machine CM-2 Specifications

The Connection Machine Model CM-2 is a SLMD parallel computing system

where one processor is associated with each data element. Using this architecture,

the CM-2 exploits the computational parallelism that is inherent to data-intensive

problems. In the best case, execution times are reduced in proportion to the number

of data elements used in parallel computation (Connection Machine Model CM-2

Technical Summary 1989).

The CM-2 is a combined system of both hardware and software. The

hardware components include the front-end computers, a parallel processing unit of

64K data processors, and a parallel data I/O system. CM-2 software is based on the

operating system used on the front-end computer and most of its instructions are

transparent to the user (Hillis 1986).

The front-end computer communicates with the connection machine through a

high-speed memory bus. Using this bus, it runs applications, transmitting

instructions and data to the CM-2 parallel processing unit. Scalar data is held in the

front-end computer which is responsible for any operations on it. The front-end

computer also provides the applications development and debugging environment for

the system. The operating system runs on this machine and allows application

packages and data files to be stored on it. Additionally, any communications links to

outside networks are controlled by the front-end. Lastly, the front-end is responsible

for maintenance and operating utilities such as allocating and deallocating CM-2

resources, initializing the system, querying of system status, and diagnosing

hardware problems.
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The CM-2 houses up to 64K parallel processing units, each of which contains

an arithmetic-logic unit (ALU) and associated latches, 64K or 256K bits of bit-

addressable memory, four 1-bit hardware flag registers, an optional floating point

accelerator, a router interface, a NEWS (North, East, West , and South) grid

interface, a direct hypercube interface, and an 1/O interface. Sixteen of these

processors are located on every processor chip and other chips contain different

pieces of the data processor hardware. A fully configured parallel processing CM-2

containing 64K data processors is a combination of 4096 processor chips, 2048

floating-point interface chips, 2048 floating-point execution chips and two gigabytes

of RAM.

Each of the thousands of CM-2 data processor ALUs executes instructions

one bit at a time. There are three input bits and two output bits. On any given bit

cycle, the ALU can read two bits from its off-chip memory and write one bit back.

Also, it can read any one of the four on-chip flag bits and write to any flag bit,

including the one read. Thus, the logic element of the ALU can compute any two

boolean functions on three inputs. This simple ALU can perform all Paris (Parallel

Instruction Set) operations.

Interprocessor communications is accomplished by the router hardware. All

processors can simultaneously send data to or get data from the local memories of

other processors. Each CM-2 processor chip contains a router node which serves the

16 data processors on the chip. The router nodes are wired together to form the

complete router network. The topology of this network is a boolean n-cube. A fully

configured CM-2 uses a 12-cube network to connect the 4,096 processor chips.

Thus, each router is connected to and communicates with 12 other routers. Message
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traffic travels along this network until it reaches the processor chip containing the

destination processor.

The NEWS grid and direct hypercube access are specialized hardware

mechanisms which allow for more efficient communications than the general router

mechanism. Figure 6.1 shows the NEWS grid of 16 processors on a processor chip:

Figure 6.1 : NEWS Grid of 16 Processors on CM-2 Processor Chip

Each parallel data processor is directly connected to its neighboring processor

to the North, East, West, and South; a physical four by four grid. This allows faster

transfer of data bits between neighboring processors through direct communication.

The direct hypercube access hardware allows the 12 hypercube wires entering a node

to be directly connected to 12 of the 16 data processors. Thus, the NEWS grid within
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a processor chip can be extended through the router wires without utilizing its

delivery features, thus speeding up communications.

The CM-2 which was accessed for this research is the 32,768 processor

machine located at the Army High Performance Computing Research Center in

Minneapolis, Minnesota. It contains 1024 Kbits of memory per processor for a total

of 4 Gbyt.-s of memory. The real-time clock runs at 10 Mhertz and its peak

performance is rated at 5,000 Mflops with actual applications running in the range of

1,000 to 2,000 Mflops. It has two Sun 4/490 front-ends each with 64 Mbytes of

memory running under the UNIX operating system (Connection Machine User Guide

1991). Standard applications run on one of the Sun 4/490s at the approximate speed

of 2 Mflops. The high speed memory bus operating between the front end machines

and CM-2 parallel processors transmits its communications at a peak performance

rate of 4 Mbytes/second. The CM-2 system also has a mass storage "Datavault"

which is capable of holding 20 Gbytes of information on 42 drives.

The stochastic algorithm was encoded in CM FORTRAN on the host of the

CM-2 system. CM FORTRAN is based on the ANSI FORTRAN 77 and incorporates

some extensions proposed in the draft ANSI FORTRAN 8x standard (the precursor to

FORTRAN 90). The Connection Machine FORTRAN associates each processor

with each element of data in an array. Many other functions and powerful array

handling features are implemented in Connection Machine FORTRAN to better

utilize the parallel nature of the CM-2.
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Section 7

Comparison of Expectations for the Cray X-MP and CM-2

Supercomputers

Section 4 described how the stochastic algorithm would be implemented on a

SIMD machine (CM-2) and a MIMD machine (Cray X-MP). Although the peak

performance data given in sections 5 and 6 indicates that the CM-2 runs

approximately five times faster than the Cray X-MP (5,000 Mflops vs. 950 Mflops),

the question remains as to how they will perform when running the stochastic

algorithm. There are significant factors other than the peak performance speeds that

must be considered when comparing running speed expectations for the two

machines.

First, when comparing the peak performance speeds for the different

machines, you must consider that they represent timing with all the processors

running. The Cray X-MP is running four full processors and given the MIMD

implementation detailed in section 3 and 4, we would expect the stochastic algorithm

to use all processors for most of its operation. The C!'-2 has all of its 32K

processors running when peak performance data is timed. Implementing the

stochastic algorithm for a SIMD machine requires spreading the data arrays onto

these processors. The number of processors on which the data is spread is on the

order of the square of the number of linear constraints. Since an extremely large

problem would have one hundred constraints, we can expect to be using at most one-

third of the processors on the CM-2. Thus, the performance of the stochastic

algorithm can already be expected to be at best one-third the peak performance of the

CM-2, and significantly less with smaller problem sizes.
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The architecture of the CM-2 could also slow down its expected performance.

First, scalar operations on the CM-2 system are run on the front end Sun 4/490s.

While these hosts are fast, they in no way compare to the processing speed of the

Cray X-MP. In fact, for standard applications, the Sun 4/490s are about 500 times

slower than the Cray X-MP (2 Mflops vs. 950 Mflops). All scalar operations on the

Cray X-MP run at the speed of a single full processor. This processor's peak

performance is one-fourth that of the whole machine, (since it has four full

processors), and equates to approximately 240 Mflops per second. That is a

significant advantage over the scalar operations performed on the Sun 4/490

processors on the front end of the CM-2 system.

Also, since scalar and array calculations occur at two different locations on

the CM-2 system, a transfer of data must take place whenever information needs to

be exchanged. For example, if an integer counter needed to be incremented, this

calculation would be done on the host machine. If the next statement was an array

manipulation based on the integer counter, then the value of the integer counter

would have to be broadcast across the high speed bus to the parallel processors.

Although this example would not significantly slow down the CM-2 performance,

repeated communications between the front end machines and the parallel processors,

especially when coming between strictly parallel operations, could have a noticeable

detrimental effect on the speed of the CM-2.

How the stochastic algorithm performs on the Cray X-MP compared with the

CM-2 seems to be a function of problem size and architecture. While a cursory

glance at the performance data may indicate the CM-2 should be faster when running

the stochastic algorithm, the lack of full processor implementation and architecturally
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separate scalar and parallel computations could significantly increase realized

computation times.
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Section 8

Random Problem Generation Concerns

It is impossible to create by hand enough large linearly constrained concave

global minimization problems to fully test the implementation of the stochastic

method. Thus, any computational testing must include procedures to create large

random problems. It is quite possible that the methods used to create a random

problem result in trivial or unrealistic cases. Therefore, steps must be taken to assure

that these random problems which are generated are a realistic representation of

application problems and are of significant difficulty. Two features of random data

which significantly affect formulation of linearly constrained concave global

minimization problems are random linear constraint generation and location of the

concave function's global maximum.

When generating linear constraints, the type of random number generator

used to produce the coefficients affects the shape of the created feasible region. Van

Dam, Frenk, and Telgen (1983) showed that constraints generated using a uniform

random number generator for the linear coefficients tend to cause the angle between

the constraints to be the same as the dimension increases (Minkoff 198 1).

Figure 8.1 provides a two-dimensional argument for this property. The

square represents possible values for the coefficient vector, i.e., normal vector, of a

constraint. In the figure, vectors a, and a2 are shown. The lines perpendicular to

these vectors are the linear constraints associated with them. They intersect at the

shown angle, 0. If the constraint normals occurred only within the circle then the

angle 0 would be uniformly random. This circle of constraint normals can be

created by using a normal random number generator for the coefficients. However,
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when using a uniform random number generator for the coefficients, the constraint

normals can also occur in the shaded region of the square. A greater proportion of

the square is shaded as the number of dimensions increases. This causes more

constraint normals to accumulate in the shaded region and a greater similarity in the

angle between linear constraints. Thus, to generate a uniform distribution of angles

of intersection between linear constraints, a normal distribution must be used to

generate the constraint coefficients.

