


**INSTRUCTION REPORT GL-92-4** 

# USACE GEOTECHNICAL EARTHQUAKE ENGINEERING SOFTWARE

# Report 1 WESHAKE FOR PERSONAL COMPUTERS (Version 1.0)

0.011

by

David W. Sykora, Ronald E. Wahl



Ć

( (

6

**Geotechnical Laboratory** 

DEPARTMENT OF THE ARMY Waterways Experiment Station, Corps of Engineers 3909 Halls Ferry Road, Vicksburg, Mississippi 39180-6199

and

David C. Wallace

Illinois State University Applied Computer Science Department Normal, Illinois 61761



September 1992 Report 1 of a Series

Approved For Public Release; Distribution Is Unlimited



Prepared for DEPARTMENT OF THE ARMY US Army Corps of Engineers Washington, DC 20314-1000 This software and manual are distributed "AS IS" and without warranty as to performance. Because of the many uses to which this software may be put and the variety of hardware used in conjunction with it, no warranty of fitness for a particular purpose is offered. While the developers have invested considerable time to create a high quality product, the user must assume the risk of using this software.

IBM is a registered trademark of International Business Machines Corporation. DOS is copyrighted by International Business Machines Corporation.

HP LaserJet is a registered trademark of Hewlett Packard Company.

Quickpak is a registered trademark of Crescent Software, Inc.

# Destroy this report when no longer needed. Do not return it to the originator.

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The contents of this report are not to be used for advertising, publication, or promotional purposes. Citation of trade names does not constitute an official endorsement or approval of the use of such commercial products.

| REPORT DOC                                                                                                                                                                                                                                                                                                                                                                                                                                 | UMENTATION PA                                                                                                                                                                                                                                                                               | GE                                                                                                                                                                                                                                                  | Form Approved<br>OMB No. 0704-0                                                                                                                                                                                                                                                                | 188                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|
| Public recorting burden for this collection of informat<br>gather:und maintaining the data needed, and com<br>collection of information, including suggestions for re<br>Davis Highway, Suite 1204, Arlington, VA 222024302                                                                                                                                                                                                                | tion is estimated to average 1 hour per n<br>deting and reviewing the collection of in<br>ducing this burden, to Washington Head<br>, and to the Office of Management and B                                                                                                                 | Iguarters Services, Directorate for<br>udget, Paperwork Reduction Proj                                                                                                                                                                              | Information Operations and Reports<br>ct (0704-0188), Washington, DC 205                                                                                                                                                                                                                       | ng data sources,<br>er aspect of this<br>, 1215 Jefferson<br>03.                                                                                     |
| 1. AGENCY USE ONLY (Leave blank)                                                                                                                                                                                                                                                                                                                                                                                                           | 2. REPORT DATE                                                                                                                                                                                                                                                                              | 3. REPORT TYPE AND                                                                                                                                                                                                                                  | DATES COVERED                                                                                                                                                                                                                                                                                  |                                                                                                                                                      |
|                                                                                                                                                                                                                                                                                                                                                                                                                                            | September 1992                                                                                                                                                                                                                                                                              | Report 1                                                                                                                                                                                                                                            | of a Series                                                                                                                                                                                                                                                                                    |                                                                                                                                                      |
| 4. TITLE AND SUBTITLE<br>USACE Geotechnical Eart<br>Report 1, WESHAKE For 1                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                     | 5. FUNDING NUMBERS                                                                                                                                                                                                                                                                             |                                                                                                                                                      |
| <b>6. AUTHOR(S)</b><br>David W. Sykora, Ronald<br>David C. Wallace                                                                                                                                                                                                                                                                                                                                                                         | i E. Wahl, and                                                                                                                                                                                                                                                                              |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                |                                                                                                                                                      |
| 7. PERFORMING ORGANIZATION NAME                                                                                                                                                                                                                                                                                                                                                                                                            | (S) AND ADDRESS(ES)                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                     | 8. PERFORMING ORGANIZ                                                                                                                                                                                                                                                                          | ATION                                                                                                                                                |
| US Army Engineer Waterv<br>3909 Halls Ferry Road,<br>Illinois State Universi                                                                                                                                                                                                                                                                                                                                                               | Vicksburg, MS 391<br>Ity, Applied Comput                                                                                                                                                                                                                                                    | 80-6199                                                                                                                                                                                                                                             | REPORT NUMBER<br>Instruction Rep<br>GL-92-4                                                                                                                                                                                                                                                    | port                                                                                                                                                 |
| Department, Normal, IL<br>9. SPONSORING/MONITORING AGENCY                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                     | 10. SPONSORING / MONITO<br>AGENCY REPORT NUM                                                                                                                                                                                                                                                   |                                                                                                                                                      |
| US Army Corps of Engine<br>Washington, DC 20314-10                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                |                                                                                                                                                      |
| 11. SUPPLEMENTARY NOTES                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                |                                                                                                                                                      |
| This report is availab<br>5285 Port Royal Road, S                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                     | formation Service                                                                                                                                                                                                                                                                              | ,                                                                                                                                                    |
| 12a. DISTRIBUTION / AVAILABILITY STAT                                                                                                                                                                                                                                                                                                                                                                                                      | EMENT                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                     | 12b. DISTRIBUTION CODE                                                                                                                                                                                                                                                                         |                                                                                                                                                      |
| Approved for public rel                                                                                                                                                                                                                                                                                                                                                                                                                    | lease; distribution                                                                                                                                                                                                                                                                         | n is unlimited                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                |                                                                                                                                                      |
| 13. ABSTRACT (Maximum 200 words)                                                                                                                                                                                                                                                                                                                                                                                                           | One of the basic                                                                                                                                                                                                                                                                            |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                |                                                                                                                                                      |
| engineers in regions of<br>specific dynamic respon<br>This problem is common<br>amplification study (al<br>problem allows the geod<br>tion, to conduct the fi-<br>slopes and embankments,<br>amplification, and to<br>primarily response spec<br>The computer prog<br>used to accomplish this<br>program, SHAKE, written<br>Lysmer, and Seed (1972)<br>WES to keep pace with<br>interface.<br>14. SUBJECT TERMS<br>Computer software, Eart | nse of a layered so<br>y referred to as a<br>lthough motions may<br>technical engineer<br>irst analytical pho-<br>to calculate site<br>provide structur<br>tra, for design an<br>gram described and<br>s task. WESHAKE is<br>n at the University<br>WESHAKE was created<br>state-of-the-art | il deposit unde<br>site-specific<br>y be deamplified<br>to evaluate the<br>ase of seismic s<br>natural periods<br>al engineers w<br>nd safety evalua<br>provided in thi<br>s an adaptation<br>y of California<br>ated and has bee<br>technology and | r a level ground<br>response analysis<br>d). The solution<br>e potential for l<br>stability evaluat<br>t, to assess groun<br>with various par<br>ations of structu<br>s report, WESHAKE<br>of the original<br>at Berkeley by S<br>n continually mod<br>provide a user-<br>15. NUMBER OF<br>215 | surface.<br>or soil<br>of this<br>iquefac-<br>ions for<br>d motion<br>ameters,<br>res.<br>C, may be<br>computer<br>chnabel,<br>lified by<br>friendly |
| Site response, Soil aug                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                     | 16. PRICE CODE                                                                                                                                                                                                                                                                                 |                                                                                                                                                      |
| sice response, sorr and                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                     |                                                                                                                                                                                                                                                                                                |                                                                                                                                                      |
| 17. SECURITY CLASSIFICATION 18.<br>OF REPORT<br>UNCLASSIFIED UN                                                                                                                                                                                                                                                                                                                                                                            | SECURITY CLASSIFICATION<br>OF THIS PAGE<br>NCLASSIFIED                                                                                                                                                                                                                                      | 19. SECURITY CLASSIFIC<br>OF ABSTRACT                                                                                                                                                                                                               | ATION 20. LIMITATION                                                                                                                                                                                                                                                                           | OF ABSTRACT                                                                                                                                          |
| NSN 7540-01-280-5500                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                     | Standard Form 298<br>Prescribed by ANSI Std. 2<br>298-102                                                                                                                                                                                                                                      |                                                                                                                                                      |

### EXECUTIVE SUMMARY

One of the basic problems to be solved by geotechnical engineers in regions where earthquake hazards exist is to estimate the site-specific dynamic response of a layered soil deposit for level-ground conditions. The computer program described and provided in this report, WESHAKE, may be used to accomplish this task. WESHAKE is an adaptation of the original computer program, SHAKE, written at the University of California at Berkeley by Schnabel, Lysmer, and Seed (1972). WESHAKE was created and has been continually modified by WES to keep pace with state-of-the-art technology and provide a user-friendly interface.

The WESHAKE package consists of this report and a single floppy disk that contains the executable program, data base files, a plotting program, and example input and output files. It is imperative that the user of this program have a competent understanding of the problem statement, basic assumptions, and mathematical formulation used by the original authors of SHAKE. Documentation of the original program, SHAKE, is not duplicated herein nor is this report intended to be a primer on dynamic site response analysis.

TATIC CULLING TRACE ROAD

Accassica For NTES GRAST Dric 118 Εī University Justi instic **D** ... 911 m.1 Chara

### PREFACE

This study is sponsored by the Headquarters, US Army Corps of Engineers (USACE) under the Numerical Model Maintenance Program (NMMP). This program provides for the maintenance, documentation, and corrections of existing computer models (programs) that have existing, or the potential for, widespread usage among Corps personnel. The program also provides for user consultation with WES authors. Mr. Richard Davidson, USACE, is the Technical Monitor for this particular model.

This report and accompanying software, the first in the report series on Geotechnical Earthquake Engineering Software (GEES), contains the information necessary to run the program WESHAKE. WESHAKE is a wave equation solver for one-dimensional problems and has been widely used to solve problems in earthquake engineering for USACE projects.

The purpose of establishing GEES is to provide a set of easy to use and understandable tools that can support the needs of the district and division engineers in evaluating the dynamic response effects of earthquakes on foundations, earth structures, and soil-structure systems at specific sites throughout the world. GEES will also allow USACE to establish and maintain consistency of programs among offices and a center for validation studies.

The WES Principal Investigator was Mr. David W. Sykora, Earthquake Engineering and Seismology Branch (EESB), Earthquake Engineering and Geosciences Division (EEGD), Geotechnical Laboratory (GL), WES. Mr. Ronald E. Wahl, Soil and Rock Mechanics Division (SRMD), GL, initiated the study and provided technical assistance. Mr. Michael K. Sharp, Engineering Geophysics Branch (EGB), EEGD, GL, has provided useful additions and suggestions to the core computer program over the past four years. Dr. David C. Wallace, Illinois State University, performed most of the programming for this study while at WES during the summers of 1991 and 1992 under the US Army Summer Faculty Research and Engineering Program (SFREP) provided through the US Army Research Office. Messrs. Willie McGeehee and Daniel Habeeb and Ms. Jennifer Davis, EESB, drafted figures, made copies, and helped to prepare the final report. Dr. Mary Ellen Hynes was Chief, EESB, during the course of this study and provided direct technical oversight.

Overall direction at WES was provided by Dr. A. G. Franklin, Chief, EEGD, and Dr. William F. Marcuson III, Chief, GL. Ms. Mary K. Vincent,

Chief, Office of Technical Programs and Plans, was the overall WES program manager of the NMMP.

At the time of publication of this report, Director of WES was Dr. Robert W. Whalin. Commander and Deputy Director was COL Leonard G. Hassel, EN.

÷

### CONTENTS

|                                              | <u>Page</u><br>1 |
|----------------------------------------------|------------------|
| EXECUTIVE SUMMARY                            | T                |
| PREFACE                                      | 2                |
| LIST OF TABLES                               | 6                |
| LIST OF FIGURES                              | 6                |
| CONVERSION FACTORS, NON-SI to SI (METRIC)    |                  |
| UNITS OF MEASUREMENT                         | 7                |
| PART I: INTRODUCTION                         | 8                |
| Background                                   | 8                |
| Purpose                                      | 9                |
| Intended Users                               | 10               |
| Merits of WESHAKE                            | 10               |
| Report Organization and Suggested Use        | 11               |
| PART II: WESHAKE BACKGROUND AND THEORY       | 17               |
| Procedure of Site Response Analysis          | 17               |
| SHAKE                                        | 18               |
| PART III: PERSONAL COMPUTER IMPLEMENTATION   | 25               |
| Changes from SHAKE                           | 25               |
| Shear Modulus and Damping Ratio Data Bases   | 26               |
| Earthquake Record Data Base                  | 27               |
| Input and Output Files                       | 28               |
| Error Checks                                 | 29               |
| Validation of WESHAKE                        | 30               |
| PART IV: RUNNING WESHAKE                     | 40               |
|                                              | . 1              |
| Pre-Processing Stage                         | 41               |
| Analysis Stage                               | 57               |
| PART V: ADVANCED TOPICS                      | 63               |
| Application of Free-Field Results            | 63               |
| Estimation of Shear Wave Velocity            | 63               |
| Studies of Modulus and Damping Relationships | 64               |
| High Effective Stresses                      | 65               |
| Multiple Soil Columns                        | 65               |
| Sensitivity Analysis                         | 66               |
| Vertical Response                            | 67               |
| Other Uses                                   | 68               |
|                                              |                  |
| REFERENCES                                   | 69               |

# <u>Page</u>

| BIBLIOGRAPHY | OF STUDIES AT WES USING SHAKE OR WESHAKE   | 73        |
|--------------|--------------------------------------------|-----------|
| APPENDIX A:  | GETTING STARTED AND PERFORMANCE STATISTICS | Al        |
| APPENDIX B:  | SHEAR MODULUS AND DAMPING RATIO DATA BASES | <b>B1</b> |
| APPENDIX C:  | EARTHQUAKE DATA BASE                       | C1        |
| APPENDIX D:  | MOTION: ACCELEROGRAM PLOTTING PROGRAM      | D1        |
| APPENDIX E:  | SPECIFICATION FILE FORMAT                  | E1        |
| APPENDIX F:  | VALIDATION OF WESHAKE                      | F1        |
| APPENDIX G:  | FLOWCHART OF WESHAKE                       | G1        |
| APPENDIX H:  | EXAMPLE SPECIFICATION FILE                 | H1        |
| APPENDIX I:  | EXAMPLE OUTPUT FILES                       | 11        |

### LIST OF TABLES

### Page No. III-1 Correlation Between Option Numbers Used in 31 SHAKE and WESHAKE ..... 32 III-2 References for Material Property Data Bases..... 33 III-3 Measured Earthquake Records in WESHAKE Data Base..... 34 III-4 Synthetic Earthquake Records in WESHAKE Data Base..... 35 III-5 Summary of Output Files..... LIST OF FIGURES No. Page I-1 Seismic zones within contiguous 48 United States (Department of the Army 1983; adapted from Algermissen et al. 1982)..... 13 T-2 Seismic zones within California (Department of the Army 1983; adapted from Algermissen et al. 1982)..... 14 I-3 Seismic zones within Alaska (Department of the Army 1983; adapted from Algermissen et al. 1982)..... 15 I-4 Seismic zones within Hawaii (Department of the Army 16 1983; adapted from Algermissen et al. 1982)..... 22 11-1 Three primary control points for site response analysis..... II-2 Generalized comparison between hysteretic soil behavior and the equivalent-linear soil model for 23 a constant stress state..... II-3 Standard relationships between normalized shear modulus and damping ratio versus shear strain..... 24 III-1 Standard relationships between normalized shear modulus and shear strain for granular soils and rock..... 36 III-2 Standard relationships between normalized shear modulus and shear strain for cohesive soils (Sun, Golesorkhi, and Seed 1988)..... 37 III-3 Standard relationships between damping ratio 38 and shear strain for granular soils and rock..... III-4 Standard relationships between damping ratio and shear strain for cohesive soils (Sun, Golesorkhi, and Seed 1988)..... 39 IV-1 Program Organization of WESHAKE..... 60 IV-2 Example problem used for Part IV..... 61 IV-3 Components of mandatory actions for SPECIFICATION FILE DESIGNATION menu..... 62

## CONVERSION FACTORS, NON-SI to SI (METRIC) UNITS OF MEASUREMENT

Non-SI units of measurement used in this report can be converted to SI (metric) units as follows:

,

| Multiply                                  | Abbreviation | By              | To Obtain                                         |
|-------------------------------------------|--------------|-----------------|---------------------------------------------------|
| feet per second<br>kips per cubic<br>foot | fps<br>kcf   | 0.3048<br>16.03 | metres per second<br>megagrams per cubic<br>metre |

# USACE GEOTECHNICAL EARTHQUAKE ENGINEERING SOFTWARE WESHAKE FOR PERSONAL COMPUTERS

PART I: INTRODUCTION

### Background

1. One of the basic problems to be solved by geotechnical engineers in regions where earthquake hazards exist is to estimate the site-specific dynamic response of a layered soil deposit under a level ground surface. This problem is commonly referred to as a site-specific response analysis or soil amplification study (although motions may be deamplified). The solution of this problem allows the geotechnical engineer to evaluate the potential for liquefaction, to conduct the first analytical phase of seismic stability evaluations for slopes and embankments, to calculate site natural periods, to assess ground motion amplification, and to provide structural engineers with various parameters, primarily response spectra, for design and safety evaluations of structures.

2. A site-specific response analysis is critical to US Army projects, both Civil Works and Military. Department of the Army, Engineering Regulation 1110-2-1906 (1983) provides guidance for US Army Corps of Engineers (USACE) Civil Works projects. For "Embankments and Soil Foundations" projects located within seismic zones 2, 3, and 4 (refer to Figures I-1 through I-4), the pseudo-static method of analysis is superseded. Rather:

...appropriate anal/tical techniques [shall be used] to evaluate liquefaction potential and/or to estimate deformations, beginning with the more simplified methods, and progressing as necessary to more rigorous, sophisticated procedures.

US Army Technical Manual TM 5-809-10-1 (1986) provides seismic design guidelines for essential buildings (Military projects). The "analytical soilcolumn response" method represents one of three methods that can be used to develop site-specific response spectra (refer to section 3-6 and Appendix C, section C-3 of TM 5-809-10-1).

3. The computer program SHAKE was written in the early 1970's by Schnabel, Lysmer, and Seed (1972) to conduct analytical site response analyses via solution of the wave equation. This program has been distributed freely and is still widely used by the profession although many versions of the

program have been modified by different organizations (e.g., GeoTech International, Ltd. 1985). This program has been, and continues to be, successfully validated with measured earthquake motions and site response. The US Army Waterways Experiment Station (WES) has been using the computer program SHAKE to calculate site response for level-ground soil sites for more than 15 years, including use on a number of USACE projects. A partial list of projects are provided in a supplemental Bibliography at the end of this report.

4. WES has continually made adaptations to SHAKE as the use for each new project required. The original version for use on a personal computer was obtained from the University of California at Berkeley (UCB) around 1985. This program at WES is now called WESHAKE to reflect the numerous changes that have been made to keep pace with state-of-the-art technology, to provide for needs of USACE users, and to provide a user-friendly interface. These adaptations facilitate transfer technology to, and wide-spread use among, USACE personnel.

### <u>Purpose</u>

5. The purpose of this report and software is to provide USACE district and division engineers a means to calculate the horizontal site response of level-ground soil sites caused by vertically-propagating, horizontallypolarized shear waves that can be used to solve a variety of site response problems. Data bases have also been created to attempt to reduce the amount of effort in preparing an input file to solve a particular problem. It is the intention of the authors to create a user interface that is convenient to use and requires little, if any, guidance from the user's manual.

6. WESHAKE is part of the Geotechnical Earthquake Engineering Software (GEES) library that was established to prepare, validate, and maintain programs used to evaluate the dynamic response effects of earthquakes on foundations, earth structures, and soil-structure systems and establish a center for free distribution and support. Three programs in the GEES library are currently being supported, all by the Numerical Model Maintenance Program (NMMP): WESHAKE, WESRISK, and WESFLUSH.

### Intended Users

7. It is imperative that the user of WESHAKE have a competent understanding of the problem statement, basic assumptions, and mathematical formulation used by the authors of SHAKE. The simplicity of the user interface should not be associated with the minimum level of capability of the user. The interface is designed to allow the first-time cr occasional user with a rapid and easy means to run the program. Documentation of the original program, SHAKE, is not duplicated herein.

### Merits of WESHAKE

8. WESHAKE is considered to be an improvement over SHAKE for all users for the following reasons:

<u>a.</u> Shear modulus can be defined by shear wave velocity or  $\rm K_2$  individually for each layer.

<u>b.</u> Recent sets of shear modulus degradation and damping curves are available in a data base.

<u>c.</u> The relationships for normalized shear moduli and damping ratio can be specified separately for each material.

<u>d.</u> The experience of WES engineers has been interjected into the data input requirements and in the discussions of the report.

<u>e.</u> An option for interactive plotting of earthquake motions is included.

WESHAKE should benefit the first-time or occasional user for the following reasons:

<u>a.</u> The menus and displays allow the user to create an input file and conduct the analysis without need to reference the user's manual or have knowledge of the format of input fields.

<u>b.</u> Some parameters that take on typical values have been assumed for the initial runs.

<u>c.</u> Only parameters required for analysis are part of the query sequences.

<u>d.</u> Several error checks have been incorporated including the establishment of reasonable bounds for some data values.

9. Despite the many cosmetic changes made as part of the study, the core structure of subroutines, algorithms, and data flow have not changed

significantly. Only minor differences exist between formats used for SHAKE and WESHAKE. These differences are documented in this report.

### Report Organization and Suggested Use

10. This report is intended to serve as a guide to the first-time or occasional user of WESHAKE. Information for the data files are collected in an interactive mode with the computer providing menus and information requests. Example input screens and responses are provided in this manual to give the user a clearer understanding of the basic requirements. Output screens, files, and reports are also provided to illustrate the relationship between the inputs and the outputs as well as the interpretation of the results. Instructions for installation, hardware requirements, listings of data bases and example files, and file formats are provided in appendices to this report.

11. Some basic background information about the analytical solution to site response analysis and aspects of WESHAKE that are different from SHAKE are presented in Part II of this report. The salient features of WESHAKE and validation are presented in Part III of this report. The use and execution of WESHAKE are described in Part IV of this report. The first section of Part IV focuses on u e proprocessing stage of collecting information. The preprocessing stage is divided into two primary sections: mandatory actions and user options. The mandatory actions are used to define the soil column, identify an earthquake motion, and assign the location of object motion. User options allow for variations in input parameters and the calculation and preparation of specialized forms of output. Other sections of Part IV describe the analysis stage (execution) of WESHAKE and error checks. An example problem is used throughout this report to assist the user.

12. Part V of this report presents discussion on how to model and solve more difficult problems that may not have been addressed previously. It is considered to be a supplement to the other sections and is not a necessary part of learning how to use WESHAKE to solve basic problems. The reader should be familiar with the topics discussed in Part V and refer to the appropriate discussions as needed.

13. The complete package for WESHAKE includes this report and a floppy disk with the following files:

| WESHAKE.EXE |    | Executable shell containing wave propagation code |
|-------------|----|---------------------------------------------------|
| SHEARDB     |    | Data base of shear modulus relationships          |
| DAMPDB      | •• | Data base of damping relationships                |
| EARTHQ      |    | Data base of accelerograms                        |
| MOTION.EXE  |    | Executable accelerogram plotting program          |
| EXAMPLE.DAT | •• | Example specification file                        |
| EXAMPLE.EXT |    | Companion to specification file                   |
| EXAMPLE.SPF |    | Soil profile file                                 |
| READ_ME.TXT |    | List of files and file sizes                      |

Questions, comments, and requests for updates should be directed to:

U.S. Army Engineer Waterways Experiment Station ATTN: CEWES-GG-H (Mr. David W. Sykora) 3909 Halls Ferry Road Vicksburg, MS 39180-6199

| Voice: | (601) | 634-3551 |
|--------|-------|----------|
| FAX:   | (601) | 634-3453 |





.

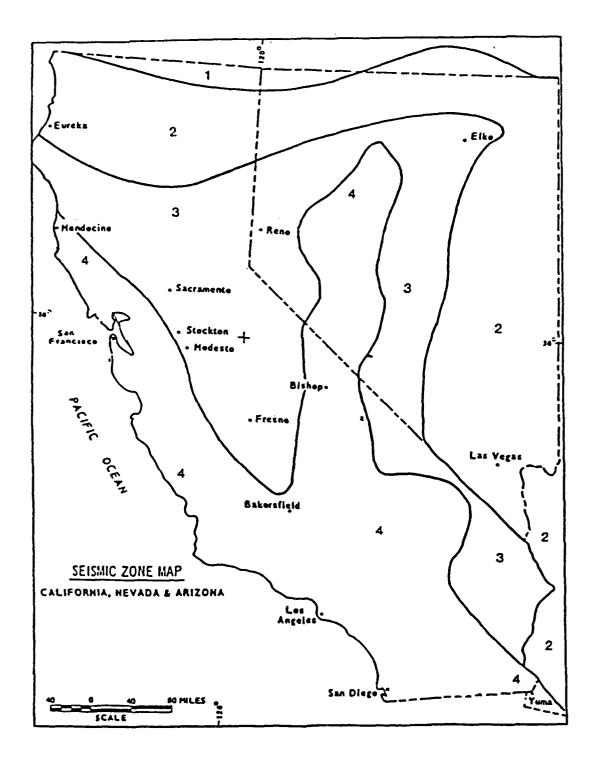
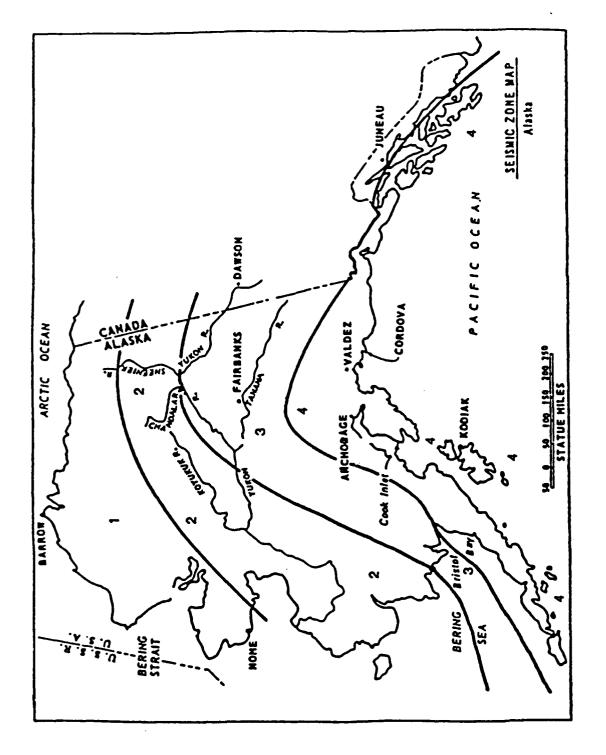
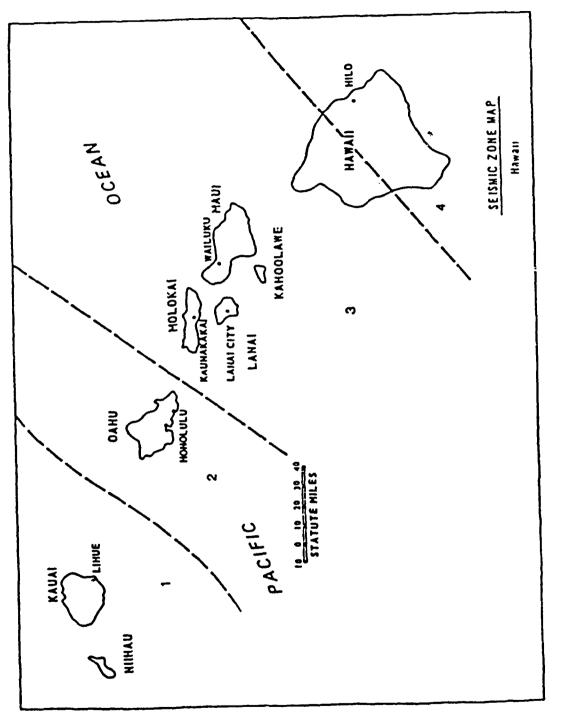





Figure I-2. Seismic zones within California (Department of the Army 1983; adapted from Algermissen et al. 1982)









### PART II: WESHAKE BACKGROUND AND THEORY

### Procedure of Site Response Analysis

14. A site response analysis, sometimes referred to as a soil amplification analysis, involves the determination of components of ground motion for design or seismic evaluation. Typically, as in this study, that determination is made for a "free-field" response -- the response at the ground surface of an ideal soil deposit (horizontal layers extending to infinity) to a spatially-uniform motion applied at the base. The conceptual relationship between free-field response with respect to two primary control points -- rock outcrop and base rock -- in a site response analysis is shown in Figure II-1. The motions at these three points, as well as any other point in the vertical profile, are unique. Design earthquakes are frequently specified as corresponding to a rock outcrop. Mathematical expressions (transfer functions) are then used to find the equivalent motion for the base rock and then the seismic waves are propagated through the soil column to determine the free-field motion.

15. The determination of site-specific earthquake response of soil deposits, then, generally involves three basic steps:

- <u>a</u>. Selection of earthquake motions, usually corresponding to rock outcrop.
- <u>b</u>. Idealization of stratigraphy and selection of material properties.
- <u>c</u>. Calculation and evaluation of site response.

The third, and final, step of a site-specific earthquake response analysis is the subject of this study.

16. Different techniques are available to determine site-specific response of soil sites to earthquake motions. Analytical formulations include the wave equation and shear beam analogies (both continuous formulations) and a lumped mass model analysis (discrete formulation). Initial formulations for site specific calculations using the wave equation were reported in the U.S. by Roesset and Whitman (1969) and Roesset (1970) and have been enhanced since. A number of computer codes are available to solve the wave equation in one, two, or three dimensions. This report summarizes the code WESHAKE which evolved from the code SHAKE, described in the next section.

<u>SHAKE</u>

17. SHAKE was developed at the University of California at Berkeley (Schnabel, Lysmer, and Seed 1972) and written in FORTRAN IV to run on a CDC 6400 computer. It has since been adapted to run on a number of computer platforms including personal computers by various sources. SHAKE is widely used by the geotechnical earthquake engineering profession for the calculation of site response for horizontal motions.

18. Several investigators have reported close comparisons between the results using SHAKE and the measured horizontal response from strong-motion instruments triggered during earthquakes at site periods less than 2 sec (e.g., Seed et al. 1987, Idriss 1990, and Seed, Dickenson, and Idriss 1991). The experience of these investigators suggest that for calculated site periods greater than 4 sec, motions are likely to be significantly affected by two-dimensional effects and surface wave energy and are not well represented with SHAKE.\* The user should be cautious when using values at periods greater than 2 sec.

19. SHAKE was developed to calculate the horizontal response caused by an earthquake at any depth of a soil profile. The approach and algorithms incorporated in the program are simple, straight forward, and adequate for the purpose intended as clearly evident through the prolific publication of results and favorable comparisons with measured response (e.g., Seed et al. 1987, Idriss 1990, and Seed, Dickenson, and Idriss 1991). The simplicity associated with SHAKE is attributed to some basic assumptions regarding the cyclic behavior of materials and geometry of the problem. The basic assumptions used in the formulation of are:

- <u>a</u>. The soil layers are horizontal and extend to infinity.
- b. The ground surface is level.
- <u>c</u>. Each soil layer is completely defined by the shear modulus and damping as a function of strain, the thickness, and unit weight.
- <u>d</u>. The non-linear cyclic material behavior is adequately represented by the linear visco-elastic (Voigt) constitutive model and implemented with the equivalent-linear method.
- <u>e</u>. The incident earthquake motions are spatially-uniform, horizontally-polarized shear waves, and propagate vertically.

<sup>\*</sup> Personal communication, Prof. Raymond Seed, University of California at Berkeley, 23 September 1991.

In general, assumptions (a), (b), and (c) used to derive this model would seem to significantly limit the applicability of this method. Past studies have shown, however, that reasonable results are obtained for a much broader spectrum of in situ conditions. The equivalent-linear constitutive model, assumption (d), is described later in this section. The last assumption, (e) above, narrows the focus to a simple class of problems, but, is a common assumption for this type of problem.

20. It is important to realize that the formulation of SHAKE for wave propagation is based on a total stress analysis. The materials are considered to be continua and pore water pressures are non-existent. The calculation of shear modulus using values of  $K_2$  does involve the determination of mean effective stress using the depth of the water table and the unit weight of water.

### Formulation and iteration scheme

21. The one-dimensional wave equation model (Kanai 1951) was used to develop SHAKE. This model has proven to be effective despite the simplicity and number of assumptions involved. The solution algorithm involves the complex response technique and the Fast Fourier Transform (Cooley and Tukey 1965). The general formulation of the wave equation is not unique to horizontally-polarized shear wave motion; the equation can also be solved for the vertical propagation of compression waves.

22. In general, soil is a non-linear material that exhibits hysteretic behavior under cyclic loading. An example of the stress-strain behavior is shown in Figure II-2a. Soil is difficult to model accurately for cyclic response; exact representations are unavailable. The constitutive model incorporated into SHAKE is linear with simulated nonlinear effects to account for dependency of moduli on shear strain. The method used to implement the linear visco-elastic model, called the equivalent-linear method, was proposed by Seed and Idriss (1970) and is widely used in geotechnical earthquake engineering studies.

23. The basic components of the equivalent-linear method are the maximum shear modulus,  $G_{max}$ , moist unit weight,  $\gamma$ , and ratio of critical damping,  $\beta$ . The property  $G_{max}$ , which corresponds to the linear-elastic, continuum material property (Lamé 1852), can be calculated from low-strain seismic shear wave velocity using:

$$G_{max} = \frac{\gamma}{g} v_s^2 \tag{1}$$

where

g - gravitational constant of earth
V, - shear wave velocity

When using the shear modulus coefficient in lieu of  $V_s$ , the following equation is used (Seed and Idriss 1970):

$$G_{max} = 1000 (K_2)_{max} (\sigma_m^{\prime})^{0.5}$$
 (2)

where

 $\sigma_{m}'$  = mean effective stress, in psf  $G_{max}$  is in psf

The shear modulus, G, of a soil remains constant during cyclic loading at very small shear strains (defined as  $G_{max}$ ). As the shear strains increase above some threshold value, generally accepted to be about  $10^{-4}$  percent or less, G decreases. The equivalent-linear method uses secant shear moduli that are adjusted during each iteration to account for this degradation of shear modulus. Damping is input by using complex moduli,  $G^*$ , and hysteretic damping (which is independent of frequency) as reported by Udaka and Lysmer (1973):

$$G^* = G (1 - 2\beta^2 + 2i\beta\sqrt{1 - \beta^2})$$
(3)

where

 $i = \sqrt{-1}$ 

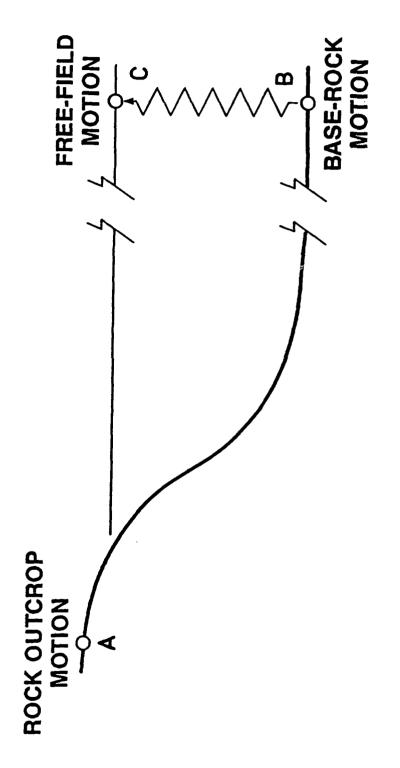
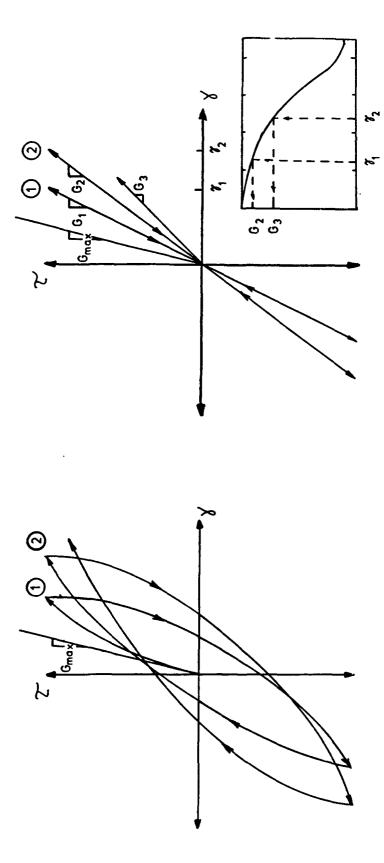
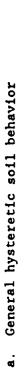
Damping increases as shear strain increases.

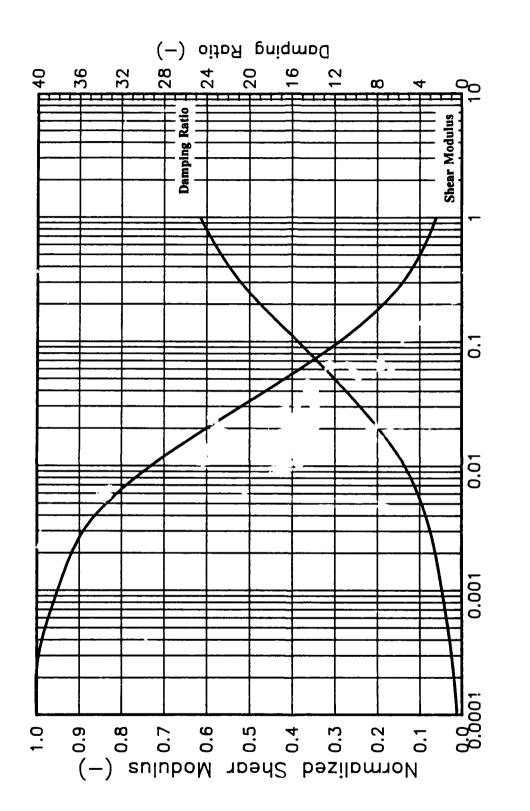
24. The character of the relationships between normalized shear modulus versus shear strain and damping ratio versus shear strain was addressed in studies at the University of Kentucky in the late 1960's (Hardin and Drnevich 1972a; 1972b). Seed and Idriss (1970) and Schnabel (1973) used the results of these studies to derive the equivalent linear model and the first set of relationships provided with SHAKE. The general shapes of these relationships are shown in Figure II-3. Relationships provided with WESHAKE are presented in Part III of this report.

25. An example of the iterative procedure for the equivalent-linear method is shown in Figure II-2b and described below. Assuming shear wave

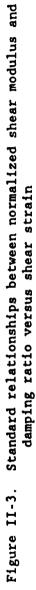
propagation, the model is initiated with an arbitrary value of shear modulus,  $G_1$ , chosen to be less than, or equal to,  $G_{max}$ . For the first cycle of loading, the stress-strain relation is linear between the two levels of shear strain,  $\pm \tau_1$ , with a slope of  $G_1$ . The ordered pair  $(G_1, \tau_1)$  comes from the appropriate modulus degradation curve as discussed in Part III of this report and shown schematically in Figure II-2b. Maximum shear strains are obtained from the solution of the wave equation. The ratio of effective shear strain to maximum shear strain, PRMUL, (assumed to be 0.65) is used to obtain a new value of shear modulus,  $G_2$ , from the appropriate modulus curve. A new value of  $\beta$  is also obtained.

26. This process is repeated until the difference in moduli and damping for two successive iterations are within a prescribed tolerance, EkR (5 percent is assumed). The number of iterations required by the computer to solve the problem is a function of how close the initial estimates are to the final results; the closer the two sets of values, the fewer the number of iterations required (and proportionally, more time to solve).



Figure II-1. Three primary control points for site response analysis






b. Equivalent-linear method representation

Figure II-2. Generalized comparison between hysteretic soil behavior and the equivalent-linear soil model for a constant stress state



----



### PART III: PERSONAL COMPUTER IMPLEMENTATION

27. The computer program WESHAKE is primarily a menu driven shell system with various other requests for information from the user to quickly and conveniently guide the user to execution of the core computer code. This program is linked with overlays and external data bases to reduce memory size during execution. Information about loading the program and companion files is presented in Appendix A along with discussions about hardware requirements, array limitations, memory requirements, and program run times.

### Changes from SHAKE

28. Over the 20 years that SHAKE has been used, more knowledge has become available with regard to the specification of inputs to the program and significant advances have been made in computer technology. As these findings and advances have been made, WES has refined and adapted SHAKE. WESHAKE can best be described as a program that performs pre- and post-processing functions and uses the original program, called SHAKE1, as a core for calculations. SHAKE, then, is essentially embedded in WESHAKE which facilitates the implementation of newer versions or formulations of SHAKE.

29. The pre- and post-processing routines were written from scratch during FY91 and version 1.0 was finalized and distributed in FY92. Only a few minor changes were made to SHAKE1 to reflect changes in the state-of-the-art. The changes made to SHAKE1 were purposely kept to a minimum to retain the intent of that program's authors and minimize the amount of re-validation required. The options to SHAKE are also numbered differently in the interface to reduce the size of user menus. The cross reference between option numbers is provided in Table III-1.

30. The most significant change made to SHAKE1 was in the subroutine SOILIN which is used to read, calculate, and store the initial values of shear wave velocity and shear modulus. First, the initial value of shear modulus for each layer used in the iteration scheme for the equivalent linear constitutive model is fixed to equal  $G_{max}$ . Fixing the initial value corresponding to  $G_{max}$  will increase the time to iterate to the solution but not significantly when using personal computers with processor speeds greater than about 20 MHz. Then, rather than having fixed variable inputs of  $S_u$  and

 $K_2$  for clay and sand, respectively, SHAKE1 allows the user to input  $K_2$  OR  $V_s$  for any soil;  $S_u$  is no longer used.  $V_s$  input is still required for rock, however.

31. Other significant changes include the separation of shear modulus and damping relationships for soil types. Previously, a set of shear modulus and damping relationships was selected. Now, each relationship can be chosen separately. This is described in more detail in the next section. WESHAKE has no provisions for the use of sublayers. This original option does not appear to be useful. In addition, error checks were added and will be described later.

### Shear Modulus and Damping Ratio Data Bases

32. Two separate data bases are used to contain options for specifying the variation of normalized shear modulus and damping ratio with effective shear strain -- SHEARDB and DAMPDB, respectively. Both data bases are used independently to specify material relationships for each layer allowing versatility. (In previous versions of SHAKE and WESHAKE the selection of one material relationship required the use of a specific damping ratio relationship.) A description of the data bases, including format, are presented in Appendix B.

33. Eleven relationships for normalized shear modulus and damping ratio exist in the two data bases -- one for rock, one for gravel, three for sand, and six relations for cohesive soils. These relationships are shown in Figures III-1 and III-2 for normalized shear modulus and Figures III-3 and III-4 for damping ratio. The sources of the relationships are summarized in Table III-2. The criteria for selection of appropriate relationships from the data bases are based on the general soil classification and plasticity index (for fine-grained soils).

34. Three different relationships are available in each of the data bases for sands -- average, lower bound, and upper bound (refer to Figures III-1 and III-3). These relationships are based on the results of laboratory studies (e.g., Hardin and Drnevich 1972a; Seed and Idriss 1970, Wong et al. 1974; Seed et al. 1986; and Hynes 1988) Some investigators (e.g. Idriss 1990) tend to use the upper bound relationship for sands. The general recommendation of WES is to use the lower bound sand relationship for gravelly

sands or sandy gravel (rather than the "gravel" curve), use the average relationship for clean sands, and use the upper bound relationship for clayey and silty sands.

35. The results of independent laboratory studies by Sun, Golesorkhi, and Seed (1988), Zen and Higuchi (1984), and Vucetic and Dobry (1991) have shown that for cohesive soils, the selection on an appropriate shear modulus curve should be based on the plasticity index. The set of relationships proposed by Sun, Golesorkhi, & Seed (1988) are included in the data base. A discussion related to the choice of this set is contained in Part V of this report. Note that the range of relationships for cohesive soils overlaps the range of relationships for sands.

### Earthquake Record Data Base

36. Lists of earthquake records (accelerograms) in the WESHAKE data base are separated into measured records and synthetic records and are presented in Tables III-3 and III-4, respectively. More information on the data base is provided in Appendix C, including data base syntax and plots of the variations of acceleration with time and velocity spectra for all of the records.

37. The data base used in WESHAKE has been limited initially to 22 records representing both measured and synthetic earthquake records. Most importantly, this data base purposely includes only records corresponding to rock outcrop (refer to Figure II-1). The user may define an earthquake not contained in the data base, preferably a project-specific record.

38. A number of (measured) earthquake records are available to the user, particularly with the establishment of national data bases for strong motion (e.g., Row 1990; Friberg and Jacob 1990). The user should be aware that the vast majority of earthquake records have been measured at points other than rock outcrop, the most desired point for WESHAKE. Most of the U.S. records, for instance, have been measured by instruments housed in buildings, primarily the basements, and at the top of free-field soil sites (well above the top of rock). The presence of the building and soil overlying bedrock can greatly affect the recorded motion (e.g., refer to the presentation under the previous sub-heading). In fact, this is the purpose of conducting an analytic site response study. Free-field rock outcrop records (or base rock records,

when they become available) should be used to properly evaluate site response and maintain consistency in approach.

39. The variation of acceleration with time for each earthquake can be viewed on the computer monitor by enabling the computer program *MOTION* (outside of the *WESHAKE* shell). The plots represent unscaled (measured accelerations) records as they are contained in the database. Details concerning its procedures and operations are included in Appendix D.

### Input and Output Files

40. WESHAKE creates and manages a number of different files as needed. The use of input files may go relatively unnoticed to the user. Output files are created to be easily read by commercial plotting software. Both input and output files are described below.

### Input files

41. WESHAKE makes use of three different files for input to the core program SHAKE1: a specification file (with \*.DAT filename extension), a soil profile file (with \*.SPF filename extension), and a companion file (with \*.EXT filename extension). The specification file is the complete input file to SHAKE1. A soil profile file contains information regarding the stratigraphy and material properties and is a subset of the specification file. Its use is optional but useful when a number of specification files are to be created with the same soil profile. For instance, an engineer may be interested in subjecting a particular soil column to a number of different earthquake records scaled to the same value of  $a_{max}$ . The companion file is merely a storage area for descriptions of the soil types and is created by WESHAKE along with the specification or soil profile file. The manipulation of these three files is relatively transparent to the user. Options within WESHAKE allow the user to list existing files in the working directory to avoid confusion.

42. Old input files (from SHAKE or WESHAKE) can be modified with minimal effort using a DOS editor and used with WESHAKE as described in Part IV and Appendix E. These changes include adding a line to the option defining the earthquake motion and deleting the end of input option and any existing end-of-file markers. Differences in format for input files to SHAKE1 and

WESHAKE are marked for easy identification in Appendix E to facilitate changing of existing input files.

### Output files

43. Several different files are created as a result of running WESHAKE. Some of these files are created as a consequence of mandatory actions (i.e., always created) whereas other files are specific to different options selected. A summary table of output files is shown in Table III-5. Output files are in ASCII format so they may be read by a DOS editor, word processing software, or sent directly to a printer.

44. Five of the output files are automatically created whenever WESHAKE is run: GMOD, DAMP, EQIN, STRESS, and OUTPUT. The first three of these present some of the input parameters into a convenient form for plotting using programs such as *GRAPHER*. The format used for these files is comma-separated variables. The primary output file and typically the largest in size is named OUTPUT. This file summarizes the inputs contained in the specifications file and all of the results of the various actions and options. The file STRESS also has a comma-separated form of peak effective shear stresses and shear strains for the top of each layer.

### Error Checks

45. Some error checks have been implemented into version 1.0 of WESHAKE in an attempt to assist the user and preclude the calculation of erroneous results. On the most basic level, a system of recognizing valid responses to the menu queries is used so that many unintentional entries made will not be accepted and the user is allowed to re-enter the value. This system is intended to prevent the pre-processing portion of the program from exiting abruptly and consequently losing all entries made up to that point.

46. The implementation of WESHAKE also has established bounds for some entries. This includes parameters like the coefficient of lateral earth pressure, unit weight of soil and pore fluid (including units of kcf), and shear wave velocity. These checks are intended to help the user find typing errors and help operators unfamiliar with typical values for some geotechnical parameters.

47. The final, and most important, set of error checks involve the detection of potential calculation errors. Two primary checks are now in

place: checks on comparisons between the lengths of earthquake records and size of FFT arrays and the level of effective shear strain used to calculate new moduli and damping ratios (must be less than 1.0 percent -- the extent of definition of the curves). In both cases, the user is warned immediately on the computer screen.

### Validation of WESHAKE

48. Although only minor changes have been made to the core program (original version of SHAKE) the validation of WESHAKE was considered to be necessary. One good source of validation is a comparison of results with the example problem used by Schnabel, Lysmer, and Seed (1972) in chapter 6 of the original SHAKE manual. Minor interpretations were required to accommodate the parameters used by WESHAKE (e.g., shear wave velocity in lieu of  $S_u$  for clays). A summary of this comparison is presented in Appendix F including a soil column representing the example problem. Note that this example contained an error in the definition of the normalized shear modulus relationship for sands. A discontinuity exists at a shear strain of 0.3316 percent (shear strain should have been defined as 0.0316). This error was repeated for validation to maintain consistency.

49. In general, the results between the two are consistent. A few comparisons are made within the output file presented in Appendix F. Small differences may be the consequence of differences in machine accuracy. Other favorable comparisons have been made with other problems previously analyzed at WES.

| INPUT/ACTION                            | WESHAKE                             | SHAKE            |
|-----------------------------------------|-------------------------------------|------------------|
| General information                     | "Project Information"               | "Initialization" |
| Soil column/soil properties             | Mandatory Action 1                  | Options 2 and 8  |
| Earthquake motion                       | Mandatory Action 2                  | Option 1         |
| Point of excitation                     | Mandatory Action 3                  | Option 3         |
| Compute motions                         | Mandatory Action 3                  | Option 4         |
| Compute motions in sublayers            | User Option 1                       | Option 5         |
| Print object motion                     | User Option 2                       | Option 6         |
| Change object motion                    |                                     | Option 7         |
| Compute response spectra                | User Option 3                       | Option 9         |
| Increase time interval                  | User Option 4                       | Option 10        |
| Decrease time interval                  |                                     | Option 11        |
| Plot Fourier spectra of object motion   | User Option 5                       | Option 12        |
| Plot Fourier spectra of computed motion |                                     | Option 13        |
| Plot time history of object motion      | User Option 6                       | Option 14        |
| Compute amplification spectra           | User Option 7                       | Option 15        |
| Compute stress or strain<br>history     | User Option 8                       | Option 16        |
| Close input file                        | User Option 10<br>Analysis Option 1 | Option 0         |

# Table III-1

...

