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ABSTRACT
The AN/UYS-2 provides the Navy with a state of the art Digital Signal Processor.

The AN/UYS-2 is programmed utilizing the Processing Graph Methodology (PGM),
which represents specific tasks as nodes in a graph. It utilizes a simple First-Come-First-
Served (FCFS) run-time resource allocation mechanism that supports large-grain data flow
processing. While the mechanism is robust, easy to implement, and results in low run-
time overhead, it is difficult to predict if a given PGM will meet the application
requirements. Therefore, an approach that uses compile-time analysis to exploit the
periodic arrival of data and a priori knowledge of the amount of computation and
communication overhead is investigated. Improvement in performance of the machine
when the PGM graphs are restructured using this approach, called Revolving —Cylinder
scheduling, is observed; and it is found to be effective when there is a high

communication 'overhead or when the PGM nodes are of uniform size.
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I. INTRODUCTION

Since the advent of radar before World War II, the success of modern warfare has
depended on the ability of a system to process "... electronic signals to detect, localize,
attack, and counter increasingly sophisticated threats.” [RICE 90, pp. 1-2] The more
sophisticated the system, the more complex the signal processing requirements. Not only
does the complexity depend on the number of operations to be performed, but also on the
time interval available for completion [BELLANGER 84, pp. 3]. Within the realm of
modern warfare, milliseconds can be the difference between survival or death. The
ability to quickly interpret and disseminate incoming target data provides the user a
discernible e&gc during today's modern warfare. |

No longer does the Navy need to rely upon electro-mechanical processors. The
development of data transducers and the advent of multi-processors allow electrical signals
to be processed in real time using dig_it_al methods [BELLANGER 84, pp. 4-5]. But, if
digital signal processing machines are to operate in real time, they must operate at a rate
wﬁich is closely related to the sampling frequency of the signals.

The AN/UYS-2 Enhanced Modular Signal Processor is utilized in many different
signal processing applications, from the acoustic system on a P3-C "Orion” aircraft to the
BSY-2 Sonar Suite on the SSN-21 "Seawolf” class submarine. Although different
configurations are possible, the search mission drives the envelope of the processing

system. The United States' Navy's signal processing requirements have been increasing




since the advent of electronics conception in the early part of the twentieth century and
"... are expected to increase tenfold within the next ten years.” [RICE 90, pp. 2]

' The AN/UYS-2 is meant to provide the United States’ Navy with a standard,
programmable, modular, multi-processor capable of meeting the digital signal processing
requirements into the twenty-first century. Yet, modifications will be required if it is to

maintain its goal.

A. BACKGROUND

The innovation of new weapon platforms, led by Autonomous Underwater Vehicles
and Remotél); Piloted Vehicles, and the advancement of weapon technology requires an
intelligent stand-alone programmable multi-processor.

"To achieve high performance m a processor specialized for signal processing, the
need to depart from the simplicity of von Neumann computer architectures is axiomatic."
[LEE 87, pp. 24]

1. AN/UYS-2 Désign Theory

Parallel computations that exist in signal processing can be naturally
represented as data-flow graphs. The data-flow aﬁproach was first presented by Karp,
and it has since been expanded by many including Dennis and Watson [KARP 66, pp.
1390-1411, DENNIS 80, pp. 48-56, WATSON 82, pp. 51-57]. These graphs not only
describe the dependencies between different parts of the computation required in an

application, but also provide built-in scheduling and synchronization.




While data-flow techniques have been applied to digital signal processing since
its earliest days, Navy sensor systems have continued to employ a control-flow method
until the AN/UYS series development during the 1980's [LEE 90, pp. 333, RICE 90, pp.
2]. Time-line control, in which a single control signal generates program execution and
provides the output, characterizes a control-flow architecture. Multi-thread control flow
architectures are achievable by use of more than one control signal, though it is difficult
to develop programs that mold themselves to this simplified structure.

Data-flow representation of digital signal processing algorithms provides a
natural exploitation of concurrence [LEE 90, pp. 333]. Typical data-flow algorithms
ex'ecute a task based upon the availability of input data and machine resources, thereby
enabling the data to exist only between its production and consumption and eliminating
the need for a distinct program counter [RICE 90, pp. 2].

A distinction must be made between large-grain and fine-grain data-flow
architectures. Fine-grain architectures have their uses in Very Large Scale Integration
as documented by Koren, Silberman, and Dennis [DENNIS 80, pp. 48-56, KOREN 83,
pp. 335-337]. But, the use of fine-grain data-flow within the modular design of the
AN/UYS-2 would produce unreasonable communication overheads. Therefore, the
AN/UYS-2 is built around the large-grain data-flow architecture approach. Due to the
generality of the data-flow paradigm, it can be used to specify and exploit the parallelism
at the instruction level as well as at the task level [BROBST 87, pp. 4045, SAWKAR
83, pp. 344]. The theoretical foundation for consistency of such representations has been

well studied by Lee, Karp, and Miller [LEE 87, pp. 24-35, KARP 66, pp. 1390-1411].




The focus of this work is on task-level parallelism in such applications expressed using
data-flow graphs. Such computations are also classified as pipelined function-parallel
computations and synchronous data-flow compwations {LEE 87, pp. 24-35]. However,
the machine must provide mechanisms to manage the data that flows through the graph
and to capture the intrinsic scheduling and synchronization.

The AN/UYS-2 utilizes a distributed run-time operating system which
implements a hybrid control-flow/data-flow architecture by utilizing t.he' data-flow
technique at the task level and the control-flow approach at the elementary processing
level [POPS 89, pp. 2-9, RICE 90, pp. 2]. This helps to minimize the communication

costs involved while providing efficient elementary level execution.

2. AN/UYS-2 Design Problems

The mechanisms involved in managing graph data flow, intrinsic scheduling,
and synchronization, typically operating at run-time, result in overheads that lead to
suboptimal performance.

The non-deterministic (first-come-first-served) scheduling strategy used by the
AN/UYS-2 will not be able to maintain throughput with the rapidly increasing data-flow
graph bandwidth. |

Increasing sensor systexﬁ complexity compounded by decreasing allowable

reaction time is likely to degrade the AN/UYS-2 capabilities considerably.




B. OBJECTIVES
Since the AN/UYS-2 utilizes a non-real-time strategy to schedule the application's

nodes to free processors, this thesis investigates a robust, compile-time technique that
supports a simple run-time mechanism to improve throughput and predictability in the
AN/UYS-2 architecture including:

® Investigation of Digital Signal Processing (DSP) requirements

® Deveiopment of a compile-time algorithm for graph restructuring

® Design and implementation of an AN/UYS-2 software simulator

® Performance evaluation and comparison of the existing and proposed scheduling
algorithms [POPS 90, pp. 6-3].

A compile-time approach is possible in DSP due to the tremendous amount of
information that is known about each task. It simplifies the application developer's task

and results in no change to the run-time mechanism.

C. THFSIS ORGANIZATION

Chapter II describes the architecture of the AN/UYS-2 in detail and discusses the
program interface. The modular design and actual components are elaborated. Chapter
IO studies the requirements of signal processing applications, examines the current
AN/UYS-2 scheduling strategy, and proposés a deterministic scheduling approach. C+ +
code for the deterministic algorithm is provided. A simple graph is scheduled as an
example. Chapter IV describes the simulator constructed for this thesis and its
limitations. Background information and simulator specifics, including coding techniques,

are also provided. Chapter V analyzes the performance of the non-detérministic and




deterministic algorithms by utilizing two key signal procesiing examples. Chapter VI
provides a summary of the overall work, and gives recommendations for future expansion

and improvement.




. ARCHITECTURE AND PROGRAMMING OF THE AN/UYS-2
This chapter describes the architecture of the AN/UYS-2 in detail and discusses how
the AN/UYS-2 is programmed to achieve its desired resuits. The data-flow principle is

examined from the view point of the modular components.

A. ARCHITECTURE
Different DSP applications have specific processing requirements. The Navy's
diverse operating environment, stringent operational tempo, and sundry weapon platforms
contribute heavily towards the requirement for a modular based design. In addition,
specific mﬁ@ﬁq criteria required in today's weapon systems are easier to implement and
maintain in a modular system. Within the last twenty years, "... substantial reductions
in the cost of digital computation have occurred accompanied by an improvement in
performance, speed, memory capacity, and ease of progremming ..." making modular
design even more attractive [BEAUCHAMP 79, pp. iv]. Rapidly changing hardware
technology and DSP. requirements are easier to ixﬁplement in a modular design. The
AN/UYS-2 architecture provides for many modular machine configurations, tailoring
itself to a set application, while maintaining a cohesiveness and implementation ease as
an overall system. [POPS 90, pp. 2-6].
* The AN/UYS-2 comes packaged in two Standard Electronic Module (SEM) type
implementations which enable the unit to be configured for eithex.' ship based or aircraft

mounting. The standard SEM "B" cabinet format and the smaller SEM "E" format which




optimizes the unit with regards to size and weight, making it ideal for aircraft
dissemination. Within each SEM class, the AN/UYS-2's components are constructed on
very high speed integrated circuit cards. Specific hardware implementation is documented
by Rice. [RICE 90, pp. 4-7]

1. Modularity

The AN/UYS-2's modular design is based on six functional element (FE)
types: the Scheduler (SCH), the Arithmetic Processors (AP's), the Global Memories
(GM’s), the Input/Output Processors (IOP's), the Command Program Processor (CPP),
and the Input Signal Conditioner's (ISC's); and two data paths: the Control Bus (CBUS)

“and the Data Transfer Network (DTN) as shown in Figure 1. These six FE types can be
fused into any combination as long as the requirements specified in Table I are
maii..ained, thereby enabling the AN/UYS-2 to be tailored to a specific application
[APPLIC 90, pp. 2-3]. Each FE performs certain system tasks. The AN/UYS-2 layout
enables the incorporation of new FE's into the modular structure as long as the
communication interface to the DTN and CBUS remains constant.

These modular FE's perform parallel computation by associating "... each step
of the algorithm with a node of a directed graph.” [KARP 66, pp. 1390} As data for
these nodes becomes available, each node must be scheduled to execute on an AP. This
is accomplished by the scheduler. The actual programming approach is discussed later

in this chapter.
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Pigure 1: The AN/UYS-2 Architecture
Table I: FUNCTIONAL ELEMENT REQUIREMENTS

Minimum Maximum

Number of AP's

.59 - IOP's - ISC's

Number of GM's

ITotal Number 5

1 30
Number of SCH's 1 r=ﬁ 1
Number of IOP'SL. LorR | 59 - aP's - Isc's
jNumber of ISC's 1 59 - AP's - ISC's
Number of CPP'sL 1 AT 1
63




a. The Scheduler

The SCH performs tl}e node scheduling operation of matching a ready
node to a free AP by maintaining four tables:*the ready-node list, the free processing
element (PE) list, the node status table, and the queue-to-node table [RICE 90, pp. 4,
POPS 90, pp. 6-3]. The SCH rect- ves queue information from the GM's. As queues
exceed threshold levels, the GM's send queue over threshold messages to the SCH via
the CBUS. Since the SCH also receives AP availability information via the CBUS, when
all of a graph node's queu~s are over threshold, it then attempts to match free AP's to
ready graph nodes. If a match is successful, and that graph node is not currently
executing, scheduling data is sent to the GM's in the foﬁn of a message via the Control
Bus (CBUS); and the database tables are updated to reflect the match. If a match is
unsuccessful, the node status table and ready node list are updated to indicate the new
ready node. When an AP indicates to the SCH that it is Ready For Instruction Stream
(RFIS), the SCH checks the ready node list for nodes ready to execute and assigns one

to the now available AP. [POPS 90, pp. 6-3]

b. The Global Memories
The GM provides the data storage for the AN/UY>-2 and executes
memory management primitive functions. Each Processing Graph Methodology (PGM)
queue, discussed later in this Chapter, is allocated to a GM for storage, and that GM
maintains that queue's state information. Queue state information consists of read,
produce, consume, and threshold quantities, queue si.e, and a queue identification

number. When a queue exceeds threshold or capacity values, or returns under threshold,

10




the GM's notify the SCH via the CBUS. Upon receiving instructions from the SCH, the
GM's send the appropriate execuze messages to the AP's and IOP's via the CBUS and
- DTN. The GM's maintain the control variables and node information necessary for the
AP's to execute the node successfully. After the AP has completed ﬁode breakdown and
informed the GM, the GM consumes the input data involved by freeing the storage
previously used by those queues and notifies the SCH of the current queue level. [POPS

90, pp. 7-9]

¢. The Arithmetic Processors
After the SCH sends the node execure instruction to the GM's, the GM’s

relay the information, by another message via the CBUS, to an AP. The AP then
executes the actual signal processing primitives. The message from the GM's contains
all of the required information for the AP to read the necessary queue data from the
GM's (set-up), execute the designated primitives, and write the output queue data back
to the GM's (breakdown). The AP's consist of an Arithmetic Unit (AU) and a Control
Unit (CU); consequently, three nodes can be assocxated with an AP at any one time:

] Thé first node being setup within the CU

@ The next node executing within the AU

® The third node performing breakdown within the CU.
When the AP has completed execution of its current node and setup of its next node, it
notifies the SCH via the CBUS that it is ready to process the following node. The ability
of the CU to concurrently perform setup and breakdown on distinct nodes and to notify

the SCH without the AU's knowledge helps to increase the concurrence involved with

11




minimum loss of through-put due to the non-availability of resources. [RICE 90, pp. 5,
POPS 90, pp. 9-8]

d. The Input/Output Processors
The IOP's provide for raw digitized sensor data input and processed data
output from the AN/UYS-2 by buffering and formatting the input and output data to
synchronize the different external device data rates with the internal network. Upon
arrival of sufficient external data as determined by input buffer size, the IOP's dispatch
the input data to the GM queues after an amount specified by the application programmer
is received. | '.I'he IOP's receive the output data from the GM's and redirect it to the

‘external world. [POPS 90, pp. 8-1]

e. The Input Signal Conditioner
" In addition to performing the same functions as the IOP's, the ISC's
perform signal conditioning operations to reduce input data bandwidth and generates
output for sensor control. The ISC's are capable of performing analog-to-digital

conversions during the input/output process. [POPS 90, pp. 10-1]

2. Cohesiveness
Despite the modularity of the AN/UYS-2, key elements of its structure mold
it into a cohesive unit. The cohesiveness is built around the ability of the modules to
communicate and interact with each other. The communication among FE's occurs over
the Data Transfer Network and Control Buses. All interaction between the user and the

AN/UYS-2 occurs in the Command Program Processor.
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a. Control Buses
* The FE built-in-test control bus (BITCBUS) provides a means with which
the Command Program Processor (CPP) can test the AN/UYS-2 system, and the CBUS
provides the main means by which the modular FE's communicate short messages of

data-flow control information [RICE 90, pp. 5].

b. Data Transfer Network
The DTN provides for up to 16 simultaneous, asynchronous,
unidirectional 32-bit data transfers among FE's by continuously polling the data sources.
. 'When a source requests a transfer to a destination that is not already receiving data, the
DTN path is established and the transfer conducted. Possible DTN configurations include
2, 4, 8, or 16 input and output ports; each port can have up to four further
diss.eminations. [POPS 90, pp. 4-1]
¢. Command Program Processor
The CPP provides the glﬁe that holds the entire AN/UYS-2 architecture
together. The CPP acts as the overall control unit for the AN/UYS-2 by performing the
following functions:
® Data-flow graph management
® Tactical interface
® [nput/output configuration controi

® System performance monitoring [POPS 90, pp. 5-1].
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B. Programming

New programming methodologies are required for data-flow architectures because
data-flow computers depart from conventional architectures [DENNIS 83, pp. 331]. The
AN/UYS-2 is programmed using the Enhanced Modular Signal Processor Common
Operational Support Software, which refers to the implementation of the PGM on the

AN/UYS-2 [POPS 90, pp. 2-8, ECOS 89, pp. 1-35].

1. Graphical Interface

The PGM yields a convenient means of writing application software without
concern for the specific architecture of the machine on which it would run [PGMTUT 90,
pp. 1-1]. The PGM provides the application programmer with a hfgh level graph
oriented language, provides a method of translating these graphs into load modules that
the AN/UYS-2 can recognize, and furnishes a run-time support environment which
expands graph realizations and manages execution of graph instances [APPLIC 90,
pp. 2-5]. |

A PGM application consists of a directed, acyclic graph with nodes
representing large grain computations called primitives, which are chosen from a self-
contained library of signal processing functions. A simple example PGM appears in
Figure 2. The edges of the graph represent queues which receive data from the source
primitive and supply data to the destination primitive. Conversion of the PGM
description into a executable data-flow graph entails only specifying the read, produce,
consume, and threshold values. The AN/UYS-2 is designed to run. several signal

processing applications simultaneously. Therefore, several instances of multiple PGM's
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Pigure 2: A Sample PGM Graph

may be running at the same time. The graph is loaded into the AN/UYS-2 by the CPP
prior to graph initialization.
2. Graph to Program Conversion

Since the AN/UYS-2 is unable to recognize the PGM graph directly as shown
previously in Figure 2, the graph must be converted to a key-word program. This
conversion is typically performed by machine utilizing the guidelines supplied in the
Application Programmer User Manual [APPLIC 90, pp. all]. A possible program for the
graph of Figure 2 appears in Figure 3. The node primitives that appear within the nodes

are documented in the primitive library [PRIMLIB 90, pp. all]. The name of the graph
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is specified along with its external input and output queues. Constants are then initialized
followed by a description of all queues and nodes. A queue is described by a name
followed by a ":" and a type name. ' A node is completely described by a name,
primitive, input queues "prim_in", and output queues "prim_out.” The constructed
program is then loaded into the AN/UYS-2 and executed by the CPP following the data-
flow paradigm.