Figure 8.1: Angle Between Random Constraints

The shape of the feasible region is an important concern. In general,

application problems of the form (GP) do not have a rounded, symmetrical feasible

region. Thus, any random generator which created these constraints would not be

testing the algorithm on reasonable problems. Instead, real-world problems often
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have sharp, asymmetrical angles between the constraints. Theretore, when

generating random problems to test the stochastic algorithm, it was necessary to

implement a normal random number generator for constraint coefficients to produce

constraints on large random problems that simulated those found on smaller

application problems.

The location of the concave function maximum is more a concern of problem

difficulty than similarity to applications. If the maximum is located interior to the

feasible region, Q, then the potential for a much more difficult problem exists than if

it is exterior to the constraints. Consider Figures 8.2 and 8.3:

xx

Figure 8.2: Interior Global Maximum
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Figure 8.3: Exterior Global Maximum

Note that both figures have the same two-dimensional feasible region. The

five vertices of the feasible region are numbered. Both figures also have the same

concave function, although it is centered at a different location in each figure. This

function is depicted by the labeled global maximum and shaded contour lines. Each

contour line represents a specific function value and these values decrease as you

move away from the global maximum of the concave function. The only difference

between the two figures is the location of the function's global maximum in relation

to the feasible region.

Since the stochastic algorithm relies on the number of local minima to

determine how many "global phase" trials must be run, the difficulty of the problem

depends on the number of vertices which are local minima. In Figure 8.2 the

function maximum is within the feasible region. By looking at the function contour
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lines, it is obvious that all five of the vertices are local minima. However, in Figure

8.3, which uses the same function and feasible region but the global maximum is

located outside the feasible region, fewer vertices could be considered local minima.

Vertices three, four, and five are certainly not local minima and vertex two may not

be either. Assuming that the stochastic algorithm found all the local minima, that

represents a more than fifty percent reduction in the number of trials that need to be

run. Thus, in two problems with the same size (five constraints and two dimensions),

same shape of the feasible region, and same shape of the concave function, the

difficulty was significantly influenced by the location of the global maximum: either

interior or exterior to the feasible region.

Given this characteristic of random problem generation, it was necessary to

control the location of the function maximum when creating computational test

problems. When formulating different sets of standard concave quadratic problems

for testing the stochastic algorithm, the option of locating the function maximum was

available. This allowed sets of problems with varying difficulty to be created, thus

furthering the completeness of algorithm testing.
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Section 9

Random Quadratic Function Formulation

The first class of functions tested were concave quadratic functions in

separable form. These randomly generated quadratic functions had the following

form:

n

Tl'(x) -- i (X. - Vol
i=l1

where v is the unconstrained global maximum of P(x), and X, < 0 for i = 1, ... , n.

This formulation allowed problems to be set up with a known global maximum

location, with either the global maximum interior or exterior to the feasible region,

f, as discussed in section 8.

Another interesting consideration when dealing with this quadratic function

formulation is what values to assign to the eigenvalues, X,, ... , k. As stated, in order

for the function to be strictly concave, all eigenvalues must be less than zero.

However, the difficulty of the problem is greatly affected by allowing the eigenvalues

to vary in their values. More precisely, consider the gradient of the concave

quadratic function:

WV(x) = 21k x.-vi).
i=1

Obviously, if the eigenvalues are the same for every dimension, then the

gradient is simply twice the constant eigenvalue times the sum of the distances away

from the global maximum in every dimension. This is a difficult problem because it
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separates the feasible region, Q, into many regions of attraction of roughly the same

size. If, however, you have an eigenvalue whose magnitude is much greater than

those in all other dimensions, you usually have a much easier problem. The region of

attraction for a vertex which lies distant from the global maximum in the dimension

of this large eigenvalue will be much larger than the rest of the local minima. This

skewing of the function tends to decrease the number of local minima thus making

the problem easier to solve.

Numerous sets of the random quadratic concave function were tested on the

Cray X-MP version of the stochastic algorithm. These sets varied in size, location of

global maximum, and eigenvalue generation. The results from these computations

are presented in section 12.
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Section 10

Random Fixed-Charge Function Formulation

The other class of randomly generated concave functions considered was the

"fixed-charge" problem. The fixed-charge problem is

min ctx +Xfi

xE Q i E J(x)

where = x e R' : Ax < b, x > 0 } is a nonempty bounded polytope, f, -> 0 for i

1, ... , n, J(x) = { j : xj > 0), and c is negative. That is, a "fixed-charge" is incurred

for any variable that has a positive value at the solution point x, but no charge is

incurred for problem variables at the origin. Figure 10.1 represents a single

dimension of the fixed-charge function.

FigxF

Figure 10.1: One Dimensional Fixed-Charge Function
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These problems are very common in practical applications and are usually

solved as 0-1 mixed integer linear programs. Hence, it is expected that the number of

local minima may grow exponentially with the number of problem variables n

(Phillips, Rosen, and van Vliet 1991).

The random "fixed-charge" function was modeled as a two-stage function

whose function definition is as follows:

n

T(X( X,<
x, e" fi + ci xi

i=l1

and whose gradient definition is as follows:

n

i=l

where E is a very small positive constant and M is a very large positive constant.

When randomly generating this problem, steps were taken to assure that fi was

a reasonable value so that a significant "charge" was being imposed for moving a

variable away from 0. Several sets of the random "fixed-charge" concave function

were tested on the Cray X-MP version of the stochastic algorithm. These sets had

various numbers of variables and constraints. The results from these computations

are presented in section 13.
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Section 11

Results of Test Problems with Known Solutions

Although sections 8, 9, and 10 dealt with random function generation and

formulation, the first test problems run on the stochastic algorithms were quadratic

programming test problems from Floudas and Pardalos (1990) that had known

solutions. The purpose of running these problems first was to assure that the

algorithm worked correctly on both the Cray X-MP and the CM-2 before moving on

to harder sets of randomly generated test problems. An unexpected result of these

tests was the elimination of the CM-2 as a workable platform for larger problems.

The general format of the quadratic test problems in Floudas and Pardalos

was:

T(X) = cX x- 1/2 X' Q x.

where c is a constant vector of length n (the number of variables) and Q is a positive

definite diagonal matrix of order n. This problem is the same as the quadratic

formulation presented in section 9 except for an additional constant term. More

precisely, the formulation from section 9 for the concave quadratic function was:

n

T(x) = (x,- Vi)2.

i=I

This same problem written in the vector format of Floudas and Pardalos would be:

'(x) = (x-v)' A (x-v),
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where A = diagonal(X1, X2, ... , Xn) and v = (VI, v2, .... v.). When the terms of this

function are expanded, one obtains:

'V(x) = x'A x + VA v -2 v'A x.

Thus, we have two terms of the same format, and one additional term. First:

xtA x=-'xt Q x

where

A=-'hQ.

Also:

-2 vt Ax = ctx

where

-2v1 A= c'.

Thus, the only term in our quadratic function formulation not accounted for in the

Floudas and Pardalos method is:

v Av.

Since v is a constant vector and A is a constant matrix, this term (d =- V A v) is also a

constant. Thus, the Floudas and Pardalos problems are equivalent to our formulation

with the exception of a constant. The following example demonstrates how to

change the same problem between the two formulations. Suppose a two variable

problem was developed in the method presented in section 9:

T'(x) = (x-v)' A (x-v)
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where

A = diag(-3, -5)

and

v=(2, 1).

Using the formulas in the previous derivation, we could find the equivalent Floudas

and Pardalos notation by using:

A=-½Q

therefore:

Q = diag( 6, 10),

and

-2 v A = c'

so that

c'=( 12, 10).

The constant term (d) which would have to be added to the Floudas and Pardalos

formulation is:

d =VA v

therefore:

d = (-12,-5).
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The reason for this difference in formulation is that we wanted to control the

position of the global maximum and our function technique easily allows this by

assigning it to the constant vector v. In the above example, the global maximum

would occur at (x1=2, x2=1).

When solving the concave quadratic minimization problem, the stochastic

algorithm views the two function formulations identically, even without the constant

in the Floudas and Pardalos style. In the above example, the same local minima

vertices and global minimum vertex would be found. The only difference would be

that without the constant term d in the Floudas and Pardalos formulation, the value of

TP(x) at each of these vertices would be 17 higher than when using our formulation.

Since the d term is a simple constant, it only serves to raise or lower the function over

the feasible region, and doesn't affect the stochastic method's solution.

In total, five test problems (2.2, 2.3, 2.4, 2.5, and 2.6) from Floudas and

Pardalos (1990) were tested using the stochastic algorithm on voth the Cray X-MP

and CM-2. Each problem was run between three and five times on each machine to

ensure accurate results were obtained. For all problems run on both computers, the

stochastic algorithm achieved the same solution as put forth in Pardalos and Floudas.