Correlation Between Option Numbers Used in SHAKE and WESHAKE

# Table III-2

# References for Material Property Data Bases

| Material Type                                                                      | References                                                  |
|------------------------------------------------------------------------------------|-------------------------------------------------------------|
| Rock                                                                               | Schnabel (1973)                                             |
| Gravel                                                                             | Seed et al (1986)                                           |
| Sand (upper bound, average<br>and lower bound)                                     | Seed & Idriss (1970)*                                       |
| Clay & Silt:                                                                       |                                                             |
| PI = 5-10<br>PI = 10-20<br>PI = 20-40<br>PI = 40-80<br>PI > 80<br>Mexico City Clay | Sun, Golesorkhi,<br>& Seed (1988)<br>Seed and Idriss (1970) |

Confirmed by Seed et al (1986)

\*

Table III-3

# Measured Earthquake Records in WESHAKE Data Base

|          | Earthquake Name                    | Instrument<br>Location          | Point<br>Type <sup>*</sup> | Component | Magnitude | Distance<br>(km) | a <sub>max</sub> (g) |
|----------|------------------------------------|---------------------------------|----------------------------|-----------|-----------|------------------|----------------------|
|          | San Francisco,<br>CA <sup>**</sup> | Golden Gate<br>Park             | R                          | S 80° E   | 5.3       | 11               | 0.10                 |
|          | Parkfield, CA                      | Cholame-<br>Shandon,<br>Temblor | R                          | N 65° W   | 5.5       | 27               | 0.27                 |
|          | San Fernando, CA                   | Castaic, Old<br>Ridge Route     | R                          | N 21° E   | 6.5       | 30               | 0.32                 |
|          | H                                  | Lake Hughes,<br>Array Sta. 4    | R                          | s 21° W   | 6.5       | 28               | 0.14                 |
|          | Sitka, AK                          | Magnetic Obs.                   | R                          | N 90° E   | 7.6       | 48               | 0.09                 |
|          | Hollister, CA                      | Gilroy #1,<br>Gavilan Coll.     | R                          | N 90° E   | 5.2       | 22               | 0.14                 |
|          | Coyote Lake, CA                    | F                               | R                          | S 67° W   | 5.8       | 16               | 0.11                 |
|          | Imperial Valley,<br>CA             | Superstition<br>Mountain        | R                          | 320°      | 6.6       | 58               | 0.19                 |
|          | El Centro, CA                      | 5                               | R                          | 135°      | 5.6       | 22               | 0.10                 |
|          | Morgan Hill, CA                    | Gilroy #1,<br>Gavilan Coll.     | ĸ                          | s 67° W   | 6.2       | 39               | 0.10                 |
|          | Nahanni, Canada**                  | Iverson site                    | 2                          | 10°       | 5.4       | 7                | 0.23                 |
|          | * * E                              | Slide Mtn.<br>site              | 6                          | 330°      | 4.8       | 9                | 0.39                 |
| 10/18/89 | Hollister Airport                  | Loma Prieta                     | 24                         | 0         | 7.0       | 45               | 0.28                 |

R - free field rock outcrop

\*

\*\* Aftershock (all others main shock)

# Table III-4

# Synthetic Earthquake Records in WESHAKE Data Base

,

| No. | Project/Event* | Method of<br>Derivation | Record<br>Name | Point<br>Type | Magnitude | Distance<br>(km) | a <sub>max</sub> (g) |
|-----|----------------|-------------------------|----------------|---------------|-----------|------------------|----------------------|
| 14  | Folsom Dam MCE | Deterministic           | Record "A"     | Rock outcrop  | 6.5       | 15               | 0.35                 |
| 15  | Folsom Dam MCE | Ξ                       | Record "B"     | E             | 6.5       | 15               | 0.43                 |
| 16  | New Madrid DBE | Probabilistic           | 500-yr H1      | F             | 7.1       | 65               | 0.                   |
| 17  | Ŧ              | *                       | 500-yr H2      | E             | 7.1       | 65               | 0.                   |
| 18  | 44             | 2                       | 1000-yr H1     | F             | 7.3       | 52               | 0.                   |
| 19  | E              | Ŧ                       | 1000-yr H2     | Ξ             | 7.3       | 52               | 0.                   |
| 20  | E              | 2                       | 5000-yr H1     | F             | 7.3       | 38               | 0.                   |
| 21  |                |                         | 5000-yr H2     | F             | 7.3       | 38               | 0.                   |
| 22  | Ririe Dam MCE  | Deterministic           | 6              | 5             | 7.5       | 8                | 1.17                 |

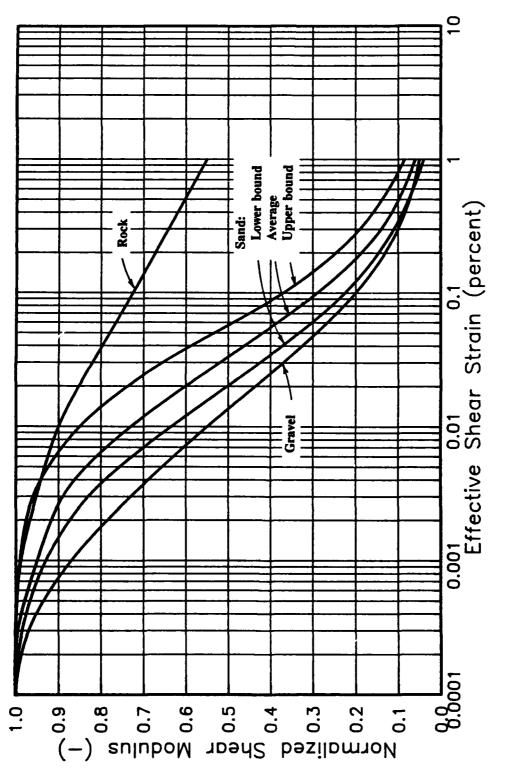
MCE - Maximum credible event
 DBE - Design basis earthquake

.

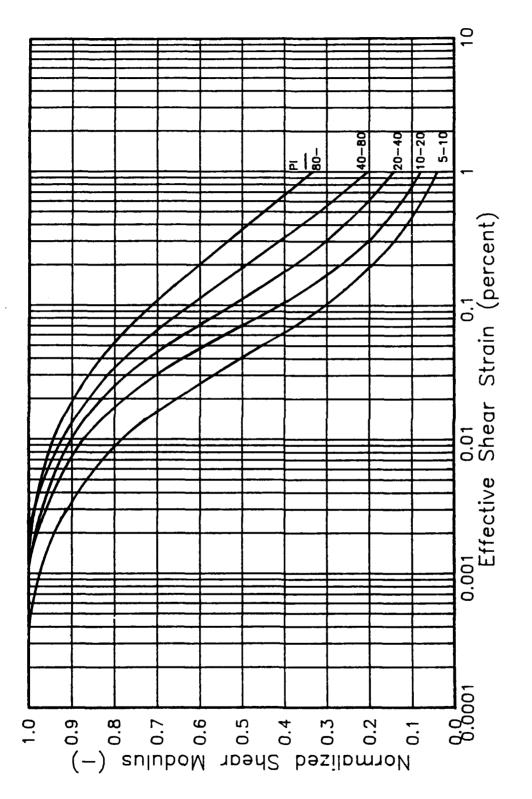
. 34

•

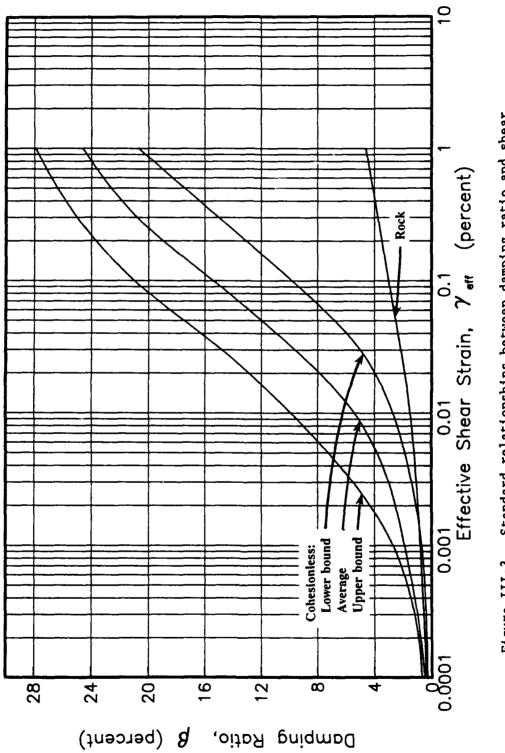
NY.


# Table III-5

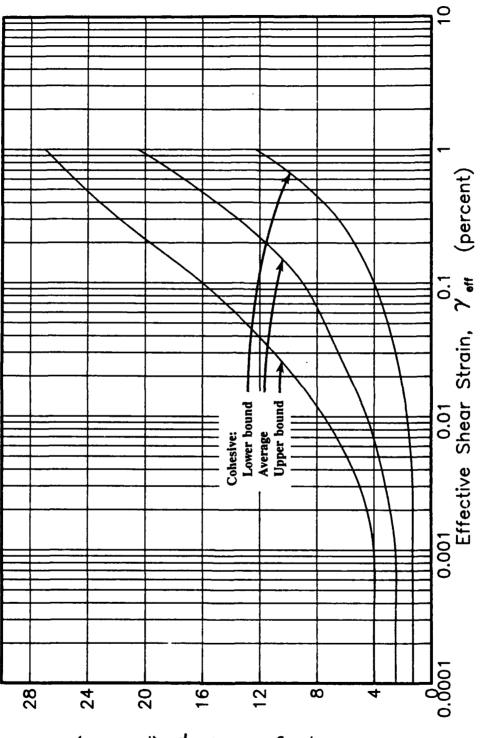
-


.

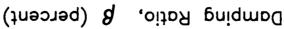
## Summary of Output Files


| File Name | Source                             | Description                                                                                                           |
|-----------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| GMOD      | Mandatory actions                  | Table of points defining the<br>variations of shear modulus with<br>shear strain representing soils in<br>soil column |
| DAMP      | Mandatory actions                  | Table of points defining the<br>variations of damping ratio with<br>shear strain representing soils in<br>soil column |
| EQIN      | Mandatory actions                  | Two-column table of time and acceleration defining input earthquake record                                            |
| OUTPUT    | Mandatory actions                  | Primary output file; contains all<br>pertinent information; printing of<br>earthquake record is option<br>[OUTKEY]    |
| STRESS    | Mandatory actions                  | Two-column table of (top-of-layer)<br>depth and corresponding shear<br>stress and shear strain                        |
| AMAX      | User option 1                      | Two-column table of (top-of-layer)<br>depth and corresponding maximum<br>accelerations                                |
| VELSPEC   | User option 3<br>Sub-option 0 or 2 | Table of pseudo velocity spectra<br>showing periods and velocities at<br>specified levels of damping<br>(columns)     |
| ACCSPEC   | User option 3<br>Sub-option 1 or 2 | Table of pseudo acceleration<br>spectra showing periods and<br>velocities at specified levels of<br>damping (columns) |


















### PART IV: RUNNING WESHAKE

50. The execution of WESHAKE basically two stages: preprocessing and analysis. In the preprocessing stage, the computer prompts the user for various mandatory information -- the type of earthquake motion, the number of soil layers, the type of soil layers, and certain parameters needed for the analysis -- and user options for additional analysis. Output files containing results from the analysis are generated by the mandatory actions and the various options. These output files are in ASCII format and, therefore, can be viewed on a DOS editor or converted into a word processing document. The final action posed in the analysis stage is to allow the user to generate printed files of the various output documents. Figure IV-1 illustrates the processing cycle for WESHAKE. A flowchart of subroutines defining these two stages is shown in Appendix G.

51. The format for the various user responses in Part IV will be menus and user response screens. Example responses are shown in bold type; variable names are enclosed in square brackets. To start WESHAKE, type WESHAKE at the DOS prompt. An example problem used throughout this Part is shown in Figure III-2. The first screen is:

> U.S. ARMY WATERWAYS EXPERIMENT STATION GEOTECHNICAL LABORATORY EARTHQUAKE ENGINEERING AND SEISMOLOGY BRANCH Vicksburg, Mississippi \*\*\*\*\* WESHAKE 1.0 \*\*\*\* OPTIMIZED FOR USE ON DOS-COMPATIBLE PERSONAL COMPUTERS by David W. Sykora and Dr. David C. Wallace **SUMMER 1992** For consultation and recent updates, call: (601) 634-3551 PRESS <ENTER> TO CONTINUE <ENTER> (CONTINUE NEXT SCREEN)

### Pre-Processing Stage

52. The user provides with information that will be required for the analysis in the pre-processing stage. This information is divided into two parts -- mandatory actions and user options and is stored in files read by the core program, SHAKE1. Once the files are created, they can be used repeatedly. As described in Part III, WESHAKE creates up to three files: a specification file, a soil profile file, and a companion file. The primary files of interest are the specifications file and the soil profile file. After the initial screen, the user will be prompted:

SPECIFICATION FILE DESIGNATION \*\*\*\*\* TO CREATE A NEW SOIL PROFILE FILE ENTER 1 TO USE AN EXISTING SOIL PROFILE FILE, ENTER TO CREATE A NEW SPECIFICATION FILE 3 ENTER TO USE AN EXISTING SPECIFICATION FILE. -4 ENTER TO DELETE A FILE. ENTER - 5 TO DISPLAY FILES, ENTER 6 ENTER THE FILE NAME (EIGHT OR LESS ALPHANUMERIC CHARACTERS WITH NO PERIODS OR EXTENSIONS): EXAMPLE (CONTINUE NEXT SCREEN)

If one soil profile will be used repeatedly with different earthquake motions, a soil profile file is preferred. If only one earthquake will be used, the soil profile file is unnecessary and only a specification file is needed. No matter which selection is made, the computer will search the current directories for file name specified. If a new file is desired, the file may not already exist. If an existing file is desired, the file must already exist. For convenience, options are provided to obtain a listing of the existing files contained in the working directory and delete unwanted files. If an existing specification file is used, the screen will look like this:

> THIS SPECIFICATION FILE WAS CREATED USING: WESHAKE, ENTER 1 OTHER MEANS, ENTER 2

> > (CONTINUE NEXT SCREEN)

This designation is necessary to indicate whether a companion file should be sought (If "USING WESHAKE" is selected, the companion file must exist). Mandatory Actions

53. The pre-processing stage now follows with mandatory actions which are listed in the SUMMARY OF MANDATORY ACTIONS screen:

SUMMARY OF MANDATORY ACTIONS \*\*\*\*\*\* \*\* FOLLOWING THE INPUT OF SOME INITIAL INFORMATION, \*\* \*\* THE FOLLOWING MANDATORY ACTIONS WILL BE UNDERTAKEN \*\* \*\* IN THE SPECIFIED ORDER: \*\* 44 -\*\* 1 CREATE SOIL COLUMN \*\* 2 SELECT EARTHQUAKE RECORD \*\* \*\* 3 SPECIFY POINT OF EARTHQUAKE EXCITATION \*\* \*\* PRESS <ENTER> TO CONTINUE *(ENTER)* (CONTINUE NEXT SCREEN)

These actions are automatically enacted by the program through the use of additional menus and screens as shown below. A project title may be entered on the following screen:

PROJECT INFORMATION

ENTER A PROJECT TITLE [PTITLE]: - MAXIMUM OF 74 CHARACTERS IN LENGTH TITLE OF EXAMPLE PROBLEM

(CONTINUE NEXT SCREEN)

Next, mandatory action 1 is summarized:

MANDATORY ACTION 1: CREATE SUIL COLUMN

INFORMATION AND PROPERTIES DEFINING EACH SOIL LAYER WILL NOW BE REQUESTED BEGINNING AT THE TOP LAYER AND WORKING DOWN TO ROCK (BASE).

A MENU OF SOIL TYPES WILL BE DISPLAYED FOR EACH SOIL LAYER TO SELECT REPRESENTATIVE RELATIONSHIPS FOR SHEAR MODULUS AND DAMPING RATIO.

(continued next page)

54. The next screen will ask general information about the soil column to prepare for input of properties for each layer. Note that the unit of measurement for the total unit weight of soil is kips per cubic foot. The entry corresponding to the layer number for the water table is required input to proceed but is only used for the calculation of  $G_{max}$  when values of  $K_2$  are used. A unit weight of pore fluid corresponding to water (0.0624 kcf) is assumed for this calculation.

> ENTER THE NUMBER OF SOIL LAYERS FOR THE COLUMN INCLUDING ROCK [ML]: 5 ENTER THE LAYER NUMBER AT THE TOP OF WHICH LIES THE WATER TABLE [MWL]: 5 ENTER THE IDENTIFICATION FOR THE SOIL PROFILE: - MAXIMUM OF 43 CHARACTERS IN LENGTH IDENTIFICATION OF EXAMPLE SOIL PROFILE (CONTINUE NEXT SCREEN)

55. The next three screens query the user for specific information about each soil layer. The first two screens have menus that summarize the shear modulus and damping ratio data bases, respectively.

|    |        | E OF NORMALIZED SHEAR | MODULUS CURVES       | *** |
|----|--------|-----------------------|----------------------|-----|
| ** | NUMBER | DESCRIPT              |                      | **  |
| ** |        |                       |                      | **  |
| ** | 1      | ROCK, AVERAGE         | (SCHNABEL 1973)      | **  |
| ** | 2      | GRAVEL, AVERAGE       | (SEED ET AL 1986)    | **  |
| ** | 3      | SAND, LOWER BOUND     | (SEED & IDRISS 1970) | **  |
| ** | -<br>Ă | SAND, AVERAGE         | (SEED & IDRISS 1970) |     |
| ** | 5      | SAND, UPPER BOUND     | (SEED & IDRISS 1970) |     |
| ** | 6      | CLAY/SILT, PI=5-10    | (SUN et al 1988)     | **  |
| ** | 7      | CLAY/SILT, PI-10-20   | (SUN et al 1988)     | **  |
| ** | 8      | CLAY/SILT, PI-20-40   | (SUN et al 1988)     | **  |
| ** | 9      | CLAY/SILT, PI=40-80   | (SUN et al 1988)     | **  |
| ** | 10     | CLAY/SILT, PI>80      | (SUN et al 1988)     | **  |
| ** | ĩĭ     | MEXICO CITY CLAY      | (SUN et al 1988)     | **  |

(continued next page)

(CONTINUE NEXT SCREEN)

and

|     |         | E OF DAMPING RATIO CUR |                      | ***  |
|-----|---------|------------------------|----------------------|------|
| **  | NUMBER  | DESCRIPTI              | ON                   | **   |
| **  |         |                        |                      | **   |
| **  | 1       | ROCK, AVERAGE          | (SCHNABEL 1973)      | **   |
| **  | 2<br>3  | GRAVEL, AVERAGE        | (SEED ET AL 1986)    | **   |
| **  | 3       | SAND, LOWER BOUND      | (SEED & IDRISS 1970) | **   |
| **  | 4<br>5  | SAND, AVERAGE          | (SEED & IDRISS 1970) | **   |
| **  | 5       | SAND, UPPER BOUND      | (SEED & IDRISS 1970) | **   |
| **  | 6<br>7  | CLAY/SILT, LOWER BOUND |                      |      |
| **  | 7       | CLAY/SILT, AVERAGE     | (SEED & IDRISS 1970) | **   |
| **  | 8       | CLAY/SILT, UPPER BOUND | (SEED & IDRISS 1970) | **   |
| **> | ******  | *****                  | *****                | ***  |
| ENT | FER THE | NUMBER FOR LAYER 1     | OF 5 LAYERS [TYPE]:  |      |
| 7   |         |                        |                      |      |
|     |         |                        | (CONTINUE NEXT SCR   | EEN) |

Site-specific shear modulus and damping relations can be added (or deleted) from the soil property data bases (SHEARDB and DAMPDB) using a DOS editor. There are two requirements for customizing the data bases: use the exact format as documented in Appendix B and provide a unique identification number for the curve, INUM. Note that any new entries to the data base will not be displayed on the computer screen even though they can be accessed.

56. The third screen is used to query the user about properties for each layer. The use of  $K_2$  or  $V_s$  to calculate shear modulus was described in Part II of this report. The example shown is for  $V_s$  input. If  $K_2$  input is specified, the appropriate prompts for initial and maximum  $K_2$ ,  $(K_2)_{max}$ , will be displayed and a value of coefficient of lateral earth pressure will be requested. Only shear wave velocities are allowed to define shear modulus for rock.

> ENTER THE THICKNESS (ft) OF LAYER 1 [HL]: 5 THE INITIAL ESTIMATES FOR DAMPING RATIO [B] WILL BE 5 PERCENT FOR SOIL AND 2 PERCENT FOR ROCK. ENTER THE TOTAL UNIT WEIGHT (kcf) OF LAYER 1 [W]: 0.110

> > (continued next page)

```
DESIGNATE ' "OD OF MODULUS CALCULATION
FOR SHEAR VELOCITY, ENTER VS
FOR K2, ENTER K2
VS
ENTER THE SHEAR WAVE VELOCITY (fps)
FOR LAYER 1:
425
(CONTINUE NEXT SCREEN)
```

57. Once the soil column has been created a summary table is displayed to allow the user to check the information. The summary table for the example problem is:

|                                                                                                                  |                                                             |                    |                | SHEAR<br>DAMPING         | THICK |      |      | STIFFNESS  | \$         |
|------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|--------------------|----------------|--------------------------|-------|------|------|------------|------------|
| 1                                                                                                                | 9                                                           | S: CLAY            | SIL            | .,PI=40-80<br>., Average | 5.0   |      | .110 | Vs = 425   | 5.         |
| 2                                                                                                                | 6                                                           | S: CLAY            | /SIL]          | C,PI= 5-10               | 8.0   |      | .115 | Vs - 575   | 5.         |
| 3                                                                                                                | 4                                                           | S: SAND            | Ave            | C, Average<br>erage      | 10.0  | . 38 | .125 | K2 - 35    | 5.         |
| 4                                                                                                                | 4<br>3                                                      | D: SAND<br>S: SAND | , Ave<br>, Lov | erage<br>ver Bound       | 15.0  |      | .130 | Vs - 1100  | ).         |
| 5                                                                                                                | 1                                                           | D: SAND<br>S: ROCK | , Ave          | erage                    |       |      | .150 | Vs - 5000  | <b>)</b> . |
|                                                                                                                  | 1                                                           | D: ROCK            | Ave            | erage                    |       |      |      |            |            |
|                                                                                                                  |                                                             | SOIL CON           |                | CORRECT?                 |       |      |      |            |            |
| EI<br>1                                                                                                          | NTER                                                        | 1 FOR Y            | ËS             |                          |       |      |      |            |            |
| то                                                                                                               | TO CONTINUE ON TO MANDATORY ACTION 2, PRESS <enter></enter> |                    |                |                          |       |      |      |            |            |
| <ent< td=""><td></td><td></td><td></td><td></td><td></td><td>•</td><td></td><td>KT SCREEN)</td><td>,</td></ent<> |                                                             |                    |                |                          |       | •    |      | KT SCREEN) | ,          |

If a correction is required, the user may enter the layer number at the prompt and then all information for the designated layer number must be input again via computer prompt. Once the correction(s) has been made the computer will again display the soil profile and ask the user if the soil profile is correct. The process will repeat until the column is accepted by the user (indicated by entering 1).

58. This marks the end of defining soil stratigraphy and soil properties. If the user specified the option for creation of a specification file, the program continues directly to the next mandatory action which is the selection of an earthquake record. If the user specified the option for

creation of a soil profile, the information collected up to this point is saved first before proceeding to the next mandatory action.

59. The following menu is used to initiate mandatory action 2. Earthquake records in the data base (EARTHQ) are displayed for selection:

|     |      | MANDATORY ACTION 2: S        | FIECT   | FARTHOUAKE RECORD                      |     |
|-----|------|------------------------------|---------|----------------------------------------|-----|
|     |      | ****                         |         |                                        |     |
|     |      | EARTHQUAKE D                 |         |                                        |     |
| **: | **** |                              |         | **********************                 | **  |
| **  | NO   | MEASURED RECORD              | NO      | SYNTHETIC RECORD                       | **  |
| **  |      |                              |         |                                        | **  |
| **  | 1    | GOLDEN GATE 1957             | 14      | FOLSOM RECORD "A"                      | **  |
| **  |      | PARKFIELD 1966               | 15      | FOLSOM RECORD "A"<br>FOLSOM RECORD "B" | **  |
| **  |      | CASTAIC RIDGE 1971           | 16      | NEW MADRID 500-YR H1                   | **  |
| **  |      |                              | 17      |                                        | **  |
| **  | 5    | SITKA 1972                   | 18      |                                        | **  |
| **  | 6    | SITKA 1972<br>GILROY #1 1974 | 19      | NEW MADRID 1000-YR H2                  | **  |
| **  |      | GILROY #1 1979               | 20      | NEW MADRID 5000-YR H1                  | **  |
| **  | 8    | SUPERSTITION 1979            | 21      | NEW MADRID 5000-YR H2                  | **  |
| **  | 9    | SUPERSTITION 1981            | 22      | RIRIE DAM                              | **  |
| **  | 10   | GILROY #1 1984               |         |                                        | **  |
| **  | 11   | IVERSON 1985                 |         |                                        | **  |
| **  | 12   | SLIDE MT 1985                |         |                                        | **  |
| **  | 13   | HOLLISTER AIRPORT 198        | 19      |                                        | **  |
| **  |      |                              |         |                                        | **  |
|     | 0th  |                              |         |                                        | **  |
| **  | 25   | STOP AT THIS POINT AN        | ID SAVE | E SOIL PROFILE FILE                    | **  |
| **  | 26   | PICK YOUR OWN EARTHQU        | JAKE MO | DTION                                  | **  |
| **: | **** | *****                        | *****   | *********************                  | **  |
| EN  | ΓER  | EARTHQUAKE NUMBER:           |         |                                        |     |
| 1   |      |                              |         | (CONTINUE ON NEXT SCRE                 | EN) |

Specific parameters describing these earthquakes are listed in Tables III-3 and III-4. Listings of the data files and plots of the records and velocity spectra are provided in Appendix C. If a record is selected (i.e., option 25 is not selected) then specify if the values of acceleration should be echoed (printed) in the OUTPUT file:

```
SPECIFY WHETHER RECORD DATA ARE TO BE PRINTED
IN OUTPUT FILE [OUTKEY]:
ENTER 0 FOR NO
ENTER 1 FOR YES
0 (CONTINUE ON NEXT SCREEN)
```

60. Earthquake records not in the data base may be selected by entering 30 and then entering the name of the file (which must reside in the current working directory). The format for the earthquake record must follow the syntax for the earthquake data base which is specified in Appendix C. This format has as a second line "earthquake characteristics." This may be left blank, but the line must exist. Also, make sure that no end-of-file markers exist (typically ^Z).

61. After the earthquake record has been selected, the earthquake characteristics and the maximum acceleration are displayed for convenience and options for scaling the record are posed. The accelerogram can be scaled linearly by specifying a scaling factor (all values of acceleration are multiplied by this constant) or a maximum value of acceleration,  $a_{max}$  (all values of acceleration are multiplied by the ratio:  $(a_{max})_{nev} / (a_{max})_{old}$ ). The screen for this option is:

EARTHOUAKE MOTION CHARACTERISTICS: "Mag=7.1, Dis=69 km, Amax=.63 g., Rock Outcrop" MAXIMUM CUT-OFF FREOUENCY: 50.0 DO YOU WANT TO SCALE THE RECORD? ENTER O NO ENTER 1 YES 1 SCALING RECORD OPTION: ENTER 0 TO USE SCALING FACTOR ENTER 1 TO SET NEW MAXIMUM ACCELERATION ۵ ENTER THE SCALING FACTOR [XF]: 2.0 TO CONTINUE ON TO MANDATORY ACTION 3, PRESS <ENTER> *(ENTER)* (CONTINUE NEXT SCREEN)

The default scaling factor on the earthquake motion record is set to 1.00 and the default maximum acceleration is set equal to the peak measured value (also accomplished by setting XMAX = 0.0). The complete accelerogram can be altered by selecting option 1 (YES). If option 2 (NO) is selected, then the parameters are set to the earthquake motion record.

62. The final mandatory action is used to define the point in the soil profile at which the input motion corresponds. The previous screen and Tables III-3 and III-4 list where the motion corresponds (typically rock outcrop). In most cases, particularly for design or seismic stability analysis, rock outcrop motions are used. To use the motion as an outcrop motion, select the layer number corresponding to the base rock (last layer) and specify an outcropping layer (type 0). For base rock motions (refer to Figure II-1), again use the base rock layer number and then type a 1 for the motion type. If the motion corresponds to some other layer, for example ground surface (free field), use the layer number (which corresponds to the top of the layer) and a 1. The screen for these actions is:

63. Parameters defining the convergence criteria have been preset in WESHAKE for the convenience of the user. These values are displayed, as shown below, to remind the user:

THE FOLLOWING VALUES HAVE BEEN ASSUMED: THE MAXIMUM NUMBER OF ITERATIONS [ITMAX] - 20 THE ACCEPTABLE DIFFERENCE BETWEEN THE LAST-USED MODULUS AND DAMPING VALUES, AND THE STRAIN COMPATIBLE VALUES [ERR] - 5 PERCENT THE RATIO BETWEEN EFFECTIVE STRAIN AND MAXIMUM STRAIN [PRMUL] - 65 PERCENT TO CONTINUE ON TO USER OPTION MENU, PRESS <ENTER> <ENTER>

The user may change these values once the specifications file has been completed (see USER OPTIONS MAIN MENU in next section) by exiting WESHAKE, editing the specific file using a DOS editor, and restarting WESHAKE (and using an existing specification file).

64. Once these steps have been completed, the first component of the specifications file required to run WESHAKE has been created. This file can be used as often as necessary. The format of the specifications file for all of these responses is provided in Appendix E. An example specifications file

is shown in Appendix H corresponding to the example problem shown in Figure IV-3. WESHAKE continues by proceeding to the USER OPTIONS MAIN MENU which is described below.

### <u>User Options</u>

65. The USER OPTIONS MAIN MENU is encountered following mandatory actions for new specifications files or immediately following selection of an existing specifications file. This menu is still part of the pre-processing stage and is used to identify various options and outputs available to the user. It is also used to save the specifications file and exit WESHAKE or proceed to the analysis stage. Each option on the menu will have its own set of screens that will prompt the user for information needed to implement that option. The menu is:

|     |         | USER OPTION MAIN MENU                   |     |
|-----|---------|-----------------------------------------|-----|
|     |         | ****                                    |     |
| *** | ******  | *******                                 | *** |
| **  | OPTION  | DESCRIPTION                             | **  |
| **  |         |                                         | **  |
| **  | 1       | COMPUTE MOTION IN SPECIFIED SUBLAYERS   | **  |
| **  | 2       | PRINT OR CHANGE OBJECT MOTION           | **  |
| **  | 3       | COMPUTE RESPONSE SPECTRA                | **  |
| **  | 4       | INCREASE OR DECREASE TIME INTERVAL      | **  |
| **  | 5       | PLOT FOURIER SPECTRUM OF OBJECT OR      | **  |
| **  | -       | COMPUTED MOTION                         | **  |
| **  | 6       | PLOT TIME HISTORY OF OBJECT MOTION      | **  |
| **  | 7       | COMPUTE AMPLIFICATION SPECTRUM          | **  |
| **  | 8       | COMPUTE STRESS/STRAIN HISTORY           | **  |
| *** | ******* | *****                                   | *** |
| **  | 9       | SAVE FILE AND RETURN TO DOS             | **  |
| **  | 10      | SAVE FILE AND PROCEED TO ANALYSIS STAGE | **  |
| *** | ******* | *****                                   | *** |
| ENT | CER ONE | OPTION NUMBER:                          |     |
| . / |         | (CONTINUE NEXT SCR                      | FFN |

66. The first eight options listed in the USER OPTIONS MAIN MENU are described briefly with user menus in the following subsections. These options may be used in any order (although order of options 2 and 4 will affect subsequent results) and repeated as often as desired. Theoretical details about these options may be found in the manual for SHAKE (Schnabel, Lysmer, and Seed 1972) and in textbooks on soil and structural dynamics. The correspondence between WESHAKE and SHAKE option numbers is presented in Table III-1.

67. The last two selections in the USER OPTIONS MAIN MENU pertain to actions once all of the program options have been chosen. Option 9, is used

to save the current specifications file and exit WESHAKE (without placing the file termination statement). Option 10 is used to save the file and continue on for execution (adding termination statement: OPTION 0: END OF INPUT). Specification files that are reused (Option 4 in SPECIFICATION FILE DESIGNATION menu) are automatically stripped of the termination statement.

68. <u>Compute Motions in Sublayers</u>. Option 1 provides for information regarding the horizontal accelerations at layers of interest. Either tables of peak values or the complete time record of acceleration may be chosen. The screen for the OPTION 1 MENU is shown on the next page.

# OPTION 1 MENU

THIS OPTION IS USED TO SPECIFY THE EXTENT OF OUTPUT FOR ACCELERATIONS AT THE TOP OF SPECIFIED LAYERS ENTER O TO GET MAXIMUM ACCELERATION ONLY ENTER 1 TO GET VARIATION OF ACCELERATION WITH TIME AND PEAK ACCELERATIONS n THE PRESENT SOIL COLUMN HAS 5 LAYERS THE OBJECT MOTION HAS BEEN ASSIGNED TO LAYER 5 SPECIFY AT WHICH LAYERS OF THE SOIL COLUMN THE ACCELERATIONS SHOULD BE CALCULATED: - ONE AT A TIME - MAXIMUM OF 15 ENTER THE LAYER NUMBER [LL5(1)]: 1 SPECIFY THE MOTION TYPE [LT5(1)]: ENTER O FOR OUTCROPPING ENTER 1 FOR WITHIN SOIL PROFILE 1 TO COMPUTE ACCELERATIONS AT MORE LAYERS, ENTER O FOR NO ENTER 1 FOR YES 0 (RETURN TO USER OPTIONS MAIN MENU)

69. <u>Print/Change Motion in Sublayer Options.</u> Option 2 allows the user to print the object motion in the OUTPUT file or change the object motion for recalculation of WESHAKE. (Note that the option for printing the input motion is also contained in Mandatory Action 2 [OUTKEY].) The initial screen for this option is (next page):

If the print motion option is selected, the following screen is shown:

OPTION 2 SUBMENU (PRINT MOTION)

ENTER O TO PRINT MAXIMUM ACCELERATION IN OUTPUT FILE ENTER 1 TO PUT OBJECT MOTION IN PUNCH FILE ENTER 2 TO DO BOTH O (RETURN TO USER OPTIONS MAIN MENU)

The PUNCH file contains output data without annotation (as compared with the OUTPUT file). Notice that in WESHAKE, the option of printing the object motion in the OUTPUT file is also provided in Mandatory Action 2. If the change motion option is selected, the following screen:

OPTION 2 SUBMENU (CHANGE MOTION) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* THIS IS USED TO CHANGE PARAMETERS SET IN MANDATORY ACTION 2: SELECT EARTHQUAKE RECORD THERE ARE 5 LAYERS IN THE SOIL COLUMN. LAYER 5 IS CURRENTLY THE POINT OF OBJECT MOTION SPECIFY THE LAYER FOR OBJECT MOTION [LL1]: ENTER 0 TO KEEP THE MOTION AT THE SAME LAYER OTHERWISE ENTER NEW LAYER NUMBER 0 IDENTIFY THE TYPE OF ABOVE LAYER [LT1]: ENTER O FOR OUTCROPPING ENTER 1 FOR WITHIN SOIL PROFILE 0 ENTER THE TIME STEP OF OBJECT MOTION [DTNEW]: 0.02 SCALING OF ACCELERATIONS [XF]: ENTER 1. FOR MAXIMUM VALUE OF RECORD OTHERWISE ENTER SCALING FACTOR (DECIMAL) 1. (RETURN TO USER OPTIONS MAIN MENU) 70. <u>Compute response spectrum.</u> Option 3 should be selected to calculate pseudo-velocity or acceleration response spectrum. A response spectrum is the response of an equivalent damped single-degree-of-freedom (SDOF) system to the free-field motion. The step-by-step method is used to calculate the response spectrum in *WESHAKE*. For response acceleration, absolute rather than relative values are preferred (Weigel 1970). The velocity spectrum typically is used for design and analysis by structural engineers.

71. The calculation of pseudo response spectrum for the input earthquake motion alone does not require execution of the program. This option can be inserted manually following the specification of the input motion and where the motion occurs (mandatory actions 2 & 3).

72. The ratio of the spectrum of free-field ground surface acceleration spectrum to rock outcrop acceleration spectrum is typically desired. The variation of this ratio with period at five levels of system damping will be used for design and seismic stability evaluations.

73. The OPTION 3 MENU is displayed on two screens below:

OPTION 3 MENU \*\*\*\* THIS OPTION IS USED TO COMPUTE THE RESPONSE SPECTRUM. ACCELERATION OR VELOCITY SPECTRUM CAN BE CALCULATED, OR BOTH, FOR ANY OR ALL LAYERS. THERE ARE 5 LAYERS IN THE SOIL COLUMN LAYER 5 IS CURRENTLY THE POINT OF OBJECT MOTION ENTER THE LAYER NUMBER FOR ANALYSIS [LL1]: 1 IDENTIFY THE TYPE OF ABOVE LAYER [LT1]: ENTER O FOR OUTCROPPING ENTER 1 FOR WITHIN THE SOIL PROFILE 1 ENTER THE NUMBER OF DAMPING VALUES DESIRED [ND]: - MAXIMUM OF 5 2 SELECT THE PARAMETER(S) OF INTEREST [KAV]: ENTER O FOR VELOCITY SPECTRUM ENTER 1 FOR ACCELERATION SPECTRUM ENTER 2 FOR BOTH 2 (CONTINUE NEXT SCREEN)

and (next page):

**OPTION 3 MENU (continued)** SELECT TIME PERIODS FOR COMPUTATIONS KPER = 09 STEPS FROM .1 SEC TO 1. SEC STEPS FROM 1. SEC TO 2. SEC 5 4 STEPS FROM 2. SEC TO 4. SEC KPER = 1.1 SEC TO 1. SEC 18 STEPS FROM 10 STEPS FROM 1. SEC TO 2. SEC 8 STEPS FROM 2. SEC TO 4. SEC KPER = 238 STEPS FROM .05 SEC TO 1. SEC 20 STEPS FROM 1. SEC TO 2. SEC 30 STEPS FROM 2. SEC TO 5. SEC KPER = 3LOGARITHMIC INCREMENTS WITH 10 STEPS IN EACH LOG. UNIT FROM .1 TO 5. KPER = 4LOGARITHMIC INCREMENTS WITH 25 STEPS IN EACH LOG. UNIT FROM .05 TO 10. ENTER VALUE OF KPER: 1 ENTER THE 2 VALUES OF DAMPING RATIO [ZLD] ON SEPARATE LINES BELOW: - DECIMAL FORM - ASCENDING ORDER 0.02 0.05 (RETURN TO USER OPTIONS MAIN MENU)

74. <u>Increase/decrease time interval</u>. The time interval of the earthquake record can be increased or decreased and the analysis rerun. The first screen is:

If an increase in time is selected, the following submenu appears (next page):

OPTION 4 SUBMENU (INCREASE TIME INTERVAL)

ENTER THE MULTIPLE FOR TIME INCREASE [IFR]: - MUST BE A POWER OF 2 2

(RETURN TO USER OPTIONS MAIN MENU)

If a decrease in time is selected, the following submenu appears:

75. <u>Plot Fourier spectrum of object or computed motion</u>. The Fourier spectrum is calculated and plotted in the OUTPUT file using this option. The first screen for this option is:

OPTION 5 MENU

(CONTINUE WITH APPROPRIATE SUBMENU SCREEN)

If the object motion is selected, the following submenu is shown:

1

The plot is character-style plot with limited resolution. The number of plotted values corresponds to the first N values in the array. If the computed motion is selected, the following submenu is shown:

OPTION 5 SUBMENU (COMPUTED MOTION) \*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\*\* ENTER THE SUBLAYER NUMBER [LL]: (ROCK IS LAYER 5) 1 SPECIFY THE TYPE OF MOTION [LT]: ENTER O FOR OUTCROPPING ENTER 1 FOR WITHIN THE SOIL PROFILE 1 ENTER 0 TO STORE SPECTRUM FOR LATER PLOTTING - LIMIT 2 SPECTRA ENTER 1 TO PLOT ALL STORED SPECTRA 1 ENTER THE NUMBER OF TIMES SPECTRUM IS TO BE SMOOTHED [NSW]: 2 ENTER THE VALUES TO BE PLOTTED [LLL] - MAXIMUM OF 2049 100 (RETURN TO USER OPTIONS MAIN MENU)

76. <u>Plot time history of object motion</u>. This option plots the variation of accelerations with time for specified sublayers in the OUTPUT file. The plot is character-style plot with limited resolution. The screen for this option is:

```
OPTION 6 MENU
                 *****
 THIS OPTION IS USED TO COMPUTE AND PLOT THE
 VARIATION OF ACCELERATION WITH TIME OF THE
 OBJECT MOTION
 SPECIFY THE CODE FOR VALUES TO BE PLOTTED [NSKIP]:
  ENTER O TO PLOT EVERY VALUE
  ENTER 1 TO PLOT EVERY SECOND VALUE
  ENTER 2 TO PLOT EVERY THIRD VALUE
  ENTER 3 TO PLOT EVERY FOURTH VALUE
  ETC.
1
ENTER THE NUMBER OF VALUES TO BE PLOTTED [NN]:
   - MAXIMUM OF 2049
2049
                    (RETURN TO USER OPTIONS MAIN MENU)
```

77. <u>Amplification spectrum</u>. The amplification spectrum between the motions at two layers can be calculated and plotted with this option. The plot is character-style plot with limited resolution. The screen is:

**OPTION 7 MENU** \*\*\*\*\*\* THIS OPTION IS USED TO COMPUTE THE AMPLIFICATION SPECTRUM BETWEEN ANY TWO LAYERS. THERE ARE 5 LAYERS IN THE PRESENT COLUMN. ENTER THE NUMBER OF THE FIRST LAYER [LIN]: 1 SPECIFY THE TYPE OF MOTION FOR THIS LAYER [LINT]: ENTER O FOR OUTCROPPING ENTER 1 FOR LAYER WITHIN SOIL PROFILE 1 ENTER THE NUMBER OF THE SECOND LAYER [LOUT]: SPECIFY THE TYPE OF MOTION FOR THIS LAYER [LOTP]: ENTER 0 FOR OUTCROPPING ENTER 1 FOR LAYER WITHIN SOIL PROFILE Δ SELECT THE TYPE OF PLOTTING [KP]: ENTER O TO STORE SPECTRUM FOR LATER PLOTTING - LIMIT 2 ENTER 1 TO PLOT ALL SPECTRA STORED SINCE LAST PLOTTING 1 THE AMPLIFICATION FACTOR IS COMPUTED FOR THE FIRST 200 FREQUENCIES WITH INTERVAL DFA (Hz) BEGINNING AT 0. ENTER THE FREQUENCY STEPS [DFA]: 0.050 ENTER AN IDENTIFICATION - LIMIT 40 CHARACTERS: SITE 1 (RETURN TO USER OPTIONS MAIN MENU)

78. <u>Compute stress/strain history</u>. The variation of peak shear stress or peak shear strain with time at the top of a layer may be calculated with Option 8. This option allows for the specification of two layers at once. If the calculation is desired for more than two layers, the option must be called again. The results of this option are sent to the OUTPUT file. The variation of effective shear stress or strain may be determined by multiplying these peak values by PRMUL. Note that effective shear strains at the mid-height of layers are used to adjust shear modulus and damping values in the iterative process. The OPTION 8 MENU is (next page):

**OPTION 8 MENU** \*\*\*\*\*\* THIS OPTION IS USED TO COMPUTE THE VARIATION OF SHEAR STRESS OR SHEAR STRAIN AT THE TOP OF EITHER ONE OR TWO LAYERS ENTER THE LAYER NUMBER CORRESPONDING TO THE FIRST LAYER [LLL]: 2 SPECIFY THE PARAMETER OF INTEREST [LLGS]: ENTER O FOR SHEAR STRAIN ENTER 1 FOR SHEAR STRESS ENTER THE NUMBER OF VALUES TO BE PLOTTED [LNV]: - LIMIT 2049 2049 ENTER AN IDENTIFICATION FOR THIS PLOT **EXAMPLE PLOT** SPECIFY THE SCALE FOR PLOTTING (i.e., MAXIMUM VALUE OF ORDINATE) [SK]: ENTER O FOR MAXIMUM VALUE OF DATA ENTER 1 TO SPECIFY MAXIMUM VALUE Ω ENTER THE LAYER NUMBER CORRESPONDING TO THE SECOND LAYER (OR LEAVE BLANK) [LLL]: (RETURN TO USER OPTIONS MAIN MENU)

79. <u>Summary of Options.</u> After entering desired options from the USER OPTIONS MAIN MENU and option 9, a specifications file has been written and the pre-processing stage is complete. The latter options of the USER OPTIONS MAIN MENU are then used to proceed with steps to run the program (analysis stage, described in the next section). Although a user interface has been written for WESHAKE to allow easy selection of user options, the user may find that a DOS editor is more versatile and quicker.

### Analysis Stage

80. The analysis stage consists of calculation of the solution through the execution of the modified SHAKE1 subprogram within the WESHAKE package, creation of output files, and printing of output files from within the WESHAKE shell. The solution process is started by selecting option 10 from the USER OPTIONS MAIN MENU. The ANALYSIS STAGE MAIN MENU is then shown (next page):

|     |                | ANALYSIS STAGE MAIN MENU       |       |
|-----|----------------|--------------------------------|-------|
| *** | *******        | ******                         | ***** |
| **  | OPTION         | DESCRIPTION                    | **    |
| **  |                | *****                          | **    |
| **  | 1              | CLOSE FILE AND RUN WESHAKE     | **    |
| **  | $\overline{2}$ | EXIT WESHAKE AND RETURN TO DOS | **    |
| *** | ********       | ********                       | ***** |
| ENT | ER ONE OP      | TION NUMBER:                   |       |
| 1   |                |                                |       |

If execution is chosen (Option 1) the program begins running. The status of the program will be continually shown on the screen along with times of execution for each option and notification of completion.

81. The most important aspect of the use of this program is the evaluation of results. The results are contained in various output files that are automatically created as a consequence of using the various mandatory actions and user options. The various output files were described previously (Table III-5). The OUTPUT file corresponding to the example problem is shown in Appendix I.

### Print menu

82. Once all operations have been completed, the PRINT MENU will be displayed. The output files created and summarized in Table IV-1 may be sent directly to a printer on the (first) parallel port (LPT1) from within the WESHAKE shell. The screen for the PRINT MENU is:

| PRINT MENU<br>********                         |             |
|------------------------------------------------|-------------|
| ******                                         | *****       |
| <b>** 1 - PRINT OUTPUT FILE</b>                | **          |
| ** 2 - PRINT STRESS/STRAIN FILE                | **          |
| <b>**</b> 3 - PRINT ACCELERATION FILE          | **          |
| ** 4 - PRINT PUNCH FILE                        | **          |
| <b>**</b> 5 - PRINT ACCELERATION TIME FILE     | **          |
| <b>** 6 - PRINT VELOCITY SPECTRUM FILE</b>     | **          |
| <b>**</b> 7 - PRINT ACCELERATION SPECTRUM FILE | **          |
| ** 8 - FUTURE USE                              | **          |
| ** 9 - FUTURE USE                              | **          |
| **10 - EXIT WESHAKE                            | **          |
| *****                                          | ******      |
| ENTER ONE CHOICE:                              |             |
|                                                |             |
| (REPEAT UNTIL OPTION                           | 10 SELECTEI |

Portions of the OUTPUT file are greater than 80-characters wide so it is recommended that a 132-character printer be used or a small print font.

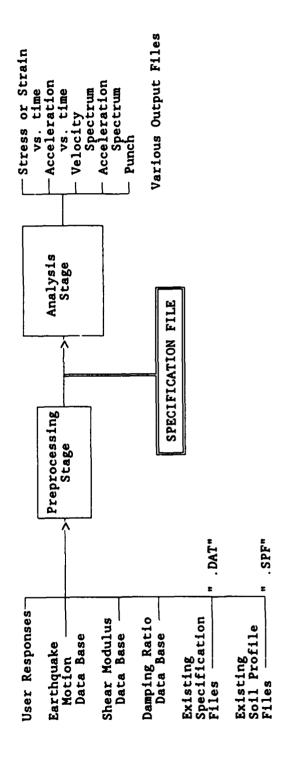
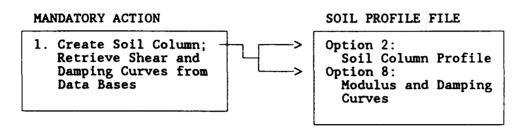
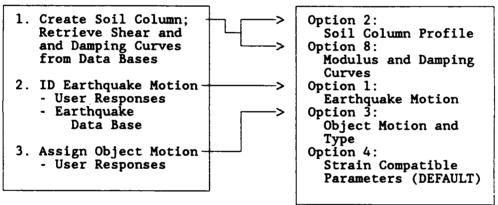




Figure IV-1. Program Organization of WESHAKE




Figure IV-2. Example problem used for Part IV



a. For Option 3: Creating a Soil Profile File

MANDATORY ACTIONS

### SPECIFICATION FILE



b. For Option 4. Creating a Specification File

Figure IV-3. Components of mandatory actions for SPECIFICATION FILE DESIGNATION menu

### PART V: ADVANCED TOPICS

83. In the course of using SHAKE, engineers have found ways of obtaining reasonable and meaningful results for more complicated problems than originally intended to solve. Some of these cases are described below to enlighten the user and spawn further creativity.

### Application of Free-Field Results

84. It may not be appropriate to directly apply the free-field response to the base of the structure for a number of reasons, including:

- <u>a</u>. The depths of the footings most likely are not at the ground surface and motions will vary with depth.
- <u>b</u>. The weight of the structure acting on the footings will affect the motions beneath the footings.
- <u>c</u>. The friction acting on the sides of the footing will affect the motions acting on the footing.
- $\underline{d}$ . The impedance contrast between the soil and foundation is normally quite large.

The application of ground motions to the base of structures, i.e., the consideration of points such as those listed, is commonly referred to as dynamic soil-structure interaction (DSSI) and can be considered to be distinctly different from asynchronous effects produced with long period waves.

85. Basic design approaches for dynamic soil-structure interaction have recently been documented by Johnson (1980) and Veletsos, Prasad, and Tang (1988). Evaluation of simple foundation systems by Veletsos, Prasad, and Tang (1988) suggests the following rule of thumb: for a range of lower periods, DSSI will have no effect on the response; for a range of higher periods, DSSI will reduce the maximum response; for a range of intermediate periods, DSSI might increase or decrease the maximum response.

