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1-0 Visionn Environment Renort Overview

This report presents the functional specifications and top-level constructs of the
core design of an image understanding (IU) application development environment.
It also addresses system engineering issues in applying the environment to develop
workstations specialized for terrain analysis and medical applications. The
environment build has also been started this year.

In addition to designing and building this nearterm environment, Advanced Decision
Systems (ADS) and Georgia Institute of Technology (GT) have actively participated in
the IU community's design of a DARPA-ISTO sponsored, portable IU software
environment. This environment is intended to facilitate the transfer of IU
community technology into industrial, military, and commercial applications. GT and
ADS headed the design committee on knowledge representation in the preliminary
design effort from 5/90 through 9/90, and are currently a part of an independent
design team in the continuing design effort.

The core environment presented in this report provides tools to leverage the
development of IU applications and to facilitate transfer of IU and reasoning
technology from its origins in research laboratories into IU applications. The core
environment provides both a development platform and reusable components
including a library of image processing and IU routines and data structures, and an
integrated set of higher-level reasoning capabilities such as bayesian networks and
logic engines. This layered software evnvironment concept is pictured in
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Figure 1: IU Application Development Environment Concept
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This program is focused on the design and development of the core objects necessary
for the foundataion of the environment. These correspond to the shaded boxes in
Figure 1. The primary accomplishments of the project so far include

• Creation of a functional specification and top level design for an IU software
environment integrating model-based reasoning, image processing, automated
inference and hypermedia capability,

"• Development of an IU environment class structure,

"* Implementation of a partial object hierarchy, including build of a basic set of
user interface and imagery manipulation classes, extension of image objects to
include arbitrary gray level polygons, graphical interaction with remote
databases, and Bayes net objects integrated with feature extraction capabilities,

& Providing a system engineering analysis of tasks and requirements for
diverse IU applications and distilled a common core of IU workstation
requirements, and

• Identifying and integrating key public domain software to provide image
processing and user interface capabilities.

The environment design is an object oriented structure built on the C++
programming language. The design describes object representations that are used
for the different classes of objects in the environment. Object representations are
designed to provide a direct and useful interface to environment capabilities and
programming constructs. The report also provides discussions of user interface, IU
routines, inference, database and other capabilities, and how these facilities are
integrated with the object representations.

The goal of the object oriented development approach is to build C++ objects to
support interpretation of spatial and temporal data. This is primarily targeted for IU
applications, though the techniques are applicable to other applications where
reasoning about complex data is involved. C++ was chosen because it is a widely used,
efficient, object-oriented extenrion of C, that facilitates the integration of public
domain code, commercial programs and hardware devices.

The core set of C++ objects serves as a foundation for the representation of spatial,
temporal and symbolic entities central to application development of IU and decision-
aiding systems. It is intended that application developers will extend the object
classes to create objects customized for their application.

The typical application IU system requires signal and/or image processing, symbolic
reasoning, and inferencing capability, an interactive user interface for inspecting
and manipulating the processing results, and an associated database for storing the
original data and the derived results. Application developers require the following
basic capabilities in their development environment:

* Objects that represent spatial/temporal data and models
* Objects that represent reasoning/inference knowledge
* Interactive display capability
* Remote storage and retrieval capability
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The application developer can extend the baseline of objects and methods as required
by their particular application. These objects promote the interoperability of
higher-level C++ modules that conform to them. Figure 2 shows the relationships
between these environment concepts.

User System
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User
Search

and Spatial Objects
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Transform- Storage Objects

ation (Collections)
User/

ProcessingI

Object SybmeCreation -
and TeDeletion

Location Value
Data Data

Figure 2: Vision Environment Architecture

The remainder of this document presents our design of these C++ objects and their
associated class hierarchy. The hardware and software environment assumptions are
described in Section 2. Section 3 describes the core spatio-temporal object classes,
section 4 describes user interface objects and methods, and section 5 discusses
database classes. Together, these objects comprise the major functional components
of the design. Section 6 shows the top-level set of code libraries. Code libraries can
include objects, but much of a code library contains procedural routines for doing
various tasks. These are mostly intended to be wrapped as methods for core objects,
although it is possible for the application programmer to use them in traditional
programming paradigms, and in novel uses such as functions for concatenation
through mapping function wrappers (section 3.4.1.2). Section 7 presents key
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implementation issues that are considered in the design, including our approach to
access of external databases, and the addition of code (sub-)Iibraries.

Terrain analysis and medical IU applications are presented in section 8. Terrain
feature extraction from imagery and tissue segmentation in radiographs are
analyzed to distill a common core of functionality required in the IU environment.
This core provides the reusable infrastructure of the IU environment. Initial results
are shown, including the re- implementation in the C++ environment of a Lisp/C
program that performed model-based segmentation of hand radiographs using
Bayesian inference for accrual of feature evidence.

Appendix A lists the core IU object class structure. Appendix B lists public domain
image processing software packages that were considered for integration into the
environment.



2-0 IU Environment Annroach and Capahilities

Any IU environment aspires to support or possess all of the following goals
and attributes.

* availability of algorithms
* execution efficiency
* interoperability
* verifiability
* portability

* extensibility
• coding efficiency
* function/data composability
* customizability

Efforts on other IU research and technology transfer environments [Quam,
84, KBVision, 87, Lawton and McConnell, 88, Lawton and Levitt, 89. Waltzman,
90] suggest that the first five goals are of primary importance for
environments aimed at development of robust IU applications using well-
understood IU technologies, i.e. technology transfer, while the second four are
goals associated with rapid prototyping efforts common in IU research and
innovative development of IU technology. This effort is focused at the goals
that foster technology transfer.

In the following, we summarize hardware and software choices for a
nearterm system build, then describe the fundamental philosophies and
techniques for environmental software development. The third subsection
presents results of programming instances designed to develop, test and
demonstrate applications of the environmental constructs.

2.1 Workstation Hardware and Software Choices

Because of the bias towards technology transfer, and the desire to produce
this environment within two years, environment component choices have
largely been driven by current availability and pievalence of use of hardware
and software options. Another driving factor was that as much as possible of
the environment should be public domain, so that source code can be provided
at minimal cost.

The basic development and user system is a Sun 3, 4 or Sparc workstation
with a minimum of 12 megabytes core memory, keyboard and mouse, a color
display and at least 300MB magnetic or read/write optical disk. A Vitek image
processing acceleration board is under consideration for inclusion in the
environment.

The software development environment is the Berkeley Unix 4.2 operating
system on a Sun workstation, though compatibility to other Unix
implemer'ations and other workstations is maintained where reasonable. We
have chosen C++ as the programming language. This choice is based largely on
its efficiency, its relatively good compatiblity with C, and its nearterm
widespread acceptance in the technology transfer community, i.e. the non-
academic IU application development community. We have chosen the Free
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Software Foundation's Gnu Compiler over AT&T's 2.0 C++ compiler for two
reasons. The first is that the Gnu compiler generates faster, more efficient
code because it is a true compiler and not just a preprocessor to a C compiler.
The other reason is the availability of the compiler source code makes it
portable to forsetable future (Unix) platforms.

X Windows is used for managing displays. The InterViews toolkit from
Stanford provides a C++ interface to the X Windows package. IDraw, another
Stanford product, provides the interactive graphic window interaction.
Khorus, a public domain image processing library from the University of New
Mexico, provides both the standard set of image processing functions as well as
2D plotting capabilities. Other public domain software packages being
integrated in the basic environment include the CLIPS logic engine and rule-
base package, the NCSA 3d display routines, and several neural net packages.

2.2 Core Spatial and Temporal Class Hierarchy

The class hierarchy is based on the structures developed in PowerVision
and View [McConnell et. al., 88, Edelson et.al., 88]. In particular, the basic
hierarchy of spatial classes and the concepts of transforms, function
concatenation, virtual function wrappers, and programmable database-like
search for perceptual grouping were all present in the original PowerVision
implementation.

The current design has made strides in uniformity of these structures,
cleaned up the relationship between objects and their display methods by
associating display methods to the display objects (e.g. windows) rather than
the source objects (e.g. a polygon), and has added class structures for
coordinates. This design creates fundamental links between the geometric
structure implied by coordinates and the programmability of search for
perceptual grouping, as well as the linking together of lower dimensional
spatial structures to form higher dimensional structures.

The core objects are organized into four general classes: scalars,
collections, containers and coordinates. The scalars are the standard numerics
and symbols of C++. Collections are general groupings of objects including
arrays, streams, and graphs. Containers are groupings of objects that
necessarily have an implied dimensionality and corresponding coordinate
systems and imbedding spaces. Containers are inherently spatial: images,
curves, solids, voxels, polygons, etc. Coordinates are objects that represent
coordinate systems. Local coordinates are objects that are necessarily included
within other objects (including other coordinates), while global coordinates
can be disembodied.

Containers are designed to wrap around collections, and embed them in a
coordinate system. Loosely speaking, we think of the semantic objects in IU
systems, such as images, surfaces and volumes, as collections of values
associated with coordinate systems. The grouping together in a systematic way
of collections with coordinates forms containers. An array of integers is a
collection. An array of integers associated with coordinates indicating the
context of the array in pixels and centimeters is a container that is of the class
Image. Figure 3 shows how containers, coordinates and collections relate to
each other, and how they fit into an overall system.

Containers necessarily havc coordinate objects and are closely tied to the
user interface. The coordinate systems of the containers can map into the
display coordinate systems. The display window itself is represented as a
container. The necessary projections, translations, rotations, and scaling are
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implemented by "virtual" containers that wrap around previously instantiated
containers and convert them into the appropriately appearing object.

Collections do not have associated coordinate objects, although they can
have indices, such as indexes for an array. Collections are closely tied to the
underlying devices. For example, a collection can be made to correspond to a
device such as an image scanner. The scanned image becomes an array (one
representation of a collection). Efficient access, traversal and transformations
are built as methods on collections. Another example is a neighborhood
operation like convolution. It can be realized as a collection of data and a
method that manages buffers to create fast virtual memory access to the data
ir. the collection.

Tranforms are procedures that operate on containers, coordinates and
collections and produce containers, coordinates and collections as output.
Although it is possible to represent transforms as containers, providing a
pleasing uniformity of data types, it can be semantically confusing to the user.
Because technology transfer is a fundamental goal, we have erred on the side
of clarity rather than uniformity. So an image is called an image, for example,
instead of a function that represents a 2d surface in 3space. We intend to
overload class names to permit users both views of appropriate objects.

Where it is not confusing, transforms are represented as overloaded
constructors of the class of their output objects. For example, a histogram is a
constructor method for the one-dimensional signal that is the output of the
histogram transform on an image.

When possible, transforms are defined on containers but implemented on
the (coordinate-free) collections to maximize reusability. For 'example, a one-
dimensional smoothing filter can be implemented on an array, then be usable
on any linear collection of data, such as an image row, a curve in 3 space, or a
specific travprsal of the edcfes of a solid. So the filter can be represented at the
more abstr .e' l:i f the container hierarchy as a method on a curveNd (i.e. a
one-dimensional curve in N space), enabling polymorphism.

In section three, collection, coordinate and container objects are described
in detail. There is also a description of how containers and collection objects
are efficiently traversed, accessed and searched.

2.3 Current Environment Capabilities

The current environment status represents five months of design and
three months of implementation on a 27 month effort. The Khorus image
processing package has just become available as of the writing of this report
and is not yet integrated in the environment Therefore, implementation
results focus on basic user interface and database capabilities.

InterViews and IDraw are public domain object oriented user interface
toolkits built on top of X Windows. To date, ADS has extended the graphical
object hierarchy of InterViews and IDraw in two ways: the addition of images
and of Bayes nets.

Within IDraw, images are first class objects. The user can put an image
object into the drawing by clicking with the mouse and pulling out a rubber
rectangle to define the outline of the image. The system presents the user with
a menu of files, and when the image file has been chosen, inserts the image
into the designated rectangle in the drawing, clipping the image if necessary.

Once an image object is defined and displayed, the user can perform a
variety of drawing operations on it, as with any drawing object. Images can be
moved, scaled, stretched in width or height, or rotated. Arbitrary image

7



warping is currently being implemented. In addition the user can draw any
kind of graphical object on top of the image, and then group the object with
the image, allowing drawing operations to be performed on both objects
simultaneously. For example, the user can draw a colored polygon over a
region of interest on an image, then group the polygon with the image into a
composite object, then scale and rotate the composite object. The polygon still
covers the same area of interest on the image. These capabilites are shown in
figure 4. (To save space, some photos have been cropped so that the full
computer screen is not shown.)