Table 11.1 is a standard output of results from a single problem run. Tables 11.2,

11.3, 11.4, 11.5, and 11.6 summarize the local minima and timing information for the

five test problems. Any space in the tables indicates that less than five runs were

completed on that machine for that problem. Note that all runs for the stochastic

algorithm in this section used the constants 5 = 0.5 and t = 0.99.
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**** GLOBAL MINIMUM VERTEX *****

X[ 1] = 1.0000
X[ 2) = 0.0000
X[ 3] = 0.0000
X[ 4] = 1.0000
X[ 5] = 1.0000
X[ 6] = 1.0000

X[ 7] = 0.0000
X[ 8] = 1.0000

X[ 91 = 1.0000
X[l0] = 1.0000

***** GLOBAL MINIMUM FUNCTION VALUE *****

PHI = -39.0000

***** PROBLEM STATISTICS *

Number of Local Minima = 67
Number of Trials = 676
Trials since Unique Local Minimum = 19
Global Minimum was Local Minimum # 34

-Most Frequently Found was Local Minimum # 11

Found 46 Times
Value = -29.0000

Number of Times Global Minimum was Found = 17
Global Minimum was Found on Trial Number = 80

Average Local Minimum Function Value -13.463
Range on Local Minimum Function Values = 58.305

Total Number of Pivots = 4971
Total Number of LP Problems = 1990
Avg. Pivots/LP Problem = 2.4980

Initial Random Number Seed = 5649
CPU Time (Seconds) = 30.702
Wall Time (Seconds) = 7.869

Table 11. 1: Sample Output Results from Single Run of the Stochastic Algorithm on

the Cray X-MP for Problem 2.6 from Floudas and Pardalos
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Cray X-MP CM-2
Unique Processor Wall Unique Elapsed Busy
Local Time Time Local Time Time

Minima (Seconds) (Seconds) Minima (Seconds) (Seconds)
Run 1 1 0.382 0.143 1 10.46 2.645
Run 2 1 0.435 0.156 1 7.590 2.245
Run 3 1 0.458 0.219 1 10.90 1.929
Run 4 1 0.537 0.357 1 11.94 2.524
Run 5 1 0.580 0.161 1 9.310 1.796
Averages 1 0.478 0.207 1 10.04 2.228

Table 11.2: Results of Problem 2.2 (m = 7, n = 6)

Cra X-MP CM-2
Unique Processor Wall Unique Elapsed Busy
Local Time Time Local Time Time

Minima (Seconds) (Seconds) Minima (Seconds) (Seconds)
Run 1 10 6.684 2.516 10 390.3 84.07
Run 2 10 4.769 2.976 10 212.8 79.48
Run 3 10 5.930 2.197 10 149.8 73.26
Run 4 10 6.512 2.454
Run 5 10 6.159 2.208
Averages 10 6.011 2.470 10 251.0 78.94

Table 11.3: Results of Problem 2.3 (m = 19, n = 13)
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Cray X-MP CM-2
Unique Processor Wall Unique Elapsed Busy
Local Time Time Local Time Time

Minima (Seconds) (Seconds) Minima (Seconds) (Seconds)
Run 1 2 0.574 0.173 2 7.133 4.271
Run 2 2 0.471 0.167 2 6.269 4.702
Run 3 2 0.492 0.159 2 6.361 4.753
Run 4 2 0.534 0.166 2 6.017 4.620
Run 5 2 0.478 0.166 2 7.386 4.935
_Averages 2 0.510 0.166 2 6.633 4.656

Table 11.4: Results of Problem 2.4 (m = 8, n = 6)

_ __Cray X-MP CM-2
Unique Processor Wall Unique Elapsed Busy
Local Time Time Local Time Time

Minima (Seconds) (Seconds) Minima (Seconds) (Seconds)
Run 1 1 1.128 0.425 1 13.35 6.403
Run 2 1 0.942 0.443 1 8.36 5.134
Run 3 1 0.920 0.379 1 7.89 5.228
Run 4 1 1.144 0.442 1 7.02 4.478
Run 5 1 6.57 4.077
Averages 1 1.034 0.422 1 8.64 5.064

Table 11.5: Results of Problem 2.5 (m = 21, n = 10)
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Cray X-MP CM-2
Unique Processor Wall Unique Elapsed Busy
Local Time Time Local Time Time

Minima (Seconds) (Seconds) Minima (Seconds) (Seconds)
Run 1 67 30.702 7.869 19* 70.7* 28.1*
Run 2 65 28.198 7.940 65 878.1 316.7
Run 3 62 27.953 7.535 63 966.7 369.2
Run 4 61 28.529 7.354
Run 5 68 30.263 8.491
Averages 64.6 29.13 7.838 64 922.4 343.0

Table 11.6: Results of Problem 2.6 (m = 15, n = 10)

* = Results not included in averages. See ensuing discussion.

The data from these sample problems lead to a number of conclusions about

the stochastic algorithm. The first conclusion that can be drawn from the data is that

the stochastic algorithm is effective for solving small problems of the form (GP).

This conclusion is based on two factors. First, for every run on every problem, the

stochastic algorithm found the proper global minimum vertex as reported by Floudas

and Pardalos. Second, there was reasonable stability in the number of local minima

the algorithm found for a given problem.

As previously stated, the stochastic algorithm found the correct answer for

every problem presented in this section. For every problem Floudas and Pardalos

presented a "Best Known Solution" and these were verified by solving the problems

on an algorithm that solves (GP) deterministically. In fact, on these and other test

problems run on the Cray X-MP and CM-2, the stochastic algorithm found the

Floudas and Pardalos "Best Known Solution" in every instance except one.
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This one exception occurred when the stochastic algorithm obtained a better

solution than Floudas and Pardalos. This case occurred when running case 5 of

problem 2.7. According to their solution, the minimum function value is -4105.2779.

The solution arrived at by the stochastic algorithm was a different vertex of the

feasible region, with a function value of -4150.4101. Although this difference in

function values is relatively small, it is significant that a better vertex was found for

the solution of this problem.

How extensively this problem had been tested by Pardalos and Floudas is

unknown, but this demonstrates a benefit of the stochastic algorithm over

deterministic methods. A deterministic method may be forced to find every possible

solution vertex and for problems with many local minima and larger dimensions, the

computing time required to provide guaranteed solutions may become infeasible. For

large problems, a very stringent program (which requires a high degree of accuracy

in all calculations) would be infeasible because it wouldn't be able to test all the

potential vertices in a reasonable amount of time. The stochastic algorithm doesn't

suffer from this problem because it attempts to randomly cover the feasible region

and all the regions of attraction using the "stochastic" global phase. This allows

larger problems, such as this one, to be tested with the same accuracy and probability

of finding the global minimum.

The fact that the stochastic algorithm achieved at least as good a solution as

Floudas and Pardalos for every run of every problem is one indication of it's

accuracy. Another indication is the stability in the number of local minima found for

different runs of a given problem. Problems 2.2, 2.3, 2.4, and 2.5 all found the same

number of local minima on every run for each machine. For example, when solving

problem 2.3 (Table 11.3), both the CM-2 and Cray X-MP found ten local minima on
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each run. Although this is a small number of local minima, it shows that the

stochastic algorithm is sampling a reasonable piece of the feasible region and finding

most or all of the local minima.

Problem 2.6 (Table 11.6) is the first to show any fluctuation in the number of

local minima found for a single problem. Note that the Cray X-MP found an average

of 64.6 local minima with values on a single run ranging from 61 to 68. Although

differing number of local minima were found, it is important to note that the variance

was very small and that the correct global minimum was found every time. This

variance in the number of global minima found on each run is simply a characteristic

of the algorithm being stochastic and solving (GP) using probabilistic methods rather

than deterministic ones. The fact that there was not a great deal of variance in the

number of local minima found and that it correctly obtained the solution to (GP) on

every run suggests that the algorithm is an effective method for finding local minima

and that appropriate values for the stopping criteria constants are being used.

The only aberration to the relative constancy in the number of local minima

found for a given problem occurred in run number one on the CM-2 for problem 2.6

(Table 11.6). While the number of local minima found on the second (65) and third

(63) run on the CM-2 correspond to the number found on all the runs for the Cray X-

MP (Average = 64.6), the first run only found 19 local minima. Closer inspection of

the results showed that on the 19th local minimum, the algorithm got "stuck." It

proceeded to find that same local minimum 174 consecutive times until the stopping

criteria indicated that 99 percent of the expected volume of the feasible region had

been searched. This run demonstrates the potential downfall for a stochastic method.

Since a stochastic method uses probability, there will always be that one set of

skewed data which gives an abnormal solution while indicating that the problem has
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been accurately solved. Although the correct global minimum was found in this case,

clearly 99 percent of the feasible region was not searched since only 19 local minima

were found compared with the average of approximately 64 local minima found by

other runs.

This strange result could have been due to any number of problems. The

random number generator may have gotten stuck in a repetitive series until the seed

was reset in the next run. Perhaps rounding error caused the algorithm to traverse

slightly outside the feasible region so that it found the same vertex each time it tried

to conform to the linear constraints in the global phase. This problem could have

revealed some obscure bug in the coding of the stochastic algorithm. For whatever

reason, this data is obviously an anomaly and, while it highlights a potential downfall

of the stochastic algorithm, the fact that it greatly deviates from other sample runs

was. identified and caused it not to be considered in the data averages for the CM-2 on

problem 2.6 in Table 11.6.

The other significant conclusions that can be drawn from the test data regard

the timed execution of the stochastic algorithm. The timing data of the runs on the

problems with known solutions indicate that the coding of the stochastic algorithm on

the Cray X-MP was very successful. Conversely, it also shows that using the present

code, the CM-2 is not a viable platform for running larger problems.

Table 11.7 summarizes the efficiency for the stochastic algorithm on the test

problems from Floudas and Pardalos.

