%—

’
M .

REPORT DOCUMENTATION AD-A257 074

Public reporting burden for this collection of information is estimated 1o average 1 hour per respons: sou
&nd maintaining the data needed, and g the collection of information. Send comments rega I | rmation, indluding
e R
22202-4302, and to the Office of Information and Regulatory Atfairs, Office of Management and Bud

1. AGENCY USE (Leave 2. REPORT

I Final: 27 July 1991

4. TITLE AND 5. FUNDING
Validation Summary Report: NATO SWG on APSE Compiler for

Sun3/SunOS to MC68020, Version S3CM1.82, Sun3-50/SunOS with CAIS

5.5E (Host) to Motorola MVME 133XT (MC68020 bare machine)(Target)

6.

IABG-AVF

Ottobrunn, Federal Republic of Germany

7. PERFORMING ORGANIZATION NAME(S) AND 8. PERFORMING

IABG-AVF, Industrieanlagen-Betriebsgeselschaft ORGANIZATION

Dept. SZT/ Einsteinstrasse 20 IABG-VSR 103

D-8012 Ottobrunn

FEDERAL REPUBLIC OF GERMANY

9. SPONSORING/MONITORING AGENCY NAME(S) AND. 10. SPONSORING/MONITORING

Ada Joint Program Office o AGENCY

United States Department of Defense

Pentagon, Rm 3E114

Washington, D.C. 20301-3081

11. SUPPLEMENTARY

12a. DISTRIBUTION/AVAILABILITY - 12b. DISTRIBUTION

Approved for public release; distribution unlimited.

13. (Maximum 200
NATO SWG on APSE Compiler for Sun3/SunOS to MC68020, Version S3CM1.82, Sun3-50/SunOS with CAIS
5.5E (Host) to Motorola MVME 133XT (MC68020 bare machine)(Target), 92072811.11261, ACVC 1.11.

3
N

TR () 11“ q\ 92-27407
IR oy

»
“wige
o
a

[14. SUBJECT 15. NUMBER OF

Ada programming language, Ada Compiler Val. Summary Report, Ada Compiler Val. | __

Capability, Val. Testing, Ada Val. Office, Ada Val. Facility, ANSUMIL-STD-1815A, 16. PRICE

17. SECURITY 18. SECURITY 19, SECURITY 20. LIMITATION OF |
CLASSIFICATION CLASSIFICATION

UNCLASSIFIED UNCLASSIFED UNCLASSIFIED

NSN Standard Form 298, (Rev. 2-89)

Prescribed by ANS| Sid.

AVF Control Number: IABG-VSR 103
27 July 1992

Ada COMPILER

VALIDATION SUMMARY REPORT:
Certificate Number: 92072811.11261

NATO SWG on APSE Compiler

for Sun3/Sun0S to MC68020

Version S3CM1.82
Sun3-50/Sun0S with CAIS 5.5E Host
Motorola MVME 133XT (MC68020 bare machine) Target

Prepared By:
IABG mbH, Abt. ITE
Einsteinstr. 20
W-8012 oOttobrunn
Germany

Certificate Information

The following Ada implementation was tested and determined to pass ACVC
1.11. Testing was completed on July 28, 1992,

Compiler Name and Version:

NATO SWG on APSE Compiler for Sun3/Sun0OS to MC68020
Version S3CM1.82

Host Computer System:
Sun3-50 under Sun0S Version 4.0.3
with CAIS Version S.5B

Target Computer System:
Motorola MVME 133XT (MC68020 bare machine)

See Section 3.1 for any additional informatiop about the testing
environment.

As a result of this validation effort, Validation Certificate

92072811.11261 is awarded to Alsys / German MoD. This certificate
expires 24 months after ANSI approval of ANSI/MIL-STD 181SB.

This report has been reviewed and is approved.

)

IABG, Abt. ITE

Michael Tonndorf

Einsteinstr. 20

W-8012 ottobrunn

Germany

{" (y on Organlzatlion
D omputer & Software Engineering Division
Institute” for Defense Analyses
Alexandria VA 22311
%ké:int Program Office

Dr. John Solomond, Director Accession For ‘

Department of Defense NTIS GRA&I E

Washington DC 20301 ' DTIC TAB g

. Unannounced a
3 Justification

N By
' _E}Stributionl_

| Availability Codes
| Avail and/or
R Dist Special

xé{ ‘\/ ‘ -

DECLARATION OF CONFORMANCE

- The following declaration of conformance was supplied by the

customer.
Declaration of Conformance
Customer: - Alsys GmbH & Co. KG
Certificate Awardee: Alsys / German MoD

Ada validation Facility: IABG mbH, Germany

ACVC Version: 1.11

Ada Implementation:
NATO SWG on APSE Compiler for Sun3/Sun0O8 to MC68020 Version S3CM1.82

Host Computer System: Sun3-50/SunOS Version 4.0.3 under
CAIS Version S5.SE

Target Computer System: Motorola MVME 133XT (MC68020)
(bare machine)

Declaration:

We, the undersigned, declare that we have no knowledge of
deliberate deviations from the Ada Language Standard
ANSI/MIL-STD-1815SA ISO 8652-1987 in the implementation listed

above.

_RMM*S Z0.¢4+.92

Customer Signature Date
aour Cltt < $0.4.92

Certificate Awardee Signature Date

2,,”/ a4, & 92

Flpr

CHAPTER

CHAPTER

CHAPTER

APPENDIX A

APPENDIX B

APPENDIX C

TABLE OF CONTENTS

INTRODUCTION

USE OF THIS VALIDATION SUMMARY
REFERENCES . . ¢« ¢ « « « o o o«
ACVC TEST CLASSES . . . « . «
DEFINITION OF TERMS
IMPLEMENTATION DEPENDENCIES
WITHDRAWN TESTS « . .
INAPPLICABLE TESTS« « .
TEST MODIFICATTONS
PROCESSING INFORMATION
TESTING ENVIRONMENT

SUMMARY OF TEST RESULTS . . .
TEST EXECUTION &+ « «

MACRO PARAMETERS

COMPILATION SYSTEM OPTIONS

APPENDIX F OF THE Ada STANDARD

REPORT

e o o o

NI;)N
W

u:%»u
N =

CHAPTER 1

INTRODUCTION

The Ada implementation described above was tested according to the Ada
Validation Procedures [Pro90] against the Ada Standard [Ada83) using the
current Ada Compiler Validation Capability (ACVC). This Validation Summary
Report (VSR) gives an account of the testing of this Ada implementation.
For any technical terms used in this report, the reader is referred to
(Pro90). A detailed description of the ACVC may be found in the current
ACVC User’s Guide [UG89]).

1.1 USE OF THIS VALIDATION SUMMARY REPORT

Consistent with the national laws of the originating country, the Ada
Certification Body may make full and free public disclosure of this report.
In the United States, this is provided in accordance with the "Freedom of
Information Act" (5 U.S.C. #552). The results of this validation apply

only to the computers, operating systems, and compiler versions identified
in this report.

The organizations represented on the signature page of this report do not
represent or warrant that all statements set forth in this report are
accurate and complete, or that the subject implementation has no
nonconformities to the Ada Standard other than those presented. Copies of

this report are available to the public from the AVF which performed this
validation or from:

National Technical Information Service
5285 Port Royal Road
Springfield VA 22161

Questions regarding this report or the validation test results should be
directed to the AVF which performed this validation or to:

Ada Validation Organization
Computer and Software Engineering Division
Institute for Defense Analyses
1801 North Beauregard Street
Alexandria VA 22311-1772
1.2 REFERENCES

(Ada83) Reference Manual for the Ada Programming Language,
ANSI/MIL-STD-1815A, February 1983 and ISO 8652-1987.

[Pro90) Ada Compjler Valjdatjon Procedures, Version 2.1, Ada Joint
Program Office, August 1990.

(UG89) Ada compjiler Validation Capabiljty User’'s Guide, 21 June 1989.

1-1

INTRODUCTION

1.3 ACVC TEST CLASSES

Compliance of Ada implementations is tested by means of the ACVC. The ACVC
contains a collection of test programs structured into six test classes: A,
B, C, D, E, and L. The first letter of a test name identifies the class to
which it belongs. Class A, C, D, and E tests are executable. Class B and

class L tests are expected to produce errors at compile time and link time,
respectively.

The executable tests are written in a self-checking manner and produce a
PASSED, FAILED, or NOT APPLICABLE message indicating the result when they
are executed. Three Ada library units, the packages REPORT and SPPRT13,
and the procedure CHECK FILE are usad for this purpose. The package REPORT
also provides a set of Identity functions used to defeat some compiler
optimizations allowed by the Ada Standard that would circumvent a test
objective. The package SPPRT13 is used by many tests for Chapter 13 of the
Ada Standard. The procedure CHECK_FILE is used to check the contents of
text files written by some of the Class C tests for Chapter 14 of the Ada
Standard. The operation of REPORT and CHECK_FILE is checked by a set of
executable tests. - If these units are not operating correctly, validation
testing is discontinued.

Class B tests check that a compiler detects illegal language usage. Class
B tests are not executable. Each test in this class is compiled and the
resulting compilation listing is examined to verify that all violations of
the Ada Standard are detected. Some of the class B tests contain legal Ada
code which must not be flagged illegal by the compiler. This behavior is
also verified.

Class L tests check that an Ada implementation correctly detects violation
of the Ada Standard involving multiple, separately compiled units. Errors
are expected at link time, and execution is attempted.

In some tests of the ACVC, certain macro strings have to be replaced by
implementation-specific values -- for example, the largest integer. A list
of the values used for this implementation is provided in Appendix A. In
addition to these anticipated test modifications, additional changes may be
required to remove unforeseen conflicts between the tests and
implementation-dependent characteristics. The modifications required for
this implementation are described in section 2.3.

For each Ada implementation, a customized test suite is produced by the
AVF. This customization consists of making the modifications described in
the preceding paragraph, removing withdrawn tests (see section 2.1), and
possibly removing some inapplicable tests (see section 2.2 and {UG89])).

In order to pass an ACVC an Ada implementation must process each test of

the customized test suite according to the Ada Standard.

1.4 DEFINITION OF TERMS

Ada Compiler The software and any needed hardware that have to be added
to a given host and target computer system to allow
transformation of Ada programs into executable form and
execution thereof.

Ada Compiler The means for testing compliance of Ada implementations,

Validation consisting of the test suite, the support programs, the ACVC
Capability user’s guide and the template for the validation summary
(ACVC) report.

1-2

INTRODUCTION

Ada An Ada compiler with its host computer system and its
Implementation target computer system.

Ada Joint The part of the certification body which provides policy and
Program guidance for the Ada certification system.

Office (AJPO)

Ada The part of the certification body which carries out the
validation procedures required to establish the compliance of an Ada
Facility (AVF) implementation.

Ada The part of the certification body that provides technical
Validation guidance for operations of the Ada certification system.
Organization

(AVO)

Compliance of The ability of the implementation to pass an ACVC version.
an Ada
Implementation

Computer A functional unit, consisting of one or more computers and

System agsgociated software, that uses common storage for all or
part of a program and also for all or part of the data
necessary for the execution of the program; executes
user-written or user-designated programs; performs
user-designated data manipulation, including arithmetic
operations and logic operations; and that can execute
programs that modify themselves during execution. A
computer system may be a stand-alone unit or may consist of
several inter-connected units.

Conformity Fulfillment by a product, process, or service of all
requirements specified.

Customer An individual or corporate entity who enters into an
agreement with an AVF which specifies the terms and
conditions for AVF services (of any kind) to be performed.

Declaration of A formal statement from a customer assuring that conformity
Conformance is realized or attainable on the Ada implementation for
which validation status is realized.

Host Computer A computer system where Ada source programs are transformed
System into executable form.