Rather than detailing each additional capability, we show our current state
of implementation through two interactive processing scenarios. They
demonstrate the benefits of an integrated object hierarchy, the use of images
as first class objects, uniform representation of display and interactive object
manipulation, and seamless access to remote processes.

The first application is diagnosis of arthritis from evidence extracted from
a hand xray pictured in figure 5. Nodes and links are included as graphical
objects. Graphically accessible methods are associated to form, in this ,;xample,
a Bayes net object. Evidence can be acquired from images by measurement,
and the evidence propagated through the Bayes net. Probabilities can be
graphically inspected. For example, given a Bayes net that draws inferences
about a disease condition of arthritic hands called periarticular
demineralization, it is possible to take measurements on an xray of a hand in
order to obtain evidence for the Bayesian network.

As illustrated in figure 5, the user loads the xray as an image object, draws a
line down the middle of one of the finger bones (phalanges) and asks for a plot
of the intensity values under the line by selecting "Profile" from a menu. The
plot is shown in a window. A measure is taken of the relative density between
the ends of the phalanx and the average density along the axis. This measure is
added to the Bayes net as evidence by selecting the image, line and relevant
Bayes node and selecting "Add Evidence" from the list of Bayes net menu
options. The impact of the evidence at any point in the net can be seen by
selecting the desired node and the menu choice "Show Belief". It is displayed as
a probability histogram over the possible hypotheses at the node. In figure 5
these hypotheses are "demineralization" and "normal".

The second application scenario involves interactively querying a digital
terrain database stored in Sybase. Figure 6 shows seamless interaction with an
external process through a graphical interface. The user brings in an image
of a map that is registered with the digital database. A region of interest is
selected by drawing an ellipse on the map. Selecting the appropriate terrain
layers and the "Retrieve" option from menus, a message is sent to Sybase,
generating an SQL query. In this case, the database is populated with data on
offshore oil wells, so a popup window of the wells in the region is displayed
when the query results are returned.

8
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Figure 5. Integrated Image Feature Extraction and Bayesian Inference
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3.0 Core Snatial and Temnoral Ohiects

The core objects are high-level data structures in the technology domains of interest:
image/signal interpretation, model-based reasoning, and hypermedia. The core
objects are inherently hierarchical, with objects that decompose into member
objects, that decompose into further objects, until the inner-most scalar objects, or
values, are obtained. One of the advantages of the hierarchical representation is that
it takes advantage of the (multiple) inheritance of attributes and methods that is built
into C++.

The core objects are organized into four general classes: scalars, collections,
containers and coordinates. The scalars are the standard numerics and symbols of
C++. Collections are general groupings of objects: arrays, streams, graphs. Containers
are groupings of objects that necessarily have an implied dimensionality and
corresponding coordinate systems and imbedding spaces. Containers are inherently
spatial: images, curves, solids, voxels, polygons, etc. Coordinates are objects that
represent coordinate systems. Local coordinates are objects that are necessarily
included within other objects (including other coordinates), while global coordinates
can be disembodied.

Containers are designed to wrap around collections, and embed them in a coordinate
system. Collections and coordinates are used in various ways to build containers.
Figure 3 shows how containers, coordinates and collections relate to each other, and
how they fit into an overall system.

I

?I I

Figure 3: Core Object Relationships
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Containers necessarily have coordinate objects and are closely tied to the user
interface. The coordinate systems of the containers can map into the display
coordinate systems. The display window itself can be represented as a container. The
necessary projections, translations, rotations, and scaling are implemented by
"II"virtual" containers that wrap around previously instantiated containers and
convert them into the appropriately appearing object.

Collections do not have associated coordinate objects, although they can have indices,
such as indexes for 3n array. Collections are closely tied to the underlying devices.
For example, a collection can be made to correspond to a device such as an image
scanner. The scanned image becomes an array (one representation of a collection).
Efficient access, traversal and transformations are built as methods on collections.
Another example is a neighborhood operation like convolution that can be realized
as a collection of data and a method that manages buffers to create fast virtual
memory access to the data in the collection.

Tranforms are procedures that operate on containers, coordinates and collections and
produce containers, coordinates and collections as output. Where it is not confusing,
transforms are represented as overloaded constructors of the class of their output
objects. For example, a histogram is a cosntructor method for ValuedCurveld that is
the output of the histogram transform on an image. Where possible, transforms are
defined on containers but implemented on the (coordinate-free) collections to
maximize reusability. For example, a one-dimensional smoothing filter can be
implemented on an array, then be usable on any linear collection of data, such as an
image row, a curve in 3 space, or a specific traversal of the edges of a solid. So the
filter can be represented at the more abstract level of the container hierarchy as a
method on a curveNd (i.e. a 1 dimensional curve in N space), enabling polymorphism.

The next three subsections describe the collection, coordinate and container objects
in detail. This is followed by a description of how containers and collection objects
are efficiently traversed, accessed.and searched.

3.1 Collection Objects

Three classes of collection objects are planned: Stream, Graph, and Array. They can
be characterized by the style of traversing and accessing the collection. Streams are
traversed in a sequential manner, where the next access is restricted to the neighbor
in a single forward direction. Graphs are traversed in a linked manner, where the
next access is restricted to nearest neighbors in any direction. Arrays are traversed
in a random manner, where the next access is unrestricted. IS-A hierarchy of
collections in Figure 7.

Collection

I I I
Array Stream Graph

F I I I Tree
Array2d Array3d ArrayNd Stream2d Stream3d StreamNd I

List

Figure 7: Collection Objects
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3.1.1 Collection Classes

Any collection can group any set of core objects. Arrays can collect other arrays, or
streams, or graphs, or scalar objects. Specific subclasses and/or methods are supplied
for optimizing homogeneous sets of scalar objects.

The collection class hierarchy can be extended to wrap a stream, graph, or array
around external sources. A character stream can be wrapped around a serial port. An
array can be wrapped around a frame buffer. A graph can be wrapped around a
Connection Machine or Transputer topology.

3.1.1.1 Streams

Streams are inherently linear collections. A series of objects is followed by an end-
of-stream object. Higher dimensional streams are represented as nested streams. A
buffered stream is supported to speed access of stream objects.

3.1.1.2 Graphs

Graphs are the general case of a linked data structure. A tree is a subclass of graph,
and a list is a subclass of tree. This class hierarchy allows lists and trees to be
manipulated by graph traversing routines, e.g.,"WalkDepthFirst". Graphs can store
heterogeneous collections of objects. Graphs are implemented with separate node and
arc objects. At this time we do not plan to support special subclasses for specific types

3.1.1.3 Arrays

Arrays are randomly-accessible object collections. The most general array is a linear
collection of objects. Subclasses are defined that allow this linear collection of objects
to be indexed with 2, 3, or N indices.

3.1.2 Collection Methods

The basic methods for a collection are as follows:

constructors -creation and conversion routines
destructors -memory/process/device deallocation routines
printers -ASCII printing routines
traversers -universal location generation routines
searchers -selective location generation routines
accessors -value access routines

"Canstructors" allocate memory for a given object, then initialize this memory as
required. This includes initializing the mechanisms for storage/retrieval of data to
and from arbitrary sources (i.e. disk, display, digitizers, network, video disk).

"Destructors" deallocate memory, terminate, close and/or reset processes, devices and
mechanisms as required.

"Printers" generate ASCII formatted representations of an object, both pretty-printed
concise representations and full dumps.
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"Traversers" are methods for traversing the object, visiting each member object or
element in turn. Each traversal of an object has an associated current location.
Traversers accept a function pointer argument and apply the function at (a
neighborhood of) each location.

"Searchers" are incremental, partial traversal methods. A search routine operates at
the current location and chooses which location(s) to visit next., A search routine
accepts two, function pointers, applying one to the current location (neighborhood)
and the other to choose the next location(s).

"Accessors" are methods for accessing the member object stored at the current
location in the collection object. Access can be by value, or by reference to allow for
overwriting.

3.2 Container Objects

Container objects represent an S-dimensional containment of objects in R-space.

container

R-1 Pointi d Cuvel d

R-2 Point-2d Curve2d SurfacedR-3 Point3d Cu\tve~d Surface3d So~likd3d

R.-n PointNd CurveNd SurfaceNd SohidNd HypewSoidNd

S-0 S-I S-2 S-3 S-n
This is only the top of the container class hierarchy. Additional subclasses are
derived so that the leaf node classes of the hierarchy are realizations of more
familiar spatio-temporal data structures and procedures. A signal is subclass of a one-
dimensional container in 1-space. An image is a subclass of a two-dimensional
container in 2-space. A volumetric representation is a three-dimensional container
in 3-space. Constraints for a linear programming problem can be viewed as an N-
dimensional container in M-space.

The container subclasses are effectively parameterized by the dimensionality of the
container's topology, and the dimensions of the imbedding space. A 2d curve is a one-
dimensional container in 2-space. A 3d curve is a one-dimensional container in 3-
space. A polygonal region is a two-dimensional container in 2-space. A polygon3d is a
two-dimensional container in 3-space. A terrain elevation map is a two-dimensional
valued container in 2-space.

Specific classes of container are represented in multiple ways. For example, a three-
dimensional container in 3-space is a solid, and a solid can be represented
functionally (XA2 + YA2 + ZA2 <= 1), volumetrically (via voxels or octtree), or by a
surface model.

The cross-product of the S-dimensionality of the containers and the R-dimensionality
of the embedding space is represented by a class hierarchy where the top-level
branching is container dimensionality and the lower-level branching is embedded
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space dimensionality. Point, Curve, Surface, Solid, and HyperSolid are the
superclasses, and their subclasses correspond to the space the container is in.

To achieve efficiency, Od, Id, 2d, and 3d containers are implemented as special-cases,
and Nd containers are handled in a general fashion. In the same manner, containers
embedded in Id, 2d, and 3d spaces are implemented as special cases, and embedding in
Nd is handled in a general fashion. Beneath each branch of the container hierarchy
are three subclasses that reflect increasingly general ways of representing a
container:

1 - Constant Containers
2- Valued Containers
3- Connected Containers
4- Aggregate Containers

Constant containers describe the shape of a container without representing its
values , or "contents". The shape is defined to be its geometric representation in
Nspace, without values necessarily being defined at locations of the shape. Because a
shape is geometric, it usually has a boundary that we call its "shape boundary" to
distinguish it from other uses of the term. For example, a solid cylinder in 3space has
a solid cylinder as its shape, and a hollow cylinder as its boundary shape.

We can represent a force field acting on the solid cylinder by associating the
appropriate local magnitude and direction of the force field with each point of the
shape. This is an instance of a valued container. Valued containers have a shape
description and a content mechanism, whereby values such as scalars or more
complex objects can be associated or stored with each shape location.

Connected containers group other containers, relating them with a series of
coordinate transforms or other relations such as adjacency or attachment, and
merging them into a single connected entity. A CAD model of a single car built from
surface facets is a connected container. A smoothing pyramid is a connected
container, where image objects are related (connected) by the order of the
smoothing and sub-sampling operations that created them.

Aggregate containers group a disjoint set of containers into a single entity. The set of
CAD models of all cars manufactured at a particular plant is an aggregate container.

3.2.1 Container Classes

3.2.1.1 Point

Point has four subclasses, Pointld, Point2d, Point3d, and PointNd. Each represents a
single location, without length, area, or volume, in the particular space of that
dimension. For example, a Point2d is a point in 2 space.

3.2.1.2 Curve

Curve has four subclasses: Curveld, Curve2d, Curve3d, and CurveNd. Curveld is a
standard, one dimensional signal.

"Walklocations" is the general traversing mechanism for curves. It walks down
every pixel (voxel) that lie on the curve's paths. "Walkvertices" and "walk-edges"
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are supported as well for curves that are represented as collections of vertices or

edges.

3.2.1.3 Surface

Surface has three subclasses: Surface2d, Surface3d, and SurfaceNd. A one-
dimensional surface is not necessary. Surface2d represents images as well as the 2d
regions used in 2D modeling and 2D graphics.