When the test problems were solved on the Cray X-MP using the stochastic

algorithm, all four processors were used in parallel (P = 4). This provided the

opportunity for speedup of CPU time (the cumulative execution time of all four

processors) over wall time (the concurrent execution time of all four processors) to be
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Average Processor Average Wall
Time (Seconds) Time (Seconds) Efficiency

Problem 2.2 0.478 0.207 0.578
Problem 2.3 6.011 2.470 0.608
Problem 2.4 0.510 0.166 0.768
Problem 2.5 1.034 0.422 0.613
Problem 2.6 29.13 7.838 0.928

Table 11.7: Cray X-MP Average Time Statistics and Speedup for Test Problems

as much as 4.0, but overhead and single processor operations cause it to be less than

ideal. The efficiency calculation is a measure of how effectively the method utilizes

the parallel processors and is defined as the speedup divided by the number of

processors employed. Our data- shows that the algorithm is achieving a significant

level of efficiency when running even the small test problems. Perhaps most

encouraging is the efficiency of 0.928 achieved when solving problem 2.6. Thus,

the solution of this problem used 92.8 percent of the possible CPU time during the

time the stochastic algorithm was executing. Ideally, this performance could be a

trend that will carry over to large randomly generated problems. Generally, a small

problem results in a larger percentage of the CPU time being taken up by

interprocessor operations. The hope is that the small size of test problems 2.2, 2.3,

2.4, and 2.5 partially caused the efficiency data to be significantly smaller than will

be realized for the larger, randomly generated problems.

One method used to analyze the performance data of the Cray X-MP was to

perform a flowtrace analysis on the executable code. Table 11.8, on the following

page, is the flowtrace analysis for the five runs of problem 2.3 as shown in Table

11.3.
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Routine Name Multi? Tot Time # Calls Avg Time Percentage Accum%

FINDCOL Y 5.86E+00 7343 7.98E-04 40.16 40.16
GETCOST Y 24E+00 190918 1.70E-05 22.20 62.36
GETORIG Y 2.52E+00 101249 2.49E-05 17.29 79.65
DOPHASE2 Y 6.41E-01 1553 4.13E-64 4.39 84.05
NEWTAB Y 6.35E-01 5790 1.10E-04 4.35 88.40
CALCCOL Y 5.95E-01 5790 1.03E-04 4.08 92.48
FINDROW Y 1.55E-01 5790 2.68E-05 1.06 93.54
NEWBASIS Y 1.50E-01 5790 2.59E-05 1.03 94.57
PARALG Y 1.43E-01 20 7.15E-03 0.98 95.55

NEWMULT Y 1.35E-01 1533 8.84E-05 0.93 96.48
ADLOCMIN Y 1.21E-01 520 2.34E-04 0.83 97.32
SIMPLEX Y 8.56E-02 1553 5.51E-05 0.59 97.90
RELERR Y 7.78E-02 4760 1.63E-05 0.53 98.43
PHI Y 5.04E-02 2073 2.43E-05 0.35 98.78
GETPOSX Y 3.71E-02 1553 2.39E-05 0.25 99.03
GETPROB N 3.47E-02 5 6.95E-03 0.24 99.27
PRNTPROB N 2.46E-02 5 4.93E-03 0.17 99.44
GRADPHI Y 1.99E-02 1033 1.93E-05 0.14 99.58
RANDVEC Y 1.35E-02 520 2.60E-05 0.09 99.67
NORM Y 1.35E-02 520 2.59E-05 0.09 99.76
STOPCRIT Y 1.20E-02 540 2.21E-05 0.08 99.85
PRNTOBJ N 7.90E-03 5 1.58E-03 0.05 99.90
PRNTSTAT N 6.72E-03 5 1.34E-03 0.05 99.95
PRINTMIN N 5.71E-03 5 1.14E-03 0.04 99.98
$MAIN N 1.18E-03 1 1.18E-03 0.01 99.99
INITPROB Y 7.05E-04 20 3.52E-05 0.00 100.00
DOSTATS N 9.67E-05 5 1.93E-05 0.00 100.00
CHKPROB N 7.07E-05 5 1.41E-05 0.00 100.00
NEWTAB@44 Y 7.04E-05 3 2.35E-05 0.00 100.00
GETCPU N 5.72E-05 10 5.72E-06 0.00 100.00
GETWALL N 4.15E-05 10 4.15E-06 0.00 100.00
INITPAR N 1.06E-05 5 2.11E-06 0.00 100.00

Totals 1.46E+01 338932

Table 11.8: Flowtrace Output for the Five Runs of Problem 2.3 on Cray X-MP

The data from this flowtrace illustrate a number of interesting features. First,

since all initialization, overhead, and printing routines are not multitasked routines

(as indicated by an N under "Multi?"), they were not included in the previous time

and efficiency performance data. This means that only multitasked routines were
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considered for efficiency calculations. In an attempt to determine when and where

four processors are not operating at the same time, we must analyze the algorithm in

reference to the flowtrace output.

There are only two procedures considered in the efficiency calculations of the

stochastic algorithm which contain statements which could not be run on different

processors at the same time. This is because they work on common data known as

critical data. If these statements, in the critical section of the code, are allowed to

work on the critical data at the same time, improper sequencing of the processors

may cause the calculations to be performed incorrectly. Thus, semaphores were

employed in the stochastic algorithm to keep the processors from working on the

critical data at the same time.

One procedure which contains a critical section is ADLOCMIN. This is

critical because it adds data to K, the set of local minima found by all processors.

Also, it increments N, (o, and other global data variables (those variables which can

be accessed by all processors). If semaphores were not used in ADLOCMIN then

two processors could add the same local minimum to the set of unique local minima.

While this will not affect the final answer of the stochastic algorithm, it will force

more trials to be run since the stopping rules determine when to terminate the

algorithm based on the number of unique local minima.

The flowtrace shows that there was a relatively low number of calls to

ADLOCMIN and that it only accounted for 0.83 percent of all execution time.

However, this percentage does not include waiting time to get into the critical region

of the code. The worst case analysis would be that every time a processor was

executing ADLOCMIN, the other three processors immediately would be waiting to

get into this critical region. Thus, since the reported flowtrace time does not include
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waiting time, the worst case total time spent in ADLOCMIN could have actually

been four times the total time of 0.121 seconds or 0.484 seconds. When you sum the

total time column for the multitasked procedures, but substitute the worst case total

time of 0.484 seconds for the measured time of ADLOCMIN, you arrive at a total of

14.869 seconds. Then, assuming that 0.363 seconds of the worst case execution time

in ADLOCMIN is time wasted by other processors waiting on the one executing

processor, we can estimate a worst case efficiency of:

14.869 - 0.363
14.869 = 0.976.

This indicates that even in the worst case, the procedure ADLOCMIN has little

negative effect on the efficiency of the stochastic algorithm. In fact, since this

procedure is called only once for every "global phase" trial run, (0.15 percent of all

calls in Table 11.8), this worst case estimate is probably much too pessimistic.

The other procedure which manipulates critical data is RANDVEC. This

procedure manipulates the random number seed which is used by all processors.

However, since it is also run once for every "global phase" trial, it has the same small

amount of procedure calls and it's execution time is even less than ADLOCMIN,

(0.0135 seconds versus 0.121). Adding the effect of RANDVEC to that of

ADLOCMIN generates a worst case efficiency of 0.972.

Two conclusions can be drawn from this data. First, even the worst case

analysis demonstrates that the encoding of the stochastic algorithm is very efficient at

preventing unnecessary slowdown in the parallel processing. However, the second

determination is that there must exist some inherent slowdown when using multiple

processors. This is based on the fact that the average efficiency when running
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problem 2.3 was only 0.608 on the four processor machine (Table 11.7), much worse

than the worst case slowdown caused by waiting inherent in the critical regions of the

stochastic algorithm. This slowdown could be caused by communication between

processors when operating on global data, competition with processes begun by other

users (the most likely reason), and any of the other numerous synchronization

features inherent in a multiprocessor machine. Thus, it appears that while efficiency

approaching the ideal value of 1.00 is possible given the algorithm's encoding, its

actual performance may be the result of factors outside of its control.

The final significant conclusion that can be drawn from the test problems run

from Floudas and Pardalos regards the performance of the CM-2. The CM-2

execution times presented in Tables 11.2 - 11.6 are broken down into elapsed time

and busy time. The elapsed time is the total amount of execution time for a process,

including both front-end run time and CM-2 multiprocessor time. CM busy time is

the amount of actual execution time of the multiprocessor CM-2. Thus, the

difference between the elapsed time and busy time is the idle time. Idle time includes

those clock cycles when the parallel processors are waiting for instructions from the

front-end but not those where the parallel processors have received an instructic but

are waiting for argument data.

Thus, given the characteristics of the timing categories for the CM-2, we can

roughly compare the busy time of the CM-2 to the wall time of the Cray X-MP.

These both represent the length of time over which the parallel processors were

operating. Data from the test problems in Tables 11.2-11.6 show that the busy time

of the CM-2 is between ten and forty times longer than the wall time of the Cray X-

MP. This difference seems logical considering the reasons outlined in section 7.
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However, this speed difference alone was not sufficient to exclude the CM-2 from

consideration for the larger problems.

When CM idle time is factored in, it becomes apparent that our encoding of

the stochastic algorithm on the CM-2 is infeasible for larger problems. The total

observed CM-2 elapsed time on the presented test problems ranged from 20 to more

than 100 times the wall time on the Cray X-MP. It was also clear that as the problem

size increased, the performance of the CM-2 relative to the Cray X-MP decreased.

Thus, randomly generated problems with hundreds of local minima which run in

approximately sixty seconds on the Cray X-MP would take upwards of two hours to

run on the CM-2. Likewise, since there is time-sharing of the processors on the CM-

2 and the reported elapsed time does not include time you are waiting for other users,

the actual observed difference in running time was even greater. This great disparity

in the amount of real time it takes to solve a large problem led to the elimination of

the CM-2 as a viable platform to test the larger, random problems presented in the

next two sections.