$graph (SamplePGMGraph

INPUTQ=Hydrophone : fixed(1)
OUTPUTQ=BeamOutl,BeamOut2 : int)
$GIP scan : int initialize to 4096
tQueue (FHyd : dfloat)

tQueue ([1..2]Rep : dfloat)

¥Node (BeamForm

primitive=BFR FREQ
prim_in=scan,Hydrophone threshold=scan
prim outsFHyd)

tNode (Replicate

primitive=DFC_REP

prim in=1,2 ,FHyd threshold=1
prim out-[l..z]Rep)

$Node (FFT1

prlmltlveaFF” CR

prim_in=scan, T1]Rep threshold=scan
prim out=BeamOutl)

$Node (FFT2

przmltive-FFT CR

pr1m in=scan, [2]Rep threshold=scan
prim_ out-BeamOutZ)

tendgraph

Pigure 3: Converted PGM Program

16




l. SCHEDULING OF PGM ON THE AN/UYS-2
This chapter diagrams the specific scheduling of PGM on the AN/UYS-2 by
examining the signal processing requirements and the methods of resource allocation.
The current First-Come-First-Served (FCFS) implementation and the proposed real-time

scheduling algorithm are examined in detail.

A. SIGNAL PROCESSING REQUIREMENTS

Due to DSP's concurrency and high throughput requirements, large-grain data-flow
programming models can be used effectively to exploit the intrinsic parailelism [PARHI
88, pp. 178]. General data-flow processing requires a direct hardware implementation
of the data-flow paradigm [GURD 85, pp. 34-52, BROBST 87, pp. 40-45]. This results
in unmanageable overheads. However, for specific classes of applications, such as signal
processing, data-flow can be managed very efficiently at the macro level to obtain
significant performance improvemenf. This is due to the ability of representing digital
signal processing applications as synchronous data-flow graphs [LEE 87, pp. 24]. |

Executing data-flow descriptions of DSP's applications on parallel processors
requires decisions about allocation, ordering, and data movement. In the AN/UYS-2
context, allocation refers to the assignment of PGM nodes to resources. GM's and AP's
constitute the majority of the resources. Ordering relates the node assignment and
execution sequence on these resources. Data movement reflects the method and amount

of data internally transferred in between executions. Since large-grain data-flow
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architectures inherently possess a high decision making overhead, the data-flow principle
must be allowed to take effect in order to capture the concurrency and minimize the
decision making overhead. Synchronous applications assist in limiting this overhead.
The three properties of these applications that make this possible are availability of a
priori, knowledge of the amount of data produced and consumed, known function

execution times, and negligible use of conditionals and recursion. [LEE 87, pp. 25-31]

1. Desirable Characteristics In Execution
In real-time signal processing applications, the principle requirements are
predictability and performance as measured by throughput. An additional characteristic
imposed by the AN/UYS-2 is on-line reconfiguration. Since the AN/UYS-2 is a data-
flow architecture, this predictability is critical in Navy sensor systems. Given the non-
determinism of large-grain data-flow model and a set number of available resources for
computational assignment, how can deterministic, rate-optimal through-put be guaranteed?
While this duestion has spawned complete design environments like Gabriel, designed by
Lee, the answer undoubtedly lies in resource allocation [LEE 89, pp. 333-335]. Efficient
resource allocation and low communications overhead lead to the high through-put,
deterministic output required by DSP. |
2. Resource Allocation
Resource allocation forms the basis of the system designer's dilemma. Based
on how a graph node and arc attributes are used at compile time and how much control

information is ‘generated to aid the run-time mechanisms, data-flow scheduling
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implementations can be classified over a spectrum that ranges from fully-dynamic through
Sully-stasic. Although allocation can be ﬁdly-dynamic, self-timed, static, or fully-static,
typical designs utilize a combination of these allocation methods. Fully-dynamic
allocation performs all scheduling of nodes at run time based on the readiness of inputs.
In self-timed allocation systems, the compiler determines the order of node execution and
allocates resources, but the firing is determined at run-time by data arrival. Stafic node
allocation involves the assignment of a node to a processor, but the order of execution
is left up to the run time scheduler based on the node’s inputs. In fully-staric allocation,
the compiler determines the exact firing time, assignment, and ordering of nodes based
on that node's predicted behavior. [LEE 90, pp. 333-334]

Quasistatic scheduling methods are based on ordering memory accesses by
blending the static and self-timed methods into a hybrid solution that supports Von
Neumann Architectures without the need for specifically designed data-flow machines.
Quasistatic scheduling maintains the ordering of nodes on processors while preserving the
ordering. of accesses to other shared system resources. Siqce quasistatic scheduling
incorporates self-timed methods, node execution time can vary without affecting the
results. Lee et al. have proposed utilizing hardware semaphore to overcome the high
communication overheads generated by quasistatic methods [LEE 90, pp. 334-338].

Many different processor allocation schemes have been proposed that are
inadequate for actual data-flow systems [DAVIS 79, pp. 1079-1086, ARVIND 80, pp.
7-14, MUNDELL 81, pp. 156-157]. Systems like Gabriel, characterized by Lee, utilize

compile time static resource assignment and work well on sequential data-flow graphs,
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whose very nature enables nodes to be scheduled at corhpile time rather than run time,
relying on the graph structure for enforcement. Periodic Admissible Parallel Schedule
(PAPS), also proposed by Lee, assumes sequential data-flow and establishes precedence
links between nodes in the graph and synchronizes these links at every graph instance
[LEE 87, pp. 25-28]). Quasistatic methods ensure run time enforcement by utilizing
dynamic control [LEE 87, pp. 25-28]. While algorithms proposed by Ho and Irani
maintain concurrency, they do not guaran.ee deterministic throughput [HO 83].

As mentioned previously, the AN/UYS-2 possesses several sets of resources:
the AP's, GM's, IOP's, ISC's, DTN, and CBUS. IOP's and ISC's are hardwired into
a certain configuration for the external world, GM's are allocated at compile time when
the graph is initiated, and are assigned based solely on the graph queue structure with all
input queues associated with a node being assigned to the same GM if possible. AP's are
allocated to execute specific graph nodes by the scheduler as they become ready on a
first-come-first-served basis at run time. The DTN and CBUS are configured and
hardwired for its specific structure during assembly, but individual messages are not

allocated to it until run time. [POPS 90, pp. 3-8]

B. FIRST-COME-FIRST-SERVED SCHEDULING

The si;nple nature of the SCH is motivated by the requirements that it should not
be a bottleneck, that it should maintain a high and balanced AP utilization, that it should
incorporate multiple applications simply, and that it should behave well during

reconfiguration. The SCH implements First-Come-First-Served (FCFS) scheduling by
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maintaining a database consisting of PGM graph node and AP information. Available
AP's are matched with ready nodes on a continuing basis, interrupted only by user
reconfiguration of the system. If the SCH is unable to execute a match, either due to no
free AP's or no ready nodes, then the SCH maintains a free AP list and a ready node list.
The SCH matches the elements from the lists together in the same FCFS manner as they

become available.

1. Advantages
The simplicity of FCFS scheduling earns it the designation as the most
attractive scheduling algorithm. The FCFS scheduling algorithm's low run-rime overhead
costs also lends itself to the AN/UYS-2. This simple algorithm ensures close to the
maximum possible AP utilization since nodes are sent to AP's as soon as they become
available.
2. Disadvantages
The major disadvantage within the AN/UYS-2 scheduling arises from
unpredictability in EMSP output arrival. The dynamic assignment of AP's to ready nodes
_ suffers from the following intrinsic disadvantage when data arrives periodically from the
external world. The nodes that depend only upon the receipt of external data get ready
for execution, and therefore enter the ready list at a rate which is independent of the other
nodes. If the graph latency is longer than the data arrival period, nodes in the lower
portion of the graph get ready after nodes in the upper portion. Since the machine

follows a FCFS node to AP assignment strategy, the top nodes execute at a higher rate
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than the nodes lower down in the graph. The lower graph nodes' execution will catch
up only as the upper nodes' output queues exceed capacity and prevent the top nodes
from entering the ready list. As a result, processed output data arrives unpredictably
leading to the possibility of intolerable delays and insufficient buffer space especially
under high loads. This non-uniformity in output arrival arises because the task-level data-
flow mechanism does not allow any mechanism to control the input nodes [SHUKLA 91,
Pp. 222-231]. It will be present when the resource allocation at all stages of the parallel
machine is not coupled to the input data arrival and has been observed due to FCFS

scheduling [SHUKLA 91, pp. 222-231].
3. A Simple Example

The PGM graph shown in Figure 4, a simple graph with six nodes whose AP
execution time are shown inside the vertices, can be used to demonstrate FCFS
scheduling. For simplicity, we neglect the set-up and break-down times associated with
each hode. Consider that an AN/UYS-2 with two AP's, each of which has a processing
speed of one unit, should be able to attain a maximum data rate and start a new graph
instance every:

TotalExecutionTime =—1-g=5CycleS. (l)
NumberofAP’s 2

Assume, for simplicity of explanation, that data arrives at this exact rate. A possible
resulting order of execution utilizing FCFS scheduling is documented in Table II. The
non-uniformity that exists in the instance completion times is inherently obvious in this

table by examining the clock cycles for node "f." It should be noted that this is only one
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Pigure 4: A Simple PGM Graph

possible FCFS scheduling order. Different orders are possible due to set-up and

breakdown delays affecting the node arrival order at the SCH.

C. REVOLVING CYLINDER SCHEDULING

While the simple dis;;atcher works quite well as a run-time mechanism, it does not
yield easily to compile-time analysis. This technique restructures the .graphical application
description by performing con.lpi]e-cime analysis of the application execution profile.
Given a graph, it is possible to systematically determine whether it can be mapped on a
certain number of AP's while satisfying the required data rates. It can be proved that the

graph can be scheduled (ignoring overheads) such that the consecutive graph instances are
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Table II: EXECUTION OF 36 CYCLES UTILIZING FCFS SCHEDULING

Cycle||AP1||aP2

25 e4 (b5
26 c5 jeb5
P, Foe— s |
27 Cc5 |leS

P
28 ds ||es
F—“T‘.‘==
29 ds |e5
30 £5 |I£f4
ey L
31 £f5 [ £4
— — 4}
32 aé L J
= ———
33 c6 |[|b6
34 c6 ||e6
35 dé jleé
36 dé6 |eé6

separated by a time equal to the roral execurion time of the PGM divided by the number
of AP's. Since the AP's will be fully utilized, this time corresponds to the maximum
throughput rate. The key idea in the Revolving Cylinder (RC) assignment is that
inserting delays in the PGM can produce a graph with better throughput. The idea behind
RC scheduling can be traced back to algorithms for overlapping complex operations on

pipelined processors [RAU 82, pp. 131-139, SHUKLA 91, pp. 222-231].
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1. DImplementation

RC scheduling recommends when a graph node should be scheduled, but
choosing the AP to schedule it on is left to the run-time dispatcher. This enables the
actual scheduling to remain dynamic. Assume that there ‘is a cylinder whose
circumference is the sum of all of the nodes' execution times divided by the number of
AP's in the AN/UYS-2 structure. The idea is to schedule the graph such that it wraps
around the cylinder, thereby causing its end to meet its beginning. The svparation of
beginning from end has the effect of a divide-by-circumference counter every time the
beginning meets the end.

Each slot in the cylinder is of width equal to the smallest size node in the
graph. For aéh node. in the graph, starting with the top and working towards the
bottom, attempt to schedule the node at its earliest start ime. If it can not be inserted at
that time, delay the start time by the width of a slot and repeat until it can be inserted.
Adjust the earliest start time of all descendants of that nodé and repeat the above sequence
with the next node as the top node in the graph. This ensures that maximum cylinder
usage will result when the cylinder is filled by these algorithms shown in Figure S.

Once all nodes have bgen inserted into the cylinder and the cylinder is full,
assign dependencies to the nodes based upon their location in the cylinder. For each
entry relegated to an AP in the cylinder, if there are other nodes assigned to the same AP
with the same index and the node higher up in the cylinder is not an ancestor of the
other then create a dependency from the higher node to the lower. This algorithm is

shown in Figure 6. Figure 7 shows a possible restructuring resulting from these
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L?ocedure Assign_RC(G,P); /*G is a directed acyclic graph#*/
/*P is the number of AP‘s*/
q +~ topological sort(G);/*O(e), q is a queue*/
for all nodes n;
est(n;) «~ 0; /*est is the earliest start time*/
circumference - 0;
for all nodes n;
circumference «~ circumference + w(n;);
/*w(n;) is the size of the node n;*/
c1rcumference - r(clrcumference/P)],
while g is not empty
temp +~ remove_top(q);
if sufficient space available in cylinder
t + schedule_node(temp, est(temp), cylinder);
for all descendants of temp
est (descendent) -~ max(est (descendent) ,t + w(temp) ;
else
cylinder ~ increase_cylsize(cylinder,circumference,w)
end (if)
end(while)
headofdepqgs «~ create_deps(cylinder,circumference,vw);

scheduled ~ false;
while not scheduled
Attempt to insert at time t' = t mod circumference;
/*insert if space available at that time in cylinder#*/
if inserted
schedule ~ true;

rrocedure schedule_node(temp, t,cylinder)

else
t!' « (t' + w(temp)) mod circumference;
end(while)

return t';
Pigure S: An Algorithm to Perform RC Assignment

algorithms in the graph of Figure 4. It should be noted that different schedules which
sustain the maximal load could be obtained for any graph. Not all of the dependency
delays represented by the slim arrows will be generated by the algorithms. Any
assignment of nodes on the surface of the cylinder such that no node is preempted, and
no two nodes are mapped to the same square is valid. Actual code implementation for

the RC algorithms presented is given in Appendix A.
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Lrocedure Create_deps(cvl,circum,width);
for all AP(i)'s _
t ~0;
while t < circum
t!' ~- 0;
while t!' < circum
if ((index(cyl[i]([t]) = index(cyl(i](t'])) and
(cyl{ij[t] is not an ancestor of cyl(i](t'])
and (a dependency does not already exist here))
add a dependency for cyl[i][t] to cyl[i]l(t'];
t' « t' + width;
end (while)
t « t + width;
end(while)
end (for)
add a dependency from a cyl[i][circum] to every input node
return pointer to the head of the list of dependencies

Pigure 6: An Algorithm to Assign Dependencies

Pigure 7: A Possible Restructured PGM
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Implementation of the RC database and its incorporation into the AN/UYS-2
requires minimal code modification. The only addition to the SCH code involves function
calls to set, adjust, and verify the tokens used to represent the dependencies. When the
originating node of a dependency is due to be scheduled, the foken associated with that
node in the dependency list is incremented one unit. Conversely, when the destination
node of a dependency is ready to be scheduled, the foken with that node in the
dependency list is decremented one unit. Forward graph dependencizs are untmlly set to
zero, and backward graph dependencies are initially set to one. This enables the initial
nodes to execute at least once prior to being inhibited by dependencies. The token code

is provided in Appendix A and the SCH code modifications in Appendix F.

2. Advantages
Thev—availability of multiple schedules which could sustain the same throhghput
has an important advantage with respect to the AN/UYS-2: nodes can be grouped together
on the surface of the cylinder so as to introduce optimization tc; minimize the loss of AP
cycles due to such overheads as ser-up and break-down times. There are several other
_ advantages of this node-AP assignment if a compile-time technique can be found to
enforce it on the scheduler run-time mechanism:

® Compile-time analysis of whether the machine will meet the required data rate
becomes easy.

® Since the nodes are associated with AP's at compile-time, it becomes possible to
take into consideration optimization such as chaining. For example, although it is
possible to assign nodes in the above example in several ways, the assignment
shown enables chaining nodes {a,b,c,d} together and chaining nodes {e,f} together
to minimize the set-up and breakdown overheads.

28




® Once it has been determined which nodes are to be chained, the data queues can be
allocated to GM's so that the GM contention is minimized.

@ There is no non-uniformity in the output generation.