The traversing mechanisms for surfaces (and solids) are grouped into two categories:

I- shape boundary traversal
2- shape traversal

Only the shape traversals are defined as methods on the surface object. The shape
boundary traversals are available as methods of the boundary object (a curve) that
surrounds the surface object. The methods concerned with traversing the shape of a
surface are:

walklocations traverse internal points of surface
walk-vertices traverse graph of surface regions where vertices are

nodes
walk-edges traverse graph of surface regions where edges are nodes
walkfaces traverse graph of surface regions where faces are nodes
walk-segments traverse series of straight-line segments that make up

surface regions

Specialized traversals are supported based on a particular underlying
implementation of a container. For example, a run-length encoded container has a
method of traversing by run-lists.

3.2.1.4 Solid

Solid has one subclass, called Solid3d for conformity. Lower dimensional solids are not
necessary. SolidNd describes shapes in higher dimensions that have only 3d volume,
and no higher dimensional "mass". Solid3d supports volumetric models, surface
models, and functional models of 3d shapes.

To traverse the boundary of a solid, the shape boundary container(s) is extracted,
e.g., surface2d, and the traversing methods of that container are used. To traverse the
shape of a solid, these methods are applied:

walklocations traverse internal points of solid
walkvertices traverse graph of solid regions where vertices (junctions)

are nodes
walk-edges traverse graph of solid regions where edges of solid

regions are nodes
walk-faces traverse graph of the faces of solid regions
walk_solids traverse graph of solids regions
walk-segments traverse series of straight-line segments that make up

solid regions
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3.2.1.5 HyperSolid

HyperSolid has one subclass, HyperSolidND. Lower dimensional hypersolids are

unnecessary. These can be represented with generalized volumetric techniques,

surface representation (collection of hyperplane constraints), and functional

representations.

Traverses are the same as for solids, generalized for N-dimensions.

3.2.2 Container Methods

The basic set of methods for a container are the following:

constructors -creation and conversion routines
destructors -memory/process/device deallocation routines

printers -ASCII printing routines
traversers -universal location generation routines
searchers -selective location generation routines
accessors -value access routines
draw -draw representation of self in an Xwindow
display -add self to display list (see section 4.2)
inside -predicate to determine if point is inside boundary

"Constructors" are a primary mechanism for deriving new objects from old objects.

Constructors can be used to create aggregate objects by grouping other objects.

Constructors can wrap up other objects, and add functionality to transform them into

the new object. A particular class can have several different constructors, each

identified by its unique argument list. The arguments of a constructor can be by

reference or by value. When objects are passed by reference to a constructor, the

newly created object incorporates the old objects into itself. Its functionality then

depends on the state of its internal objects (or the objects it references).

"Destructors" deallocate memory associated with an object, and in turn invoke the

"destructors" of their constituent objects.

"Printers" generate various formatted ASCII output of the container. This is similar

to the collection "printers" with the addition of coordinate information.

"Traverser", "Searcher" and "Accessor" methods typically window through to an

underlying collection. The current position of a container traversal is in effect a

current position of the underlying collection traversal, and the mechanism for

accessing the data in the container is the same as the mechanism for accessing data

in the underlying container or collection.

"Display", "Draw" and "Inside" are methods for realizing the user interface.

See section 4 for details. The display method queues the object for display in an

Xwindow by placing the object on the display list (see section 4.1) of the window.

Then the window object takes care of determining the necessary parameters to call

the object's draw method (see section 4.2). An object's draw method produces pixel

values that are a representation of itself and maps them into a window display, or any

container of type Surface2d. The inside method is used by the window object for each

object on the display list to determine if a particular mouse click has fallen within its

bounds (see section 4.4). Only containers and coordinates can be displayed in the 2D
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and 3D object windows, as coordinates are required to relate to the window display. It
is possible to display collections in structured text or graph browsing windows

3.2.3 Container Subclasses

The set of methods of each container class is the interface between objects of that
class and the external environment. In a formal sense, the specification of these
methods constitutes a contract with the external environment. The strong type
definitions of C++ help ensure the correct form of all interactions with the object.
When an object is passed as an argument to an arbitrary function, the set of methods
define how the function can manipulate the object. When an older object is supplied
as an argument to a newer object's constructor, the object methods operating on the
older object present methods to the newer object that can then be exploited to realize
the newer objects capability.

If the older object is passed to the newer object by reference, the two objects become
related, and modifications to the older object are reflected in the functionality of the
newer object. If the older object is passed by value (or the newer object makes an
internal copy of the older object), then the two objects remain unrelated.

In general, the construction of containers involves the wrapping of a new container
around a set of older containers. The class of the new container defines what it is. The
classes recognized by the constructors define how it can be built. The information
embedded in the container is a mapping from the containers supplied as arguments
describing the functionality of the resultant new object.

The subclasses of the containers were designed with this in mind The primary
description of any subclass is twofold:

1- description of the capability of the container it implements
2- description of the set of containers (or collections) it can accept to construct

this capability

The resultant subclasses are prefixed with Constant, Valued, Connected and
Aggregate. Each subclass describes a basic approach to building containers. Constant
builds the shape of a Constant container. Valued borrows the shape of an existing
container and inserts new values.

Connected takes a set of containers and relations between them and groups them into
a single container. The set of relations must be "path-connected" in the sense that
given any two of the containers, A and B, there is a sequence of containers in the set
starting with A and ending with B, such that there is a relation specified between
any two containers that are adjacent in the sequence. For example, a CSG model of a
tank that had coordinate transforms and attachments specified between adjacent
primitive solids is a connected container.

Table 1 summarizes the possible ways of constructing these various containers from
other containers and collections.
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Table 1: Constructor Arguments

Container Subclass Constructor Arguments

Constant Container 1) another container that represents the shape

2) an existing collection and corresponding
coordinate information

Valued Container 1) another container for the shape and an existing
collection for the values

2) another container for the shape and an existing

container for the values

Connected Container 1) list of containers and -elat.onships

Aggregate Container 1) list of containers

3.2.3.1 Constant Containers

Constant containers are descriptions of a region but do not describe the values
associated with points contained i, , t regio,. Typically, constant containers are
implemented as a represenl'ition v_• s.iape of the container. These containers
represent a locus in some space. '- "undary of the container can be traversed, the
insides of the contai, r ,;an be t, c ed, but no values can be retrieved. Constant
containers can be constiucted from ,, lower-dimensional container that describes its
boundaries. Two-dimensional surfaces are bounded by a closed two-dimensional
curve. Three-dimensional solids are bounded by a three-dimensional surface (which
is in turn bounded by a three-dimensional curve).

3.2.3.2 Valued Containers

Valued containers describe the region as well as provide a method for accessing the
values associated the region. The boundaries and insides of these containers can be
traversed, as with Constant containers, and values can be extracted at each location
in the traversal.

In general, valued, or "full", containers can be constructed by combining a Constant
container object with a collection that maps locations in the container to values. This
collection (an array, stream, or graph) can represent values inside the new
container, or be restricted to locations on the boundary.

This general mechanism can be overridden by specific full containers that rely on a
technique that entangles the boundary representation with the value
representation. In this case their constructors do not have other containers (or
collections) passed to them by reference.
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3.2.3.3 Connected Containers

Connected containers group other containers into a single entity. The generalized
composing mechanism relates objects by chaining them with a series of
relationships, such as coordinate transforms, in the appropriate space. 3d objects can
be chained with 3d rotations, scalings, and translations. 2d objects can be chained
with 2d rotations, scalings, and translations. Other grouping methods, such as
symbolic groupings of INSIDE-OF and ADJACENT are realized with subclasses of the
general composition class.

More explicitly, the set of relations passed to the connected container constructor
must be "path-connected" in the sense that given any two of the containers, A and B,
there is a sequence of containers in the set starting with A and ending with B, such
that there is a relation specified between any two containers that are adjacent in the
sequence. For example, a CSG model of a tank that had coordinate transforms and
attachments specified between adjacent primitive solids is a connected container.

The general composition mechanism can also be used to transform the local
coordinate systems of an existing container, by grouping it with a constant container
associated with a different coordinate system. Projecting a container into a
coordinate system with less dimensions is not handled by the connected container
mechanism, but is instead supported by the constructors of objects in those lesser
dimensions.

Constructors for connected containers take a list of older (sub) containers and
associated local-coordinate systems (implemented as coordinate objects, see section
3.3), and other relationships, such as attachment and adjacency, as by-reference
arguments. This list can include simpler containers in the same space, i.e. a
connected two-dimensional surface can accept two-dimensional curves, because they
are degenerate cases of two-dimensional surfaces.

3.3 Coordinate Objects

Coordinate objects represent coordinate systems. A coordinate has a corresponding
type that is one of cartesian, polar, cylindrical, spherical, quaternionic , or shape.
Shape means the coordinate system is defined in terms of distinguished points in a
container, like attachment points, or the ends of axes of sub-objects. A local
coordinate is necessarily contained in another object such as a container or another
coordinate. A disembodied coordinate is defined to be the subclass of global
coordinate. Coordinates have methods that act as transformations between other
coordinate systems. A coordinate records its transformations between other
coordinates, unless these transformations are explicitly deallocated.

3.3.1 Coordinate Classes

There are two subclasses: global and local. Local has a special subclass called base-
coordinate.

3.3.1.1 Global Coordinate

Global coordinates can occur disembodied, i.e. without being contained in or
referencing other objects. They can be transformed and copied by any coordinate
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constructor to mix in when constructing a local-coordinate defined for a container
or other global or local coordinate. This "places" the container in the global
coordinate system. The global coordinate remembers the containers that were
constructed with it.

3.3.1.2 Local Coordinate

A local-coordinate can represent the imbedding space of the container, or other ego-
centered coordinate systems. An object can have multiple local coordinates. Each
local coordinate that is constructed must have a transformation that represents it in
the coordinate system defined by the base coordinate.

3.3.1.2.1 Base Coordinate

The base coordinate is a distinguished local coordinate. It is defined to be the first
local-coordinate associated to a container or other coordinate. The base coordinate is
instantiated by the container contructor. It can be specified by the caller of the
contructor method. The base coordinate is guaranteed to have transforms associated
to all other local-coordinates of that container or coordinate. It is intended, although
not required, that the base-coordinate correspond to the natural traversal of an
associated collection of values. For example, a raster image is a Surface2d container
whose values are in an Array2d (collection). Its natural base coordinate is the
cartesian coordinate with origin at array index (0,0), one axis in the row direction
and another corresponding to columns. For a pyramid, a natural base coordinate is
similar, but includes a third axis in the multi-resolution direction.

3.3.2 Coordinate Methods

Coordinates all contain the following methods. Note that when local and global are
not explicitly called out, either applies. For example, the transform method can relate
locals to locals, locals to globals or globals to globals.

type - returns a mathematical type (e.g. cartesian) or
the type "shape".

origin - returns a point
dimensions - returns list of dimensions
units - returns list of named units per dimension
minextents - returns list of minimum extents per dimension
maxextents - returns list of maximum extents per dimension
convert - inputs a type that is not "shape" and creates

versions of its local-coordinates expressed in
that type (e.g. cartesian to polar conversion)

list-transforms - returns the list of transforms known between itself
and other coordinates

transform - inputs another coordinate with a known
transform to itself, and a third coordinate with a

known transform between it and the second
coordinate; returns a transform between itself and
the third coordinate.

propagate-transform - inputs a coordinate with known transform
between itself and the coordinate, and returns the

list of transforms between all its local-coordinates
and the input coordinate.
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3.4 Object Traversal and Search

From the user's point of view, containers get traversed or searched. From the
workstation environment's point of view, containers are pointers to collections that
get traversed or searched. Both traversal and search can be thought of as routines
consisting of the cyclic applications of three functions: move, access.and apply. In
the case of traversal every value in the underlying collections is necessarily visited,
so the function for moving, or choosing the next location(s) in a container's shape, is
known before traversal is invoked.

In search all locations/values are not necessarily visited. The move function must be
passed by reference to the search method. The apply function is invoked on the
appropriate neighborhood at each visited location for both traversal and search
methods.

Signal and image processing functions traverse their contents to enable extraction
of higher-level interpretations. These routines need to quickly iterate across their N-
dimensional data sources, with efficient access to a local neighborhood ranging in
size from I to M units in any dimension.

Traversal is intended to provide the support for a programming style whereby the
application developer codes the operation to be done at each point in the traversal,
and leave it up to some other mechanism to slide this operation around the container.
This requires two things: an underlying mechanism for efficient traversing (tied to
an efficient accessing scheme) and a programmer interface.