### Estimation of Shear Wave Velocity

86. In some cases, all material properties necessary for the use of WESHAKE may not be available. This may be the case for sites with very deep soil deposits or projects with limited budgets. There is no substitute for measured properties in geotechnical engineering analysis, in this case the

primary variable being shear wave velocity. However, it may be possible to evaluate a range of site response based on estimated material properties.

87. A number of correlations exist in the literature that allow the user to derive shear wave velocities (refer to summary by Sykora and Koester 1988) or shear modulus coefficients (Seed et al. 1986) for an intended soil column. However, the variations among proposed correlations between shear wave velocity and Standard Penetration Test (SPT) N-value or depth are large (Sykora, 1987a; Sykora and Koester 1988). The correlation between  $(K_2)_{max}$  and SPT N-value has been shown to produce poor results (Sykora 1989). The user, therefore, must exercise caution and good engineering judgement when using published relationships to determine shear wave velocities (e.g., Sykora 1987b, Sykora and Koester 1991) to establish a reasonable range of velocities using known site conditions and compare with published correlations.

### Studies of Modulus and Damping Relationships

88. The variation of material properties, namely shear modulus and damping, with shear strain are continually under study. As described in Part II, the original investigations for this phenomenon were conducted in the 1960's and early 1970's. More recently in the 1980's and 1990's, studies have been completed to provide more information on the behavior of fine-grained soils and gravels.

89. Studies about fine-grained soils by investigators at different institutions have produced options for different sets of relationships. For instance, sets of shear modulus degradation relationships are proposed by Zen and Higuchi (1984), Sun, Golesorkhi, and Seed (1988), and Vucetic and Dobry (1991). The study by Vucetic and Dobry is intended to supersede that by Sun, Golesorkhi, and Seed in that new data were combined with data used in the Sun study. It appears as though the new modulus curves by Vucetic and Dobry (1991) are indeed more comprehensive. However, the new damping relationships are at issue.\* Apparently some of the new damping data does not include large-strain determinations and serves to unduly weight the averaging

<sup>\*</sup> Personal communication, Dr. Joseph Sun, Woodward-Clyde Consultants, Inc., Oakland, CA, 4 June 1992.

procedure. Until this issue is sufficiently resolved, the relationships by Sun, Golesorkhi, and Seed (1988) have been supplied in the data base.

### High Effective Stresses

90. The relationships between shear modulus and shear strain for cohesionless soils may be significantly influenced by the effective confining pressure (Iwasaki, Tatsuoka, and Takagi 1976). The influence of confining stress on cohesive soils is not conclusive but is certainly less than that for cohesionless soils (Sun, Golesorkhi, and Seed 1988).

91. A simple means to evaluate the potential effect of high confining stresses is to select a modulus curve to the right of the "best estimate" curve. A rule of thumb based on the results by Seed and Idriss (1970) and Iwasaki, Tatsuoka, and Takagi (1976) is that if the effective vertical stress at the center of the layer is less than 500 psf, move one curve to the left. If the effective vertical stress is between 500 and 2,000 psf, use the best estimate curve. If the effective vertical stress is between 2,000 and 8,000 psf, move over one curve to the right. If the effective vertical stress is greater than 8,000 psf, move over two curves to the right.

92. The relationship between damping ratio and shear strain may also be affected by confining pressure (Seed et al. 1986 and Reeves and Castro 1991). This finding does not appear to be applied often in analyses by the profession, however, which may be the result of general uncertainties about normalized relationships for damping ratio. Limitations to the number of soil types allowed in the program used for this study do not normally facilitate involving stress adjusted relationships for damping ratio. Potential variations in damping ratio from stress effects are best addressed in the sensitivity analysis for damping ratio relationships.

### Multiple Soil Columns

93. Recent standards by the US Nuclear Regulatory Commission (1989) and American Society of Civil Engineers, ASCE, (1987) provide recommendations for soil-structure interaction problems. They suggest that for sites that have not been "well investigated," a representative soil column should be derived for the site of interest using an average of stratigraphy and measured

properties, including shear wave velocities. The site response should then be calculated for the same column using an upper and lower bound of shear wave velocity determined by:

Lower bound: 
$$(G_{max})^{1b} = \frac{G_{max}}{(1 + FACTOR)}$$
 (4)

(5)

Upper bound:  $(G_{max})^{ub} = G_{max} (1 + FACTOR)$ 

where

ASCE 4-36: FACTOR = coefficient of variation not to be less than 0.5 NRC 3.7.2: FACTOR = 1.0

to account for potential variations of material properties.

94. These standards are not recommended by WES for a site response analysis or liquefaction assessment (particularly the use of a single cclumn to represent a site). The use of lower and upper bounds to determine a potential range in site response is recommended (refer to "Sensitivity Analysis" below). There are several reasons for this recommendation, including:

- <u>a.</u> The "averaging" of stratigraphy, including the total column height, across a heterogeneous site may be too subjective;
- <u>b.</u> Past experience has indicated that average columns may produce unconservative results compared to the range developed with the collection of individual columns;
- <u>c.</u> The standards were derived primarily for soil-structure interaction studies.

In the end, the averaging of all the input parameters may have the effect of hiding resonance peaks produced by layers that are of limited extent both laterally and vertically.

### Sensitivity Analysis

95. The sensitivity of various inputs to WESHAKE should be considered in most cases of site response analyses to evaluate the effects of potential variations across the site of interest. The range of parameters used should be a function of measured variations or perceived uncertainties. The primary inputs to be considered are: depth to bedrock, shear modulus and lamping ratio curves, and maximum shear modulus (function of  $V_s$  or  $(K_2)_{max}$  and unit weight of soil).

### Vertical Response

96. SHAKE has also been used by some investigators to estimate the vertical response of sites to earthquake excitations. The method used for this purpose only evaluates the vertical propagation of compression waves; it does not include the effect of shear waves. Details of the method are presented below.

97. Vertical response can be estimated using SHAKE by taking steps to match strains (and therefore matching percentage of modulus reduction and damping increase) from calculations for vertical response with calculations for horizontal response.\* This may be accomplished by using some arbitrary value of the ratio of effective strain, PRMUL. Normally for the calculation of horizontal response, PRMUL is 0.65 (65 percent). The strains calculated for the vertical response and initial PRMUL are then compared with the strains calculated for horizontal response. The procedure is repeated by varying PRMUL until the variation of strain with depth for vertical response matched those for horizontal response as closely as possible. Values of PRMUL most likely will be greater than unity, and could be as large as 50. A factor greater that unity means that the constrained modulus degrades much faster than the shear modulus. The selection of an appropriate value of effective strain involves subjective decision making. Close matches should not be expected, especially for near-surface layers.

98. Inherent in the above procedure is the assumption that the variation of normalized constrained modulus is similar to that for normalized shear modulus. At large strains, this assumption may lead to considerable errors. Some laboratory tests conducted by WES for a particular project in the late 1970's included torsional and longitudinal vibration testing (Curro and Marcuson 1978). The results of these tests indicate that at longitudinal strains between about  $10^{-4}$  and  $10^{-3}$  percent, the maximum modulus decreased rapidly by about 50 percent. This characteristic "break" in the normalized

<sup>\*</sup> Personal communication, Prof. John Lysmer, University of California at Berkeley, 1 November 1990.

curve differs greatly from the characteristic smooth shape and maximum slopes of the normalized shear modulus curves. Therefore, large differences are expected between calculated vertical response and actual site response.

99. For vertical response calculations, the constitutive model for stiffness is assumed to be the same except that the maximum constrained moduli,  $M_{max}$ , is used, calculated from compression waves:

$$M_{max} = \frac{\gamma}{g} V_{p}^{2}$$
 (6)

where

 $V_p$  - compression wave velocity

100. The comparison of calculations of motions using SHAKE with measured vertical response have not been reported in the literature. Consequently, validation of SHAKE for vertical response is considered to be inadequate. The calculation of vertical motions using this program are considered to merely provide qualitative insight into vertical site behavior.

### Other Uses

101. Elton, Shie, and Hadj-Hamou (1991) showed that the shear stresses calculated using SHAKE and a computer program used to calculate the twodimensional response, FLUSH (Lysmer et al. 1973), were in good agreement for both level-ground sites and sloped sites except near the surface. For embankments, the agreement improved as the period of excitation moved farther from the natural period of the embankment. Comparisons made of other ground motion parameters, however, such as the variation of acceleration with time and velocity or acceleration response spectrum showed much greater variation.\*

<sup>\*</sup> Personal communication, Prof. David Elton, Auburn University, Auburn, AL, May 1992.

### REFERENCES

Algermissen, S. T., Perkins, D. M., Thenhaus, P. C., Hanson, S. L., and Bender, B. L. 1982. "Probabilistic Estimates of Maximum Acceleration and Velocity in Rock in the Contiguous United States," Open File Rpt. 82-1033, US Depart. Interior, Geological Survey, Denver, CO.

American Society of Civil Engineers 1987. "Seismic Analysis of Safety-Related Nuclear Structures and Commentary on Standard for Seismic Analysis of Safety-Related Nuclear Structures." Standard 4-86, New York, NY, pg 69.

Bolt, B. A. and Seed, H. B. 1983. "Accelerogram Selection Report for Folsom Dam Project, California," Contract Report DACW 05-83-Q-0205, US Army Engineer District, Sacramento, CA.

Cooley, J. W. and Tukey, J. W. 1965. "An Algorithm for the Machine Calculation of Complex Fourier Series," <u>Mathematics of Computation</u>, Vol 19, No. 90, pp 297-301.

Curro, J. R., Jr. and Marcuson, W. F. III 1978. "In Situ and Laboratory Determinations of Shear and Young's Moduli for the Portsmouth, Ohio, Gasecus Diffusion Add-On Site," US Army Engineer Waterways Experiment Station, Miscellaneous Report, S-78-12, Vicksburg, MS.

Department of the Army 1983. "Earthquake Design and Analysis for Corps of Engineers Projects," Engineering Regulation ER 1110-2-1806, US Army Corps of Engineers, Washington, DC, 16 May.

Department of the Army 1986. "Seismic Design Guidelines for Essential Buildings," Technical Manual TM 5-809-10-1, Washington, DC, 27 February.

Elton, D. J., Shie, C. F., and Hadj-Hamou, T. 1991. "One- and Two-Dimensional Analysis of Earth Dams," <u>Proc., 2nd Int'l Conference on Recent Advances in</u> <u>Geotechnical Earthquake Engineering and Soil Dynamics.</u> St. Louis, MO, pp 1043-1049.

Friberg, P. and Jacob, K. 1990. "NCEER Strong-Motion Data Base: A User Manual for the *GEOBASE* Release (Version 1.0 for SUN3)," Tech. Report NCEER-90-0005, State University of New York, Buffalo, NY.

Geotech International, Ltd. 1985. "SHAKE85: Earthquake Response Analysis of Horizontally Layered Sites," Users Manual, Version 1.0, Chicago, IL.

Hardin, B. O. and Drnevich, V. P. 1972a. "Shear Modulus and Damping in Soils: Measurement and Parameter Effects," <u>Journal. Soil Mechanics and Foundation</u> <u>Engineering.</u> ASCE, Vol 98, No. SM6, pp 603-624.

Hardin, B. O. and Drnevich, V. P. 1972b. "Shear Modulus and Damping in Soils: Design Equations and Curves," <u>Journal. Soil Mechanics and Foundation</u> <u>Engineering.</u> ASCE, Vol 98, No. SM7, pp 667-692.

Hynes, M. E. 1988. "Pore Pressure Generation Characteristics of Gravel Under Undrained Cyclic Loading," PhD dissertation, University of California, Berkeley, CA. Idriss, I. M. 1990. "Response of Soft Soil Sites During Earthquakes," <u>Proc.</u> <u>H. B. Seed Memorial Symposium</u>, Berkeley, CA.

Iwasaki, T., Tatsuoka, F., and Takagi, Y. 1976. "Dynamic Shear Deformation Properties of Sand for Wide Strain Range," Report of Civil Engineering Institute, No. 1085, Ministry of Construction, Tokyo, JAPAN.

Johnson, J. J. 1980. "Soil-Structure Interaction: The Status of Current Analysis Methods and Research," US Nuclear Regulatory Commission, NUREG/CR-1780, Washington, DC.

Kanai, K. 1951. "Relation Between the Nature of Surface Layer and the Amplitude of Earthquake Motions," <u>Bull. Tokyo Earthquake Research Institute</u>, Tokyo, Japan, (in Japanese).

Lamé 1852. "Leçons sur la théorie mathématique de l'élasticité des corps solides," Paris, FRANCE.

Lysmer, J., Udaka, T., Tsai, C., and Seed, H. 1973. "FLUSH: A Computer Program for Approximate 3-D Analysis of Soil-Structure Interaction Problems," Report No. EERC 75-30, Earthquake Engineering Research Center, Berkeley, CA.

Risk Engineering, Inc. 1992. "Seismic Hazard Evaluation for the Paducah Gaseous Diffusion Plant, Paducah, Kentucky," Report K/GDP/SAR/SUB-1, Department of Energy, Oak Ridge Operations, Oak Ridge, TN.

Reeves, C. Q. and Castro, G. 1991. "Geotechnical Investigation for Seismic Issues for K-Reactor Area at Savannah River Site," <u>Preprints, 3rd DOE Natural</u> <u>Phenomena Hazards Mitigation Conference</u>, St. Louis, MO, pg 127.

Roesset, J. M. 1970. "Fundamentals of Soil Amplification," <u>Seismic Design</u> <u>for Nuclear Power Plants.</u> ed. R. Hansen, MIT Press, Cambridge, MA, pp. 183-244.

Roesset, J. M. and Whitman, R. V. 1969. "Theoretical Background for Amplification Studies," Research Report R69-15, Soils Publication No. 231, Massachusetts Institute of Technology, Cambridge, MA.

Row, L. W., III 1990. "An Earthquake Strong-Motion Data Catalog for Personal Computers: *SMCAT*," User Manual (Version 2.0), National Geophysical Data Center, NOAA, Boulder, CO.

Schnabel, P. B. 1973. "Effects of Local Geology and Distance from Source on Earthquake Ground Motions," PhD Thesis, University of California, Berkeley, CA.

Schnabel, P. B., Lysmer, J., and Seed, H. B. 1972. "SHAKE: A Computer Program for Earthquake Response Analysis of Horizontally Layered Sites," Report EERC-72/12, Earthquake Engineering Research Center, Berkeley, CA.

Seed, H. B. 1987. "Hypothetical Ground Motion Accelerogram for Ririe Dam," Letter report dated 5 August. Seed, H. B. and Idriss, I. M. 1970. "Soil Moduli and Damping Factors for Dynamic Response Analysis," Report EERC-70/10, Earthquake Engineering Research Center, Berkeley, CA.

Seed, H. B., Romo, M. P., Sun, J., Jaime, A., and Lysmer, J. 1987. "Relationships Between Soil Conditions and Earthquake Ground Motions in Mexico City in the Earthquake of Sept. 19, 1985," Report EERC-87/15, Earthquake Engineering Research Center, Berkeley, CA.

Seed, H. B., Wong, R., Idriss, I. M., and Tokimatsu, K. 1986. "Moduli and Damping Factors for Dynamic Analysis of Cohesionless Soils," <u>Journal</u>. <u>Geotechnical Engineering Division</u>, Vol 112, No. 11, pp. 1016-1032.

Seed, R. B., Dickenson, S. E., and Idriss, I. M. 1991. "Principal Geotechnical Aspects of the 1989 Loma Prieta Earthquake," <u>Soils and</u> <u>Foundations</u>, Vol 31, No. 1, pp 1-26.

Sun, J. I., Golesorkhi, R., and Seed, H. B. 1988. "Dynamic Moduli and Damping Ratios for Cohesive Soils," Report EERC-88/15, Earthquake Engineering Research Center, Berkeley, CA.

Sykora, D. W. 1987a. "Examination of Existing Shear Wave Velocity and Shear Modulus Correlations in Soils," Misc. Paper GL-87-22, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Sykora, D. W. 1987b. "Creation of a Data Base of Seismic Shear Wave Velocities," Misc. Paper GL-87-26, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Sykora, D. W. 1989. "Evaluation of a Method to Estimate the Soil Modulus Coefficient,  $K_2$ , and Shear Modulus," <u>Proc.</u>, <u>Engineering Geology and Geotechnical Engineering</u>, ed. R.J. Watters, Reno, NV, Balkema Press, Rotterdam, pp 375-385.

Sykora, D. W. and Koester, J. P. 1988. "Review of Existing Correlations Between Dynamic Shear Resistance and Standard Penetration Resistance in Soils," <u>Proc., Earthquake Engineering and Soil Dynamics II.</u> ASCE, Park City, UT, pp 389-404.

Sykora, D. W. and Koester, J. P. 1991. "Data Base of Seismic Body Wave Velocities and Geotechnical Properties," <u>Proc., Geotechnical Engineering</u> <u>Congress.</u> Vol 1, ASCE, Boulder, CO, pp 690-698.

Udaka, T. and Lysmer, J. 1973. "Supplement to Computer Program SHAKE," University of California, Berkeley, CA, 16 pgs.

US Nuclear Regulatory Commission 1989. "Standard Review Plan," NUREG-0800, Section 3.7.2, rev. 2, Office of Nuclear Reactor Regulation, Washington, DC.

Veletsos, A. S., Prasad, A. M., and Tang, Y. 1988. "Design Approaches for Soil-Structure Interaction," Technical Report NCEER-88-0031, National Center for Earthquake Engineering Research, Buffalo, NY, 25 pgs. Vucetic, M. and Dobry, R. 1991. "Effect of Soil Plasticity on Cyclic Response," <u>Journal. Geotechnical Engineering Division.</u> Vol 117, No. 1, pp 89-107.

Wiegel, R. L. 1970. <u>Earthquake Engineering</u>. Prentice-Hall, Inc., Englewood Cliffs, NJ, pg 85.

Wong, R. T., Seed, H. B. and Chan, C. K. 1974. "Liquefaction of Gravelly Soils Under Cyclic Loading Conditions," Report No. EERC 74-11, Earthquake Engineering Research Center, Berkeley, CA.

Zen, K. and Higuchi, Y. 1984. "Prediction of Vibratory Shear Modulus and Damping Ratio for Cohesive Soils," <u>Proc., 8th Int'l Conference on Earthquake</u> <u>Engineering</u>, San Francisco, CA, Vol 3, pp 23-30.



#### BIBLIOGRAPHY OF STUDIES AT WES USING SHAKE OR WESHAKE

Hynes, M. E., Wahl, R. E., Donaghe, R. T., and Tsuchida, T. 1988. "Seismic Stability Evaluation of the Folsom Dam and Reservoir Project, Report 4: Mormon Island Auxiliary Dam, Phase I," Technical Report GL-87-14, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Marcuson, W. F. III 1976. "The Earthquake Analysis of the W.G. Huxtable Pumping Plant Site," Miscellaneous Paper S-76-8, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Marcuson, W. F. III 1976. "One-Dimensional Wave Propagation Analysis, Newburgh Lock and Dam, Ohio River, Indiana and Kentucky," Miscellaneous Paper S-76-25, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Marcuson, W. F. III 1979. "The Liquefaction Analysis for the LaCrosse Nuclear Power Plant," Miscellaneous Paper GL-79-11, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Marcuson, W. F. III, and Gilbert, P. A. 1972. "Earthquake Liquefaction Potential at Patoka Dam, Indiana," Miscellaneous Paper S-72-42, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Marcuson, W. F. III, and Krinitzsky, E. L. 1976. "Dynamic Analysis of Fort Peck Dam," Technical Report S-76-1, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Sykora, D. W. 1992. "Site-Specific Earthquake Response Analysis of Soil Columns at Paducah Gaseous Diffusion Plant, Paducah, KY," Miscellaneous Paper GL-92-?? (draft in DOE review process), US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Sykora, D. W. 1992. "Site-Specific Earthquake Response Analysis of Soil Columns at Portsmouth Gaseous Diffusion Plant, Portsmouth, OH," Miscellaneous Paper GL-92-?? (draft in DOE review process), US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Sykora, D. W., Koester, J. P., Hynes, M. E., et al. 1990. "Estimation of Seismic Hazard and Slope Stability Assessment of Mormon Island Auxiliary Dam of Folsom Dam and Reservoir Project," Draft report to US Army Engineer District, Sacramento, CA.

Wahl, R. E., Crawforth, S. G., Hynes, M. E., Comes, G. D., and Yule, D. E. 1988. "Seismic Stability Evaluation of the Folsom Dam and Reservoir Project, Report 8: Mormon Island Auxiliary Dam, Phase II," Technical Report GL-87-14, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Wahl, R. E. and Deer, W. 1982. "One-Dimensional Dynamic Analysis of the Liquefaction Potential of the Foundation of Wappappello Dam," Draft Technical Report to US Army Engineer District, Memphis, TN. Wahl, R. E., and Hynes, M. E. 1988. "Seismic Stability Evaluation of the Folsom Dam and Reservoir Project, Report 5: Seismic Stability Evaluation of Dike 5," Technical Report GL-87-14, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Wahl, R. E., and Hynes, M. E. 1990. "Seismic Stability Evaluation of the Folsom Dam and Reservoir Project, Report 6: Left and Right Wing Dams," Technical Report GL-87-14, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Wahl, R. E., Hynes, M. E., Sharp, M. K., Koester, J. P., and Branch, A. 1991. "Site Specific Seismic Evaluation of the GBFEL-TIE Project, White Sands Missile Range, NM," Technical Report GL-91-20, US Army Engineer Waterways Experiment Station, Vicksburg, MS.

Wahl, R. E., Sharp, M. K., Sykora, D. W. 1988. "Determination of the Dynamic Earth Forces Acting on the Walls of the Olmsted Locks," Letter report to US Army Engineer District, Louisville, KY.

Wahl, R. E., Sharp, M. K., Sykora, D. W. 1988. "Determination of the Dynamic Spring Stiffnesses for the Pile-Soil Foundations Beneath the Structures at the Olmsted Locks," Letter report to US Army Engineer District, Louisville, KY. APPENDIX A:

GETTING STARTED AND PERFORMANCE STATISTICS

#### Computer Hardware and Software Requirements

Al. The computer program will run on an IBM compatible personal computer, including an XT model using an 8086 processor. The size and power of the computer will serve to better enhance the performance of the program. The speed of execution is compared for an example problem with 15 layers and a few output options in Table A-1. These times may be used as a relative basis for comparison.

A2. Some minimum requirements exist to successfully execute WESHAKE. They include: 465 Kbyte RAM and version 3.1 of DOS. (The DOS 3.1 (and higher) commands mem and ver will determine the memory available and version, respectively.) If DOS 5.0 or greater is installed, some lower system memory can be transferred to upper memory thus freeing up more RAM. The math coprocessor option is mandatory for computers with 8086, 80286, and 80386 processors. No graphics requirements exist for WESHAKE version 1.0.

### **Installation**

A3. All necessary components of WESHAKE are contained in one executable file, WESHAKE.EXE, and the shear modulus, damping ratio and earthquake data bases (SHEARDB, DAMPDB, and EARTHQ, respectively) that can be copied to a directory on a computer hard drive or run directly from the floppy disk drive. It is recommended that a directory be created on a hard disk specifically for this program file in addition to various files that may be created by the user as a consequence of running this program. To create a directory, for example WESHAKE, and load the software onto a hard disk, begin at the start-up prompt,  $(C:\)$ , then type:

 $C: \searrow MD$  WESHAKE

Recall that DOS commands are not case sensitive. Now change directories by typing:

#### C:\> CD WESHAKE

If the command PROMPT \$p\$g is in the AUTOEXEC.BAT file of your computer, the computer prompt will be:

C:\WESHAKE>

A2

Read the files on the distribution disk by inserting the WESHAKE floppy disk into a floppy drive, say drive A, and typing:

C:\WESHAKE> COPY A:\*.\*

To begin WESHAKE, type:

C:\WESHAKE> WESHAKE

The use of WESHAKE is described in the main text of this report.

### Array Limitations

A4. Certain limitations exist within the program to minimize the overall size of the program. Limitations can be modified by WES to accomodate the needs of the users. The current list of more important limitations are summarized in Table A-2. Less important limitations, typically those pertaining to output options, are specified in the option menus shown in Part IV of the main text.

#### Run-Time Optimization

A5. Run times are highly machine dependent as might be expected and shown above. For a given machine, the run times can also vary considerably depending on the values of certain input parameters. Some of the more time-consuming parameters are: the number of FFT terms, the number of layers, and the convergence criterion (ERR). The number of FFT terms and number of layers may non-negotiable. ERR is easily adjusted; as ERR is decreased, the number of iterations required increases (and therefore time to solution increases). An optimal value of ERR is probably about 5 percent, the value used by default in WESHAKE.

A3

# Table A-1

# Performance Statistics for WESHAKE

| Example | File | for | comparison | with | a | 15 | layer | system |
|---------|------|-----|------------|------|---|----|-------|--------|
|---------|------|-----|------------|------|---|----|-------|--------|

| Computer Brand<br>and model | Processor             | Processor<br>Speed (MHz) | Execution<br>Time (Sec) | Ratio<br>Time XT |
|-----------------------------|-----------------------|--------------------------|-------------------------|------------------|
| IBM PC-XT                   | Intel 8086            | 8                        | 1374                    | 1                |
| IBM PC-AT                   | Intel<br>In-Board 386 | 16                       | 209                     | .15              |
| Compaq Deskpro              | Intel 80386           | 16                       | 258                     | . 19             |
| Compaq Deskpro              | Intel 80386           | 20                       | 193                     | .14              |
| IBM PS/2, Model 70          | Intel 80386           | 20                       | 206                     | .15              |
| Unisys                      | Intel 80386           | 20                       | 160                     | .12              |
| Compu Add                   | Intel 80386           | 25                       | 161                     | .12              |
| Gateway 2000                | Intel 80486           | 25                       | 41                      | .03              |
| Gateway 2000                | Intel 80486           | 33                       | 21                      | .01              |

| Description                                                 | Program<br>Variable | Limit |
|-------------------------------------------------------------|---------------------|-------|
| Maximum number of layers in soil column<br>(including rock) | ML.                 | 20    |
| Maximum number of modulus degradation/damping relationships | NSOILT              | 10    |
| Maximum number of terms in Fast Fourier Transform (FFT)*    | MAMAX               | 4096  |
| Number of soil layers for acceleration output               |                     | 15    |

# Table A-2

### Array Limits for WESHAKE

\* MAMAX must be at greater than or equal to the largest FFT used in the specifications file and at least twice as large as number of non-zero terms in the earthquake records. The array in SHAKE1 has been fixed for a maximum of 4096 points to greatly reduce fixed memory size.

APPENDIX B:

SHEAR MODULUS AND DAMPING RATIO DATA BASES

The modulus and damping data bases have the following format:

| Columns     | Format       | <u>Parameter(s)</u>                                                                 |
|-------------|--------------|-------------------------------------------------------------------------------------|
| FIRST LINE  |              |                                                                                     |
| 1 5         | 15           | NUMBER OF VALUES PLOTTED ON RVE [NV]<br>- maximum of 20 points per curve            |
| 6 - 10      | 15           | MULTIPLICATION FACTOR IN PLOTTING [NPL]                                             |
| 7 - 15      | 15           | CURVE IDENTIFICATION NUMBER [NUM] <sup>1</sup>                                      |
| 16 - 75     | A60          | IDENTIFICATION OF SOIL PROFILE [ID]                                                 |
| SECOND LINE | :(S)         |                                                                                     |
| 1 - 80      | 8F10.4       | NV VALUES OF SHEAR STRAIN (percent) IN INCREASING ORDER<br>[R]:<br>- Eight per line |
| The second  | line repeats | until all values of shear strain have been specified                                |

THIRD LINE(S)

1 - 80 8 F10.4 NV VALUES OF NORMALIZED SHEAR MODULUS (percent) OR DAMPING RATIO (percent), IN INCREASING ORDER, CORRRESPONDING TO VALUES OF SHEAR STRAIN IN SECOND LINE(S) [U]: - Eight per line

The third line repeats until all values of modulus or damping have been specified.

The second and third lines a set and a set is created for each material type (i.e., these lines are repeated) in the respective data bases (unique to NUM).

<sup>1</sup> Deviation from syntax of specification file and OPTION 8 of SHAKE

# <u>Shear Modulus Data Base</u>

|        | 1         | (0-11-1 1   | 072)       |           |        |          |        |
|--------|-----------|-------------|------------|-----------|--------|----------|--------|
| 8 100. |           | (Schnabel 1 |            | 0 0100    | 0.0300 | 0.1000   | 1.0000 |
| 0.0001 | 0.0003    | 0.0010      |            | 0.0100    | 0.81   | 0.725    | 0.55   |
| 1.00   | 1.00      | 0.99        | 0.95       | 0.90      | 0.81   | 0.725    | 0.55   |
| 9 100. | 2 GRAVE   | L, Average  | (Seed et a |           | 0 0200 | 0 1000   | 0.3000 |
| 0.0001 | 0.0003    | 0.0010      | 0.0030     | 0.0100    | 0.0300 | 0.1000   | 0.3000 |
| 1.000  |           |             |            |           |        | <u> </u> | 0.10   |
| 1.00   | 0.97      | 0.87        | 0.73       | 0.55      | 0.37   | 0.20     | 0.10   |
| 0.050  |           |             |            |           |        |          |        |
| 9 100. | 3 SAND,   | Lower Bour  | nd (Seed & | Idriss 19 | 70)    |          |        |
| 0.0001 | 0.0003    | 0.0010      | 0.0030     | 0.0100    | 0.0300 | 0.1000   | 0.3000 |
| 1.0000 |           |             |            |           |        |          |        |
| 1.000  | 0.985     | 0.93        | 0.83       | 0.635     | 0.425  | 0.225    | 0.11   |
| 0.04   |           |             |            |           |        |          |        |
| 9 100. | 4 SAND    | Average (S  | Seed & Idr | iss 1970) |        |          |        |
| 0.0001 | 0.0003    | 0.0010      | 0.0030     | 0.0100    | 0.0300 | 0.1000   | 0.3000 |
| 1.0000 | 0.0005    | 0.0010      | 0.0000     | 0.0100    | 0.0000 | •••      |        |
|        | 0.98      | 0.95        | 0.89       | 0.73      | 0.52   | 0.29     | 0.14   |
| 1.00   | 0.90      | 0.95        | 0.09       | 0.75      | 0.52   | 0.27     | 0.24   |
| 0.06   | 5 0 1 10  | TT          | - 1 (C 1 C | Tami      | 201    |          |        |
| 9 100. |           | Upper Bour  |            |           |        | 0 1000   | 0.3000 |
| 0.0001 | 0.0003    | 0.0010      | 0.0030     | 0.0100    | 0.0300 | 0.1000   | 0.3000 |
| 1.0000 |           |             |            |           |        |          | 0.10   |
| 1.00   | 1.00      | 0.99        | 0.96       | 0.85      | 0.655  | 0.37     | 0.19   |
| 0.085  |           |             |            |           |        |          |        |
| 9 100. | 6 CLAY    | (PI=5-10, S |            | 1988)     |        |          |        |
| 0.0001 | 0.0003    | 0.0010      | 0.0030     | 0,0100    | 0.0300 | 0.1000   | 0.3000 |
| 1.0    |           |             |            |           |        |          |        |
| 1.00   | 1.00      | 0.975       | 0.91       | 0.78      | 0.565  | 0.305    | 0.14   |
| 0.04   |           |             |            |           |        |          |        |
| 9 100. | 7 CLAY    | (PI=10-20,  | Sun et al  | . 1988)   |        |          |        |
| 0.0001 | 0.0003    | 0.0010      | 0.0030     | 0.0100    | 0.0300 | 0.1000   | 0.3000 |
| 0.0    | 0.0005    | 0.0010      | 0.0000     | 0.0100    |        |          |        |
| 1.00   | 1.00      | 1.00        | 0.96       | 0.87      | 0.70   | 0.41     | 0.20   |
|        | 1.00      | 1.00        | 0.90       | 0.07      | 0.70   | V.41     | 0.20   |
| 0.08   | 0 07 4 37 | (DT 10 40   |            | 1000      |        |          |        |
| 9 100. |           | (PI=20-40,  |            |           | 0.0300 | 0.1000   | 0.3000 |
| 0.0001 | 0.0003    | 0.0010      | 0.0030     | 0.0100    | 0.0300 | 0.1000   | 0.3000 |
| 1.0    | • • • •   |             | o o7       | 0 00      | A 77   | 0 50     | 0 20   |
| 1.00   | 1.00      | 1.00        | 0.97       | 0.90      | 0.77   | 0.52     | 0.30   |
| 0.14   |           |             |            |           |        |          |        |
| 9 100. |           | (PI=40-80,  |            |           |        |          |        |
| 0.0001 | 0.0003    | 0.0010      | 0.0030     | 0.0100    | 0.0300 | 0.1000   | 0.3000 |
| 1.0    |           |             |            |           |        |          |        |
| 1.00   | 1.00      | 1.00        | 0.985      | 0.92      | 0.815  | 0.62     | 0.41   |
| 0.20   |           |             |            |           |        |          |        |
| 9 100. | 10 CLAY   | (PI>80, Su  | n et al. 1 | 988)      |        |          |        |
| 0.0001 | 0.0003    | 0.0010      | 0.0030     | 0.0100    | 0.0300 | 0.1000   | 0.3000 |
| 1.0    |           |             |            |           |        |          |        |
| 1.00   | 1.00      | 1,00        | 0.985      | 0.94      | 0.86   | 0.71     | 0.53   |
| 0.33   | *.00      | 1,00        | 0.700      |           |        |          |        |
| 9 100. | 11 Mourie | co City Cla | V (Sun At  | 1 19881   |        |          |        |
|        |           | 0.0010      | 0.0030     | 0.0100    | 0.0300 | 0.1000   | 0.3000 |
| 0.0001 | 0.0003    | 0.0010      | 0.0050     | 0.0100    | 0.0300 | 0.1000   | 0.0000 |
| 1.0    | 1 00      | 1 00        | 1 000      | 0 005     | 0.975  | 0.920    | 0.8000 |
| 1.00   | 1.00      | 1.00        | 1.000      | 0.995     | 616.0  | 0.720    | 0.0000 |
| 0.46   |           |             |            |           |        |          |        |
|        |           |             |            |           |        |          |        |

B3

# <u>Damping Ratio Data Base</u>

.

-

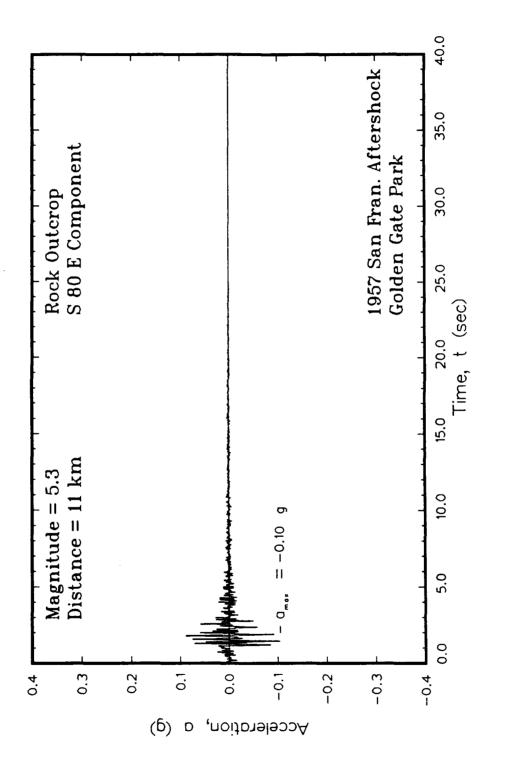
| 5 5.0<br>0.0001<br>0.40<br>9 5.0<br>0.0001<br>1.0000 | 0.0010<br>0.80   | (Schnabel<br>0.0100<br>1.50<br>EL (Average<br>0.0010 | 0.1000<br>3.00<br>, Seed et . | 1.0000<br>4.60<br>al 1986)<br>0.0100 | 0.0300 | 0.1000 | 0.3000 |
|------------------------------------------------------|------------------|------------------------------------------------------|-------------------------------|--------------------------------------|--------|--------|--------|
| 0.8                                                  | 1.0              | 1.9                                                  | 3.0                           | 5.4                                  | 9.6    | 15.4   | 20.8   |
| 24.6<br>9 5.0<br>0.0001<br>1.0000                    | 3 SAND<br>0.0003 | (Average,<br>0.0010                                  | Seed & Idr<br>0.0030          | iss 1970)<br>0.0100                  | 0.0300 | 0.1000 | 0.3000 |
| 0.8                                                  | 1.0              | 1.9                                                  | 3.0                           | 5.4                                  | 9.6    | 15.4   | 20.8   |
| 24.6<br>9 5.0                                        | 4 SAND           | (inwer Bou                                           | nd. Seed &                    | Idriss 19                            | 70)    |        |        |
| 0.0001                                               | 0.0003           | .0010                                                | 0.0030                        | 0.0100                               | 0.0300 | 0.1000 | 0.2780 |
| 1.0000<br>0.3<br>20.7                                | 0.4              | 0.7                                                  | 1.4                           | 2.7                                  | 5.0    | 9.8    | 15.5   |
| 9 5.0<br>0.0001<br>1.0000                            | 5 SAND<br>0.0003 | (Upper Bou<br>0.0010                                 | nd, Seed &<br>0.0030          |                                      |        | 0.1000 | 0.3000 |
| 0.7                                                  | 1.2              | 2.7                                                  | 5.5                           | 9.9                                  | 14.8   | 21.0   | 25.5   |
| 27.9<br>95.0                                         | 6 CLAY           | (Average,                                            | Seed & Idr                    | iss 1970)                            |        |        |        |
| 0.0001<br>1.0000                                     | 0.0003           | 0.0010                                               | 0.0030                        | 0.0100                               | 0.0300 | 0.1000 | 0.4000 |
| 2.5                                                  | 2.5              | 2.5                                                  | 3.5                           | 4.5                                  | 6.5    | 9.0    | 13.5   |
| 9 5.0                                                | 7 CLAY           | (Lower Bou                                           | und. Seed &                   | driss 19                             | 970)   |        |        |
| 0.0001                                               | 0.0003           |                                                      | 0.0030                        |                                      |        | 0.1000 | 0.4000 |
| 1.3<br>12.3                                          | 1.3              | 1.3                                                  | 1.5                           | 1.7                                  | 3.5    | 4.0    | 6.5    |
| 9 5.0                                                | 8 CLAY           | (Upper Bou                                           | ind. Seed &                   | Idriss 19                            | 970)   |        |        |
| 0.0001                                               | 0.0003           |                                                      | 0.0030                        | 0.0100                               | 0.0300 | 0.0780 | 0.3000 |
| 4.0<br>27.0                                          | 4.0              | 4.0                                                  | 5.0                           | 7.5                                  | 11.0   | 16.0   | 21.8   |

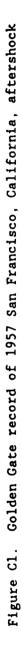
APPENDIX C: EARTHQUAKE DATA BASE C1. The earthquake data base (EARTHQ) is described and characteristics of each earthquake motion is presented. Note that earthquake records to be used with WESHAKE that are not included in the data base need to comply with the specification file format (refer to Appendix E) and not the data base format. The differences between these two formats can be seen by comparing the format below with that presented beginning on page E4. The earthquake data base has the following format:

| <u>Columns</u> | <u>Format</u> | <u>Parameter(s)</u>                              |
|----------------|---------------|--------------------------------------------------|
| FIRST LINE     |               |                                                  |
| 1 - 5          | 15            | NUMBER OF VALUES IN EARTHQUAKE MOTION [NV]       |
| 6 - 10         | 15            | NUMBER OF TERMS IN FFT [MA]                      |
|                |               | - must be a power of 2 and $\leq$ MAMAX          |
|                |               | - should be $\geq 2 * NV$                        |
| 11 - 20        | F10.3         | TIME STEP FOR MEASUREMENT [DT]                   |
| 21 - 25        | 15            | EARTHQUAKE DATA BASE NUMBER [INUME] <sup>1</sup> |
| 26 - 85        | A60           | EARTHQUAKE TITLE [EQTITLE]                       |
| SECOND LIN     | E1            |                                                  |
| 1 - 80         | A80           | CHARACTERISTICS OF EARTHQUAKE                    |

THIRD LINE

| 1 - 10  | F10.3 | MULTIPLICATION FACTOR FOR ACCELERATION [XF]  |
|---------|-------|----------------------------------------------|
| 11 - 20 | F10.3 | MAXIMUM ACCELERATION VALUE TO BE USED [XMAX] |
| 21 - 30 | F10.3 | MAXIMUM (CUTOFF) FREQUENCY [FMAX]            |


FOURTH AND SUBSEQUENT LINES


| 1 - 72              | 8(1X,F8.6) | NV VALUES OF ACCELERATION (g's) [XR] |
|---------------------|------------|--------------------------------------|
|                     |            | - eight per line                     |
| 73 - 7 <del>9</del> | 17         | LINE NUMBER [K]                      |

C2. Note that the number of non-zero values in the earthquake record must be less than or equal to half of the maximum number of terms for the FFT (MA). The records in the data base all conform to this requirement. Users providing additional records must ensure that this requirement is met, however. The proper format is shown in Appendix C along with the existing data base and plots of records. Also, the maximum number of terms for the FFT can not exceed 4096. This value was fixed in WESHAKE and can be modified is necessary.

<sup>&</sup>lt;sup>1</sup> Deviation from syntax of specification file and OPTION 1 of SHAKE

C3. At the present time, there are 22 earthquakes in the data base. Important information about earthquakes in the data base was presented in Tables III-1 and III-2 of the main text. The data for these records are presented on the following pages in the form of figures. Numerical values can be extracted from the data base. The first figure for each earthquake is a plot of the variation of acceleration with time. The second figure for each earhtquake is a plot of pseudo-response velocity spectra using a tripartite format (assuming 5 percent damping) at 6 levels of system damping (2, 5, 7, 10, 12 and 15 percent).





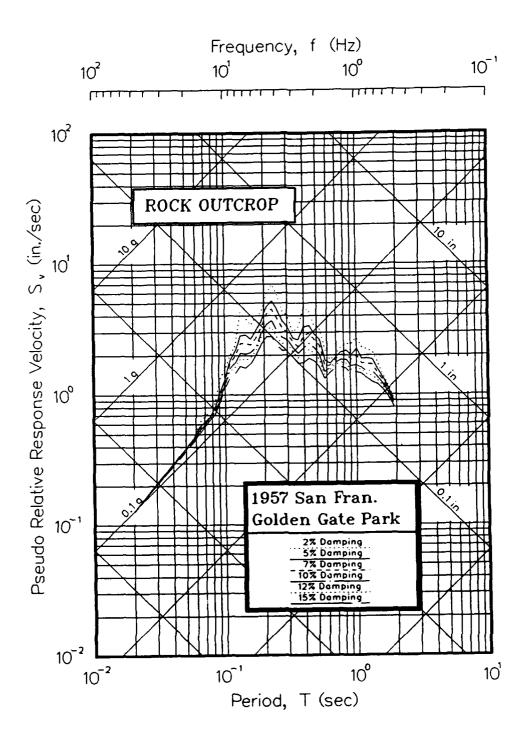
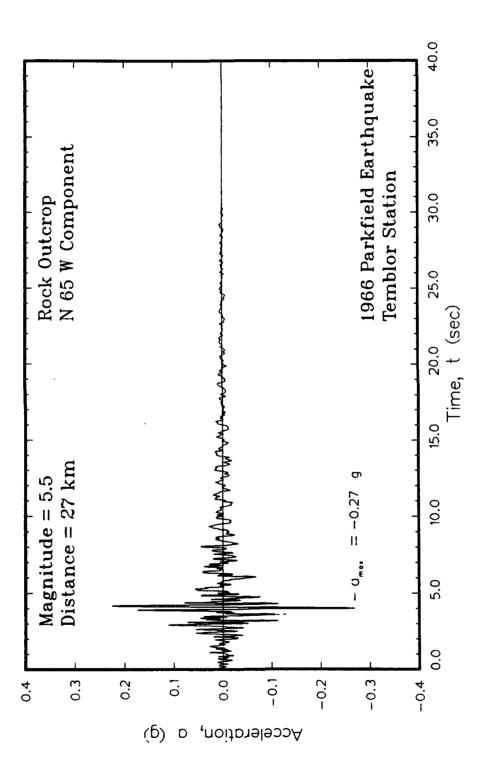




Figure C2. Tripartite presentation of pseudo-velocity spectra for Golden Gate record of 1957 San Francisco, California, aftershock





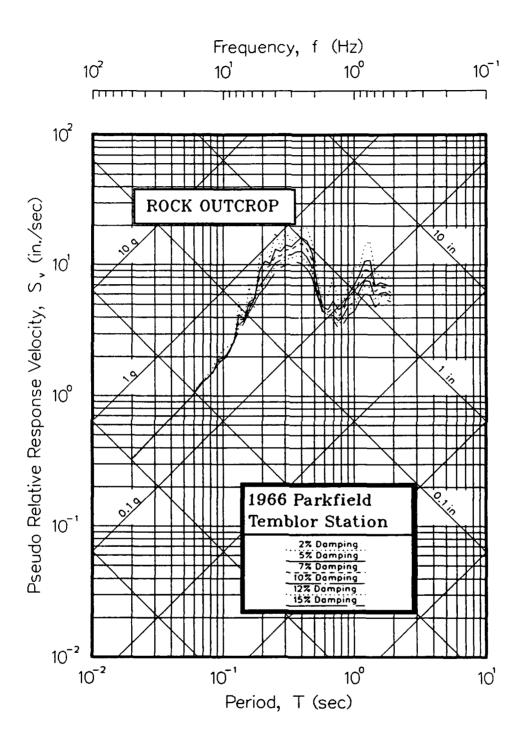
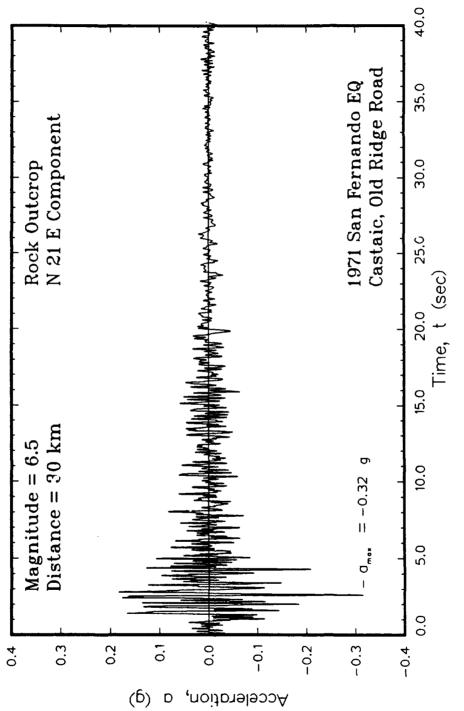
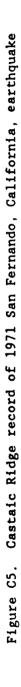





Figure C4. Tripartite presentation of pseudo-velocity spectra for Cholame-Temblor record of 1966 Parkfield, California, earthquake





C8

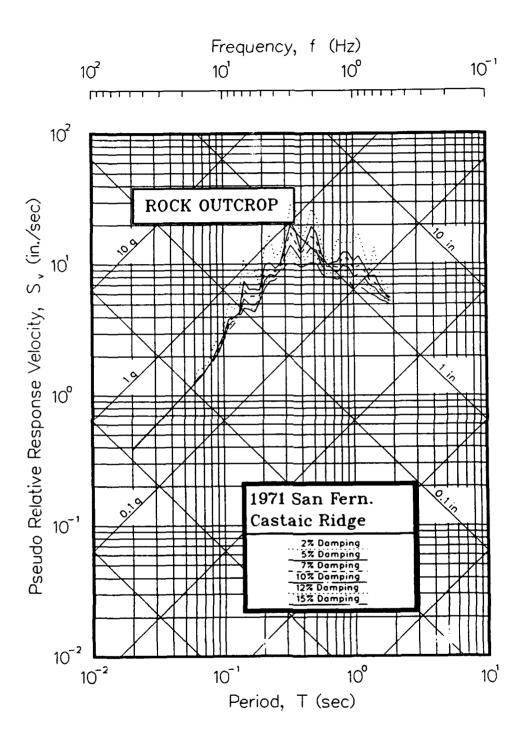
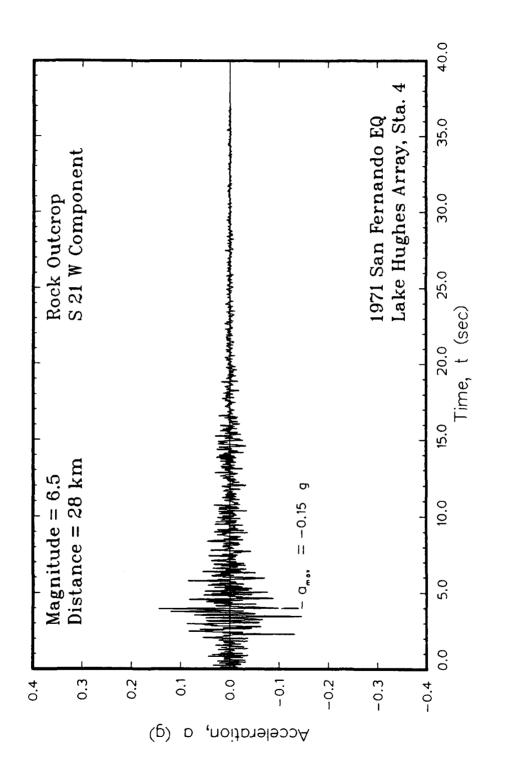
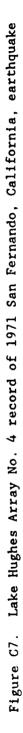





Figure C6. Tripartite presentation of pseudo-velocity spectra for Castaic Ridge record of 1971 San Fernando, California, earthquake





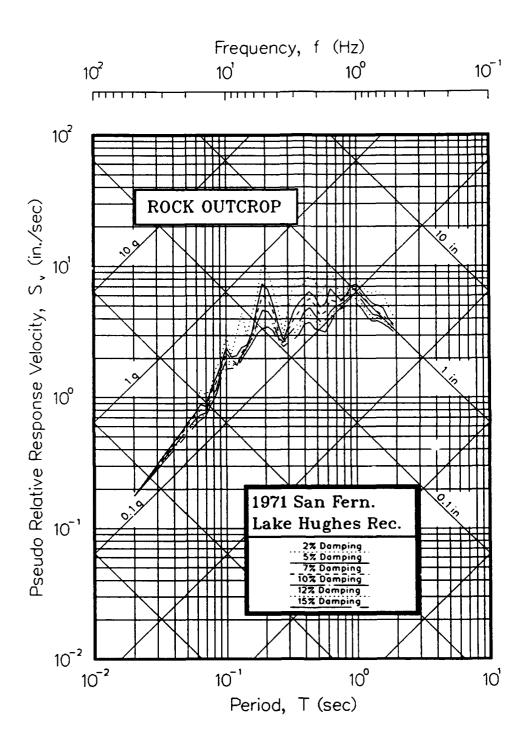



Figure C8. Tripartite presentation of pseudo-velocity spectra for for Lake Hughes Array No. 4 record of 1971 San Fernando, California, earthquake