Inapplicable A test that contains one or more test objectives found to be

test irrelevant for the given Ada implementation.
Is0 International Organization for Standardization.
LRM The Ada standard, or Language Reference Manual, published as

ANSI/MIL-STD-1815A-1983 and ISO 8652-1987. Citations from
the LRM take the form "<section>.<subsection>:<paragraph>."

Operating Software that controls the execution of programs and that

System provides services such as resource allocation, scheduling,
input/output control, and data management. Usually,
operating systems are predominantly software, but partial or
complete hardware implementations are possible.

Target
Computer
System

Validated Ada
Compiler

Validated Ada
Implementation

Validation

Withdrawn
test

INTRODUCTION

A computer system where the executable form of Ada programs
are executed.

The compiler of a validated Ada implementation.

An Ada implementation that has been validated successfully
either by AVF testing or by registration [Pro90].

The process of checking the conformity of an Ada compiler to
the Ada programming language and of issuing a certificate
for this implementation.

A test found to be incorrect and not used in conformity
testing. A test may be incorrect because it has an invalid
test objective, fails to meet its test objective, or
contains erroneous or illegal use of the Ada programming
language.

1-4

2.1

2.2

CHAPTER 2

IMPLEMENTATION DEPENDENCIES

WITHDRAWN TESTS

The following tests have been withdrawn by the AVO. The rationale for
withdrawing each test is available from either the AVO or the AVF. The
publication date for this list of withdrawn tests is 02 August 1991.

E28005C B28006C C32203a C34006D C355081 C35508J
C35508M C35508N C35702A C35702B B413088B €43004A
C45114A C45346A C45612a C45612B - C45612C C45651A
C46022A B49008A B49008B A74006A C74308a B83022B
B83022H B83025B B83025D B83026B c83026A €83041A
B85001L C86001F €94021A C97116a €98003B BA2011A
CB7001A CB7001B CB7004a CCl223A BC1226A CCl226B
BC3009B BD1B02B BD1BO6A AD1BOSA BD2A0O2A CD2A21E
CD2A23E CD2A32A CD2a41A CD2A41E CD2A87A CD2B1SC
BD3006A BD4008A CD4022A CD4022D CD4024B CD4024C
CD4024D CD4031A CD4051D CD5111A €D7004C ED7005D
CD700SE AD7006A CD7006E AD7201A AD7201E CD7204B
AD7206A BD8002A BD8004C CD9005A CDS00SB CDA201E
CE21071 CE2117A CE2117B CE2119B CE2205B CE240SA
CE31l1l1cC CE3116A CE3118a CE3411B CE3412B CE3607B
CE3607C CE3607D CE3812a CE3814A CE3902B

INAPPLICABLE TESTS

A test is inapplicable if it contains test objectives which are irrelevant
for a given Ada implementation. Reasons for a test’'s inapplicability may.
be supported by documents issued by ISO and the AJPO known as Approved Ada
Commentaries and commonly referenced in the format AI-ddddd. For this
implementation, the following tests were determined to be inapplicable for
the reasons indicated; references to Approved Ada Commentaries are
included as appropriate.

B2200SA..C and B2200SP (4 tests), respectively, check that the control
characters SOH, STX, ETX, and DLE are illegal when outside of character
literals, string literals, and comments; for this implementation those
characters have a special meaning to the underlying system such that the
test file is altered before being passed to the compiler. (See section
2.3.)

IMPLEMENTATION DEPENDENCIES

The following 159 tests have floating-point type declarations requiring
more digits than SYSTEM.MAX DIGITS:

C241130..Y (11 tests) (*) C357050..Y (11 tests)

C357060..Y (11 tests) C357070..Y (11 tests)
C357080..Y (11 tests) €358020..Z (12 tests)
C452410..Y (11 tests) €453210..Y (11 tests)
C454210..Y (11 tests) C455210..2 (12 tests)
C455240..2 (12 tests) C456210..Z (12 tests)
C456410..Y (11 tests) C460120..2 (12 tests)

(*) C24113W..Y (3 tests) contain lines of length greater than 255
characters which are not supported by this implementation.

The following 20 tests check for the predefined type LONG_INTEGER:

C35404cC C45231cC C45304C C45411cC C45412C
€45502C C45503C €45504C C45504F C45611C
C45613C C45614cC C45631C C45632C BS52004D
CS5B07A BS5B0SC B86001W €86006C CD7101F

C35404D, C45231D, B86001X, C86006E, and CD7101G check for a predefined
integer type with a name other than INTEGER, LONG_INTEGER, or
SHORT_INTEGER.

C35713D and B86001Z check for a predefined floating-point type with a name
other than FLOAT, LONG_FLOAT, or SHORT_FLOAT.

C41401A checks that CONSTRAINT ERROR is raised upon the evaluation of
various attribute prefixes; this implementation derives the attribute
values from the subtype of the prefix at compilation time, and thus does
not evaluate the prefix or raise the exception. (See Secticn 2.3.)

C45531M..P (4 tests) and C45532M..P (4 tests) check fixed-point operations
for types that require a SYSTEM.MAX MANTISSA of 47 or grea:.er. For this
implementation, MAX MANTISSA is less than 47. -

C45624A..B (2 tests) check that the proper exception is raised if
MACHINE_OVERFLOWS is FALSE for floating point types and the results of
various floating-point operations 1lie outside the range of the base
type; for this implementation, MACHINE_OVERFLOWS is TRUE.

B86001Y checks for a predefined fixed-point type other than DURATION; for
this implementation, there is no such type.

C96005B checks for values of type DURATION’BASE that are outside the range-

of DURATION. There are no such values for this implementation.

CD1009C uses a representation clause specifying a non-default size for a
floating-point type; this implementation does not support such sizes.

CD2A84A, CD2A84E, CD2A84I..J (2 tests), and CD2A840 use representation
clauses specifying non-default sizes for access types; this implementation
does not support such sizes.

BD8001A, BD8003A, BD80OO4A..B (2 tests), and ADSOllA use machine code
insertions; this implementation provides no package MACHINE CODE.

The following 264 tests check operations on sequential, text, and

direct access files; this implementation does not support external
files:

2-2

IMPLEMENTATION DEPENDENCIES

CE2102A..C (3) CE2102G..H (2) CE2102K CE2102N..Y (12)
CE2103C..D (2) CE2104A..D (4) CE2105A..B (2) CE2106A..B (2)
CE2107A..H (8) CE2107L CE2108A..H (8) CE2109A..C (3)
. CE2110A..D (4) CE2111A..I (9) CE2115A..B (2) CE2120A..B (2)
CE2201A..C (3) EE2201D..E (2) CE2201F..N (9) CE2203A
CE2204A..D (4) CE2205A CE2206A CE2208B
CE2401A..C (3) EE2401D CE2401E..F (2) EE2401G
CE2401H..L (5) CE2403A CE2404A..B (2) CE240S5B
CE2406A CE2407A..B (2) CE2408A..B (2) CE2409A..B (2)
CE2410A..B (2) CE2411A CE3102A..C (3) CE3102F..H (3)
CE3102J..K (2) CE3103a CE3104A..C (3) CE3106A..B (2)
CE3107B CE3108A..B (2) CE3109A CE3110A
CE3111A..B (2) CE3111D..E (2) CE3112A..D (4) CE3114A..B (2)
CE3115A CE3119A EE3203A EE3204A
CE3207A CE3208A CE3301A EE3301B
CE3302A CE3304A CE3305a CE3401A
CE3402A EE3402B CE3402C..D (2) CE3403A..C (3)
CE3403E..F (2) CE3404B..D (3) CE3405a EE3405B
CE340SC..D (2) CE3406A..D (4) CE3407A..C (3) CE3408A..C (3)
CE3409A CE3409C..E (3) EE3409F CE3410A
CE3410C..E (3) EE3410F CE3411A CE3411C
CE3412A EE3412C CE3413A..C (3) CEs414A
CE3602A..D (4) CE3603A CE3604A..B (2) CE3605A..E (5)
CE3606A..B (2) CE3704A..F (6) CE3704M..0 (3) CE3705A..E (5)
CE3706D CE3706F..G (2) CE3804A..P (16) CE3805A..B (2)
CE3806A..B (2) CE3806D..E (2) CE3806G..H (2) CE3904A..B (2)
CE3905A..C (3) CE3905L CE3906A..C (3) CE3906E..F (2)

CE2103A, CE2103B, and CE3107A expect that NAME ERROR is raised when an
attempt is made to create a file with an illegal name; this
implementation does not support the creation of external files and so
raises USE_ERROR. (See section 2.3.)

2.3 TEST MODIFICATIONS
Modifications (see section 1.3) were required for 30 tests.

The following tests were split into two or more tests because this
implementation did not report the violations of the Ada Standard in the
way expected by the original tests.

B22003A B24009A B29001A B38003Aa B38009A B38009B
B91001H BC2001D BC20C1E BC3204B BC320SB BC3205D - -

B2200SA..C and B22005P (4 tests) were graded inapplicable by Evaluation
Modification as directed by the AVO. These tests, respectively, check
that control characters SOH, STX, ETX, and DLE are illegal outside of
character literals, string literals, and comments. This implementation’s
underlying CAIS system gives special meaning to each of these control
characters such that their effect is to alter the test files in a way that
defeats the test objectives -- either the characters alone, or together
with any text that follows them on the line, are not passed to the
compiler. Hence, B22005B and B22005P compile without error, while the
other tests have syntactic errors introduced by the loss of test text.

B25002A, B26005A, and B27005A were graded passed by Evaluation
Modification as directed by the AVO. These tests check that control
characters SOH, STX, ETX, and DLE are illegal within of character
literals, string literals, and comments, respectively. This
implementation‘’s underlying CAIS system gives special meaning to each of

2-3

IMPLEMENTATION DEPENDENCIES

these control characters such that their effect is to alter the test files
in the following way: these characters, and except in the case of DLE any
text that follows them on the line, are not passed to the compiler. The
_ tests were thus graded without regard for the lines that contained one of
these four control characters.

C34007P and C34007S were graded passed by Evaluation Modification as
directed by the AVO. These tests include a check that the evaluation of
the selector "all" raises CONSTRAINT_ERROR when the value of the object is
null. This implementation determines the result of the equality tests at
lines 207 and 223, respectively, based on the subtype of the object; thus,
the selector is not evaluated and no exception is raised, as allowed by
LRM 11.6(7). The tests were graded passed given that their only output
from REPORT.FAILED was the message "NO EXCEPTION FOR NULL.ALL - 2".

C41401A was graded inapplicable by Evaluation Modification as directed by
the AVO. This test checks that the evaluation of attribute prefixes that
denote variables of an access type raises CONSTRAINT_ERROR when the value
of the variable is null and the attribute is appropriate for an array or
task type. This implementation derives the array attribute values from
the subtype; thus, the prefix is not evaluated and no exception is raised,
as allowed by LRM 11.6(7), for the checks at lines 77, 87, 97, 108, 121,
131, 141, 152, 165, & 175.

C83030C and C86007A were graded passed by Test Modification as directed by
the AVO. Thegse tests were modified by inserting "PRAGMA ELABORATE
(REPORT);" before the package declarations at lines 13 and 11,
respectively. Without the pragma, the packages may be elaborated prior to
package Report’s body, and thus the packages’ calls to function
REPORT.IDENT_INT at 1lines 14 and 13, respectively, will raise
PROGRAM_ERROR.

BC3204C..D and BC3205C..D (4 tests) were graded passed by Evaluation
Modification as directed by the AVO. These tests are expected to produce
compilation errors, but this implementation compiles the units without
error; 1ll errors are detected at link time. This behavior is allowed by
A1-00256, as the units are illegal only with respect to units that they do
not depend on.