Examples of underlying mechanisms are the tiling of imagery used in ADRIES, and
the sliding-window subsystem from the Honeywell Image Research Laboratory. Each
makes neighborhoods of pixels available to the programmer in an efficient manner.

3.4.1 Programming Traversal and Search

When a programmer is presented with an efficient source of neighborhood data, it is
convenient to string together a series of smaller functions to do the work of a more
complex function. However, the programmer is typically forced to write the complex
function out flat, inline in one function, to avoid the overhead of piping data
between functions. The IU workstation environment provides support to concatenate
existing low-level operations without incurring extra overhead.

This can be done by constructing a library of neighborhood operations that describe
what is done on one neighborhood, but contain no mechanism for iteration. Examples
are convolution kernels, median filtering, and basic arithmetic and logical
manipulations of Nd data. Neighborhood operations that maintain a state are
implemented in this model by saving the permanent state in static and/or global
variables for later retrieval.

This makes the process of writing more complex neighborhood operations into one of
concatenating the series of operations into a single neighborhood operation. A
specific neighborhood function is then inserted in the middle of a looping
mechanism that is capable of traversing the container, and supplying the
neighborhoods of data to the operator.
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There is a split here that needs to remain clear. The reusable neighborhood
operations are small code chunks that have no built-in looping mechanisms. An
application specific neighborhood operation takes a sequence of reusable
neighborhood operations, and wraps them up with a traversal or search mechanism.
To reuse that specific neighborhood operation means the body of the loop has to be
extracted and made into a stand-alone function. That effort is only desirable when
the function is to be reused; otherwise it leads to extra overhead from a layer of
function call. An example of convolution code is shown below. Convolution has a
neighborhood application function, and an outer loop that traverses a container.
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int ByteStream2d::convolve

ByteStream2d *outstream; // Output 2d stream of bytes
ByteArray2d *mask; // Convolution mask.

)

// Local variables
int mask width = mask->widtho;
int mask height mask->heighto;
int dummy;

// Ensure input and output streams are rewound
this->rewindo;
outstream->rewind();

// Create and fill neighborhood cache on input stream
// Boundary handling is done by the cache.

char **instream cache =
this->cache( mask-width, maskheight );

/* Load entire mask into its own cache */
float **mask cache =

mask->cache( maskwidth, maskheight );

// Loop until double end-of-stream
while( !instream->eos()
{

// Loop until single end-of-stream (end of row)
while( !this->eos()
{

int out-value = 0;

// Convolve mask with neighborhood
// and write result to output stream

for( int i=0; i<mask height; i++
for( int j=0; j<mask width; j++

outvalue += *(*(maskcache+j)+i) *
* (* (instream cache+j)+i);

outstream->next() = outvalue;
dummy = this->next(;

}

// Set up for next row
dummy = this->next();

I

// Return OK status
return 0;

}
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3.4.1.1 Neighborhood Cacheing

Object access is streamlined with a cacheing mechanism that makes a local
neighborhood available to the C++ program in an internal C++ data structure. The
mechanism is program-controlled, in that the program decides when to initialize it
and when to refresh its contents. Because the cache is represented as a standard C++
data structure, either an array or a nested array of pointers to arrays, the efficiency
of data access within the cache is identical to array-based data access.

A neighborhood cache is useful for representing windowing operations on imagery.
The input object is an image, the cache is an array of pointers to linear arrays; as the
window slides across the image, the cache is refreshed by updating the pointers.

For point transformations the cacheing mechanism is useful in order to reduce the
overhead of row access. The cache is defined to be a single array equal in length to
the image row, and it is refreshed after each row is processed. The processing of the
row is done with a tight for-loop, with entirely in-memory data access.

The convolution example above illustrates the use of neighborhood cacheing for
arbitrary convolution of imagery. Two caches are employed, one on the input image
stream, another on the 2D-array that defines the convolution mask.

3.4.1.2 Mapping Function Wrapper

The ability to compose functions without creating intermediate data structures yields
the ability to display the results of experiments with a minimum of typing on the
part of the programmer (e.g. not creating named functions as above) and with a
great saving of memory and memory management overhead. In Powervision (the
ADS vision development environment built in ZetaLisp on a Symbolics lisp machine),
functions created this way were called "pixel-mapping-functions". Because
individual objects know how to display themselves, the pixel-mapping-function
capability is re-created with a wrapper that says: compose the following functions
(passed by refe.--nce) on this input data, and add the display method for the result of
the last function at the end. Ordinarily, the final result is saved, because it is often
the input to a next stage of processing.

For example, to apply a convolution to only the pixels in an image defined by a mask,
a search method is applied to the image object, where the search method run length
encodes the mask and accesses the "on" pixels only. The search method is composed
with the convolution to feed only the relevant neighborhoods to the convolution
kernel.

Mapping functions are implemented by subclasses of their respective containers.
There are four basic types of mapping functions, and so four basic mapping function
class extensions:

I) coordinate transformation of container locations
2) look-up-table applied to container values
3) arbitrary expression applied to container values
4) arbitrary expression applied to container locations.
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3.4.2 Spatial Data File System

Two capabilities have been defined to support the traversal and access of spatial data
stored in containers: 1) an efficient file access mechanism, for retrieving data stored
on arbitrary devices, and 2) efficient indexing schemes for quickly locating data
stored within a container. In combination these are called the Spatial Data File
System.

Collection objects are supported on diverse sources of data: disks, frame buffers,
digitizers, optical disks, even virtual memory. Constructors set up and initialize access
to these devices, and subsequent use of the object's methods so that the underlying
access mechanism is transperant to the application developer. Destructors close
and/or reset device access as needed.

Device drivers simplify this transparency, by making all objects appear as a stream
of characters (or a buffered stream of characters). Furthermore, the model of a disk
device driver suffices for a large subset of devices that can be viewed as a contiguous
collection of characters coupled with a random seek mechanism.

The spatial data file system supports the I/O of spatial data to disk-like devices. The
spatial data file system differs from a normal Unix file-system in that it attempts to
optimize the access of large collections of 2d, 3d, or Nd data.

The ability to efficiently index into specific data stored within a larger collection is
required. Database indexing uses (multidimensional) trees (B-tree, kd-tree, quadtree,
octree, etc.) or hashing to isolate a particular item in a list.

For example, a collection of curves written to disk can be implemented in the

following manner:

1- an array of bytes on disk is defined as the low level object

2- a tree index is computed that maps from the curve i.d. to the byte offset
within the file

3- an array of curves is defined that combines the array of bytes with the
curve-to-byte tree, and results in an array of efficiently accessible variable
length curves that (just happen to) reside on disk
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4.0 Uyer Interface

The user-interface supports the direct manipulation and inspection of all entities in
the vision environment through a windows-menu-and-mouse interface. The user
interface is based on X Windows, a network window system, and InterViews, a C++
package that defines basic X Windows objects. The user interface must be capable of
displaying a list of containers to an X window, and mapping mouse clicks to specific
objects in the display list. The following subsections present the display list object,
window types and addresses issues in imagery display and mouse protocol.

4.1 The Display List

The display list is an object that keeps track of what set of objects is currently being
displayed in a window. There is a single display list associated with each window. The
display list is implemented as a connected container of 2d surfaces. The connected
container groups two-dimensional points, curves, and surfaces, interrelating them
with coordinate transforms and other programmed relations. Each container stored
in the display list knows how to redisplay itself, and knows how to determine if a
given point is inside or outside its 2d shape boundary or whether a given rectangle
overlaps its shape boundary.

4.2 Windows

The window system supports overlapping windows, as well as neatly tiled windows,
useful for applications once they reach a certain level of maturity.
While in overlapping mode, each window can be resized, repositioned on the screen,
collapsed down to an icon, and expanded back to its original size and shape. When
overlapping mode is disabled (tiling mode), the size and shape of each window is
predetermined (or tightly controlled), and the opening and closing of windows is
directed by the application. Each window is associated with a display type that
governs the type of information that can be shown within the display region.

The supported window types include:

1. 2D Object Display Window-- images, lines, curves, 2D graphics

2. 3D Object Display Window-- volumes, surfaces, 3D graphics

3. 2D Plotting Window -- 2 axis: signal plotting, time series analysis,
statistics, measurement or feature spaces in two dimensions

4. 3D Plotting Window-- 3 axis: measurement or feature spaces in three
dimensions

5. Directed Graph Browser Window

6. Structured Text Browser Window

7. Dialog Box Window

28



The display of objects to windows is object-oriented, in that each entity within the
vision environment knows how to display (or present) itself to a window of a specific
type. The following subsections discuss each window type.

4.2.1 2D and 3D Object Display Windows

An object display window presents a collection of image-understanding objects to the
user, all registered to a single coordinate system with the display based on a single
viewing perspective in that coordinate system.

The coordinate system of a 2D object display is that of the base coordinate of the
primary image associated with the display. The typical viewing perspective of a 2D
object is such that the primary image is displayed at full resolution. If the window
size exceeds the primary image size, the remainder is filled.with a constant value If
the primary image size exceeds the window size, the image is clipped. From this
starting point, the viewing perspective can be adjusted to arbitrarily zoom and scroll
the display.

3D display involves projecting 3d objects onto a 2d space, then entering the resultant
container into the display list. This projection is done by the constructor routines of
the 2d classes. For example, a constructor for 2d curves is supported that accepts a 3d
curve and a set of coordinate transforms that describe the relationship of the 3d
object's coordinates to the screen of the desired 2d projection. The resultant 2d
container can transform surface orientation into intensity values of 2d surfaces.
Hidden surfaces are dealt with by this projection mechanism as well.

The coordinate system of a 3D object is centered around the origin of some primary
object associated with the display. The viewing perspective is based on the unit
screen at a unit distance from the viewers focal point. A default 3D viewing
perspective can be defined as a global coordinate object and placed at a distance from
the viewer where the bounding rectangle of the unit screen matches the bounding
rectangle of the object (padded with constant values to maintain aspect ratio)
projected onto it (i.e, it fills the screen). From this starting point, the unit screen can
be translated and rotated in 3-space to a new position that results in a new projection
of the 3D object onto the unit screen, and a new display. Fant's warp and perspective
algorithm is used for this method.

Each object in a 2D display is z-buffered to achieve an ordering from front to back,
allowing for the overlay of graphical objects on top of other graphical objects (or
images). This ordering also resolves which object responds when the cursor is
positioned on it and the mouse is clicked. Ordering in 3-space is dependent on the
viewing perspective, but for essentially 2D objects that lie on a 3D surface there can
be a concept of ordering with respect to a particular side of that surface.

Any object that can display itself with the proper dimensions can be added to the list
of objects displayed by a window. The following classes are supported for 2D: grey-
scale images, binary images, labeled images, lines, curves, polygons, and any fixed
projection of a 3D object to 2D space. Both volumetric and surface models are
supported for 3D object display. Hidden line removal and other surface rendering
techniques are supported as needed.

Color is required for drawing secondary objects on the face of primary objects, such
as lines and curves embedded in an image, or the vertices of a 3D object that lie on its
surface.
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There is a need for "snap-to" capability that associates the position of the cursor
when a mouse-button is clicked to the nearest reasonable object. This aids the user
in selecting objects of single pixel width.

4.2.2 Plotting Windows

Plotting windows share traits with object display windows. The main difference is
that they graphically present information that is inherently numeric, whereas
object displays graphically present information that is inherently pictoral. The
extent of each numeric dimension is presented to the user as an annotated axis,
divided by tic marks into numeric ranges. By, default the plot is scaled to fit within
the current window size.

2D plots consist of line plots, scatter plots (by dot and by character), and bar plots.
Grids to aid in viewing are optional. 3D plots consist of surface grid plots (with
hidden lines removed) or chunky bar plots.

In a similar fashion to object displays, any object that can present itself to the
plotting window as a collection of numbers of the proper dimension can be added to
the list of objects plotted by the window. The default ordering is FIFO, but can be
modified by the user.

4.2.3 Directed '1r-ph Browser Window

Arbitrary directed graphs, trees, and lists can be used within the environment to
group together objects. The directed graph browser is provided as a general tool for
graphically inspecting these data structures, and editing their contents. In general,
the directed graph browser supports an arbitrary directed graph, but works just as
well on the simpler data structures of trees and lists. It automatically positions the
nodes within the window, drawing arrowed lines to show the relationship with other
nodes, and asks each node to display itself, either by icon or by name.