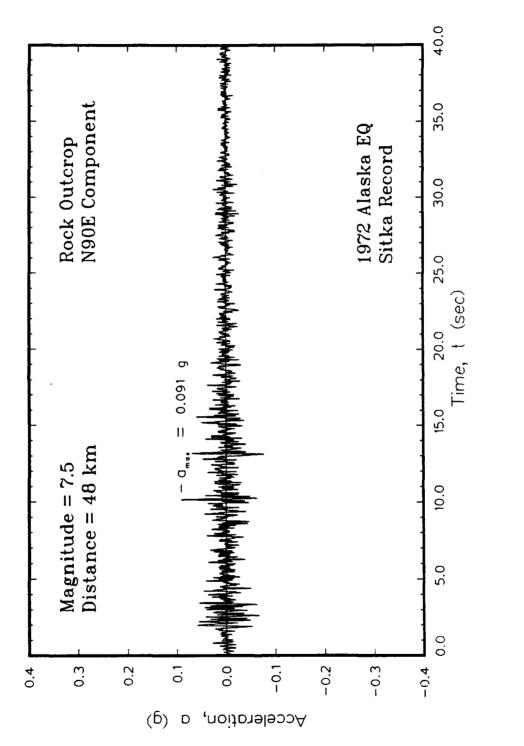
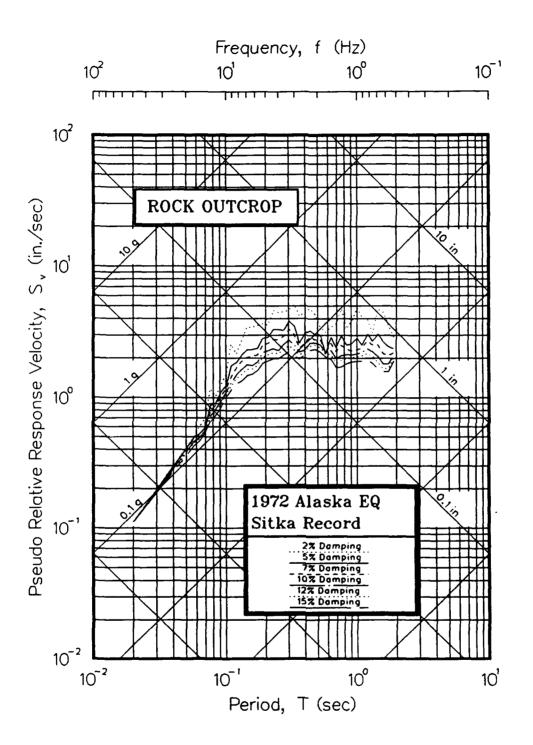
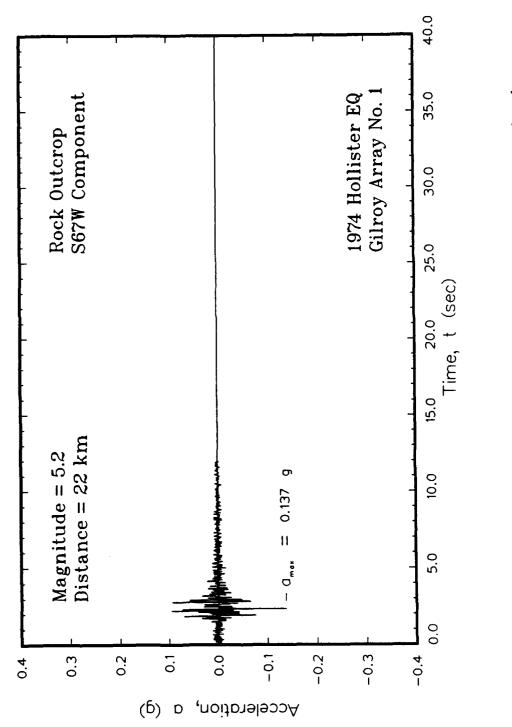
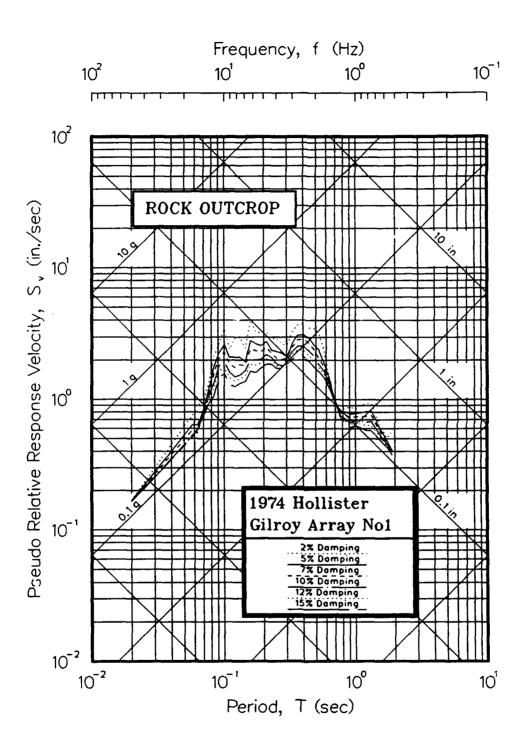
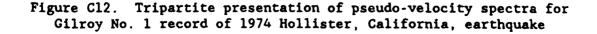
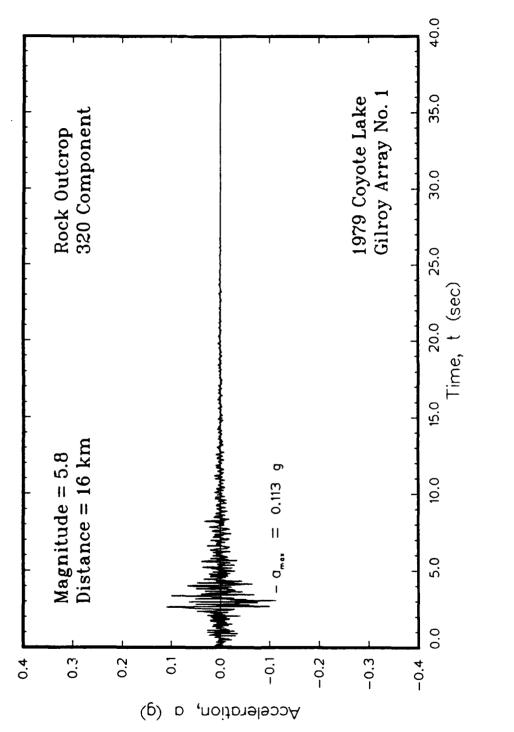



Figure C9. Sitka Magnetic Observatory record of 1972 Alaskan earthquake



Figure C10. Tripartite presentation of pseudo-velocity spectra for Sitka Magnetic Observatory record of 1972 Alaskan earthquake






C14









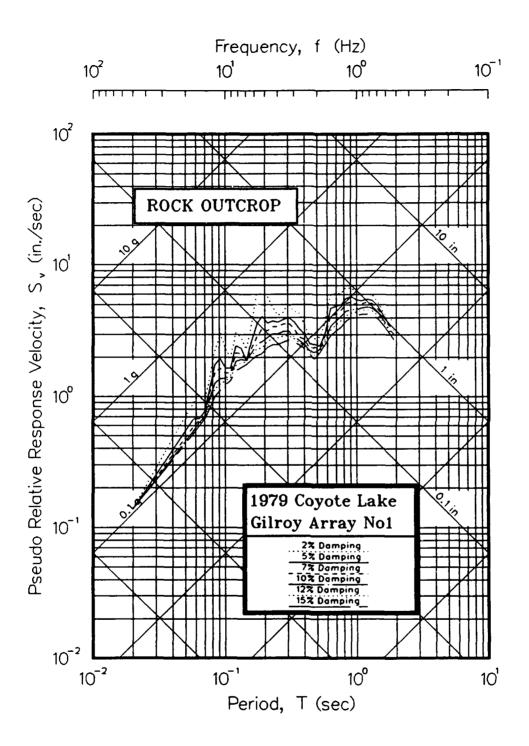
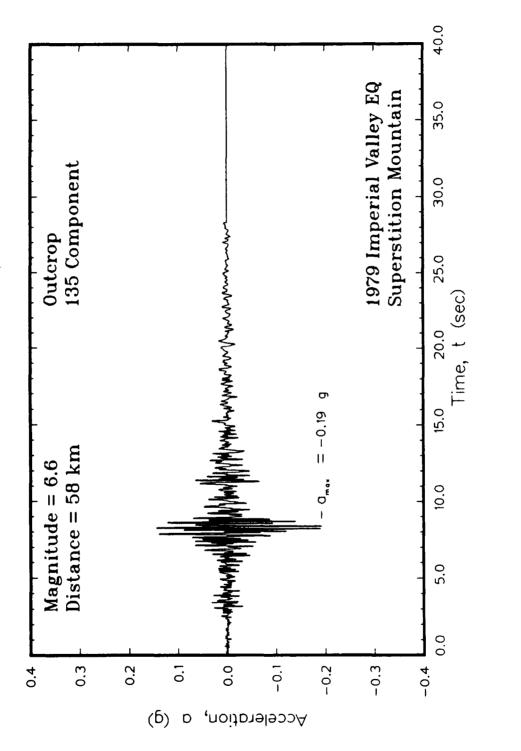




Figure Cl4. Tripartite presentation of pseudo-velocity spectra for Gilroy No. 1 record of 1979 Coyote Lake, California, earthquake





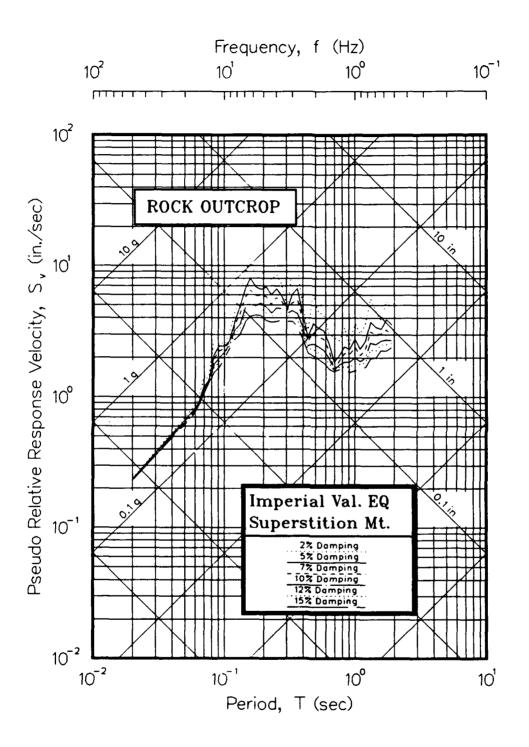
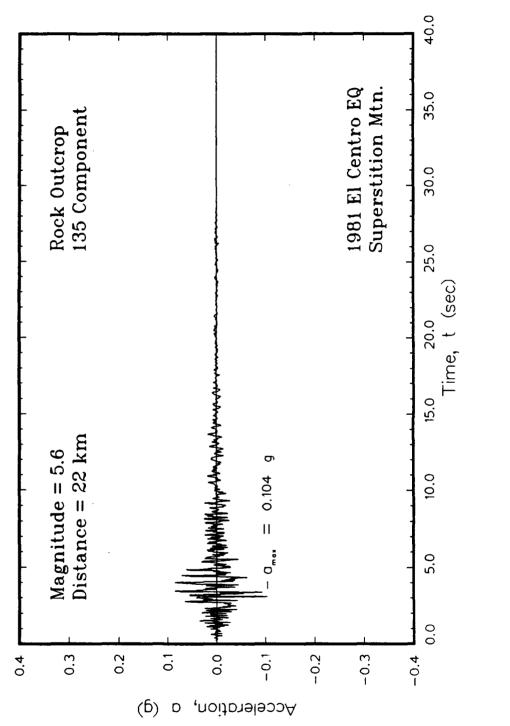
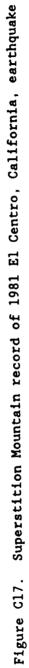





Figure C16. Tripartite presentation of pseudo-velocity spectra for Superstition Mountain record of 1979 Imperial Valley, California, earthquake





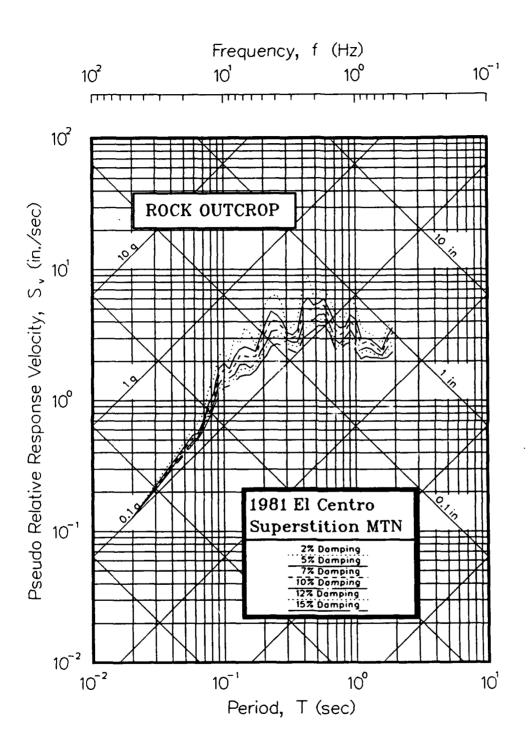
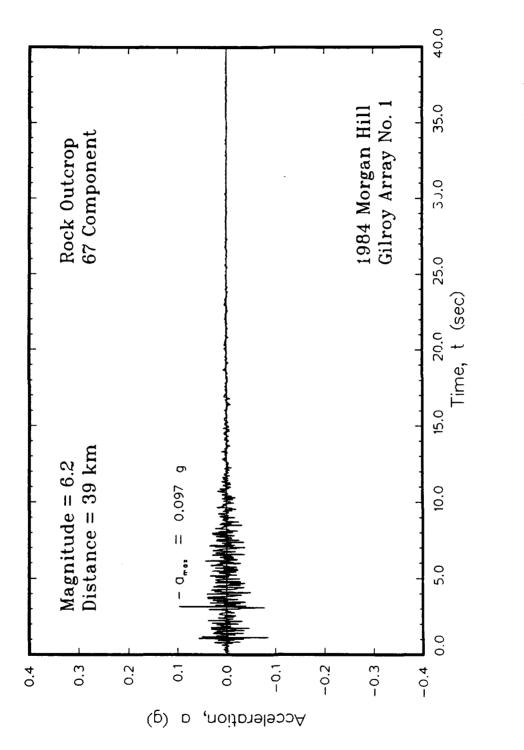




Figure C18. Tripartite presentation of pseudo-velocity spectra for Superstition Mountain record of 1981 El Centro, California, earthquake





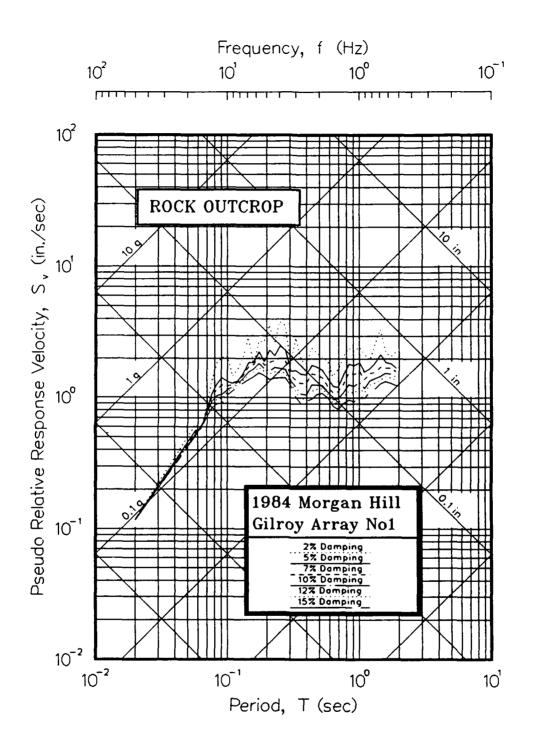



Figure C20. Tripartite presentation of pseudo-velocity spectra for Gilroy No. 1 record of 1984 Morgan Hill, California, earthquake



,

Figure C21. Iverson site record of 1985 Nahanni, Northwest Territories, aftershock

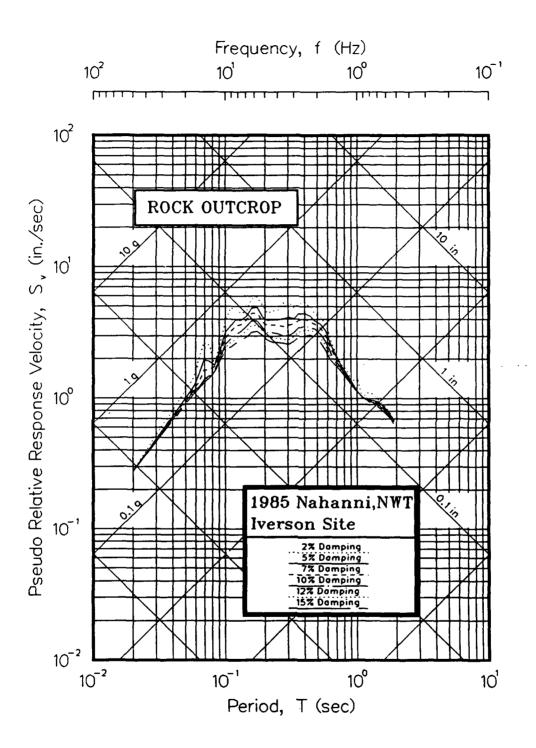
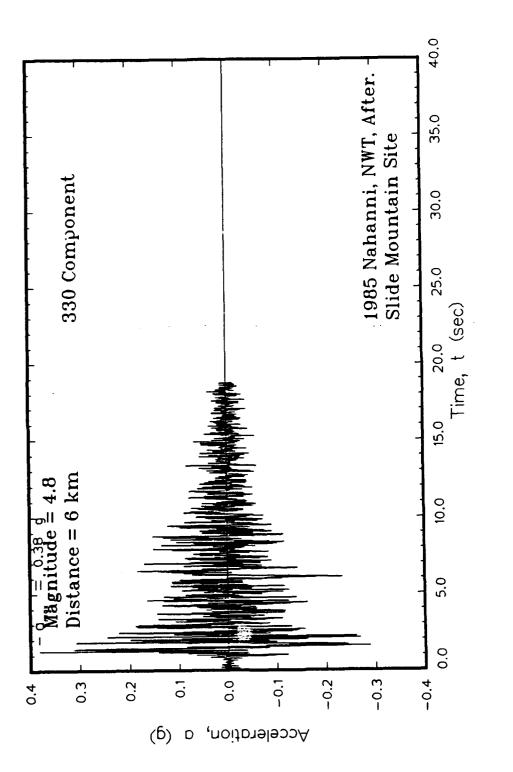




Figure C22. Tripartite presentation of pseudo-velocity spectra for Iverson site record of 1985 Nahanni, Northwest Territories, aftershock





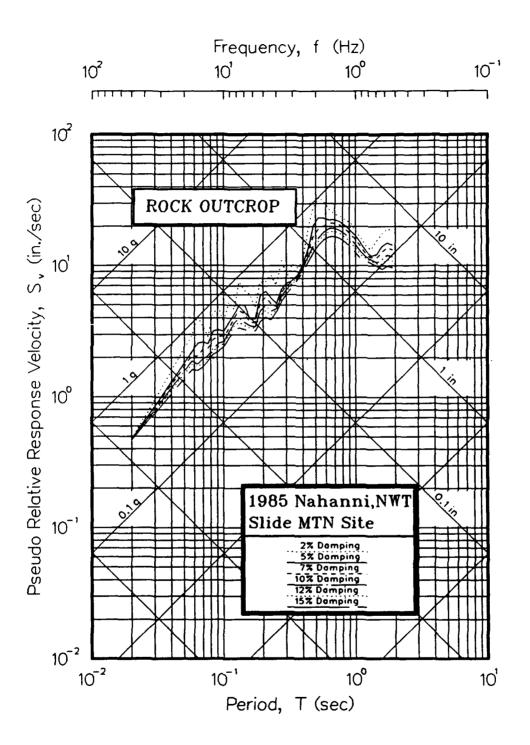
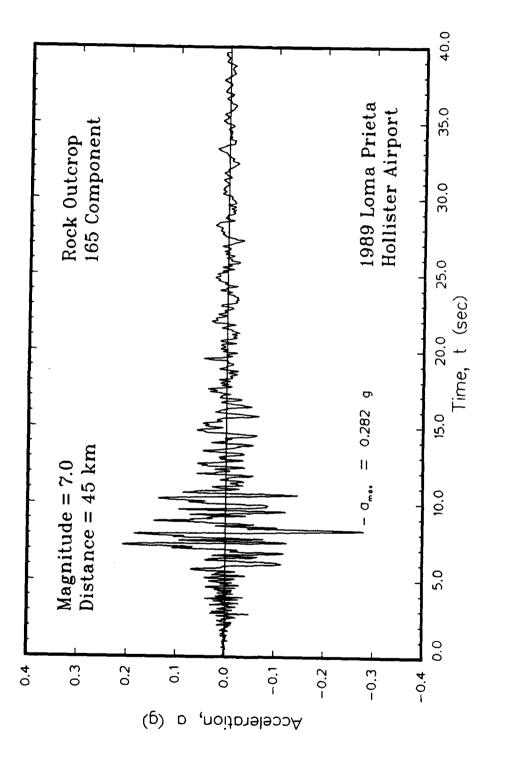




Figure C24. Tripartite presentation of pseudo-velocity spectra for Slide Mountain record of 1985 Nahanni, Northwest Territories, aftershock





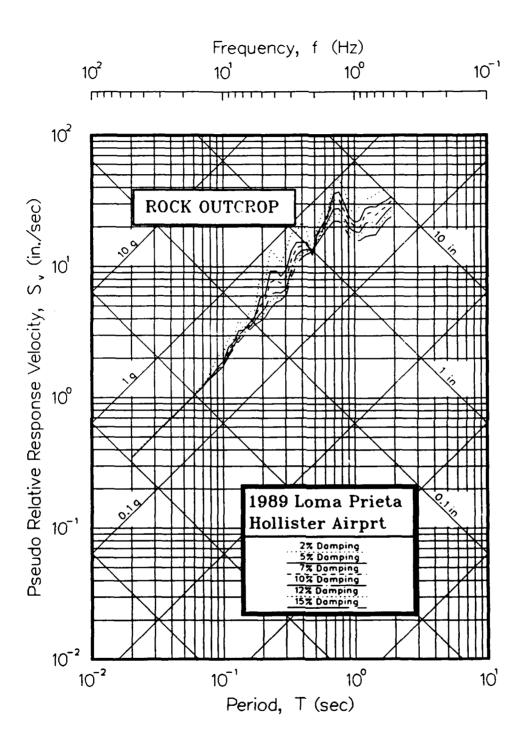
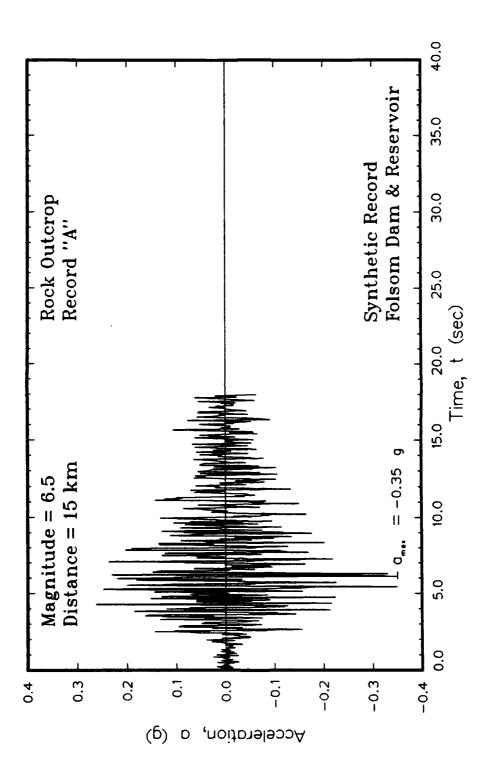




Figure C26. Tripartite presentation of pseudo-velocity spectra for Hollister Airport record of 1989 Loma Prieta, California, earthquake





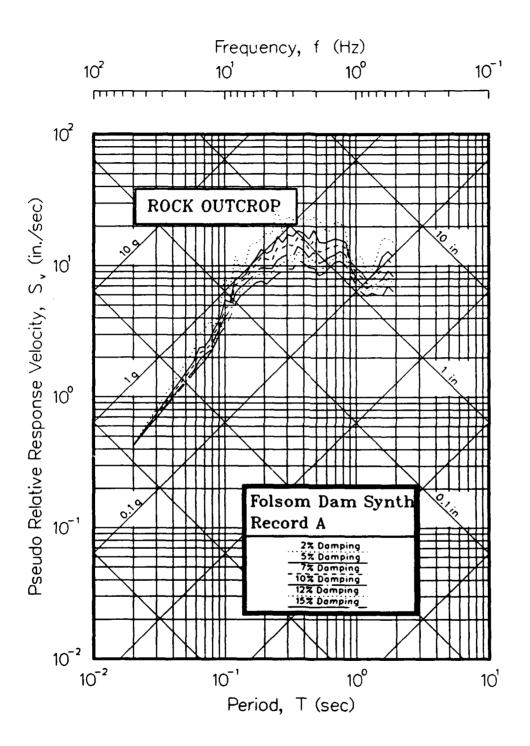
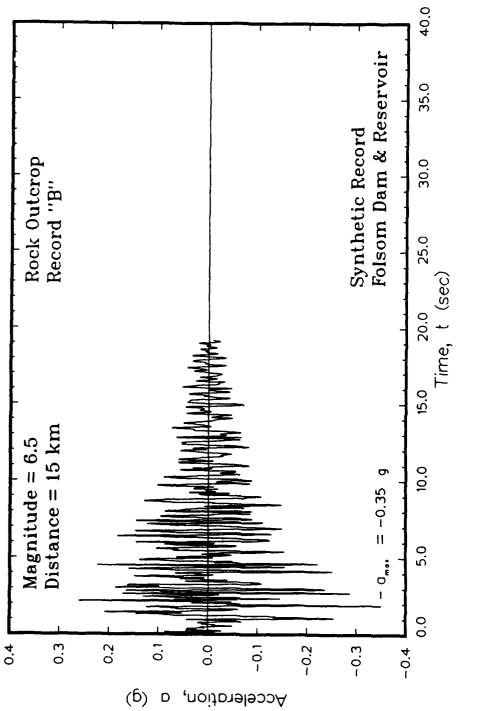
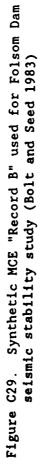





Figure C28. Tripartite presentation of pseudo-velocity spectra for synthetic MCE "Record A" used for Folsom Dam seismic stability study (Bolt and Seed 1983)





C32

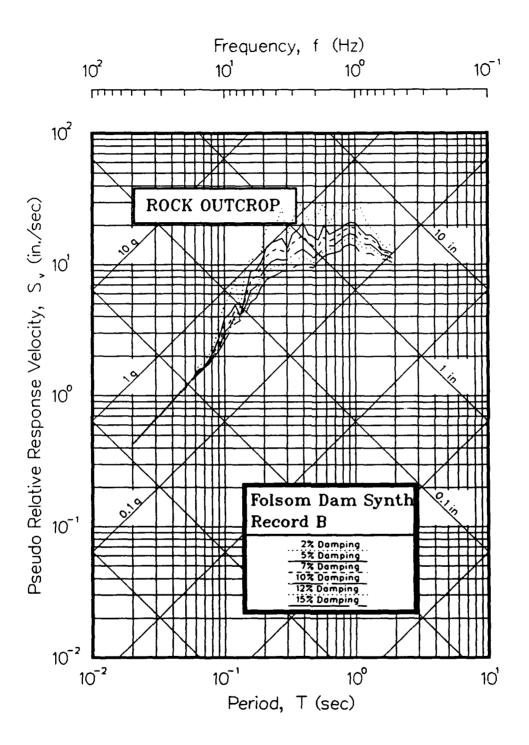
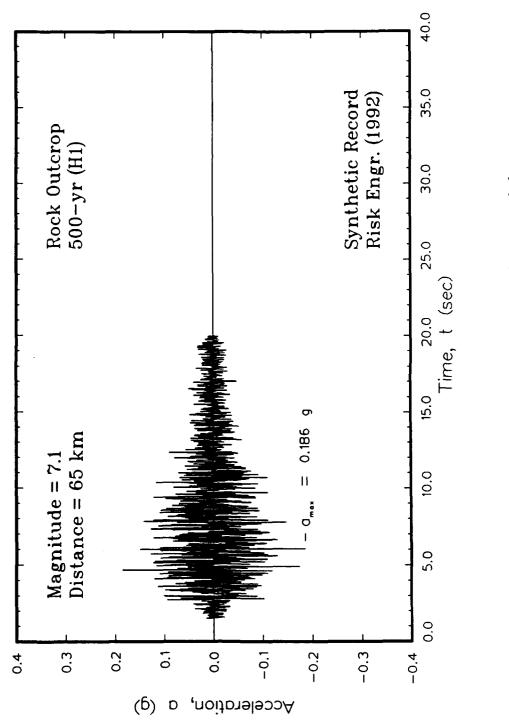




Figure C30. Tripartite presentation of pseudo-velocity spectra for synthetic MCE "Record B" used for Folsom Dam seismic stability study (Bolt and Seed 1983)





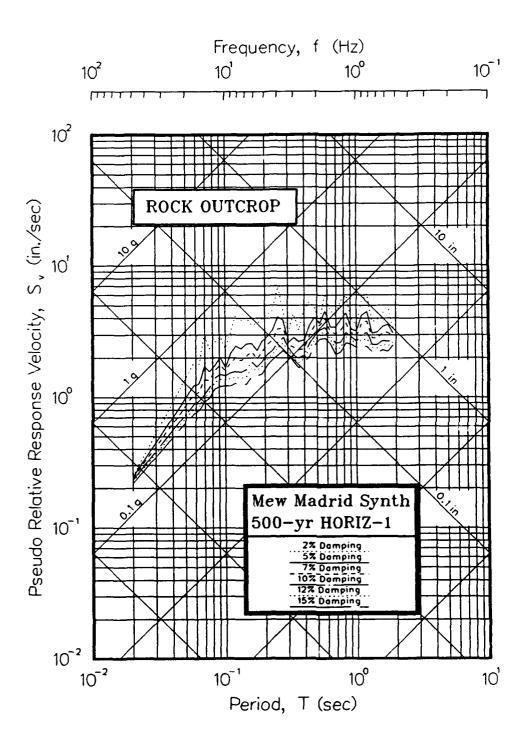



Figure C32. Tripartite presentation of pseudo-velocity spectra for synthetic 500-year event record, horizontal 1 component, for New Madrid, Missouri, earthquake (Risk Engineering, Inc. 1992)

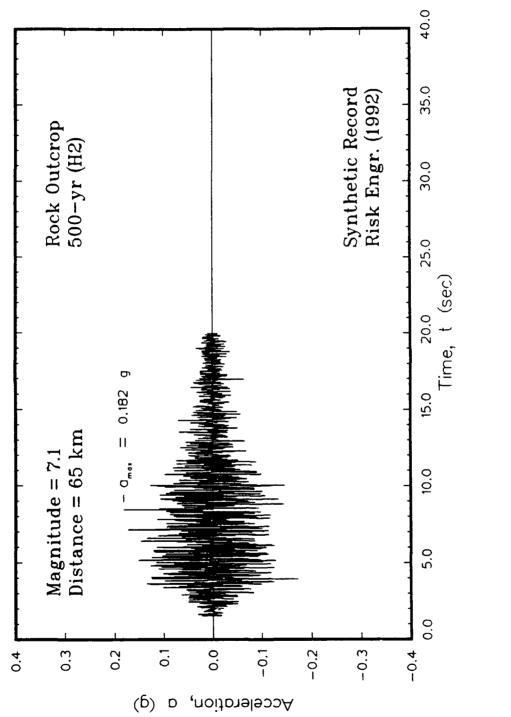



Figure C33. Synthetic 500-year event record, horizontal 2 component, for New Madrid, Missouri, earthquake (Risk Engineering, Inc. 1992)

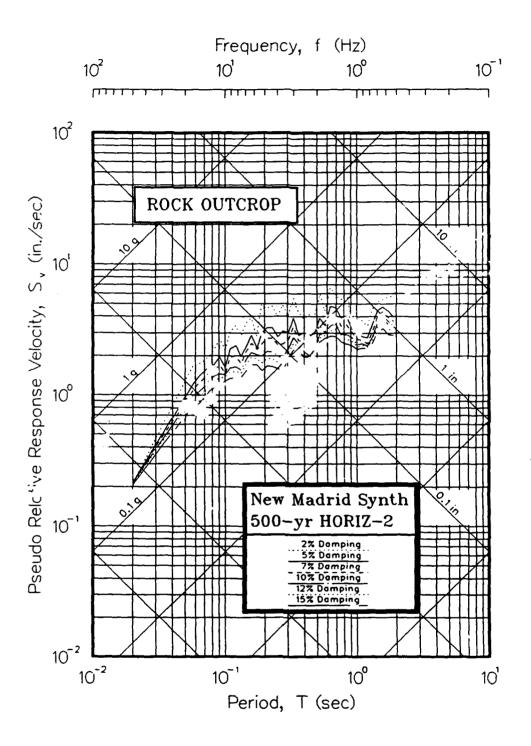



Figure C34. Tripartite presentation of pseudo-velocity spectra for synthetic 500-year event record, horizontal 2 component, for New Madrid, Missouri, earthquake (Risk Engineering, Inc. 1992)

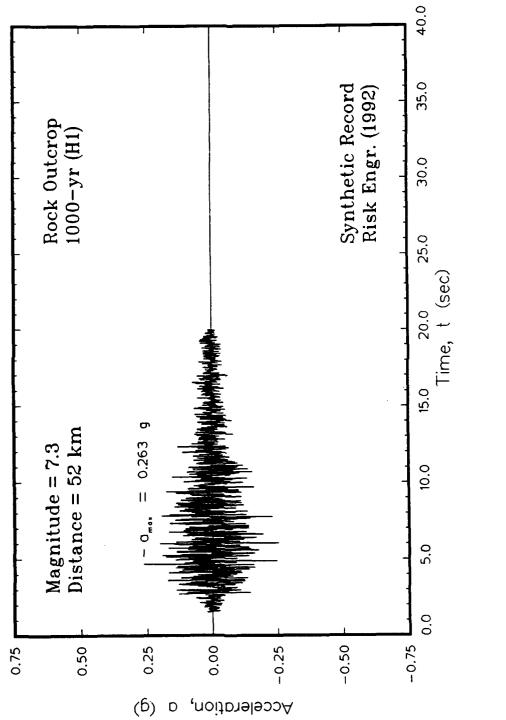



Figure C35. Synthetic 1000-year event record, horizontal 2 component, for New Madrid, Missouri, earthquake (Risk Engineering, Inc. 1992)

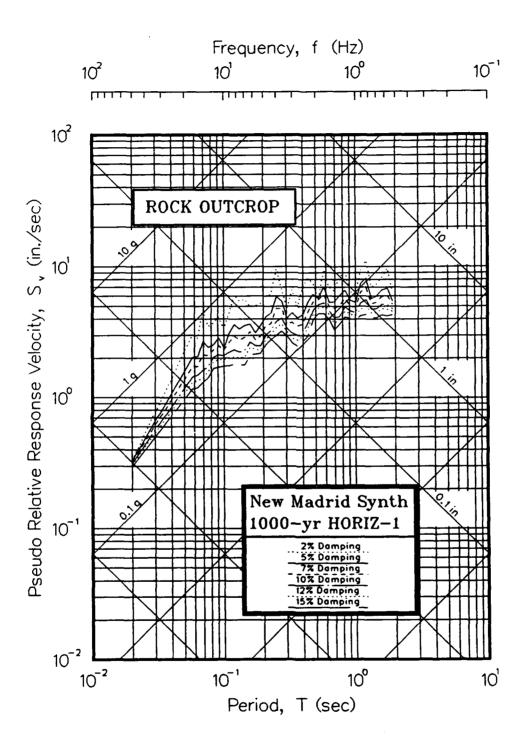
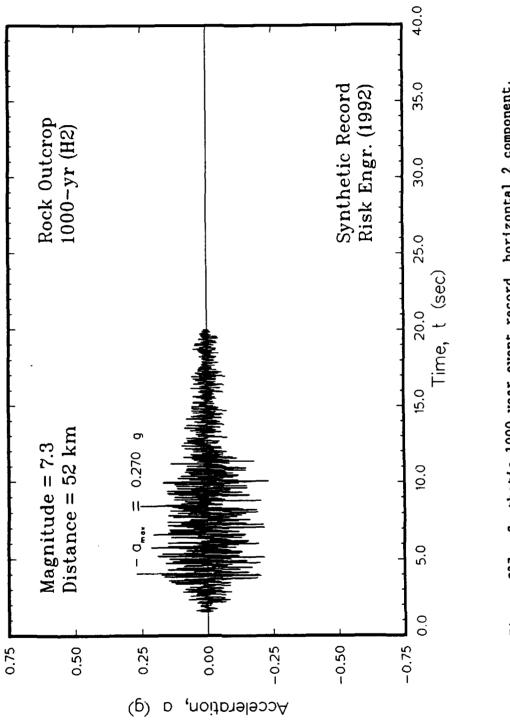




Figure C36. Tripartite presentation of pseudo-velocity spectra for synthetic 1000-year event record, horizontal 1 component, for New Madrid, Missouri, earthquake (Risk Engineering, Inc. 1992)





C40

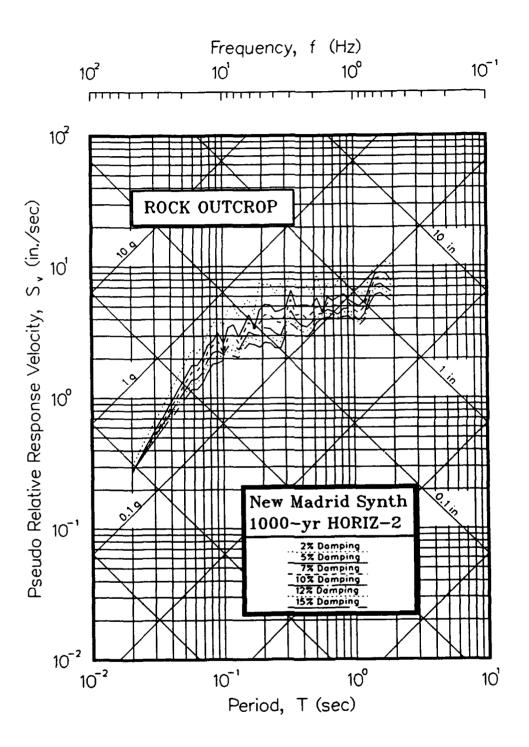
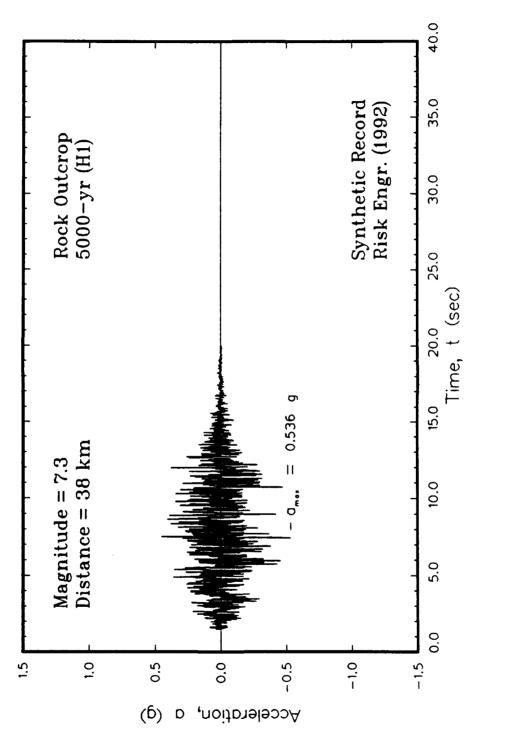




Figure C38. Tripartite presentation of pseudo-velocity spectra for synthetic 1000-year event record, horizontal 2 component, for New Madrid, Missouri, earthquake (Risk Engineering, Inc. 1992)





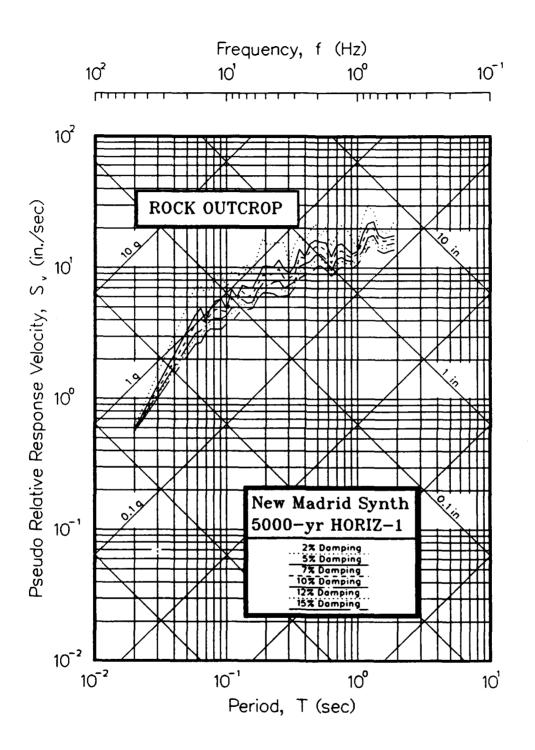
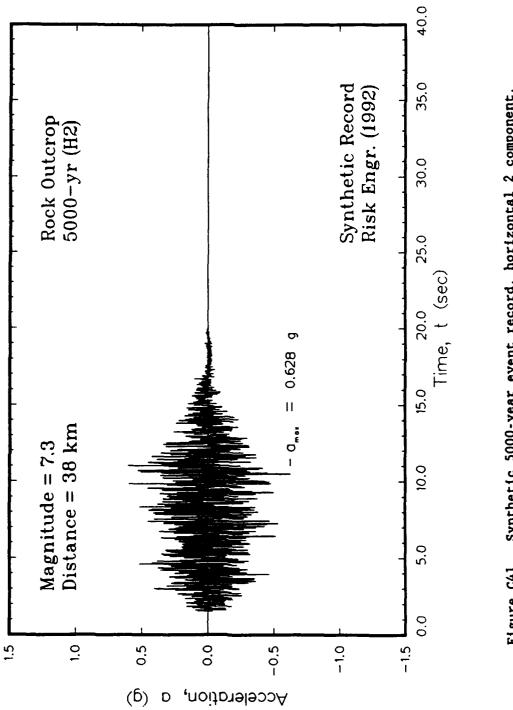




Figure C40. Tripartite presentation of pseudo-velocity spectra for synthetic 5000-year event record, horizontal 1 component, for New Madrid, Missouri, earthquake (Risk Engineering, Inc. 1992)





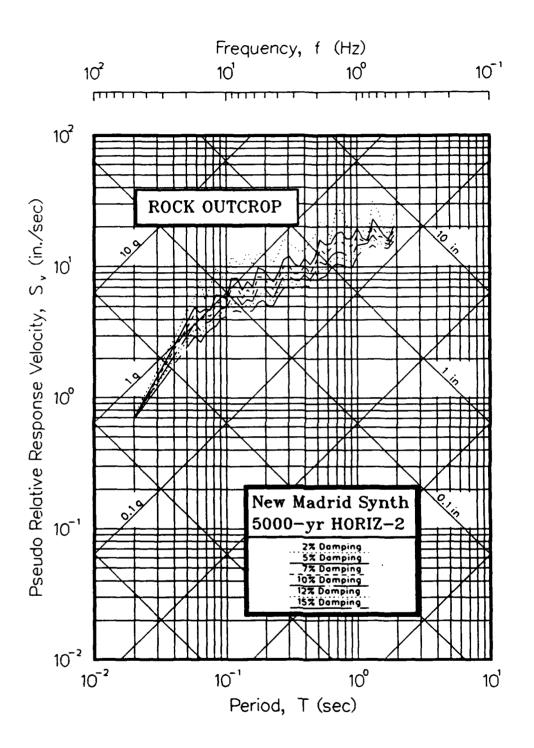
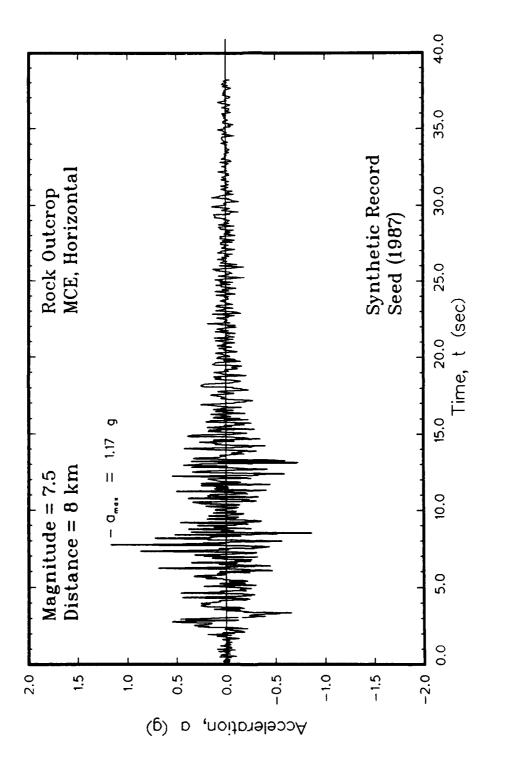
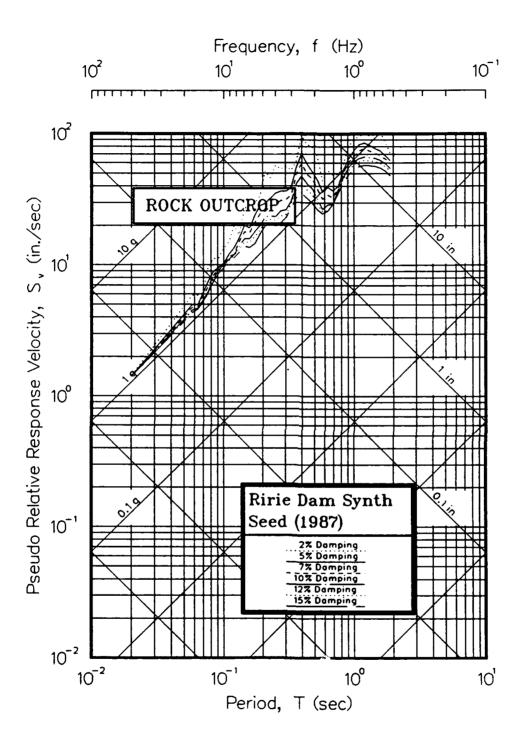
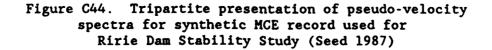






Figure C42. Tripartite presentation of pseudo-velocity spectra for synthetic 5000-year event record, horizontal 2 component, for New Madrid, Missouri, earthquake (Risk Engineering, Inc. 1992)









APPENDIX D:

MOTION: ACCELEROGRAM PLOTTING PROGRAM

D1. The computer plotting program called MOTION can be used to visualize earthquake motions that are used in WESHAKE program. Currently, earthquake motions must be stored in the earthquake data base called "EARTHQ". If the user has access to better plotting software, WESHAKE still prints the earthquake motion to an output file called "EQIN" which can be used as in input to their software package (some modifications to the input file might have to be generated by the user for the various software packages). As the earthquake data base is updated each year, these updates will be automatically incorporated into the MOTION software package.

D2. MOTION involves two basic stages. identification and plotting. The identification stage involves the selection from a menu sample earthquake motions (identical with the selection of motions in WESHAKE). MOTION allows the user to pick as many many of the sample earthquake in the data base that will be required for the analaysis. MOTION will allow the user to continually pick each earthquake motion. MOTION will also generate a print out of the graph. This option is limited to an Epson printer or an emulation of an Epson printer.

D3. In order to execute *MOTION*, the user types MOTION at the C:\ prompt. The first screen following the execution of *MOTION* is (next page):

\*\*\*\*\* WESHAKE \*\*\*\*\*\* EARTHQUAKE PLOT MENU \*\*\*\*\* WRITTEN BY: DR. DAVID C. WALLACE APPLIED COMPUTER SCIENCE DEPARTMENT ILLINOIS STATE UNIVERSITY NORMAL, ILLINOIS 61761 THE COMPUTER WILL GENERATE A PLOT OF YOUR EARTHQUAKE MOTION \*\*\*\*\* WHEN YOU ARE FINISHED VIEWING THE DISPLAY, CAN HIT THE ENTER KEY TO EXIT THE PROGRAM. HIT ANY KEY TO CONTINUE

The next screen will be the selection screen. The selection screen lists the various earthquake motions which can be plotted on the screen.

| * 7 | **** | *****                               | ***** | *******               | k: |
|-----|------|-------------------------------------|-------|-----------------------|----|
| *   | NO.  | MEASURED RECORD                     | NO.   | SYNTHETIC RECORD      | •  |
| *   |      |                                     |       |                       | •  |
| k   | 1    | GOLDEN GATE 1957                    |       |                       | •  |
| k   | 2    | PARKFIELD 1966                      | 15    | FOLSOM RECORD "B"     | •  |
| k   | 3    | CASTAIC RIDGE 1971                  | 16    | NEW MADRID 500-YR H1  | 1  |
| k   | 4    | LAKE HUGHES # 4 1971                | 17    | NEW MADRID 500-YR H2  | •  |
| k   |      |                                     | 18    |                       | 1  |
| k   |      | GILROY #1 1974                      | 19    | NEW MADRID 1000-YR H2 | 1  |
| k   | 7    | GILROY #1 1979                      | 20    |                       | 5  |
| k   | 8    | GILROY #1 1979<br>SUPERSTITION 1979 | 21    | NEW MADRID 5000-YR H2 | •  |
| k   |      |                                     | 22    |                       | •  |
| k   | 10   | GILROY #1 1984                      |       |                       | •  |
| k   |      | IVERSON 1985                        |       |                       |    |
| k   | 12   | SLIDE MT 1985                       |       |                       | 1  |
|     |      | HOLLISTER AIRPORT 198               | 39    |                       | •  |
| * 3 | **** | ****                                | ***** | *****                 | k  |

Once the earthquake motion is selected, the user can choose to generate a print out of the graph on the screen. The following screen prompts the user for print out of the plotted graph.