3. Disadvantages
Since RC scheduling keeps track of more node relationship information, there
is an immediately higher overhead in this area. But, this overhead can be absorbed by
node chaining as discussed in Chapter VI. The requirement for the scheduler to supﬁort
on-line reconfiguration, typically performed by the operator by replacing one or more
branches of the PGM graphs, is difficult to implement without significantly increasing the
complexity of the RC algorithms. Yet, this appears to be feasible at the macro-language
level and is an important aspect of this approach deeming further investigation. |
4. A Simple Example -
A RC schedule for the graph of Figure 6 is shown in Table ITI. After every
six clock cycles, another instance of the modified graph can be overlapped with the
preceding instance. Since the latencies for the RC algorithm are absorbed by the during
the first six cycles of execution as the cylinder fills, the sporadic latencies shown
previously in Table II for the FCFS assignment are eliminated and a uniform output rate
is generated. |
The remainder of this thesis concentrates on developing a simulator which
implements the AN/UYS-2 ?rchitecture, and on analyzing the performancs of the

Revolving Cylinder assignment algorithm.
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Table IIX: RC ASSIGNMENT SCHEDULE FOR SAMPLE PGM GRAPH




IV. THE SIMULATOR
This chapter examines the structure of the AN/UYS-2 simulator including the

language chosen and method of implementation.

A. IMPLEMENTATION

Before the simulator could be developed, the method of PGM representation for the
simulator needed to be determined. Implementation of PGM on the simulator consists
of_ maintaining only the key elements of the graph. The actual operation of the AN/UYS-
2 in terms of DSP was not implemented. Figure 8 provides the recognizable simulator
input, neglecting the columnar headings, for the PGM graph of Chapter III, Figure 4.
The graphical description should be located in an American Standard Code for
Information Interchénge (ASCH) file 'graph.' Data structure for the graph of Figure 8
consists of two parallel queue structures: a rode queue, which contains pointers to its
input and output queues, and a queue queue thereby yielding the rree-like structure shown
in Figure 9. The gnodes, ‘a' through 'f', sixown in Figure 9 contain all of the node
information listed in Figure 8, and the gqueues, ' through '9', contain all of the queue
information documented in Figure 8. The arrows shown in Figure 9 represent pointers
which relate the graph infrastructure. Actual code implementation for input of the graphs
and some of the necessary simulator access to the graphical data is documented in

Appendix B.
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[ “Constitutes the total number of queues
Queue Node Node Arrival Threshold Production OverCapacity

ID In Out Period Value Value Value
l -1 a 6 1024 1024 8192
2 a b 0 1024 1024 8192
3 a c 0 1024 1024 8192
4 b a 0 1024 1024 8192
5 b e 0 1024 1024 8192
6 c b o 0 513 513 4096
7 d ) 4 0 1024 1024 8192
8 e ) o 0 1024 1024 1024
9 4 -1 0 1024 1024 1024

|§ Constitutes the total number of nodes

ode IOP AIS Execution Number Input Number Output

ID Node Size Time of In Queue of Out Queue
Queues ID Queues ID

a 1 256 1 1l 1l 2 23
b 0 256 1 1 2 2 4 5
c 0 256 2 1 3 1l 6
d 0 256 2 1 4 1 7
e 0 256 4 1 ] b 8 8
b 4 1l 256 2 3 786 1 9

rigure 8: Graphical Input Format for the Simulator

GNODES

in = Pointers to input Queues
out = Pointers to output Queues

Pigure 9: Data Structure Representation of a PGM Graph
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Initial design theories revolved around emulating the virtual machine. However,
the communication complexities of the AN/UYS-2 virtual machine, dictated that the
physical layout of the AN/UYS-2 provide a reasonable method of structuring the software
simulator.! The software simulator implements a subset of the architecture and
instruction set while maintaining operational similarities. The implemented architecture
and instruction set, which is loosely based on the ezs+ + simulator outlined in ECOS, is
demonstrated in Figure 10 [ECOS 89, pp. 4-1 - 4-37]. Each major box in Figure 10

represents a resource element implemented in the simulator. Each set of abbreviations

Pigure 10: The Simulator Structure

1 Shown previously in Chapter II, Figure 1.
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associated with the arrows represent messages passed between resource elements. The
arrows themselves indicate the direction of message flow on either the CBUS or the DTN
depending on the message.
1. Communications

Like all distinct entities in the universe and the actual AN/UYS-2, separate
objects must communicate with one another. The two main communication nets, DTN
and CBUS, are implemented as distinct objects theniselves within the simulator. The
CBUS is represented as a data structure called object and a boolean variable. The
boolean variable represents the status of the resource elements to which the CBUS is
attempting to communicate. The object structure contains information about the
following: the object identification number, the time until which the object is busy, the
processing status of the object, the transfer status of the object, a pointer to the current
-objectnode being executed by the object, a pointer to the head of the object's input queue,
and a pointer to the tail of the object’s input queue. The objectnode consists of a message
instructioﬁ, the graphical node identification number associated with that message, the
graphical queue identification number associated with the node, the message's origin, the
message's destination, and the message's associated location. The DTN is represented
by an array of sixteen object structures as discussed earlier, each with a boolean variable.
Each of the distinct paths established is assumed to be capable of only one transfer at a
time.

The main simulator program polls the appropriate CBUS or DTN function

processbus. Processbus determines if this path is waiting for a transfer to be completed
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at the desired transfer locations. If it is then no further action is taken this clock cycle.
Otherwise, processbus conducts the requested message transfer by calling the appropriate
functions commencexfer and completexfer, then processes the next message at the head
of its input queue. Commencexfer and completexfer simulate the required time delay
associated with the message transfer and place the message in the destination object’s
queue. The data rate is assumed to be the AN/UYS-2 data maximum of seven mega-
words per second. Code for the transfer aspects of the simulator has not been included
for brevity.

Since the AN/UYS-2 instruction set consists of over 100 messages, a partial
instruction s:ubset consisting of only the most relevant ones was chosen [POPS 90, pp.
1-1 - 10-5]. Write Queue (WQ) writes data generated at an AP by a DSP function to the
GM responsible for that queue. It incites threshold and capacity crossing information
within the GM, spawning Queue Over Threshold (QOT), Queue Over Capacity (QOC),
and Queue Under Capacity (QUC) messages [POPS 90, pp. 7-46]. Queue Over
Threshold is the message by which the GM's inform the SCH that a queue has gone over
threshold. It causes the SCH to check all of the queues associated with the node affiliated
with the original queue to see if all are over threshold. If they are, it precipitates an
Execute Instruction Stream (EIS) or Send Instruction Stream (S1S) from the SCH to either
an IOP or GM [POPS 90, pp. 6-44]. QOC is sent by the GM's to ap‘pri;c,e the SCH that
a queue has gone over capacity, thereby causing the SCH to suspend further execution
of the node feeding the queue until the queue has returned under capacity [POPS 90, pp.

6-43]. QUC is sent by the GM's to apprise the SCH that a queue has proceeded under
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‘capacity. This causes the SCH to continue execution of the nodes feeding this queue
[POPS 90, pp. 6-46]. SIS is the message sent by the SCH to a GM initiating the transfer
of a node's instruction stream from the GM to the AP indicated in the message. SIS
causes the GM to issue an Accept Instruction Stream (AIS) to the AP [POPS 90, pp. 7-
38]. AIS is the way by which the GM communicates the instruction stream to the AP
causing it to load and execute the instruction stream. This execution includes sending the
Read Queue (RQ) requests back to the GM's for necessary queue data [POPS 90, pp. 9-
22]. RQ s sent by the AP to initiate a transfer of data from a queue in the GM to the
requesting AP. This message prompts the GM into sending an Accept Queue (AQ)
instruction to the AP which includes the required queue data [POPS 90, pp. 7-39]. AQ
is sent from the GM to the requesting AP in order to transport the required data. This
causes the AP to accept and store the specified queue data which was requested with an
RQ [POPS 90, pp. 5-131, 9-26]. When the AP is ready to accept the next instruction
stream, it sends a Ready For Instruction Stream (RFIS) to the SCH. This causes the SCH
to attempt to generate a match with a ready node if one is availabie, if not, then the free
AP identification number is added to the free AP list [POPS 90, pp. 6-49]. After the AP
has completed breakdown of the last node to execute, it sends a Consume Queue (CQ)
to the GM that maintains the input queues to that node. This causes the GM's to free the
memory that had been used to maintain that data [POPS 90, pp. 7-43]. EIS is sent from
the SCH to the IOP's when the queues over threshold belong to a seif-regulated or sink

node [POPS 90, pp. 10-24].
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2. Major Resource Elements

Message passing among the FE's and modular functionality demanded that they
be implemented as unique objects. The simulator expects the AN/UYS-2 structure to be
in IOP, GM, AP numerical order in a created ASCII file 'EMSPSTRU.' For the SCH
and each IOP, GM, or AP specified, the simulator generates an object in memory. Each
major element is represented as an object with the exception of the ISC, which is treated
as an IOP element. The simulator requests the user to input the type of simulation
desired: FCFS or RC, and the last instance of the graph that the user wishes to examine.
If RC is selected, the cylinder is created, and dependencies assigned. The expected
number of simulated micro-seconds are calculated, and the main simulation begins by
repeatedly polling in order: IOP's, CBUS, DTN, GM's, SCH, and AP's. Each loop
count represents one simulated micro-second.

Code implementation of the main simulator program and some of the common
object code is located in Appendix C. Simulator C++ constructor and'destructor code
and self explanatory functions are nbt included for brevity. Constructors generate the
initialization specified by the programmer. Destructors deléte the pointers designated by

the programmer and free the memory storage.

a. The Input/Output Processor
The IOP data structure is represented by another cata structure called an
object, a pointer to a list of nodes assigned to this IOP, and a pointer to the next IOP.
Upon initial graph loading, each external input or output node is assigned to an IOP by

the graph loading function, /oadgraph. Each time through the main simulator loop, the
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IOP function, processiop, is polled. Processiop generates the external input queues’
Transfers via the DTN are accomplished when the data period specified in the input graph
for each external input queue is met as determined by the time of the simulated clock.
Once the period is satisfied, a WQ instruction is generated and sent via the DTN to the
GM which was designated to retain that queue's information. For each external output
node assigned, the IOP acts to execute the node and generate external output queue data
when specified by a EIS message from the SCH. No actual implementation of inpu. or
output is performed. Code dealing with the IOP implementation including all pertinent

functions necessary to access the IOP structures appears in Appendix D.

b. The Global Memories

The simulator GM's do not store the actual queue data involved in node
processing. The GM data structure is represented by the ;iata structure object and a
pointer to the next GM. Each time through the main simulator loop, the GM function,
processgm, is polled. Through its object oriented sub-function processgmnode, processgm
simulates the GM execution as follows. Since queue sizes only change as messages are
processed, the simulator GM's perform their queue size determination when WQ or CQ
messages are received and generate the appropriate QOC, QUC, or QOT message to the
SCH after inserting the appropriate execution delay time. GM messages like RQ or SIS
result in redirection and time determination and delay only. Pertinent Implementation

code for the GM's appears in Appendix E.

38




¢. The Scheduler

The SCH data structure consists of the following: an object data
structure, a pointer to a list of free AP's, a pointer to a list of ready nodes, a pointer to
a list of nodes currently executing on AP's, and a pointer to a list of inhibited nodes.
The simulator scheduler emulates the AN/UYS-2 scheduler by acting on the following
instructions: RFIS, QOC, QUC, and QOT. Upon receipt of a RFIS message from an
AP, the free AP list is updated. A QOC message results in appending the node which
supplies the queue associated with the QOC message to the inhibited list. When a QUC
message is received, the node in question is removed from the inhibited list. The ready
list is not affected since the node is already in this list. The simulator SCH maintains a
ready node list which is annotated anytime a QOT message is received from the GM's
that results in all queues for the node associated with the message going over threshold.
This section of the function processsch forms the meat of the simulator SCH. For the
FCFS case, the SCH matches the first entry in the free AP list with the first entry in the
ready node list. Once the match is made, that ready node is placed in the executing list
to inhibit its execution until its current execution has completed. In the RC case, the
SCH updates the ready node list and free AP list as above, but before a match is made,
the ready node's RC tokens are checked for satisfactory conditions. Oﬁly once tokens

are satisfied is a match allowed to proceed. Actual code implementation of the SCH

appears in Appendix F.
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d. The Arithmetic Processors

The AP data structure is represented by three distinct object data
structures, the number of ser-up nodes involved, the number of bregkdown nodes
involved, the AP ser-up status, and the AP breakdown status. Three distinct object data
structures were chosen due to the AP's ability to simultaneously perform set-up,
breakdown, and execution on different nodes. The main AP function processap, which
is polled at every iteration of the main program, performs the breakdown, execution, and
set-up status checks and forwards the node message information between stages. The
AP's simulate the actual node serup, breakdown, and execution by entering delay cycles
a corresponding to that nodes execution data loaded at simulator run-time. Upon the
transfer of information between the ser-up and execute stages, which implies that a new
node is now being executed, the AP issues a RFIS message to the SCH. Through its sub-
function processapnode, processap performs the message actions and redirection required.
The AP's act as receptors for the AIS message sent by the GM's. Upon receipt of the
AIS mcssage., the ser-up stage of the AP determines the number of input queues required
and issues that many RQ instructions to-the GM's associated with the AIS message.
Upon receipt of an AQ message from the GM's, the AP ser-up stage updates its delay
time and waits fqr the last AQ message that it is expecting for that node. After receiving
the last AQ message, it executes a transfer of information to the execure stage if the
execute stage is not busy. Otherwise it waits until it is able to perform the transfer.
When the breakdown stage receives the information from the execute stage, it generates

a WQ instruction for every output queue associated with the node that was executed and
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generates a CQ instruction for every input queue associated with that node.

Implementation code for the AP's appears in Appendix G.

B. THE LANGUAGE -C++
During the 1980's, the C programming language matured through the addition of
classes, type checking and conversions, virtual functions, and operator overloading until
a new language, C+ +, resulted [STROUSTRUP 86, pp. 1-12, POHL 90, pp. 5]. "Since
its conception, C+ + has been evolving to meet the needs of its users.” [STROUSTRUP
90, pp. 3] C++ has endured mﬁch use on large software projects. Its stability,
compatibility, space-efficiency, and run-time features havé been strongly documented by
Ellis, Stroustrup, and Pohl [POHL 89, pp 1-25].
Since the AN/UYS-2 and C++ 2.0 are products of AT&T Bell Laboratories,
C+ + was considered a forerunner in the choice of programming languages. C+ + was
chosen to match the modularity of the AN/UYS-2. The reasons for which C+ + 2.0 was
chosen over Ada include:
® Object Oriented Programming
® Encapsulation
® Inheritance.
Object oriented programming allows abstract data types to be constructed so as to
allow the programmer to model the problem domain within a class structure. A class can
be thought of as an extension of the idea struct from traditional C. The AN/UYS-2's

distinctive modularity of components lends itself precisely to programming with objects.
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Encapsulation refers to C+ +'s ability to completely self-enclose both the internal
implementation details of the type and functions that act on objects of that type from the
external user [POHL 89, pp. 2,211]. Encapsulation ensures that unqualified simulator
personnel will not be able to access or blindly modify the simulator objects.

Stroustrup defines inheritance as the mechanism of deriving a new class from an
existing base class [STROUSTRUP 90, pp. 2]. Due to the hierarchical structure of the
AN/UYS-2, inheritance guarantees that key conceptual ideas remain intact from object-to-

object.

C. USER INTERFACE

To execute the simulator the user simply invokes the executable version and follows
the on-screen prompts. The simulator collects data about the individual graph nodes.
The time that sink nodes are sent to the IOP's arekutput to a file 'results’. The time that
an instance is placed onto the ready list and the time at which an instance is removed
from the ready list are used to calculate the time an instance spends on the ready list.
This time gives a good indication of the delay time involved in scheduling a node. The
time that a node spends between breakdown completion and its successor node being
placed on the ready list is calculated to provide an indication of communication delay.
Similarly, the time between a node being ren'loved from the ready list until it arrives at
an AP also provides information about communication delay. The time which the AU
portion of the AP spends not busy is calculated to provide details about set-up and

breakdown delay times. This information is provided to the user on a screen display
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upon completion of the simulation for the node instances specified by the user. Currently

only a span of twenty node instances can be examined per simulation run.

D. LIMITATIONS OF THE SIMULATOR

Like any full scale simulator, this AN/UYS-2 simulator is not intended to be of ail
inclusive design. The simulator IOP assumes that an unlimited buffer is available for
incoming data. Execution of self-regulated nodes in IOP's is not implemented. The
ISC's are simplified to IOP's for the simulation. The initial assignment of queues to
GM's is assumed to be completely known upon initialization. All input queues associated
with a node are assigned to the same GM by the simulator. Unlike the actual AN/UYS-
. 2, the simulator is severely restricted by the amount of memory available on which to run
it. While the simulator is written to be ported between any machine capable of C+ +
version 2.0, large-grain data-flow graphs quickly fill available memory and disk space.
The time required to perform each simulation discussed in Chapter V exceeds four hours

on a 33-mega-hertz 80486 (16.11 Million Instructions Per Second).
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V. PERFORMANCE EVALUATION
As mentioned previously, a digital signal processor's performance can be measured
by throughput. Unfortunately, the AN/UYS-2's throughput is not based solely on its
scheduling algorithm. The number of nodes and queues in the graph and their sizes
contribute to the overhead involved. For this reason several types of application graphs
were chosen for analysis of the AN/UYS-2 performance as it pertains to the scheduling

algorithms. All of the results obtained are based on varying the input data rate.