Navigation of the graph can be done by the user or under program control. An
advanced browsing feature is a miniature map of the entire graph, used to navigate
when the graph is too large to fit in the window.

Nodes in the graph can be selected by clicking left. A menu of possible node
operations is brought up by clicking middle, once the node has been selected.
Certain node operations require a target node that is then selected by the right
button after the first two operations.

The directed graph browser can be set up for read-only access of the directed graph,
or with read-write permission can be used for interactive editing of the structure.
Nodes can be created, deleted, and moved. In a similar fashion entire sub-grphs can
be created, deleted, and moved. The structure of created sub-graphs is based on a list
of default structures, or controlled by the program. Hierarchical graphs (nested)
may be supported as well.

4.2.4 Structured Text Browser and Dialog Box Windows

The input/output of text and numbers is done through structured text browsers. At
its simplest (initial capability), this is a text editor. At its most complex (eventual
capability), it is a text I/O window that automatically enforces a certain grammar,
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such as the legal relationships that can be entered into a semantic network, the
syntax of a programming language, or a database table structure.

Once again, as in the directed graph browser, text display in this window can be
either read-only or read-write. A read-only text display, augmented by certain
control buttons, is a dialog box.

Actions can be associated with the modification and/or selection of any text within
the window. By clicking on a word in a list of words, it is possible to bring up
another window with information pertaining to that item. This rudimentary
hypertext is useful for following a chain of related objects in the vision
environment.

The user interface is an easy to use hyper-text or hyper-media interface, built
around the data constructs necessary for IU: 1, 2, and 3D signals and structures, and
diverse networks and databases to contain them. To support IU further, links
between various displayed entities are arbitrarily complex transformations, instead
of simple pointers, to make for a flexible approach to prototyping applications. A
single plane in a 3D plot can be selected, and displayed in a 2D plot window. If the
new window is created by reference (versus by value, to borrow programming
language terms), a modification in the original 3D plot is passed on to the 2D plot.

4.3 Overlays and Sprite Objects

Most graphics that overlay images occupy a small area compared to the image size.
An example is the overlay of linear features, such as roads or rivers, on an image.
When the image is drawn, it is from one container object. Each window is associated
with a display type that governs the type of information that can be shown within
the display region. The linear features are assumed to be a second container object
with coordinates that overlap the image. The problem is to allow the user to select and
unselect the display of the graphic overlays without redrawing the whole screen just
to refresh the small area under the graphic overlays. The approach is to create a
third object that has the same container (i.e. "shape") information as the graphics,
but uses the values from the image collection. Refreshing the screen is accomplished
by requiring the appropriate set of graphic objects to refresh themselves. This
capability is called a "sprite" object in the object-oriented imagery display literature.

4.4 Visual Pointer

The initial pointer device is a three button mouse, because of the choice of Sun as the
initial hardware platform. A mouse is used to manipulate a cursor on the screen.
Action is taken when a particular mouse button is pressed. The action taken is a
function of which button is pressed, what window the cursor resides in (the top-most
window if there is overlap), and where in the window it resides. Standards are being
incrementally developed to govern the types of actions associated with each mouse
button. The cursor may change in size or shape to indicate change of state of any
particular application.

Each window comprises several mouse-sensitive areas within it. These areas may or
may not correspond to obvious graphical clues, such as a menu item, button, or
graphical object. For the most part the mouse-sensitive areas lie within the
bounding rectangle of the window, with the single exception of pop-up menus (or
detachable menus) that are attached to the borders of the window.
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Mouse selection is implemented by capturing a mouse click, and interrogating each
object in the display list in turn, to determine if the click fell upon it. The effective
area of the click is expanded to some minimal resolution (e.g., 8 by 8 pixels) prior to
perusing the display list. A mechanism is provided for determining all the objects
that overlap this expanded area.

4.5 Image Scrolling

A key problem is displaying large images or maps; much larger than one display
screen can show at a time. In addition, the user wants to be able to scroll around on
this image or map, and to zoom in to selected sections of the image or map.

The basic approach is to divide up the overall image into rectangles that can be
moved from disk to memory and from one place in memory to another in a very short
time (considerable less than a second). These image objects are a subclass of the
image class, called tiles, and have the smaller container class instances that
correspond to each of their parts. A slight overlap in tiles may be allowed to resolve
border problems. When the user elects to scroll the image, i.e. move mouse, the
pointer position is used to select the additional image tiles needed and to recover them
from disk. Latency is addressed by mating the default tile size to the minimum block
size for retreival and the bandwidth of the cpu to disk (or other storage) channel.
Note that it is assumed that the environment can find out the size of aii image in
external storage. In that case, it can be tiled as it is read in and stored in the local
database for use during the working session.

4.6 Menus

Most windows in the vision environment have a region where fixed menu selections
are advertised, plus a region that displays the variable information displayed by this
type of window. Within the display region, the menus are a function of what object
is selected.
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5.0 Databases

- A database provides for the management of many types of persistent data including
the objects being operated on, the functions in the function library and the versions
of each of these items. Management means keeping track of the items as well as
storing or saving them from one execution of the program to the next (persistence).
A single database (consisting of multiple files) is associated with each workstation.
Multiple workstations in a cooperative environment require either a shared database
or a distributed database approach (probably the latter).

This database accomplishes many different functions including:

I- simple persistent storage of images, objects, functions and other data.

2- flexible conditional queries to retrieve or compute instances of objects,

3- structural ordering of the object instances to provide fast, efficient access to
the objects,

4- a consistent convention for accessing a variety of different objects with a
minimum of coding effort, and

5- extensibility to support group data sharing on different physical databases.

The database manager is organized in a client-server model and consists of two
components:

1 - The database interface (or client) provides the interface to the database from
any other programs. This interface is provided as methods that the other
objects may invoke. Such methods include: insert, delete, save, find, etc.

2- The database server manages the storage and access to items assigned to the
database including the allocation and deallocation of space. This includes
creation, documentation, modification, access, and deletion of user objects
(images, features, etc.) and programming objects (functions, documentation,
numbers, characters, etc.).

Databases traditionally provide a shared access that prevents two users from
interfering with each other when accessing the same object and provide a
transaction system to ensure the integrity of each interaction with the database.
These aspects of a database are not as important for the IU environment and are not
discussed further here.

5.1 General Database Approach

The approach to the database design is in two levels. These are:

1 - The basic level provides for the storage of objects, groups of objects and
indices as files for management by the operating system. These files can be
stored and read directly from the program or under interactive user control.
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2- The next level provides interface to database management systems from
commercial products. The current plan is to develop a generic SQL interface
for the class hierarchy. This allows interaction with standard relational
database system (e.g. Sybase, Ingress, Oracle). Interface to or new object
criented databases (Ontologics' Ontos) is a future possibility. Hooks are
provided to build additional structures for efficient access, such as quadtrees.

The database is integrated into the core workstation software in several ways:

1- The primary access to the database is through the C++ language. The user
(developer) takes advantage of the database through the core object
structure.

2- Our approach to the database uses the strong typing feature of C++ by
allowing the database objects to be incorporated directly in the object
hierarchy transparently. That is, the objects are compiled directly into the
program (with strong type checking) and are stored in the database by
invoking the persistence attribute.

3- All imagery, imagery objects, functions, production rules, reasoning
structures, etc. are expected to be stored in the database and access through
the same C++ program interface

4- A set of user interface procedures that form a front end to the objects stored
in the database.are provided for the developer

5.2 Database Implementation

The Sybase relational database system provides the basic relational database
capability. An object oriented view of the database is provided by a set of object
oriented procedures used as a front end to the relational database and the objects are
stored using some object oriented structures build on top of Sybase.

5.3 Object Storage and Retrieval

Objects that are capable of being stored in the database are given the attribute
persistence (inherited from a high level object). When this attribute is turned on,
the object is guaranteed to be stored in the database for later access. It is up to the
application developer to assign the appropriate attributes to the object so that it may
be accessed properly.

This approach assumes that the structure of objects stored in the database is known to
the compiler; in fact, the object storage mechanism is compiled and linked with the
application program. It also assumes that the persistent objects have a standard set of
methods for storing, retrieving, inserting, ordering, etc. These methods constitute
the interface to the database and must be chosen carefully to allow replacement of
the database structure at a later date.

One function of the database is to provide a s mple way to keep track of the images,
features and other objects in the system. Each object is assigned a set of
identification information, source, dates and data characteristics. This information is
stored along with the corresponding object. The datatbase allows users to access and
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keep track of all images and to select subsets of these images according to various
selection criteria for viewing or processing.

The index or ordering information on objects in the database is provided by special
objects that have the appropriate structures. Any group of objects may be ordered
using this object type by creating an appropriate indexing object. These indexing
objects include: binary trees, quad trees, oct trees, hash tables, etc. The indexing
objects access the ordered objects by providing an offset into a table storing the data
for these objects.

Another function of the data base is to store information derived from tht objects.
These are arbitrary sized objects and may be retrieved by a variety of attributes. The
attributes of these objects are defined by methods on the objects. These
methods/attributes may be precomputed and stored in some kind of indexing list or
they may be computed when the query is made.

5.4 Processing History

Another database function is to store the history of processing performed on the
various image objects. This capability is similar to the source code control system
used by software developers. The history system maintains a complete version of the
image object along with enough information to reconstruct any other versions of the
image object. The processing performed to extract any information (features, etc.) is
recorded so that it may be reconstructed if desired. This capability allows the user to
use the data from a previous step and to try alternative processing sequences to
arrive at new conclusions. All such processing paths are recorded.

The history management system records the sequence of operations that are
performed on each image. The original image (or image object object) is stored and
the commands with relevant parameters are recorded for each sequence of
operations. This is sufficient to recreate the results of any processing sequence. In
addition, the intermediate results may be stored, if the user elects to do this.
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6.0 Code Libraries

Libraries that support model-based reasoning and signal/image interpretation are
built to manipulate the core objects described in section 3. The interface to each
function is composed of core objects as far as possible, and the simplest and most
general core object as possible to maximize reusability. For example, a two-
dimensional window-based transform is designed to operate on a stream of linear
arrays. Then any regular two-dimensional container, whether it is embedded in 2-, 3-
. or N-space, can be accessed as a stream of linear arrays, and piped into the
transform. The core objects support any reasonable data conversions, with priority
given to conversions that can be done by a "forgetting" mechanism (e.g. forgetting a
linear collection of integers was constructed as type 3d array).

Libraries are themselves a hierarchy of sub-libraries, allowing the incremental
inclusion of software packages into applications. The set of possible functions have
been grouped into five top-level categories:

Sensor and Image Processing Library
Model Library
Matching and Grouping Library
Interpretation Library
Reasoning Control.

Each library at this level corresponds to a processing stage and/or subsystem in an
IU or decision support system. The sensor and image processing library is a
collection of objects and routines that process data received from an external source,
emulating the interaction of sensors with the objects defined in the input data
and/or applying various filters and feature extraction. The model library consists of
objects and routines for modeling the world spatially, temporally, and in any other
relevant qualitative or quantitative domain. The matching library comprises
routines for matching a model-based prediction of the world to sensor-derived
evidence of the world.

The interpretation library is a collection of approaches for classifying objects that
have been isolated from sensor input and/or mechanisms for inferring decisions.
The reasoning control library is a collection of techniques for controlling the
execution of this classification/inference process.

6.1 Sensor and Image Processing Library

These are image and signal processing routines and sensor modeling objects. They
can be categorized as follows:

Sensor Modeling Objects
Pre-processing (spatial transformations)
Segmentation (extraction of higher-level structures)
Feature Calculation

Sensor modeling objects emulate sensors in predicting the interaction of energy
with objects representing matter and energy in the world. The pre-processing
functions are operations on 1, 2, and 3-dimensional collections of sensor values that
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transform, but typically do not reduce the information content of the data (e.g. look-
up-tables). Segmentation involves extracting higher-level structure from this data,
such as extracting 2d curves and surfaces from a 2d image. Feature calculation
computes statistics on these higher-level structures, resulting in collections of
measures.

Appendix B lists the public-domain source packages we have identified for further
consideration for inclusion in the environment. We also list source packages that
are available for one-time license fee with no royalties on reuse of object code.