Once the user responds to the last screen, the program will generate the graph of the earthquake motion on the screen. If the user enters 1 for a print out of the motion, the screen graph of the earthquake motion will be basically two colors which are easily generated for the EPSON print. If the user enters 0 for no print outs, the graph should be a muti-color graph. Figure D1 shows the type of graph generated by *MOTION*. The message in the lower right hand corner of the graph tells the user to hit the enter key to continue.

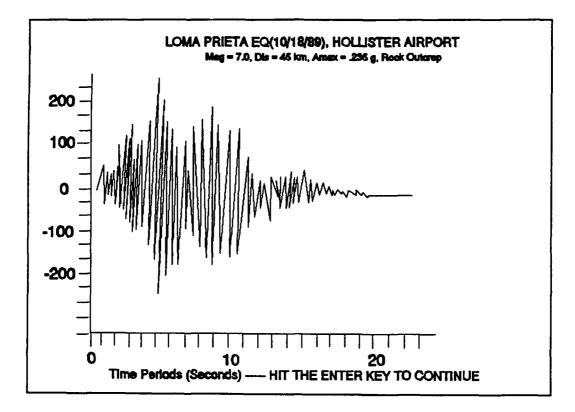



Figure D1. Example plot from MOTION

The computer will then prompt:

If the user responds yes to the prompt, the program will start over again by generating the menu for earthquake motions again.

APPENDIX E: SPECIFICATION FILE FORMAT

Columns Format Parameter(s) I. PROJECT TILE FIRST LINE MAXIMUM NUMBER OF TERMS FOR FOURIER TRANSFORM [MAMAX] 1 - 5 15 6 - 65 A60 PROJECT TITLE [PTITLE]<sup>1</sup> **II. MANDATORY ACTIONS** A. READ SOIL COLUMN (OPTION 2 IN SHAKE) FIRST LINE 1 - 5 15 OPTION NUMBER [KK] - 2 SECOND LINE 1 - 5 15 SOIL COLUMN NUMBER [MSOIL] 6 - 10 NUMBER OF SOIL LAYERS [ML] 15 NUMBER OF SOIL LAYER ABOVE WHICH IS THE WATER TABLE 11 - 15 15 [MWL] 16 - 25 F10.0 UNIT WEIGHT OF PORE LIQUID (kcf) [WW] 26 - 61 6A6 IDENTIFICATION FOR THE SOIL PROFILE [IDNT] THIRD LINE $(S)^1$ 1 - 5 15 LAYER NUMBER [K] 6 - 10 15 TYPE OF SOIL LAYER [TP] - Corresponds layer with TP'th set of material properties defined in the next option (SHAKE OPTION 8) NUMBER OF SUBLAYERS IN LAYER K [NLN] 11 - 15 I5 16 - 25 F10.0 THICKNESS OF LAYER (ft) [H] 26 - 35 F10.0 COEFFICIENT OF LATERAL EARTH PRESSURE [SKO]<sup>1</sup> 36 - 45 F10.0 DAMPING RATIO (percent) [BL] 46 - 55 MOIST UNIT WEIGHT FOR LAYER (kcf) [W] F10.0 56 - 65 INITIAL SHEAR WAVE VELOCITY OR K<sub>2</sub> [RV1]<sup>1</sup> F10.0 MAXIMUM SHEAR WAVE VELOCITY OR (K2)max [RV2] 66 - 75 F10.0 76 - 80 F5.0 DAMPING MODIFICATION FACTOR [BF] 81 11 CODE INDICATING INPUT TYPE [INKEY]<sup>1</sup>: - 0 - SHEAR WAVE.  $-1 = (K_2)_{max}$ 

The third line is repeated for each soil layer, including rock. For rock, the parameters: H, SKO, and INKEY are not applicable.

<sup>1</sup> Deviation from SHAKE

B. READ MATERIAL PROPERTIES (OPTION 8 IN SHAKE)

FIRST LINE

1 - 5 I5 OPTION NUMBER [KK] = 8

SECOND LINE

| 1 - 5   | 15    | NUMBER OF SOIL TYPES FOR PLOTTING [NST]:       |
|---------|-------|------------------------------------------------|
|         |       | - Maximum of 4                                 |
| 6 - 10  | 15    | PLOT OPTION [NPL]:                             |
|         |       | - 0: No plot                                   |
|         |       | - 1: Plot in OUTPUT                            |
| 11 - 15 | 15    | NUMBER OF STRAIN UNITS IN EACH LOG CYCLE [NPL] |
| 16 - 25 | F10.0 | MAXIMUM VALUE OF ORDIANTE [SC]:                |
|         |       | - 0: Maximum value of data                     |

THIRD LINE

| 1 - 5   | 15   | NUMBER OF VALUES PLOTTED ON RVE [NV]    |
|---------|------|-----------------------------------------|
|         |      | - Maximum of 20 points per curve        |
| 6 - 10  | F5.0 | MULTIPLICATION FACTOR IN PLOTTING [FPL] |
| 12 - 77 | 11A6 | DESCRIPTION OF SOIL PROFILE [ID]        |

FOURTH LINE(S)

| 1 - 80 | 8F10.3 | NV VALUES OF SHEAR STRAIN (percent) IN INCREASING |
|--------|--------|---------------------------------------------------|
|        |        | ORDER [S]                                         |
|        |        | - Eight per line                                  |

The fourth line repeats until all values of shear strain have been specified

## FIFTH LINE(S)

1 - 80 8F10.3 NV VALUES OF NORMALIZED SHEAR MODULUS (percent) OR DAMPING RATIO (percent), IN INCREASING ORDER, CORRRESPONDING TO VALUES OF SHEAR STRAIN IN SECOND LINE(S) [Y] - Eight per line

The fifth line repeats until all values of modulus or damping have been specified.

The fourth and fifth lines form a set and a set is created for each material type (i.e., these lines are repeated) in the respective data bases (unique to NUM).

C. SELECT EARTHQUAKE RECORD (OPTION 1 IN SHAKE)

FIRST LINE

1 - 5 15 OPTION NUMBER [KK] - 1

SECOND LINE

| 1 - 5   | 15    | NUMBER OF VALUES IN EARTHQUAKE MOTION [NV] |
|---------|-------|--------------------------------------------|
| 6 - 10  | 15    | NUMBER OF TERMS IN FFT [MA]:               |
|         |       | - Must be a power of 2 and $\leq$ MAMAX    |
|         |       | - Should be $\geq$ 2 * NV                  |
| 11 - 20 | F10.3 | TIME STEP FOR MEASUREMENT [DT]             |
| 22 - 50 | 5A6   | EARTHQUAKE TITLE [EQTITLE]                 |

THIRD LINE<sup>1</sup>

| 1 - 10<br>11 - 20<br>21 - 30<br>31 - 35 | F10.0<br>F10.0<br>F10.0<br>I5 | MULTIPLICATION FACTOR FOR ACCELERATION [XF]<br>MAXIMUM ACCELERATION VALUE TO BE USED [XMAX]<br>MAXIMUM (CUTOFF) FREQUENCY [FMAX]<br>ECHO CODE [OUTKEY]: <sup>1</sup><br>- 0: Do not echo accelerations in OUTPUT |
|-----------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                         |                               | - 1: Echo accelerations in OUTPUT                                                                                                                                                                                |

## FOURTH AND SUBSEQUENT LINES

| 1 - 72  | 8(1X,F8.6) | NV VALUES OF ACCELERATION (g's) [XR]: |
|---------|------------|---------------------------------------|
|         |            | - Eight per line                      |
| 73 - 79 | 17         | LINE NUMBER [K]                       |

D. ASSIGN OBJECT MOTION (OPTION 3 IN SHAKE)

FIRST LINE

1 - 5 I5 OPTION NUMBER [KK] - 3

SECOND LINE

| 1 - 5  | 15 | NUMBER OF (SUB)LAYER WHERE OBJECT MOTION IS ASSIGNED |
|--------|----|------------------------------------------------------|
|        |    |                                                      |
| 6 - 10 | 15 | TYPE OF (SUB)LAYER [INT]:                            |
|        |    | - 0: Outcropping                                     |
|        |    | - 1: (Sub)layer within profile                       |

E. OBTAIN STRAIN COMPATIBLE PROPERTIES (OPTION 4 IN SHAKE)

FIRST LINE

1 - 5 I5 OPTION NUMBER [KK] - 4

SECOND LINE

- 1 5 15 PUNCH OPTION [KS]: - 0: Do not write to PUNCH file - 1: Write to PUNCH file 6 - 10 15 MAXIMUM NUMBER OF ITERATIONS [ITMAX] 11 - 20 F10.0 MAXIMUM ACCEPTABLE DIFFERENCE BETWEEN THE LAST-USED MODULUS AND DAMPING VALUES AND THE STRAIN COMPATIBLE VALUES (percent) [ERR] 21 - 30 RATIO BETWEEN EFFECTIVE STRAIN AND MAXIMUM STRAIN F10.0 [PRMUL]: - 0.65 recommended
- III. OPTIONAL ACTIONS
  - A. COMPUTE MOTION IN SPECIFIED LAYERS

FIRST LINE

1 - 5 I5 OPTION NUMBER [KK] - 5

SECOND LINE

1 - 80 1515 (SUB)LAYERS FOR COMPUTATION OF MOTION [LL5]: - Maximum 15

THIRD LINE

1 - 80 1515 TYPE OF MOTION CORRESPONDING TO LL5 [LT5]: - Maximum 15 - 0: Outcropping - 1: (Sub)layer within soil profile

FOURTH LINE

| 1 - 80 | 1515 | OUPUT OPTION CORRESPONDING TO LL5 and LT5 [LP5]:    |
|--------|------|-----------------------------------------------------|
|        |      | - 0: Maximum accelerations only to OUTPUT and ACCEL |
|        |      | - 1: Acceleration time history to PUNCH             |

B. PRINT OR PUNCH OBJECT MOTION

FIRST LINE

1 - 5 I5 OPTION NUMBER [KK] - 6

SECOND LINE

- 1 5 I5 SELECT MODE OF OUTPUT [K2]: - 0: Maximum acceleration only - 1: Write to PUNCH file - 2: Write to PUNCH and OUTPUT files
- C. CHANGE OBJECT MOTION

FIRST LINE

1 - 5 I5 OPTION NUMBER [KK] = 7

SECOND LINE

| 1 - 5   | 15    | NUMBER OF SUBLAYER [LL1]:                           |
|---------|-------|-----------------------------------------------------|
|         |       | - 0: OBJECT MOTION ORIGINALLY ASSIGNED IS RETAINED  |
| 6 - 10  | 15    | TYPE OF (SUB)LAYER [LT1]:                           |
|         |       | - 0: Outcropping                                    |
|         |       | - 1: (Sub)layer within soil profile                 |
| 11 - 20 | F10.0 | MULTIPLICATION FACTOR FOR ACCELERATION VALUES [XF]: |
|         |       | - 1.0: No change                                    |
| 21- 30  | F10.0 | NEW TIME STEP [DTNEW]                               |

## D. COMPUTE RESPONSE SPECTRA

FIRST LINE

1 - 5 I5 OPTION NUMBER [KK] - 9

SECOND LINE

| 1 - 5  | 15 | SUBLAYER NUMBER [LL1]:<br>- 0: Object Motion                                       |
|--------|----|------------------------------------------------------------------------------------|
| 6 - 10 | 15 | TYPE OF SUBLAYER [LT1]:<br>- 0: Outcropping<br>- 1: (Sub)layer within soil profile |

|     |   | THIRD | LINE   |                                                                                                 |
|-----|---|-------|--------|-------------------------------------------------------------------------------------------------|
| 1   | - | 5     | 15     | UMBER OF DAMPING VALUES TO BE USED [ND]:<br>- Maximum of 6                                      |
| 6   | - | 10    | 15     | PUNCH OPTION [KP]:                                                                              |
|     |   |       |        | - 0: No write to PUNCH file                                                                     |
|     |   |       |        | - 1: Write to PUNCH file                                                                        |
| 11  | • | 15    | 15     | PARAMETER OPTION [KAV]:                                                                         |
|     |   |       |        | - 0: Spectral velocity                                                                          |
|     |   |       |        | <ul> <li>- 1: Spectral acceleration</li> <li>- 2: Spectral velocity and acceleration</li> </ul> |
| 14  |   | 20    | 15     | PLOT OPTION [KPL]:                                                                              |
| 10  | - | 20    | 15     | - 0: Store plot for later (combined) plotting                                                   |
|     |   |       |        | - 1: Plots of all spectra calculated to this point                                              |
| 21  | - | 25    | 15     | SITE PERIODS FOR COMPUTATIONS [KPER]:                                                           |
| ~ * |   | 25    |        | - KPER = $0$                                                                                    |
|     |   |       |        | 9 LINEAR STEPS from 0.1 to 1.0 sec                                                              |
|     |   |       |        | 5 steps from 1.0 to 2.0 sec                                                                     |
|     |   |       |        | 4 steps from 2.0 to 4.0 sec                                                                     |
|     |   |       |        | - KPER $-1$                                                                                     |
|     |   |       |        | 18 steps from 0.1 to 1.0 sec                                                                    |
|     |   |       |        | 10 steps from 1.0 to 2.0 sec                                                                    |
|     |   |       |        | 8 steps from 2.0 to 4.0 sec                                                                     |
|     |   |       |        | - KPER - 2                                                                                      |
|     |   |       |        | 38 steps from 0.05 to 1.0 sec                                                                   |
|     |   |       |        | 20 steps from 1.0 to 2.0 sec                                                                    |
|     |   |       |        | 30 steps from 2.0 to 5.0 sec<br>- KPER = 3                                                      |
|     |   |       |        | LOG INCREMENTS with 10 steps per log unit from                                                  |
|     |   |       |        | 0.05 TO 5.0                                                                                     |
|     |   |       |        | - KPER = 4                                                                                      |
|     |   |       |        | LOG INCREMENTS with 10 steps per log unit from                                                  |
|     |   |       |        | 0.05 TO 10.0                                                                                    |
|     |   |       |        |                                                                                                 |
|     |   | FOURT | H LINE |                                                                                                 |

1 - 60 6F10.0 ND VALUES OF CRITICAL DAMPING RATIOS (decimal) [ZLD]

E. INCREASE TIME INTERVAL

FIRST LINE

1 - 5 I5 OPTION NUMBER [KK] = 10

SECOND LINE

1 - 5 I5 FACTOR FOR INCREASING TIME INTERVAL [IFR]: - Must be a power of 2

E7

F. DECREASE TIME INTERVAL
FIRST LINE
1 - 5 15 OPTION NUMBER [KK] = 11
SECOND LINE
1 - 5 15 FACTOR FOR DECREASING TIME INTERVAL [IFR]: - Must be a power of 2
G. CALCULATE FOURIER SECTRUM OF OBJECT MOTION
FIRST LINE
1 - 5 15 OPTION NUMBER [KK] = 12

SECOND LINE 1 - 5 I5 PLOTTING OPTION [K1]: - 0: Store for later (combined) plot - 1: Plot all stored spectra 6 - 10 I5 NUMBER OF TIMES THE SPECTRUM IS TO BE SMOOTHED [NSW] 11 - 15 I5 NUMBER OF VALUES TO BE PLOTTED [N]: - Maximum of 2049

H. CALCULATE FOURIER SPECTRUM OF COMPUTED MOTION

FIRST LINE

1 - 5 I5 OPTION NUMBER [KK] = 13

SECOND LINE

| 1 - 5   | 15 | (SUB)LAYER NUMBER [LL]                                |
|---------|----|-------------------------------------------------------|
| 6 - 10  | 15 | TYPE OF (SUB)LAYER [LT]                               |
|         |    | - 0: Outcropping                                      |
|         |    | - 1: (Sub)layer within soil profile                   |
| 11 - 15 | 15 | PLOT OPTION [LP]:                                     |
|         |    | - 0: Store for later (combined) plot                  |
|         |    | - 1: Plot all stored spectra                          |
| 16 - 20 | 15 | NUMBER OF TIMES THE SPECTRUM IS TO BE SMOOTHED [LNSW] |
| 21 - 25 | 15 | NUMBER OF VALUES TO BE PLOTTED [LLL]:                 |
|         |    | - Maximum of 2049                                     |

I. PLOT TIME HISTORY OF OBJECT MOTION

FIRST LINE

\_\_\_\_

1 - 5 I5 OPTION NUMBER [KK] - 14

SECOND LINE

| 1 - 5  | 15 | NUMBER OF VALUES SKIPPED IN PLOTTING [NSKIP]: |
|--------|----|-----------------------------------------------|
|        |    | - Every NSKIP values skipped                  |
| 6 - 10 | 15 | NUMBER OF VALUES TO BE PLOTTED [NN]:          |
|        |    | - Maximum of 2049                             |

\_\_\_\_

J. COMPUTE AMPLIFICATION SPECTRUM

FIRST LINE

| 1 - | 5 | 15 | OPTION | NUMBER | [KK] | - | 15 |
|-----|---|----|--------|--------|------|---|----|
|-----|---|----|--------|--------|------|---|----|

SECOND LINE

| 1 - 5   | 15        | NUMBER OF FIRST LAYER [LIN]                      |
|---------|-----------|--------------------------------------------------|
| 6 - 10  | 15        | FIRST LAYER TYPE [LINT]:                         |
|         |           | - 0: Outcropping                                 |
|         |           | - 1: (Sub)layer within soil profile              |
| 11 - 15 | 15        | NUMBER OF SECOND LAYER [LOUT]:                   |
| 16 - 20 | <b>I5</b> | SECOND LAYER TYPE [LOTP]:                        |
|         |           | - 0: Outcropping                                 |
|         |           | - 1: (Sub)layer within soil profile              |
| 21 - 25 | 15        | PLOTTING OPTION [KP]:                            |
|         |           | - 0: Store for later plotting                    |
|         |           | - 1: Plot all stored data                        |
| 26 - 30 | F5.0      | NUMBER OF FREQUENCY STEPS [DFA]:                 |
|         |           | - Amplification factor is computed for first 200 |
|         |           | frequencies at interval DFA (Hz) beginning at 0. |
| 32 - 78 | 8A6       | DESCRIPTION [IDAMP]                              |

FIRST LINE

| 1 - | 5 | 15 | OPTION NUMBER [KK] - 16 |
|-----|---|----|-------------------------|
|     |   |    |                         |

SECOND LINE

| 1 - 5   | 15    | FIRST (SUB)LAYER NUMBER [LLL]         |
|---------|-------|---------------------------------------|
| 6 - 10  | 15    | SELECT TYPE OF RESPONSE [LLGS]:       |
|         |       | - O: STRAIN                           |
|         |       | - 1: STRESS                           |
| 11 - 15 | 15    | PUNCH OPTION [LLPCH]:                 |
|         |       | - 0: No write to PUNCH file           |
|         |       | - 1: Write to PUNCH file              |
| 16 - 20 | 15    | PLOT OPTION [LLPL]:                   |
|         |       | - 0: No plot in OUTPUT                |
|         |       | - 1: Plot in OUTPUT                   |
| 21 - 25 | 15    | NUMBER OF VALUES TO BE PLOTTED [LNV]: |
|         |       | - Maximum of 2049                     |
| 26 - 35 | F10.0 | SCALE FOR PLOTTING [SK]:              |
|         |       | - (i.e., maximum value of ordinate)   |
|         |       | - 0: maximum of data                  |
| 37 - 65 | 5A6   | DESCRIPTION [ID]                      |

THIRD LINE

| 1 -    | 5 15    | SECOND (SUB)LAYER NUMBER [LLL]                        |
|--------|---------|-------------------------------------------------------|
| 6 - 1  | 0 15    | SELECT TYPE OF RESPONSE [LLGS]:                       |
|        |         | - O: STRAIN                                           |
|        |         | - 1: STRESS                                           |
| 11 - 1 | 5 I5    | PUNCH OPTION [LLPCH]:                                 |
|        |         | - 0: No write to PUNCH file                           |
|        |         | - 1: Write to PUNCH file                              |
| 16 - 2 | 0 15    | PLOT OPTION [LLPL]:                                   |
|        |         | - 0: No plot in OUTPUT                                |
|        |         | - 1: Plot in OUTPUT                                   |
| 21 - 2 | 5 15    | NUMBER OF VALUES TO BE PLOTTED [LNV]:                 |
|        |         | - Maximum of 2049                                     |
| 26 - 3 | 5 F10.0 | SCALE FOR PLOTTING [SK]:                              |
|        |         | <ul> <li>(i.e., maximum value of ordinate)</li> </ul> |
|        |         | - 0: maximum of data                                  |
| 37 - 6 | 5 5A6   | DESCRIPTION [ID]                                      |

NOTE: LEAVE THIRD LINE BLANK IF ONLY ONE RESPONSE IS TO BE COMPUTED

IV. END OF INPUT FILE

1 - 5 I5 OPTION NUMBER [KK] - 0

APPENDIX F: VALIDATION OF WESHAKE

.

### Specification File

| 1024     | VA    | LIDAT  | CION   | PROBLE     | M: E:            | xample    | problem     | from    | Schnabel,             | Lysmer, | Seed | (1972) |
|----------|-------|--------|--------|------------|------------------|-----------|-------------|---------|-----------------------|---------|------|--------|
| 2        | OPTI  | ON 2:  | READ   | SOIL COL   | UNI DAT          | ٨         |             |         |                       |         |      |        |
| 0        | 9     | 9      | .06240 | Example    | •                |           |             |         |                       |         |      |        |
| 1        | 2     | 1      | 7.0    | <b>)</b> . | 45               | .050      | .120        | 61.3    | 43.1.0001             |         |      |        |
| 2        | 1     | 1      | 13.0   | o .        | 45               | .100      | .100        | 254.    | 430.1.0000            |         |      |        |
| 3        | 1     | 1      | 10.0   | <b>b</b>   | 45               | . 050     | .100        | 567.    | 745.1.0000            |         |      |        |
| 4        | 1     | 1      | 12.0   | <b>)</b> . | 45               | . 050     | .100        | 567.    | 920.1.0000            |         |      |        |
| 5        | 2     | 1      | 20.0   | <b>b</b>   | 45               | .050      | .125        | 33.6    | 76.1.0001             |         |      |        |
| 6        | 1     | 1      | 18.0   | <b>)</b> . | 45               | .050      | .125        | 507.    | 910.1.0000            |         |      |        |
| 7        | 1     | 1      | 20.0   | <b>)</b>   | 45               | .050      | .125        | 717.    | 1090.1.0000           |         |      |        |
| 8        | 1     | 1      | 20.0   | <b>.</b> . | 45               | . 050     | .125        | 802.    | 1155.1.0000           |         |      |        |
| 9        | 3     | 1      |        |            |                  | . 050     | .150        | 8000.   | 8000.1.0000           |         |      |        |
| 8        |       |        | READ B | ATERIAL    | PROPERTI         |           |             |         |                       |         |      |        |
| 3        | 0     |        |        |            |                  | IBLE PROP | ERTIES      |         |                       |         |      |        |
|          |       |        |        |            |                  |           | Shear Modul | 1.1.4   |                       |         |      |        |
| .001     |       | .00031 |        | .0010      | .00316           | .010      |             |         | 000 .3160             |         |      |        |
| 1.00     |       |        | 0      | .0010      | .00310           | . 010     | .031        | 0 .I    | 000 .3160             |         |      |        |
|          |       | 01.2   | •      | 7610       | 8660             | 400       |             |         | E 0.0 0.3 <i>/</i> .0 |         |      |        |
| 1.00     |       | . 913  | U      | .7610      | .5650            | . 400     | .261        |         | 520 .0760             |         |      |        |
| .03      |       |        |        | _          |                  |           |             |         |                       |         |      |        |
|          |       |        |        | L, Lysmer  |                  |           | • -         |         |                       |         |      |        |
| . 000    |       | .001   |        | .00316     | .0100            | .031      |             |         | 160 1.0000            |         |      |        |
| 2.000    |       | 2.500  | -      | 3.5000     | 4.7500           | 6.500     |             |         | 500 20.0000           |         |      |        |
| 9100.    |       | -      |        | ., Lysmer  | , & Seed         | 1972)     | Shear Modu  | Lus     |                       |         |      |        |
| .000     | 01    | .00031 | 6      | .0010      | .00316           | .0100     | .3316       | .10     | 00 .3160              |         |      |        |
| 1.000    | 00    |        |        |            |                  |           |             |         |                       |         |      |        |
| 1.000    | 00    | . 984  | 0      | .9340      | .8260            | .656      | .443        | 0.2     | 460 .1150             |         |      |        |
| .049     | 90    |        |        |            |                  |           |             |         |                       |         |      |        |
| 85.      | .0 SA | ND (Sc | hnabel | l, Lysmer  | & Seed           | 1972)     | Damping     |         |                       |         |      |        |
| . 000    | 01    | .001   | 0      | . 0030     | .0100            | .030      | .100        | 0.3     | 000 1.0000            |         |      |        |
| . 800    | 00    | 1.600  | 0 3    | 3.1200     | 5.8000           | 9.500     | 0 15.400    | 20.9    | 000 25.0000           |         |      |        |
| 8100     | .0 RO | CK (Sc | hnabel | L, Lysmer  | , & Seed         | 1972)     | Shear Modu  | lus     |                       |         |      |        |
| . 000    | 01    | . 000  | 3      | .0010      | .0030            | .010      | .030        | 0.1     | 000 1.0000            |         |      |        |
| 1.000    | 00    | 1.000  | 0      | . 9880     | . 9530           | . 900     | .810        | D.7     | 250 . 5500            |         |      |        |
| 5 5.     | .0 RO | CK (Sc | hnabel | ., Lysmer  | , & Seed         | 1 1972)   | Damping     |         |                       |         |      |        |
| . 000    | 01    | . 001  | 0      | .0100      | .1000            | 1.000     | 0           |         |                       |         |      |        |
| . 400    | 00    | . 800  | 0 1    | 1.5000     | 3.0000           | 4.600     | 0           |         |                       |         |      |        |
| 1        | OPTI  |        |        | EARTHQUA   |                  |           |             |         |                       |         |      |        |
| 800 102  |       | .02    |        | ASADENA    |                  |           |             |         |                       |         |      |        |
| 1.00     |       | 0.0    |        | 25.        | 1                |           |             |         |                       |         |      |        |
|          |       |        |        | 523002     |                  | 013170    | 00128 00    | 1274 .0 | 02382 1               |         |      |        |
| . 00262  |       | 02518  | . 002  |            |                  |           |             |         | 02491 2               |         |      |        |
| . 002533 |       | 02478  | . 0025 |            |                  |           |             |         |                       |         |      |        |
|          |       |        |        |            |                  |           |             |         |                       |         |      |        |
| .001994  |       | 01425  | .0009  |            |                  |           |             | 00660   |                       |         |      |        |
|          |       |        |        |            |                  |           | 0165800     |         |                       |         |      |        |
| 001099   |       |        |        |            |                  |           | 001374 ~.00 |         |                       |         |      |        |
|          |       |        |        | 18002      |                  |           |             |         | 02675 7               |         |      |        |
| .003059  |       |        |        | 54 .005    |                  |           |             |         | 04815 8               |         |      |        |
| .003340  | 0.0   | 00761  | 0015   | 550001     | 93200            | 012980    | 00592 .00   | 0267 .0 | 00936 9               |         |      |        |
| .001844  | 4.0   | 01562  | .0004  | 54000      | 52100            | 014420    | 0242500     | 31650   | 03689 10              |         |      |        |
| 004324   | 40    | 05168  | 0058   | 328005     | 71500            | 053360    | 0506800     | 38410   | 02305 11              |         |      |        |
| 001126   | 50    | 00120  | .0013  | .002       | 900 . <b>0</b> 0 | 04500 .0  | 04992 .00   | 4919 .0 | 04081 12              |         |      |        |
| .002851  | 1.0   | 01865  | .0014  | 81 .001    | 031 .00          | . 01121   | 01382 .00   | 1816 .0 | 01063 13              |         |      |        |
| 001154   | 40    | 03149  | 0053   | 312006     | 56400            | 070830    | 0783600     | 77720   | 06705 14              |         |      |        |
|          |       |        |        |            |                  |           |             |         |                       |         |      |        |

| 005669004535 -    | 003444  | 002324   | 001229   | 000185  | .000867  | . 002097 | 15 |
|-------------------|---------|----------|----------|---------|----------|----------|----|
| .003343 .004508   | .004360 | .003868  | .004611  | .005548 | .006484  | .007403  | 16 |
| .008347 .009253   | .010469 | .012118  | .012267  | .011130 | .010349  | .008871  | 17 |
| .006792 .005192   | .004711 | .003808  | .005427  | .011079 | .011994  | .012237  | 18 |
| .012588 .013730   | .015396 | .016909  | .018496  | .020026 | .021497  | .021543  | 19 |
| .021695 .019953   | .015352 | .013395  | .013656  | .013217 | .009669  | .005633  | 20 |
| .004387 .003030   | .002845 | .003635  | .004411  | .004443 | .004606  | .003431  | 21 |
| .000276001939 -   | 001932  | 006423   | 009774   | 011147  | 012292   | 012660   | 22 |
| 013513014858 -    | .017037 | 018811   | 020927   | 022735  | 024635   | 025974   | 23 |
| 027901026475 -    | .019656 | 014708   | 007272   | .002294 | .003546  | .006332  | 24 |
| .004549 .003636   | .002636 | .002806  | .001202  | 000432  | 002572   | 001484   | 25 |
| 000616 .000291 -  | .000486 | 006645   | 014722   | 012778  | 033575   | 042831   | 26 |
| 043009045807 -    | 043294  | 041669   | 037745   | 025278  | 019201   | .001040  | 27 |
| .013648 .012866   | .015824 | .016378  | .018696  | .019668 | .021342  | .020955  | 28 |
| .021309 .022849   | .026435 | .029246  | .031983  | .033228 | . 1739   | .031762  | 29 |
| .027738 .024080   | .020339 | .017203  | .011562  | .007591 | 015690   | 028448   | 30 |
| 029791038844 ~    | 042214  | 043695   | 040997   | 038664  | 033649   | 030902   | 31 |
| - 020213001768    | .002023 | .007762  | .006125  | .004710 | .007523  | .009468  | 32 |
| .010966 .011913   | .012652 | .020084  | .028702  | .032657 | .038837  | .040949  | 33 |
| .041798 .038336   | .032960 | .031175  | .029425  | .026144 | .025072  | .022677  | 34 |
| .021590 .016643   | .017778 | .015500  | .019219  | 005005  | 018653   | 035037   | 35 |
| 047254042567 -    | 045124  | 039513   | 034399   | 020552  | 004749   | 002274   | 36 |
| 000997001284 -    | 000624  | 000064   | .000558  | .000123 | 001028   | 000921   | 37 |
| 000648 .000488    | .003457 | .006631  | .007229  | .005943 | .005730  | .005723  | 38 |
| .005276 .003131   | .003588 | .004385  | .001724  | 000949  | .000235  | .003089  | 39 |
| .004174 .002623   | .003442 | .003680  | .004803  | .005154 | .005346  | .007711  | 40 |
| .010554 .009195   | .008490 | . 005691 | .005005  | .000425 | 003943   | 006070   | 41 |
| 007428009936 -    | .010439 | 012590   | 011388   | 019622  | 039587   | 041574   | 42 |
| 046392048356 -    | 052906  | 052793   | 049356   | 045835  | 043181   | 027839   | 43 |
| 014535013859      | .025816 | .043108  | .043491  | .047994 | .047682  | .051035  | 44 |
| .051602 .054637   | .054828 | .057238  | . 055020 | .049601 | .043950  | .040517  | 45 |
| .037062 .034520   | .031703 | .024568  | .014474  | .011676 | .004249  | 007235   | 46 |
| 026973041443 -    | .042865 | 045273   | 045146   | 044333  | 040249   | 033307   | 47 |
| 017015004583 -    | .004544 | 003638   | 004924   | 004706  | 005664   | 005841   | 48 |
| 007728008074 -    | 010774  | 012404   | 014434   | 009161  | 007826   | .003369  | 49 |
| .024767 .025711   | .029998 | .032436  | .034883  | .034808 | .035693  | .035950  | 50 |
| .031252 .022314   | .016231 | .008574  | 003059   | 007785  | 009396   | 009446   | 51 |
| 008794008981 -    | .009000 | 009324   | 009375   | 009651  | 009853   | 011662   | 52 |
| 013760015836 -    | .017792 | 018124   | 018907   | 016268  | 010307   | 003454   | 53 |
| .002631 .004109   | .004371 | .001234  | 001186   | 005053  | 008826   | 012269   | 54 |
| 013740015331 -    | .017610 | 022831   | 024390   | 026574  | 024601   | 022072   | 55 |
| 018882015641 -    | 011956  | 012234   | 014489   | 016093  | 017898   | 021668   | 56 |
| 027007027043 -    | .017194 | 007552   | .001476  | .017401 | . 023309 | .023177  | 57 |
| .027040 .028719   | .032583 | .031626  | .030859  | .028315 | .027878  | .023949  | 58 |
| .023372 .013997 - | .008389 | 017724   | 021337   | 033693  | 037941   | 036294   | 59 |
| 036374035359 -    | .034194 | 030404   | 027147   | 023444  | 020092   | 016374   | 60 |
| 012404008319 -    | .004306 | 000756   | . 002788 | .006267 | .010007  | .013599  | 61 |
| .017748 .020897   | .018017 | .012843  | .010150  | .006306 | .00431.  | 002774   | 62 |
| 011569013108 -    | .012718 | 009093   | 004293   | .006.96 | .001663  | .003167  | 63 |
| .003833 .005218   | .005565 | .005307  | .004555  | .004324 | .002268  | 002006   | 64 |
| 005485008136 -    | .010942 | 013972   | 017321   | 020956  | 023507   | 019832   | 65 |
| 016115014444 -    | .012891 | 011308   | 009298   | 007287  | 006066   | 004843   | 66 |
| 004426005197 -    | .005685 | 006885   | 009521   | 010996  | 009946   | 009179   | 67 |
| 007934005983 -    | .004401 | 005072   | 005589   | 006038  | 002838   | .000617  | 68 |
|                   |         |          |          |         |          |          |    |

| .003857 | .006366 | .007463 | .005531  | .004975 |         | 001933   |         | 69  |
|---------|---------|---------|----------|---------|---------|----------|---------|-----|
|         |         |         |          | 011180  |         |          |         | 70  |
| 015533  | 016972  | 018909  | 024914   | 024367  | 021703  |          |         | 71  |
| .007941 | .017308 | .015199 | .017725  | .017247 | .018997 | .018977  | .019598 | 72  |
| .018284 | .018230 | .017224 | .017375  | .016698 | .015711 | .010446  | .008182 | 73  |
| .009113 | .010604 | .011417 | .011690  | .011490 | .011663 | .011506  | .011620 | 74  |
| .011817 | .012871 | .013767 | .013843  | .009655 | .005485 | .001648  | 001211  | 75  |
| 005169  | 009233  | 013879  | 018128   | 015787  | 010113  | 006007   | 002833  | 76  |
| 000194  | .002856 | .005626 | .008930  | .011888 | .014931 | .016787  | .018965 | 77  |
| .020808 | .022943 | .025558 | .026834  | .023618 | .021884 | .018231  | .015899 | 78  |
| .006415 | 003205  | 005577  | 014988   | 018955  | 021957  | 024742   | 027639  | 79  |
| 030063  | 028838  | 026851  | 025145   | 026489  | 029640  | 032318   | 035157  | 80  |
| 035179  | 034898  | 033905  | 032181   | 030237  | 028657  | 025223   | 019982  | 81  |
| 014925  | 009185  | 003261  | .001808  | .005464 | .009307 | .012679  | .014940 | 82  |
| .017126 | .019247 | .020912 | . 022423 | .024020 | .025809 | . 029569 | .031829 | 83  |
| .030313 | .028309 | .026858 | .022232  | .013520 | .010163 | . 006899 | .003967 | 84  |
|         | 000495  | .000120 | .000476  | .000989 | .001265 | .000967  |         | 85  |
|         | 000063  |         |          | .000541 | .002474 | .004356  |         | 86  |
| .007249 | .008512 | .009877 | .010134  | .009723 | .009107 | .007355  |         | 87  |
| .004931 | .006719 | .008156 | .009798  | .012428 | .016216 | .018755  |         | 88  |
| .014459 | .011738 | .008580 | .005413  | .002914 | .001680 |          | 000937  | 89  |
|         |         |         |          |         |         |          |         |     |
|         |         |         |          | 015390  |         |          |         | 90  |
|         |         |         |          | 009050  |         |          |         | 91  |
| 000002  | .003054 | .004365 | .004209  | .004327 | .003693 | .001851  | .000085 | 92  |
|         |         |         |          | 004504  |         |          |         | 93  |
| .002278 | .005874 | .014722 | .025498  | .026123 | .028565 | . 029956 | .031018 | 94  |
| .029316 | .028463 | .026981 | .026664  | .025729 | .025371 | . 024097 | .023324 | 95  |
| .021865 | .021047 | .018546 | .014894  | .012006 | .010343 | .008053  | .005314 | 96  |
| .001757 | 002601  | 007363  | 010712   | 015489  | 021659  | 021587   | 019652  | 97  |
| 018365  | 016570  | 015225  | 013493   | 011212  | 007042  | 006514   | 007858  | 98  |
| 009230  | 010467  | 012825  | 015684   | 016584  | 010786  | 005233   | .000579 | 99  |
| .005328 | .009647 | .012139 | .015901  | .018338 | .021552 | .019896  | .021718 | 100 |
| 3       | OPTI    | ON 3:   | ASSIGN   | OBJECI  | MOTIO   | N        |         |     |
| 9       | 0       |         |          |         |         |          |         |     |
| 4       | OPTI    | ON 4:   | OBTAIN   | STRAIN  | I-COMPA | TIBLE 1  | PROPERT | IES |
| 0       | 10      | 5.00    | )        | .65     |         |          |         |     |
| 5       | OPTI    | ON 5:   | ACCELE   | RATION  | RECORD  | S        |         |     |
| 1       | 2       | 3 4     | _        |         |         | 89       | 9       |     |
| 1       | ī       | 1 1     | 1        | 1       | 1       | 1 1      | 0       |     |
| ō       |         |         |          | ō       |         |          | ŏ       |     |
| 9       |         |         |          | SE SPEC |         | - •      | •       |     |
| í       | 0       |         |          |         |         |          |         |     |
| 1       | -       | 2 1     | 1        |         |         |          |         |     |
| 0.05    | v       | ~ 1     |          |         |         |          |         |     |
| 0.05    | 0077    | างเกิงเ | END OF   | TNDIT   |         |          |         |     |
| U       | OFII    |         | ND OF    | THEOT   |         |          |         |     |

### OUTPUT File

VALIDATION PROBLEM: Example problem from Schnabel, Lysmer

MAX. NUMBER OF TERMS IN FOURIER TRANSFORM - 1024 NECESSARY LENGTH OF BLANK COMMON X - 6419

1\*\*\*\*\* OPTION 2 \*\*\* READ SOIL PROFILE

MSOIL = 0 ML = 9 MWL = 9 WW = .0624 IDNT = Example NEW SOIL PROFILE NO. 0 IDENTIFICATION - Example

SHEAR/K2 FACTOR WAVE VELOCITY INPUT BY LAYER

NUMBER OF LAYERS9DEPTH TO BEDROCK120.00NUMBER OF FIRST SUBMERGED LAYER9DEPTH TO WATER LEVEL120.00UNIT WEIGHT OF WATER -.0624 kcf.0624 kcf.0624 kcf

۲

100.0 30.0 42.0 80.N 120.0 7.0 20.0 62.0 Bottom --Depth (ft)---Top 100.0 7.0 80.0 120.0 0 20.0 30.0 42.0 62.0 Thickness 12.0 18.0 7.0 10.0 20.0 20.0 20.0 (ft) 13.0 SHEAR MODULUS SAND SQ.ROOT REL. SHEAR MODULUS SAND SQ.ROOT REL. ATTENUATION OF ROCK, AVERAGE DAMPING IN ROCK, AVERAGE SHEAR MODULUS CLAY Classification DAMPING CLAY DAMPING CLAY DAMPING CLAY DAMPING CLAY DAMPING CLAY DAMPING CLAY DAMPING SAND DAMPING SAND Soil ÷ <u>.....</u> ... W .: .: ¥ 0 ä Ξ Ξ ä ÷ ä ÿ ä ä Lib. Key e 2 0 Layer -2 ŝ J ŝ 9 ω δ

| Mean Effective | Stress    | (ksf)  | *************************************** |
|----------------|-----------|--------|-----------------------------------------|
| Unit           | Weight    | (kcf)  | *******                                 |
| Coeff.         | Earth     | Press. | *******                                 |
|                | Mid-depth | (ft)   | ********                                |
|                |           | Layer  | *****                                   |

| .27<br>.94<br>.67<br>.04<br>.537<br>.04<br>.55<br>.04<br>.13                    |
|---------------------------------------------------------------------------------|
| .120<br>.100<br>.125<br>.125<br>.125<br>.125                                    |
| 4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4.<br>4 |
| 3.5<br>13.5<br>25.0<br>36.0<br>52.0<br>90.0<br>110.0                            |
| しょうちゃうちょう                                                                       |

|                      | G G/Gmax      | :<br>: | ******                                  |  |
|----------------------|---------------|--------|-----------------------------------------|--|
| ial Est.             | ი             | (ksf)  | ******                                  |  |
| Initial Est.         | Vs            | (fps)  | *************************************** |  |
|                      | Gmax          | (ksf)  | *******                                 |  |
| Strain               | Vs K2max Gmax | (-)    | ******                                  |  |
| Damping Small Strain | Vs            | (fps)  | *********                               |  |
| Damping              | Est.          | (·)    | *****                                   |  |
|                      |               | Layer  | ******                                  |  |

| 1.43  | .35  | .58   | .38   | 747   | .31   | .43   | .48   | 1.00    |
|-------|------|-------|-------|-------|-------|-------|-------|---------|
| 1000. | 201. | . 666 | . 666 | 1999. | 999.  | 1998. | 2499. | 298415. |
| 518.  | 254. | 567.  | 567.  | 718.  | 507.  | 717.  | 802.  | 8004.   |
| 701.  | 575. | 1725. | 2631. | 4522. | 3218. | 4616. | 5183. | 298415. |
| 43.   | 19.  | 42.   | 54.   | 76.   | 45.   | 57.   | 57.   |         |
| 434.  | 430. | 745.  | 920.  | 1079. | 910.  | 1090. | 1155. | 8000.   |
| .050  | .100 | .050  | .050  | .050  | .050  | .050  | .050  | .050    |
| 1     | 7    | ę     | 4     | S     | 9     | 7     | 8     | 6       |

PERIOD - .79 FROM AVERAGE SHEAR VELOCITY - 610. FT/SEC

MAXIMUM AMPLIFICATION - 14.06 FOR FREQUENCY - 1.41 C/SEC. PERIOD - .71 SEC. 8 \*\*\* READ RELATION BETWEEN SOIL PROPERTIES AND STRAIN 1\*\*\*\*\*

### 1\*\*\*\*\* 1 \*\*\* READ INPUT MOTION

### EARTHQUAKE - PASADENA 1952

800 ACCELERATION VALUES AT TIME INTERVAL .0200

### THE VALUES ARE LISTED ROW BY ROW AS READ FROM CARDS TRAILING ZEROS ARE ADDED TO GIVE A TOTAL OF 1024 VALUES -.00249 -.00331 -.00262 -.00253 -.00132 -.00013.00127 .00238 1 .00259 .00262 .00252 .00251 .00257 .00250 .00255 .00249 2 .00253 .00248 .00252 .00246 .00250 .00245 .00249 .00241 3 .00199 .00143 .00093 .00045 .00043 .00042 .00007 -.00083 . -.00152 -.00239 -.00238 -.00198 -.00165 -.00166 -.00164 -.00164 5 -.00110 -.00051 .00013 -.00009 -.00076 -.00137 -.00208 -.00289 -.00358 -.00328 -.00272 -.00225 -.00151 .00050 .00223 .00268 7 .00597 .00306 .00365 .00445 .00522 .00683 .00657 .00482 8 .00076 -.00155 -.00193 -.00130 -.00059 .00334 .00027 .00094 9 .00184 .00156 .00045 -.00052 -.00144 -.00243 -.00316 -.00369 10 -.00432 -.00517 -.00583 -.00571 -.00534 -.00507 -.00384 -.00231 11 -.00113 -.00012 .00140 .00290 .00450 .00499 .00492 .00408 12 .00285 .00186 .00148 .00103 .00112 .00138 .00182 .00106 13 -.00115 -.00315 -.00531 -.00656 -.00708 -.00784 -.00777 -.00671 14 -.00567 -.00453 -.00344 -.00232 -.00123 -.00018 .00087 .00210 15 .00334 .00451 .00436 .00387 .00461 .00555 .00648 .00740 16 .00835 .00925 .01047 .01212 .01113 .01227 .01035 .00887 17 .00679 .00519 .00471 .00381 .00543 .01108 .01199 .01224 18 .01259 .01378 .01540 .01691 .01850 .02003 .02150 .02154 19 .01995 .02169 .01535 .01340 .01366 .01322 .00967 .00563 20 .00439 .00303 .00285 .00363 .00441 .00444 .00461 .00343 21 .00028 -.00194 -.00193 -.00642 -.00977 -.01115 -.01229 -.01266 22 -.01351 -.01486 -.01704 -.01881 -.02093 -.02273 -.02464 -.02597 23 -.02790 -.02647 -.01966 -.01471 -.00727 .00229 .00355 .00633 24 .00455 .00364 .00264 .00281 .00120 -.00043 -.00257 -.00148 25 -.00062 .00029 -.00049 -.00665 -.01472 -.01278 -.03357 -.04283 26 -.04301 -.04581 -.04329 -.04167 -.03774 -.02528 -.01920 .00104 27 .01638 .01967 .01365 .01287 .01582 .01870 .02096 .02134 28 .02131 02285 .02644 .02925 .03198 .03323 .03474 .03176 29 .02774 .02408 .02034 .01720 .01156 .00759 -.01569 -.02845 30 -.02979 -.03884 -.04221 -.04369 -.04100 -.03866 -.03365 -.03090 31 -.02021 -.00177 .00202 .00776 .00612 .00471 .00752 .00947 32 .01191 .02008 .01097 .01265 .02870 .03266 .03884 .04095 33 .03834 .03296 .03118 .02614 .04180 .02943 .02507 .02268 34 .01550 .01664 .02159 .01778 .01922 -.00501 -.01865 -.03504 35 -.04725 -.04257 -.04512 -.03951 -.03440 -.02055 -.00475 -.00227 36 -.00100 -.00128 -.00062 -.00006 .00056 .00012 -.00103 -.00092 37 -.00065 .00049 .00346 .00663 .00723 .00594 .00573 .00572 38 .00528 .00313 .00359 .00439 .00172 -.00095 .00023 .00309 39 .00344 .00368 00480 .00515 .00535 .00771 .00417 00262 40 .01055 .00919 .00849 .00569 .00501 .00043 -.00394 -.00607 41 -.00743 -.00994 -.01044 -.01259 -.01139 -.01962 -.03959 -.04157 42 -.04639 -.04836 -.05291 -.05279 -.04936 -.04583 -.04318 -.02784 43 -.01453 -.01386 .02582 .04311 .04349 .04799 .04768 .05103 44 .05464 .05483 .05724 .05502 .04960 .04395 .05160 .04052 45 .02457 .03452 .03170 .03706 .01447 .01168 .00425 -.00723 46 -.02697 -.04144 -.04287 -.04527 -.04515 -.04433 -.04025 -.03331 47 -.01702 -.00458 -.00454 -.00364 -.00492 -.00471 -.00566 -.00584 48 -.00773 -.00807 -.01077 -.01240 -.01443 -.00916 -.00783 .00337 49 .03244 .03595 .02477 .02571 .03000 .03488 .03481 .03569 50 .03125 .02231 .01623 .00857 -.00306 -.00778 -.00940 -.00945 51 -.00879 -.00898 -.00900 -.00932 -.00938 -.00965 -.00985 -.01166 52 -.01376 -.01584 -.01779 -.01812 -.01891 -.01627 -.01031 -.00345 53 -.00505 -.00883 -.01227 .00123 -.00119 .00263 .00411 .00437 54 -.01374 -.01533 -.01761 -.02283 -.02439 -.02657 -.02460 -.02207 55 -.01888 -.01564 -.01196 -.01223 -.01449 -.01609 -.01790 -.02167 56 -.02701 -.02704 -.01719 -.00755 .00148 .01740 . 02331 .02318 57

| .02704  | . 02872 | .03258  | .03163  | .03086  | .02832            | .02788  | . 02395 | 58  |
|---------|---------|---------|---------|---------|-------------------|---------|---------|-----|
| .02337  | .01400  | 00839   | 01772   | 02134   | 03369             | 03794   | 03629   | 59  |
| 03637   | 03536   | 03419   | 03040   | 02715   | 02344             | 02009   | 01637   | 60  |
| 01240   | 00832   | 00431   | 00076   | .00279  | .00627            | .01001  | .01360  | 61  |
| .01775  | .02090  | .01802  | .01284  | .01015  | .00631            | .00431  | 00277   | 62  |
| 01157   | 01311   | 01272   | 00909   | 00429   | . 00070           | .00166  | .00317  | 63  |
| .00383  | .00522  | . 00557 | .00531  | .00455  | .00432            | .00227  | 00201   | 64  |
| 00549   | 00814   | 01094   | 01397   | 01732   | 02096             | 02351   | 01983   | 65  |
| 01612   | 01444   | 01289   | 01131   | 00930   | 0072 <del>9</del> | 00607   | 00484   | 66  |
| 00443   | 00520   | 00569   | 00689   | 00952   | 01100             | 00995   | 00918   | 67  |
| 00793   | 00598   | 00440   | 00507   | 00559   | 00604             | 00284   | .00062  | 68  |
| .00386  | .00637  | .00746  | .00553  | .00497  | .00205            | 00193   | 00868   | 69  |
| 01151   | 01129   | 01126   | 01142   | 01118   | 01216             | 01317   | 01475   | 70  |
| 01553   | 01697   | 01891   | 02491   | 02437   | 02170             | 01701   | 01619   | 71  |
| .00794  | .01731  | .01520  | .01773  | .01725  | .01900            | .01898  | .01960  | 72  |
| .01828  | .01823  | .01722  | .01737  | .01670  | .01571            | .01045  | .00818  | 73  |
| .00911  | .01060  | .01142  | .01169  | .01149  | .01166            | .01151  | .01162  | 74  |
| .01182  | .01287  | .01377  | .01384  | .00965  | .00549            | .00165  | 00121   | 75  |
| 00517   | 00923   | 01388   | 01813   | 01579   | 01011             | 00601   | 00283   | 76  |
| 00019   | .00286  | .00563  | .00893  | .01189  | .01493            | .01679  | .01897  | 77  |
| . 02081 | .02294  | .02566  | . 02683 | .02362  | .02188            | .01823  | .01590  | 78  |
| .00642  | 00320   | 00558   | 01499   | 01895   | 02196             | 02474   | 02764   | 79  |
| 03006   | 02884   | 02685   | 02514   | 02649   | 02964             | 03232   | 03516   | 80  |
| 03518   | 03490   | 03390   | 03218   | 03024   | 02866             | 02522   | 01998   | 81  |
| 01493   | 00919   | 00326   | .00181  | .00546  | .00931            | .01268  | .01494  | 82  |
| .01713  | .01925  | . 02091 | .02242  | .02402  | .02581            | . 02957 | .03183  | 83  |
| .03031  | .02831  | .02686  | .02223  | .01352  | .01016            | .00690  | . 00397 | 84  |
| . 00060 | 00049   | .00012  | .00048  | . 00099 | .00126            | .00097  | .00052  | 85  |
| .00024  | 00006   | 00026   | 00058   | .00054  | .00247            | .00436  | . 00595 | 86  |
| .00725  | . 00851 | . 00988 | .01013  | . 00972 | .00911            | .00735  | . 00519 | 87  |
| .00493  | .00672  | .00816  | .00980  | .01243  | .01622            | .01876  | .01684  | 88  |
| .01446  | .01174  | .00858  | .00541  | . 00291 | .00168            | .00042  | 00094   | 89  |
| 00275   | 00466   | 00668   | 01230   | 01539   | 01571             | 01660   | 01718   | 90  |
| 01796   | 01836   | 01420   | 01042   | 00905   | 00692             | 00534   | 00263   | 91  |
| . 00000 | . 00305 | .00436  | .00421  | .00433  | .00369            | .00185  | . 00008 | 92  |
| 00181   | 00304   | 00347   | 00407   | 00450   | 00383             | 00163   | 00023   | 93  |
| .00228  | .00587  | .01472  | . 02550 | .02612  | .02857            | . 02996 | .03102  | 94  |
| . 02932 | .02846  | . 02698 | . 02666 | . 02573 | .02537            | .02410  | .02332  | 95  |
| .02186  | .02105  | .01855  | .01489  | .01201  | .01034            | .00805  | .00531  | 96  |
| .00176  | 00260   | 00736   | 01071   | 01549   | 02166             | 02159   | 01965   | 97  |
| 01836   | 01657   | 01522   | 01349   | 01121   | 00704             | 00651   | 00786   | 98  |
| 00923   | 01047   | 01283   | 01568   | 01658   | 01079             | 00523   | .00058  | 99  |
| .00533  | .00965  | .01214  | .01590  | .01834  | .02155            | .01990  | .02172  | 100 |
|         |         |         |         |         |                   |         |         |     |
|         |         |         |         |         |                   |         |         |     |

MAXIMUM ACCELERATION - .05724 AT TIME - 7.10 SEC

THE VALUES WILL BE MULTIPLIED BY A FACTOR - .349 TO GIVE NEW MAXIMUM ACCELERATION - .02000

MEAN SQUARE FREQUENCY - 1.58 C/SEC.