CE2103A, CE2103B, and CE3107A were graded inapplicable by Evaluation
Modification as directed by the AVO. The tests abort with an unhandled
exception. when USE_ERROR is raised on the attempt to create an external
file. This is acceptable behavior because this implementation does not
support external files (cf. AI-00332).

CHAPTER 3

PROCESSING INFORMATION

3.1 TESTING ENVIRONMENT

The Ada implementation tested in this validation effort is described
adequately by the information given in the initial pages of this report.

For a point of contact for technical and sales information about this Ada
implementation system, see:

Alsys GmbH & Co. KG
Am Riippurrer Schloff 7
W-7500 Karlsruhe 51
Germany

Tel. +49 721 883025

Testing of this Ada implementation was mainly conducted at the AVF'’s site
by a validation team from the AVF. 273 executable tests were rerun on an
similar configuration at the customer’s site because of processing
failures during the first run. This was supervised by a team from the AVF.

3.2 SUMMARY OF TEST RESULTS

An Ada Implementation passes a given ACVC version if it processes each.
test of the customized test suite in accordance with the Ada Programming
Language Standard, whether the test is applicable or inapplicable;
otherwise, the Ada Implementation fails the ACVC ([Pro90].

For all processed tests (inapplicable and applicable), a result was
obtained that conforms to the Ada Programming Language Standard.

The list of items below gives the number of ACVC tests in various
categories. All tests were processed, except those that were withdrawn
because of test errors (item b; see section 2.1), those that require a
floating-point precision that exceeds the implementation’s maximum
precigsion (item e; see section 2.2), and those that depend on the support
of a file system -- if none is supported (item d). All tests passed,
except those that are listed in sections 2.1 and 2.2 (counted in items b
and £, below).

PROCESSING INFORMATION

a) Total Number of Applicable Tests 3593
b) Total Number of Withdrawn Tests 95
c) Processed Inapplicable Tests 59
d) Non-Processed I/O Tests 264
e) Non-Processed Floating-Point

Precision Tests 159

f) Total Number of Inapplicable Tests 482 (c+d+e)

g) Total Number of Tests for ACVC 1.11 4170 (a+b+f)

3.3 TEST EXECUTION

ACVC 1.1]1 was processed as follows: With the customer’s macro parameter
file the customised ACVC 1.11 was produced. Then CAIS version S5.S5E as
supplied by the customer was loaded and installed on the candidate Sun3-50
computer at IABG’s premises. Next the basic CAIS node model and the
candidate Ada implementation were installed. Then the full set of tests
was processed using command scripts provided by the customer and reviewed
by the validation team. Tests were processed in two steps. In the first
step tests were compiled and linked as appropriate, producing listings and
possibly load modules. For the second step load modules were transferred
via FTP to a VAX 8350 computer, from where they were downloaded to the
target computer on a serial communications line. Then the executable
object files were executed on the target. This was done using a command
script provided by the customer and reviewed by the validation team. The
results were captured on the VAX 8350 system. See Appendix B for a
complete listing of the processing options for this implementation. It
also indicates the default options.

After examination of the executable result files it turned out that 273
results from chapter 3, 4, D, and E were missing. This was caused by
processing restricitions imposed by the CAIS system and not by the Ada
implementation. These tests were successfully rerun on a similar
configuration at the customer’s site. -

Compilation was made using the following parameter settings:

SOURCE => "’CURRENT_USER'DOT(SRC)"
LIBRARY => "‘CURRENT USER‘ADA LIBRARY (SAMPLE)"
LIST => "'CURRENT_USER’DOTTLIS)"
LOG => "’CURRENT_USER'DOT(LOG)"

The parameters SOURCE and LIBRARY do not have a default value and need to
be specified anyway. -

The default of the parameters LIST and LOG means that no listing, resp. no
log output is to be produced. The values used for validation are CAIS
pathnames in order to obtain the corresponding output in the file nodes
specified by the respective pathnames.

Linking was made using the following parameter settings:
UNIT => ,.., == Main Program to be linked

LIBRARY => "/CURRENT_USER‘ADA_LIBRARY(SAMPLE)"
EXECUTABLE => "‘CURRENT USER'DOT(EXE)"

KERNEL => ”'EXECUTAELE_IMAGE'DOT_PARENT'DOT(HTK_133)"
DEBUG => NO
LoG => " ‘CURRENT_USER‘DOT(LOG) "

The parameters UNIT, LIBRARY and EXECUTABLE do not have a default value
and need to be specified anyway.

3-2

PROCESSING INFORMATION

The default value for the parameter KERNEL means that no kernel is linked.
The value used for validation is a CAIS pathname to the minimal target
kernel for the MVME 133XT board. This is the only kernel provided by the
customer with the candidate Ada implementation. It does neither contain
debugger support nor communication support.

The default of the parameter LOG means that no log output is to be
produced. The value used for validation is a CAIS pathname in order to
obtain the corresponding output in the file node specified by the
pathname.

The default value for the parameter DEBUG is not used, since ALSYS has
provided only the runtime system which does not include debugger support.

Test output, compiler and linker listings, and job logs were captured on

a Magnetic Tape and archived at the AVF. The listings examined by the
validation team were also archived.

3-3

APPENDIX A
MACRO PARAMETERS

This appendix contains the macro parameters used for customizing the ACVC.
The meaning and purpose of these parameters are explained in (UG89]. The
parameter values are presented in two tables. The first table lists the
values that are defined in terms of the maximum input-line length, which is
the value for $MAX_ IN LEN--also listed here. These values are expressed
here as Ada string aggregates, where "V" represents the maximum input-line
length.

Macro Parameter Macro Value
SMAX IN_LEN 255 =~ Value of V
$BIG_ID1 (1..V=1 => *A’, V => ‘1°)
$BIG_1ID2 (1..V=1 => ‘A’, V => ’2;)
$BIG_ID3 (1..V/2 => ‘A’) & '3’ &
(1..v-1-v/2 => *'A") = -
$BIG_ID4 (1..v/2 => 'A’) & ‘4’ &
(1..V=1-V/2 => ‘A’)
$BIG_INT_LIT (1..v=-3 => ’0’) & "298"
$BIG_REAL LIT (1..V-5 => *0’) & "690.0"
$BIG_STRING1 'mr & (1..V/2 => ‘A’) & ‘"7
$BIG_STRING2 ‘s g (1..V=1-V/2 => ‘A‘) & ‘1’ & "’
$BLANKS (1..V=20 => * *)

$MAX_LEN_INT_BASED_LITERAL
"2:" & (1..V-5 => '0’) & "11:"

$MAX_LEN_REAL_BASED_LITERAL
"16:" & (1..V-7 => ‘0’) & "F.E:"

$MAX_STRING_LITERAL ‘"’ & (1..V-2 => ‘A’) & ""°

A-1

MACRO PARAMETERS

The following table lists all of the other macro parameters and their

respective values.

Macro Parameter

Macro Value

$ACC_SIZE
$ALIGNMENT
$COUNT_LAST
SDEFAULT_MEM_SIZE
$DEFAULT_STOR_UNIT
SDEFAULT_SYS_NAME
$DELTA_DOC
SENTRY_ADDRESS
SENTRY_ADDRESS1
SENTRY_ADDRESS2
$FIELD_LAST
$FILE_TERMINATOR
SFIXED_NAME
SFLOAT_NAME
$FORM_STRING

SFORM_STRING2

32

4

2_147_483_647

2147483648

8

MOTOROLA_68020_BARE
2#1.0#E-31
SYSTEM.INTERRUPT_VECTOR(1)
SYSTEM. INTERRUPT_VECTOR(2)
SYSTEM. INTERRUPT_VECTOR(3)

512

NO_SUCH_FIXED_TYPE
NO_SUCH_FLOAT_TYPE

"CANNOT_RESTRICT_FILE_CAPACITY"

SGREATER_THAN_DURATION

0.0

SGREATER_THAN_DURATION_BASE_LAST

200_000.0

SGREATER_THAN_FLOAT_BASE_LAST

16#1.0#E+256

$GREATER_THAN_FLOAT_SAFE_LARGE

16#0.84#E+256

$GREATER_THAN_SHORT_FLOAT_SAFE_LARGE

16#0.8¢#E+32

A-2

MACRO PARAMETERS

SHIGH_ PRIORITY 15

SILLEGAL_EXTERNAL FILE_NAME1l
FILEl

$ILLEGAL_EXTERNAL_FILE_NAME2
FILE2

SINAPPROPRIATE_LINE_LENGTH
-1

SINAPPROPRIATE_PAGE_LENGTH

-1
SINCLUDE_PRAGMA1 PRAGMA INCLUDE ("A28006D1.TST")
SINCLUDE_PRAGMA2 PRAGMA INCLUDE ("B28006F1.TST")
SINTEGER_FIRST -2147483648
SINTEGER_LAST 2147483648

SINTEGER_LAST_PLUS_1 2147483648
SINTERFACE_LANGUAGE ASSEMBLER
SLESS_THAN_DURATION -0.0

SLESS_THAN_DURATION_BASE_FIRST
-200_000.0 _

SLINE_TERMINATOR ‘o
SLOW_PRIORITY 0

SMACHINE_CODE_STATEMENT
NULL;

SMACHINE_CODE_TYPE NO_SUCH_TYPE

SMANTISSA_DOC k31
$MAX_DIGITS 18

$MAX_INT 2147483647
$MAX_INT_PLUS_1 2_147_483_648
SMIN_INT -2147483648

SNAME NO_SUCH_TYPE
$NAME_LIST MOTOROLA_68020_BARE

A-3

$NAME_SPECIFICATION1
$NAME_SPECIFICATION2
$NAME_SPECIFICATION3
$NEG_BASED_INT
$NEW_MEM_SIZE
$NEW_SYS_NAME
$PAGE_TERMINATOR
$RECORD_DEFINITION
SRECORD_NAME
$TASK_SIZE
$TASK_STORAGE_SIZE
STICK
SVARIABLE_ADDRESS
SVARIABLE_ADDRESS1

SVARIABLE_ADDRESS2

X2120A

X21208

X3119A

16#FFFFFFFE#
2147483648
MOTOROLA_68020_BARE
NEW INTEGER
NO_SUCH_MACHINE_CODE_TYPE
32

10240

1.0
GET_VARIABLE_ADDRESS
GET_VARIABLE_ADDRESS1

GET_VARIABLE ADDRESS2

A-4

MACRO PARAMETERS

APPENDIX B

COMPILATION AND LINKER SYSTEM OPTIONS

The compiler and linker options of this Ada implementation, as described
in this Appendix, are provided by the customer. Unless specifically noted

otherwise, references in this appendix are to compiler documentation and
not to this report.

Compiling . Chapter 4

4 Compiling

After a program library has been created, one or more compilation units can be com-
piled in the context of this library. The compilation units must all be on the same file.
One unit, a parameterless procedure, acts as the main program. If al! units needed by
the main program and the main program itself have been compiled successfully, they
can be linked. The resulting code can then be downloaded-by using appropriate tools
of the SWG APSE (Loader, Debugger).

§4.1 and Chapter 5 describe in detail how to call the Compiler and the Linker. In
§4.2 the Completer, which is called to generate code for instances of generic units, is
described.

Chapter 6 explains the information which is given if the execution of a program is
abandoned due to an unhandled exception.

The information the Compiler produces and outputs in the Compiler listing is explained
in §4.4. -

Finally, the log of a sample session is given in Chapter 7.

4.1 Compiling Ada Units

To start the SYSTEAM Ada Compiler, use the compile_target command.

compile_target Command Description

Format

PROCEDURE compile_target (-

source : string :
analyze.dependency : yes._no_answer = no;
check : yes_no._answer = yes;
copy-source : yes_no.answer = yes;
given_by ¢ source_choices := pathname;
inline : yes_no.answer = yes;
library : pathname_type

:= default_library:
list : pathname_type :®= nolist;
log : pathname.type :s nolog:
machine.code ! yes_no.answer i® no;

SYSTEAM Ada System - User Manual o 39

Compiling Chapter 4

Debugger know this name. You can use the directory_target (...,
- full => yes, ...) command to see the file name of the copy. Ifa specified

file contains several compilation units a copy containing only the source text

of one compilation unit is stored in the library for each compilation unit.