The question then occurs as to how to increase the performance of the

algorithm on the CM-2. There are two ways to do this. First, the implementation of

the stochastic algorithm could have been more CM-2 specific. Second, machine

characteristics which affect performance could be improved. Although these

possibilities exist for increasing the execution speed of the parallel algorithm, a

strong possibility also exists that the significant non-array data processing which is

required is the main reason for its slow performance.

When coding the stochastic algorithm, a base program was initially developed

in standard FORTRAN and then conversion to specific Cray X-MP and CM-2

constructs took place. The conversion for the Cray X-MP was very smooth. Since
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the Cray utilizes coarse-grain parallelism, there were only a few parallel FORTRAN

constructs to understand and implement. However, the CM-2 transition was much

more difficult. Under the fine-grain parallelism of the CM-2, there were many

constructs which had to be understood. In addition, these constructs relied on

extensive knowledge of the architecture and workings of the CM-2. Only an expert

in CM-2 programming could have coded the stochastic algorithm using the most

time-efficient techniques. How much of an effect the inexperienced coding had on

the slow execution speed of the stochastic algorithm on the CM-2 is unknown.

A faster, more dedicated front-end system could also reduce the execution

time of the stochastic algorithm on the CM-2 system. In fact, since performing the

test problem runs detailed in this section on the CM-2 in February of 1992, the Sun

4/490 front-ends have been replaced by higher performance Sun 4/690s. Also, since

the front-end machine is a time-sharing system, there is competition among all users

for the process execution. A dedicated machine would devote all the front-end

processor time to a single process. Again, how much effect a dedicated or improved

performance front-end would have on the execution of the stochastic algorithm on the

CM-2 is unknown.

In fact, the implementation of either of the two presented possibilities for

improved performance of the stochastic algorithm may not produce significantly

better results. This is due to the fact that execution of the required data bookkeeping

and the subsequent front-end to parallel processor communication makes the

stochastic algorithm unsuitable for execution on a Connection Machine system. As

previously discussu., ill sigular data elements and serial operations remain on the

front-end. These processes are significantly slower (due to the SUN front-end) than

the highly parallel array operatiors which can be spread across all of the parallel
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processors. Also, observe, from the flowtrace output (Table 11.8) previously

described, that the three procedures which take up the most time are FINDCOL,

GETCOST, and GETORIG. Combined, these procedures account for nearly 80

percent of the program's execution time. Analysis of these procedures indicates that

they are all very reliant on serial statements operating on singular data items. In fact,

GETCOST, which is the procedure executed most often, accounting for 56.3% of all

procedure calls, performs no CM-2 parallel operations whatsoever. This indicates

that the stochastic algorithm is not very well suited to the CM-2 system of high-speed

massively parallel array operations and low speed non-array operations and

transmissions. It shows that it is much better suited to a Cray X-MP architecture

which performs all operations at high speeds. Until a machine exists that can take the

best features of both architectures, by running serial communication and operations at

the-high speed of the Cray X-MP and performing massively parallel operations when

solving linear programs and other fine-grain operations, it appears that the

architecture of the Cray X-MP is best for implementation of the stochastic algorithm.
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Section 12

Results of Randomly Generated Qtadratic Problems

When analyzing the computational results of the stochastic method, one of the

biggest concerns is how "hard" a problem it can solve. Theoretically, the stochastic

algorithm could solve a problem no matter how difficult. However, memory and

time limitations force us to put a reasonable limit on certain characteristics of the

problem. Therefore, when solving the randomly generated concave quadratic

functions on the Cray X-MP, CPU time is used as a measure of problem difficulty.

The CPU time required for a problem is a function of two problem characteristics:

the number of local minima and the average number of pivots per trial.

It is readily apparent how the number of local minima affects the CPU time of

the stochastic algorithm. Given (SR2), there is a linear relation between the number

of trials which need to be run and the number of unique local minima which have

been found. Since the stochastic algorithm consists of a repetition of "global phase"

trials, CPU time has a direct linear relationship to the number of trials that are run.

Thus, CPU time for any problem is linearly related to the number of local minima as

well.

While the number of local minima is representative of the total number of

trials which must be run, the average number of pivots rer trial is a measure of the

time it takes to run each trial. In the stochastic algorithm, steps 3 and 4 are two linear

programs which are solved repeatedly (F, e section 3). As previously stated, these

linear programs are solved using the revised simplex method. Each iteration of the

revised simplex method is considered a pivot, because it moves from one verteA to

another along a constraint of the feasible region. The repeated solution of these two
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linear programs is the major portion of execution and thus the majority of CPU time.

Therefore, the number of pivots the stochastic algorithm takes per trial is a measure

of the CPU time per trial.

Since CPU time is dependent on the number of local minima and the number

of pivots pec trial, the next step is to explore what characteristics of the randomly

generated concave quadratic problem affect these statistics.

As discussed in section 8, the location of the concave quadratic function's

global maximum is expected to affect the number of local minima. If the maximum

is interior to the feasible region, then, on average, more local minima are expected.

If the maximum is unconstrained, then fewer local minima are expected on average.

Section 8 also contained an explanation of how the generation of the

eigenvalues of the concave quadratic function affects the number of local minima. It

is expected that if the eigenvalues are equal then there will be more local minima per

problem. Likewise, if the eigenvalues are random, then, on average, fewer locai

minima are expected.

Table 12.1 summarizes the analysis of the effect of both the location of the

global maximum and the mode of eigenvalue generation on the number of local

minima. As the legend shows, the problems were categorized into four different

types based on the two characteristics to be studied. Relative amounts for the average

number of local minima are given for each type of problem in each of six different

sizes. More precisely, for each size category the problem type with the least number

of local minima is normalized to a value of 1.00. The number for every other type

within that size is simply the average number of local minima for that type divided by

the average number of local minima for the type whose value is 1.00. Thus a relative

average is given for each problem type within a size category.
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Legend for Table 12.1
A = Random Eigenvalues, Interior Global Maximum
B = Random Eigenvalues, Unconstrained Global Maximum
C = Equal Eigenvalueý, Interior Global Maximum
D = Equal EigenvalueF, Unconstrained Global Maximum

n =20 n =40 n =60
A =1.25 A= 1.20 A =1.08

m = 15 B =1.00 B =1.00 B= 1.00
C =2.28 C 1.67 C =1.37
D =2.43 D= 1.42 D= 1.35
A =1.02 A 1.00 A =1.00

m = 25 B =1.00 B 1.05 B = 1.21
C =1.44 C =1.23 C = 1.55
D 1=1.64 D =1.37 D =1.54

Table Averages
A = 1.09
B = 1.09
C = 1.62
D = 1.60

Table 12.1: Relative Average Amounts of Local Minima Generated per Problem

The results from Table 12.1 are surprising. The difference in relative average

amounts of local minima generated per problem is very small between problem types

A and B. This difference is nearly zero between types C and D as well. Since type A

differs from type B in the location of the function maximum and type C differs from

type D in the location of the function maximum, it can be concluded that the location

of the function maximum has little effect on the number of local minima! However,

there is a jump in the relative average number of local minima between the A and B

types, which have random eigenvalue generation, and the C and D type problems,
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which have equal eigenvalues. Thus, the method of eigenvalue generation appears to

have a significant effect on the average number of local minima. Tables 12.2 and

12.3 provide more evidence for these conclusions.

n =20 n =40 n =60 n =20 n =40 n =60
Eigenvalues m=15 1m=15 m=15 m=25 m=25 m=25 Avg.

Equal 59.69 10.80 6.91 34.72 21.22 5.07 23.07

Random 46.57 21.39 19.32 93.68 23.30 41.48 40.96

Table 12.2: Standard Deviation of the Average Number of Local Minima as a
Percentage of the Average Number of Local Minima for Problems with Interior

Global Maximum

Global n=20 n=40 n=60 n=20 n=40 n=60
Maximum m=15 m=15 m=15 m=25 m=25 m=25 Avg.

Interior 59.69 10.80 6.91 34.72 21.22 5.07 23.07
Unconstrained 56.82 22.24 1.53 j 63.79 6.04 6.64 26.18

Table 12.3: Standard Deviation of the Average Number of Local Minima as a
Percentage of the Average Number of Local Minima for Problems with Equal

Eigenvalues

Tables 12.2 and 12.3 show the standard deviation of the average number of

local minima as a percentage of the number of local minima. For example if the

average number of local minima found was 150 and the standard deviation was 30

then the table would read 20, since 30 is 20 percent of 150.
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Table 12.2 demonstrates that different types of eigenvalues (equal vs.

random) cause a great variation in the standard deviation. Specifically, random

eigenvalues create problems which have a much wider range in the number of local

minima generated than problems which have equal eigenvalues. This is because a

problem with random eigenvalues could have approximately the average number of

local minima of a problem with equal eigenvalues if all the randomly generated

eigenvalues are roughly equivalent. Likewise, it could have much fewer local

minima as a result of a great range of randomly generated eigenvalues. These

possibilities combine for a standard deviation for random eigenvalue problems that is

relatively much larger than the standard deviation of equal eigenvalue problems.

Thus, Table 12.2 gives further evidence that the types of eigenvalues for the problem

have a significant effect on the number of local minima.

If the location of the function global maximum had a significant effect on the

number of local minima, then Table 12.3 would have similar trends as Table 12.2.

We would expect that an unconstrained maximum would have a greater standard

deviation since it could have an interior global maximum or an exterior one.