MAX ACCELERATION - .02000 FOR FREQUENCIES REMOVED ABOVE 25.00 C/SEC. 1\*\*\*\*\* 3 \*\*\* READ WHERE OBJECT MOTION IS GIVEN

OBJECT MOTION IN LAYER NUMBER 9 OUTCROPPING

1\*\*\*\*\* 4 \*\*\* OBTAIN STRAIN COMPATIBLE SOIL PROPERTIES

MAXIMUM NUMBER OF ITERATIONS-10MAXIMUM ERROR IN PERCENT-5.00FACTOR FOR EFFECTIVE STRAIN IN TIME DOMAIN-.65

EARTHQUAKE - PASADENA 1952 SOIL PROFILE - Example

### ITERATION NUMBER 1

| STRAIN                |                      |                    |
|-----------------------|----------------------|--------------------|
| .65* MAX.             | ERROR<br>PRCNT       | -66.3<br>-44.5     |
| L                     | G USED<br>KSF        | 999.773<br>200.547 |
| F. STRAIN             | NEW G<br>KSF         | 601.352<br>138.774 |
| TIME DOMAIN WITH EFF. | ERROR<br>PRCNT       | - 83.3<br>- 43.0   |
| TIME DOM              | DAMP USED            | .050<br>.100       |
| OUT IN THE            | NEW DAMP.            | .027<br>.070       |
| BEEN CARRIED OU       | EFF. STRAIN<br>Prcnt | .00226<br>.03885   |
|                       |                      | ~ ~                |
| THE CALCULATION HAS   | DEPTH<br>FT          | 3.5<br>13.5        |
| CALCI                 | IYPE                 | - 7                |
| THE                   | LAYER                | - 0                |
|                       |                      |                    |

-53.9 -10.3 32.2 -10.9 -24.5 -32.6

999.344 999.344 1999.223 998.792 1997.548 2499.239

649.473 905.860 2947.063 900.622 1604.370 1885.121

.9 8.3 117.2 20.2 7.6 4.0

.050 .050 .050 .050 .050

.050 .055 .060 .063 .054

.01215 .01586 .01073 .02702 .01544

25.0 36.0 52.0 71.0 90.0

-

--

-2

-

## VALUES IN TIME DOMAIN

| AYER T | TYPE TI   | TT<br>FT                | DEPTH<br>FT | MAX STRAIN<br>PRCNT | MAX STRESS<br>PSF | TIME<br>SEC |
|--------|-----------|-------------------------|-------------|---------------------|-------------------|-------------|
|        | 2         | 7.0                     | 3.5         | .00348              | 20.91             | 5.84        |
|        | 1         | 13.0                    | 13.5        | .05977              | 82.95             | 5.84        |
|        | 1         | 10.0                    | 25.0        | .01870              | 121.43            | 5.82        |
|        | 1         | 12.0                    | 36.0        | .02440              | 221.00            | 5.82        |
|        | 2         | 20.0                    | 52.0        | .01651              | 486.53            | 5.80        |
|        | 7         | 18.0                    | 71.0        | .04158              | 374.44            | 5.80        |
|        | 1         | 20.0                    | 0.06        | .02375              | 381.08            | 5.44        |
|        | -         | 20.0                    | 110.0       | .02078              | 391.74            | 5.44        |
| HI.    | ARTHQUAKE | - PASADENA<br>- Framule | 1952        |                     |                   |             |
| ļ      |           | AT JINDYT -             |             |                     |                   |             |

## ITERATION NUMBER 2

.65\* MAX. STRAIN THE CALCULATION HAS BEEN CARRIED OUT IN THE TIME DOMAIN WITH EFF. STRAIN -

| ERROR<br>PRCNT       | -9.6         | -21.9   | -16.5   | -1.0       | 9.5      | 6.1     | -5.7     | -7.6     |
|----------------------|--------------|---------|---------|------------|----------|---------|----------|----------|
| g used<br>Ksf        | 601.352      | 138.774 | 649.473 | 905.860    | 2947.063 | 900.622 | 1604.370 | 1885.121 |
| NEW C<br>KSF         | 548.783      | 113.853 | 557.480 | 897.070    | 3256.895 | 892.878 | 1517.289 | 1752.656 |
| ERROR                | 29.9         | 13.5    | 11.7    | <b>e</b> . | -25.0    | ŗ       | 4.2      | 5.8      |
| DANP USED            | .027         | .070    | : 050   | .055       | .060     | .063    | .054     | .052     |
| NEW DAMP.            | <b>6</b> E0. | .081    | .057    | .055       | .048     | .063    | .056     | .055     |
| EFF. STRAIN<br>Prcnt | .00424       | .06144  | .01890  | .01630     | .00647   | .02757  | .01805   | .01669   |
| DEPTH<br>FT          | 3.5          | 13.5    | 25.0    | 36.0       | 52.0     | 71.0    | 0.06     | 110.0    |
| TYPE                 | 8            | 1       | 1       | 1          | 7        | -       | 1        | 1        |
| LAYER                | 1            | 7       | •       | 4          | •        | •0      | •        | •        |

## VALUES IN TIME DOMAIN

| MAX STRESS TIME<br>PSF SEC | 35.82       5.88         107.62       5.88         162.06       5.88         224.99       5.88         324.25       7.64         378.69       8.08         421.30       8.06         450.01       8.06 |            |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------|
| MAX STRAIN<br>PRCNT        | .00653<br>.09452<br>.02907<br>.02508<br>.00996<br>.02777<br>.02568                                                                                                                                     |            |
| DEPTH<br>FT                | 3.5<br>13.5<br>25.0<br>36.0<br>71.0<br>90.0                                                                                                                                                            | 1952       |
| THI CKNESS                 | 7.0<br>13.0<br>12.0<br>20.0<br>20.0<br>20.0                                                                                                                                                            | - PASADENA |
| TYPE                       | ~~~~                                                                                                                                                                                                   | ARTHOUAKE  |
| LAYER                      | しょうちゅうらてき                                                                                                                                                                                              | FADT       |

Example

SOIL PROFILE -

| m      |
|--------|
| NUMBER |
| TION   |
| ITERA' |

| .65* MAX. STRAIN                         | ERROR<br>PRCNT       | - •     | -6.2    | -5.5    | -2.0    | ۲.       | -3.3    | -4.3     | -4.5     |
|------------------------------------------|----------------------|---------|---------|---------|---------|----------|---------|----------|----------|
| 5* I                                     |                      |         |         |         |         |          |         |          |          |
| ·                                        | G USED<br>KSF        | 548.783 | 113.853 | 557.480 | 897.070 | 3256.895 | 892.878 | 1517.289 | 1752.656 |
| EFF. STRAIN =                            | NEW G<br>KSF         | 546.509 | 107.191 | 528.475 | 879.311 | 3280.750 | 864.612 | 1454.839 | 1677.157 |
| AIN WITH EFI                             | ERROR<br>PRCNT       | 1.2     | 3.5     | 3.6     | 1.5     | -1.7     | 1.7     | 2.9      | 3.2      |
| TIME DOM                                 | DAVOP USED           | .039    | .081    | .057    | .055    | .048     | .063    | .056     | .055     |
| OUT IN THE                               | NEW DAMP.            | .039    | .084    | , 059   | .056    | .048     | .064    | .058     | .057     |
| BEEN CARRIED OUT IN THE TIME DOMAIN WITH | EFF. STRAIN<br>Prcnt | .00434  | .06945  | .02172  | .01724  | .00624   | .02965  | .02019   | .01883   |
|                                          |                      | •       | 5       | •       | 0       |          | 0       | 0        | 0        |
| THE CALCULATION HAS                      | PE DEPTH<br>FT       | 3       | 1 13.   | 1 25.   | 1 36.0  | 2 52.    | 1 71.   | 1 90.    | 1 110.   |
| THE CA                                   | LAYER TYPE           | -       | ~       | m       | -       | ŝ        | v       | ~        | •        |
|                                          | -                    |         |         |         |         |          |         |          |          |

VALUES IN TIME DOMAIN

| MAX STRESS TIME<br>PSF SEC |        | J      | , |        | ,,-,-        | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, | ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, |                                                | 114.02<br>176.57<br>233.21<br>315.15<br>394.36<br>451.82<br>8.08<br>451.82<br>8.08<br>485.81<br>8.08 |
|----------------------------|--------|--------|---|--------|--------------|-----------------------------------------|-----------------------------------------|------------------------------------------------|------------------------------------------------------------------------------------------------------|
| MAX STRAIN MA<br>PRCNT     | .00667 | .10684 |   | .03341 | .03341       | .03341<br>.02652<br>.00961              | .03341<br>.02652<br>.00961<br>.04561    | .03341<br>.02652<br>.00961<br>.04561<br>.03106 | .03341<br>.02652<br>.00961<br>.04561<br>.03106<br>.03897                                             |
| DEPTH<br>FT                | 3.5    | 13.5   |   | 25.0   | 25.0<br>36.0 | 25.0<br>36.0<br>52.0                    | 25.0<br>36.0<br>71.0                    | 25.0<br>36.0<br>71.0<br>90.0                   | 25.0<br>36.0<br>52.0<br>90.0<br>110.0                                                                |
| HICKNESS<br>FT             | 7.0    | 13.0   |   | 10.0   | 10.0         | 10.0<br>12.0<br>20.0                    | 10.0<br>12.0<br>18.0                    | 10.0<br>12.0<br>18.0<br>20.0                   | 10.0<br>12.0<br>20.0<br>20.0                                                                         |
| TYPE TH                    | 2      |        |   |        | I            | <b>-</b>                                |                                         |                                                |                                                                                                      |
| LAYER                      | 1      |        |   | ) ح    | · n 4        | 1 CA 4                                  | m 4 m w                                 | 「 ち ち ら ト                                      | で<br>う く ら ら て の                                                                                     |

.

## ITERATION NUMBER 4

.65\* MAX. STRAIN THE CALCULATION HAS BEEN CARRIED OUT IN THE TIME DOMAIN WITH EFF. STRAIN -

| ERROR<br>PRCNT       | <b>8</b> | -6.7    | -4.5    | -2.1    | 3        | -3.2    | -3.1     | -2.6     |
|----------------------|----------|---------|---------|---------|----------|---------|----------|----------|
| G USED<br>KSF        | 546.509  | 107.191 | 528.475 | 879.311 | 3280.750 | 864.612 | 1454.839 | 1677.157 |
| NEW G<br>KSP         | 542.189  | 100.465 | 505.648 | 861.383 | 3269.553 | 838.028 | 1410.502 | 1634.988 |
| ERROR<br>PRCNT       | 2.3      | 3.4     | 2.7     | 1.5     | 8.       | 1.7     | 2.0      | 1.8      |
| DAMP USED            | .039     | .084    | .059    | .056    | .048     | .064    | .058     | .057     |
| NEW DAVE.            | .040     | .087    | .061    | .057    | .048     | .065    | .059     | .058     |
| EFF. STRAIN<br>Prcnt | .00452   | .07859  | . 02423 | .01824  | .00635   | .03179  | .02186   | .02014   |
| DEPTH<br>FT          | 3.5      | 13.5    | 25.0    | 36.0    | 52.0     | 71.0    | 0.06     | 110.0    |
| TYPE                 | 7        | 1       | 1       | 1       | 7        | -       | -        | -        |
| LAYER                | F        | N       | •       | 4       | •        | ø       | •        | 40       |

## VALUES IN TIME DOMAIN

| TIME<br>SEC         | 7.68<br>7.70<br>7.68<br>7.66<br>8.10<br>8.10<br>8.10                        |                         |
|---------------------|-----------------------------------------------------------------------------|-------------------------|
| MAX STRESS<br>PSF   | 37.72<br>121.47<br>188.49<br>241.71<br>319.39<br>409.81<br>474.29<br>506.58 |                         |
| MAX STRAIN<br>PRCNT | .00696<br>.12091<br>.03728<br>.02806<br>.02806<br>.0977<br>.03363<br>.03363 |                         |
| DEPTH<br>FT         | 3.5<br>13.5<br>25.0<br>36.0<br>52.0<br>71.0<br>90.0<br>110.0                | 1952                    |
| TT<br>FT            | 7.0<br>13.0<br>10.0<br>12.0<br>20.0<br>20.0                                 | - PASADENA<br>- Example |
| TYPE T              | 0110011                                                                     | ARTHQUAKE               |
| LAYER               | 8 く のらか と と て                                                               | EART<br>SOIL            |

ITERATION NUMBER 5

| .65* MAX. STRAIN                 | ERROR<br>PRCNT       | -1.1    | -6.3    | -3.2    | -1.8    | <b>4</b> | -1.9    | -1.7     | -1.3     |
|----------------------------------|----------------------|---------|---------|---------|---------|----------|---------|----------|----------|
|                                  | G USED<br>KSF        | 542.189 | 100.465 | 505.648 | 861.383 | 3269.553 | 838.028 | 1410.502 | 1634.988 |
| FF. STRAI                        | NEW G<br>KSF         | 536.384 | 94.534  | 489.763 | 845.958 | 3257.186 | 822.601 | 1386.817 | 1614.798 |
| THE TIME DOMAIN WITH EFF. STRAIN | ERROR<br>PRCNT       | 3.0     | 2.9     | 1.9     | 1.3     | 6.       | 1.8     | 1.1      | eņ       |
| TIME DOM                         | DAMP USED            | .040    | .087    | .061    | .057    | .048     | .065    | .059     | . 058    |
| OUT IN THE                       | NEW DAMP.            | .042    | .089    | .062    | .057    | .048     | .066    | .060     | .059     |
| BEEN CARRIED OUT IN              | EFF. STRAIN<br>Prcnt | .00478  | .08765  | .02615  | 21915.  | .00647   | .03344  | .02281   | .02080   |
| THE CALCULATION HAS              | depth<br>Ft          | 3.5     | 13.5    | 25.0    | 36.0    | 52.0     | 71.0    | 0.06     | 110.0    |
| CALCU                            | TYPE                 | 2       | -       | -       |         | 8        | -       |          | •••      |
| THE                              | LAYER                | -       | • •     |         | -       | •7       | •0      | ~        | - 40     |

VALUES IN TIME DOMAIN

| TIME<br>SEC         | 7.70<br>7.70<br>7.32<br>7.30<br>8.12<br>8.12<br>8.12<br>8.12<br>8.10        |                            |
|---------------------|-----------------------------------------------------------------------------|----------------------------|
| MAX STRESS<br>PSF   | 39.47<br>127.47<br>197.03<br>249.18<br>324.13<br>423.17<br>486.56<br>516.72 |                            |
| MAX STRAIN<br>PRCNT | .00736<br>.13484<br>.04023<br>.02946<br>.00995<br>.03508<br>.03200          |                            |
| DEPTH<br>FT         | 3.5<br>13.5<br>25.0<br>36.0<br>52.0<br>90.0<br>110.0                        | 1952                       |
| THI CKNESS<br>FT    | 7.0<br>13.0<br>12.0<br>20.0<br>20.0<br>20.0                                 | - PASADENA<br>E - Example  |
| TYPE                | ~~~~                                                                        | EARTHQUAKE<br>SOIL PROFILE |
| LAYER               | 8 くららからてる                                                                   | EAR                        |

-

| ERATION NUMBER | 9      |  |
|----------------|--------|--|
| ITERATION 1    | NUMBER |  |
| ERA            |        |  |
| H              | ITERA  |  |

.65\* MAX. STRAIN THE CALCULATION HAS BEEN CARRIED OUT IN THE TIME DOMAIN WITH EFF. STRAIN -

| ERROR<br>PRCNT       | 80.<br>1 | -5.1   | -2.3    | -1.4    | 2        | 7       | 9°-      | 1        |
|----------------------|----------|--------|---------|---------|----------|---------|----------|----------|
| G USED<br>KSF        | 536.384  | 94.534 | 489.763 | 845.958 | 3257.186 | 822.601 | 1386.817 | 1614.798 |
| NEN G<br>Ksp         | 531.874  | 89.962 | 478.803 | 834.598 | 3250.656 | 817.242 | 1378.202 | 1613.271 |
| ERROR<br>PRCNT       | 2.3      | 2.2    | 1.3     | 6.      | •        | 9.      | •        | 1.       |
| DAMP USED            | .042     | .089   | .062    | .057    | .048     | .066    | .060     | .059     |
| NEW DAMP.            | .043     | 160.   | .063    | .058    | .049     | .067    | .060     | .059     |
| EFF. STRAIN<br>Prcnt | .00500   | .09533 | .02756  | .01984  | .00.653  | E04E0.  | .02316   | . 02085  |
| DEPTH                | 3.5      | 13.5   | 25.0    | 36.0    | 52.0     | 71.0    | 0.09     | 110.0    |
| TYPE                 | ~        | 1      | 7       | 1       | 7        | F       | 1        | 1        |
| LAYER                | 1        | 2      | e       | 4       | ŝ        | v       | ٢        | 80       |

VALUES IN TIME DOMAIN

| TIME<br>SEC         | 7.70<br>7.32<br>7.32<br>7.32<br>8.14<br>8.12<br>8.12<br>8.12                |   |
|---------------------|-----------------------------------------------------------------------------|---|
| MAX STRESS<br>PSF   | 40.88<br>131.94<br>203.02<br>254.78<br>326.67<br>427.88<br>491.07<br>517.49 |   |
| MAX STRAIN<br>PRCNT | .00769<br>.14667<br>.04240<br>.03053<br>.03563<br>.03563                    |   |
| DEPTH<br>FT         | 3.5<br>13.5<br>25.0<br>36.0<br>52.0<br>71.0<br>90.0<br>110.0<br>1952        |   |
| TT<br>FT            | 7.0<br>13.0<br>10.0<br>12.0<br>20.0<br>20.0<br>20.0<br>20.0<br>EXAMPLe      | , |
| TYPE TI             | ARTHQUAKE                                                                   |   |
| LAYER               | SEART<br>Soll                                                               |   |

---

### ITERATION NUMBER 7

| .65* MAX. STRAIN                                     |   |
|------------------------------------------------------|---|
| TRAIN -                                              |   |
| EFF. S                                               | ļ |
| IN WITH                                              |   |
| DOMA                                                 |   |
| IE TIME                                              |   |
| HL NI                                                | - |
| OUT                                                  |   |
| BEEN CARRIED OUT IN THE TIME DOMAIN WITH EFF. STRAIN |   |
| BEEN                                                 |   |
| HAS                                                  |   |
| CALCULATION                                          |   |
| CALC                                                 |   |
| THE                                                  |   |

| ERROR<br>PRCNT       | <br>6   | -3.9   | -1.3    | 7       | 1        | 2       | .1       | e.       |
|----------------------|---------|--------|---------|---------|----------|---------|----------|----------|
| G USED<br>KSF        | 531.874 | 89.962 | 478.803 | 834.598 | 3250.656 | 817.242 | 1378.202 | 1613.271 |
| NEU C<br>KSF         | 528.942 | 86.583 | 472.492 | 828.459 | 3248.661 | 815.705 | 1379.632 | 1618.468 |
| ERROR<br>PRCNT       | 1.5     | 2.1    | ۲.      | ŗ       | ۲.       | ۶.      | 1        | 2        |
| DAMP USED            | .043    | 160.   | .063    | .058    | 640.     | .067    | .060     | .059     |
| NEW DAMP.            | .043    | .093   | .063    | .058    | .049     | .067    | .060     | .059     |
| EFF. STRAIN<br>Prcnt | .00514  | .10208 | .02841  | .02023  | .00655   | .03420  | .02310   | . 02068  |
| DEPTH<br>FT          | 3.5     | 13.5   | 25.0    | 36.0    | 52.0     | 71.0    | 90.06    | 110.0    |
| TYPE                 | 7       | 1      | 1       | 1       | 2        | 1       | 1        | 1        |
| LAYER                |         | 3      | •       | •       | ŝ        | vo      | ~        | 60       |

## VALUES IN TIME DOMAIN

| TIME<br>SEC         | 7.70   | 7.72   | 7.32   | 7.32   | 7.30   | 8.14   | 8.12   | 8.12   |
|---------------------|--------|--------|--------|--------|--------|--------|--------|--------|
| MAX STRESS<br>PSF   | 41.82  | 135.97 | 206.50 | 257.84 | 327.44 | 429.24 | 490.32 | 514.87 |
| MAX STRAIN<br>PRCNT | .00791 | .15704 | .04371 | .03112 | .01008 | .05262 | .03554 | .03181 |
| DEPTH<br>FT         | 3.5    | 13.5   | 25.0   | 36.0   | 52.0   | 71.0   | 90.06  | 110.0  |
| THI CKNESS<br>FT    | 7.0    | 13.0   | 10.0   | 12.0   | 20.0   | 18.0   | 20.0   | 20.0   |
| TYPE                | 2      | 1      | 1      | ٦      | 2      | 1      | 1      | 7      |
| LAYER               | Ч      | 2      | e      | 4      | ŝ      | 9      | 7      | 80     |

# PERIOD - .87 FROM AVERAGE SHEAR VELOCITY - 552. F1/SEC

|               | 002.0 |
|---------------|-------|
| 12.74         |       |
| -<br>N        |       |
| AMPLIFICATION |       |
| MAXIMUM       |       |

| 1.18 C/SEC.   | .84 SEC. |
|---------------|----------|
| 1             | 1        |
| FOR FREQUENCY | PERIOD   |

## 1\*\*\*\*\*\* 5 \*\*\* COMPUTE MOTION IN NEW SUBLAYERS

EARTHQUAKE - PASADENA 1952 SOIL DEPOSIT - Example

| LAYER  | DEPTH<br>FT | I MAX. /<br>I VESHAKE | MAX. ACC. (g)<br>AXE CEAKE*<br>I | TIME | MEAN SQ. FR.<br>C/SEC | ACC. RATIO<br>Quiet zone | PUNCHED CARDS<br>ACC. RETORD |
|--------|-------------|-----------------------|----------------------------------|------|-----------------------|--------------------------|------------------------------|
| NIHTIW | °.          | .102                  | 660.                             | 7.70 | 1.28                  | .306                     | o                            |
| WITHIN | 7.0         | 101.                  | 860.                             | 7.70 | 1.27                  | .305                     | o                            |
| NIHIN  | 20.0        | . 059                 | - 050.<br>-                      | 8.12 | 1.22                  | .245                     | o                            |
| WITHIN | 30.0        | . 055                 | .055                             | 8.12 | 1.22                  | .218                     | 0                            |
| NIHIN  | 42.0        | . 050                 | .050                             | 8.12 | 1.21                  | .205                     | o                            |
| WIHTH  | 52.0        | .045                  | .047                             | 8.10 | 1.20                  | .207                     | o                            |
| NIHIN  | 80.0        | .031                  | .031 I                           | 7.20 | 1.30                  | .177                     | 0                            |
| NIHIN  | 100.0       | 1 .024                | .024                             | 6.80 | 1.48                  | .122                     | 0                            |
| WITHIN | 120.0       | .017                  | .018                             | 6.78 | 1.61                  | .055                     | 0                            |
| OUTCR. | 120.0       | H .020                | .020                             | 7.10 | 1.58                  | .000                     | 0                            |
|        |             |                       | - <b>-</b> ]                     |      |                       |                          |                              |

.

\* The values derived from SHAKE include the revision to the constitutive model documented by Udaka and Lysmer (1973).

### 1\*\*\*\*\* 9 \*\*\* COMPUTE RESPONSE SPECTRUM

COMPUTE RESPONSE SPECTRUM IN LAYER 1

RESPONSE SPECTRUM ANALYSIS FOR LAYER NUMBER 1 CALCULATED FOR DAMPING .050

TIMES AT WHICH MAX. SPECTRAL VALUES OCCUR TD - TIME FOR MAX. RELATIVE DISP. TV - TIME FOR MAX. RELATIVE VEL. TA - TIME FOR MAX. ABSOLUTE ACC.

### DAMPING RATIO - .05

PERIOD

TIMES FOR MAXIMA (SEC)

|      |         | ſ        |         |        |
|------|---------|----------|---------|--------|
|      | TD      | TV       | •       | TA I   |
|      |         | _        | WESHAKE | SHAKE* |
| .00  | 7.6800  | 7.1800   | 7.68    | 7.66   |
| .10  | 7.6600  | 8.3400   | 7.66    | 7.66   |
| .15  | 7.6800  | 7.4400   | 7.66    | 7.64   |
| .10  | 7.7200  | 7.8000   | 7.70    | 7.70   |
|      |         |          |         |        |
| .25  | 7.3000  | 6.0200   | 7.30    | 7.28   |
| .30  | 7.3200  | 8.3400   | 7.32    | 7.30   |
| .35  | 8.5200  | 8.4000   | 8.52    | 8.50   |
| .40  | 7.6600  | 7.5200   | 7.66    | 7.62   |
| . 45 | 13.0000 | 12.8800  | 13.00   | 12.94  |
| . 50 | 7.7000  | 7 . 5400 | 7.68    | 7.66   |
| . 55 | 7.7400  | 7.9000   | 7.74    | 7.72   |
| . 60 | 7.7800  | 7.9400   | 7.76    | 8.08   |
| .65  | 8.5600  | 8.0200   | 8.56    | 8.54   |
| .70  | 6.4200  | 6.2400   | 6.40    | 6.38   |
| . 75 | 6.4800  | 6,3000   | 6.46    | 6.44   |
| . 80 | 8.6800  | 8.8800   | 8.66    | 8.62   |
| .85  | 8.7600  | 8.9600   | 8.74    | 8.70   |
| .90  | 8.8200  | 8.6200   | 8.82    | 8.78   |
| .95  | 8.8800  | 8.6600   | 8.86    | 8.40   |
| 1.00 | 8.4800  | 8.7000   | 8.48    | 8.44   |
| 1.10 | 8.1000  | 8.3200   | 8.08    | 8.04   |
| 1.20 | 8.1000  | 8.3200   | 8.08    | 8.06   |
| 1.30 | 8.1000  |          | 8.08    | 8.06   |
|      |         | 8.3200   |         |        |
| 1.40 | 7.6600  | 7.8800   | 7.64    | 7.60   |
| 1.50 | 7.6800  | 7.4600   | 7.66    | 7.64   |
| 1.60 | 15.5600 | 7.4800   | 15.54   | 15.50  |
| 1.70 | 15.6000 | 7.4800   | 15.58   | 15.54  |
| 1.80 | 15.6600 | 7.8800   | 15.64   | 15.62  |
| 1.90 | 7.6600  | 7.8800   | 7.62    | 7.60   |
| 2.00 | 7.6600  | 7.9000   | 7.64    | 7.62   |
| 2.25 | 13.4200 | 7.4800   | 13.40   | 13.38  |
| 2.50 | 7.2400  | 7.4800   | 7.20    | 7.18   |
| 2.75 | 7.2800  | 7.5000   | 7.24    | 7.22   |
| 3.00 | 7.3000  | 8.3400   | 7.24    | 7.22   |
| 3.25 | 5.9600  | 8.3400   | 5.90    | 5.88   |
| 3.50 | 8.1400  | 7.8800   | 8.08    | 6.68   |
| 3.75 | 6.7800  | 7.8800   | 6.74    | 6.70   |
| 4.00 | 15.6600 | 7.8800   | 15.60   | 7.60   |
| 7.00 | 13.0000 | /.0000   | 10.00   | 7.00   |

 $\star$  Results using SHAKE do not include correction to constitutitive model by Udaka and Lysmer (1973).

| R   |  |
|-----|--|
| Ŋ   |  |
| IdW |  |

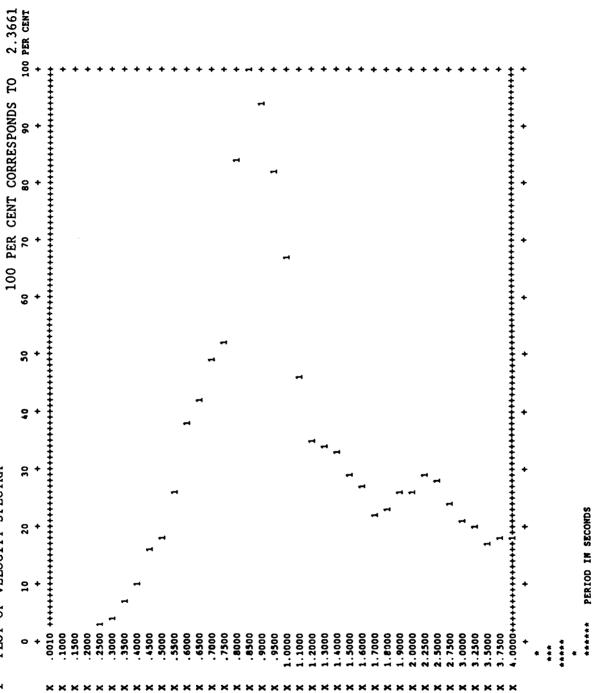
SPECTRAL VALUES --

----

|               |          | FREQ.        | .0<br>.0    | 0,   | ې د         | 20         | <u> </u>   | <u>,</u> , | ຂາ       | ņ      | 2      | <u>.</u> | æ.           | 9.                    | ່        | 7    |            | ~    | Γ.       | -        | 2    |       | .91   |     |        | 1/. | 10.               | 20.               |                  | 23            | .50                                       | 744  | .40 | .36 | .33 | .31         | .29      | .27          | C7 ·     | .3).               |
|---------------|----------|--------------|-------------|------|-------------|------------|------------|------------|----------|--------|--------|----------|--------------|-----------------------|----------|------|------------|------|----------|----------|------|-------|-------|-----|--------|-----|-------------------|-------------------|------------------|---------------|-------------------------------------------|------|-----|-----|-----|-------------|----------|--------------|----------|--------------------|
| NG RATIO05    |          | PSU.ABS.ACC. | 54          | 59   | 2           | 10         | 202        |            | 2        | 12     | 28     | 52       | 58           | 6                     | <u>6</u> | Ē    | 543        | Sou  | 16       | 116      | 52   | 319   | 503   | 990 | 200    | 20  |                   |                   | 0                |               | 376                                       | 34.0 | 236 | Š   | ž   | ğ           | ğ        | .00708       | ŝ        | and Lysmer (197:   |
| DAMPING       |          | ABS. ACC.    | 024         | 068  | 194         | 200        |            | 200        | 228      | 712    | 974    | 269      | 666          | 197                   | 415      | 453  | 350        | 038  | 529      | 732      | 674  | 833   | 576   | 974 | 864    | 742 | 7 7<br>7 7<br>7 7 | 7 7<br>7 7<br>7 7 | 202<br>7 0 0     | 341           | 382                                       | 353  | 241 | 211 | 152 | 104         | 084      | .00730       | 06/      | model by Udaka     |
|               | ELAT     | (FT/SE       | 000         | .051 | $\sim c$    | <b>ר</b> ע | $\sim c$   |            | $\infty$ | $\sim$ | $\sim$ | ŝ        | 5            | 93                    | -        | 2    | ິ.<br>ເ    | 5    | 2        | 0        | Q    | .33   | -     | n i | m e    | ŝ   | ÷ r               | < a               | <b>o</b> ~       | )             | 1                                         | . 0  | 5   | 7   | -   | Q           | 4        | .135         | N        | constitutive m     |
| ple           | PSUEDO-R | LOCITY       | .001        | .055 | <b>60</b> e | -l u       | <b>n</b> , | -11        |          | ഹ      | ŝ      | ~        | 4            | $\boldsymbol{\infty}$ | -        | 2    | 5          | 0    | <u>ີ</u> | <b>-</b> | 1    | .44   | 80    | σ,  | $\sim$ | 210 | ~ <               | <b>D</b> -        | - 4              | $\mathcal{O}$ | ۱œ                                        | °C   | 0   | 9   | 2   | 9           | 4        | .136         | mi       | t<br>t             |
| Example       |          | REL. VEL.    | 100<br>0000 | 077  | 219         | 308        | 202        | 010        | 597      | 477    | 683    | 292      | 226          | 977                   | 841      | 1694 | 2321       | 1666 | 3661     | .2348    | 9388 | .5865 | .0981 | 297 | 036    | 202 | 707               | 374               | ם<br>2<br>2<br>1 | 260           | 2<br>2<br>2<br>2<br>2<br>2<br>2<br>2<br>2 | 810  | 662 | 599 | 017 | 620         | 128      | $\mathbf{c}$ | 198      | rreflect undate    |
| PASADENA 1952 |          | REL. DISP.   | 1000        | 008  |             | 23         |            |            | 152      | 223    | 326    | 460      | ۶ <u>5</u> 5 | 9.38                  | 167      | 379  |            |      | 30       | 113      | 691  | 297   | 541   | 134 | 179    | 133 | 140               | 028               |                  |               | 2000                                      | 221  | 10  | 220 | 076 | 862         | 801      | .08117       | 858      | ucing SHAKE do not |
| PAS           |          | PERIOD       | 40          | .10  | .15         | .20        | 52.        | .30        | .35      | .40    | .45    | ŝ        | 55.          | . 60                  | .65      | 02   |            |      |          | 06       |      | 0     |       | ?   | ີ.     | 4.  | n,                | <b>.</b>          |                  | , c           |                                           |      |     |     | : C | . ົ         | •<br>• • | 3.75         | <u>.</u> | roculte 11         |
|               |          | . ON         | 1           | 2    | <b>ო</b> -  | 41         | · ∩        | 9          | ~        | œ      | 6      | 10       | 11           | 12                    | 13       | 14   | - <b>v</b> | 14   |          | 18       | 19   | 20    | 21    | 22  | 23     | 24  | 25                | 26<br>26          | /7               | 200           | 67 C                                      | 200  | 400 | 46  | 26  | יי ז<br>ריי |          | 37           | 38       | t<br>A             |

The results using SHAKE do not reflect update to constitutive model by Udaka and Lysmer (1973). \*

,

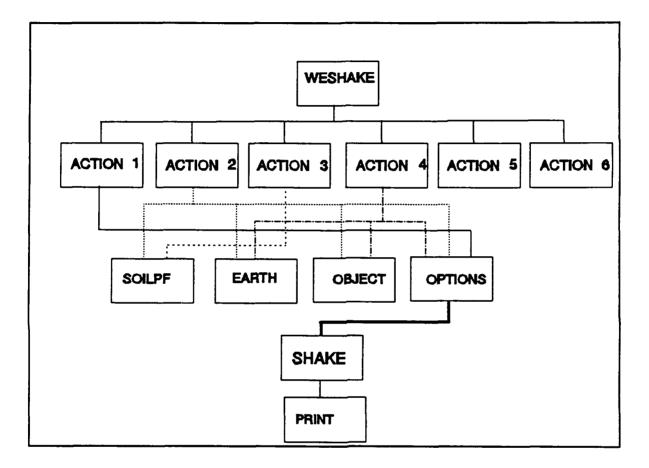

VALUES IN PERIOD RANGE .1 TO 2.5 SEC.

| AREA | OF ACC. RESP | ONSE SPECTRUM         | - | . 344 |
|------|--------------|-----------------------|---|-------|
| AREA | OF VEL. RESP | ONSE SPECTRUM         | - | 1.877 |
| MAX. | ACCELERATION | <b>RESPONSE VALUE</b> | - | . 553 |
| MAX. | VELOCITY     | <b>RESPONSE VALUE</b> | - | 2.366 |

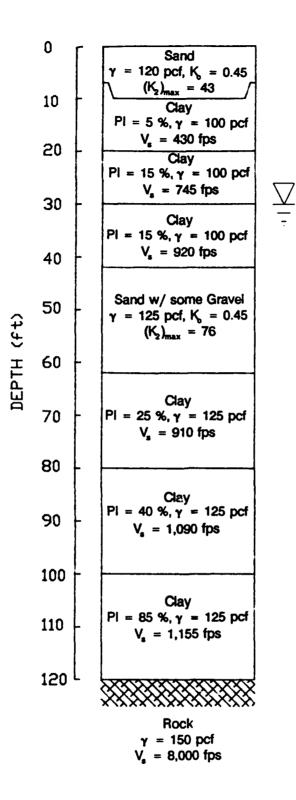


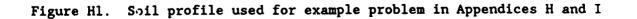
| CURVE 1   | 5.00 % DAMPING |
|-----------|----------------|
| 1 ABSISSA | CURVE 1        |
| .001      | .102           |
| .100      | .107           |
| .150      | .109           |
| . 200     | . 116          |
| .250      | .121           |
| . 300     | .136           |
| . 350     | .153           |
| .400      | .171           |
| .450      | .197           |
| . 500     | .227           |
| . 550     | .267           |
| . 600     | . 320          |
| .650      | . 342          |
| .700      | . 345          |
| .750      | . 335          |
| . 800     | . 504          |
| .850      | . 553          |
| . 900     | .473           |
| . 950     | . 367          |
| 1.000     | .283           |
| 1.100     | .158           |
| 1.200     | .097           |
| 1.300     | .086           |
| 1.400     | .074           |
| 1.500     | .063           |
| 1.600     | .050           |
| 1.700     | .048           |
| 1.800     | .040           |
| 1.900     | .034           |
| 2.000     | .038           |
| 2.250     | .035           |
| 2.500     | .024           |
| 2.750     | .021           |
| 3.000     | .015           |
| 3.250     | .010           |
| 3.500     | .008           |
| 3.750     | .007           |
| 4.000     | .007           |






| CURVE 1                                                                                                                                                                                                                                                                                                                                                | 5.00 % DAMPING                                                                                                                                                                                                                                                                                                                  |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 1 ABSISSA<br>.001<br>.100<br>.150<br>.200<br>.250<br>.300<br>.350<br>.400<br>.450<br>.500<br>.550<br>.600<br>.650<br>.700<br>.750<br>.800<br>.850<br>.900<br>1.000<br>1.100<br>1.200<br>1.300<br>1.400<br>1.200<br>1.300<br>1.400<br>1.500<br>1.600<br>1.700<br>1.800<br>1.900<br>2.250<br>2.500<br>2.750<br>3.000<br>3.250<br>3.500<br>3.750<br>4.000 | CURVE 1<br>.000<br>.008<br>.022<br>.036<br>.066<br>.102<br>.160<br>.248<br>.368<br>.429<br>.623<br>.898<br>.984<br>1.169<br>1.232<br>1.999<br>2.366<br>2.235<br>1.939<br>1.587<br>1.098<br>.830<br>.804<br>.770<br>.697<br>.632<br>.531<br>.553<br>.607<br>.618<br>.681<br>.666<br>.560<br>.502<br>.462<br>.413<br>.426<br>.420 |
|                                                                                                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                 |


120.91 secs


APPENDIX G: FLOWCHART OF WESHAKE

.



APPENDIX H: EXAMPLE SPECIFICATION FILE





H2

| 4096<br>2 | Ē   | EXAMPLE    | PROBLEM<br>OPTION |            | SHAKE U<br>AD SOIL |         |        |             |         |
|-----------|-----|------------|-------------------|------------|--------------------|---------|--------|-------------|---------|
| Ó         |     | 9 4        | 4 .06             |            | GHT LAY            |         |        | ROCK        |         |
| 1         | 3   | 1          | 8.0               | .45        | .050               | .120    | 43.    | 43.1.0001   |         |
| 2         | 4   | 1          | 12.0              | .00        | . 050              | .100    | 430.   | 430.1.0000  |         |
| 3         | 5   | 1          | 10.0              | . 00       | .050               | .100    | 745.   | 745.1.0000  |         |
| 4         | 5   | 1          | 11.0              | .00        | .050               | .100    | 920.   | 920.1.0000  |         |
| 5         | 2   | 1          | 20.0              | .45        | . 050              | . 125   | 76.    | 76.1.0001   |         |
| 6         | 6   | 1          | 19.0              | .00        | .050               | .125    | 910.   | 910.1.0000  |         |
| 7         | 7   | 1          | 20.0              | .00        | .050               | .125    | 1090.  | 1090.1.0000 |         |
| 8         | 8   | 1          | 20.0              | .00        | .050               | .125    | 1155.  | 1155.1.0000 |         |
| 9         | 1   | 1          |                   |            | .020               | .150    | 8000.  | 8000.1.0000 |         |
| 8         |     | OPT1       | ION 8: R          | EAD MAT    | ERIAL P            | ROPERTI | ES     |             |         |
| 8         |     | 0 2        | 2 100.            |            |                    | STRAIN  | COMPAT | TIBLE PRO   | PERTIES |
| 8100.     | . 0 | ROCK (Sch  | nabel 1973)       |            |                    |         |        |             |         |
| .000      | 1   | . 0003     | .0010             | .0030      | .0100              | . 0300  | .100   | 0 1.0000    |         |
| 1.000     | 00  | 1.0000     | . 9900            | . 9500     | . 9000             | .8100   | .725   | . 5500      |         |
|           |     |            | nabel 1973)       |            |                    |         |        |             |         |
| .000      |     | .0010      | .0100             | .1000      | 1.0000             |         |        |             |         |
| . 400     |     | . 8000     | 1.5000            | 3.0000     | 4.6000             |         |        |             |         |
|           |     | -          | er Bound (S       |            | -                  |         |        |             |         |
| .000      |     | .0003      | .0010             | .0030      | .0100              | .0300   | .100   | .3000       |         |
| 1.000     |     | 0950       |                   |            |                    |         |        |             |         |
| 1.000     |     | . 9850     | . 9300            | .8300      | . 6350             | - 4250  | .225   | .1100       |         |
|           |     | SAND LOW   | er Bound (S       | and t Tda  | 1070)              |         |        |             |         |
| .000      |     | .0003      | .0010             | .0030      | .0100              | .0300   | .100   | . 3000      |         |
| 1.000     | -   |            |                   | .0050      | .0100              | . 0300  |        |             |         |
| . 300     |     | . 4000     | .7000             | 1.4000     | 2.7000             | 5.0000  | 9.800  | 0 15.0000   |         |
| 20.700    |     |            |                   | 2          |                    |         |        |             |         |
|           |     | SAND. Ave: | rage (Seed        | & Idriss : | 1970)              |         |        |             |         |
| . 000     |     | .0003      | .0010             | .0030      | .0100              | . 0300  | .100   | .3000       |         |
| 1.000     | 00  |            |                   |            |                    |         |        |             |         |
| 1.000     | 00  | . 9800     | . 9500            | . 8900     | .7300              | . 5200  | . 290  | .1400       |         |
| . 060     | 00  |            |                   |            |                    |         |        |             |         |
| 95.       | 0   | SAND, Aven | rage (Seed        | & Idriss : | 1973)              |         |        |             |         |
| . 000     | 01  | .0003      | .0010             | .0030      | . 0100             | . 0300  | .100   | .3000       |         |
| 1.000     | 00  |            |                   |            |                    |         |        |             |         |
| . 800     | 00  | 1.0000     | 1.9000            | 3.0000     | 5.4000             | 9.6000  | 15.400 | 20.8000     |         |
| 24.600    | 00  |            |                   |            |                    |         |        |             |         |
| 9100.     | 0   | CLAY/SILT  | (PI=5-10,         | Sun et al  | . 1988)            |         |        |             |         |
| .000      | )1  | .0003      | .0010             | .0030      | .0100              | .0300   | .100   | .3000       |         |
| 1.000     | 00  |            |                   |            |                    |         |        |             |         |
| 1.000     |     | 1.0000     | . 9750            | . 9100     | . 7800             | . 5650  | .305   | .1400       |         |
| .040      |     |            |                   |            |                    |         |        |             |         |
|           |     | =          | er Bound (S       |            | -                  |         |        |             |         |
| .000      |     | . 0003     | .0010             | .0030      | .0100              | . 0300  | .100   | .3000       |         |
| 1.000     |     |            |                   |            |                    |         |        |             |         |
| 1.300     |     | 1.3000     | 1.3000            | 1.5000     | 1.7000             | 2.5000  | 4.000  | 6.5000      |         |
| 12.300    | 00  |            |                   |            |                    |         |        |             |         |