A. CORRELATOR APPLICATION

The initial correlator application was chosen to provide an actual on-hands non-
uniform ECOS graph as outlined by ECOS [ECOS 90, pp. H-CG-5 - H-CG-27).

1. Description

The graphical diagram for this graph appears in Figure 11. Again, the circles

indicate primitive nodes to be executed and the arrows represent the queues that
manipulate the data requn'ed by the nodes. "T" represents the threshold value required
for that queue before scl~1eduling.of the subsequent node can be arranged. "R" represents
the amount that is read by the subsequent node on execution set-up. "C" represents the
amount that is consumed on subsequent node breakdown. "P" represents the production
amount from the previous node. Actual execution times for the primitives listed beside

the nodes were calculated by use of the Graph Primitives Library and are included with
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'rigur. 11: Graphical Description of Correlator Application

the primitive name. The graph would be input to the simulator after performing the

manual conversion to the standard numerical format described in Chapter V.

2. Output and Interpretation
The points 6btained for the graphs plotted in the case of the correlator graph
were taken at five percent intervals except in the region of close similarity where the
interval was one percent. The normalized input data interval refers to the theoretical
maximum throughput rate for the application assuming no internal delays. As discussed
in Chapter III, the theoretical maximum throughput rate is based on the total execution

time for the graph divided by the number of AP's in the configuration. Therefore, the
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normalized input data interval axis is based on interval times greater than the theoretical
maximum of 1.0. Normalized mean, which refers to the mean time between output
arrivals divided by the theoretical input data interval, results are shown in Figure 12 and
Figure 13. The closer the value to uniformity, the better the performance. While not
discernible in Figure 12, Figure 13 clearly indicates that the RC algorithm reaches unity
Jfive percent before the FCFS algorithm. At all times the RC curve remains below the
FCFS curve on the graph. The correlator graph normalized standard deviation is shown
in Figure 14. The normalized standard deviation curve indicates that the RC algorithm
provides a more uniform output than does the FCFS algorithm throughout the range of
input data intervals. Figure 15 demonstrates this output érrival by plotting the normalized
completion time for the first thirty graph instances observed. Due to the dependencies
inserted by the RC aigorithm, the AP efficiency is lower for the RC case than for the
FCFS case until uniformity in output is obtained as shown in Figure 16. This result is
caused by the dependencies inhibiting the earlier nodes in the graph from executing until
they are satisfied.

. While the AP efficiency is slightiy lower for the RC approach, the lower
normalized mean and standard deviation resuits indicate a slight improvement by use of
the RC algorithm over the current scheduling technique. The output times associated with

the thirtieth observed graph instance also bears out this e'malysis.
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B. CORRELATOR WITH UNIFORM NODE SIZES

1. Description

To examine the effect of varying execution times on the nodes in the application,
the samevgraphical structure was maintained, but the execution times of the nodes were
changed to be uniform as shown in Figure 17. The uniform size of 36000 micro-seconds
per node was selected based on maintaining the same overall executidn time of the graph.
It was assumed that. primitives could be restructured to meet this size without major

revisions to queue sizes required.
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Pigure 17: Correlator Graph Structure with Uniform Sized
Nodes

2. Output and Interpretation

| The normalized means for the correlator graph structure with equal execution
time nodes is shown in Figure 18 and Figure 19. It can be seen that as long as the input
data rate is not being met, the RC algoritim performs better than the FCFS algorithm.
But, both the RC and FCFS algorithms reach the ability to meet the input rate at the same
time. The normalized standard deviation curve is shown in Figure 20. The RC standard
deviation never rises above 1.0. Therefore, the RC algorithm produces a more uniform
output than does that of the FCF® algorithm. Figure 21 demonstrates that as long as the

input data rate is not being met, the RC algorithm completes thirty graph instances before
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the FCFS algorithm. The percent AP efficiency plotted in Figure 22 is the same for both

the RC and FCFS scheduling algorithms.

Since the AP efficiency is the same for both the RC and FCFS cases, the

dependencies inserted by the RC algorithm do not result in slowing the AP utilization

rate. While this is an improvement over the first correlator graph examined, the

normalized means for the correlator structure with equal size nodes reach the 1.0 value

at precisely the same instance, 65%, tending to indicate no improvement. However, the

normalized standard deviation for the RC approach never varies from 0.0. This indicates

a perfectly uniform output regardless of the load level, including a five percent band after

both the RC and FCFS normalized means reach 1.0. Again, this indicates a slight

improvement for the RC case.

FCFS Dashed., R Solid, for Modified 2 Correiator Graph
! T T T T .
—— %
0.95 :
g Q.9
$ ) SR SN SO0 SNNOUt VOUNU OO SO U SO SO SO SR .
]
i
% 0.85
’e
0.8
0.7 i —i i i HEl i i i H
0.55% Q.6 0.65 0.7 Q.78 0.8 Q.85 0.9 0.95 1
Naormaiized Input Data Interval
Pigure 22: AP Efficiency for Correlator Structure Equal Times

33




C. CORRELATOR WITH CHAINED NODES

In order to examine the effect of the graph structure as compared to the uniform
sizes of the node, the original correlator graph was chained to uniform node sizes. This
chaining of nodes resulted in a different graph structure with different sized nodes. All

of the queue information is assumed to remain consistent.
1. Description
The graphical representation of the correlator graph is shown in Figure 23.

The execution times for the nodes are documented beside them. This graph was derived

10: 36000
12 36000
13: 36000
 15: 38000
16: 36000

18: 38000
19: 38000

20: 38000
External Cutput Queue

Pigure 23: Correlator Graph Structure with Chained Nodes
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from the basic correlator graph by again minimizing the variation in total execution time.

However, this graph possesses a different graphical structure from the correlator graph

with equal execution times because in this graph the actual individual primitives have

been chained and segregated as best that could be determined.

2. Output and Interpretation

The normalized means are shown in Figure 24 and Figure 25. Both the RC

and FCFS algorithms possess the same normalized means even before the input data rate

is met. Figure 26 shows the normalized standard deviation. While the RC algorithm

maintains at least as well a normalized standard deviation as the FCFS algorithm, the

relative closeness of the numbers precludes any explicit determination. The normalized

observed instance completion times for thirty graph instances are shown in Figure 27.
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Figure 28 demonstrates a slight AP efficiency difference between RC and FCFS
algorithms. |

Again, once the input data rate is close to being met, the RC and FCFS
algorithms perform the same. Yet, for data rates which are not xﬁet, the RC algorithm
completes the instances sooner than does the FCFS algorithm with a lower normalized
standard deviation. But, unlike the correlato:L graph or the correlator graph with equal
nodes, there is no five percent improvement overlap seen in the mean and standard
deviation. Therefore, it appears that once the input data rate is met, chaining performs

equally as well as the RC approach.
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D. FFT APPLICATION

A Fast Fourier Transform (FFT) Application was chosen to examine the effects of
the RC scheduling algorithm on a large scale communication intensive interconnected
application. A communication intensive application is characterized by large queues
resulting in high communication ‘overheads on the DTN and CBUS for message passing.
This typically results in low overall AP efficiency.

1. Description

The data-flow graph for a two dimensional (2-D) FFT can be represented in

terms of that of a one dimensional (1-D) FFT. This application assumes a 256 point

vector of inputs. The 1-D FFT shown in Figure 29 can be calculated in log 256 (8)
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stages of butterfly operations with 128 burterflies per stage. Each stage can be divided
into p parallel tasks, with 256/2p butterflies per task. As the tasks in stage i finish, they
send their outputs to the tasks in stage (i+1). The data-flow graph for a 2-D FFT uses
2log 256 (16) stages to transform a 256 x 256 matrix of inputs. 256 1-D FFT's are
computed for rows followed by another 256 1-D FFT's for columns. Tasks in the first
8 stages perform 1-D FFT's on all 256 rows with each task performing 256%/2p
butterflies. Tasks in stage log 256 send data to tasks in stage (8 + 1) in such a way that
the second set of 8 stages performs 256 column transforms. The numbers beside the
queues represent queue over threshold, production, and consume values in micro-seconds.

[SHUKLA 90, pp. 48-51]

2. Output and Interpretation

The normalized FFT means are shown in Figure 30 and Figure 31. Here aiso,
the input data rate is met for the RC algorithm five percent before that of the FCFS
algorithm. The input data rate is not met until further down in the percentage range due
to the high communication overhmﬁ involved with this graph. The normalized standard
deviations are shown in Figure 32 and Figure 33. Again, clearly the RC standard
deviation out performs the FCFS standard deviation throughout the spectrum of input data
rates. Also note the consistency that exists in the RC normalized standard deviation
across the spectrum. Figure 34 documents the observed normalized complerion trimes for
the first thirty graph instances. The RC algorithm generates the results quicker than the

FCFS algorithm. Figure 35 demonstrates the differences in AP efficiency for the FFT
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graph. The low values are caused by the communication overhead involved in processing
this type of graph.

The RC approach poss'&sscs a greater AP efficiency due to the assigned
dependencies limiting the communication traffic on the DTN and CBUS. The RC
approach normalized mean reaches unity five percent before the FCFS normalized mean.
Additionally, the normalized standard deviation is consistently less than 0.5 regardless of
load level. This implies that a much more un:form output results from the RC algorithm
regardless of load. Since the observed normalized completion time for thirty graph
instances is also less for the RC approach than the FCFS approach, it can be concluded

that the RC approach performs well with communication intensive applications.




V1. CONCLUSIONS
Due to the increased complexity of Navy sensor systems and the increased signal
processing requirements expected within the next ten years, a different scheduling

approach may extend the lifetime of the current AN/UYS-2 hardware without major

expense.

A. SUCCESS OF THE RC APPROACH

The performance results obtained using a simulation of simple applications indicate
the effectiveness of the proposed technique in improving performance and predictability
for communication bound graphs.

1. Communication Intensive . -

Communication intensive applications such as the sixty-four node FFT graph

analyzed in Chapter V document an extensive improvement by use of the RC ;lgoﬁthm
over that of FCFS scheduling. 'i'he RC approach produces a more uniform throughput

while improving the AP efficiency and limiting the communication overhead.

2. Non-Communication Intensive
The non-communication intensive applications, like the correlator graph
analyzed in Chapter V, demonstrate improvement dependent on the node execution times.
For nodes with uniform exscution times, no substantial improvement was noted. But for

non-uniform execution times, quicker, more uniform throughput was observed.
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Since chaining of nodes is a matter of trial and error in FCFS scheduling, and
unrestrained chaining results in loss of parallelism which can be detrimental to uniform
AP utilization and throughput, the RC schedule offers a reasonable approach that would

limit the work of the application programmer.

B. IMPROVING RC

If chaining is specified within the framework of RC assignment, its effect can be
accurately predicted. An algorithm to use chaining in RC assignment is being developed.
Since the cylinder creates a semblance of assigning nodes to AP's even though it is not
enforced, use of this knowledge can absorb even the communication overheads involved
between nodes.

Given a specific assignment, it is known which queues are accessed at the same
time. This information can be used to algorithmically assign GM's to queues so that each
GM operates at the maximum possible bandwidth.

The current RC algorithm can introduce several different control token sets.
Establishment of criteria to select the minimal set of dependencies needs to be developed.

It is aiso required that the AN/UYS-2 support on-line reconfiguration of the PGM
graph for an application. This reconfiguration is typically performed by the operator by
removing or adding oue or m;yre branches of the PGM graphs. In RC assignment, new
nodes could be assigned in the empty slots so as to leave the rest of the assig—~ment

undisturbed.




C. PROPOSED RESEARCH

1. Hardware Modifications
Hardware modifications provide the long term solution to ensuring that the
AN/UYS-2 parallel signal processor remains in the Navy forefront. The modular design

of the AN/UYS-2 makes hardware modification an attractive long term solution.

a. Systolic Array Processor
Systolic architectures began to be used during the 1980's [EVANS 82,
pp. 343). Each PE corresponds to one binary tree level in the systolic array
{(MOSCOVTTZ 90, pp. 355-357, KUNG 85, pp. 128-131]. Inclusion of a systolic array
processor will expand the functional capability and increase the performance of the
AN/UYS-2 by improving its processing capabilities. |
b. Open Architecture
An open architecture would ensure that current "industry technology”
could be inserted into the AN/UYS-2 without the extensive cost of modification. An
open architecturecan be obtained by continuing to develop the AN/UYS-2's modularity

while maintaining a standard software communication interface.
2. Software Modifications
Despite the attractiveness of hardware solutions, the inexpensive and easy to

implement software modifications could yield the same improvement in a shorter period

of tme.
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a. User Friendly Processing Graph Methodology
Steps taken toward a more user friendly PGM would greatly speed up the
developer's process. Although the current PGM is usable, the application developer must
spend many hours researching the primitives and establishing the basics of the graph that

he wishes to use.

b. Throughput Enhancements
The throughput enhancements discussed in this thesis can easily be

implemented in software to achieve an improvement in the AN/UYS-2.

(1) Node Chaining
It was shown that the chaining of nodes under the FCFS algorithm
demonstrates the same level of improvement as tﬁat of the RC aigorithm without
chaining.
(2) Scheduling
The RC scheduling algorithm offers an attractive choice to achieve
the same results as chaining without the.extra effort required by the application
programmers. Implementation of this algorithm would not only yield an improvement
on communication intensive graphs, but also on other applications. An unlimited or
selective .loss of incoming data arriving at a higher input rate than the maximum

achievable by the AN/UYS-2 would not result in unreasonable delay times.
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(3) Fault Tolerance
Fault tolerance refers to the malfunction of a resource element which
prevents it from performing its function. In the AN/UYS-2 this fault tolerance is hardled
by the CPP which removes the associate malfunctioning element from the machine.
However, while this would still work in the existing approach, the RC technique would
lose a segment of its cylinder. It appears that this loss of performance could be kept
temporary by switching to another cylinder with a larger circumference on-line.

However, this issue needs further investigation.
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APPENDIX A: REVOLVING CYLINDER CODE

/] Description : The code listed below follows the algorithms outlined in Chapter III.