However, Table 12.3 demonstrates that the unconstrained global maximum has a

standard deviation ,'i hich is only slightly larger than the interior global maximum.

The fact that the standard deviation changes very little based on the location of the

global maximum, coupled with the fact from Table 12.1 that the location of the

global maximum has little effect on the number of local minima, demonstrates that

the location of the global maximum has virtually no effect on the number of local

minima for a randomly generated concave quadratic problem. Therefore, in further

analysis of the number of local minima generated, problems with different locations

of the global maximum will be grouped together.
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The other characteristic of the randomly generated quadratic functions which

has an effect on the number of local minima is the size of the problem. Tables 12.4,

12.5, and 12.6 summarize this relationship.

n =20 n =40 n =60
m = 15 60.14 269.0 370.6
m=25 62.50 311.0 366.9

Table 12.4: Average Number of Local Minima per Problem with Random
Eigenvalues

n = 20 n =40 n = 60

m = 15 125.6 392.0 484.9
m=25 95.20 394.2 512.4

Table 12.5: Average Number of Local Minima per Problem with Equal Eigenvalues

n = 20 n = 40 n = 60

m = 15 92.89 330.5 427.5
m = 25 78.85 352.6 439.6

Table 12.6: Average Number of Local Minima per Problem for all Problem Types

From these tables, it is obvious that the number of local minima is a function

of the size of the problem. As the number of variables (n) increases, independent of

other characteristics of the problem, the number of local minima increase. Also, the
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number of constraints (m) has a similar effect on the number of local minima,

although not nearly as definitive or pronounced. The basic logic behind this

relationship was given in section 3 where the formula relating the maximum number

of vertices to the number of variables and the number of constraints was presented.

The average number of vertices increases as either dimension or the number of

constraints increases. When more vertices exist, then there are more potential

candidates for local minima and thus, on average, more local minima per problem.

Therefore, increasing size, either in the number of variables or number of constraints,

results, on avLrage, in more local minima per problem.

The number of pivots per trial is another characteristic of a randomly

generated concave quadratic problem that has been shown to have a linear

relationship with CPU time. We will again explore how the location of the global

maxsimum and the method of eigenvalue generation affect the number of pivots per

trial in light of how they affect the number of local minima.

How these characteristics of the problem affect the number of pivots per trial

is a function of the number of local minima. Specifically, assuming a fixed problem

size, if there are more local minima, then the number of pivots to find a local

minimum is less. This decrease in the number of pivots for the local phase decreases

the overall average number of pivots per trial. Therefore, given the relatively

insignificant effect of the location of the global maximum on the number of local

minima, the location of the global maximum is expected to have a correspondingly

small impact on the number of pivots per trial. Similarly, the types of eigenvalues

generated can be expected to have a much greater effect on the number of pivots per

trial. Table 12.7 employs the same technique as Table 12.1 to summarize the relative
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impact that the location of the global maximum and the types of eigenvalues have on

the average number of pivots per trial.

Legend for Table 12.7
A = Random Eigenvalues, Interior Global Maximum
B = Random Eigenvalues, Unconstrained Global Maximum
C = Equal Eigenvalues, Interior Global Maximum
D = Equal Eigenvalues, Unconstrained Global Maximum

n =20 n = 40 n =60
A =1.09 A= 1.14 A= 1.13

m = 15 B= 1.17 B = 1.13 B = 1.18
C =1.00 C = 1.00 C = 1.01
D =1.00 D = 1.06 D = 1.00
A =1.14 A = 1.14 A = 1.19

m=25 B= 1.19 B= 1.15 B= 1.14
C = 1.03 C = 1.00 C = 1.00
D = 1.00 D = 1.06 D = 1.03

Table Averages
A= 1.14
B = 1.16
C= 1.01
D = 1.03

#of Pivots

Table 12.7: Relative Average Amounts of# Trial

The results of Table 12.7 reiterate the results of Table 12.1. Since the

location of the global maximum has almost no effect on the number of local minima,

it also has a very small effect on the average number of pivots per trial. This is
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evidenced by both the average A and B, and the average C and D values being equal.

Therefore, since it has been shown that the location of the global maximum has

almost no effect on any of the statistics which affect execution time of the stochastic

algorithm, it will no longer be considered as a distinction for a randomly generated

concave quadratic problem.

The averages from Table 12.7 also reinforce the impact of eigenvalue type on

the number of pivots per trial. However, it appears that this effect is relatively much

smaller than the effect on the number of local minima. This may be due to the fact

that the number of local minima only influences the local phase portion of the

number of pivots per trial calculation, not the global phase.

Each trial of the stochastic algorithm runs the global phase linear program to

find a random vertex of the feasible region. This linear program has a number of

pivots based on the number of vertices encountered when moving to that random

vertex. Since the number of problem variables and the number of constraints affect

the number of vertices on the feasible region, it is obvious that they also affect the

number of pivots in the global phase. Since the number of global phase pivots is

influenced, size affects the overall average number of pivots per trial. Table 12.8

summarizes the impact of size on the number of pivots per trial.

n =20 n =40 n =60 n =20 n =40 n =60
Eigenvalues m 15 m= 15 m 15 m =25 m =25 m =25

Random 26.45 40.91 50.03 41.84 76.03 98.55
Equal 23.51 37.21 , 43.42 36.37 68.49 85.95

# of Pivots
Table 12.8: Average Trial per Problem

TialI
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Table 12.8 confirms the expectation that as size increases, the number of

pivots per trial also rises. The effect is significant and this large impact may be the

result of a less obvious relationship between problem size and the number of pivots in

the local phase. More precisely, a case could be made for the theory that if the

number of vertices increases while the number of local minima remains stable, it will

also take more pivots per local phase portion of the trial to solve for a local

minimum. Thus, the large effect of problem size most likely results from an overall

increase in vertices, which increases the pivots necessary to find the global random

vertex and the local minimum vertex.

Given that we have a linear relationship between CPU time and the number of

local minima and another linear relationship between CPU time and the number of

pivots per trial, the question exists as to whether CPU time is a function of the sum or

the product of these characteristics. Obviously, since the number of local minima is a

measure of the number of trials, and the number of pivots per trial is a measure of the

execution time per trial, it is expected that CPU time is linearly related to the product

of the number of local minima and the average number of pivots per trial. Table 12.9

summarizes the reliability of the linear regression calculations relating CPU time to

the number of local minima, the number of pivots per trial, the sum of these two

statistics, and the product of these two statistics.

# of Local # of Pivots
Minima Trial Sum Product

R-squared 0.639 0.585 0.704 0.960

Table 12.9: Statistical Reliability of Linear Models for CPU Time
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The R-squared term is a standard statistical representation of the accuracy of a

linear model to the actual points. A value of 0.00 represents no correspondence

between the independent and dependent variables. Likewise, a value of 1.00

represents complete correspondence. Thus, the higher the R-squared term is, the

more accurate the linear modeling. As expected, the most accurate model is that

which linearly relates CPU time to the product of the number of local minima and the

number of pivots per trial. The complete linear regression model for CPU time for

randomly generated concave functions is:

(Number of Pivots,
CPU Time = 0.010466 * (Number of Local Minima) * ( Trialot"

An interesting result of this function is the cumulative effect that the types of

eigenvalues has on the CPU time of the stochastic algorithm. While increased size

increases both components of the CPU time function, different types of eigenvalues

move these components in opposite directions. More precisely, an equal eigenvalue

problem is expected to have more local minima than a random eigenvalue problem of

the same size. From Table 12.1, it is expected that an equal eigenvalue problem will

have about 1.478 (1.61/1.09) times more local minima than a random eigenvalue

problem. At the same time, an equal eigenvalue problem will have fewer pivots per

trial. From Table 12.7, the equal eigenvalue problem will have about 0.887

(1.02/1.15) times fewer pivots per trial than a random eigenvalue problem. Thus, an

equal eigenvalue problem is expected on average to take about 1.31 (1.478*0.887)

times the CPU time of a same sized random eigenvalue problem. Table 12.10

summarizes the computational results of the comparison of CPU times for various

sized problems.
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n=20 n =40 n =60 n = 20 n 40 n =60
Eigenvalues m = 15 m = 15 m =15 m = 25 m 25 m =25

Random 6.504 84.17 198.1 14.31 199.6 411.1
Equal 14.31 113.8 229.4 19.37 232.4 509.4
Factor 2.200 1.352 1.158 1.354 1.164 1.239

Table 12.10: Average CPU Time per Problem and Increase Factor of Equal
Eigenvalues over Random Eigenvalues

Table 12.10 shows that the computational results support the formula

estimation of the effect of eigenvalue generation on CPU time. Table 12.10 has an

average multiplication "factor" of 1.411, a difference of less than eight percent from

the value obtained from the linear regression formula and previous statistical results.

This result supports the statistical analysis and linear regression formula relating CPU

time to the product of the number of local minima and the number of pivots per trial.

Thus, through extensive statistical analysis, a formula which can accurately

estimate the CPU time of a randomly generated concave quadratic problem solved by

the stochastic algorithm on the Cray X-MP has been approximated. Likewise,

observations have demonstrated to what degree certain problem characteristics

influence the variables which affect CPU time, and even eliminated the location of

the global maximum as an influence on CPU time. Through this extensive

investigation of the CPU time of the stochastic algorithm, an accurate estimation of

the "difficulty" of the randomly generated concave quadratic function problems has

been generated.