6.2 Model Library

This library supports the representation and manipulation of spatial, temporal, and
other models. Spatial models are typically 2 or 3-dimensional objects, represented as
a discrete collection of pixels (or voxels) or represented symbolically with an
equation and/or algorithm that describes a shape. Connected models are built out of
simple models, linked with constrained coordinate transformations (through methods
of coordinate objects) that define the degrees of freedom between the two pans.

The library supports the projection of these models onto other coordinate systems
and lower dimensions. 3d models are projected onto a 2d screen. The library also
supports the symbolic manipulation of symbolically-represented models, in order to
project the model's 3d constraints into a predicted 2d view.

6.3 Matching . and Grouping Library

This library consists of routines for placing higher-level interpretations on
information extracted from sensor data, by exploiting information stored in models,
and matching what is known about the models to what has been observed in the
sensor data.

Predictions of what might be seen in the sensor-data constrain interpretation of the
sensor data, and, conversely, evidence accrued from the sensor data, directs the
consideration of possibilities in the model. Perceptual grouping is included in this
library, because it relies on a priori facts about world structure in order to decide
how to perceive sensor data.

6.4 Interpretation Library

This library supports various approaches for machine inference. Typically the
inference to be made is the classification of some object that has been pre-processed
by the sensor and image processing, modeling, and matching/grouping libraries.
This library supports multiple inferencing approaches, including statistical
classifiers, bayesian inference, logic engines and neural nets.

6.5 Reasoning Control

This library is the control layer for the inferencing that is represented by the
interpretation library. It decides what (abstract) processing task to do next, using a
particular strategy such as weighing the expected cost, the expected value of

information, etc.. and using this metric to choose the next best task to attempt.

Note that reasoning control is not the same thing as process control described below.
Process control is a mechanism for sequencing processes using standard
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programming techniques, and has no special knowledge of decision making
techniques.
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7.0 Imnlementation Issuje

This section describes the software development and test plan including the
management procedures in Section 7.1. Section 7.2 discusses some of the
implementation specific issues, that is, issues that are specific to a particular choice
of hardware or support software package.

The order of implementation is to produce some core objects and their display
methods first. Polygon objects (1,2, and 3D) are the first core objects implemented.
Then, the following may be performed in parallel with appropriate interactions to
provide a consistent system.

I - User Interface
2- Function/Object Libraries
3- Inferencing
4- Database System

The run-time environment grow sout of the user interface and is developed after the
remaining functional areas are essentially in place. This is a recursive/parallel
approach in that the four functional areas can be done essentially in parallel with
each area being recursively developed to provide additional capabilities. Several
design issues that impact the efficiency of both the design/build process and the
resultant environment are addressed here.

7.1 Software Management Procedures and Tools

7.1.1 Development Code and Document Version Control

The code and documents for this project are managed using the RCS code control
system. This means that all versions are recorded and can be recovered. It also
means that the object codes that are created can be strictly controlled. This is
important for achieving reusability of code.

7.1.2 Library Maintenance and Installation

The key issues are standards for adding code to libraries, and methods of adding new
(sub-) libraries. Standards are addressed primarily by documentation and version
control.

The basic method of adding a (sub)library is to extend the class hierarchy to create
objects that appropriately utilize new packages of methods. So, for example.
multiresolution pyramids are a subclass of connected objects. multiresolution search
methods can be added to the objects, or stored in a new sub-library of the matching
and grouping library that deals with multiresolution structures.

To aid installation of new libraries, graphical, table-based installation of graphical
programming options (e.g. new object creation menu) are provided. In addition,
how-to source-code examples, an installation manual, and appropriate make files are
provided.
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7.1.3 Testing Approach

A public-domain test interpreter, icp, can be applied to each C++ module to test its
functionality. Manual code walkthrough after development and initial testing looks
for exceptions such as poor memory allocation, inappropriate function calls, missing
methods, and unexpected interactions between objects. Integrity testing will be built
in to a limited extent, such as code within an object that checks internal pointers for
consistency, or writing a known pattern in "dead space" at the end of data structures
to catch overwriting.

7.2 Windows Interface

The Xwindows interface is through the InterViews package. This package provides a
C++ toolkit for using Xwindows.

7.3 External Data Base Interfaces

There are three aspects to an external database interface: formulating a query that is
understood by the serving, external database, communicating with the database to
input the query and receive the returned data, and third, handling the returned data.

Most external databases of interest at this time are relational databases that speak
standard query language (SQL), such as Sybase, Oracle and Ingress. A graphical
interface is formulated that represents data objects as icons or text, and uses
graphical selection methods to indicate ANDs, ORs and NOTs, such as pluses between
icons for ANDs, an oval enclosing multiple icons for ORs, and the classic diagonal red
line for NOT. The graphical query is translated to SQL. This approach gives a generic
SQL interface.

The interprocess communication between the serving database and the client IU
environment is managed by internet and Unix protocols, with the IU environment
running the, possibly networked, database query in the background.

Large volume data returns are handled by two methods: a trap at the internet
protocol level to threshold the amount of data that the system is willing to receive
(this level can be user set), and a paging/buffering scheme to handle large images
and large numbers of images.

7.4 Efficiency Approaches

Operations within the vision environment can be accelerated by three methods:
addition of various hardware accelerators, multiple processes communicating via
shared memory and other Unix inter-process communication mechanisms, and the
networking of multiple platforms. Each of these are discussed in the following
subsections.

7.4.1 Hardware Accelerators

The obvious accelerators are relatively inexpensive boards that are Sun compatible,
such as the one provided by Vitek. These boards are treated as internal compute-
servers, and interaction with them is via a prescribed set of function calls. The
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function calls -,mplish both the download/upload of data, and the setup and

invocation of computation.

7.4.2 Shared Memory

Multiple processes can be used to accelerate operations by allowing a compute-
intensive operation to be spawned as a background process (or be put in the
background automagically when the user begins interacting), leaving the
foreground processing available for user interaction. In addition, the time spent
waiting for disk I/0 and other hardware interactions can be reapplied to other
processes.

7.4.3 Networked Platforms

An alternate to add-in boards is a network of machines, some of which act as
compute-servers. These machines are dealt with in much the same manner as the
add-in boards (see section 7.4.1). with the added possibility of file sharing through
use of the Network File System (NFS) standard. In this case, the network is being used
to farm out specific computational chunks, rather than being a full distributed
problem decomposition. One possible implementation is by remote procedure calls
(RPC)s as background processes.
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9.0 Annlieationg

8.1 System Engineering Application Development Approach

A high-level approach to generating requirements for the core and domain specific
workstations (ws) is shown in Figure 8. Each domain area defines a set of tasks that
correspond to client solutions to representative domain specific problems.
Requirements are generated specific to each task that would result in a solution if
built to spec. These are sifted together to take our best cut at the common core
requirements. The generic, core ws is designed to meet these requirements. Based on
the core design, extensions are designed to fulfill the domain specific requirements
for each domain task. Of course, domain ws should strive to maximize synergy
between solutions to multiple problems in the same domain (instead of developing
many diverse ws to fulfill diverse tasks). Some of these steps, especially the last three,
can be performed in parallel, but the sequential flow picture captures the
philosophy of the approach.

DEFINE DOMAIN TASKS

i (TASKS)

GENERATE DOMAIN WS
REQUIREMENTS

S((TASK, DOMAIN REQS)}

GENERATE GENERIC WS
REQUIREMENTS 1

R E CORE RES)

CORE WS DESIGN

i PARTIAL DESIGN

DOMAIN WS DESIGN

Figure 8: Approach to Requirements
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The objectives of an IU Workstation are to provide a hardware and software
environment that greatly facilitates development of IU application systems by
providing a core infrastructure of integrated tools that are common to most
applications, and that traditionally take up the lion's share of development time
when systems are built from scratch.

We believe the most direct path to defining such an IU environment is to define
domain specific IU task applications and design the IU workstation environment so
that it supports development of systems that can perform the domain tasks. In other
words, the IU environment is used to build systems that then solve domain problems,
but we begin with the domain problems so that we are sure the resulting
environment can solve those problems. In order to guarantee building an IU
workstation environment with suffcient generality to apply to IU development in
many domains, we have adopted the approach pictured in figure 8 to generating
requirements for the IU workstation.

Diverse domain areas are chosen and representative tasks are defined in each domain
area. Requirements are generated specific to each task that would result in a solution
if built to spec. These are sifted together to take the best cut at the common IU
workstation requirements. The generic, core IU workstation is designed to meet these
requirements. Based on the core design, extensions are designed to fulfill the domain
specific requirements for each domain task. We have selected two domain areas,
terrain analysis and medical imagery analysis, to focus our workstation development.

8.2 Domain Task Analyses

As explained in section 8.1, two task areas, terrain and medical IU applications, were
selected as foci to guide workstation development. The terrain task analysis is
presented in section 8.2.1 Section 8.2.2 presents the medical imagery task analysis.

8.2.1 Terrain Task Analysis

We have selected two terrain domain tasks: semi-automated, syntactic, "snap-to"
digitization of hardcopy maps and interactive, semantic map/image measurement
tools. The terms used in these task descriptions deserve some explanation. "Semi-
automated, syntactic 'snap-to' digitization" is the task of interactively choosing a
small set of points on a terrain feature from a bit-mapped image of a scanned (i.e., a
"digitized" image in the conventional sense) hardcopy map and having the
workstation infer the full set of points on the feature (a road, for example), but
without specialized knowledge about the feature, except perhaps for basic geometric
properties (e.g. linear feature, area, etc.).

An "interactive, semantic map/image measurement tool kit" is a set of measures that
can be used on already digitized maps (i.e., scanned and interpreted maps, stored in a
digital terrain database), but can also be used at the time of digital terrain database
creation to compute and store
attributes. Potential tools include line of sight calculations, earth/hole volumes,
shortest-path computation, time-to-travel-path, 3D view visualization, etc.

Roads are a good first focus for semi-automated map extraction, both because they are
one of the simplest map features to define for machine segmentation, and because
they are required for many common applications. Similarly, line-of-sight analysis is
a good first choice for measurements, because it is commonly used, and because it
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requires manipulation of elevation maps, which is technically difficult to do without
computer aid.

Examples of features stored in digital terrain databases and associated textual (usually
relational) databases that are candidates for semi-automated extraction include roads,
railroads, hydrology features, land parcels, agricultural plots, fields, forests, task-
defined elevation features (e.g. hills, air-space obstructions), and task-defined sets of
buildings (e.g. residences, industries). Examples of measurements made from digital
terrain databases include, line-of-sight, land volume, areas of different (and possible
compound) terrain types, watershed, distances between points and between
geometrically more complex terrain features, such as rivers and towns, as well as
topological relations for different terrain features including between, nearness and
adjacency.

The objective of terrain task analysis is to decompose the execution of the terrain
tasks such that the underlying required functionality is naturally exposed, making
more obvious the design solutions to building a system that achieves this
functionality. Our approach to this is twofold: first to step through the system user's
tasks in scripts, essentially scripting (or verbally storyboarding) the functionality of
the user-interface, and second to analyze data transformations as the user
experiences them (based on the storyboard) inferring progressively finer levels of
black-box functionality the sys-em must possess. The terrain task script is presented
in section 8.2.1.1, and the user-apparent data transformations are discussed in section
8.2.1.2.

8.2.1.1 Terrain Task Script

1) Select map, scan (i.e. bitmap digitize) if necessary.
Assumes: Maps exist in an on-line accessible form, and/or there is a user-

friendly scanning procedure available for hard-copy maps. The latter also assumes
that scanning resolution is sufficient versus map detail to enable the feature
selection, etc. of the following steps.

2) Indicate feature type (e.g., linear, area, road, field...) or measure type (e.g. line-or-
sight, shovel, hourglass, spyglass...).

Assumes: Feature and/or measure types are relevant to map features and to the
domain task (e.g. urban planning, agricultural survey, etc.)

3) Select feature or measure type.

4a) Select mode to label feature and type-input for feature label.

5a) Choose points on features in displayed map.

6a) Select mode to do snap-to feature segmentation or to perform the measure.

7a) View the displayed results of feature extraction and/or measurement.

8a) Modify the displayed results as necessary.

9a) Select mode to store labeled features or measures to database.
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Assumes: Storage mode is a known default. Otherwise this step must be
enhanced to select storage location. Typically, the map and/or measure type will
have a storage location and format associated to it already.

4b) Select choose feature mode and type-input for label for the feature.

5b) Choose points on features in displayed map.

6b) Repeat 4b and 5b until all labeled features selected for extraction or
measurement.