1 : This procedure deals with the initial assigning of nodes to the Cylinder.
1l : Nothing else need be said.
/] Parameters : tempgnodelisting - the node graph itself
! numaps - the number of aps in the AN/UYS-2
dependencyqs *topgraph :: assignrc(gnode *tempgnodelisting,int numaps) {
gnode "'temp2gnodehsung = tempgnodelisting;
gnode *temp3gnodelisting = NULL,;
ptrtoptrtoaq *tempptrtoptr = NULL,;
topgraph *q = NULL;
topgraph *qtemp = NULL;
topgraph *q2temp = NULL;
topgraph *temp = NULL;
int count = 0;
long int circumference = 0;
long int circum2ference = Q;
long int maxwidth = 0;

long int minwidth = 1000000;
long int Mdthavg =0;

cyltype *tempcylinder = NULL;
cylentrytype *cyl2entrylist = NULL;
boolean iopinnode = false;
boolean iopoutnode = false;
dependencyqs *headofdepqs = NULL;
while (temp2gnodelisting ! = NULL) {
tempptrtoptr = tempgnodelisting- > getgnodeinputgslist(temp2gnodelisting- >
getnodeid());
while (tenpptrtoptr != NULL) {
if (tempptrtoptr- > getnodein() == -1) {
iopinnode = true;
break;
}
else {
iopinnode = false;
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b

tempptrtoptr = tempptrtoptr- > getnextelement();

tempptrtoptr = tempgnodelisting- > getgnodeoutputgslist(temp2gnodelisting- >
getmodeid();
while (tempptrtoptr ! = NULL) {
if (tempptrtoptr- > getnodeout() == -1) {
iopoutnode = true;
break;
}
else {
_ iopoutnode = false;
¥

tempptrtoptr = tempptrtoptr- > getnextelement();
b
if ((iopinnode) || (iopoutnode)) { // do nothing
}

else {
count+ +;
if (@ == NULL) {
if (1(q = new topgraph)) {
fprintf(stderr, "Insufficient memory for topgraph\n");
exit(1);
5
q->id = temp2gnodelisting- > getnodeid();
g->width = tempgnodelisting- > getprimtime(q- > id);
if (q->width < minwidth) {
minwidth = g-> width;
|5
if (g->width > maxwidth) {
maxwidth = q-> width;
}; // note g->est set equal to zero by constructor
circumference = circumference + g-> width;
qtemp = q;
}
else { o
if (!(qtemp->next = new topgraph)) {
fprintf(stderr, "Insufficient memory for topgraph\n");
exit(1);
%
qtemp- > next->id = temp2gnodelisting- > getnodeid();
qtemp- > next- > width = tempgnodelisting- > getprimtime(qtemp- > next- > id);
if (qtemp- > next- > width < minwidth) {
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minwidth = qtemp- > next- > width;
b
if (qtemp- > next-> width > maxwidth) {
maxwidth = qtemp- > next- > width;
|5
circumference = circumference + qtemp- > next- > width;
qtemp = qtemp- > next;
} L
p2gnodelisting = temp2gnodelisting- > getnextgnode();
widthavg = minwidth;
circumference = circumference / numaps;
circum2ference = circumference;
while (maxwidth > circum2ference) {
circum2ference = circum2ference + widthavg;
|5
circumference = circum2ference;
for (int i=1;i < =numaps;i++) {
if (cylinder == NULL) {
if (!(cylinder = new cyitype)) {
fprintf(stderr, "Insufficient memory for cyltype\n");
exit(1);
b
i=0
while (j < circumference) {
if (cylinder- > cylentrylist == NULL) {
if (!(cylinder-> cylentrylist = new cylentrytype)) {
fprintf(stderr, "Insufficient memory for cylentrytype\n”);
exit(1);
b
. cylinder- > cylentrylist- > widthstarttime = j;
cyl2entrylist = cylinder- > cylentrylist;

else { :

if (!(cyl2entrylist-> nextcylentry = new cylentrytype)) {
fprintf(stderr, "Insufficient memory for cylentrytype\n™);
exit(1);

b
cyl2entrylist- > nextcylentry- > widthstarttime = j; .
cyl2entrylist = cyl2entrylist- > nextcylentry;

b

j =) + widthavg;




¥
tempcylinder = cylinder;

else { :
if (!(tempcylinder- > nextcylap = new cyltype)) {
fprintf(stderr, "Insufficient memory for cyltype\n™);
exit(1);
%
i=0
while (j < circumference) {
if (tempcylinder- > nextcylap- > cylentrylist == NULL) {
if (!(tempcylinder- > nextcylap- > cylentrylist = new cylentrytype)){
fprintf(stderr, "Insufficient memory for cylentrytype\n™);
exit(1);
15
tempcylinder- > nextcylap- > cylentrylist- > widthstarttime = j;
cyl2entrylist = tempcylinder- > nextcylap- > cylentrylist;

else {
if (!(cylentrylist-> nextcylentry = new cylentrytype)) {
fprintf(stderr, "Insufficient memory for cylentrytype\n"”);
exit(1);
5
cyl2entrylist- > nextcylentry- > widthstarttime = j;
cyl2entrylist = cyl2entrylist- > nextcylentry;

%
j = j + widthavg;
b
mpcylinder = tempcylinder- > nextcylap;
b
%
qtemp = q;

while (qtemp != NULL) {

temp = qtemp; '

qtemp = qtemp- > next; :

if (cylinder- > checkfreecylspace(cylinder) < (temp-> width/widthavg)) {
circumference = circumference + circumference;
cylinder = cylinder-)incr&secylsize(cylinder,circumfcrence,widthavg);
qtemp = q;
temp = q‘emp;
qtemp = gtemp- > next;

};

t

= schedulenode(temp,temp- > est,circumference, widthavg,numaps,cylinder);
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tempptrtoptr = tempgnodelisting- > getgnodeoutputgslist(temp- > id);
recestupdt(tempptrtoptr,qtemp, t+temp- > width);

headofdepqs = cylinder- > createdeps(cylinder,circumference, widthavg);
return headofdepgs;

b

/! Description : The following procedure deals with scheduling a node in a slot in the
cylinder.

// Parameters : temp - the graph node to schedule

1 t - the time to attempt to schedule at

1/ circum - the circumference of the cylinder

1 widthavg - the width of a slot in the cylinder

1 aumaps - the number of aps in the AN/UYS-2

I cyl - the cylinder itself

long int topgraph :: schedulenode(topgraph *temp,long int t,long int circum,
long int widthavg,int numaps,cyltype *cyl) {
cyltype *tempcylinder = cyi;
cylentrytype *tempcyl,*temp2cyl;
boolean scheduled = false;
boolean available = false;

long int insertime = 0;
int index = 0;

int blockcount = 0Q;
long int oldinsertime = 0;
insertime = t;

oldinsertime = insertime;
while (scheduled == false) {
insertime = insertime % circum;
if (insertime < oldinsertime) {
index—;
IR
tempcylinder = cyl;
for (int i=1;i < =numaps;i++) {
tempcyl = tempcylinder- > cylentrylist;
while ((insertime > tempcyl- > widthstarttime) && (tempcyl != NULL)) {
tempcyl = tempcyl- > nextcylentry;

if ((temp->width % widthavg) == Q) {
blockcount = temp- > width / widthavg;

}

else {
blockcount = temp-> width / widthavg + 1;

%
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temp2cyl = tempcyl;
for (int j=1;j < =blockcount;j+ +) {
if (temp2cyl == NULL) {
/1 at end of current circum so lets check back at beginning
temp2cyl = tempcylinder- > cylentrylist;
b
if (temp2cyl->nodesch == 0) {
available = true;
}
else {
available = false;
break;
F
mp2cyl = temp2cyl- > nextcylentry;
it: (available) {
temp2cyl = tempcyl;
for (int j=1;j < =blockcount;j+ +) {
if (temp2cyl == NULL) {
/ at end of current circum
temp2cyl = tempcylinder- > cylentrylist;

temp2cyl- >nodesch = temp->id;
temp2cyl- > nodeicount = index;
temp2cyl = temp2cyl- > nextcylentry;
5
scheduled = true;
break;
}
else {
tempcylinder = tempcylinder- > nextcylap;
b
b
if (scheduled == false) {
oldinsertime = insertime;
insertime = (insertime + widthavg) % circum;
b
b
return insertime;
B
// Description : Checks the free space remaining in the cylinder by checking
/1 to see if a node other than zero has been scheduled into that
/1 cylinder slot.
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/! Parameters : tempcylinder - The cylinder
long int cyltype :: checkfreecylspace(cyltype *tempcylinder) {
cylentrytype *tempcylentry;
long int maxfree = 0;
long int currfree = 0;
long int startfree = O;
boolean atstartofapcyl = true;
while (tempcylinder != NULL) {
tempcylentry = tempcylinder- > cylentrylist;
atstartofapcyl = true;
startfree = 0;
currfree = 0;
while (tempcylentry != NULL) {
if ((tempcylentry->nodesch == 0) && (atstartofapcyl)) {
startfree+ +;
if (startfree > maxfree) {
maxfree = startfree;
b
}
else {
atstartofapcyl = false; _
if (tempcylentry->nodesch == 0) {
currfree+ +;
if (currfree > maxfree) {
maxfree = currfree;
b
}
else {
currfree = 0;
|5
if ((tempcylentry- > nextcylentry == NULL) && (currfree > 0)) {
if ((currfree + startfree) > maxfree) {
maxfres = currfree + startfree;

b
|
}.

mpcylentry = tempcylentry- > nextcylentry;

tempcylinder = tempcylinder- > nextcylap;

return maxfree;
5

// Description : Increments the size of the cylinder by circum and resets its
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/l slots to reflect no nodes scheduled.

// Parameters : tempcylinder - The cylinder itself
1 circum - The size to increase the cylinder to
1l minwidthavg - The cylinder slot size

cyltype *cyltype :: increasecylsize(cyltype *tempcylinder,long int circum,
long int minwidthavg) {
cyltype *temp2cylinder = tempcylinder;
Cylentrytype *tempcylentry;
long int blockest = 0;
while (temp2cylinder ! = NULL) {
blockest = 0;
tempcylentry = temp2cylinder- > cylentrylist;
while (tempcylentry- > nextcylentry != NULL) {
tempcylentry- > nodesch = 0;
blockest = blockest + minwidthavg;
tempcylentry = tempcylentry- > nextcylentry;

blockest = blockest + minwidthavg;
tempcylentry- > nodesch = 0;

while (blockest < circum) {

tempcylentry- > nextcylentry = new Cylentrytype;
tempcylentry- > nextcylentry- > widthstarttime = blockest;
tempcylentry = tempcylentry- > nextcylentry;

blockest = blockest + minwidthavg;

15
mp2cylinder = temp2cylinder- > nextcylap;

return tempcylinder;

b .

/| Description : Returns true if the searched node is an ancestor of the

// queue pointed to by temp2ptrtoptr output node.

// Parameters : temp2ptrtoptr - ptrtoptr to a queue to check nodes -

boolean cyltype :: ancestor(ptrtoptrtoaq *temp2ptrtoptr,int citprime) {
boolean -  questanc = false;
ptrtoptrtoaq *temp3ptrtoptr;
while (temp2ptrtoptr != NULL) {
if (questanc == true) {
break;
5 :
if (temp2ptrtoptr- > getnodeout() == -1) {
/! at end of chain so do nothing, this should work here since
/] here we are dealing with the graph itself and not the cylinder

}
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else {
if (citprime == temp2ptrtoptr- > getnodeout()) {
questanc = true;
break;
b
temp3ptrtoptr = gnodelisting- > getgnodeoutputgslist(temp2ptrtoptr- > getnodeout());
questanc = ancestor(temp3ptrtoptr,citprime);

}

return questanc;
b
/! Description : The following procedure creates the dependencies among nodes in-the
cylinder.
/| Paramaters : cylinder- the cylinder
/! : circum - the circumference of the cylinder
/! : widthavg - the width of a slot in the cylinder
dependencyqs *cyltype :: createdeps(cyltype *cylinder,long int circum,
long int widthavg) {
ptrtoptitoaq  *temp2ptrtoptr,
*temp3ptrtoptr;
cyltype *tempcylinder;
Cylentrytype *tempcylentry,
*tempprimecylentry;
dependencylist  *tempptrtodepptr;
dependencyqs *headdepq = NULL;
dependencyqs *tempheaddepq;

’mprmoptr = temp2ptrtoptr- > getnextelement();

long int t,
tprime,
maxentrytotry,
entrycount;

boolean cicircumvalid = false;

boolean alreadydep = false;
boolean notable = true;
gnode *tempgnodelisting;
tempcylinder = cylinder;
while (tempcylinder != NULL) {
tempcylentry = tempcylinder- > cylentrylist;
tempprimecylentry = tempcylinder- > cylentrylist;
t=20;
while (t < circum) {
tempprimecylentry = tempcylinder- > cylentrylist;
tprime = t + widthavg;
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while (tprime < circum) {
while (tempcylentry-> widthstarttime != t) {
tempcylentry = tempcylentry- > nextcylentry;

while (tempprimecylentry- > widthstarttime ! = tprime) {
tempprimecylentry = tempprimecylentry- > nextcylentry;

if ((tempcylentry->nodesch > = tempprimecylentry- > nodesch) | |
(tempcylentry- > nodesch == 0)) {
/! do nothing same node in next block
/1 of cylinder or not currently a node scheduled in this block
}
else {
tempheaddepq = headdepq;
while ((tempheaddepq ! = NULL) && (tempheaddepg- > nodefrom ! =
tempcylentry- > nodesch) && (tempheaddepq- > nodeto ! =
tempprimecylentry- > nodesch)) {
tempheaddepq = tempheaddepq- > nextdepq;

if (tempheaddepq == NULL) { // not already a dependency for these
temp2ptrtoptr = gnodelisting- > getgnodeoutputgslist(tempcylentry- >
nodesch); .
if ((tempcylentry- > nodeicount == tempprimecylentry- > nodeicount) &&
(ancestor(temp2ptrtoptr, tempprimecylentry- > nodesch)) == false) {
if (tempcylentry-> fromdepgs == NULL) {
if ({(tempcylentry- > fromdepqs = new dependencylist)) {
fprintf(stderr, "Insufficient memory for dependlst\n™);
exit(1);
5
if (!(tempcylentry- > fromdepqs- > ptrtodepq = new dependencygs)) §
fprintf(stderr, "Insufficient memory for dependqs\n”);
exit(1);
b
tempcylentry- > fromdepqs- > ptrtodepq- > nodefrom =
tempcylentry- > nodesch;
tempcylentry- > fromdepgs- > ptrtodepq- > nodeto =
tempprimecylentry- > nodesch;

if (headdepq == NULL) {
headdepq = tempcylentry- > fromdepgs- > ptrtodepq;
}

else {
tempheaddepq = headdepq;
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while (tempheaddepq- > nextdepq != NULL) {
tempheaddepq = tempheaddepq- > nextdepq;

te:mph&.ddepq- >nextdepq = tempcylentry- > fromdepgs- >
} ptrtodepq;

}
else {
tempptrtodepptr = tempcylentry- > fromdepqgs;
alreadydep = false;
while ((tempptrtodepptr- > ptrionextptrtodepq ! = NULL) &&
(alreadydep == false)) {
if (tempptrtodeppt.- > ptrtodepg- > nodeto ==
tempprimecylentry- > nodesch) {
/! a dependency already exists for this pair so do NOT
// create another one.
alreadydep = true;

else {
tempptrtodepptr = tempptrtodepptr- > ptrtonextptrtodepq;
b
};
(alreadydep) {
/1 do nothing since a dependency already exists for this
}
else {

if (!(tempptrtodepptr- > ptrtonextptrtodepq =new dependencylist)) {
fprintf(stderr, " Insufficient memory for depist\n™);
exit(1);
b
if (!(tempptrtodepptr- > ptrtonextptrtodepq- > ptrtodepq =
new dependencygs)) {
fprintf(stderr, "Insufficient memory for depqs\n”);
exit(1);

tempptrtodepptr- > ptrtonextptrtodepq- > ptrtocepq- > nodefrom
= tempcylentry- > nodesch;
tempptrtodepptr- > ptrtonextptrtodepq- > ptrtodepq- > nodeto =
tempprimecylentry- > nodesch;

if (headdepq == NULL) {
headdepq = tempptrtodepptr- > ptrrodepq;
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}

else {
tempheaddepq = headdepq;
while (tempheaddepq- > nextdepq != NULL) {
tempheaddepq = tempheaddepq- > nextdepq;

tempheaddepq- > nextdepq = tempptrtodepptr- > ptrtodepq;
b
b
if (alreadydep == false) {
if (tempprimecylentry->todepqs == NULL) {
if (!(tempprimecylentry- > todepqs = new dependencylist)) {
fprintf(stderr, "Insufficient memory for deplst\n");
exit(l);

temppnmecylentry- > todepqgs- > ptrtodepq = temph&ddepq—
nextdepq;

else { :

tempptrtodepptr = temppnmecylentry->todepqs

while (tempptrtodepptr- > ptrtonextptrtodepq ! = NULL) {
tempptrtodepptr = tempptrtodepptr- > ptrtonextptrtodepq;

if (!(tempptrtodepptr- > ptrtonextptrtodepq =
new dependencylist)) {
. fprintf(stderr, "Insufficient memory for deplst\n");
exit(1);
k
tempptrtodepptr- > ptrtonextptrtodepq- > ptrtodepq =
tempheaddepq- > nextdepq;

tprime = tprime + widthavg;
5
t = t + widthavg;

%

tempcylinder = tempcylinder- > nextcylap;

/! add a dependency t:rom end to all input nodes
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tempcylinder = cylinder;
maxentrytotry = circum / widthavg;
while (cicircumvalid == false) {
tempcylentry = tempcylinder- > cylentrylist;
entrycount = 0;
while ((tempcylentry- > nextcylentry ! = NULL) && (entrycount < maxentrytotry))

entrycount+ +;
tempcylentry = tempcylentry- > nextcylentry;

if ((tempcylentry- > nodesch != 0) && (tempcylentry- > nodeicount == 0)) {
cicircumvalid = true;
}
else {
tempcylinder = tempcylinder- > nextcylap;
if (tempcylinder == NULL) {
maxentrytotry = maxentrytotry - 1;
tempcylinder = cylinder;
¥
.
b
tempgnodelisting = gnodelisting;
while (tempgnodelisting ! = NULL) {
temp2ptrtoptr = tempgnodelisting- > getgnodeinputgslist(tempgnodelisting- >
getnodeid());
while (temp2ptrtoptr ! = NULL) {
if (temp2ptrtoptr- > getnodein() == -1) {
//iop node so get the next node following the iopnode
temp3ptrtoptr = tempgnodelisting- > getgnodeoutputgslist(tempgnodelisting- >
getnodeid()); ' :
while (temp3ptrtoptr != NULL) {
/] set dependencies to all these nodes from the end of the cylinder
if (tempcylentry-> fromdepqs == NULL) {
if (!(tempcylentry- > fromdepqs = new dependencylist)) {
fprintf(stderr, "Insufficient memory for dependlist\n");
exit(1);
1
if (!(tempcylentry- > fromdepqgs- > ptrtodepq = new dependencygs)) {
fprintf(stderr, "Insufficient memory for dependencygs\n™);
exit(1);
b
tempcylentry- > fromdepqs- > ptrtodepq- > nodefrom = tempcylentry- >
nodesch;
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tempcylentry- > fromdepgs- > ptrtodepq- > nodeto = temp3ptrtoptr- >
getnodeout();
tempcylentry- > fromdepqs- > ptrtodepq- > deptokensize = 1;
if (headdepq == NULL) {
headdepq = tempcylentry- > fromdepqs- > ptrtodepq;

else {
tempheaddepq = headdepq;
while (tempheaddepq- > nextdepq ! = NULL) {
tempheaddepq = tempheaddepq- > nextdepq;

tempheaddepq- > nextdepq = tempcylentry- > fromdepgs- > ptrtodepq;
}
elise {
tempptrtodepptr = tempcyientry- > fromdepgs;
alreadydep = faise;
while ((tempptrtodepptr- > ptrtonextpt— depq ! = NULL) &&
(alreadydep == false)) {
if (tempptrtodepptr- > ptrtodepg- > nodeto == temp3ptrtoptr- >
getnodeout()){
/I a dependency already exists for this pair so do NOT
/1 create another one.
alreadydep = true;

else {
tempptrtodepptr = tempptrtodepptr- > ptrtonextptrtodepq;