Solution of random concave quadratic problems provides information on two

other performance considerations of the stochastic algorithm: CPU efficiency and

stopping criteria effectiveness.
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In section 11, a trend of increasing CPU efficiency as the test problems got

more difficult was observed. Ideally, that trend would have carried over to the

solution of random problems and their much larger sizes would create very high

efficiency in the use of the four processors of the Cray X-MP. However, it was

observed that there was no correlation between problem difficulty and efficiency of

the stochastic algorithm. The efficiency statistic was seemingly random with an

average value of about 0.65, and a range of 0.20 to 0.95. Thus, the trend of

increasing efficiency with greater number of local minima was not substantiated.

The primary reason for the random nature of CPU efficiency is that the

random concave quadratic problems were not run on a dedicated machine. The

execution of the stochastic algorithm was competing for time and processors with all

of the other programs executing at the same time on the Cray X-MP. Any particular

run could have received less than the requested four processors, and thus greatly

decreased the efficiency calculation which assumes all four processors are allocated

to the stochastic algorithm. To perform a more accurate test of the efficiency of the

stochastic algorithm, time on a Cray X-MP devoted to running only that code would

be necessary.

The performance of the stopping criteria is the final significant result obtained

from testing the stochastic algorithm on randomly generated quadratic problems.

Since these problems are randomly generated, there can be no guarantee that the

stochastic algorithm arrived at the correct global minimum. However, from the

accurate results presented in section 11 (where every minimum obtained to test

problems was at least as good as the best known solution), and the data in Table

12.11, we see that stopping criteria of the stochastic algorithm were sufficiently strict.

In Table 12.11, N' represents the first trial number on which the global minimum
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vertex was found and 0 represents what unique local minima number was the global

minimum.

Table 12.11 shows the relative speed of finding the global solution vertex for

a randomly generated concave quadratic problem. Note that on average, the solution

is found after only 1.17 percent of the trials have been run and 6.25 percent of the

global minima have been found. More precisely, on average, the stochastic algorithm

runs 98.8 percent of its trials and finds 93.75 percent of the other local minima after

the global minimum vertex has been found! Given these values, we can be

reasonably certain that the stopping criteria are sufficiently strict and that a correct

solution vertex is being found by the stochastic algorithm.

Avg. Case Worst Case

N* 0* N* 10*
Eigenvalues n m N (0 N (0

Random 20 15 .0162 .0971 .0390 .2791
Random 40 15 .0056 .0376 .0160 .1054
Random 60 15 .0064 .0415 .0196 .1160
Random 20 25 .0194 .0953 .0652 .2688
Random 40 25 .0026 .0155 .0046 .0354
Random 60 25 .0081 .0609 .0173 .1122

Equal 20 15 .0153 .0755 .0503 .2379
Equal 40 15 .0043 .0314 .0094 .0667
Equal 60 15 .0067 .0484 .0228 .1667
Equal 20 25 .0124 .0667 .0361 .2857
Equal 40 25 .0321 .1074 .2711 .6256
Equal - 60 25 .0108 .0722 .0361 .2364

Average .0117 .0625 .0490 .2113
Worst .0321 .1074 .2711 .6256

Table 12.11: Relative Speed of Finding Global Minimum Vertex
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The worst case data gives more information about the adequacy of the

stopping criteria. For Table 12.11, the worst case occurs when the global minimum

was found latest in the number of trials and number of local minima, thus putting the

correct solution in jeopardy if a decrease in the strictness of the stopping rules is

implemented. Considering that all of these problems stopped after satisfying (SR2)

and that a value of t = 0.99 was used, a decrease in this expected volume of the

feasible region to be searched could be warranted. In well over 100 test problems,

the latest that the stochastic algorithm ever found the global minimum vertex was

after 27 percent of the trials had been run. Thus, at least 73 percent of the trials for

any problem were run to find local minima other than the global minimum and to

satisfy the stopping criteria. The average of the worst case scenario across various

sized problems is even more dramatic. Given any particular size problem, it is

expected that, even in the worst case, where the global minimum is found late in the

stochastic algorithm's execution, at least 95 percent of trials would be run after the

global minimum was found. A decrease in t would decrease the number of

unnecessary extra trials which are run by the stochastic algorithm. However, a

decrease in t could have negative implications as well.

A decrease in t vould decrease the strictness of (SR2), allowing the

stochastic algorithm to terminate after fewer trials. While the data in Table 12.11

indicates that this decrease may not affect the final solution of the stochastic

algorithm, it does not present the whole picture. A decrease in the expected volume

of the feasible region to search could result in premature termination if the f. - !uency

of unique local minima location of the stochastic algorithm varies greatly. For

example, if relatively few of the unique local minima are found in early trials, then a

decreased z constant could cut off the search and declare that the global minimum
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solution has been found. In fact, this would not represent the complete solution of

the problem. Therefore, while it is apparent that a value of t = 0.99 for (SR2) is

causing redundant searches to be performed, the accuracy it achieves justifies

maintaining it at this level unless problem size dictates that less stringent stopping

criteria be implemented.
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Section 13

Results of Randomly Generated Fixed-Charge Problems

The formulation of randomly generated fixed-charge problems was given in

section 10. Analysis of computational data from randomly generated fixed-charge

functions solved using the stochastic algorithm on the Cray X-MP revealed no new

information regarding the performance of the stochastic algorithm. It did, however,

demonstrate the inherent difficulty of this type of problem.

Because of the formulation method, size is the only characteristic which

affects the difficulty of the problem. Since the problem is not quadratic, there are no

eigenvalues to generate. Likewise, the , ,aximum is at a fixed point just inside

of the origin. Thus, the only important problem statistics are contained in Tables 13.1

and 13.2. These tables summarize the effect that size has on the number of local

minima and CPU time for a fixed-charge problem.

n=10 n=20

m = 10 64.00 746.6
m = 20 133.4 670.2

Table 13.1: Average Number of Local Minima per Problem

n=10 n=20
M = 10 1.634 49.91
m = 20 6.340 90.45

Table 13.2: Average CPU Time per Problem
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When the results from the fixed-charge problem are compared with similar

results from the randomly generated concave quadratic function (Tables 12.6 and

12.10), it is obvious that the fixed-charge problem is much more difficult. The fixed-

charge function generates a much greater number of local minima and,

correspondingly, the CPU times were much larger than same-sized quadratic

problems. In fact, fixed-charge problems of modest size proved intractable on the

Cray X-MP.

To save memory and CPU time on the Cray X-MP, the number of unique

local minima was limited to 1000 for any single run of the stochastic algorithm.

After reaching 1000, the algorithm stopped and any obtained results were reported.

However, this information would not represent a complete solution because neither of

the stopping rules had been met. When solving randomly generated fixed-charge

problems, the stochastic algorithm quickly obtained 1000 local minima and

terminated for any problems larger than 10 constraints and 30 variables. Likewise. in

problems of 25 constraints and 50 variables, which were difficult but still quite

reasonable for quadratic functions, the stochastic algorithm discovered 1000 local

minima in, on average, 1250 trials. Obviously, since the stochastic algorithm

discovers such a high percentage of local minima per trial, many more local minima

exist which have not yet been found. These statistics indicate that the randomly

generated fixed-charge problem is inherently much more difficult than a randomly

generated concave quadratic problem of the same size.

In addition to the randomly generated fixed-charge problems, two fixed-

charge application problems with known solutions were tested on the Cray X-MP.

The "Ghandi Cloth Company" and "J.C. Nickles Lockbox" problems from Winston

(1987) were solved. Despite their relatively large size (n = 20, m = 40 for the 'J.C.
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Nickles" problem), each was relatively simple, containing only one local minimum

(the solution vertex), and the stochastic algorithm accurately solved both in an

insignificant amount of CPU time (0.040 seconds and 0.130 seconds, respectively).

Other than substantiating the supposition that the stochastic algorithm is a reasonable

technique for solving extremely small application problems, the solution of these

example application problems provided no additional information regarding the

implementation of the stochastic algorithm. It does show, however, that either these

test problems are much easier than a standard fixed charge problem, or that the

randomly generated fixed-charge problems we tested are much more difficult than

standard application problems.
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Section 14

Results of a Sample Application Problem

One potential application of the stochastic algorithm is in the design of VLSI

chips. A VLSI chip is made up of components which need to be electrically wired.

The objective is to minimize the distance between the components which need to be

connected, in an effort to minimize the overall size of the chip. The constraints can

be formulated to account for orientation of the components, enforce particular area

requirements, and prevent overlapping of components. This is a very large problem

and, as such, is extremely difficult to solve.

In an effort to simulate this type of problem on a much smaller scale, the two-

dimensional bin-packing problem was considered. The two-dimensional bin-packing

problem is: Given a collection of rectangles, and a bin with a fixed width and an

unbounded height, pack the rectangles into the bin so that no two rectangles overlap

and so that the height to which the bin is filled is as small as possible (Coffman,

Garey, Johnson, and Tarjan 1980). For this problem, it is assumed that the rectangles

are oriented, each having a specific horizontal and vertical side. Figure 14.1 is a

typical rectangle (Bi ) used in the bin-packing problem where (xi, yi ) represents the

location of the center of the block in the bin.