Thus the Recompiler can recompile a single unit.

If copy_source => no is specified, the Compiler only stores the name of

the source file in the program library. In this case the Recompiler and the

Debugger are able to use the original file if it still exists.

copy-source => yes cannot be specified together with analyze_depen-

dency.

given_by : source_choices := pathname

given_by => pathname indicates that the string of the source parameter
is to be interpreted as a pathname.

given_by => unique_identifier indicates that the string of the source
parameter is to be interpreted as a unique identifier.

By default it is interpreted as a pathname.

inline : yes_no_answer := yes

Controls whether inline expansion is performed as requested by PRAGMA
inline. If you specify no these pragmas are ignored.

By default, inline expansion is performed.

library : pathname_type := default_library
Specifies the program library the command works on. The compile_target
command needs write access to the library.

The default is *CURRENT.USER'ADA_LIBRARY(STD).

list : pathname_type := nolist
Controls whether a listing is written to the given file.
By default, the compile command does not produce a listing file.

log : pathname_type := 1olog

Controls whether the Compiler appends additional messages to the speci-
fied file. '
By default, no additional messages are written.

machine_code : yes_no_answer := no

Controls whether machine code is appended at the listing file. machine.
code has no effect if 1ist is nolist or analyze_dependency => yes is
specified.

By. default, no machine code is appended at the listing file.

optimize : yes_no_answer := yes

Controls whether full optimization is applied in generating code. There is
no way to specify that only certain optimizations are to be performed.
By default, full optimization is done.

SYSTEAM Ada System - Um Manual o o | 41

-

Compiling Chapter 4

4.2 Completing Generic Instances

Since the Compiler does not generate code for instances of generic bodies, the Com-
pleter must be used to complete such units before a program using the instances can
be executed. The Completer must also be used to complete packages in the program
which do not require a body. This is done implicitly when the Linker is called.

- It is also possible to call the Completer explicitly with the complete_target command.

complete_target Command Description

Format

PROCEDURE complete_target (

unit : unitname_type :
check ! yes.no.answer i® yes;
inline ! yes_no.answer !® yes:
library : pathname._type
:= default_library: -
list : pathname_type := nolist;
log : pathname.type := nolog;
machine_code ! yes_no.answer ‘= no;
optimize ! yes.no_answer 1= yes);

Description

The complete_target command invokes the SYSTEAM Ada Completer.
The Completer generates code for all instantiations of generic units in
the execution closure of the specified unit(s). It also generates code for
packages without bodies (if necessary).

By default, the Completer is invoked implicitly by the link_target com-
mand. In normal cases there is no need to invoke it explicitly.

Parameters

unit : unitname_type
specifies the unit whose execution closure is to be completed.

check : yes_no.answer := yes
Controls whether all run-time checks are suppressed. If you specify no this
is equivalent to the use of PRAGMA suppress for all kinds of checks.

SYSTEAM Ada System - User Manual 43

Compiling Chapter 4

In the following the term recompilation stands for the recompilation of an obsolete
unit using the identical source which was used the last time. (This kind of recom-
pilation could alternatively be implemented by using some appropriate intermediate
representation of the obsolete unit.) This definition is stronger than that of the LRM
(10.3). If a new version of the source of a unit is compiled we call it compilation, not
a recompilation.

The set of units to be checked for recompilation or new compilation is described by
specifying a unit and the kind of a closure which is to be built on it. In many cases
you will simply specify your main program.

The automatic recompilation of obsolete units is supported by the recompile_target
command. It determines the set of obsolete units and generates a command file for
calling the Compiler in an appropriate order. This command file is in fact an Ada
program using the facilities of the package CLI_INTERFACE provided by the SWG APSE
CLL

The recompilation is performed using the copy of the obsolete units which is (by
default) stored in the library. (If the user does not want to hold a copy of the sources
the recompile_target command offers the facility to use the original source.)

The automatic compilation of modified sources is supported by the autocompile_
target command. It determines the set of modified sources and generates a command
file for calling the Compiler in an appropriate order. This command file is in fact an
Ada program using the facilities of the package CLI_INTERFACE provided by the SWG
. APSE CLI. The basis of both the recompile-target and the autocompile_target
command is the information in the library about the dependencies of the concerned
units. Thus neither of these commands can handle the compilation of units which have
not yet been entered in the library.

The automatic compilation of new sources is supported by the compile_target com-
mand together with the analyze_dependency parameter. This command is able to
accept a set of sources in any order. It makes a syntactical analysis of the sources and
determines the dependencies. The units "compiled” with this command are entered
into the library, but only their names, their dependencies on other units and the name
of the source files are stored in the library. Units which are entered this way can
be automatically compiled using the autocompile_target command. They cannot
be recompiled using the recompile_target command because the recompile_target
command only recompiles units which were already compiled.

The next sections explain the usage of the recompile.target command, the auto-
compile_target command, and the compile_target command with analyze_depen-
dancy => yes.

SYSTEAM Ada System - User Manual 45

Compiling Chapter 4

The recompile.target command uses the copy of the source which is
stored in the library for the recompilation. By default, the compile com-
mand stores a copy of the source in the library. If there is no copy in
the library - because the unit was compiled using the copy_source => no
parameter - the recompile_target issues a warning and generates a com-
pile_target command for the original source file name. It is not checked
whether such a file still exists. This command only performs a real recom-
pilation if the current source is the same which was last compiled.

In the command file each recompilation of a unit is executed under the
condition that the recompilation of other units it depends on was successful.
Thus useless recompilations are avoided. The generated command file only
works correctly if the library was not mcdified since the command file was
generated.

Note: If a unit from a parent library is obsolete it is compiled in the
sublibrary in which the recompile_target command is used. In this case
a later recompilation in the parent library may be hidden afterwards.

Parameters

unit : unitname_type ~
Specifies the unit whose closure is to be built. -

output : pathname_type
Specifies the name of the generated command file.

body_ind : yes_no_answer := no A
specifies that unit stands for the secondary unit with that name. By
default, unit denotes the library unit. If unit specifies a subunit, the
body_ind parameter need not be specified.

bodies.only : yes_no_answer := no

Controls whether all units of the closure are recompiled (default) or only
the secondary units. This parameter is only effective if conditional =>
no is specified.

check : yes_no._same_answer := game-

check => same means that the same value for the parameter check is
included in the generated command file which was in effect at the last
compilation. See the same parameter of the compile_target command.
Otherwise the given value for the check parameter is included in the com-
mand file.

By default the parameter value of the last compilation is included.

closure : closure.choices := gxecute

SYSTEAM Ada System - User Manual 47

Compiling Chapter 4

Otherwise the given value for the optimize parameter is included in the
command file.
By default the parameter value of the last compilation is included.

End of Command Description

4.3.2 Compiling New Sources

The autocompile_target command supports the automatic cor silztion of units for
which a new source exists. The command receives as pararr:ter a unit which is to be
used to form the closure of units to be processed. The kinJ of closure can be specified.
For every unit in the closure, the autocompile .targe checks whether there exists
a newer source than that which was used for the last compilation. It generates a
command file with a sequence of compile. icget : mmands to compile the units for
which a newer source exists. 7" a unit tu* ~.mpiled depends on another unit which
is obsolete or which will become obsole* . for which no newer source exists, the
autocompile_target corunana always an appropriate compile_target (...,
recozpile => yes, ..., .ommand . tuake it current; the recompile parameter
controls which other obsolete units are recompiled, and can indeed be used to specify
that the same recompilations are done as if the recompile.target command was
applied subsequently. The generated command file is in fact an Ada program using
the fac’ ..ies of the package CLI_INTERFACE provided by the SWG APSE CLIL The
name of the command file can be specified using the output parameter.

autocompile_target Command Description

Format

PROCEDURE autocompile_target (

unit : unitname_type :

output : pathname_type ;

body-ind I yes._no.answer := no;
bodies.only : yes_no_answer :® no;
check : yes_no_same_answer := sane;
closure : closure_choices := execute:
conditional ! yes_no_answer i= yes;
copy-source ! yes.no.answer 1™ yes;
inline : yes_no.same.answer .= same;
library : pathname_type

:= default_library;

SYSTEAM Ada System - User Manual

49

Compiling Chapter 4

The autocompile_target command does not fully handle the problem
which arises when several compilation units are contained within one source
file; it only avoids the multiple compilation of the same source file. If you
want to use the autocompile_target command it is recommended not to
keep several compilation units in one source.

Parameters

unit : unitname_type
Specifies the unit whose closure is to be built.

output : pathname_type
Specifies the name of the generated command file.

body.ind : yes_no_answer := no

specifies that unit stands for the secondary unit with that name. By
default, unit denotes the library unit. If unit specifies 2 subunit, the
body-ind parameter need not be specified.

bodies_only : yes_no_answer := no

Controls whether all new units of the closure are compiled (default) or only -
the secondary units. This parameter is only effective if conditional =>
no is specified. - X
check : yes_no._same.answer := same

check => game means that the same value for the parameter check is
included in the generated command file which was in effect at the last
compilation. See the same parameter of the compile_target command.
Otherwise the given value for the check parameter is included in the com-
mand file.

- By default the parameter value of the last compilation is included.

closure : closure_choices := execute

Controls the kind of the closure which is built and which is the basis for the
investigation for new sources. closure => noclosure means that only the
specified unit is to be checked. closure => compile means that only those
units on which the specified unit transitively depends are regarded. clo-
sure => execute means that - in addition - all related secondary units and
the units they depend on are regarded. If closure => tree is specified, a
warning is issued stating that this is not meaningful for this command and
that the default value is taken instead.

By default, the execution closure is investigated for new sources.

conditional : yes_no.answer := yes

Controls whether the check for new sources is performed (default). no
means that all units in the closure are compiled disregarding the modifica-
tion date. This parameter is useful for compiling the complete closure with
different parameters than the last time.

SYSTEAM Ada System - User Manual _ 51

Compiling Chapter 4

Controls whether the autocompile_target command additionally recom-
piles obsolete units. With recompile => as_necessary only those units
are recompiled which are obsolete or become obsolete and are used by
other units which are to be compiled because of new sources. recozpile
=> same_status additionally recompiles those units of the considered clo-
sure which will become obsolete during the compilation of new sources.
This option specifies that there shall not be more obsolete units after the

_execution of the command file than before. recompile => as_possible
specifies that all obsolete units of the closure and all units which will be-
come obsolete are recompiled. Thir is equivalent to a subsequent call of the
recompile_target command after the run of the command file generated
by the autocompile_target command.

End of Command Description

4.3.3 First compilation

The SYSTEAM Ada System supports the first compilation of sources for which no
compilation order is known by the compile_target command with parameter ana*
lyze_dependency in combination with the autocompile_target command.

With the analyze._dependency parameter the Compiler accepts sources in any order
and performs the syntax analysis. If the sources are syntactically correct the units
which are defined by the sources are entered into the library. Their names, their de-
pendencies on other units and the name of the source files are stored in the library.
Units which are entered this way can be automatically compiled using the autocom-
pile_target command, i.e. the Autocompiler computes the first compilation order™
for the new sources. The name of the main program, of course, must be known and
specified with the autocompile_target command.

Note that the compile_target (..., analyze.dependency => yes, ...) command
replaces other units in the library with the same name as a new one. Thus the library
may be modified even if the new units contain semantic errors; but the errors will not
be detected until the command file generated by the autocompile_target command is
run. Hence it is recommended to use an empty sublibrary if you do not know anything
about the set of new sources. :

If there are several sources containing units with the same name the last analyzed one
will be kept in the library.