7b) Select batch-mode for snap-to feature segmentation or measurement.

8b) Select mode for viewing results of batch feature extraction oi measurement.
Assumes: Job is identified by user or other method and accessible by that

identification. If user has multiple jobs, system must appropriately differentiate and
allow user selection for viewing.

9b) Modify the displayed results as necessary.
Assumes: All results of this job are simultaneously displayable and usefully

viewable (e.g. non-overlapping). If not, steps 9-10 must step through feature by
feature or screen by screen.

10b) Select mode to store labeled features or measures to database.
Assumes: Storage mode is a known default. Otherwise this step must be

enhanced to select storage location. Typically, the map and/or measure type will
have a storage location and format associated to it already.

8.2.1.2 Terrain Task Data Transformations

A terrain task data transformation refers to the displayed output a user observes in
response to a set of inputs while performing the terrain task script. Inputs include
items selected or typed by the user, as well as data the user assumes is present, such as
scanned maps and digital terrain databases. The "transformed data" includes the
visually observed displays, such as a bit-map overlay of an extracted terrain feature,
as well as the implied data the user assumes supports the display, such as the
bounding polygon of the segmentation. The user-apparent data transformations
suggested by the task script include the following.

1) selected and typed entries ----- > map (= scanned map image + any associated textual
data)
2) selected map ----- > displayed map and textual data
3) selected feature type and chosen points ----- > segmented feature
4) feature segmentation ----- > feature segmentation (interactive)
5) selected feature type and chosen points ----- > segmented feature + measure
6) selected extracted features and/or measures + labels ----- > database record
(indicating storage of features and/or measures)

The transformations imply the existence of certain user-apparent system
functionalities. These are listed below.

Transformations (1) and (2)
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A database(-like) facility is implied that consists of a set of storage units for scanned
maps imagery and associated textual data, with the database facility inverted on one
or more of

a) map type
b) measurement task type
c) map source
d) digital database for map feature and/or measurement storage
e) job identifier

For single-task users, like urban planners, the measurement task type or map type
are more likely keys. For multi-task users, like DIA, or a centralized city GIS facility,
the map source and/or storage database are more likely keys. In the former case, the
user usually accesses the same set of maps, extracting information and making
measurements from it. In the latter case, the user accesses from a wide variety of
maps and map databases, often updating the maps and associated databases. Job
identifiers can be used to allow individual users or teams to work incrementally on
an on-going task. A job has an associated data structure that saves pointers to the
input and output data sources and job state. They can be indexed by user names or
task names.

Transformation (3'

This is the critical technical step of semi-automated segmentation. The feature
extraction itself implies a specific choice of segmentation methodology, and the use
of specific image processing, pattern recognition, search, and inference procedures.
The specific choices are not user-apparent. However, the output display is user
apparent and must allow the user to "verify at a glance" the correctness of the
terrain feature extraction. This probably requires .a side-by-side display of the
system segmentation in graphic overlay, next to the un-segmented scanned map.

The choosing of some points on the terrain feature in the displayed map serves the
two purposes of indicating which feature is being stored and associated to the typed-
in label, and for seeding the otherwise automated feature extraction process. For
example, to semi-automate road segmentation in a scanned map, the user could be
directed to choose the two endpoints of the road segment, then the system extracts the
road segment between the two points. The choice of points clearly depends on the
feature extraction task; the user must be directed how to choose points so that they
are meaningful to the system with respect to the user's task. On-line instruction
regarding geo-object choices for the various feature types and data sources should be
available.

Transformation (4)

The user views the system's display of its terrain feature segmentation results and
allows the user to interactively edit the results if necessary. This is done using the
operations add, delete, move, undo and save, as defined in the glossary. The regions
and/or geo-objects should snap-to as points or other geo-objects are added or deleted.
A reasonable first definition of snap-to is gotten by using shortest-planar or
shortest-elevation-grid distance to link points or other geo-objects.

46



Transformation (51

A measure requires dynamic extraction of terrain features when they are not prn-
stored. In either case the system must understand a priori what features are required.
The points chosen by the user define the geographic region of interest for the
measure. If feature extraction is necessary, the user should be cued appropriately.
The system should be set up so that it is easy for the user to abort the process if it
requires feature extraction s/he does not wish to do.

Measures can output complex data structures such as geo-objects and/or regions, as
well as textual and numeric outputs. For example, line-of-sight calculations output a
polygon or elevation region with line-or-sight from a point or other region. Land
volume, on the other hand, outputs only a single number. Some measures require
sohpisticated geometric computations, such as surface, polygon, and/or line
intersection, union and difference. A full polygon algebra should probably be
supported.

Transformation (6)

Status messages for intialization and completion of tasks should be displayed. Storage
and retrieval of large volumes of data should have displayed meters or other devices
to indicate that the system is engaged in a task and how close to completion it is.
Storage and retrieval times should be estimated and warnings issued for time
consuming processes allowing the user option to alter or cancel the storage or
retrieval command. Asynchronous, batch-mode storage and retrieval should be
supported.

Systems that provide multiple users to cooperate on the same task may have special
requirements for data integrity, such as write-lockouts to avoid synchronous map
updating.

8.2.1.3 Terrain Applications Requirements

In both terrain tasks, the top level user interaction steps are as follows:

1) Select maps/imagery, scan (i.e. bitmap digitize) if necessary.
2) Indicate feature type (e.g., linear, area, road, field...) or measure type (e.g.

line-or-sight, shovel, hourglass, spyglass...).
3) Select points on features in map and/or image.
4) Tell system to input features to database or to perform the measure.
5) Verify correctness of feature extraction and/or measurement.

Infrastructure requirements such as friendly and efficient user interfaces, a need to
robustly interact with digital terrain databases, large data storage and retrieval
capabilities, etc. are common to more than one step. Nonetheless, in the following, we
attempt to list requirements in correspondence to the user functions, rather than in
terms of elements of the solution (like user interfaces).

1) Select maps/imagery, scan (i.e. bitmap digitize) if necessary.
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1.1) The system must be equipped with standard map scanning (e.g. flatbed
digitizer) interfaces that provide adequate resolution to capture the necessary map
detail.

1.2) If scanner is used, then digitizing should be done on screen on the
scanned map.

1.3) Sufficient workstation memory is required to hold the terrain database
corresponding to the scanned map segment in memory.

2) Indicate feature type.

2.1) The system must interface to ARC/INFO, and a selection of standard terrain
digital databases to be determined by the target market.

2.2) We should choose and make available a digital terrain database that comes
standard with the product. Coverage and resolution requirements will be determined
by market analysis.

2.3) A uniform interface should be available for all terrain databases the
system communicates with.

2.4) A display showing the selectable terrain features present in the database
corresponding to the displayed map segment should display in less than 10 seconds
from the time map coordinates are entered, if the database segment is in local
storage.

2.5) If the digital terrain database segment requires more than 15 seconds for
retrieval to display, a message should be displayed telling the user the function that
is being performed, and giving dynamic indications of progress.

2.6) The user should be able to select the digital terrain features with a
minimum of manipulation (e.g. keystrokes, mouse clicks, etc.).

3) Select points on features in map and/or image.

3.1) It should be clear how to enter the modes to indicate points.
3.2) The points shouid be coded so that it is clear which correspond, to which

features and/or measures; it should be intuitive and require minimal manipulation to
change points, "move" a point in either map or image, etc.

3.3) It should be obvious how to indicate that point selection is complete, either
on a feature, or on the entire image/map.

4) Tell system to input features to database or to perform measures.

4.1) It should be obvious how to indicate that point selection is complete.
4.2) The system should return control to the user in less than 10 seconds;

either input and/or measurement should be available for verification or relegated to
an off-line or background process.

4.3) If producing the verification display needs to be a background process,
then there must be a protocol of queuing and recalling verification displays at a later
time (e.g., stored up in a pull-down list). Any job that has been completed as far as the
user is concerned should appear in this list, with its status indicated even if it's not
yet available for verification.

4.4) If any process that occupies the user interface (so that the user cannot get
response from the workstation) takes more than 10 seconds, a message should be
displayed indicating operations in process.

5) Verify correctness of feature extraction and/or registration.
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5.1) A verification display should be available showing an overlay of extracted
features against map and/or imagery features. This should be togglable so that the
user can switch between the original and extracted in focus of attention.

5.2) It should be possible to interactively correct the extracted feature; re-
storage must adhere to the requirements in (4).

5.3) Correction of feature extraction should be intuitive; it shouldn't be
necessary to read a manual.

8.2.2 Medical Task Analysis

We have selected two tasks: automated intercortical volumes from hand radiographs
and automated prostate volume quantification in CT imagery. Both measures are key
medical indicators; the first in diagnosing and tracking arthritis, the second is a
direct indicator for prostate surgery (radical prostatectomy).

The choice of the arthritis measure application is motivated by the following facts.
The physics of sensor interaction of radiographs with human hands is a completely
modeled, well-understood technology. Probability models for scattering of xrays in
soft-tissue, bone, and air are commonly available in the medical physics literature
[Curry et. al.-84], [Kereiakes et. al. -86]. This forms the basis for strong prior
probabilities in imaging models. In the application of radiographs, the imaging
geometry, approximate object (i. e., hand) aspect, and the ambient characteristics of
the energy source (i.e., xray voltage) is always known, so this is a highly
constrained, but not a toy problem. In this respect it is representative of a broad class
of medical, manufacturing and inspection tasks for machine vision. Finally, hands
are complex enough that the modeling problem is important, but simple enough that
we can hope to accomplish the task within a reasonable project scope. Hands are 3D
with articulated joints. Because the sensor is invasive, it is necessary to model the
layered volume (not just the surface). Most of the primitive hand components are
cylindrical in basic shape [Meschan-75]. We anticipate that it is not necessary to
model deformable surfaces for hand recognition. Some population statistics for
normal variation in bone size and range of joint articulation are available in the
medical literature [Poznanski-74].

Prostate volume measurement requires working with 3D CT imagery, requiring
image processing operations to exist for 3D image processing, and similarly
requiring surface matching and volumetric understanding as is required in range
imagery. The prostate requires irregular curved surface matching, but having genus
one, is much simpler than the heart, for example. Additionally, the prostate is a static
organ, unlike the heart, so that .. ape remains stable over time.

As in the terrain task, the objective of medical task analysis is to decompose the
execution of the medical tasks such that the underlying required functionality is
naturally exposed, making more obvious the design solutions to building a system
that achieves this functionality. We again present a task script, section 2.2.1, followed
by the medical task data transformations in section 2.2.2.

8.2.2.1 Medical Task Script

1) Order exams/measures
1.1) Select order mode

1.2) Select appropriate fields (e.g. modalities, views, measures)
1.3) Type input for name, institution id OR use OCR to scan patient
demographic data
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1.4) Select results viewing station(s)
1.5) Select execute mode

2) Call up results
2.1) Select results mode
2.2a) Type input or sclect "my" icon to call up batched exams

Assumes: batched exams and "my icon" exists
2.2b) Select appropriate fields
2.3b) Type input for name. institution id OR use OCR to scan patient
demographic data

3) View results
3.1) Select exam(s) to view
3.2) Select retreive and/or display mode

4) Modify results
4.1) Select modification mode
4.2) Select sub-mode of delete OR add OR move OR undo

Assumes: modification mode selected was "segmentation"
4.3) Choose geo-objects
4.4) Select done-modify

5) Order additional measures
5.1) Select measures mode
5.2) Select appropriate fields
5.3) Type input as required by 5.2 (typically none required)
5.4) Select results viewing station(s) (should default to current settings)
5.5) Select execute mode

6) Archive results
6.1) Choose exams to archive
6.2) Select archive mode
6.3) Choose archival devices

Assumes: More than one archive available
6.4) Select execute mode

8.2.2.2 Medical Task Data Transformations

A medical task data transformation refers to the displayed output a user observes in
response to a set of inputs while performing the steps in the medical task script.
Inputs include items selected or typed by the user, as well as data the user assumes is
present, such as medical imagery from exams, and demographic data routinely
associated with the exams. The "transformed data" includes the visually observed
displays, such as a bit-map overlay of a segmentation, as well as the implied data the
user assumes supports the display, such as the bounding polygon of the
segmentation. The user-apparent data transformations suggested by the script
include the following.