If W equals the width of the bin, and N equals the number of blocks, then the

bin constraints (BC) are:

x,-½Li > 0

x +½L, <W

yV -ýq .N 0

V i=l .... N.
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HiI x. y

Li

Figure 14.1: Bin-Packing Rectangle (Bi)

The bin constraints force all rectangles to lie within the edges of the bin, but

do not prevent overlapping of rectangles. In order to prevent the rectangles from

overlapping, at least one of the following must hold for each pair of i and j (i * j):

xi+½Li < xj-½Lj (Bi to the left of Bj)

x,-½Li >- xj+1 Lj (Bi to the right of Bj)

Yi +½H -:yj -'AHj (Bi below B,)

yi -•½ -Yj +y+Hj (Bi above Bj )

Note that two of these non-overlapping constraints may be satisfied, but at

least one must be satisfied. L and H are now defined as:

N
L = XL1

i=l

and

N
H= .

i=l
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Clearly, it can be assumed that:

I x, - xj I_< L

and

Iyi - yjI < H

Vi, j=l ,...,N.

Therefore, the 0-1 integer variables xj and yj j {V i = 1,...,(N-1), V j = (i+l),...,N}

are introduced and the non-overlapping constraints (NOC) for any two blocks Bi and

Bj (i < j) can be represented by:

x-, +'hLi -< xj -IhLj + (xij + Yij) L

x,-½ 16_>x,+iLj -(I +Žxj- yij) L

y, +I A -< yj -ýHj + (I - x, j + y, j) H

yj -½ >hK2 yj +IhHj - (2 - x, j - Yijj) H

Notice that for:

(xiv, yi,) = (0, 0), Bi is to the left of Bj;

(xii, yi) = (0, 1), Bi is to the right of Bj

(xj , Yid) = (1, 0), Bi is below B,;

(xii, Yid = (1, 1), Bi is above Bj.

Since we want all x1 , yjj e {0, 1), we must use limiting constraints (LC):

and

0V Yij I<1

/ij (< j).
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To account for the overall height of the bin, we introduce another variable y0 , which

is subject to the following height constraints (HC):

Y0 > Y, +½2 -Ii

Vi = 1,...,N

Thus, we want to minimize the overall height of the bin, Yo, subject to all the

previous constraints. However, (LC) forced the x, j and Yij variables to be between 0

and 1. To get them to be either 0 or 1 at the global minimum vertex, we use the

following "penalty" function formulation:

min yo + gtY Exj(1-xij) + gI Yij(0I-Yij)

Vij(i<j) Vij(i<J)

subject to: (BC)

(NOC)

(LC)

(HC)

where: g. is very large (g. = H is sufficient).

Figure 14.2 shows the two-dimensional bin-packing problem from the

literature that was tested on the Cray X-MP (Coffman, Garey, Johnson, and Tarjan

1980). Although this appears to be a very small problem (N = 6) which could be

solved by inspection, it actually requires a large number of variables and constraints.

For N = 6, there are 42 variables (6 x1, 6 yi, 15 x j, and 15 yi J) and 114 constraints

(18 (BC), 60 (NOC), 30 (LC), and 6 (HC)). Thus, it was expected that this problem

would be reasonably difficult to solve.
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r r6 .

9 unit rl |!!!iiii• r5

20 units

rl = 7 by 9 rectangle
r2 = 6 by 5 rectangle
r3 = 8 by 4 rectangle
r4 = 5 by 4 rectangle
r5 = 5 by 2 rectangle
r6 = 4 by 2 rectangle

Figure 14.2: Two-Dimensional Bin-Packing Problem Tested on the Cray X-MP.

In fact, the problem displayed in Figure 14.2 proved extremely difficult to

solve on the Cray X-MP. In order to find the proper global minimum, we were

forced to raise t to 0.9999. Once this was done, the correct solution was found, but

only after a great deal of computation. The stochastic algorithm found 1071 local

minima, ran over 100,000 "global phase" trials, and took 3.31 hours of CPU time.

Some of the reasons which explain why the bin-packing problem is so difficult to

solve can be seen in the graphical representation of the global minimum solution

(Figure 14.3).
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L~ ,,
r3

20 units

Figure 14.3: Realized Solution to the Bin-Packing Test Problem

There are four main reasons why so many local minima are developed for a

problem of this size. First, consider the achieved solution (Figure 14.3) in relation to

the problem statement (Figure 14.2). Note that while both have the same minimum

height, the location of the blocks is different. It is obvious that two distinct global

solutions of the same height are going to be different local minimum vertices of the

feasible region. More precisely, consider a "reflection" of Figure 14.3 about the axis

x = 10. This would result in different arrangement of blocks, occurring at a different

vertex. However, it would still have the same global minimum height, therefore it

must be a local minimum. It is easy to see that there are many combinations of the

rectangles' positions which achieve the same global minimum height and, as a result,

many global minima. This same theory can be applied to all the local minima

combinations of blocks which are not the global minimum. Hence, this further

increases the effect of multiple block arrangements on the number of local minima.

A second factor of the bin-packing problem which greatly increases the

number of local minima is the fact that the blocks can "defy gravity." That is, as
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evidenced by block r4 in Figure 14.3, they are not forced to be directly on top of

another rectangle or the bottom of the bin. Therefore, the empty space below r4 can

be regarded as another rectangle. It can go either below r4, above r4 but below r5,

above r5 but below r6, or above r6. Again, this greatly increases the number of local

minimum vertices by allowing more combinations of the positions of the rectangles.

The third reason that the bin-packing problem generates so many local

minima involves the formulation of the non-overlapping constraints. Consider blocks

3 and 6 in Figure 14.3. Block 3 is both to the left of and below block 6. Thus, with

all other variables remaining the same, this arrangement of rectangles is a local

minimum with either (x3 6 , Y3 6 ) = (0, 0) or (1, 0). Therefore, when any two blocks

in a local minimum arrangement could meet two of the non-overlapping constraints,

two distinct local minima vertices are created.

Lastly, the method of using (x, ,, y, ) variables also increases the number of

local minima. Since there is no way to generate constraints which force these

variables to be 0 or 1, we must formulate the function to drive them to be either 0 or

1 at the global minimum. However, this does not prevent them from being between 0

and 1 at other 'ccal minimum vertices. In fact, when running the presented bin-

packing problem, the most often found local minimum had (xj, yj j) variables which

were not at 0 or 1. Therefore, by allowing these variables to range between 0 an 1,

many more local minimum vertices are created, making the problem significantly

more difficult.

In conclusion, the formulation of the two-dimensional bin-packing problem

causes many local minima to be generated and is extremely difficult to solve using

the stochastic algorithm. However, different formulation techniques could greatly

reduce the number of local minima and make it more suitable to the stochastic
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algorithm. The development of a lower solution bound, which stops the algorithm

when a certain global minimum function value is achieved, could also significantly

increase the stochastic algorithm's performance on this problem. Despite the

difficulty, the formulation and solution of the two-dimensional bin-packing problem

demonstrates a potential real-world problem to which the stochastic algorithm can be

applied.
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Section 15

Conclusion

In conclusion, a number of interesting computational results were discovered

when analyzing the implementation of the stochastic algorithm for solving linearly

constrained concave global minimization problems on the Cray X-MP and

Connection Machine CM-2 supercomputers. First, it was obvious that the

implementation of the algorithm on the CM-2 is not efficient for the problem size

tested. Although the computational results from the test problems with known

solutions (Floudas and Pardalos 1990) were always at least as good as (and in one

instance better than) the "best known solution", execution data indicates that perhaps

the algorithm does not contain enough fine-grain parallelism to efficiently use a

massively parallel SIMD machine. However, the Cray X-MP impl!mentation of the

stochastic algorithm was much faster. While achieving the same correct results for

every test problem, the high instruction speed, coarse-grain architecture of the Cray

X-MP proved to be hundreds of times faster in solving (GP) than the CM-2.

When the computational analysis verified the efficiency of the algorithm on

small sized test problems with known solutions, we then focused on the gerneration

and solution of larger, randomly generated problems. From these results, several

additional conclusions were reached. First, the question of problem difficulty was

explored. CPU time on the Cray X-MP was modeled as a linear relationship of the

product of the number of local minima and the number of pivots per trial. We saw

that the stochastic algorithm was capable of solving reasonably large problems in a

tolerable amount of execution time. For example, problems with 60 variables, 25

constraints, and over 500 local minima were solved in four to eight minutes of CPU
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time. Thus, the stochastic algorithm can solve significantly larger problems of the

form (GP) than previous deterministic methods.

It has previously been asserted that the two characteristics of quadratic

functions of the form (GP) which affect problem difficulty are the location of the

global maximum and whether the eigenvalues are equal or unequal (Floudas and

Pardalos 1990). The computational results from the randomly generated quadratic

test problems supported the theory about eigenvalues. However, from the random

concave quadratic test problems which were generated, virtually no difference in

difficulty was noted between those where the global maximum was located within the

feasible region and those where the global maximum of the quadratic function was

unconstrained.

Finally, the new stopping rule based on the bayesian estimate of the expected

volume of the feasible region was much more efficient than previous stopping rules.

However, it appears that the technique of solving for local minima in the "local

phase" is finding the global minimum very early. Therefore, although (SR2) requires

significantly fewer trails to be run before termination than (SRI), a large majority of

these are occurring after the global minimum is found and are simply repetitions to

satisfy (SR2).

The stochastic algorithm could be a particularly useful solution technique for

linearly constrained concave global minimization problems if it is desired that a large

percentage of the local minima for a problem be found. Likewise, the method works

for any concave function, and does not rec- ire any special structure or other

stipulations in order to be applied. In conclusion, the implementation of the

stochastic algorithm appears to be a viabie method for solving problem (GP) for

modest sized (w < 500) problems.
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