The autocompile_target command issues special warnings if the information about
the new units is incomplete or inconsistent.

SYSTEAM Ada System - User Manual 53

Compiling Chapter 4

Warnings and information messages have no influence on the success of a compilation.
If there are any other diagnostic messages, the compilation was unsuccessful.

All error messages are self-explanatory. If a2 source line contains errors, the error
messages for that source line are printed immediately below it. The exact position in
the source to which an error message refers is marked by a number. This number is
also used to relate different error messages given for one line to their respective source
positions.

In order to enable semantic analysis to be carried out even if 2 program is syntactically
incorrect, the Compiler corrects syntax errors automatically by inserting or deleting
symbols. The source positions of insertions/deletions are marked with a vertical bar
and a number. The number has the same meaning as above. If a larger region of the
source text is affected by a syntax correction, this region is located for the user by
repeating the number and the vertical bar at the end as well, with dots in between
these bracketing markings.

A complete Compiler listing follows which shows the most common kinds of error
messages, the technique for marking affected regions and the numbering scheme for
relating error messages to source positions. It is slightly modified so that it fits into
the page width of this document: : -

ok ok e ok ok 3k ke s ok ok ok ok e ak 2 3k 3K ok 3k i Sk ok e i ke 3k ol 3k 3K ok ok 3k e ok 3 e ek e ok ak ko K ol ok ak ok ake ok 3k i ke ok ol ok sk e ok ake 2 e ok ke ok 3k e ok ok

®% xx
== SYSTEAM ADA - COMPILER SUN3/SUNOS/CAIS x MC68020/BARE 1.82 »x
ok .k
** 90-01-29/08:39:44 =x
*% *%

ARk kR ok KRR AR Rk kKRR AR R AR AR Rk R R Rk kR kR kAR ARk Rk Rk

BEEBEEBEEEEE= ERER = B EEEREE SRS EEERESEESEEEEEEERR
= Started at : 08:39:44 =
= PROCEDURE LISTING_EXAMPLE =
1 PROCEDURE listing.-example IS
2 abc : procedure integer RANGE O .. 9 := 10E-1;
It...... 1]

1

>>>>> SYNTAX ERROR
Symbol(s) deleted (1)
>>>>> SYMBOL ERROR (1) An exponent for an integer literal must not
have a minus sign
3 def integer RANGE O .. 9;

SYSTEAM Ada Svstem - User Manual 55

¥yt

Linking Chapter 5

5 Linking

The Linker of the SYSTEAM Ada System either performs incremental linking or final
linking.

Final linking produces a program image file (see §5.6) which contains a loadable pro-
gram. The code portion which is part of the program image file must be loaded onto
the target later on. Final linking can (but need not) be based on the results of previous
incremental linking.

Incremental linking means that a program is linked step by step (say in N > 1 steps
1 ... N). All steps except the last one are called incremental linking steps. In an
incremental linking step, a collection image file (see §5.6) containing a collection is
produced; a collection is a set of Ada units and external units.

Each step X € {2 ... N} is based on the result of step X-1. The last step is always
a final link, i.e. it links the Ada main program. The result of an incremental linking
step is also a code portion which must be Joaded onto the target later on.

So the code of a program may consist of several code portions Wthh are loaded onto
the target one by one. This is called incremental loading. -

The reasons for the introduction of the concept of incremental linking and loading into

the Ada Cross System are the following:

e It should be possible that some Ada library units and external units are compiled,
linked, and burnt into 2 ROM that is plugged into the target, and that programs
using these units are linked afterwards.

e The loading time during program development should be as short as possible.
This is achieved by linking those parts of the program that are not expected
to be changed (e.g. some library units and the Ada Runtime System). The
resulting code portion is loaded to the target and need not be linked or loaded
later on. Instead, only those parts of the program that have been modified or
introduced since the first link must be linked, so that the resulting code portion
is much smaller in size than the code of the whole -program would be. Because
typically this code portion is loaded several times during program development,
the development cycle time is reduced drastically.

The Runtime System (which is always necessary for the execution of Ada programs)
is always linked during the first linking step. In particular, this means that also the
version of the Runtime System (Debug or Non-Debug) is fixed during the first step.

The Linker gives the user great flexibility by allowing him to prescribe the mapping
of single Ada units and assembler routines into the memory of the target. This, for

SYSTEAM Ada System - User Manual) | 57

Linking

Chapter 5

link_main_target

Command Description

Format

PROCEDURE link_main_target (

unit : unitname_type :
executable . pathname_type :
base : pathname_type = nobase;
check ! yes_no._answer = yes;
complete : yes_no_answer i= yes;
debug ! yes_no.answer = yes;
directive ¢ pathname_type

:= default_directive;
external : extern.list := noexternal;
inline ! yes_no_answer = yes,
kernel : pathname_type := nokernel;
library : pathname_type

:= default_library;
linker.listing : pathname_type := nolist;
list : pathname._type ‘= nolist: -
log : pathname_type := nolog:
machine_code ! yes.no.answer = no;
map : pathname._type := nomap;
optimize : yes.no.answer 1= yes);

Description

The 1ink _main_target command invokes the SYSTEAM Ada Linker for
final linking.

The Linker generates a program image and writes it into the file given by
the parameter executable. The code portion of this file can be loaded and
executed by means of the SWG APSE Loader, resp. SWG APSE Debugger.

Parameters

unit : unitname_type
Specifies the library unit which is the main program. This must be a
parameterless library procedure.

executable : pathname_type

Specifies the name of the file which will contain the result of the final
link, see §5.6. The named node must not yet exist. It is created by this
command.

SYSTEAM Ada System - User Manual) 59

Linking Chapter 5

kernel : pathname_type := nokernel

Specifies the name of the file that contains the assembled code of the Target
Kernel that is to be linked to the program.

If kernel=>nokernel is specified, then no Target Kernel is linked to the
program. Note that this feature is not meaningful in the SWG APSE.

If you want to link the Minimal Target Kernel for the MVME133XT board
to your program, specify kernel=>minimal_kernel. If you want to link
one of the target kernels which support the SWG APSE Loader (XTBS
Target Kernel) or the SWG APSE Debugger (XSDB Target Kernel) see
the corresponding User Manuals of these components.

Note, the Minimal Target Kernel must not be linked to the final program
if the Debug Runtime System is used.

library : pathname_type := default_library

Specifies the program library the command works on. The link.main_
target command needs write access to the library unless complete=>no is
specified. If complete=>no is specified the link_main_target command
needs only read access. -

The default library is *CURRENT_USER*ADA_LIBRARY(STD).

linker_listing : pathname_type := nolist

Unless linker_listing => nolist is specified, the Linker of the SYS-
TEAM Ada System produces a listing file containing a-table of symbols
which are used for linking the Ada units.

By default, the Linker does not produce a listing file.

list : pathname_type := nolist 7
This parameter is passed to the implicitly invoked Completer. See the same
parameter with the complete_target command.

log : pathname_type := nolog

This parameter controls whether the command writes additional messages
onto the specified file, and is also passed to the implicitly invoked Com-
pleter. See the same parameter with the complete_target command.

machine_code : yes_no_answer := no

This parameter is passed to the implicitly invoked Completer. See the same
parameter with the complete_target command. If 1inker_listing is not
equal to nolist and machine_code => yes is specified, the Linker of the
SYSTEAM Ada System generates a listing with the machine code of the
program starter in the file given by linker_listing. The program starter
is a routine which contains the calls of the necessary elaboration routines
and a call for the Ada subprogram which is the main program.

By default, no machine code listing is generated.

map : pathname.type :* nomap

'SYSTEAM Ada System - User Manual ‘ e

Linking : Chapter 5

This program image file serves as input for the Loader or the Debugger in order to
load the code portion included in the file onto the target.

5.2 Linking Collections

A set of Ada units and external units which can be linked separately is called a col-
lection. Such a collection consists on one hand of all compilation units needed by
any of the given library units, and on the other hand of all given external units. All
compilation units must successfully have been compiled or completed previously.

The code of a linked collection does not contain any unresolved references and can
thus be loaded to the target and used by programs linked afterwards without any
changes. In particular, this allows the code of a linked collection to be burnt into a
ROM. Linking a collection is called incremental linking.

Contrary to final linking, incremental linking is not done selectively. Instead all code
and data belonging to the collection is linked, because the Linker does not know which
programs or collections will be linked on the collection as a base.

Incremental linking results in a collection image file. There is a code portion in this
image file which, together with the code of the given base (if any), is the code of all
Ada units and all external (assembler written) units that belong to the collection.

For incremental linking, the Linker is started by the link_incr_target command.

link_incr_target Command Description _

Format

PROCEDURE link_incr_target (

collection : pathname_type :
base : pathname_type := nobase:
contains : unit_list := nounits;
debug ! yes_no.answer is yes;
directive : pathname_type

:= default_directive;
external : extern.list := noexternal;
library : pathnaze._type

:= default_library:
log : pathname._type := nolog:
map : pathname_type := nomap):

§’£STEAM Ada Svstem - User Manual 63

Linking Chapter 5

Specifies a list of file nodes which contain the object code of those program
units which are sritten in Assembler; these file nodes contain information
generated by the Cross Assembler, see §5.5. When external=>noexternal
is given, external program units are not linked.

library : pathname_type := default_library

Specifies the program library the command works on. The link_incr._
target command needs write access to the library unless complete=>no is
specified. If complete=>no is specified the link_incr_target command
needs only read access.

The default library is *CURRENT_USER'ADA_LIBRARY(STD).

log : pathname_type := nolog

This parameter controls whether the command writes additional messages
onto the specified file, and is also passed to the implicitly invoked Com-
pleter. See the same parameter with the complete_target command.

By default, no additional messages are written.

map : pathname_type := nomap

Specifies whether the map listing of the Linker and the table of symbols
which are used for linking the Ada units are to be produced in the specified
file.) -

End of Command Description -

The contains and external parameters define a collection C as defined at the be-
ginning of this section. If a base collection is specified (parameter base), then C is
enlarged by all units belonging to this base collection. The units belonging to the base
collection are identified by their names (Ada name of a library unit or name of the- -
external unit) and by their compilation or assembly times. The Linker uses these to
check whether a base unit is obsolete or not.

See §5.4 for the mapping process.

If no errors are detected within the linking process, then the result of an incremental
link is a collection image file containing the following:

e A code portion that contains the complete code of the linked collection, except
the code of the base collection.

o Base addresses and lengths of the regions actually occupied by the complete col-
lection (including the base ¢ollection).

e Checksums of the regions which contain code sections and which are actually
occupied by the complete collection (including the base collection).

e The names of all library units as specified by the user (parameter units) (mcludmg
those of the base collection).

~ SYSTEAM Ada System - User Manual 7 65

Linking Chapter 5

region_list ::= region_name [(, region_name)+]

The syntax is specified in an extended Backus-Naur notation with start symbol linker_
directive_file. [X]| means that X is optional, X + means that X is repeated several
times (but at least once), X | Y means that X or Y is used.

All characters are case insensitive. Hexadecimal numbers must be in the range 0 ..
FFFFFFFF. region_name, library_unit_name, and object_module.name can be any
sequence of readable characters except comma and blank.

The user has to specify all contiguous memory regions of the target that are to be used
for the program or the collection to be linked. Each REGION description defines the
name, the base address, and the size in bytes of one region.

The RESET directive specifies a region whose first 8 bytes are to be reserved for
the initial program counter and the initial stack pointer. This directive supports the
generation of ROMable programs: If a hardware reset occurs, then the processor fetches
its reset vector from the start address of the given region. The RESET directive is
ignored if KERNEL is not specified.

The STACK directive tells the Linker the size of the main task’s stack and the name
of the region into which the stack is to be mapped.