Н3

9100.0 CLAY/SILT (PI=10-20, Sun et al. 1988) .0300 .1000 . 3000 .0001 .0003 .0010 .0030 .0100 1.0000 1.0000 1.0000 1.0000 .9600 .8700 .7000 .4100 .2000 . 0800 9 5.0 CLAY, Average (Seed & Idriss 1970) .0001 .0003 .0010 .0030 .0300 .1000 . 3000 .0100 1.0000 2.5000 2.5000 2.5000 3.2000 4.5000 6.5000 9.0000 13.5000 20.5000 9100.0 CLAY/SILT (PI=20-40, Sun et al. 1988) .0003 .0001 .0010 .0030 .0100 .0300 .1000 .3000 1.0000 1.0000 1.0000 1.0000 .9700 . 9000 .7700 . 5200 . 3000 .1400 9 5.0 CLAY, Average (Seed & Idriss 1970) .0001 .0003 .0010 .0030 .0100 .0300 .1000 . 3000 1.0000 2.5000 2.5000 2.5000 3.2000 4.5000 6.5000 9.0000 13.5000 20.5000 9100.0 CLAY/SILT (PI=40-80, Sun et al. 1988) .0003 .0001 .0010 .0030 .0100 .0300 .1000 .3000 1.0000 1.0000 1.0000 1.0000 .9850 . 9200 . 6200 .8150 .4100 .2000 9 5.0 CLAY, Average (Seed & Idriss 1970) .0001 .0003 .0010 .0030 .0100 .0300 .1000 . 3000 1.0000 2.5000 2.5000 2.5000 3.2000 4.5000 6.5000 9.0000 13.5000 20.5000 9100.0 CLAY/SILT (PI>80, Sun et al. 1988) .0003 .0001 .0010 .0030 .0100 .0300 .1000 .3000 1.0000 1.0000 1.0000 1.0000 .9850 .9400 .8600 .7100 . 5300 .3300 9 5.0 CLAY Upper Bound (Seed & Idriss 1970) .0001 .0003 .0010 .0030 .0100 .0300 .1000 . 3000 1.0000 4.0000 4.0000 4.0000 5.0000 7,5000 11,0000 16.0000 21.8000 27.0000 1 OPTION 1: READ ACCELERATION VALUES FROM "EARTHO" 2048 4096 0.02 Alaska EQ (7/30/72) Sitka Record 25.0 1.0 0. 0 0.00000 -0.00434 0.00860 0.00540 -0.00565 -0.00944 -0.00369 -0.00669 1 -0.00336 -0.00111 0.00358 0.00303 -0.00323 -0.00907 -0.01522 -0.01029 2 -0.00706 -0.00194 0.00135 0.00191 0.00743 0.00043 -0.00657 0.00527 3 -0.01948 -0.00854 -0.01807 -0.01060 -0.00396 0.00315 0.01088 0.01252 4 0.00859 0.00066 -0.00698 -0.01661 -0.01454 -0.00959 -0.00047 0.01193 5 0.02522 0.02534 0.02107 -0.00808 -0.01286 -0.00702 -0.01510 -0.00409 6 0.00969 0.00253 -0.00687 -0.01304 -0.00716 0.00005 0.00802 0.00310 7 -0.00076 0.00385 -0.00101 0.00063 -0.00544 -0.00056 0.00393 0.00958 8 0.01092 0.00872 0.00348 -0.00373 -0.00907 -0.00171 0.00996 0.01039 9 0.00378 0.00255 0.00594 0.00241 0.01074 0.00452 -0.00165 -0.01075 10 -0.01783 -0.00081 0.01251 0.01050 0.00821 0.01259 0.01636 0.01832 11

| 0.00521  | 0.00569  | 0.00351  | -0.01063 | -0.03369 | -0.04154 | -0.04725 | -0.05131 | 12 |
|----------|----------|----------|----------|----------|----------|----------|----------|----|
| -0.02420 | 0.02808  | 0.04292  | 0.05900  | 0.05520  | 0.04862  | 0.03961  | 0.02367  | 13 |
| 0.00012  | -0.00870 | -0.01417 | -0.02311 | 0.00280  | 0.03229  | 0.04878  | 0.05455  | 14 |
| 0.05449  | 0.01070  | -0.02089 | -0.04311 | -0.04944 | -0.01474 | 0.01639  | 0.03284  | 15 |
| -0.00108 | -0.03383 | -0.04305 | -0.00785 | 0.01159  | 0.02328  | 0.04201  | 0.01461  | 16 |
| -0.02062 | -0.03449 | -0.05223 | -0.06713 | -0.03791 | 0.01826  | 0.01450  | 0.00062  | 17 |
| -0.00322 | -0.02040 | -0.03647 | -0.00725 | 0.02286  | 0.02432  | 0.02051  | 0.01305  | 18 |
| 0.00005  | -0.01511 | -0.01056 | -0.02773 | -0.04252 | -0.02969 | 0.00359  | 0.03776  | 19 |
| 0.03332  | -0.00455 | -0.01688 | -0.00372 | 0.02375  | 0.04392  | 0.01144  | -0.02161 | 20 |
| -0.03177 | -0.01033 | 0.02196  | 0.02633  | -0.00478 | -0.03830 | -0.05378 | -0.06298 | 21 |
| -0.04843 | 0.00853  | 0.02995  | 0.04202  | 0.05444  | 0.04226  | -0.01146 | -0.01436 | 22 |
| -0.00422 | -0.00614 | 0.00187  | 0.00510  | 0.00357  | -0.00764 | -0.01967 | -0.01591 | 23 |
| -0.01152 | 0.01078  | 0.00464  | -0.00813 | -0.00155 | 0.01288  | 0.00717  | 0.02209  | 24 |
| 0.02745  | 0.00331  | -0.01182 | -0.00357 | 0.00114  | 0.00461  | 0.02062  | 0.03680  | 25 |
| 0.02713  | 0.01034  | -0.00558 | 0.00056  | -0.01203 | -0.02606 | -0.02043 | -0.00679 | 26 |
| -0.01686 | -0.01296 | 0.01295  | 0.04609  | 0.01396  | 0.00772  | 0.02510  | 0.01280  | 27 |
| 0.00439  | 0.00485  | -0.00509 | -0.03677 | -0.04885 | -0.02148 | 0.00154  | 0.00619  | 28 |
| 0.00957  | 0.01188  | 0.01098  | 0.00701  | -0.00082 | -0.01205 | -0.02089 | -0.00942 | 29 |
| -0.01372 | -0.02214 | -0.02724 | -0.01255 | 0.00013  | -0.00418 | -0.00666 | 0.00568  | 30 |
| -0.00094 | -0.00631 | 0.00213  | 0.02019  | 0.04131  | 0.01411  | -0.00789 | -0.00313 | 31 |
| 0.00241  | 0.01099  | 0.01575  | 0.00035  | -0.01550 |          | 0.01984  | 0.01635  | 32 |
| -0.00499 | -0.02736 | -0.00499 | 0.01117  | -0.01109 | -0.01614 |          | 0.00614  | 33 |
| -0.00590 | 0.00388  |          | 0.00928  | 0.00519  |          |          | -0.00296 | 34 |
|          | -0.00824 |          |          | 0.01020  | 0.00442  |          | -0.01187 | 35 |
|          |          | 0.00168  | 0.01422  |          | -0.00203 |          | 0.00241  | 36 |
| 0.01374  |          |          |          | -0.00300 | 0.00476  |          | -0.00625 | 37 |
|          | 0.00183  |          |          |          |          |          |          | 38 |
| 0.03302  |          |          | -0.01092 |          | 0.01733  |          |          |    |
|          |          |          | -        |          | -0.00193 |          | 0.01074  | 39 |
|          | -0.03076 |          |          |          |          |          |          | 40 |
|          |          |          | 0.00751  | 0.01415  |          | -0.00811 | 0.00230  | 41 |
| 0.00811  |          |          |          | -0.00365 |          |          | -0.01083 | 42 |
| -0.01490 |          | 0.01760  |          |          | -0.01094 |          | 0.02532  | 43 |
| 0.03136  |          |          |          |          |          |          |          | 44 |
|          | -0.00904 |          |          |          |          | -0.00326 | -0.01241 | 45 |
| -0.02537 | -0.01385 | -0.00514 | 0.00377  | -0.00156 | -0.00361 | 0.00225  | 0.00130  | 46 |
| -0.00044 | -0.00860 | -0.02157 | -0.02092 | -0.00729 | 0.01471  | -0.00015 | -0.01126 | 47 |
| 0.00064  | 0.01245  | -0.00143 | -0.00622 | -0.00229 | -0.01037 | -0.01635 | -0.01162 | 48 |
| -0.01889 | -0.02958 | -0.02774 | -0.01258 | 0.02002  | 0.02940  | 0.03843  | 0.02579  | 49 |
| 0.00581  | -0.01801 | -0.01608 | 0.00452  | 0.01662  | 0.02330  | 0.01926  | 0.00635  | 50 |
| -0.00024 | -0.00585 | -0.00319 | 0.00154  | 0.00773  | -0.00708 | -0.00494 | 0.00160  | 51 |
| -0.00271 | 0.00874  | 0.01993  | 0.02882  | 0.02428  | 0.00940  | -0.00351 | -0.01617 | 52 |
| 0.00394  | 0.01529  | 0.00547  | -0.00612 | 0.01018  | 0.01381  | -0.00033 | -0.01355 | 53 |
| -0.01959 | -0.01197 | 0.00786  | 0.01749  | -0.00614 | -0.03373 | -0.04386 | -0.01247 | 54 |
| 0.00606  | 0.00099  | -0.00909 | -0.02959 | -0.04610 | -0.04088 | -0.02783 | -0.00094 | 55 |
| 0.01610  | 0.02566  | 0.01704  | 0.01297  | 0.01980  | 0.01014  | 0.00440  | 0.00664  | 56 |
| 0.00489  | 0.00926  | 0.00140  | -0.00020 | 0.01116  | 0.01507  | 0.00220  | -0.01522 | 57 |
| -0.01377 | -0.01568 |          |          |          |          |          | 0.02878  | 58 |
| 0.01444  |          |          |          | -0.02275 |          |          |          | 59 |
|          | -0.01251 |          |          |          | 0.03030  |          |          | 60 |
|          | -0.01182 |          |          |          |          |          |          | 61 |
|          | 0.02240  |          |          |          |          |          | 0.03048  | 62 |
|          | -0.00119 |          |          |          |          |          |          | 63 |
|          | -0.02617 |          |          |          | 0.06607  |          |          | 64 |
|          |          |          |          |          |          |          |          |    |
| -0.0318/ | -0.05828 | -0.0448/ | -0.012/9 | 0.009/3  | -0.01434 | -0.04308 | -0.02830 | 65 |

:

|          | 0.03358  |          |          |          |          |          |          | 66  |
|----------|----------|----------|----------|----------|----------|----------|----------|-----|
|          | -0.02392 |          |          |          |          |          |          | 67  |
|          | 0.02600  |          |          |          |          |          |          | 68  |
|          | 0.00427  |          |          |          |          |          |          | 69  |
| 0.00731  | -0.01211 | -0.02071 | -0.01328 | -0.02376 | -0.02947 | 0.00145  | 0.01660  | 70  |
| 0.01238  | 0.02222  | 0.01102  | -0.02551 | -0.02850 | -0.01223 | 0.01122  | 0.02306  | 71  |
| 0.00341  | -0.01089 | -0.00245 | 0.01348  | 0.00811  | -0.00058 | 0.00874  | -0.00061 | 72  |
| -0.00681 | -0.00437 | 0.01043  | 0.00582  | -0.00667 | -0.01692 | -0.00384 | -0.00454 | 73  |
| -0.01270 | -0.00729 | 0.00693  | 0.01899  | 0.00352  | -0.01323 | -0.01805 | -0.00334 | 74  |
| 0.00988  | 0.00626  | 0.00619  | 0.01939  | 0.03712  | 0.01838  | -0.00837 | -0.01149 | 75  |
| 0.00396  | 0.01472  | 0.00917  | 0.01693  | 0.00907  | 0.01768  | 0.02319  | 0.02032  | 76  |
| 0.01729  | 0.01970  | 0.01046  | -0.00827 | -0.00660 | 0.00562  | 0.00834  | -0.00078 | 77  |
| 0.00927  | 0.01710  | 0.01262  | 0.01088  | 0.02195  | 0.03059  | 0.00867  | -0.01616 | 78  |
| -0.01259 | -0.00820 | -0.01671 | -0.00971 | -0.00055 | -0.00930 | -0.01348 | 0.01078  | 79  |
| 0.01920  | 0.00144  | -0.00133 | 0.00479  | -0.01090 | -0.02128 | 0.00536  | 0.04438  | 80  |
| 0.03905  | 0.02848  | 0.02266  | 0.00809  | -0.00148 | 0.00338  | 0.01529  | 0.01168  | 81  |
| 0.00765  | 0.01111  | -0.00252 | -0.03294 | -0.04562 | -0.04408 | -0.05987 | -0.07305 | 82  |
| -0.06950 | -0.01932 | 0.06129  | 0.06943  | 0.05255  | 0.03534  | 0.00823  | -0.03993 | 83  |
| -0.03839 | -0.01479 | 0.00379  | 0.00114  | 0.00530  | 0.00845  | -0.00170 | -0.01027 | 84  |
| -0.01305 | -0.02255 | -0.02061 | -0.02808 | -0.02691 | -0.00266 | 0.01525  | 0.00495  | 85  |
| -0.00383 | -0.01081 | 0.00103  | -0.00430 | -0.00062 | -0.00195 | -0.01392 | -0.02768 | 86  |
| -0.03897 | -0.03954 | -0.01757 | 0.00296  | 0.00386  | -0.00804 | 0.00462  | 0.00715  | 87  |
| -0.01495 | -0.02255 | -0.00467 | 0.00127  | -0.00793 | -0.00719 | -0.01665 | 0.00487  | 88  |
| 0.02578  | 0.03957  | 0.01163  | -0.02165 | -0.03282 | -0.02140 | 0.00410  | 0.02947  | 89  |
| 0.00922  | -0.00739 | 0.01118  | 0.02992  | 0.02346  | 0.00531  | 0.00671  | -0.00118 | 90  |
| 0.00363  | 0.00355  | -0.00893 | -0.01157 | -0.01569 | -0.01951 | -0.00473 | 0.01539  | 91  |
| 0.01076  | 0.01138  | 0.01672  | 0.00396  | -0.00257 | 0.00048  | 0.00959  | 0.00306  | 92  |
| -0.00770 | -0.00222 | -0.01167 | -0.01913 | -0.00634 | -0.00170 | 0.00455  | 0.00712  | 93  |
| -0.00185 | 0.01029  | 0.00928  | -0.01025 | -0.03021 | -0.02814 | -0.02520 | -0.00482 | 94  |
| 0.01621  | -0.00706 | -0.02140 | -0.01215 | 0.01848  | 0.03325  | 0.04160  | 0.04952  | 95  |
| 0.03384  | 0.01602  | 0.01420  | 0.02148  | 0.00067  | -0.01882 | -0.03701 | -0.02150 | 96  |
| 0.00159  | -0.01039 | -0.02034 | -0.02035 | -0.02096 | -0.03021 | -0.01721 | 0.00120  | 97  |
| 0.00999  | 0.03996  | 0.05998  | 0.03850  | -0.00492 | -0.02001 | 0.00520  | 0.02389  | 98  |
| 0.00497  | -0.00600 | -0.01764 | -0.02516 | -0.02193 | -0.00526 | 0.01606  | 0.00884  | 99  |
| 0.00004  | 0.00468  | 0.01070  | -0.00262 | -0.00510 | 0.00693  | 0.00591  | -0.01357 | 100 |
| -0.01864 | -0.00451 | 0.01710  | 0.03243  | 0.01551  | -0.00271 | 0.01398  | 0.03107  | 101 |
|          | 0.00668  |          |          |          |          |          | -0.01874 | 102 |
|          | 0.02106  |          |          |          |          |          |          | 103 |
| 0.00410  |          |          |          |          | 0.00940  |          |          | 104 |
| 0.00295  |          |          |          |          | -0.01087 |          |          | 105 |
| -0.00408 |          |          |          |          | -0.00614 |          |          | 106 |
| -0.00265 |          |          |          |          | -0.00575 |          |          | 107 |
| -0.00139 |          |          |          |          | 0.00089  |          |          | 108 |
|          | -0.00123 |          |          |          |          |          |          | 109 |
| 0.00979  |          |          |          |          | -0.01593 |          |          | 110 |
|          |          |          |          |          |          |          |          |     |
| -0.00258 | 0.00466  |          |          |          | -0.00099 |          |          | 111 |
|          |          |          |          |          |          |          |          | 112 |
|          | -0.01925 |          |          |          |          |          |          | 113 |
|          | -0.00911 |          |          |          |          |          |          | 114 |
|          | -0.01536 |          |          |          |          |          |          | 115 |
|          | -0.01048 |          |          |          |          |          |          | 116 |
|          | -0.01318 |          |          |          |          |          |          | 117 |
| 0.00746  |          |          |          | 0.01044  |          |          | 0.00298  | 118 |
| 0.00381  | 0.01245  | 0.00021  | -0.01136 | -0.02785 | -0.03070 | -0.02951 | -0.02010 | 119 |

| -0.00416 | 0.00840  | 0.00670  | 0.01750  | 0.03012  | 0.02617  | 0.02025  | 0.01081  | 120 |
|----------|----------|----------|----------|----------|----------|----------|----------|-----|
| -0.00417 | -0.00796 | -0.00138 | 0.00649  | 0.01348  | -0.00262 | -0.02255 | -0.01804 | 121 |
| -0.00719 | 0.01786  | -0.00060 | -0.00602 | 0.00219  | -0.00869 | -0.01531 | -0.01373 | 122 |
| -0.00464 | 0.00706  | 0.01174  | 0.00054  | -0.00718 | 0.00650  | 0.00665  | 0.00377  | 123 |
| 0.00272  | 0.00699  | 0.00415  | 0.00491  | 0.00347  | -0.00513 | -0.00107 | 0.01029  | 124 |
| 0.00917  | 0.00175  | -0.00861 |          | 0.00946  |          |          |          | 125 |
| 0.00108  | 0.01373  | 0.00515  | -0.00536 | -0.00869 | -0.00823 | -0.00590 | -0.01305 | 126 |
|          | -0.01077 |          |          |          |          |          |          | 127 |
| 0.00762  |          | -0.00012 |          |          | 0.00035  | 0.01293  | -        | 128 |
|          | -0.00402 |          |          |          |          |          | -0.00029 | 129 |
| 0.01437  |          |          | 0.02087  |          | 0.01357  |          | 0.00841  | 130 |
| 0.00167  |          | 0.01183  |          | -0.00817 |          |          | -0.00155 | 131 |
| 0.00729  |          | -0.00792 |          | 0.01071  |          |          | 0.00418  | 132 |
| 0.00683  |          | 0.01347  | 0.01118  | 0.00739  |          |          | -0.00068 | 133 |
| 0.00498  |          | -0.00399 |          |          | 0.00015  | 0.00775  | 0.00114  | 134 |
|          | -0.00657 |          |          |          |          | 0.00439  | 0.01419  | 135 |
| 0.01525  |          |          |          | -0.01037 |          |          |          | 136 |
| 0.00570  |          | 0.01472  |          | -0.00584 | 0.00059  | 0.00703  | 0.00023  | 137 |
| 0.00148  | -        | -0.00782 |          | 0.01217  |          |          | -0.00269 | 138 |
| 0.01192  |          | -0.00220 | 0.00712  |          | -0.00314 | 0.00569  | 0.00965  | 139 |
| 0.00465  | 0.00098  | 0.01051  | 0.00674  | 0.00290  | 0.00612  | 0.01218  | 0.00894  | 140 |
|          | -0.00478 |          |          |          |          | -0.00571 |          | 141 |
|          | -0.02100 |          |          |          |          |          | 0.00685  | 142 |
| 0.01124  | 0.00461  | 0.00003  | 0.01231  | 0.01195  |          |          | -0.00346 | 143 |
|          | -0.00455 |          |          |          |          |          |          | 144 |
| -0.00783 | 0.00073  | 0.00247  | 0.00332  | 0.00881  |          | -0.00013 | -0.00746 | 145 |
|          | -0.00058 |          | 0.00408  | 0.01493  | _        | 0.00753  | 0.00777  | 146 |
|          | -0.00745 |          |          | 0.00723  |          | -0.00153 | 0.00364  | 147 |
|          | -0.00566 |          | 0.00377  | 0.00697  | 0.00417  | 0.00776  | 0.00667  | 148 |
|          | -0.00393 |          |          |          |          |          |          | 149 |
|          | -0.00096 | 0.00533  | 0.01282  | 0.02221  | 0.01700  |          | -0.00643 | 150 |
|          | -0.00524 |          |          |          |          |          |          | 151 |
|          | -0.00562 |          |          |          | -0.00010 | 0.00571  | 0.01595  | 152 |
| 0.01462  | 0.00720  |          |          | -0.00482 |          | 0.00204  | 0.00198  | 153 |
| -0.00248 |          | 0.00301  | 0.00566  |          | -0.00116 |          |          | 154 |
| 0.00509  |          | 0.00433  |          | -0.00149 | 0.00130  | 0.00629  | 0.00654  | 155 |
| 0.00134  | 0.00009  |          | -0.00943 |          | 0.00674  | 0.01803  | 0.01094  | 156 |
| 0.00796  |          |          |          | -0.01017 |          |          |          | 157 |
| 0.00117  |          |          |          | -0.01683 |          |          | 0.00526  | 158 |
| 0.01373  |          |          | 0.00882  |          | 0.00870  |          | -0.00052 | 159 |
| 0.00046  |          |          |          | -0.00303 |          |          |          | 160 |
|          | -0.00305 |          |          |          |          |          |          | 161 |
|          | -0.00453 |          |          |          |          |          | 0.00304  | 162 |
|          | -0.00843 |          |          |          | 0.01665  |          | 0.02103  | 163 |
| 0.01406  |          |          | -0.00022 |          |          |          | -0.01674 | 164 |
|          | -0.00620 |          |          |          |          |          |          | 165 |
|          | -0.00295 |          |          |          |          |          |          | 166 |
| 0.00264  |          |          |          | -0.00866 |          |          |          | 167 |
|          | -0.00871 |          |          |          |          |          |          | 168 |
|          | -0.00086 |          |          | -0.00191 |          |          |          | 169 |
| 0.01396  |          |          |          | -0.00576 |          |          |          | 170 |
|          | -0.00064 |          | 0.01191  |          | -0.00737 |          |          | 171 |
|          | -0.00340 |          |          |          |          |          |          | 172 |
| 0.01338  | 0.01174  | 0.00714  | 0.00451  | 0.00713  | 0.00041  | -0.00738 | -0.00125 | 173 |

\_\_\_\_\_

H7

0.00526 0.00051 -0.01404 -0.01610 -0.00978 -0.00691 -0.01593 -0.01908 174 -0.01067 -0.00362 0.00773 0.00369 0.00843 0.01329 0.00978 0.00003 175 176 -0.00444 0.00691 0.01310 0.00232 0.01163 0.00343 -0.00324 0.00427 0.01460 0.00533 -0.00439 0.00164 -0.00869 -0.01688 -0.01292 -0.00925 177 -0.01491 -0.00750 0.01235 0.00462 -0.00211 0.00310 0.00652 0.00391 178 -0.00674 -0.00587 0.00429 0.00288 -0.00264 0.00252 0.00834 0.00018 179 -0.00659 0.00110 -0.00003 -0.00652 0.00328 -0.00140 -0.01767 -0.01005 180 0.00255 0.00410 0.00229 0.01794 0.01057 -0.01580 -0.02630 -0.00572 181 0.01804 0.01007 -0.00375 -0.00191 0.00433 -0.00454 -0.01267 -0.02232 182 -0.00865 0.00292 0.00633 0.01642 0.00621 -0.00904 -0.01407 0.00341 183 0.01094 0.00423 -0.01288 -0.01305 -0.01069 -0.00231 -0.00348 -0.00155 184 0.00349 0.00367 0.00618 0.00650 0.00551 0.00083 -0.00506 0.00128 185 0.01664 0.00907 -0.00772 -0.01304 -0.00309 0.00273 -0.00175 -0.00238 186 0.00014 0.00405 0.00676 0.00696 -0.00069 -0.00173 0.00307 0.00024 187 0.00461 -0.00160 -0.00588 -0.00888 -0.00027 0.00441 0.00029 -0.00213 188 -0.00195 0.00085 0.00575 0.01111 0.00865 0.00504 0.00359 0.00265 189 0.00865 -0.00472 -0.01937 -0.01073 0.00773 0.01535 0.00532 -0.00272 190 -0.00626 0.00019 0.00218 0.00178 0.00861 0.01788 0.02463 0.01591 191 0.00537 0.00333 0.01023 0.01439 0.00877 0.00134 0.00161 -0.00218 192 -0.00871 -0.01528 -0.00942 0.00272 0.00657 -0.00581 -0.02075 -0.01980 193 -0.01109 -0.00358 0.00258 -0.00117 -0.00444 0.00247 -0.00274 -0.00953 194 -0.00832 -0.00303 0.00896 0.01694 0.01604 0.00847 -0.00449 -0.01003 195 -0.01478 -0.00969 -0.00734 -0.00592 0.00215 0.00973 0.00837 0.00574 196 0.01087 0.00418 -0.00381 -0.00441 -0.01057 -0.01705 -0.01061 -0.00392 197 -0.00857 -0.01133 -0.00758 -0.00265 0.00192 -0.00095 -0.00734 -0.00193 198 0.00078 0.00111 0.00130 0.00223 0.00368 0.01050 0.01233 0.00451 199 -0.00419 -0.00129 0.00963 0.00933 0.00408 0.00656 0.00824 0.00264 200 -0.00814 -0.01375 -0.01036 -0.00782 -0.00014 0.00614 0.00113 -0.00744 201 -0.00987 -0.00432 0.00332 -0.00196 -0.00883 -0.00171 0.00008 -0.00105 202 -0.00458 0.00326 0.00657 0.00175 0.01363 0.01516 0.00405 0.00112 203 -0.00042 -0.00296 -0.00334 0.00346 0.00734 0.00117 0.00074 0.00736 204 0.01305 0.00937 0.00492 0.00476 0.00452 -0.00131 -0.00478 -0.00833 205 -0.00594 -0.00493 -0.00572 -0.00769 -0.00519 -0.00077 0.00435 0.00944 206 0.00797 0.00689 0.00597 -0.00162 -0.00001 -0.00187 -0.00538 -0.00212 207 0.00196 -0.00355 -0.00234 -0.00053 0.00061 -0.00275 -0.00431 0.00156 208 0.00099 -0.00087 -0.00554 -0.00042 0.00440 0.00125 -0.00179 -0.00029 209 0.00420 0.00873 0.00232 0.00236 0.00402 0.00218 0.00652 0.00714 210 0.00041 -0.00780 -0.00370 0.00135 0.00254 0.00296 0.00201 0.00315 211 0.00806 0.00585 0.00240 0.00201 0.00141 -0.00149 -0.00462 -0.00621 212 -0.00528 -0.00608 -0.00850 -0.00667 -0.00066 -0.00524 -0.00071 -0.00217 213 -0.00459 -0.00280 -0.00246 -0.00295 0.00012 0.00214 -0.00317 -0.00417 214 -0.00561 -0.00801 -0.00409 -0.00225 -0.00371 0.00263 -0.00303 -0.00208 215 0.00017 -0.00240 -0.00030 -0.00081 -0.00396 -0.00724 0.00198 0.00630 216 0.00556 0.00399 0.00596 0.00366 0.00045 -0.00190 0.00343 0.00061 217 -0.00385 -0.00298 0.00076 -0.00179 -0.00166 -0.00192 0.00027 0.00409 218 0.00450 0.00087 -0.00585 -0.00549 -0.00501 -0.00232 0.00212 0.00004 219 -0.00178 0.00006 0.00018 -0.00189 -0.00588 -0.01025 -0.00791 0.00046 220 -0.00421 -0.00756 -0.00048 0.00860 0.00606 0.00799 0.00519 -0.00399 221 -0.00573 -0.00082 0.00731 0.00202 0.00415 0.00491 0.00502 0.00119 222 -0.00350 -0.00503 -0.00221 -0.00285 -0.00586 -0.00953 -0.01040 -0.00525 223 -0.00008 0.00085 0.00940 0.01439 0.00796 0.00377 -0.00201 0.00464 224 0.01212 0.01037 0.00155 -0.00968 -0.00531 -0.00181 0.00343 0.00781 225 0.00150 -0.00103 0.00140 -0.00006 -0.00545 -0.00038 0.00170 0.00386 226 0.00453 0.00381 0.00080 -0.00276 0.00166 0.00204 0.00140 0.00343 227

0.00560 0.00546 0.00180 -0.00141 -0.00027 -0.00087 -0.00379 -0.01018 -0.00799 -0.00204 -0.00492 0.00122 -0.00428 -0.00634 -0.00138 0.00291 0.00336 -0.00305 -0.01595 -0.00003 0.00940 0.00570 0.00315 0.00755 -0.00227 -0.00019 0.00464 0.00433 -0.00018 -0.00015 0.00351 0.00793 0.00340 -0.00091 -0.00134 -0.00063 0.00099 0.00257 0.00320 0.00227 -0.00150 -0.00044 0.00353 0.00802 0.00292 -0.00261 -0.00374 -0.00288 -0.00360 0.00369 0.00984 0.00620 0.00638 0.00612 0.00371 -0.00288 -0.00680 -0.00078 0.00961 -0.00069 0.00312 0.00151 0.00078 -0.00128 -0.00528 -0.01092 -0.00871 0.00074 -0.00467 -0.00113 0.00680 -0.00210 -0.00959 -0.00009 0.00430 0.00009 0.00923 0.01201 0.00479 -0.00273 -0.00122 -0.00366 -0.00120 0.01083 -0.00002 -0.00782 -0.00656 -0.00167 0.00085 -0.00290 -0.00291 -0.00542 -0.00715 -0.00277 0.00182 0.00738 0.00267 -0.00792 -0.00918 -0.00088 0.00111 -0.00308 -0.01068 -0.00549 0.00238 0.00541 0.00617 0.00160 -0.00530 -0.01071 -0.00747 -0.00244 0.00112 -0.00105 -0.00316 -0.00082 -0.00390 -0.00567 0.00074 0.00271 -0.00343 -0.00642 -0.00055 -0.00409 -0.01229 -0.00478 0.00025 0.00281 0.00196 0.00996 0.00687 -0.00482 0.00244 0.00702 -0.00025 -0.00578 0.00554 0.01694 0.00300 -0.00745 -0.00379 -0.00143 -0.00443 -0.00423 0.00206 0.00680 -0.00042 0.00647 0.00482 -0.00147 -0.00288 -0 00179 0.00209 0.01019 0.00571 0.00180 0.00593 0.01130 0.00726 0.00596 0.00827 0.00250 -0.00167 0.00186 -0.00006 -0.00163 -0.00471 -0.00738 -0.00999 -0.00573 -0.00147 0.00298 0.01015 0.00287 -0.00733 -0.00010 0.00366 0.00740 0.00463 -0.00107 -0.00869 -0.00025 0.00574 0.00011 0.00095 0.00234 0.00194 -0.00064 -0.00351 -0.00212 0.00033 0.00165 0.00600 0.00984 0.00584 -0.00597 0.00197 0.00268 -0.00498 -0.00370 0.00307 0.00438 -0.00118 -0.00108 0.00030 -0.00243 -0.00631 -0.00363 -0.00317 -0.00467 -0.00851 -0.00520 0.00064 0.00181 -0.00349 -0.00195 -0.00074 -0.00335 -0.00189 -0.00637 -0.00593 -0.00091 0.00204 -0.00005 -0.00517 -0.00781 -0.00562 -0.00368 -0.00413 -0.00607 -0.00206 0.00118 **OPTION 3: ASSIGN OBJECT MOTION OPTION 4: OBTAIN STRAIN-COMPATIBLE PROPERTIES** .05 .65 **OPTION 5: COMPUTE MOTION IN SPECIFIC LAYERS** Ω Δ **OPTION 9: COMPUTE RESPONSE SPECTRA** .070 .050 .020 .100 .120 **OPTION 16: COMPUTE STRESS/STRAIN HISTORY** 1 512 .000Sand and gravel layer END OF INPUT

H9

APPENDIX I: EXAMPLE OUTPUT FILES

......

-----

"GMOD"

NORMALIZED SHEAR MODULUS CURVES FOR 8 MATERIALS:

IN PAIRS OF: EFF. SHEAR NORMALIZED STRAIN (%), MODULUS

.100E-03,1.000, .100E-03,1.000, .100E-03,1.000, .100E-03,1.000, .100E-03,1.000, .100E-03,1.000, .100E-03,1.000, .**300E-03,1.000, .300E-03, .985, .300E-03, .980, .300E-03,1.000, .300E-03,1.000, .300E-03,1.000, .300E-03,1.000,** .300E-03,1.000, .300E-02, .950, .300E-02, .830, .300E-02, .890, .300E-02, .910, .300E-02, .960, .300E-02, .970, .300E-02, .985, .300E-02, .985, .100E-02, .990, .100E-02, .930, .100E-02, .950, .100E-02, .975, .100E-02,1.000, .100E-02,1.000, .100E-02,1.000, .100E-01, .900, .100E-01, .635, .100E-01, .730, .100E-01, .780, .100E-01, .870, .100E-01, .900, .100E-01, .920, .100E-01, .940, .300E-01, .810, .300E-01, .425, .300E-01, .520, .300E-01, .565, .300E-01, .700, .300E-01, .770, .300E-01, .815, .300E-01, .860, .100E+00, .725, .100E+00, .225, .100E+00, .290, .100E+00, .305, .100E+00, .410, .100E+00, .520, .100E+00, .620, .100E+00, .710, .100E+01, .550, .300E+00, .110, .3C0E+00, .140, .300E+00, .140, .300E+00, .200, .300E+00, .300, .410, .300E+00, .530, .000E+00, .000, .100E+01, .040, .100E+01, .060, .100E+01, .040, .100E+01, .080, .100E+01, .140, .100E+01, .200, .100E+01, .330, ø ŝ **m** 2 -

"DAMP"

CRITICAL DAMPING RATIO CURVES FOR 8 MATERIALS:

IN PAIRS OF: EFF. SHEAR DAMPING STRAIN (%), RATIO

| 1         |            |                          | 2     |            | e     |                                                                                                      | 4     |           | ŝ     |           | Ŷ     |           | 2     |            | 80    |
|-----------|------------|--------------------------|-------|------------|-------|------------------------------------------------------------------------------------------------------|-------|-----------|-------|-----------|-------|-----------|-------|------------|-------|
| 0E-03,    | . 4        | 100E-03, .4, .100E-03,   | . E.  | .100E-03,  | .8    | .3, .100E-03, .8, .100E-03, 1.3, .100E-03, 2.5, .100E-03, 2.5, .100E-03, 2.5, .100E-03,              | 1.3,  | .100E-03, | 2.5,  | .100E-03, | 2.5,  | .100E-03, | 2.5,  | .100E-03,  | 4.0,  |
| 0E-02,    | 8.         | 100E-02, .8, .300E-03,   |       | .300E-03,  | 1.0,  | .4, .300E-03, 1.0, .300E-03, 1.3, .300E-03, 2.5, .300E-03, 2.5, .300E-03, 2.5, .300E-03, 4.0,        | 1.3,  | .300E-03, | 2.5,  | .300E-03, | 2.5,  | .300E-03, | 2.5,  | .300E-03,  | 4.0,  |
| 0E-01,    | 1.5,       | 100E-01, 1.5, 100E-02,   |       | .100E-02,  | 1.9,  | .7, .100E-02, 1.9, .100E-02, 1.3, .100E-02, 2.5, .100E-02, 2.5, .100E-02, 2.5, .100E-02, 4.0,        | 1.3,  | .100E-02, | 2.5,  | .100E-02, | 2.5,  | .100E-02, | 2.5,  | .100E-02,  | 4.0,  |
| 0E+00,    | 3.0,       | .100E+00, 3.0, .300E-02, |       | . 300E-02, | 3.0,  | 1.4, .300E-02, 3.0, .300E-02, 1.5, .300E-02, 3.5, .300E-02, 3.5, .300E-02, 3.5, .300E-02, 5.0,       | 1.5,  | .300E-02, | 3.5,  | .300E-02, | 3.5,  | .300E-02, | 3.5,  | . 300E-02, | 5.0,  |
| 0E+01,    | 4.6,       | 100E+01, 4.6, .100E-01,  |       | .100E-01,  | 5.4,  | 2.7, .100E-01, 5.4, .100E-01, 1.7, .100E-01, 4.5, .100E-01, 4.5, .100E-01, 4.5, .100E-01, 7.5,       | 1.7,  | .100E-01, | 4.5,  | .100E-01, | 4.5,  | .100E-01, | 4.5,  | .100E-01,  | 7.5,  |
| 0E+00,    | <b>o</b> . | 000E+00, .0, .300E-01,   |       | .300E-01,  | 9.6,  | 5.0, .300E-01, 9.6, .300E-01, 3.5, .300E-01, 6.5, .300E-01, 6.5, .300E-01, 6.5, .300E-01, 11.0,      | 3.5,  | .300E-01, | 6.5,  | .300E-01, | 6.5,  | .300E-01, | 6.5,  | .300E-01,  | 11.0, |
| 0E+00,    | o.         | 000E+00, .0, .103E+00,   | 9.8,  | .100E+00,  | 15.4, | 9.8, .100E+00, 15.4, .100E+00, 4.0, .100E+00, 9.0, .100E+00, 9.0, .100E+00, 9.0, .100E+00, 16.0,     | 4.0,  | .100E+00, | 9.0,  | .100E+00, | 9.0,  | .100E+00, | 9.0,  | .100E+00,  | 16.0, |
| 000E+00.  | <b>o</b> . | .0, .300E+00,            |       | .300E+00,  | 20.8, | 15.0, .300E+00, 20.8, .300E+00, 6.5, .300E+00, 13.5, .300E+00, 13.5, .300E+00, 13.5, .300E+00, 21.8, | 6.5,  | .300E+00, | 13.5, | .300E+00, | 13.5, | .300E+00, | 13.5, | .300E+00,  | 21.8, |
| .000E+00, |            | .0, .100E+01,            | 20.7, | .100E+01,  | 24.6, | 20.7, 100E+01, 24.6, 100E+01, 12.3, 100E+01, 20.5, 100E+01, 20.5, 100E+01, 20.5, 100E+01, 27.0,      | 12.3, | .100E+01, | 20.5, | .100E+01, | 20.5, | .100E+01, | 20.5. | .100E+01,  | 27.0. |

# INPUT EARTHQUAKE MOTION:

| TIME(sec) | ACCELERATION (g) |
|-----------|------------------|
| .000      | .00000           |
| .020      | 00434            |
| .040      | .00860           |
| .060      | .00540           |
| .080      | 00565            |
| .100      | 00944            |
| .120      | 00369            |
| . 140     | 00669            |
| .160      | 00336            |
| .180      | 00111            |
| .200      | .00358           |
| . 220     | .00303           |
| . 240     | 00323            |
| . 260     | 00907            |
| . 280     | 01522            |
| . 300     | 01029            |
| . 320     | 00706            |
| . 340     | 00194            |
| . 360     | .00135           |
| . 380     | .00191           |
| .400      | .00743           |

# (intermediate lines not shown)

| 40.480 | 00317  |
|--------|--------|
| 40.500 | 00467  |
| 40.520 | 00851  |
| 40.540 | 00520  |
| 40.560 | .00064 |
| 40.580 | .00181 |
| 40,600 | 00349  |
| 40.620 | 00195  |
| 40,640 | 00074  |
| 40.660 | 00335  |
| 40.680 | 00189  |
| 40.700 | 00637  |
| 40.720 | 00593  |
| 40.740 | 00091  |
| 40.760 | .00204 |
| 40.780 | 00005  |
| 40,800 | 00517  |
| 40.820 | 00781  |
| 40.840 | 00562  |
| 40.860 | 00368  |
| 40.880 | 00413  |
| 40,900 | 00413  |
|        | 00206  |
| 40.920 |        |
| 40.940 | .00118 |

# "AMAX"

| (TOP OF LAYER)<br>DEPTH<br>(ft) | MAXIMUM<br>ACCELERATION<br>(g) |
|---------------------------------|--------------------------------|
| .0,                             | .257                           |
| 8.0,                            | . 222                          |
| 20.0,                           | .146                           |
| 30.0,                           | .143                           |
| 41.0,                           | .115                           |
| 61.0,                           | .115                           |
| 80.0,                           | .094                           |
| 100.0,                          | .082                           |

\_

# <u>"STRESS"</u>

|       | MID-DEPTH | EFF. SHEAR   | EFF. SHEAR      |
|-------|-----------|--------------|-----------------|
| LAYER | (ft)      | STRESS (psf) | STRAIN (%)      |
| 1,    | 4.0,      | 79.,         | , <b>17E-01</b> |
| 2,    | 14.0,     | 196.,        | ,13E+00         |
| 3,    | 25.0,     | 216.,        | ,16E-01         |
| 4,    | 35.5,     | 259.,        | .12E-01         |
| 5,    | 51.0,     | 339.,        | .16E-01         |
| 6,    | 70.5,     | 422.,        | .15E-01         |
| 7,    | 90.0,     | 447.,        | .11E-01         |
| 8,    | 110.0,    | 441.,        | .90E-02         |

# "ACCSPEC"

ABSOLUTE ACCELERATION SPECTRA (g):

| PERIOD         |        | ]              | DAMPING RAT    | 10S    |        |
|----------------|--------|----------------|----------------|--------|--------|
| (sec)          | .02    | .05            | .07            | .10    | .12    |
|                |        |                |                |        |        |
| 001            | .257,  | .257,          | .257,          | .257,  | .257,  |
| .001,<br>.100, | .477,  | .415,          | .403,          | .389,  | . 382, |
| .150,          | .803,  | .526,          | .403,          | .408,  | .401,  |
| . 200,         | .562,  | . 493,         | .460,          | .422,  | .401,  |
|                | .687,  | . 543,         | .400,          | . 504, | .482,  |
| .250,<br>.300, | 1.337, | .947,          | .798,          | .676,  | .612,  |
|                | .797,  | .566,          | .540,          | .506,  | .476,  |
| .350,          | .763,  | .576,          | .540,          | . 450, | .423,  |
| .400,          | .928,  | .575,          | .499,          | .434,  | .406,  |
| .450,          | .928,  | .575,          | .499,          | .388,  | .354,  |
| .500,          |        | . 433,         | . 347,         | . 283, | .261,  |
| . 550,         | .797,  | .435,<br>.324, | .347,<br>.281, | .283,  | .201,  |
| .600,          | .510,  | .280,          | .231,          | .197,  | .183,  |
| .650,          | .412,  | .280,          | .206,          | .197,  | .184,  |
| .700,          | .276,  |                | .200,          | .176,  | .165,  |
| .750,          | .328,  | .232,          | .136,          | .178,  | .130,  |
| .800,          | .182,  | .140,          |                | .101,  | .102,  |
| .850,          | .167,  | .116,          | .106,          |        | .089,  |
| .900,          | .127,  | .091,          | .087,          | .087,  |        |
| .950,          | .150,  | .105,          | .090,          | .079,  | .078,  |
| 1.000,         | .149,  | .103,          | .089,          | .078,  | .074,  |
| 1.100,         | .087,  | .069,          | .067,          | .062,  | .059,  |
| 1.200,         | .087,  | .071,          | .065,          | .060,  | .058,  |
| 1.300,         | .060,  | .062,          | .060,          | .057,  | .055,  |
| 1.400,         | .076,  | .063,          | .057,          | .052,  | .049,  |
| 1.500,         | .066,  | .047,          | .043,          | .040,  | .039,  |
| 1.600,         | .054,  | .037,          | .033,          | .031,  | .033,  |
| 1.700,         | .043,  | .032,          | .030,          | .030,  | .032,  |
| 1.800,         | .036,  | .032,          | .029,          | .030,  | .031,  |
| 1.900,         | .033,  | .031,          | .030,          | .030,  | .031,  |
| 2.000,         | .050,  | .037,          | .033,          | .030,  | .029,  |
| 2.250,         | .039,  | .034,          | .032,          | .030,  | .029,  |
| 2.500,         | .037,  | .033,          | .032,          | .030,  | .029,  |
| 2.750,         | .041,  | .033,          | .029,          | .027,  | .026,  |
| 3.000,         | .022,  | .022,          | .022,          | .021,  | .020,  |
| 3.250,         | .026,  | .023,          | .021,          | .019,  | .018,  |
| 3.500,         | .029,  | .023,          | .020,          | .017,  | .016,  |
| 3.750,         | .024,  | .019,          | .017,          | .015,  | .015,  |
| 4.000,         | .016,  | .015,          | .015,          | .014,  | .013,  |

## "OUTPUT"

EXAMPLE PROBLEM FOR WESHAKE USER'S MANUAL

MAX. NUMBER OF TERMS IN FOURIER TRANSFORM - 4096 NECESSARY LENGTH OF BLANK COMMON X - 25619

\*\*\*\*\*\* OPTION 2 \*\*\* READ SOIL PROFILE

MSOIL - 0 ML - 9 MWL - 4 WW - .0624 IDNT - EIGHT LAYERS OVERLYING ROCK NEW SOIL PROFILE NO. 0 IDENTIFICATION - EIGHT LAYERS OVERLYING ROCK

SHEAR/K2 FACTOR WAVE VELOCITY INPUT BY LAYER

NUMBER OF LAYERS9DEPTH TO BEDROCK120.00NUMBER OF FIRST SUBMERGED LAYER4DEPTH TO WATER LEVEL30.00UNIT WEIGHT OF WATER -.0624 kcf

| (ft)<br>Bottom<br>******                                                                                                          | 8.0                                                                           | 20.0                                                                             | 30.0                                                                            | 41.0                                                                            | 61.0                                                                             | 80.0                                                                            | 100.0                                                                           | 120.0                                                                           |                                                    |
|-----------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|---------------------------------------------------------------------------------|----------------------------------------------------|
| Depth (ft)<br>Top Bottom<br>*************                                                                                         | 0.                                                                            | 8.0                                                                              | 20.0                                                                            | 30.0                                                                            | 41.0                                                                             | 61.0                                                                            | 80.0                                                                            | 100.0                                                                           | 120.0                                              |
| Thickness<br>(ft)<br>**********                                                                                                   | 8.0                                                                           | 12.0                                                                             | 10.0                                                                            | 11.0                                                                            | 20.0                                                                             | 19.0                                                                            | 20.0                                                                            | 20.0                                                                            |                                                    |
| Lib. Soil ThicknessDepth (ft)<br>Layer Key Classification (ft) Top Bottom (ft) Top Bottom<br>************************************ | M: SAND, Average (Seed & Idriss 1970)<br>D: SAND Average (Seed & Idriss 1970) | M: CLAY/SILT (PI=5-10, Sun et al. 1988<br>0: CLAY, Lower Bound (Seed & Idriss 19 | M: CLAY/SILT (PI=10-20, Sun et al. 198<br>D: CLAY. Avergae (Seed & Idriss 1970) | M: CLAY/SILT (PI-10-20, Sun et al. 198<br>D: CLAY. Avergae (Seed & Idriss 1970) | M: SAND, Lower Bound (Seed & Idriss 19<br>D: SAND, Lower Bound (Seed & Idriss 19 | M: CLAY/SILT (PI-20-40, Sun et al. 198<br>D: CLAY, Avergae (Seed & Idriss 1970) | M: CLAY/SILT (PI=40-80, Sun et al. 198<br>D: CLAY. Avergae (Seed & Idriss 1970) | M: CLAI/SILT (PI>80, Sun et al. 1988)<br>D: CLAY Upper Bound (Seed & Idriss 197 | M: ROCK (Schnabel 1973)<br>D: ROCK (Schnabel 1973) |
| Lib.<br>Key<br>*****                                                                                                              | е<br>Г                                                                        | 4                                                                                | ν<br>Ω                                                                          | Ś                                                                               | 5                                                                                | 9                                                                               | 7                                                                               | œ                                                                               |                                                    |
| Layer<br>******                                                                                                                   | IJ                                                                            | 2                                                                                | £                                                                               | 4                                                                               | Ŝ                                                                                | Ŷ                                                                               | 7                                                                               | Ø                                                                               | 6                                                  |

| Mean Effective | Stress          | (ksf)  | *************************************** |
|----------------|-----------------|--------|-----------------------------------------|
| Unit           | Weight          | (kcf)  | **********                              |
| Coeff.         | Earth           | Press. | *******                                 |
|                | Mid-depth Earth | (ft)   | ******                                  |
|                |                 | Layer  | ******                                  |

| 7          |  |
|------------|--|
| *          |  |
| - <b>x</b> |  |
| يذ         |  |
| 5          |  |
| 7          |  |
| *          |  |
| *          |  |
| *          |  |
| ÷          |  |
| 2          |  |
| 7          |  |
| *          |  |
| *          |  |
| ÷.         |  |
| ÷.         |  |
| τ.         |  |
| 7          |  |
| *          |  |
| *          |  |
| ÷.         |  |
| 2          |  |
| Τ.         |  |
| *          |  |
| *          |  |
| ÷x         |  |
| ÷.         |  |
| T.         |  |
| 7          |  |
| *          |  |
| *          |  |
| ÷.         |  |
| 5          |  |
| τ.         |  |
| *          |  |
| *          |  |
| ÷x         |  |
| j.         |  |
| £.         |  |
| 7          |  |
| *          |  |
| *          |  |
| ÷.         |  |
| <u>.</u>   |  |
| 5          |  |
| 7.         |  |
| *          |  |
| *          |  |
| *          |  |
| ÷          |  |
| 2          |  |
| 7          |  |
| *          |  |
| *          |  |
| ×          |  |
| ÷          |  |
| С.         |  |
| 7          |  |
| *          |  |
| *          |  |
| ÷          |  |
| ÷          |  |
| T          |  |
| 1          |  |
| *          |  |
| *          |  |
| -          |  |
| 5          |  |
| *          |  |
|            |  |

| .30  | . 52  | . 89  | 1.12  | 2.66 | 1.81  | 2.21  | 2.63   |      |
|------|-------|-------|-------|------|-------|-------|--------|------|
| .120 | .100  | .100  | .100  | .125 | .125  | .125  | .125   | .150 |
| .45  |       |       |       | .45  |       |       |        |      |
| 4.0  | 14.00 | 25.00 | 35.50 | 51.0 | 70.50 | 90.00 | 110.00 |      |
| 1    | 2     | m     | 4     | Ś    | 9     | ~     | 8      | 6    |

|                  | Demaina     | Small                        | Strain    |            | Ini                        | tial Est  |         |
|------------------|-------------|------------------------------|-----------|------------|----------------------------|-----------|---------|
|                  | Est.        | Vs                           |           |            |                            | G         | G/Gmax  |
| Layer            |             |                              |           |            | (fps)                      |           |         |
| ******           | ******      | ********                     | · / /     | *******    | **************             | ********  | ******* |
|                  |             |                              |           |            |                            |           |         |
| 1                | .050        | 448.                         | 43.       | 750.       | 449.                       | 750.      | 1.00    |
| 2                |             | 430.                         |           |            | 430.                       |           |         |
| 3                |             | 745.                         |           |            |                            |           |         |
| 4                | .050        | 920.                         | 79.       | 2631.      | 920                        |           |         |
| 5                |             | 1004.                        |           |            | 1005.                      |           |         |
| 6                | .050        | 910.                         | 76        | 3218       | 910.                       |           |         |
| 7                |             | 1090.                        |           |            |                            | 4616.     |         |
| 8                |             | 1155.                        |           |            |                            |           |         |
| 9                | .020        | 8000.                        |           | 298415.    | 8004                       | 298415.   |         |
| ,                | .020        |                              |           | 270413.    | 0004.                      | 2 0412.   | 2.00    |
| MAXIM<br>FOR F   |             | CATION = 15.<br>= 2.         |           |            | 905. FT/SEC                | :         |         |
| ******           |             | 8 *** RE4                    |           |            | N SOIL PROPERI             | TES AND S | TRAIN   |
|                  |             | Alaska EQ (<br>N VALUES AT   |           |            |                            |           |         |
|                  |             |                              |           |            |                            |           |         |
|                  |             | E LISTED ROU<br>5 ARE ADDED  |           |            | ROM CARDS<br>F 4096 VALUES |           |         |
| MAXIMU<br>AT TIM |             | TION = .09<br>= 10.16        |           |            |                            |           |         |
|                  |             | BE MULTIPLII<br>AUM ACCELERA |           |            |                            |           |         |
| MEAN S           | QUARE FREQI | JENCY -                      | 5.65 (    | C/SEC.     |                            |           |         |
| MAX A<br>C/SEC.  | CCELERATION | 1 <del>-</del> .090          | 015 FOR 1 | FREQUENCIE | S REMOVED ABOV             | 7E 25     | .00     |
| ******           | OPTION      | 3 *** RE/                    | AD WHERE  | OBJECT MO  | TION IS GIVEN              |           |         |
| OBIEC            | T MOTTON T  | I LAYER MIMI                 | RER 9 (   | UTCROPPIN  | G                          |           |         |

OBJECT MOTION IN LAYER NUMBER 9 OUTCROPPING

\*\*\*\*\*\* OPTION 4 \*\*\* OBTAIN STRAIN COMPATIBLE SOIL PROPERTIES

MAXIMUM NUMBER OF ITERATIONS-20MAXIMUM ERROR IN PERCENT-.05FACTOR FOR EFFECTIVE STRAIN IN TIME DOMAIN-.65

EARTHQUAKE - Alaska EQ (7/30/72) Sitka Record SOIL PROFILE - EIGHT LAYERS OVERLYING ROCK

.65\* MAX. STRAIN THE CALCULATION HAS BEEN CARRIED OUT IN THE TIME DOMAIN WITH EFF. STRAIN -

| ERROR<br>PRCNT       | -41.3   | -101.7  | -27.7    | -20.9       | -63.9    | -20.0    | -12.5    | -8.8     |
|----------------------|---------|---------|----------|-------------|----------|----------|----------|----------|
| G USED<br>KSF        | 749.731 | 574.759 | 1725.288 | 2631.023    | 3919.527 | 3217.672 | 4616.491 | 5183.498 |
| NEW G<br>Ksf         | 530.646 | 285.019 | 1351.398 | 2176.589    | 2392.088 | 2680.878 | 4104.804 | 4764.082 |
| ERROR<br>PRCNT       | 14.4    | -37.6   | 9.4      | <del></del> | -68.3    | 9.6      | 1.7      | 40.6     |
| DAMP USED            | .050    | .050    | .050     | .050        | . 050    | .050     | . 050    | .050     |
| NEW DAMP.            | .058    | .036    | .055     | .050        | .030     | .055     | .051     | .084     |
| EFF. STRAIN<br>Prcnt | .01123  | .04131  | .01751   | .01318      | .01138   | .01759   | .01381   | .01333   |
| DEPTH<br>FT          | 4.0     | 14.0    | 25.0     | 35.5        | 51.0     | 70.5     | 90.06    | 110.0    |
| TYPE                 | e       | 4       | ÷        | ŝ           | 7        | 9        | 2        | 80       |
| LAYER                | 1       | 2       | •        | 4           | n        | 9        | 2        | •        |

# VALUES IN TIME DOMAIN

| TIME<br>SEC         | 10.30<br>13.34<br>13.34<br>13.22<br>13.22<br>13.18<br>13.16                 |                                             |
|---------------------|-----------------------------------------------------------------------------|---------------------------------------------|
| MAX STRESS<br>PSF   | 91.70<br>181.16<br>364.11<br>441.33<br>418.78<br>725.49<br>871.99<br>976.77 |                                             |
| MAX STRAIN<br>PRCNT | .01728<br>.06356<br>.02694<br>.02028<br>.01751<br>.02124<br>.02124          | (7/30/72) Sitka Record<br>RS OVERLYING ROCK |
| DEPTH<br>FT         | 4.0<br>14.0<br>25.0<br>35.5<br>70.5<br>90.0                                 | EQ (7/30/72)<br>LAYERS OVERLYI              |
| TH I CKNESS<br>FT   | 8.0<br>12.0<br>11.0<br>20.0<br>20.0<br>20.0                                 | Alaska EQ<br>EIGHT LAYE                     |
| TYPE TH             | う う ら ら う ろ ろ ろ る ろ 8                                                       | EARTHQUAKE -<br>SOIL PROFILE -              |
| LAYER               | 8 / 9 / 5 / 6 / 6 / 6                                                       | EAR<br>SOI                                  |

-

| .65* MAX: STRAIN     | ERROR<br>PRCNT       | -3.6    | -29.6   | -2.1     | -1.7     | -12.2    | £.       | 1.3      | 1.9      |
|----------------------|----------------------|---------|---------|----------|----------|----------|----------|----------|----------|
| I                    | G USED<br>KSF        | 530.646 | 285.019 | 1351.398 | 2176.589 | 2392.088 | 2680.878 | 4104.804 | 4764.083 |
| EFF. STRAIN          | NEW G<br>KSF         | 512.252 | 219.853 | 1315.870 | 2140.135 | 2131.393 | 2688.335 | 4157.318 | 4854.795 |
| THE TIME DOMAIN WITH | ERROR<br>PRCNT       | 7.7     | 5.7     | 4.2      | 3.2      | 19.7     | - Q      | -4.4     | -10.0    |
| E TIME DO            | DAMP USED            | .058    | .036    | .055     | .050     | .030     | .055     | .051     | .084     |
| OUT IN TH            | NEW DAMP.            | .063    | .039    | .058     | .052     | .037     | .055     | .049     | .076     |
| BEEN CARRIED OUT IN  | EFF. STRAIN<br>PRCNT | .01277  | .06984  | .02001   | .01441   | .01612   | .01725   | .01226   | .01048   |
| THE CALCULATION HAS  | DEPTH<br>FT          | 4.0     | 14.0    | 25.0     | 35.5     | 51.0     | 70.5     | 0.06     | 110.0    |
| CALCULA              | TYPE                 | •       | -       | ŝ        | ŝ        | 2        | ·Ø       | 2        | 80       |
| THE                  | LAYER                | 1       | 7       | (7       | 4        | ŝ        | 6        | •        | æ        |

# VALUES IN TIME DOMAIN

| • • | LAYER        | TYPE 1     | THI CKNESS<br>FT    | DEPTH<br>FT | MAX STRAIN<br>PRCNT                          | MAX STRESS<br>PSF | TIME<br>SEC |
|-----|--------------|------------|---------------------|-------------|----------------------------------------------|-------------------|-------------|
|     | 1            | m          | 8.0                 | 4.0         | .01965                                       | 100.64            | 10.34       |
|     | 5            | 4          | 12.0                | 14.0        | .10745                                       | 236.23            | 13.38       |
|     | <b>ا</b> م ا |            | 10.0                | 25.0        | .03078                                       | 405.00            | 13.24       |
|     | 4            | . <b>.</b> | 11.0                | 35.5        | .02218                                       | 474.59            | 13.22       |
|     | r ur         |            | 20.0                | 51.0        | .02479                                       | 528.43            | 13.22       |
|     | <b>.</b>     |            | 19.0                | 70.5        | .02654                                       | 713.39            | 13.20       |
|     | ~ ~          | ۰ ر        | 20.0                | 0.06        | .01886                                       | 784.05            | 13.18       |
|     | . ∞          | 80         | 20.0                | 110.0       | .01612                                       | 782.73            | 13.16       |
| Ч   | EAR<br>SOI   | LARTHQUAKE | - Alaska<br>- EIGHT | EQ<br>LAYE  | (7/30/72) Sitka Record<br>CRS OVERLYING ROCK | <b>F</b>          |             |

NOTE: ITERATIONS 3 THROUGH 8 NOT SHOWN!!