?

b
if (alreadydep) {
/1 do nothing since a dependency already exists for this
}
else {
if (!(tempptrtodepptr- > ptrtonextptrtodepq = new dependencylist)) {
fprintf(stderr, " Insufficient memory for deplist\n");
exit(1);
b
if (!(tempptrtodepptr- > ptrionextptrtodepq- > ptrtodepq = new
devendencyqs)){
fprintf(stderr, "Insufficient memory for depgs\n™);
exit(1);
b
tempptrtodepptr- > ptrtonextptrtodepq- > ptrtodepq- > nodefrom =
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tempcylentry- > nodesch;
tempptrtodepptr- > ptrtonextptrtodepq- > ptrtodepq- > nodeto =
temp3ptrtoptr- > getnodeout();
tempptrtodepptr- > ptrtonextptrtodepq- > ptrtodepq- > deptokensize = 1;
if (headdepq == NULL) {
headdepq = tempptrtodepptr- > ptrtonextptrtodepq- > ptrtodepq;
}
else {
tempheaddepq = headdepq;
while (tempheaddepq- > nextdepq != NULL) {
iempheaddepq = tempheaddepq- > nextdepq;

te’mphmddepq- > nextdepq = tempptrtodepptr- >
ptrtonextptrtodepq- > ptrtodepq;
B

}:

temp3ptrtoptr = temp3ptrtoptr- > getnextelement();

temp2ptrtoptr = temp2ptrtoptr- > getnextelement();

tempgnodelisting = tempgnodelisting- > getnextgnode();
5
tempheaddepq = headdepq;
printf("\nThe following dependencies have been assigned:\n");
while (temphead != NULL) {
printf("From: ");
printf(" %d" ,tempheaddepq- > nodefrom);

printf(" To: ");

printf(" %d" ,tempheaddepqg- > nodeto);

printf("\n");

tempheaddepq = tempheaddepq- > nextdepq;

¥

turn headdepq;
% A
/! Description : Increments or decrements the tokens as required based on the
/! call, depending on whether or not it is at the head or tail
/! of the dependency.
// Parameters : tempdeplist - the list of dependencies
/! idnode - the id number of the node to adjust

void dependencygs :: adjusttokens(dependencyqs *tempdeplist,int idnode) {
while (tempdeplist ! = NULL) {




if (tempdeplist- > nodefrom == idnode) {
(tempdeplist- > deptokensize)+ +;

else {
if (tempdeplist- > nodeto == idnode) {
(tempdeplist- > deptokensize)—;
5 .
eplist = tempdeplist- > nextdepq;

b
// Description : Checks to see if the token condition of greater than zero is
1l satisfied.
// Parameters : tempdeplist - the list of dependencies
/" idnode - the id number of the node to adjust
boolean dependencyqs :: checktokens(dependencyqs *tempdeplist,int idnode) {
boolean oktoexec = true;
while (tempdeplist ! = NULL) {
if (tempdeplist->nodeto == idnode) {
if (tempdeplist- > deptokensize > 0) {
oktoexec = true;
}
else {
oktoexec = false;
break;
h
}.

mpdeplist = tempdeplist- > nextdepq;
b

return oktoexec;
|5
// Description : For each daughter of the last node inserted into the cylinder
1/ update the earliest start time. Recursively calls daughters
/1l of daughters until the end of the graph is reached.
// Parameters : temp2ptrtoptr - ptr to ptr to a queue to adjust
i q2temp - the graph with the rest of the nodes
// tpluswidth - the time to adjust est to
void topgraph :: recestupdt(ptrtoptrtoaq *temp2ptrtoptr,topgraph *q2temp,

long int tpluswidth) {

ptrtoptrtoaq *temp3ptrtoptr;

topgraph *q3temp;

while (temp2ptrtoptr != NULL) {

if (temp2ptrtoptr- > getnodeout() == -1) {
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cerr << "nERROR DURING RECESTUPDT, OUTPUTNODE IN
CYLINDER'n";

}
else §
q3temp = q2temp;
while ((q3temp->id ! = temp2ptrtoptr- > getnodeout()) &&
(q3temp->next ! = NULL) && (q3temp != NULL)){
q3temp = q3temp- > next;

if (q3temp->id == temp2ptrtoptr- > getnodeout()) {
if (tpluswidth > q3temp->est) {
q3temp->est = tpluswidth;
b :
temp3ptrtoptr = gnodelisting- > getgnodeoutputgslist(q3temp- > id);
recestupdt(temp3ptrtoptr,q2temp, tpluswidth);
}; //else q3temp- >next == NULL so at the end of this chain

temp2ptrtoptr = temp2ptrtoptr- > getnextelement();

|5
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APPENDIX B: PGM REPRESENTATION CODE

/! Description : The following procedure documents the order of loading the queue data

/) : into the cylinder and is included here for that reason.
void gqueue :: loadqueues() {
int numgqueues = 0;

gqueue *tempgqueuelisting = NULL;
cin > > numgqueues;
for (int queueloop=1;queueloop < =numqueues;queueloop+ +) {
if (gqueuelisting == NULL) { .
if (1(gqueuelisting = new gqueue)) {
fprintf(stderr, "Insufficient memory for gqueue\n");
exit(1);
cin > > gqueuelisting- > gqueueid;
/I NOTE GMID IS ASSIGNED BY LOADGRAPH ON ADJUSTMENT OF PTRS
© ¢in > > gqueuelisting- > nodein;
cin > > gqueuelisting- > nodeout;
cin > > gqueuelisting- > datarate;
cin > > gqueuelisting- > overthreshold;
cin > > gqueuelisting- > productionqty;
cin > > gqueuelisting- > overcapacity;
tempgqueuelisting = gqueuelisting;
}
elsz {
if (!(tempgqueuelisting- > nextelement = new gqueue)) {
fprintf(stderr, " Insufficient memory for gqueue\n"):
exit(1);

(o)
* -

cin > > tempgqueuelisting- > nextelement- > gqueueid;

¢in > > tempgqueuelisting- > nextelement- > nodein; -

cin > > tempgqueuelisting- > nextelement- > nodeout;

cin > > tempgqueuelisting- > nextelement- > datarate;

cin > > tempgqueuelisting- > nextelement- > overthreshold;
cin > > tempgqueuelisting- > nextelement- > productionqty;
cin > > tempgqueuelisting- > nextelement- > overcapacity;
tempgqueuelisting = tempgqueuelisting- > nextelement;
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// Description : The following procedure documents the loading of the graph ‘atc the
simulator
" : and is included here for that reason.
long int gnode :: loadgraph(int numiops,int numgms,int numaps,
ioprocessors *tempioplist) {
int numnodes = 0; '
gnode *tempgnodelisting = NULL,;
int numgmtoassign = 0;
int isiopnode = numaps;
int numiopnodes = 0;
long int sumexectimes = 0;
cin > > numnodes;
for (int nodeloop=1;nodeloop < =numnodes;nodeloop+ +) {
if (gnodelisting == NULL) {
if (!(gnodelisting = new gnode)) {
fprintf(stderr, "Insufficient memory for gnode\n");
exit(1);
b
cin > > gnodelisting- > nodeid;
cin > > isiopnode;
if (isiopnode != 0) {
gnodelisting- > iopidassigned = ((nodeloop+ 1) % numiops)+1;
tempioplist- > assignnodetoiop(tempioplist, gnodelisting- > nodeid,
gnodelisting- > iopidassigned);
numiopnodes+ +;
b
cin > > gnodelisting- > aissize;
cin > > gnodelisting- > primtime;
sumexectimes = sumexectimes + gnodehshng-)pnmume,
/| Now update queue pointers
numgmtoassign = ((nodeloop+1) % numgms)+1;
gnodelisting- > ptrtoinglist = gnodelisting- > ptrtoinglist- > establishinptrs(
gnodelisting- > ptrtoinglist,numgmtoassign);
gnodelisting- > ptrtooutqlist = gnodelisting- > ptrtooutqlist- > establishoutptrs(
gnodelisting- > ptrtooutgqlist);
tempgnodelisting = gnodelisting;

else {
if (!(tempgnodelisting- > nextgnode = new gnode)) {
fprintf(stderr, "Insufficient memory for gnode\n");
exit(1);
B

cin > > tempgnodelisting- > nextgnode- > nodeid;
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cin > > isiopnode;
if (isiopnode != 0) {
tempgnodehsung->nextgnode->1op1dassxgned = ((nodeloop+1) %
numiops)+1;

tempioplist- > assignnodetoiop(tempioplist,tempgnodelisting- > nextgnode- > nodeid,
tempgnodelisting- > nextgnode- > iopidassigned);
numiopnodes+ +;
|5
cin > > tempgnodelisting- > nextgnode- > aissize;
cin > > tempgnodelisting- > nextgnode- > primtime;
sumexectimes = sumexectimes + tempgnodelisting- > nextgnode- > primtime;
/!l Now load queue data for queues associated with this node
numgmtoassign = ((nodeloop+1) % numgms)+1;
tempgnodelisting- > nextgnode- > ptrtoinglist = tempgnodelisting- > nextgnode- >
ptrtoinglist- > establishinptrs(
tempgnodelisting- > nextgnode- > ptrtoinglist- >
numgmtoassign);
tempgnodelisting- > nextgnode- > ptrtooutglist = tempgnodelisting- > nextgnode
- > ptrtooutqlist- > establishoutptrs(
tempgnodelisting- > nextgnode- > ptrtooutglist);
. tempgnodehstmg = tempgnodelisting- > nextgnode;
b
return (sumexectimes);

b
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APPENDIX C: MAIN SIMULATOR CODE

/] The following constitutes the main program of the simulator
/] Processiop is called first to process the input/output processors.
/] Processbus is then called for cbus and dtn to process them.
/! Processgm is then called to process the global memories.
/] Processsch is then called to process the scheduler->
// Processap is then called to process aps.
main() {

// The variables

schprocessor *scheduler;

ioprocessors *ioplist = NULL;

gmprocessors *gmlist = NULL;

approcessors *aplist = NULL;

boolean breakdownpriority = false;

boolean invalidrun = true;

int numberiops = 0;
int, numbergms = O;
int numberaps = 0;
int instancestart = 0;
int instancefinish = 0;
int runcase = 0;
long int simtime = 0;

dependencyqs *headofdeplist = NULL,;
topgraph  *dummy = NULL;
gnodelisting = NULL;
gqueuelisting = NULL;
cout < < "This simulator expects the graph data to be in a file 'graph’ and”,
cou. < < " the EMSP Structure to be in IOP,GM,AP Order in a file 'emspstru’\n”;
cout < < "\nEnter the starting node instance for examination ";
cin > > instancestart;
cout < < "\nEnter the completing node instance for examination "
cin > > instancefinish;
cout < < "\n(1) Enter 1 for FCFS scheduled run.”;
cout < < "\n(2) Enter 2 for RC scheduled run.\n";
cin > > runcase;
if ((runcase < 1) || (runcase > 2)) {
cout < < "\nInvalid run entered assuming FCFS run\n";
runcase = 1;
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/! establish the Simulator structure
if (freopen("emspstru”,"r",stdin) == NULL) {
fprintf(stderr, "error redirecting stdin\n");

else {
cin > > numberiops;
ioplist = ioplist- > establishiops(numberiops,ioplist);
cin >> > numbergms;
gmlist = gmlist- > establishgms(numbergms,gmlist);
cin > > numberaps;
aplist = aplist- > establishaps(numberaps, aplist);
fclose(stdin);
b
if (!(scheduler = new schprocessor)) {
fprintf(stderr, "Insufficient memory for schprocessor\n");
exit(1);
K
scheduler- > setobjectid(1,numberaps);
// Establish the graph structure by reading in the data required
if (freopen("graph”,"r",stdin) == NULL) {
fprintf(stderr, "error redirecting stdin\n");
}
else {
gqueuelisting- > loadqueues();
simtime = gnodelisting- > oz dgraph(numberiops,numbergms,numberaps, ioplist);
fclose(stdin);
b
simtime = simtime * instancefinish;
cout < < "\nThe expected simulation time in order to ensure last node ";
cout < < "\ninstance completion is: ";
cout < < simtime;
cout < < " microseconds.\n”;
if (freopen(”results”,"w" stdout) == NULL) {
fprintf(stderr, "error redirecting stdout\n");
}
else {
printf("The Simulation Time is: ");
printf(" %1d",simtime);
printf("\n");
if (runcase == 2) {
headofdeplist = dummy- > assignre(gnodelisting, numberaps);
B

for (clock=0;clock < =simtime;clock+ +) {
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b

ioplist- > processiop(ioplist);
cbus. processbus(scheduler,ioplist,aplist,gmlist);
for (int i=0;i < 16;i+ +) {
dtn(i]. processbus(scheduler,ioplist,aplist,gmlist);

gmlist- > processgm(gmlist,aplist);
scheduler- > processsch(instancestart,instancefinish, runcase,
headofdeplist);
aplist- > processap(aplist,breakdownpriority, scheduler, instancestart,
instancefinish);
|

aplist- > calcaunotbusytime(aplist);

gnodelisting- > calcallnodeinstavgtime(instancestart, instancefinish);
gqueuelisting- > calcqueuetimes(instancestait,instancefinish);
fclose(stdout);
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APPENDIX D: INPUT/OUTPUT PROCESSOR CODE

/1 Description : For every iop do the following

/! generate instructions for any external inputs that require it

// if there is a transfer in progress do nothing otherwise

/ check to see if currently processing and time to be done

/! processing, if it is then update processing status and place

// information in queue.

1 if not processing, then get the next node from the head of the
/! queue and process it.

1 g0 to next iop

// Calls : getcurrinst - to get the currentnodes instruction

1 getgnodenum - to get the currentnodes id number

/1 getgnodeinputgslist - to get the pointer to the nodes inputgs
I getgnodeoutputgslist- to get the pointer to the nodes outputgs
/I setfields - to set the new instructions fields

I getnextelement - to get the next queue information

/" updatebusytill - to update the objects busytill time

/1 setinst - to only change the instruction name

void ioprocessors :: processiop(ioprocessors *listofiops) {
ioprocessors *templistofiops = listofiops;
list *tempnodesassigned;

while (templistofiops != NULL) {
tempnodesassigned = templistofiops- > nodesassigned;
while (tempnodesassigned ! = NULL) {
templistofiops- > ioobject. generateinsts(tempnodesassigned);
tempnodesassigned = tempnodesassigned- > nextentry;
|5
if (templistofiops- > ioobject. xferinprogress()) {
/! do nothing
}
else {
if ((templistofiops- > ioobject.isprocessing()) &&
(templistofiops- > ioobject. finishtime())) {
templistofiops- > ioobject. setprocessing(false);
templistofiops- > ioobject. placeinqueue();

if (templistofiops- > ioobject.isprocessing() == false) {
if (templistofiops- > ioobject.getnextnode()) {
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templistofiops- > ioobject. processiopnode();

b
b
b
templistofiops = templistofiops- > nextiop;

.
b
/] Description : Determine the current instruction
I Based on this current instruction update the fields
1 nad generate a new instruction if required.
/1 Calls : getcurrinst - to get the current instruction -
/! getgnodenum - to get the node number
I getgnodeinputgslist - to get the list of input queues
/1 setfields - to set the fields for the instruction
/! getgqueueid - to get the queue id number
/! getgmid - to get the gm id number
1 getnextelement - to get the next element in the list
" updatebusytill --t0 update the busytill time
/! assignloc - to assign the location
/ " getqthresh - to get the queue threshold value
/! getqofgnodenum - to get the queue number
void object :: processiopnode() {

ptrtoptrtoaq *gnqptr;

int gnodenum,

numrequired = 0;
objectnode *tempnodeptr;
tempnodeptr = currentnode;
if (tempnodeptr ! = NULL) {
switch (tempnodeptr- > getcurrinst()) {
case eis: {
gnodenum = tempnodeptr- > getgnodenum();
gngptr = gnodelisting- > getgnodeinputgslist(gnodenum);
while (gnqptr != NULL) {
numrequired + +;
tempnodeptr- > setﬁelds(rq, gnodenum,gngptr- > getgqueuexd() gm,
gnqptr- > getgmid(),iop,objectid);
gngptr = gnqptr- > getnextelement();
if (gngptr != NULL) {
if (tempnodeptr- > nextnode == NULL) {
if (!(tempnodeptr- > nextnode = new objectnode)) {
fprintf(stderr, "Insufficient memory for objectnode\n");
exit(1);

8
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tempnodeptr- > nextnode- > nextnode = NULL;
tempnodeptr = tempnodeptr- > nextnode;

K
5
setprocessing(true);
updatebusytill(40+0.22*numrequired);
break;
b
case aq: {
tempnodeptr- > setinst(cq);
- tempnodeptr- > locto = tempnodeptr- > locfrom;
tempnodeptr- > locfrom.assignloc(iop,objectid);
setprocessing(true);
updatebusytill(20+0. 11*gqueuelisting- > getqthresh(tempnodeptr- >
getqofgnodenum()));
break;

b
b
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APPENDIX E: GLOBAL MEMORY CODE

/! Description : For every gm do the following

! if there is a transfer in progress do nothing otherwise

/! check to see if currently prncessing and time to be done

/! processing, if it is thon update processing status and place

1/ information in quev<.