-

It is possible to specify specific regions for the code or the data of Ada library units
or of external (assembler written) units in LOCATION directives. If a region for a
library unit is specified, this causes this unit and all its secondary units to be mapped
into this region. A region for the code or data of a library unit or of an extemal unit
must not be specified more than once.

In the CODE directive, a list of regions must be specified to be used for the code and~
the constants of those units for which no LOCATION CODE directive is given. The
specified regions are filled in the given order.

In the DATA directive, a list of regions must be specified to be used for the data of
those units for which no LOCATION DATA directive is given. The specified regions
are filled in the given order.

A list of regions must be given to be used for the heap of the program (HEAP directive).

The following objects are allocated on the heap:

e All Ada collections for which no length clause is specified;
o the storage for a task activation (see §10.3);
o all task control blocks (see §10.3).

Enough space for these objects must be allocated; otherwise storage_error will be
raised when the heap space is exhausted.

QVETR AN AAa Quetacn Tleomne ANlameeatl (-4

Linking Chapter 3

resulting image may be reduced drastically when a base collection is given, even if
memory space occupied by the "old” section is not reused.

The Linker automatically takes care that the regions specified by the user in the RE-
GION descriptions of the directive file do not overlap with the regions actually occupied
by the given base collection. If the Linker detects an overlap, then it issues an informa-
tion message and uses a region description which does not overlap with a base region
any longer.

The mapping of the sections of S into the regions proceeds as follows:

1. Finallinking only: If there is a RESET directive, then space for the initial program
counter and for the initial stack pointer is reserved at the bottom of the given
region.

2. Final linking only: The stack is mapped into the specified region with the given
size. If the given region has not enough space for the stack, then an errer message
is issued.]

3. The LOCATION directives are processed in the order in which they appear in the
Linker’s directive file. Each directive is treated as follows: If the specified library
unit or external unit is not part of the resulting program (e.g. as a consequence of
selective linking), then the directive is ignored and a warning is issued. Otherwise
all memory sections belonging either to the given library unit or one of its sec-
ondary units or to the given external unit, and containing code or data (as given
in the directive), are mapped into the given region. If the given region has not
enough space left for this mapping, then an error message is issued.

-4. Then all sections not yet mapped are processed in an arbitrary order. If a section

contains code or constants, then the regions specified in the CODE directive are

scanned in the given order and the section is mapped into the first region that
has enough space left. If the section is a data section, then the same is done with
the regions specified in the DATA directive. If no region is found that has enough ~
space left, then an error message is issued.

Now each region is filled without any gaps, beginning at its base address. The sections
which are mapped into a region are sorted as follows: First the stack, then code
sections, then data sections. If there is any space left in a region, then this space is a
contiguous byte block at the top of the region

5. Final link only: The heap is located in those regions that have space of at least a
certain minimum size (100 byte) left and are listed within the HEAP directive.

6. Final link only: If there is a RESET directive, then the values of the initial stack
pointer and of the kernel entry point are written into the first 8 bytes of the given
region. -

Unless the parameter map=>nomap is given, the result of this mapping is written ix.no
the specified map file. The map file is generated even if errors were detected during
linking. The information written into the map file has the following structure:

SYSTEAM Ada System - User Manual A 69

Linking - Chapter 5

5.6 Image Files

The files whose contents can be downloaded to a target board are called target image
files. Two different kinds of target images exist:)

e program images
e collection images

Collection images are the result of an incremental link step (command link_iner.
target), see §5.2. Program images are the result of linking a main program using the
command link_main_target, see §5.1.

In order to distinguish these kinds of images in a CAIS database from executable
images for the host computer the SYSTEAM Ada System defines a node kind TARGET_
IMAGE and a relation TARGET._IMAGE which can terminate at nodes of this kind. Hence,
this relation must always be used as the last relation in pathnames denoting target
image files of this SYSTEAM Ada System. This applies to pathnames given as values
- to the parameters BASE, COLLECTION and EXECUTABLE in the commands mentioned.

As an exception to the general rule that nodes have to exist before they can be passed
in pathnames to the SYSTEAM Ada System, target image nodes are created, see
the description of the parameters COLLECTION and EXECUTABLE in the respective link
commands.

Loading of target image files to a target board is supported by the SWG APSE Loader
and SWG APSE Debugger. They take target image files produced by this SYSTEAM
Ada System as input.

SYSTEAM Ada System - User Manual 71

APPENDIX C

APPENDIX F OF THE Ada STANDARD

The only allowed implementation dependencies correspond to implementation-
dependent pragmas, to certain machine-dependent conventions as mentioned
in Chapter 13 of the Ada Standard, and to certain allowed restrictions on
representation clauses. The implementation-dependent characteristics of
this Ada implementation, as described in this Appendix, are provided by
the customer. Unless specifically noted otherwise, references in this
Appendix are to compiler documentation and not to this report.
Implementation-specific portions of the package STANDARD, which are not a
part of Appendix F, are contained in the following Predefined Language
Enviroment (chapter 13 of the compiler user manual).

Predefined Language Environment Chapter 13

13 Predefined Language Environment

The predefined language environment comprises the package standard, the language-
defined library units and the implementation-defined library units.

13.1 The Package STANDARD

The specification of the package standard is outlined here; it contains all predefined
identifiers of the implementation. ’

PACKAGE standard IS
TYPE boolean IS (false, true);

-- The predefined relational operators for this type are as follows:

-- FUNCTION "=" (left, right : boolean) RETURN booleasn:
-- FUNCTION "/=" (left, right : boolean) RETURN boolean;
-- FUNCTION "<" (left, right : boolean) RETURN boolean;
-- FUNCTION "<=" (left, right : boolean) RETURN boolean;
-- FUNCTION ">" (left, right : boolean) RETURN boolean;
-- FUNCTION ">=" (left, right : boolean) RETURN boolean;

-~ The predefined logical operators and the predefined logical
-- negation operator are as follows:

-- FUNCTION "AND" (left, right : boolean) RETURN boolean:
-- FUNCTION "OR" (left, right : boolean) RETURN boolean;
-- FUNCTION "XOR" (left, right : boolean) RETURN boolean:
-- FUNCTION "NOT" (right : boolean) RETURN boolean:

-- The universal type universal_integer is predefined.
TYPE integer IS RANGE - 2.147_483.648 .. 2.147.483.647;

-- The predefined operators for this type are as follows:

-- FUNCTION "=" (left, right : integer) RETURN boolean;
-- FUNCTION "/=" (left, right : integer) RETURN boolean:

SYSTEAM Ada System - User Manual i} 107

Predefined Language Environment Chapter 13

-~ FUNCTION "+" (left, right : float) RETURN float;
~= FUNCTION "~ (left, right : float) RETURN float;
~- FUNCTION "*" (left, right : float) RETURN float;
-- FUNCTION "/" (left, right : float) RETURN float;

-- FUNCTION "#*" (left : float; right : integer) RETURN float;

== An implementation may provide additional predefined floating

-- point types. It is recommended that the names of such additional
-- types end with FLOAT as in SHORT_FLOAT or LONG_FLOAT.

-~ The specification of each operator for the type universal_real,
-- or for any additional predefined floating point type, is obtained
=- by replacing FLOAT by the name of the type in the specification of
== the corresponding operator of the type FLOAT.

TYPE short_float IS DIGITS 6 RANGE
= 16#0.FFFF_FF#E32 .. 16#0.FFFF_FF#E32;

TYPE long_float IS DIGITS 18 RANGE
- 16#0.FFFF_FFFF_FFFF_FFFF#E4096 ..
16#0.FFFF_FFFF_FFFF_FFFF#E4096;
-- In addition, the following operators are predefined for universal
== types:

-- FUNCTION "«" (left : UNIVERSAL.INTEGER; right : UNIVERSAL_REAL)
RETURN UNIVERSAL_REAL:

-- FUNCTION "#" (left : UNIVERSAL_REAL; right : UNIVERSAL_INTEGER)
RETURN UNIVERSAL.REAL;

-- FUNCTION "/" (left : UNIVERSAL_REAL; right : UNIVERSAL_INTEGER) ~
RETURN UNIVERSAL_REAL:

-- The type universal_fixed is predefined.
-- The only operators declared for this type are

-- FUNCTION "=" (left : ANY_FIXED.POINT.TYPE;
right : ANY_FIXED-POINT.TYPE) RETURN UNIVERSAL_FIXED;

-- FUNCTION "/" (left : ANY_FIXED-POINT.TYPE:
’ right : ANY_FIXED_POINT.TYPE) RETURN UNIVERSAL_FIXED:

-- The following characters form the standard ASCII character set.
=- Character literals corresponding to control characters are not
<= identifiers.

TYPE character IS
(nul, soh, stx, etx. eot, eng, ack, bel,

SYSTEAM Ada System - User Manual 109

Predefined Language Environment

Chapter 13

dollar : CONSTANT character := '$’;
percent : CONSTANT character := '%’;
ampersand : CONSTANT character := '&°;
colen : CONSTANT character := ‘:';
semicolon : CONSTANT character := ';°;
query : CONSTANT character := "?°;
at_sign : CONSTANT character := °‘Q°;
1_bracket : CONSTANT character := °[’;
back_slash : CONSTANT character := °\':
r_bracket : CONSTANT character := ']°’;
circumflex : CONSTANT character := *'~°;
underline : CONSTANT character := °_’;
grave : CONSTANT character := '°°;
l.brace : CONSTANT character := *{°;
bar : CONSTANT character := °|°;
r.brace : CONSTANT character := '}’;

. tilde : CONSTANT character := *~°;
lc_a : CONSTANT character := ‘a‘’;
lc_z : CONSTANT character := °z°;

END ascii: o

-- Predefined subtypes:

SUBTYPE natural IS integer RANGE O ..
SUBTYPE positive IS integer RANGE 1 ..

-~ Predefined string type:

integer last;
integer’last;

TYPE string IS ARRAY(positive RANGE <>) OF character: -

PRAGMA pack(string):

The predefined operators for this type are as follows:

-- FUNCTION "=" (left, right : string) RETURN boolean;
-- FUNCTION "/=" (left, right : string) RETURN boolean:
-- FUNCTION "<" (left, right : string) RETURN boolean:
-- FUNCTION "<=" (left, right : string) RETURN boolean;
-- FUNCTION ">" (left, right : string) RETURN boolean;
-- FUNCTION ">=" (left, right : string) RETURN boolean;:
==~ FUNCTION "&" (left : string: right : string) RETURHN string:
-- FUNCTION "&" (left : character; right : string) RETURN string:
== FUNCTION "&" (left : string: right : character) RETURN string:

G

SYSTEAM Ada System - User Manual

1

Vv

Predefined Language Environment Chapter 13

13.3.1 The Package COLLECTION_MANAGER

In addition to unchecked storage deallocation (cf. LRM(§13.10.1)), this implementa-
tion provides the generic package collection_manager, which has advantages over
unchecked deallocation in some applications; e.g. it makes it possible to clear a collec-
tion with a single reset operation. See §15.10 for further information on the use of the
collection manager and unchecked deallocation.

The package specification is:

GENERIC
TYPE elem IS LIMITED PRIVATE:
TYPE acc IS ACCESS elem;
PACKAGE collection_manager IS
TYPE status IS LIMITED PRIVATE:
PROCEDURE mark (s : OUT status):

-- Marks the heap of type ACC and -
-~ delivers the actual status of this heap.

PROCEDURE release (s : IN status):

-- Restore the status s on the collection of ACC.
-~ RELEASE without previous MARK raises CONSTRAINT_ERROR

PROCEDURE reset:
-- Deallocate all objects on the heap of ACC

PRIVATE
-= private declarations

END collection_manager;

A call of the procedure release with an actual parameter s causes the storage occupied
by those objects of type acc which were allocated after the call of mark that delivered
s as result, to be reclaimed. A call of reset causes the storage occupied by all objects
of type acc which have been allocated so far to be reclaimed and cancels the effect of

all p;'evious calls of mark.