.65\* MAX. STRAIN THE CALCULATION HAS BEEN CARRIED OUT IN THE TIME DOMAIN WITH EFF. STRAIN -

| ERROR<br>PRCNT       | e,      | 1       | 0.       | o <sub>.</sub> | .1       | °.       | °.       | o.       |
|----------------------|---------|---------|----------|----------------|----------|----------|----------|----------|
| G USED<br>KSF        | 474.342 | 155.420 | 1381.671 | 2227.329       | 2144.765 | 2729.614 | 4221.976 | 4892.504 |
| NEW G<br>Ksf         | 474.420 | 155.308 | 1381.974 | 2227.632       | 2146.617 | 2729.782 | 4222.131 | 4892.729 |
| ERROR<br>PRCNT       | e.      | .1      | °.       | °.             | 1        | o.       | °.       | 0.       |
| DANP USED            | £70.    | .045    | .053     | .048           | .037     | .053     | .046     | .073     |
| NEW DAMP.            | 670.    | .045    | .053     | .048           | .037     | .053     | .046     | .073     |
| EFF. STRAIN<br>Prcnt | .01663  | .12606  | .01562   | .01163         | .01579   | .01547   | .01058   | 10600'   |
| depth<br>Ft          | 4.0     | 14.0    | 25.0     | 35.5           | 51.0     | 70.5     | 90.0     | 110.0    |
| TYPE                 | e       | 4       | s        | ŝ              | 7        | 9        | ٢        | 80       |
| LAYER                | 1       | 7       | e        | 4              | ŝ        | v        | 1        | •••      |

# VALUES IN TIME DOMAIN

| TIME<br>SEC         | 10.36<br>10.36   | 13.24  | 13.20      | 13.18  | 13.18  | 2.50   |                   |
|---------------------|------------------|--------|------------|--------|--------|--------|-------------------|
| MAX STRESS<br>PSF   | 121.37<br>301 21 | 332.06 | 521.49     | 649.68 | 687.49 | 678.06 |                   |
| MAX STRAIN<br>PRCNT | .02558<br>19394  | .02403 | .01/09     | .02380 | .01628 | .01386 | Sitka Record      |
| DEPTH<br>FT         | 4.0<br>14.0      | 25.0   | 51.0       | 70.5   | 90.06  | 110.0  | (1/30/72)         |
| THI CKNESS<br>FT    | 8.0<br>12.0      | 10.0   | 20.0       | 19.0   | 20.0   | 20.0   | - Alaska EQ       |
| TYPE                | 6 4              | r vn v | n 0        | 9      | 7      | 80     | <b>.ARTHQUAKE</b> |
| LAYER               | 10               | 1 m <  | <b>v</b> t | 9      | ٢      | 80     | EART              |

EARTHQUAKE - Alaska EQ (7/30/72) Sitka Record SOIL PROFILE - EIGHT LAYERS OVERLYING ROCK

| STRAIN                  |             |       |             |         |          |          |             |          |          |          |
|-------------------------|-------------|-------|-------------|---------|----------|----------|-------------|----------|----------|----------|
| .65* MAX. 9             | ERROR       | PRCNT | °.          | e.      | °.       | °.       | °.          | ٩.       | °.       | ٥.       |
| .65*                    |             |       | _           | _       |          |          | _           | _        |          | -        |
| I                       | G USED      | XSF   | 474.420     | 155.308 | 1381.974 | 2227.632 | 2146.617    | 2729.782 | 4222.131 | 4892.729 |
| EFF. STRAIN             | NEH C       | KSF   | 474.455     | 155.274 | 1382.050 | 2227.714 |             | 2729.811 | 4222.227 | 4892.799 |
| WITH EFI                | ERROR       | CUT   | e.          | 0.      | 0        | 0.       | 1           | 0.       | 0.       | o.       |
| TIME DOMAIN WITH        |             | 14    | 'n          | S       | 5        | 80       |             | 5        | Q        | 3        |
| E TIME                  | DAMP USED   |       | .07         | .045    | .05      | 40.      | <b>.</b> 00 | .05      | .046     | .073     |
| HT NI                   | NEW DAMP.   |       | .073        | .045    | .053     | .048     | .037        | .053     | .046     | .073     |
| ID OUT                  | NEN         |       |             |         |          |          |             |          |          |          |
| BEEN CARRIED OUT IN THE | EFF. STRAIN | PRCNT | .01662      | 12611   | 01561    | .01162   | .01578      | .01547   | .01058   | 00600    |
|                         | EFP.        | PR    |             | •       |          | -        | •           | ٠        | •        | •        |
| HAS                     |             |       | _           | _       | _        |          | ~           |          | ~        | ~        |
| THE CALCULATION HAS     | DEPTH       | 1     | 0. <b>4</b> | 14.0    | 25.0     | 35.5     | 51.0        | 70.5     | 90.0     | 110.0    |
| CALCI                   | TYPE        |       | n           | 4       | ÷        | 'n       | 8           | 9        | ۲        | •0       |
| THE                     | LAYER       |       | 7           | 7       | •        | 4        | 'n          | v        | 1        | 80       |

VALUES IN TIME DOMAIN

| TIME<br>SEC           | 10.36<br>10.36<br>13.24<br>13.22<br>13.20<br>13.18<br>13.18<br>2.50          |                                                    |
|-----------------------|------------------------------------------------------------------------------|----------------------------------------------------|
| MAX STRESS<br>PSF     | 121.35<br>301.26<br>331.98<br>398.39<br>521.16<br>649.64<br>687.49<br>677.82 |                                                    |
| MAX STRAIN M<br>PRCNT | .02558<br>.19402<br>.02402<br>.01788<br>.01788<br>.02380<br>.01628           | EQ (7/30/72) Sitka Record<br>LAYERS OVERLYING ROCK |
| DEPTH<br>FT           | 4.0<br>14.0<br>25.0<br>35.5<br>70.5<br>90.0                                  | (7/30/72)<br>ERS OVERLYI                           |
| THI CKNESS<br>FT      | 8.0<br>12.0<br>11.0<br>20.0<br>20.0<br>20.0                                  | Alaska EQ<br>EIGHT LAY                             |
| TYPE                  | の 」 O ら こ こ す ろ                                                              | ARTHQUAKE -                                        |
| LAYER                 | 81904500<br>1004500<br>1004                                                  | EAF<br>SO1                                         |

-

.65\* MAX. STRAIN THE CALCULATION HAS BEEN CARRIED OUT IN THE TIME DOMAIN WITH EFF. STRAIN -

| ERROR<br>PRCNT       | o,      | °.      | °.       | °.       | °.       | <b>o</b> . | °.       | <b>o</b> . |
|----------------------|---------|---------|----------|----------|----------|------------|----------|------------|
| G USED<br>KSF        | 474.455 | 155.274 | 1382.050 | 2227.714 | 2147.355 | 2729.811   | 4222.127 | 4892.799   |
| NEW G<br>KSF         | 474.468 | 155.264 | 1382.067 | 2227.734 | 2147.641 | 2729.813   | 4222.111 | 4892.821   |
| ERROR<br>PRCNT       | e.      | 0.      | 0.       | 0.       | 0.       | 0.         | °.       | 0.         |
| DAMP USED            | .073    | .045    | .053     | .048     | .037     | .053       | .046     | .073       |
| NEW DAMP.            | .073    | .045    | .053     | .048     | .037     | .053       | .046     | .073       |
| EFF. STRAIN<br>Prcnt | .01662  | .12613  | .01561   | .01162   | .01577   | .01547     | .01058   | 00600.     |
| depta<br>Ft          | 4.0     | 14.0    | 25.0     | 35.5     | 51.0     | 70.5       | 0.06     | 110.0      |
| TYPE                 |         | 4       | ŝ        | ŝ        | 2        | 9          | 2        | 80         |
| LAYER                | 1       | 7       | n        | 4        | ŝ        | v          | 1        | 60         |

# VALUES IN TIME DOMAIN

| TIME<br>SEC         | 10.36<br>10.36   | 13.24              | 13.22        | 13.18  | 13.18  | 2.50   |
|---------------------|------------------|--------------------|--------------|--------|--------|--------|
| MAX STRESS<br>PSF   | 121.34<br>301 28 | 331.96             | 521.03       | 649.63 | 687.52 | 677.74 |
| MAX STRAIN<br>PRCNT | .02557           | .02402             | .02426       | .02380 | .01628 | .01385 |
| DEPTH<br>FT         | 4.0              | 25.0               | 51.0<br>51.0 | 70.5   | 0.06   | 110.0  |
| THI CKNESS<br>FT    | 8.0              | 10.0               | 11.0<br>20.0 | 19.0   | 20.0   | 20.0   |
| TYPE                | ε                | י ריי <del>ו</del> | 5 Q          | 9      | 7      | 80     |
| LAYER               |                  | 4 m ·              | 4 0          | 9      | 7      | 80     |

I14

797. FT/SEC .60 FROM AVERAGE SHEAK VELOCITY -PERIOD -

1.83 C/SEC.
.55 SEC. MAXIMUM AMPLIFICATION - 18.03 FOR FREQUENCY PERIOD 5 \*\*\* COMPUTE MOTION IN NEW SUBLAYERS OPTION \*\*\*\*\*\*

Alaska EQ (7/30/72) Sitka Record EIGHT LAYERS OVERLYING ROCK EARTHQUAKE -SOIL DEPOSIT -

| SULL DEFUSIT - LIGHT MIENS | LAYER DEPTH  | Τч         |  |       |       |       |       |       |       | 11N 80.0 | WITHIN 100.0 |
|----------------------------|--------------|------------|--|-------|-------|-------|-------|-------|-------|----------|--------------|
|                            |              |            |  | .257  | .222  | .146  | .143  | .115  | 211.  | 460.     | .082         |
| NOON ONTITUTA              | MAX. ACC.    | უ          |  | 10.36 | 10.36 | 10.36 | 10.36 | 10.36 | 10.22 | 2.48     | 2.64         |
|                            | TIME         | SEC        |  | 3.20  | 2.75  | 5.02  | 4.30  | 3.87  | 4.62  | 5.46     | 5.53         |
|                            | MEAN SQ. FR. | C/SEC      |  | .000  | .000  | .001  | .001  | .000  | .001  | .001     | .001         |
|                            | ACC. RATIO   | QUIET ZONE |  | 0     | 0     | 0     | 0     | o     | Ø     | 0        | 0            |
|                            | PUNCHED      | ACC.       |  |       |       |       |       |       |       |          |              |

## \*\*\*\*\*\* OPTION 9 \*\*\* COMPUTE RESPONSE SPECTRUM

COMPUTE RESPONSE SPECTRUM IN LAYER 1

RESPONSE SPECTRUM ANALYSIS FOR LAYER NUMBER1CALCULATED FOR DAMPING.020.050.070.100.120

TIMES AT WHICH MAX. SPECTRAL VALUES OCCUR TD - TIME FOR MAX. RELATIVE DISP. TV - TIME FOR MAX. RELATIVE VEL. TA - TIME FOR MAX. ABSOLUTE ACC.

DAMPING RATIO - .02

| PERIOD |         | TIMES FOR MAXIMA | L       |
|--------|---------|------------------|---------|
|        | TD      | TV               | TA      |
| .00    | 10.3400 | 10.3000          | 10.3400 |
| .10    | 10.3400 | 10.9600          | 10.3400 |
| .15    | 3.6400  | 3.9000           | 3.6400  |
| .20    | 13.4200 | 13.4600          | 13.4200 |
| . 25   | 13.4400 | 2.8200           | 13.4400 |
| . 30   | 11.1600 | 11.2400          | 11.1600 |
| .35    | 4.0800  | 4.0000           | 4.0800  |
| .40    | 16.0600 | 15.9600          | 16.0600 |
| .45    | 15.8600 | 15.9800          | 15.8600 |
| . 50   | 20.2600 | 20.1400          | 20.2600 |
| . 55   | 19.1400 | 19.2600          | 19.1400 |
| .60    | 16.5200 | 16.3800          | 16.5200 |
| .65    | 15.5200 | 15.6600          | 15.5200 |
| .70    | 10.3000 | 10.4200          | 10.3000 |
| .75    | 13.4000 | 13.5400          | 13.4000 |
| .80    | 13.2000 | 13.3200          | 13.2000 |
| .85    | 11.3800 | 10.2800          | 11.3800 |
| . 90   | 7.4400  | 15.6600          | 7.4200  |
| .95    | 13.4200 | 10.2800          | 13.4200 |
| 1.00   | 9.2800  | 10.9800          | 9.2800  |
| 1.10   | 22.8600 | 23.0400          | 22.8600 |
| 1.20   | 9.0000  | 9.1800           | 9.0000  |
| 1.30   | 9.0200  | 28.0200          | 9.0200  |
| 1.40   | 9.0400  | 13.5400          | 9.0400  |
| 1.50   | 10.8000 | 13.3200          | 10.7800 |
| 1.60   | 22.7000 | 10.5800          | 22.7000 |
| 1.70   | 22.0600 | 13.3200          | 22.0400 |
| 1.80   | 5.0400  | 13.3200          | 5.0400  |
| 1.90   | 5.0600  | 10.5800          | 5.0600  |
| 2.00   | 13.4400 | 13.3200          | 13.4400 |
| 2.25   | 14.0800 | 15.6600          | 14.0600 |
| 2.50   | 14.0200 | 13.3200          | 14.0000 |
| 2.75   | 15.5800 | 13.3200          | 15.5600 |
| 3.00   | 15.9800 | 15.4400          | 15.9600 |
| 3.25   | 16.0800 | 15.4400          | 16.0600 |
| 3.50   | 16.5200 | 15.4600          | 16.4800 |
| 3.75   | 18.9000 | 15.4600          | 18.8800 |
| 4.00   | 23,3800 | 2.2800           | 23.3600 |

| .02                           | FREQ.<br>C/SEC.          | 1000.00<br>6.67<br>6.67<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125<br>1.125 |
|-------------------------------|--------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| DAMPING RATIO -               | PSU.ABS.ACC.<br>G.       | . 25674<br>. 47788<br>. 80884<br>. 56454<br>. 79550<br>. 79550<br>. 79550<br>. 79550<br>. 79550<br>. 79887<br>. 79587<br>. 79887<br>. 05016<br>. 03335<br>. 03552<br>. 03552<br>. 03552<br>. 03552<br>. 036644<br>. 03552<br>. 03552<br>. 036644<br>. 03552<br>. 036644<br>. 036644<br>. 03552<br>. 036644<br>. 036644<br>. 03552<br>. 036644<br>. 036664<br>. 036669<br>. 036664<br>. 036664<br>. 036664<br>. 0056995<br>. 005695<br>. 0056555                                                                                                                                                                                                                                                                                                                                                     |
| /ING ROCK                     | ABS. ACC.<br>G.          | .25675<br>.47663<br>.47663<br>.56171<br>.56171<br>.56856<br>.79749<br>.79749<br>.79749<br>.79652<br>.79652<br>.79652<br>.79652<br>.79658<br>.12703<br>.12703<br>.12703<br>.12703<br>.12703<br>.12703<br>.08664<br>.03866<br>.03667<br>.03855<br>.03707<br>.02191                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| EIGHT LAYERS OVERLYING ROCK   | PSU.REL.VEL.<br>FT./SEC. | . 00131<br>. 24468<br>. 57809<br>. 57809<br>. 57809<br>. 87970<br>. 87970<br>. 87970<br>. 24468<br>1. 42554<br>. 72765<br>. 72965<br>. 73045<br>. 73045<br>. 73045<br>. 73045<br>. 73045<br>. 73045<br>. 75915<br>. 73045<br>. 75915<br>. 75915<br>. 75915<br>. 75915<br>. 75915<br>. 77335<br>. 773                                                                                                                                                                                                                                                               |
| Record                        | REL. VEL.<br>FT./SEC.    | . 00001<br>. 57880<br>. 57880<br>. 44994<br>. 44994<br>1. 59478<br>2. 04021<br>1. 59478<br>2. 18977<br>2. 18977<br>2. 28778<br>1. 59478<br>1. 59478<br>1. 59679<br>. 78656<br>. 55860<br>. 53336<br>. 561295<br>. 73321<br>. 73                                                                                                                                                                                                                                                                  |
| <br>(7/30/72) Sitka           | REL. DISP.<br>FT.        | .00000<br>.01483<br>.01483<br>.01840<br>.03500<br>.03500<br>.09791<br>.09791<br>.15255<br>.09921<br>.15010<br>.19692<br>.19692<br>.19692<br>.19692<br>.11066<br>.09378<br>.112043<br>.112043<br>.112043<br>.12110<br>.09378<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.12110<br>.121100<br>.121100<br>.121100<br>.121100<br>.121100<br>.121100<br>.121100<br>.12110000000000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| SPECTRAL VALUES.<br>Alaska EQ | PERIOD<br>SEC.           | 00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00<br>00                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| SPECI                         | . ON                     | *3210982222222222998265422209826555555555555555555555555555555555555                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |

-

I17

| .31    | .27    | .25     |                      |                 |                 |                            |                  |
|--------|--------|---------|----------------------|-----------------|-----------------|----------------------------|------------------|
| .02630 | .02403 | .01606  |                      |                 |                 |                            |                  |
| .02633 | .02409 | .01608  |                      |                 |                 |                            |                  |
| .43766 | .46128 | . 32885 |                      | .586            | 2.240           | 1.337                      | 2.385            |
| .72142 | .57176 | .48072  | NGE .1 TO 2.5 SEC.   | SPECTRUM -      | SPECTRUM -      | ION RESPONSE VALUE -       | RESPONSE VALUE - |
| .22638 | .27531 | .20935  | ERIOD RANGE .1 T     | F ACC. RESPONSE | F VEL. RESPONSE | ACCELERATION RESPONSE VALU | VELOCITY RESP    |
| 3.25   | 3.75   | 4.00    | VALUES IN PERIOD RAN | AREA O          | AREA 0          | MAX. A                     | MAX. V           |
| S Y    |        | 80      |                      |                 |                 |                            |                  |

----

TIMES AT WHICH MAX SPECTRAL VALUES OCCUR TD - TIME FOR MAX. RELATIVE DISP. TV - TIME FOR MAX. RELATIVE VEL. TA - TIME FOR MAX. ABSOLUTE ACC.

DAMPING RATIO - .05

| PERIOD |         | TIMES FOR MAXIMA | <b></b> |
|--------|---------|------------------|---------|
|        | TD      | TV               | TA      |
| .00    | 10.3400 | 13.3200          | 10.3400 |
| .10    | 10.3400 | 3.4600           | 10.3400 |
| .15    | 3.6400  | 3,6000           | 3.6400  |
| . 20   | 13.4200 | 10.4400          | 13.4200 |
| .25    | 10.5200 | 2.8200           | 13.4400 |
| . 30   | 11.1600 | 11.0800          | 11.1600 |
| .35    | 3.9200  | 10.7000          | 3.9000  |
| .40    | 15.8600 | 15.9600          | 15.8600 |
| .45    | 13.7800 | 13.6600          | 13.7600 |
| . 50   | 13.8200 | 13.7000          | 13.8200 |
| . 55   | 19.1200 | 19.2400          | 19.1000 |
| .60    | 15.9600 | 15.8400          | 15.9600 |
| .65    | 13.9400 | 15.6400          | 13.9400 |
| . 70   | 14.0000 | 13.5200          | 13.9800 |
| .75    | 13.4000 | 13.3000          | 13.4000 |
| . 80   | 2.7600  | 13.3200          | 2.7400  |
| . 85   | 11.3600 | 10.2800          | 11.3600 |
| . 90   | 11.4000 | 15.6600          | 11.4000 |
| . 95   | 11.0800 | 13.3200          | 11.0600 |
| 1.00   | 9.2800  | 13.3200          | 9.2800  |
| 1.10   | 9.3200  | 9.1600           | 9.3200  |
| 1.20   | 9.0000  | 9.1600           | 8.9800  |
| 1.30   | 9.0200  | 9.1800           | 9.0000  |
| 1.40   | 9.0400  | 10.2800          | 9.0200  |
| 1.50   | 9.0800  | 13.3200          | 9.0600  |
| 1.60   | 10.1600 | 13.3200          | 10.1400 |
| 1.70   | 5.0400  | 13,3200          | 5.0000  |
| 1.80   | 5.0400  | 13,3200          | 5.0200  |
| 1.90   | 13.4400 | 13.3200          | 13.4000 |
| 2.00   | 13.4600 | 13,3200          | 13.4200 |
| 2.25   | 14.0400 | 13.3200          | 14.0000 |
| 2.50   | 14.0400 | 13.3200          | 14.0000 |
| 2.75   | 15.5600 | 13.3200          | 15.5200 |
| 3.00   | 14.4600 | 13.3200          | 14.3800 |
| 3.25   | 14.4800 | 15.4400          | 14.4400 |
| 3.50   | 16.5000 | 15.4600          | 16.4600 |
| 3.75   | 18.8800 | 15.4600          | 18.8400 |
| 4.00   | 18.9400 | 15.4600          | 18.8800 |

| VALUES   |
|----------|
| SPECTRAL |

| 1               |
|-----------------|
| RATIO           |
| DAMPING RATIO - |
| ROCK            |
| DVERLYING       |
| LAYERS (        |
| EIGHT I         |
| Record          |
| Sitka Record    |
| (72)            |
| 7/30/           |
| EQ (            |
| Alaska          |

| 00131 .25675 .25673<br>21315 .41535 .41630<br>41052 .52644 .53453                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| .10090 .57502                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| .10090                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| .10090<br>.31294 .57502<br>.36513 .57502<br>.21062 .43281<br>.98935 .32433<br>.92907 .27961<br>.77822 .27961<br>.77822 .21806<br>.88047 .23195<br>.88047 .23195<br>.57004 .14015<br>.57004 .11626<br>.41746 .09119<br>.50213 .10471                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| . 57502<br>. 57502<br>. 53369<br>. 33281<br>. 32433<br>. 32433<br>. 32433<br>. 32433<br>. 32433<br>. 3266<br>. 3266<br>. 14015<br>. 11626<br>. 11626<br>. 11626<br>. 11626<br>. 10471<br>. 10314<br>. 06897<br>. 07076                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |
| $\begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| . 10090<br>. 31294<br>. 31294<br>. 35513<br>. 21062<br>. 98935<br>. 92907<br>. 77822<br>. 88047<br>. 77822<br>. 77824<br>. 77822<br>. 88047<br>. 77822<br>. 7961<br>. 77825<br>. 10471<br>. 23195<br>. 106897<br>. 106897<br>. 44234<br>. 06897<br>. 06897<br>. 106897<br>. 106876<br>. 07076<br>. 106877<br>. 23195<br>. 27966<br>. 23195<br>. 23195                                                                                                                                                                                                                                                                                                                           |
| . 57502<br>. 57502<br>. 53369<br>. 63369<br>. 27961<br>. 27961<br>. 23195<br>. 23195<br>. 23195<br>. 23195<br>. 23195<br>. 23195<br>. 09119<br>. 00115<br>. 001167<br>. 001167<br>. 03163<br>. 03165<br>. 03 |

-

| .31    | . 29   | .27    | . 25   |  |                                      |                   |                      |                   |                  |
|--------|--------|--------|--------|--|--------------------------------------|-------------------|----------------------|-------------------|------------------|
| .02259 | .02194 | .01843 | .01503 |  |                                      |                   |                      |                   |                  |
| .02277 | .02251 | .01880 | .01540 |  |                                      |                   |                      |                   |                  |
| .37582 | .39308 | .35381 | .30783 |  |                                      | .417              | 1.814                | .947              | 1.396            |
| .66298 | .69147 | .57286 | .48696 |  | 0 Z.3 SEC.                           | SPONSE SPECTRUM - | SPECTRUM =           | ONSE VALUE -      | RESPONSE VALUE - |
| .19439 | .21896 | .21116 | .19597 |  | VALUES IN PERIOD RANGE .1 TO 2.5 SEC | Ē                 | <b>VEL. RESPONSE</b> | ACCELERATION RESP | LOCITY RESP      |
| 3.25   | 3.50   | 3.75   | 4.00   |  | VALUES IN PER                        | AREA OF           | AREA OF              | MAX. AC           | MAX. VELOCITY    |
| 35     |        | ~      | 38     |  |                                      |                   |                      |                   |                  |

NOTE: TABLES FOR OTHER THREE DAMPING RATIOS NOT SHOWN

## 1 PLOT OF ACCELERATION SPECTRA

100 PER CENT CORRESPONDS TO 1.3369

|   |        | 10      | 20                | 30        | 40     | 50         | 60      | 70          | 80          | 90         | 1002   |
|---|--------|---------|-------------------|-----------|--------|------------|---------|-------------|-------------|------------|--------|
|   |        | + +     | +                 | +         | +      | +          | +       | +           | +           | +          | +      |
| x | .0010  | ******  | ++++ <b>X</b> +++ |           | ****** | ++++++++++ | ******* | *******     | +++++++++++ | +++++++++  | ****** |
| х | .1000  | +       |                   | X32       | 1      |            |         |             |             |            | +      |
| х | .1500  | +       |                   | 543       | 2      |            | 1       |             |             |            | +      |
| х | .2000  | +       |                   | 543       |        |            |         |             |             |            | +      |
| х | . 2500 | +       |                   |           | 5 4 32 | 1          |         |             |             |            | +      |
| x | . 3000 | +       |                   |           |        | 5 4        | 3       | 2           |             |            | 1      |
| х | . 3500 | +       |                   |           | 5432   |            | 1       |             |             |            | +      |
| х | . 4000 | +       |                   | 54        |        |            | 1       |             |             |            | +      |
| х | . 4500 | +       |                   | 54        | 32     |            |         | 1           |             |            | +      |
| х | . 5000 | +       |                   | 54 3      | 2      |            |         | 1           |             |            | +      |
| х | . 5500 | +       | 54                | 32        |        |            | 1       |             |             |            | +      |
| х | .6000  | +       | 543               | 2         | 1      |            |         |             |             |            | +      |
| х | .6500  |         | 64 3 2            | 1         |        |            |         |             |             |            | +      |
| x | .7000  |         | 32 1              |           |        |            |         |             |             |            | +      |
| Х | .7500  |         | 32                | 1         |        |            |         |             |             |            | +      |
| х | . 8000 | + X 1   |                   |           |        |            |         |             |             |            | +      |
| х | .8500  | +X2 1   |                   |           |        |            |         |             |             |            | +      |
| х | . 9000 | X 1     |                   |           |        |            |         |             |             |            | +      |
| х | . 9500 | 32 1    |                   |           |        |            |         |             |             |            | +      |
| x | 1.0000 | 32 1    |                   |           |        |            |         |             |             |            | +      |
| х | 1.1000 | 1       |                   |           |        |            |         |             |             |            | +      |
| х | 1.2000 | +       |                   |           |        |            |         |             |             |            | +      |
| x | 1.3000 | +       |                   |           |        |            |         |             |             |            | +      |
| x | 1.4000 | +       |                   |           |        |            |         |             |             |            | +      |
| x | 1.5000 | +       |                   |           |        |            |         |             |             |            | +      |
| x | 1.6000 | +       |                   |           |        |            |         |             |             |            | +      |
| x | 1.7000 | +       |                   |           |        |            |         |             |             |            | +      |
| x | 1.8000 | +       |                   |           |        |            |         |             |             |            | +      |
| х | 1.9000 | +       |                   |           |        |            |         |             |             |            | +      |
| х | 2.0000 | +       |                   |           |        |            |         |             |             |            | +      |
| x |        | +++++++ | +++++++           | ********* | ****** | ******     |         | +++++++++++ | ++++++++++  | ++++++++++ | ++++++ |
|   |        | + +     | +                 | +         | +      | +          | +       | +           | +           | +          | +      |
|   |        | 0 10    | 20                | 30        | 40     | 50         | 60      | 70          | 80          | 90         | 100    |

\*\*\*

\*\*\*\*\*

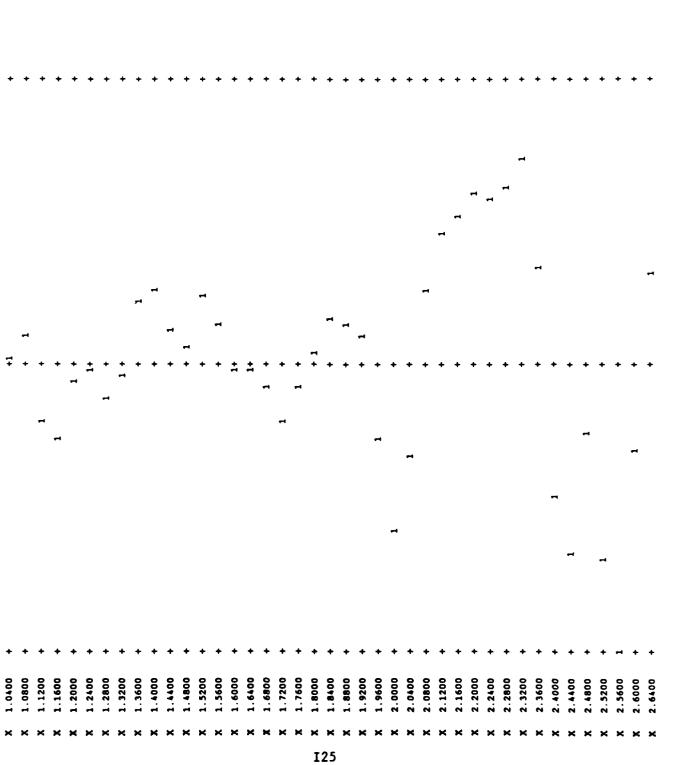
\*

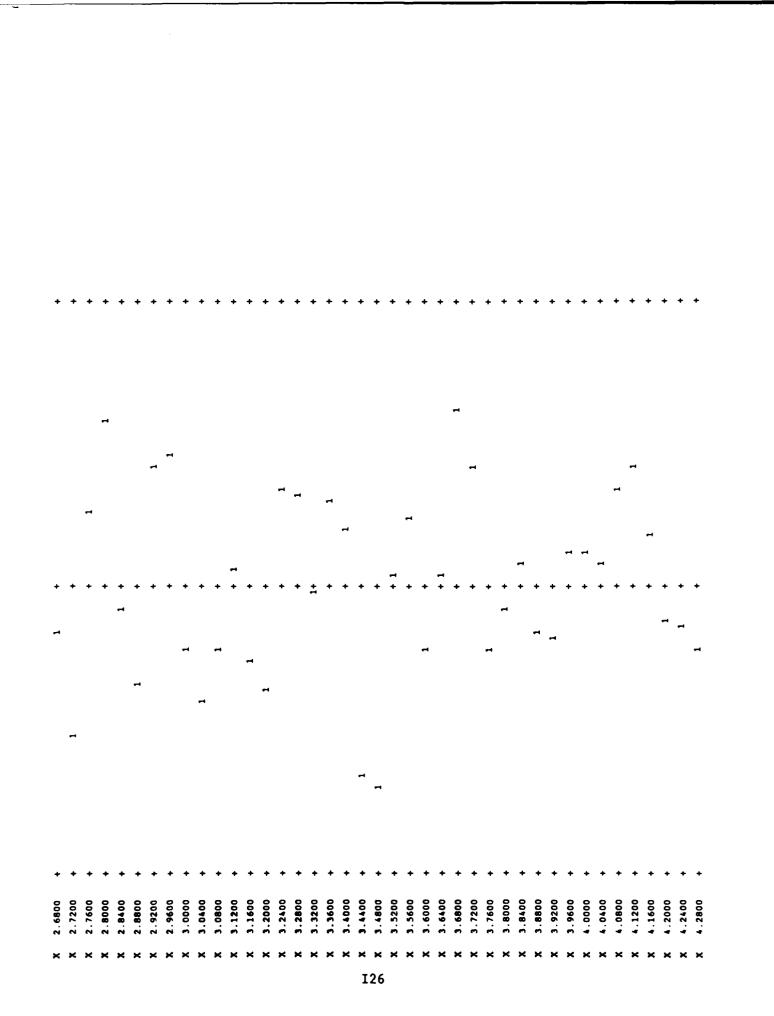
\*\*\*\*\*\* PERIOD IN SECONDS

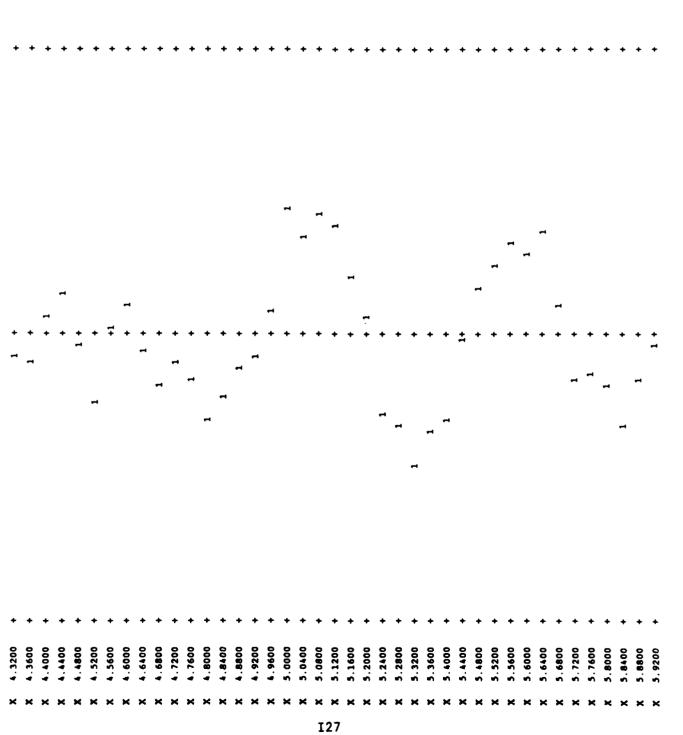
| CURVE | 1 | 2.00  | 8 | DAMPING |
|-------|---|-------|---|---------|
| CURVE | 2 | 5.00  | € | DAMPING |
| CURVE | 3 | 7.00  | 욯 | DAMPING |
| CURVE | 4 | 10.00 | 8 | DAMPING |
| CURVE | 5 | 12.00 | € | DAMPING |

|   |         | 0115115 1 |         |         |         |         |
|---|---------|-----------|---------|---------|---------|---------|
| 1 | ABSISSA | CURVE 1   | CURVE 2 | CURVE 3 | CURVE 4 | CURVE 5 |
|   | .001    | . 257     | . 257   | .257    | . 257   | . 257   |
|   | .100    | .477      | .415    | .403    | . 389   | . 382   |
|   | .150    | . 803     | . 526   | .431    | .408    | .401    |
|   | . 200   | . 562     | .493    | .460    | .422    | .401    |
|   | . 250   | . 687     | . 543   | . 531   | . 504   | .482    |
|   | . 300   | 1.337     | .947    | . 798   | .676    | .612    |
|   | . 350   | .797      | . 566   | . 540   | . 506   | .476    |
|   | .400    | . 763     | . 576   | .515    | .450    | .423    |
|   | .450    | . 928     | . 575   | .499    | .434    | .406    |
|   | . 500   | . 895     | . 534   | .455    | . 388   | . 354   |
|   | . 550   | . 797     | .433    | . 347   | . 283   | .261    |
|   | .600    | .510      | . 324   | .281    | .240    | .221    |
|   | .650    | .412      | . 280   | .237    | .197    | .183    |
|   | .700    | . 276     | .218    | . 206   | .192    | .184    |
|   | .750    | . 328     | . 232   | . 200   | .176    | .165    |
|   | .800    | . 182     | .140    | .136    | .132    | .130    |
|   | .850    | .167      | .116    | .106    | .101    | .102    |
|   | . 900   | .127      | .091    | .087    | .087    | .089    |
|   | . 950   | .150      | .105    | .090    | .079    | .078    |
|   | 1.000   | . 149     | .103    | .089    | .078    | .074    |
|   | 1.100   | .087      | .069    | .067    | .062    | .059    |
|   | 1.200   | .087      | .071    | .065    | .060    | .058    |
|   | 1.300   | .060      | .062    | .060    | .057    | .055    |
|   | 1.400   | .076      | .063    | .057    | .052    | .049    |
|   | 1.500   | .066      | .047    | .043    | .040    | .039    |
|   | 1.600   | .054      | .037    | .033    | .031    | .033    |
|   | 1.700   | .043      | .032    | .030    | .030    | .032    |
|   | 1.800   | .036      | .032    | .029    | .030    | .031    |
|   | 1.900   | .033      | .031    | .030    | .030    | .031    |
|   | 2.000   | . 050     | .037    | .033    | .030    | .029    |
|   | 2.250   | . 039     | .034    | .032    | .030    | .029    |
|   | 2.500   | . 037     | .033    | .032    | .030    | . 029   |
|   | 2.750   | .041      | .033    | . 029   | . 027   | .026    |
|   | 3.000   | . 022     | .022    | .022    | .021    | . 020   |
|   | 3.250   | . 026     | . 023   | .021    | .019    | .018    |
|   | 3.500   | . 029     | .023    | .020    | .017    | .016    |
|   | 3.750   | .024      | .019    | .017    | .015    | .015    |
|   | 4.000   | .016      | .015    | .015    | .014    | .013    |

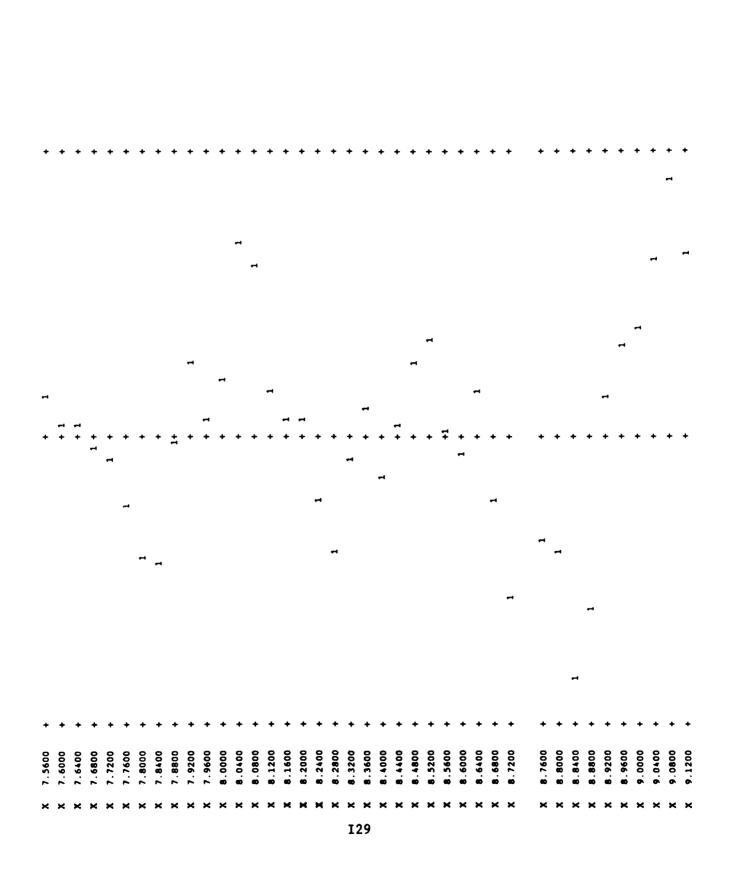
\*\*\*\*\*\* OPTION 16 \*\*\* COMPUTE STRESS/STRAIN HISTORY

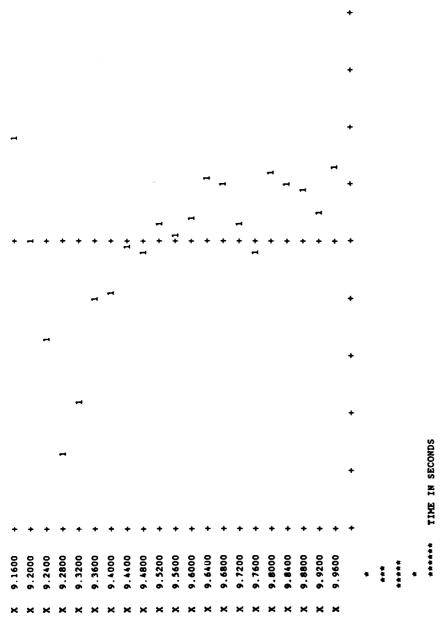

COMPUTE STRESS OR STRAIN TIME HISTORY AT THE TOP OF LAYER 5 SCALE FOR PLOTTING - .0000 IDENTIFICATION - Sand and gravel layer


**1 TIME HISTORY OF STRESS IN KIPS** 


NOTE: (Every other point removed from OUTPUT file for this plot)

100 PER CENT CORRESPONDS TO .3227


|   |        |       | \$ | 2001           |         |        | >         | 7       | 40                                      | 2          | , ,   | IOU PER CENT |
|---|--------|-------|----|----------------|---------|--------|-----------|---------|-----------------------------------------|------------|-------|--------------|
|   |        | +     | +  | +              | +       | +      | +         | +       | +                                       | +          | +     | ÷            |
| × | .0000  | ***** |    | ************** | ******* | ****** | ++++1++++ | ******* | +++++++++++++++++++++++++++++++++++++++ | ++++++++++ | ***** | ******       |
| × | .0400  | +     |    |                |         |        | 1         |         |                                         |            |       | +            |
| × | .0800  | +     |    |                |         |        | 1         |         |                                         |            |       | +            |
| × | .1200  | +     |    |                |         |        | 1         |         |                                         |            |       | +            |
| × | .1600  | +     |    |                |         |        | + 1       |         |                                         |            |       | +            |
| × | .2000  | +     |    |                |         |        | + +       |         |                                         |            |       | +            |
| × | .2400  | +     |    |                |         | -      | +         |         |                                         |            |       | +            |
| × | . 2800 | +     |    |                |         |        | + 1       |         |                                         |            |       | +            |
| × | .3200  | +     |    |                |         |        | 1         |         |                                         |            |       | +            |
| × | .3600  | +     |    |                |         | 7      | +         |         |                                         |            |       | +            |
| × | .4000  | +     |    |                |         | •      | +         |         |                                         |            |       | +            |
| × | .4400  | +     |    |                |         | 1      | +         |         |                                         |            |       | +            |
| × | .4800  | +     |    |                |         |        | 1         |         |                                         |            |       | +            |
| × | .5200  | +     |    |                |         |        | 1         |         |                                         |            |       | +            |
| × | .5600  | +     |    |                |         |        | 1+        |         |                                         |            |       | +            |
| × | .6000  | +     |    |                |         |        | 1+        |         |                                         |            |       | +            |
| × | .6400  | +     |    |                |         | -      | +         |         |                                         |            |       | +            |
| × | . 6800 | +     |    |                |         |        | 1+        |         |                                         |            |       | +            |
| × | .7200  | +     |    |                |         |        | +         |         |                                         |            |       | +            |
| × | .7600  | +     |    |                |         |        | +         |         |                                         |            |       | +            |
| × | .8000  | +     |    |                |         | -      | +         |         |                                         |            |       | +            |
| × | .8400  | +     |    |                |         | 1      | +         |         |                                         |            |       | +            |
| × | .8800  | +     |    |                |         |        | +         |         |                                         |            |       | +            |
| × | .9200  | +     |    |                |         |        | +         | 1       |                                         |            |       | +            |
| × | .9600  | +     |    |                |         |        | +         |         |                                         |            |       | +            |
| × | 1.0000 | +     |    |                |         |        | 1 +       |         |                                         |            |       | +            |














| CURVE 1   | 2.00 % DAMPING |
|-----------|----------------|
| 1 ABSISSA | CURVE 1        |
| .000      | . 000          |
| . 020     | .000           |
| . 040     | .000           |
| .060      | .000           |
| .080      | .000           |
| . 100     | 002            |
| .120      | 003            |
| . 140     | .010           |
| .160      | .014           |
| .180      | .002           |
| . 200     | 016            |
| . 220     | 023            |
| . 240     | 027            |
| . 260     | 024            |
| . 280     | 019            |
| . 300     | 006            |
| . 320     | 001            |
| . 340     | 013            |
| . 360     | 040            |
| . 380     | 061            |
| .400      | 064            |

# (intermediate lines not shown)

| 0 700  | .056  |
|--------|-------|
| 9.700  |       |
| 9.720  | .019  |
| 9.740  | 017   |
| 9.760  | 010   |
| 9.780  | . 045 |
| 9.800  | .076  |
| 9.820  | .073  |
| 9.840  | .062  |
| 9.860  | .067  |
| 9.880  | . 058 |
| 9.900  | .033  |
| 9.920  | . 029 |
| 9.940  | . 050 |
| 9.960  | .085  |
| 9.980  | . 110 |
| 10.000 | .133  |
| 10.020 | .138  |
| 10.040 | .083  |
| 10.060 | 031   |
| 10.080 | 126   |
| 10.100 | 164   |
| 10.120 | 144   |
| 10.140 | 109   |
| 10.160 | 125   |
| 10.180 | 125   |
|        |       |
| 10.200 | 248   |
| 10.220 | 204   |

## Waterways Experiment Station Cataloging-in-Publication Data

Sykora, David W.

USACE geotechnical earthquake engineering software. Report 1, WESHAKE for personal computers (version 1.0) / by David W. Sykora, Ronald E. Wahl and David C. Wallace ; prepared for Department of the Army, U.S. Army Corps of Engineers.

215 p. : ill. ; 28 cm. — (Instruction report ; GL-92-4)

Includes bibliographic references.

1. Earthquake engineering — Computer programs. 2. Engineering geology — Computer programs. 3. WESHAKE (Computer program) 4. Soil mechanics — Computer programs. 1. Wahl, Ronald E. II. Wallace, David C. III. United States. Army. Corps of Engineers. IV. U.S. Army Engineer Waterways Experiment Station. V. Title. VI. Series: Instruction report (U.S. Army Engineer Waterways Experiment Station); GL-92-4.

TA7 W34i no.GL-92-4

# (back cover)

As of this publication date, the software and user's manuals available are:

Report 1 WESHAKE for Personal Computers (Version 1.0)

As of this publication date, the software and user's manuals available are:

\_\_\_\_

Report 1 WESHAKE for Personal Computers (Version 1.0)