/l if not processing, then get the next node from the head of the
1 queue and process it.

I £0 to next gm

/1 Calls : xferinprogress - to determine if currently xfering data
I isprocessing - to determine if currently processing

/! finishtime - to determine if completed processing

/! setprocessing - to update the processing status

1l placeinqueue - to place in cbus or dtn queue

1 getnextnode - to get the next node from the head of q
/! processgmnode - to process the node

void gmprocessors :: processgm(gmprocessors *listofgms,approcessors *listofaps) {
gmprocessors *templistofgms = listofgms;
while (templistofgms != NULL) {
if (templistofgms- > gmobject.xferinprogress()) {
/] do nothing
}
else {
if ((templistofgms- > gmobject.isprocessing()) &&
(templistofgms- > gmobject. finishtime())) {
templistofgms- > gmobject. setprocessing(false);
templistofgms- > gmobject. placeinqueue();

if (templistofgms- > gmobject.isprocessing() == false) {
if (templistofgms- > gmobiject.getnextnode()) {
templistofgms- > gmobject. processgmnode(listofaps);

’

b
b
mplistofgms = templistofgms- > nextgmproc;
|5 -
/l Description : Get the currentnodes instruction
/1 Based on that nodes instruction generate another appropriate
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1 instruction for it and update the fields involved.

/! Calls : getcurrinst - to get the currentnodes current inst
/! setinst - to set the instruction

n . assignloc - to assign the location

1l getqthresh - to get the queue threshold value

/1 getqofgnodenum - to get the queue id number

! setgnodenum - to set the new node number

/l getqnodeoutnum - to get the queue id number for out node
1 addtolength - to increase the size of that queue
I subfromlength - to decrease the size of that queue
1l updatebusytill - to update the busytill time

void object :: processgmnoede{approcessors *temp2aplist) {
size tempsize = ut;
gqueue *tempgqueuelist = gqueuelisting;
switch (currentnode- > getcurrinst()) {
case sis: {
currentnode- > setinst(ais);
currentnode- > locfrom = currentnode- > locto;
currentnode- > locto = currentnode- > locassoc;

setprocessing(true); .
updatebusytill(44);
break;
b
case rq: {
currentnode- > locto = currentnode- > locfrom;
currentnode- > setinst(aq);
currentnode- > locfrom.assignloc(gm,objectid);
setprocessing(true);
- updatebusytill(10+0. 1 1 *tempgqueuelist- > getqthresh(currenmode-
getqofgnodenum()));
break;
|5
case wq: {

if (currentnode- > locfrom. getlocanono == ap) {
temp2aplist- > updatebdstatus(temp2aplist,currentnode- > locfrom.
getlocationnum());
b

tempsize = tempgqueuelist- > addtolength(currentnode- > getqofgnodenum());
if (tempsize == ot) {

currentnode- > locfrom = currentnode- > locto;

currentnode- > setinst(qot);

currentnode- > locto.assignloc(sch, 1);

currentnode- > setgnodenum(tempgqueuelist- > getgnodeoutnum(currentnode- >
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b

getqofgnodenum()));
updatebusytill(12);

else if (tempsize == oc) {
currentnode- > locfrom = currentnode- > locto;
currentnode- > setinst(qoc);
currentnode- > locto.assignloc(sch, 1);
currentnode- > setgnodenum(tempgqueuelist- > getqnodeoutnum(currentnode- >
getqofgnodenum()));

updatebusytill(12);

else {
curren‘node- > setinst(dest);

updatebusytill(12);
} .

setprocessing(true);
break;
b
case cq: {

if (currentnode- > locfrom.getlocation() == ap) {

temp2aplist- > updatebdstatus(temp2aplist,currentnode- > locfrom.
getlocationnum());
|5

tempsize = tempgqueuelist- > subfromlength(currentnode->
getgofgnodenum());
if (tempsize == uc) {
currentnode- > setinst(quc);
currentnode- > locfrom = currentnode- > locto;
currentnode- > locto.assignloc(sch, 1);

updatebusytill(12);
}

else {
currentnode- > setinst(dest);
updatebusytill(10);
b
setprocessing(true);
break;
b
5




/! Description : The following function follows the scheduler description in Chapter IV.

!
"
1
/!
i
1
I
1l
1
/"
/I
/!
/
/!
A
"

Calls

APPENDIX F: SCHEDULER CODE

: isprocessing - to check the processing status
ﬁmshume - to see if time to complete processing
setprocessing - to set the processing status
placeinqueue - to place the instruction in the queue
getnextnode - to get the next node to process
retcurrinst - to get the current instruction
addtolist - to add an item to a list
subfromlist - to remove an item from the list
setcurrinst - to set the current instruction
getgnodeinputqslist - to get the list of input queues
getnodenum - to get the node id number
questionot - to determine if queue over threshold
getnextelement - to get the next queue list element
getiopnumber - to get the iop number
estsink - - to establish the sink node
generatematch - to match ready node to free ap

void schprocessor :: processsch(int nodeinststart,int nodeinstfinish,

int runcase,dependencyqs *temph&ddephst) {

/! No assignment or referencing a specific object required since there is

// only one scheduler->
list *tempfreeaplist,
*tempreadynodelist,

. *tempexeclist;
ptrtoptrtoaq  *tempgnqptr;
boolean allot = true;
boolean match = false;
boolean alreadyexec = false;
boolean = gensinknode = false;
int tempiopnum = 0;
int queuecount = 0;
int replications = 1;

if (schobject.xferinprogress()) {
// do nothing

}

else {




if ((schobject.isprocessing()) && (schobject. finishtime())) {
schobject. setprocessing(false);
schobject. placeinqueue();

if (schobject.isprocessing() = =false) {
if (schobject.getnextnode() = =true) {
switch (schobject.retcurrinst() {
case rfis: {
freeaplist = freeaplist- > addtolist(freeaplist,
schobject. getcurrfromlocnum());
schobject. setcurrinst(dest);
schobject. setprocessing(true);
schobject.updatebusytill(17);
b -
|
case quc: {
if (inhibitedlist- > inhibited(inhibitedlist,gqueuelisting- >
getqnodeinnum(schobject.getqueuenum()))) {
inhibitedlist = inhibitedlist- > subfromlist(inhibitedlist,
gqueuelisting- > getqnodeinnum(schobject.
getqueuenum()));
printf("NODE BACK UNDERCAPACITY: *);
printf(" %d",gqueuelisting- > getqnodeinnum(schobject. getqueuenum()));
printf(" at clock: *);
printf(" %1d" ,clock);
printf("\n");
|5 .
schobject. setcurrinst(dest);
schobject. setprocessing(true);
schobject.updatebusytill(10);
break;
b
case qoc: {
if (inhibitedlist- > inhibited(inhibitedlist,gqueuelisting- >
getqnodeinnum(schobject.getqueuenum()))) {
// do nothing here instruction set to dest later
}
else {
inhibitedlist = inhibitedlist- > addtolist(inhibitedlist,
gqueuelisting- > getqgnodeinnum(schobject.
getqueuenumq()));
printf("NODE OVERCAPACITY: ");
printf(" %d" ,gqueuelisting- > getqnodeinnum(schobject.
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getqueuenum()));
printf(" at clock: ");
printf(" %1d" ,clock);
printf("\n");
case qot: {
if (inhibitedlist- > inhibited(inhibitedlist,schobject.
getnodenum())) {
/l do nothing now checking to see if current node inhibited
}
else {
tempgnqgptr = gnodelisting- > getgnodeinputqgslist(schobject.
getnodenum());
gnodelisting- > incnumgsrec(schobject. getnodenum());
while (tempgngptr != NULL) {
queuecount+ +;
if (tempgngptr- > questionot()) {
/! do nothing allot already true
}
else {
allot = false;
b -

tempgngptr = tempgngptr- > getnextelement();

if (gnodelisting- > areallgsrec(schobject.getnodenum(),
queuecount)) {
gnodelisting- > semumgsrec(schobject.getnodenum());
tempiopnum = gnodelisting- > getiopnumber(schobject.
: getnodenum());
if (tempiopnum == Q) {
if (allot) {
replications = gqueuelisting- > getrepnumber(schobject.
getqueuenum());
for (int i=1;i < =replications;i+ +) {
readynodelist = readynodelist- > addtolist(
readynodelist,schobject.
getnodenum());
gnodelisting- > calctimebtwnbdri(schobject.
getnodenum(),
nodeinststart,
nodeinstfinish);
gnodelisting- > setinstance(schobject.getnodenum(),

101




nodeinststart,
nodeinstfinish,false);
b
|5
}
else {
/1 sink node
if (allot) {
gensinknode = true;
|5
b
b

schobject. setcurrinst(dest);
schobject. setprocessing(true);
schobject.updatebusytill(17);
break;
|
|5
if (gensinknode) {
" schobject. estsink(tempiopnum, nodeinststart, nodeinstfinish);
}
else {
tempfreeaplist = freeaplist;
tempreadynodelist = readynodelist;
while ((tempreadynodelist ! = NULL) && (match == false)){
if (tempfreeaplist ! = NULL) {
tempexeclist = executinglist;
while (tempexeclist ! = NULL) {
if (tempexeclist- > getnumber() ==
tempreadynodelist- > getnumber()) {
alreadyexec = true;

break;
}
else {
alreadyexec = false;
b
tempexeclist = tempexeclist- > nextentry;
I}

if (almdyexec) {
//do nothing since an instance of this node is alrmdy exec.

}

else {
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if (runcase == 2) {
if (tempheaddeplist- > checktokens(tempheaddeplist,
tempreadynodelist- >
getnumber()) {
tempheaddeplist- > adjusttokens(tempheaddeplist,
tempreadynodelist- >
getnumber();
match = true;
schobject.updatebusytill(3);
schobject.generatematch(tempreadynodelist- >
getnumber(), tempfreeaplist
-> getnumber());
executinglist = executinglist- > addtolist(
executinglist,schobject.
getnodenum());
freeaplist = freeaplist- > subfromlist(freeaplist,
tempfreeaplist- >
getnumber();
readynodelist = readynodelist- > subfromlist(
readynodelist,
schobject.
getnodeaum());
gnodelisting- > settimearratap(schobject.
getnodenum(),
nodeinststart,
nodeinstfinish);
gnodelisting- > calcnodeinsttime(schobject.
getnodenum(),
nodeinststart,
. nodeinstfinish);
tempfreeaplist = tempfreeaplist- > nextentry;

else {
/! do nothing since dependencies are not met

}’

}
else { // FCFS case
match = true;
schobject. updatebusytill(3); -
schobject. generatematch(tempreadynodelist- > getnumber(),
tempfreeaplist- > getnumber());
executinglist = executinglist- > addtolist(executinglist,
schobject. getnodenum());
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freeaplist = freeaplist- > subfromlist(freeaplist,
tempfreeaplist- >
getnumber());
readynodelist = readynodelist- > subfromlist(readynodelist,
schobject.getnodenum());
gnodelisting- > settimearratap(schobject. getnodenum(),
nodeinststart,
nodeinstfinish);
gnodelisting- > calcnodeinsttime(schobject. getnodenum(),
nodeinststart,
nodeinstfinish);
tempfreeaplist = tempfreeaplist- > nextentry;

’

b

15
mpreadynodelist = tempreadynodelist- > nextentry;

’

b

else {
tempfreeaplist = freeaplist;
tempreadynodelist = readynodelist;
while ((tempreadynodelist ! = NULL) && (match == faise)){
if (tempfreeaplist != NULL) {
tempexeclist = executinglist;
while (tempexeclist ! = NULL) {
if (tempexeclist- > getnumber() ==
tempreadynodelist- > getnumber()) {
alreadyexec = true;
break;
}
else {
alreadyexec = false;
tempexeclist = tempexeclist- > nextentry;
1 :
if (alreadyexec) {
//do nothing since an instance of this node is already exec
}
else {
if (runcase == 2) { .
if (tempheaddeplist- > checktokens(tempheaddeplist,
tempreadynodelist- >
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getnumber())) {
tempheaddeplist- > adjusttokens(tempheaddeplist,
tempreadynodelist- >

getnumber());
match = true; .
schobject. updatebusytill(10);

schobject. setprocessing(true);
schobject. generatematch(tempreadynodelist- >
getnumber(), tempfreeaplist
- > getnumber());
executinglist = executinglist- > addtolist(
executinglist,schobject.
getnodenum());
freeaplist = freeaplist- > subfromlist(freeaplist,
tempfreeaplist- >
getnumber());
readynodelist = readynodelist- > subfromlist(
readynodelist,
schobject.
getnodenum());
gnodelisting- > settimearratap(schobject.
getnodenum(),
nodeinststart,
nodeinstfinish);
gnodelisting- > calcnodeinsttime(schobject.
getnodenum(),
nodeinststart,
nodeinstfinish);
tempfreeaplist = tempfreeaplist- > nextentry;

else {
/! do nothing since dependencies are not met

b

else { // FCFS case

match = true; .

schobject. generatematch(tempreadynodelist- > getnumbery(),
tempfreeaplist- > getnumber());

schobject. setprocessing(true);

schobject. updatebusytill(10);

executinglist = executinglist- > addtolist(executinglist,
schobject. getnodenum());

freeaplist = freeaplist- > subfromlist(freeaplist,

105




tempfreeaplist- >
getnumber());
readynodelist = readynodelist- > subfromlist(readynodelist,
schobject.getnodenum());
gnodelisting- > settimearratap(schobject. getnodenum(),
nodeinststart,
nodeinstfinish);
gnodelisting- > calcnodeinsttime(schobject. getnodenum(),
nodeinststart,
nodeinstfinish);
tempfreeaplist = tempfreeaplist- > nextentry;
b
b
|5
tempreadynodelist = tempreadynodelist- > nextentry;

’
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APPENDIX G: ARITHMETIC PROCESSOR CODE

/] Description : For each ap perform the following

/ if the ap is currently transferring information do nothing

/ otherwise perform the following

" check to see if the breakdown is complete and forward on info
I check to see if the execution is complete and forward on to bd
) check to see if setup is complete and forward on to execution
1l adjust breakdown and setup status

!l if control unit is not processing setup and breakdown then

/! get the next instruction and process it

/l £0 to next ap

// Called by : Main

/1 Calls : xferinprogress - to determine if currently xfering data
/! isprocessing - to determine if currently processing

7 " finishtime - to determine if completed processing

l setprocessing - to update the processing status

" placeinqueue - to place in cbus or dtn queue

/! placeinbreakdown - to place in breakdown queue

1/ destroynode - to delete the current node

1 getexecnode - to get the next node to execute

/! getnodenum - to get the node number of this node

1l updatebusytill - to update the busytill time

/! sendrfis - to send the rfis to the scheduler

/l getnextinst - to fetch the next instruction for cu

void approcessors :: processap(approcessors, *listofaps,boolean bkdnpriority,
schprocessor *tempsched,int nodeinststart,
: int nodeinstfinish) {
approcessors *templistofaps = listofaps;
int numnode;
while (templistofaps != NULL) {
if ((templistofaps- > apsetup.xferinprogress()) | |
(templistofaps- > apbreakdown. xferinprogress())) {
/! do nothing
}
eise {
if ((templistofaps->numbdnodes == 0) &&
(templistofaps- > apbreakdownstatus)) {
templistofaps- > apbreakdownstatus = faise; / NEXT LINE NEW
tempsched- > updateexeclist(templistofaps- > apbdholdnodenum);
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gnodelisting- > calctimeinstatap(templistofaps- > apbdholdnodenum,
nodeinststart, nodeinstfinish);
|5
if ((templistofaps- > apbreakdown.isprocessing()) &&
(templistofaps- > apbreakdown. finishtime()) &&
(templistofaps- > apbreakdownstatus == false)) {
templistofaps- > apbreakdownstatus = true;
templistofaps- > apbdholdnodenum = templistofaps- > apbreakdown.
getnodenum();
templistofaps- > apbreakdown. setprocessing(false);
templistofaps- > apbreakdown. placeinqueue();
b
if (templistofaps- > apexecuting.isprocessiag() == false) {
(templistofaps- > aunotbusytime) + +;

if ((templistofaps- > apexecuting.isprocessing()) &&
(templistofaps- > apexecuting. finishtime())) {
if ((templistofaps- > apbreakdownstatus) | |
(templistofaps- > apbreakdown.isprocessing())) {
(templistofaps- > aunotbusytime) + +;

if ((templistofaps- > apbreakdownstatus == false) &&
(templistofaps- > apbreakdown.isprocessing() == false)) {
templistofaps- > apexecuting. setprocessing(false);
templistofaps- > placeinbreakdown(templistofaps- > apexecuting.
returnexecnode());//MODIFICATION
b