SYSTEAM Ada System - User Manual 113

Predefined Language Environment

Chapter 13

WITH system:

PACKAGE privileged_operations IS

SUBTYPE long.range IS integer RANGE -2#%31 .. 2##31-1;
SUBTYPE word_range IS integer RANGE -2%%15 .. 2«#15-1;
SUBTYPE byte_range IS integer RANGE =-2#*7 .. 2#%7-1;

SUBTYPE bit_number IS integer RANGE O .. 7;
-- 0 designates the least significant bit of a byte,

-~ 7 designates the most

significant bit of a byte.

SUBTYPE vector._number IS integer RANGE O .. 255;

PROCEDURE assign_byte (dest

item :

PROCEDURE assign_word (dest
iten
PROCEDURE assign-long (dest

item :

PROCEDURE assign.addr (dest

: system.address;

byte_range);

: system.address;

: word_range);

: system.address;

long-range): -
: system.address; -

iten : system.address):
PROCEDURE bit_set (dest : system.address;
bitno : bit.number);
PROCEDURE bit_clear (dest : system.address;

bitne : bit_number):

FUNCTION byte_value (addr :
FUNCTION word_value (addr :
FUNCTION long.value (addr :
FUNCTION addr_value (addr :

FUNCTION bit_value (addr
bitne

system.address) RETURN byte_range;
system.address) RETURN word_range:
system.address) RETURN long_range:
system.address) RETURN system.address:

: system.address;
: bit_number) RETURN boolean;

-= true is returned if the bit is set, false otherwise.

PROCEDURE defihc-intcrrupt-scrvico-routine

(routine : system.address;
for.vector : vector.number):;

-- dcfinos an assembler routine as interrupt service routine

END privileged._operations;

SYSTEAM Ada System - User Manual 115

Predefined Language Environment Chapter 13

PROCEDURE sincos (x : long.float;

cos : QUT long-float:

sin : OUT long-float);
FUNCTION sinh (x : long_float) RETURN long.float;
FUNCTION sqrt (x : long.float) RETURN long_float:
FUNCTION tan (x : long.float) RETURN long-float:
FUNCTION tanh (x : long.float) RETURN long-float;:
FUNCTION tentox (x : long_float) RETUReréng_float:
FUNCTION twotox (x : long-float) RETURN long.float;

END coprocessor_interface;

SYSTEAM Ada System - User Manual 117

Appendix F Chapter 15

15 Appendix F

This chapter, together with the Chapters 16 and 17, is the Appendix F required in the
LRM, in which all implementation-dependent characteristics of an Ada implementation
are described.

15.1 Implementation-Dependent Pragmas

The form, allowed places, and effect of every implementation-dependent pragma is
stated in this section.

15.1.1 Predefined Language Pragmas

The form and allowed places of the following pragmas are defined by the la.nguage,
their effect is (at least pa.rtly) implementation-dependent and stated here. '

CONTROLLED
has no effect.

ELABORATE

is fully implemented. The SYSTEAM Ada System assumes a PRAGMA elaborate,
i.e. stores a unit in the library as if a PRAGMA elaborate for a unit u was given,
if the compiled unit contains an instantiation of u (or a generic program unit in
u) and if it is clear that u must have been elaborated before the compiled unit. In
this case an appropriate information message is given. By this means it is avoided
that an elaboration order is chosen which would lead to a PROGRAM_ERROR
when elaborating the instantiation.

INLINE
Inline expansion of subprograms is supported with the following restrictions:
the subprogram must not contain declarations of other subprograms, tasks, generic
units or body stubs. If the subprogram is called recursively only the outer call of

this subprogram will be expanded.

SYSTEAM Ada System - User Manual ' 123

Appendix F Chapter 15

effect on scheduling of leaving the priority of a task or main program undefined by
not giving PRAGMA priority for it is the same as if the PRAGMA priority 0
had been given (i.e. the task has the lowest priority).

SHARED
is fully supported.

STORAGE._UNIT
has no effect.

SUPPRESS
has no effect, but see §15.1.2 for the implementation-defined PRAGMA suppress._
all.]

SYSTEM_.NAME
has no effect.

15.1.2 Implementation-Defined Pragmas

BYTE_PACK ~- .
see §16.1,

EXTERNAL.NAME (<string>, <ada_name>)

<ada_name> specifies the name of a subprogram or of an object declared in 2
library package, <string> must be a string literal. It defines the external name
of the specified item. The Compiler uses a symbol with this name in the call
instruction for the subprogram. The subprogram declaration of <ada_name> must
precede this pragma. If several subprograms with the same name satisfy this
requirement the pragma refers to that subprogram which is declared last.

Upper and lower cases are distinguished within <string>, i.e. <string> must be
given exactly as it is to be used by external routines. This pragma will be used in
connection with the pragma interface (assembler) (see §15.1.1).

.SYSTEAM Ada System - User Manual 125

Appendix F Chapter 15

15.1.3 Pragma Interface (Assembler,...)

This section describes the internal calling conventions of the SYSTEAM Ada System,
which are the same ones which are used for subprograms for which 2 PRAGMA interface
(ASSEMBLER, . ..) is given. Thus the actual meaning of this pragma is simply that the
body needs and must not be provided in Ada, but in object form using the external
parameter at link time.

The internal calling conventions are explained in four steps:

- Parameter passing mechanism
- Ordering of parameters

- Type mapping

- Saving registers

Parameter passing mechanism:

The parameters of a call to a subprogram are placed by the caller in an area called
parameter block. This area is aligned on a longword boundary and contains parameter
values (for parameter of scalar types), descriptors (for parameter of composite types)
and alignment gaps. -

For a function subprogram an extra field is assigned at the beginning of the parameter
block containing the function result upon return. Thus the return value of a function is
treated like an anonymous parameter of mode OUT. No special treatment is required
for a function result except for return values of an unconstrained array type (see below).

A subprogram is called using the JSR instruction. The address pointing to the begin-
ning of the parameter block is pushed onto the stack before calling the subprogram. -

In general, the ordering of the parameter values within the parameter block does not
agree with the order specified in the Ada subprogram specification. When determining
the position of a parameter within the parameter block the calling mechanism and the
size and alignment requirements of the parameter type are considered. The size and
alignment requirements and the passing mechanism are described in the following:

Scalar parameters or parameters of access types are passed by value, i.e. the values of
the actual parameters of modes IN or IN OUT are copied into the parameter block
before the call. Then, after the subprogram has returned, values of the actual pa-
rameters of modes IN OUT and OUT are copied out of the parameter block into the
associated actual parameters. The parameters are aligned within the parameter block
according to their size: A parameter with a size of 8, 16 or 32 bits (or a multiple of
8 bits greater than 32) has an alignment of 1, 2 or 4 (which means that the object
is aligned to a byte, word or longword boundary within the parameter block). If the
size of the parameter is not a multiple of 8 bits (which may be achieved by attaching

SYSTEAM Ada System - User Manual 127

Appendix F Chapter 15

requirements of a parameter it is not always possible to place parameters in such a way
that two consecutive parameters are densely located in the parameter block. In such a
situation a gap, i.e. a piece of memory space which is not associated with a parameter,
exists between two adjacent parameters. Consequently, the size of the parameter block
will be larger than the sum of the sizes used for all parameters. In order to minimize
the size of the gaps in a parameter block an attempt is made to fill each gap with a
parameter that occurs later in the parameter list. If during the allocation of space
within the parameter block a parameter is encountered whose size and alignment fit
the characteristics »f an available gap, then this gap is allocated for the parameter
instead of appending it at the end of the parameter block. As each parameter will be
aligned to a byte, word or longword boundary the size of any gap may be one, two
or three bytes. Every gap of size three bytes can be treated as two gaps, one of size
one byte with an alignment of 1 and one of size two bytes with an alignment of 2. So,
if a parameter of size two is to be allocated, a two byte gap, if available, is filled up.
A parameter of size one will fill a one byte gap. If none exists but a two byte gap is
available, this is used as two one byte gaps. By this first fit algorithm all parameters
are processed in the order they occur in the Ada program.

A called subprogram accesses each parameter for reading or writing using the param-
eter block address incremented by an offset from the start of the parameter block
.suitable for the parameter. So the value of a parameter of a scalar type or an access
type is read (or written) directly from (into) the parameter block. For a parameter of a
composite type the actual parameter value is accessed via the descriptor stored in the
parameter block which contains a pointer to the actual object. When standard entry
code sequences are used within the assembler subprogram (see below), the parameter
block address is accessible at address 8(A6).

Type mepping:

To access individual components of array or record types, knowledge about the type ™

mapping for array and record types is required. An array is stored as a sequential con-
catenation of all its components. Normally, pad bits are used to fill each component
to a byte, word, longword or a multiple thereof depending on the size and alignment
requirements of the components’ subtype. This padding may be influenced using one
of the PRAGMAs pack or byte_pack (cf. §16.1). The offset of an individual array
component is then obtained by multiplying the padded size of one array component by
the number of components stored in the array before it. This number may be deter-
mined from the number of elements for each dimension using the fact that the array
elements are stored row by row. (For unconstrained arrays the number of elements for
each dimension can be found in the descriptor stored in the parameter block.)

A record object is implemented as a concatenation of its components. Initially, loca-
tions are reserved for those components that have a component clause applied to them.
Then locations for all other components are reserved. Any gaps large enough to hold
components without component clauses are filled, so in general the record components
are rearranged. Components in record variants are overlaid. The ordering mechanism

SYSTEAM Ada System - User Manual 129

Appendix F Chapter 15

for procedures without parameters and

RTD #4

for functions and procedures with parameters.
Consider the following example. A function sin is to be implemented by an assembler

routine. Its Ada specification is as follows:

FUNCTION sin (x : long-float) RETURN long-float;
PRAGMA interface (assembler, sin);
PRAGMA external_name ("CPSIN", sin);

It is implemented by the following assembler routine:

CPSIN: LINK.W AG ,#-4 s=-= allocate frame
CLR.L (-4,A6) *-- clear the indicator bits
MOVEA.L (8,A6),A0 *-- address of parameter block -

FSIN.X (12,A0) .FPO *-- parameter X -

FMOVE.X FPO, (AO) *-- store function result
LX A6 *-- remove frame

RTD #4 *-- return to caller

15.2 Implementation-Dependent Attributes

The name, type and implementation-dependent aspects of every implementation-de-
pendent attribute is stated in this section.

. 'SYSTEAM Ada System - User Manual 131

Appendix F

Chapter 15

The value delivered by this attribute applied to a task type or task object is as

follows:

If a length specification (STORAGE.SIZE, see §16.2) has been given for the task
type, the attribute delivers that specified value; otherwise, the default value is

returned.

15.2.2 Implementation-Defined Attributes

There are no implementation-defined attributes.

15.3 Specification of the Package SYSTEM

The package system as required in the LRM(§13.7) is reprinted here with all imple-
mentation-dependent characteristics and extensions filled in.