5
if ((templistofaps- > apsétup.isprocessing()) &&
(templistofaps - > apsetup. finishtime())) {
if (templistofaps- > apsetupstatus == notstarted) {
templistofaps- > apsetupstatus = inprogress;
templistofaps- > apsetup. setprocessing(false);
templistofaps- > apsetup. placeinqueue();
}
else {
if (templistofaps- > apsetupstatus == inprogress) {
templistofaps- > apsetup. setprocessing(false);
templistofaps- > apsetup.destroynode();

else //setupstatus complete

if (templistofaps- > apexecuting.isprocessing() == false) {
templistofaps- > apsetupstatus = notstarted;
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templistofaps- > apsetup. setprocessing(false);
templistofaps- > apexecuting. getexecnode(templistofaps- >
apsetup.
getcurrnode());
templistofaps- > apexecuting. setprocessing(true);
numnode = templistofaps- > apexecuting.getnodenuia();
templistofaps- > apexecuting. updatebusytill(gnodelisting- >
getprimtime(
numnode));
templistofaps- > apexecuting.sendrfis();

b
}.

if ((templistofaps- > apsetup.isprocessing() == false) &&
(templistofaps- > apbreakdown.isprocessing() == false)) {
templistofaps- > getnextinst(bkdnpriority);
if ((templistofaps- > numsunodes == 0) &&
(templistofaps- > apsetupstatus = = inprogress)) {
templistofaps- > apsetupstatus = complete;

%
b
mplistofaps = templistofaps- > nextapproc;
L |
/| Description : Determine the current instruction
I if it is ais then do the following
/ : determine the node number
/1 get the input gs list that goes with that node number
/! for every entry in that list do the following
/! establish a new rq instruction
/! update the busytill time
/! if it is aq then do the following :
/! if it is the last one that we are waiting on then prepare
1 it for destruction :
/1 update the busytill time
/! if it is dest then do the following
1l determine the nodenumber
/1 get the list of output gqs associated with that node
/! for every entry in that list do the following
/! generate a wq instruction
/ get the list of input gqs associated with that node
/1 for every entry in that list do the following
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/! generate a cq instruction

/1 update the busytill time

/1 Calls : getcurrinst - to get the currentnodes instruction

/ getgnodenum - to get the currentnodes id number

/! getgnodeinputgslist - to get the pointer to the nodes inputgs
/! getgnodeoutputgslist- to get the pointer to the nodes outputgs
/! getaissize - to get the ais size in words

1 setfields - to set the new instructions fields

I getnextelement - to get the next queue information

/! updatebusytill - to update the objects busytill time

/! setinst - to only change the instruction name

int object :: processapnode(mt numrequired) {
objectnode  *tempnodeptr;

int count,
holdnwis,
gnodenum;

ptrioptrtoaq  *gnqptr,
*tempgnqptr;

tempnodeptr = currentnode;
switch (tempnodeptr- > getcurrinst()) {
case ais:
{
gnodenum = tempnodeptr- > getgnodenum();
holdnwis = gnodelisting- > getaissize(gnodenum);
gngptr = gnodelisting- > getgnodeinputgslist(gnodenum);
tempgngptr = gnqptr;
while (tempgnqptr != NULL) {
numrequired + +;
tempnodeptr- > setﬁelds(rq,gnodenum tempgnqptr- > getgqueueid(), gm,
tempgnqptr- > getgrnid(),ap,objectid);
tempgngptr = tempgnqptr- > getnextelement();
if (tempgngptr ! = NULL) {
if (tempnodeptr- > nextnode == NULL) {
if (!(tempnodeptr- > nextnode = new-objectnode)) {
fprintf(stderr, "Insufficient memory for objectnode\n");
exit(1);
B
tempnodeptr- > nextnode- > nextnode = NULL;

tempnodeptr = tempnodeptr- > nextnode;

.
’

b
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setprocessing(true);

updatebusytill(40+0.22*holdnwis);
break;
b

case aq:
{
if (—numrequired == 0) {
tempnodeptr- > setinst(dest);

setprocessing(true);
updatebusytill(20+0. 11*gqueuelisting- > getqthresh(tempnodeptr- >
getqofgnodenum());
break;
b
case dest: //only here if instruction done executing coming from breakdn
{
count=0;
gnodenum = tempnodeptr- > getgnodenum();
gngptr = gnodelisting- > getgnodeoutputgslist(gnodenum);
tempgngptr = gnodelisting- > getgnodeinputgslist(gnodenum);
while (gnqptr ! = NULL) {
count+ +;
tempnodeptr- > setfields(wq,gnodenum,gnqptr- > getgqueueid(),gm,
gnqptr- > getgmid(),ap, objectid);
gngptr = gnqptr- > getnextelement();
if (gngptr != NULL) {
if (tempnodeptr- > nextnode == NULL) {
if (!(tempnodeptr- > nextnode = new objectnode)) {
fprintf(stderr, "Insufficient memory for objectnode\n"),
exit(1);
}
tempnodeptr- > nextnode- > nextnode = NULL;

b
if (tempnodeptr- > nextnode == NULL) {
if (!(tempnodeptr- > nextnode = new objectnode)) {
fprintf(stderr, "Insufficient memory for objectnode\n™);
exit(1);
|5
I8
tempnodeptr = tempnodeptr- > nextnode;

while (tempgnqptr != NULL) {
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count+ +;
tempnodeptr- > setfields(cq,gnodenum, tempgngptr- > getgqueueid(),gm,
tempgnqptr- > getgmid(),ap,objectid);

tempgnqgptr = tempgnqptr- > getnextelement();
if (tempgngptr != NULL) {

if (tempnodeptr- > nextnode == NULL) {

if (!(tempnodeptr- > nextnode = new objectnode)) {
fprintf(stderr, "Insufficient memory for objectnode\n");

exit(1);
|5

b
} .

mpnodeptr = tempnodeptr- > nextnode;
setprocessing(true);

updatebusytill(12 +0.11*count);
numrequired = count;

break;

.};

return numrequired;

b
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APPENDIX H: INTER-COMMUNICATION CODE

// Description : If waiting on a transfer to complete then check to see if

/ that transfer is complete, otherwise commence xfer. If not
// waiting on xfer to complete then check to see if currently
/! processing a xfer and if it is complete then complete xfer.
/! if not processing a transfer, then get the next instruction
1/ and process.

// Calls : checklocsxfering - to check locations xfering

/! commencxfer - to begin the transfer

1l completexfer - to complete the transfer

14 isprocessing - to check the processing status

I finishtime - to check if time complete

I getnextinstandprocess- to get the next inst and process it

void xferproc :: processbus(schprocessor *scheduler,ioprocessors *ioplist,
. approcessors *aplist,gmprocessors *gmlist) {
if (waitingonxferatlocs) {
if (xferobject.checklocsxfering(scheduler,ioplist,aplist,gmlist)) { // do nothing

else {

waitingonxferatiocs = false;
xferobject.commencexfer(scheduler,ioplist,aplist,gmlist);
b '
}

else {

if ((xferobject.isprocessing()) && (xferobject.finishtime())) {
xferobject.completexfer(scheduler,ioplist,aplist,gmlist);
b
if (xferobject.isprocessing() == false) {
getnextinstandprocess(scheduler,ioplist,aplist,gmlist);
b '

b

void xferproc :: getnextinstandprocess(schprocessor  *scheduler,ioprocessors
*ioplist,approcessors
*aplist,gmprocessors *gmlist) {
if (xferobject.getnextnode()) {
if (xferobject.checklocsxfering(scheduler,ioplist,aplist,gmlist)) {
waitingonxferatlocs = true;

}
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else {xferobject.commencexfer(scheduler,ioplist,aplist,gmlist);
b
L)
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APPENDIX I: RESULT GENERATION CODE

/! Description : The code included in this appendix represents the code added to the
simulator
1l : to keep track of desired output data.
void gnode :: calcnodeinsttime(int nodenumber,int nodeinststart,
int nodeinstfinish) {
gnode *tempgnodeptr = gnodelisting;
while ((tempgnodeptr- > nodeid != nodenumber) && (tempgnodeptr { = NULL)) {
tempgnodeptr = tempgnodeptr- > nextgnode;

if (tempgnodeptr == NULL) {
cerr < < "\nERROR CALCULATING NODE INSTANCE TIME\n";
}
else {
printf("Off RL node number: *);
printf(* %d" ,nodenumber);
printf(" instance: ");
printf(" %d",tempgnodeptr- > lastinstoffrl); .
printf(" Clock: ");
printf(" %1d",clock);
printf("\n");
if ((tempgnodeptr- > lastinstoffrl > = nodeinststart) &&
(tempgnodeptr- > lastinstoffrl < = nodeinstfinish)) {
tempgnodeptr- > timenodeinstonri[tempgnodeptr- > lastinstoffr] -
nodeinststart] = clock - tempgnodeptr- >
timeinstontori[tempgnodeptr- >
lastinstoffrl - nodeinststart];
5
(tempgnodeptr- > lastinstoffrl) + +;

b4

void gnode :: calcallnodeinstavgtime(int nodeinststart,int nodeinstfinish) {
gnode *tempgnodeptr = gnodelisting;
while (tempgnodeptr ! = NULL) {
printf("\nNode ID: ");
printf(" %d" ,tempgnodeptr- > nodeid);
if (tempgnodeptr- > iopidassigned ! = 0) {
printf(" is an IOP Node\n");
}
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else {
printf("\n");
/I NOTE ARRAY IS ASSUMED TO BE IN BOUNDS
for (int count=nodeinststart;count < nodeinstfinish;count+ +) {
tempgnodeptr- > avgtimeonrl = tempgnodeptr- > timenodeinstonrl[count-
nodeinststart] + tempgnodeptr- > avgtimeonrl;
tempgnodeptr- > avgtimeatap = tempgnodeptr- > timenodeinstatap[count-
nodeinststart] + tempgnodeptr- > avgtimeatap;
printf("Instance: ");
printf(" %d",count);
printf(" Time on ri: ");
printf(" %1d" ,tempgnodeptr- > timenodeinstonri[count - nodeinststart]);
printf(" Time between SIS and BD Completion: *);
printf(" %1d" ,tempgnodeptr- > timenodeinstatap{count - nodeinststart]);
printf("\n");
K
tempgnodeptr- >avgtimeonrl = tempgnodeptr- > avgtimeonrl / (nodeinstfinish
- nodeinststart);
tempgnodeptr- >avgtimeatap = tempgnodeptr- > avgtimeatap / (nodeinstfinish
- nodeinststart);
printf(" Average time on ri: ");
printf(" %1d" ,tempgnodeptr- > avgtimeonrl);
printf(" Average time between SIS and BD Compietion: ”);
printf(" %1d" ,tempgnodeptr- > avgtimeatap);
printf("\n");
b
mpgnodeptr = tempgnodeptr- > nextgnode;

b
.void gqueue :: calcqueuetimes(int nodeinststart,int nodeinstfinish) {
gqueue *tempgqueueptr = gqueuelisting;

while (tempgqueueptr ! = NULL) {

printf("\nQueue ID: ");

printf(" %d",tempgqueueptr- > gqueueid);

if (tempgqueueptr- >nodein == -1) {
printf(" is an external input queue\n”);

}

else {
if (tempgqueueptr- >nodeout == -1) {

printf(" is an external output queue\n");

}

else {
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printf("\n");

/I NOTE ARRAY IS ASSUMED TO BE IN BOUNDS

for (int count=nodeinststart;count < nodeinstfinish;count+ +) {
printf("Instance: ");
printf(" %d",count);
printf(" Time between BD Completion and Successor on RL: ");
printf(" %1d" ,tempgqueueptr- > timebtwnbdrl[count - nodeinststart]);
printf("\n");

|
b

tempgqueueptr = tempgqueueptr- > nextelement; |

b
void gnode :: settimearratap(int nodenumber,int nodeinststart,
int nodeinstfinish) {
gnode *tempgnodeptr = gnodelisting;

while ((tempgnodeptr->nodeid ! = nodenumber) && (tempgnodeptr != NULL)) {
tempgnodeptr = tempgnodeptr- > nextgnode;

if (tempgnodeptr == NULL) {
cerr < < "\nERROR SETTING ARRIVAL TIME AT AP\n";
}
else { ‘
if ((tempgnodeptr- > lastinstoffrl > = nodeinststart) &&
(tempgnodeptr- > lastinstoffrl < = nodeinstfinish)) {
tempgnodeptr- > timeinstarratap(tempgnodeptr- > lastinstoffr] -
nodeinststart] = clock;
b

|5
}.

void approcessors :: calcaunotbusytime(approcessors *tempaplist) {
while (tempaplist != NULL) {
printf("\nAP Number: ");
printf(" %d" ,tempaplist- > apsetup. getobjectid());
printf(" Time AP AU NOT Busy: ");
printf(" %1d" ,tempaplist- > aunotbusytime);
printf("\n");
tempaplist = tempaplist- > nextapproc;
b
K

void gqueue :: setcompbdtime(int loctoset) {
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timecompbd[loctoset] = clock;
|5
void ptrtoptrtoaq :: setcompbdtime(int loctoset) {
ptrtoag- >setcompbdt1me(loctoset),
b

void gqueue :: calccompbdrlnme(mt loctocalc) {
timebtwnbdri[loctocalc] = clock - timecompbdfloctocalc];

b

void ptrtoptrtoaq :: calccompbdritime(int loctocalc) {
ptrtoag- > calccompbdritime(loctocalc);

void gnode :: calctimebtwnbdri(int nodenumber,int nodeinststart,
int nodeinstfinish). {
gnode *tempgnodeptr = gnodelisting;
ptrtoptrtoaq *tempptrtoptr;
while ((tempgnodeptr->nodeid ! = nodenumber) && (tempgnodeptr != NULL)) {
tempgnodeptr = tempgnodeptr- > nextgnode;
|5

if (tempgnodeptr = NULL) {
cerr < < "\nERROR CALCULATING TIME BETWEEN BREAKDOWN AND
READYLIST\n";

else {
tempptrtoptr = tempgnodeptr- > ptrtoinglist;
if ((((tempgnodeptr- > lastinstoffrl) - 1) > = nodeinststart) &&
(((tempgnodeptr- > lastinstoffrl) - 1) < nodeinstfinish)) {

while (tempptrtoptr ! = NULL) { /-1
tempptrtoptr- > calccompbdritime((tempgnodeptr- > lastinstoffrl) -
nodeinststart);
tempptrioptr = tempptrtoptr- > getnextelement();
b

b
|5
void gnode :: calctimeinstatap(int nodenumber,int nodeinststart,
int nodeinstfinish) §
gnode *tempgnodeptr = gnodelisting;
ptrtoptrtoaq *tempptrtoptr;
while ((tempgnodeptr- > nodeid ! = nodenumber) && (tempgnodeptr != NULL)) {
tempgnodeptr = tempgnodeptr- > nextgnode;

if (tempgnodeptr == NULL) {
cerr < < "\nERROR CALCULATING NODE INSTANCE TIME\n";
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}
else {
if ((((tempgnodeptr- > lastinstoffrl) - 1) > = nodeinststart) &&
(((tempgnodeptr- > lastinstoffrl) - 1) <= nodeinstfinish)) {
/I NEXT FOUR LINES ARE NEW EXPERIMENTAL AS OF 8/28/91
tempptrtoptr = tempgnodeptr- > ptrtooutglist; // 7?7INQLIST OR OUTQLIST
while (tempptrtoptr != NULL) {
tempptrtoptr- > setcompbdtime((tempgnodeptr- > lastinstoffrl) - | -
nodeinststart);
tempptrtoptr = tempptrtoptr- > getnextelement();
tempgnodeptr- > timenodeinstatap{(tempgnodeptr- > lastinstoffrl - 1) -
nodeinststart] = clock - tempguodeptr- >
timeinstarratap{(tempgnodeptr- >
lastinstoffrl - 1) - nodeinststart];

5
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