PACKAGE system IS

TYPE designated_by_address IS LIMITED PRIVATE;

TYPE address IS ACCESS designated._by.address:
FOR address’'storage.size USE O;

address.zero

FUNCTION "+" (left :
FUNCTION "+" (left :
FUNCTION "-" (left :
FUNCTION "-" (left :

address; right
integer: right
address; right
address; right

SUBTYPE external._address IS STRING:

: CONSTANT address := NULL;

: integer) RETURN address:
: address) RETURN address;
: integer) RETURN address:
: address) RETURN integer;

-- External addresses use hexadecimal notation with characters

- no-..rgo'
-- "TFFFFFFF"
- "80000000"

.- "8" represents the same address as "00000008"

FUNCTION convert.address (addr :

0"...£D

and

"A'..FC.

for instance:

external_address) RETURN address;

-~ convert_address raises CONSTRAINT.ERROR if the external address

SYSTEAM Ada System - User Manual

133

Appendix F Chapter 15

mode_error-id : CONSTANT exception.id := :
name.error.id : CONSTANT exception_id := ;
use_error_id : CONSTANT exception_id := :
device_error.id : CONSTANT exception_id := H
end_error_id : CONSTANT exception_id := :
data_error.id : CONSTANT exception_id := :
layout_error_id : CONSTANT exception.id := ...;
time.error.id : CONSTANT exception._id := .. .;
no_.error-code : CONSTANT := O;

TYPE exception_information
IS RECORD

excp-id 1 exception.id;
== Identification of the exception. The codings of
== the predefined exceptions are given above.

code_addr : address;
== Code address where the exception occurred. Depending
== on the kind of the exception it may be be address of
-= the instruction which caused the exception, or it
== may be the address of the instruction which would
-- have been executed if the exception had not occurred. .

error.code : integer;

END RECORD;

PROCEDURE get_exception_information

(excp-info : OUT exception_information);
-~ The subprogram get_exception.information must only be called
-- from within an exception handler BEFORE ANY OTHER EXCEPTION
== IS RAISED. It then returns the information record about the
== actually handled exception.
== Otherwise, its result is undefined.

PROCEDURE raise_exception_id
(excp.id : exception.id):

PROCEDURE raise_exception_info
(excp.info : exception.information);

=- The subprogram raise_exception._id raises the exception
== given as parameter. It corresponds to the RAISE statement.

== The subprogram raise_exception._info raises the exception

== described by the information record supplied as parameter.

== In addition to the subprogram raise_exception.id it allows to
== explicitly define all components of the exception information
== record.

SYSTEAM Ada Svstem - User Mannal 135

Appendix F Chapter 15

15.7 Restrictions on Unchecked Conversions

The implementation supports unchecked type conversions for all kinds of source and
target types with the restriction that the target type must not be an unconstrained
array type. The result value of the unchecked conversion is unpredictable, if

target_type 'SIZE > source_type'SIZE °

15.8 Characteristics of the Input-Output Packages

The implementation-dependent characteristics of the input-output packages as defined
in the LRM(Chapter 14) are reported in Chapter 17 of this manual.

15.9 Requirements for a Main Program

A main program must be a parameterless library procedure. This procedure may be
a generic instantiation; the generic procedure need not be a library unit.

15.10 Unchecked Storage Deallocation

The generic procedure unchecked.deallocation is provided; the effect of calling an
instance of this procedure is as described in the LRM(§13.10.1).

The implementation also provides an implementation-defined package collection._
manager, which has advantages over unchecked deallocation in some applications (<f.
§13.3.1).

Unchecked deallocation and operations of the collection_nanager czn be combined
as follows:

e collection_manager.reset can be applied to a collection on which unchecked
deallocation has also been used. The effect is that storage of all objects of the -
collection is reclaimed.

e After the first unchecked.deallocation (release) on a collection, all following
calls of release (unchecked deallocation) until the next reset have no effect,

i.e. storage is not reclaimed.

SYSTEAM Ada System - User Manual 137

Appendix F: Representation Clauses Chapter 16

16 Appendix F: Representation Clauses

In this chapter we follow the section numbering of Chapter 13 of the LRM and provide
notes for the use of the features described in each section.

16.1 Pragmas

PACK

As stipulated in the LRM(§13.1), this pragma may be given for a record or array
type. It causes the Compiler to select a representation for this type such that gaps
between the storage areas allocated .to consecutive components are minimized.
For components whose type is an array or record type the PRAGMA PACK has no
effect on the mapping oi the component type. For all other component types the
Compiler will choose a representation for the component type that needs minimal
storage space (packing down to the bit level). Thus the components of a packed
data structure will in general not start at storage unit boundaries.

BYTE_PACK

This is an implementation-defined pragma which takes the same argument as the
predefined language PRAGMA PACK and is allowed at the same positions. For
components whose type is an array or record type the PRAGMA BYTE_PACK has
no effect on the mapping of the component type. For all other component types
the Compiler will try to choose a more compact representation for the component
type. But in contrast to PRAGMA PACK all components of a packed data structure
will start at storage unit boundaries and the size of the components will be a
multiple of system.storage_unit. Thus, the PRAGMA BYTE.PACK does not
effect packing down to the bit level (for this see PRAGMA PACK).

SYSTEAM Ada Svstem - Tixer Manual 139

Appendix F: Representation Clauses Chapter 16

16.4 Record Representation Clauses

Record representation clauses are supported. The value of the expression given in an
alignment clause must be 0, 1, 2 or 4. If this restriction is violated, the Compiler
responds with a RESTRICTION error message in the Compiler listing. If the value is
0 the objects of the corresponding record type will not be aligned, if it is 1, 2 or 4 the
starting address of an object will be a multiple of the specified alignment.

The number of bits specified by the range of a component clause must not be greater
than the amount of storage occupied by this component. (Gaps between components
can be forced by leaving some bits unused but not by specifying a bigger range than
needed.) Violation of this restriction will produce a RESTRICTION error message.

There are implementation-dependent components of record types generated in the
following cases :

e If the record type includes variant parts and if it has either more than one
discriminant or else the only discriminant may hold more than 256 different values,
the generated component holds the size of the record object.

e If the record type includes array or record components whose sizes depend on dis-

criminants, the generated components hold the offsets of these record components
(relative to the corresponding generated component) in the record object.

But there are no implementation-generated names (cf. LRM(§13.4(8))) denoting these
- ecomponents. So the mapping of these components cannot be influenced by a represen-
" tation clause.

16.5 Address Clauses

Address clauses are supported for objects declared by an object declaration and for
single task entries. If an address clause is given for a subprogram, package or a task
unit, the Compiler responds with a RESTRICTION error message in the Compiler
listing.

If an address clause is given for an object, the storage occupied by the object starts at
the given address. Address clauses for single entries are described in §16.5.1.

SYSTEAM Ada System - User Manual 141

Appendix F: Representation Clauses Chapter 16

_IRRETURN is defined by the Ada Runtime System. It contains the start address of
the Target Kernel routine that carries out the return from interrupt handling. It is
very important that when leaving ISR all registers (except the status register) have the
same values as they had when entering ISR. ISR is executed in the supervisor state of
the processor, so all instructions (including privileged ones) can be used within ISR.
The processor’s priority depends on the interrupt source.

If you want to call the interrupt entry with the number N, then you must set a bit
within the interrupt entry call pending indicator _IRENTRYC by the instruction:

bfset (_IRRENTRYC).1,{N-1:1} =*-- prepare call of
*-=- interrupt entry N

(Note: The Microware Cross Assembler has a bug which causes wrong code to be
generated for the bfset. The example shows a work around for this bug.)

. This instruction should be placed immediately in front of the last instruction of ISR.
ISR need not call the interrupt entry each time it is activated. Instead ISR can, for
example, read one character each time it is activated, but call the interrupt entry only
when a complete line has been read.

A complete example for interrupt handling follows. For this example the second RS232
serial line of the MVME133XT board is used (available through the P2 connector).
The assembler routine ISR_READ is activated each time a character is received on that
line. ISR_READ calls interrupt entry char_entry of TASK terminal_in. terminal_in
uses TASK terminal_out to output each character read.

The terminal should be set up for XON/XOFF (not CTS/RTS) flow control.

WITH systenm,
" privileged.operations,
text_io;

USE privileged_operations,
text_io;

PROCEDURE terminal IS
PRAGMA priority (2):
PROCEDURE setup.scc:
PRAGMA interface (assembler, setup_scc):
PRAGMA external_name ("SETUP.SCC", setup.scc):
PROCEDURE isr_read:

PRAGMA interface (assembler, isr_read):
PRAGMA external._name ("ISR_READ", isr.read):;

SYSTEAM Ada System - User Manual 143

Appendix F: Representation Clauses

Chapter 16

END LOOP;
END terminal_out;

BEGIN
setup.scc;

define.interrupt.service._routine

(isr.read’'address, 16#80#); -

END terminal;

The following assembler routines also belong to the example:

typlang equ 0
attrrev equ $8000
o=
psect terminal,typlang,attrrev,0,0,0
-
sccb_rro equ $FFFA0000 i
sccb_wro equ $FFFAO000
sccb.rdr equ $FFFAOO01
sccbotdr equ $FFFAO0Q1 .
o=
SETUP_SCC: : B
move.b #330,(sccb_wro).l *-=- clear receiver error status
move.b #3$10,(sccb_wro).l »-- clear externmal status interrupts
move.b #$09, (sceb_wro).l *-- WR O T . :
move.b #340,(sccb_wro).l *-- reset channel A & B, disable IRs
s
move.b #30A, (sccb_wro).l *-- WR 10
move.b #300, (sccb_wro).l *-- NRZ format
move.b #$OE, (sccb.wro).l *-- WR 14
move.b #§82, (sccb_wro).l #-- source=BR generator, RTXC input
*-- s-- disable BR generator
move.b #$04,(sccb_wro).l s-- WR 4
move.b #8$44,(sccb_wro).l #-- clck mode=x16.1 stop bit,no parity
move.b #3$03,(sccb._wro).l *-- WR 3
move.b #3C1, (sceb_wro).l #-- 8 bits, enable receiver
move.b #3$05, (sccb_wro).l -~ WR 5
move.b #$EA, (sccbowre).l «=- DTR&RTS=on,8 bits,enable transmtr
move.b #30C, (sccb.wro).l «-=- WR 12
move.b #3$02, (sccb_wro).l s-- lower byte of time const (9600 Bd)
move.b . #3$0D, (sccb.wro).l -~ WR 13
move.b #$00,(sccb_wro).l »-~- upper byte of time const (9600 Bd)
move.b #$0B, (sccb_wro).l s«-- WR 11
move.b #356, (scecb_wro) .1l »-- RxClock=TxClock=TRxClock=BR output
s -~ TRxC output ’

SYSTEAM Ada System - User Manual

R

145

Appendix F: Input-Output Chapter 17

17 Appendix F: Input-Output

In this chapter we follow the section numbering of Chapter 14 of the LRM and provide
notes for the use of the features described in each section.

17.1 External Files and File Objects

The implementation only supports the files standard_input and standard_output
of PACKAGE text_io. Any attempt to create or open a file raises the exception use._
error.

17.2 Sequential and Direct Files

Sequential and direct files are not supported.

17.3 Text Input-Output

standard_input and standard_output are associated with the RS232 serial port of _

the target.

If the Minimal Target Kernel is used, then this serial port is used and all data of
standard._output is directly written to this port and all data of standard_input is
directly read from this port.

If the XTBS or XSDB Target Kernel is used, see the corresponding user manual for
the behaviour of the text input/output.

For tasking aspects of I/O operations see Chapter 14.

For further details on the I/O implementation within the Target Kernel see Chapter
19.

SYSTEAM Ada System - User Manual 147

Appendix F: Input-Output Chapter 17

17.5 Low Level Input-Output
We give here the specification of the package low_level_io:

PACKAGE low_level_io IS
TYPE device_type IS (null_device);

TYPE data_type IS
RECORD
NULL;
END RECORD:

PROCEDURE send_control (device : device_type:
data : IN OUT data_type);

PROCEDURE receive_control (device : device_type:
data : IN OUT data_type):

END low.level_io;

Note that the enumeration type device_type has only one enumeration value, null_

device; thus the procedures send_control and receive_control can be called, but
..~ send_control will have no.effect-on any. physical device.and the value of the actual

parameter data after a call of receive_control will have no physical significance.

SYSTEAM Ada System - User Manual 149