1) selected and typed entries ----- > exams (= imagery + textual data)
2) selected exams ----- > displayed imagery and textual data
3) selected and/or displayed exams ----- > segmented imagery
4) segmentation ----- > segmentation (interactive)
5) selected exam ----- > measure
6) two selected exams ----- > comparison measure
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The transformations imply the existence of certain user-apparent system

functionalities. These are listed below.

Transformations (1) and (2)

A database(-like) facility is implied that consists of a set of storage units for exam
imagery and textual data, with the database facility inverted on

a) patient names by lexicographical ordering
b) patient by social security number
c) patient by local institution id
d) anatomy by hierarchical anatomical structuring order
e) dates by chronological ordering
f) modalities by lexicographical ordering OR data storage source
g) non-local institutions by lexicographical ordering.

The options are in priority order for the medical task. Most access is concerned with
specific individuals, however, doctors also need to be able to access on anatomy and
modality for purposes of teaching, research and demonstration. The options (e) and
(f) are probably not both necessary to invert on (because the bucket size of retrieved
exams will be small after patient and/or anatomy and/or either one of modality or
date are selected), but are included for completeness. The option (g) will only be
applicable when multi-site institutions are involved, such as the VA, Humana and
Kaiser medical centers, hospital networks in socialistic countries (as most are run in
Europe, for example), DoD hospitals, distributed clinics, etc.

Because of the large size of imagery in exams (typically from 6 to 100 megabytes per
exam), it is standard practice to separate the textual data from the imagery, and to
make it available from database queries without requiring associated imagery
retrieval. The non-imagery exam data includes all textual and numeric patient data,
including demographic data, dates and locations of visits, attending and referring
physicians, modalties of imagery, anatomy imaged, imagery numbers, sizes, bit-
depths, and pointers, diagnoses, measures, and additional physician's comments.

Transformation (3)

The capability to segment imagery implies a specific choice of segmentation
methodology, and the use of specific image processing, pattern recognition, search,
and inference procedures. The specific choices are not user-apparent. However, the
output display is user apparent and must allow the doctor to "verify at a glance" the
correctness of the segmentation. (FYI, doctors often call segmentation "contouring"
imaged tissues. Bones, organs, and other soft tissues like ligaments, fat, etc. all fall
within the taxonomic category called "tissues".)

Transformation (4)

The user (a physician or highly skilled technician) must be able to work directly on
the verify-at-a-glance displayed output of transformation (3) to modify it for any
system created segmentation errors. The operations of add, delete, move, undo and
save are the tools for this. The user should be able to push the display around until
s/he likes what s/he sees, and then save the result, which will be used for auto-
recalculation of diagnostic measures that depend upon the associated segmentation.
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Transformations (5) and (6)

The basic measures are area and volume of segmented tissues. For an area, this is
computed as pixel count multiplied by the appropriate (constant per image) factor
that transforms pixels to square centimeters based on the viewing geometry and
physics of the scanner. For computed radiography (digital xray) we can
automagically measure this factor from the grid that appears on the borders of the
image. For digitized imagery, we must input this factor based on specific scanners
and viewing procedures, or we must automagically measure it from a marker of
known size placed in the image. The standard such marker is an "L" or "R" that is
routinely placed on most xray imaging plates to indicate the view the patient was
imaged from.

Other associated area measures include longitudinal axis computations for phalanges,
average pixel intensity, maximum region diameter, and specific region diameters
that depend upon finding certain anatomical points in the bounding polygon of the
segmented region.

Volumes are usually computed by doing the areas of the slices, and then
interpolating between adjacent segmentations. The interpolation is straightforward,
but depends upon knowing the thickness of, and distance between, slices in the exam
(as the set of images making up the volume is called). Usually these are constant
factors for a given exam, but they do not have to be(!).

Comparison measures usually compare the measures the last time the patient was in
against the current measures. So this requires the system to call up the last exam,
make the measures if they weren't made then, and then also to do the measures on
the current exam. Comparisons will typically be presented as percent increase or
decrease, as well as absolute increase or decrease. If there is a longer history,
another presentation, such as a graph, might be nice. Physicians do not currently
produce such graphical aids. Comparison exams should be presented side by side, with
the old exam to the left of the new one.

8.2.2.3 Medical Applications Requirements

The medical workstation design requirements are driven by the workstation task
requirements, and divided according to a top level breakdown of functional units
including:

"* Physician/Technician User Interface
"* Network to Scanners, PACS, RIS, and HIS
"* Databases: Anatomical Models/Scanner Models/Patient Exams/Imagery

Features
"* Image Processing Functions
"* Inference for Anatomical Segmentation
"• System Control.

In the following, we break out requirements according to this functional system
decomposition.

1.0) Physician/Technician User Interface
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1.1) The interface must be highly reliable and fault-tolerant. In particular, it
should be possible to move between states without rolling back through each
intermediate state, and to alter inputs and/or abort at almost any point, saving
state(s) and without catastrophic consequences.

1.2) Manipulation (typing, pointing, etc.) should be minimal to accomplish any
task.

1.3) There should ideally be only one visual focus of attention at any time on
the screen.

1.4) It must be possible to paint an image in less than 5 wall-clock seconds. In
general, no display should be slower than this (graphs, spreadsheets, etc.)

1.5) Displays must support a minimum of 16 bit deep pixels.
1.6) Full color overlays must be provided. Color should be 24 bits deep (i.e. 8 bits

each of red, green and blue) and color-tables should be changable in software.
1.7) It should be possible to draw on an image, then erase the overlay without

(apparently) affecting the image underneath. In particular, if the image needs to be
re-drawn, it must be transparent to the user.

1.8) Both interactive and automatic imagery color overlay capability should be
provided. Color tables should be interactively changable.

1.9) Zooming should be accomplished in no more than 5 wall-clock seconds.
Both zoom window and zoom around point should be supported. Zooming should zoom
both image, overlays and any "chained" windows.

1.10) Both 2D and 3D imagery display should be provided. 3D imagery must
support 512x512x256, 2D must support 4Kx4K imagery. Imagery must be viewable in
its entirety (i.e., without scrolling) in unzoomed mode.

1.11) Volumetric imagery must be viewable from any perspective.
3D and 2D rotation and translation must be supported.

1.12) 2D cutaway views of 3D imagery at an arbitrary angle should be
supported.

1.13) 2D imagery display should "fill" the display window.
1.14) 3D graphic object display should be supported including raster and

vector representations with hidden line and surface capability.
1.15) It must be possible to overlay 3D graphics on 3D imagery, with the same

erasability requirements (see 1.7 and 1.8) as 2D overlays.
1.16) Display should convey the same information to colorblind people as it

does to normal color-sighted people.
1.17) Any operation requiring more than 5 seconds of wall-clock time to

execute should display messages indicated what it's doing.
1.18) Any operation requiring more than 15 seconds of wall-clock time should

be provided in background mode so that other workstation interaction can go on.
1.19) Imagery displays should support mouse, light-pen or other pointer

interaction.
1.20) Menus, sliders, buttons, tables, graphs, icons and sprites should be

supported both interactively and automatically.
1.21) Imagery browsing should be supported with programmable choice of

"sub-sample" function for reducing imagery size for browse windows.
1.22) If multiple screens are required to browse through a single patient exam

(which can be up to 256 images), screen switching should be extremely rapid,
certainly under 5 seconds, hopefully under 3 seconds.

1.23) The user interface should be easy-to-learn, easy-to-recall and easy-to-
Use.

1.24) Custom interface selections (e.g. customized defaults, button locations,
etc.) should be available and easy to set up and use.

53



1.25) An easy to use access-security system should be provided. This security
system must allow programmability of selection of access to system
functions/modes/devices/data that are permitted for varying levels of clearance.

1.26) The user interface to external databases. etc. shoul' he represented in
visual, medical-domain terms/appearance.

1.27) The user interface should be portable to (almost) ai.; Jnix box with
sufficient memory. It should provide network server capability (a la X, NeWS, etc.)

1.28) On-line help should be available but not needed by the user.

2.0) Network to Scanners, PACS, RIS, and HIS
(PACS= Picture Archival and Communication System, RIS= Radiology

Information System, HIS= Hospital Information System)

2.1) The workstation must support standard networks, (ethernet, fiber-optic
ethernet, hipi, etc.) and standard network communication protocols including
TCP/IP, ISO, IEEE, etc. Custom networks must be supported for critical vendors
(probably PACS systems not known at this time, scanner vendors we contract with,
etc.)

2.2) High-speed/high-bandwidth communication must be supported. Exact
numbers are not yet known, but probably in the hundreds of megabytes per second
range.

2.3) Must decode and read imagery formats including ACR/NEMA, ISO and IEEE
as well as "proprietary" formats for CR/CT/MRI scanners made by GE, Siemens,
Philips, Toshiba, Picker, and Diasonics at a minimum. Data structures, selections etc.
should support addition of formats as required.

2.4) Data exchange between internal databases and institution databases must
be supported including all leading commercial PACS, RIS and HIS systems.

2.5) We must provide accurate modification tracking of changes to medical
records, including noting who made what changes when.

2.6) The possibility of distributed updating of records must be accounted for,
either by some communication protocol between workstations, or by prohibiting it
(e.g. data locking).

2.7) Access to records must be security controlled to meet legal, medical and
institutional requirements for patient privacy and medical protocols.

2.8) The workstation should be able to obtain dynamic models of the contents of
the accessed external databases such that if an unusually large retrieval is indicated,
the retreival is confirmed before execution.

2.9) The workstation should provide a uniform interface to all
imagery/records storage devices. Details should only be available for debugging
problems; otherwise it should look like a single database.

2.10) If multiple workstations are networked in and/or between institution(s),
they should communicate to effect transfer of data to meet scheduling needs for
availability of records/imagery where and when required for operational needs of
the institution(s).

3.0) Databases: Anatomical Models/Scanner Models/Patient Exams/Imagery Features

We first list requirements that are common between databases, then the
requirements that are specific to each.

3.1) We need to be able to query over arbitrary "keys" or access slots.
3.2) We need to be able to construct arbitary boolean algebraic queries over

multiple database keys.
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3.3) The interface to database queries, whether they are databases resident in
the workstation or external to it, should be intuitive and easy to use by anyone with a
high-school education (e.g., you shouldn't have to know boolean algebra).

3.4) Database searches should be optimizable (i.e., programmable), to depend
on the type and space/time characteristics of the data being searched for (e.g. graph
search over anatomic models, spatially oriented search for perceptual grouping in
imagery, etc.)

3.5) The anatomical models and scanner models databases must be persistent.
3.6) The patient exams database must be locally persistent until it can be

verified that the records/imagery have been archived in the appropriate external
database.

3.1) Anatomical Models Database

3.1.1) The database should support representation, storage and retreival of
point, curve, surface and volumetric objects, including graphs and boolean
combinations of them.

3.1.2) Complex relations such as articulation should be supported between
various modeled anatomical parts.

3.1.3) Pointers to image processing and feature extraction operators should be
supported.

3.1.4) Models should be indexed by patient demographics. In particular, ranges
and probability distributions over them should be representable for all model
features.

3.2) Scanner Models Database

3.2.1) Models should be available for computed radiography, digitized xray,
computed tomography and magnetic resonance imagery. Scanner modeling includes
procedures for predicting appearance of imaged anatomy based on imaging
geometry and anatomical parts (as represented in the anatomical models database).

3.2.2) Output of applying a scanner model to an anatomical and imaging model
should be an imagery appearance prediction that is represented to be usable by
image processing and inference operators.

3.2.3) Distributions of prior probabilities of imagery appearance based on 3.2.2
should be provided in an inference readable format.

3.3) Patient Exam Database

3.3.1) Records selection must operate from all minimally sufficient queries.
3.3.2) Self-contradictory queries must be handled, either by making them

impossible, by offering auto-ORing and confirmation to the user, or some other
method(s).

3.3.3) Matching of input data such as patient names, social security or other id
numbers, etc. should support partial matches, be case insensitive and accept all
possible standard syntaxes (e.g. first name, M.I., last name versus
last name, first name, M.I., etc.)

3.3.4) Ideally, mispellings, homonyms, and any other known standard data
entry problems should be handled subject to reasonable speed requirements (TBD).

3.3.5) It should be clear if a measure has already been performed, and it should
be easy to indicate re-doing the measure.

3.3.6) Multiple values for the same measure should be maintained, and the
differences accounted for (e.g., if a physician interactively modifies a segmentation
and asks for a recalculation, but all on the same exam.)
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3.3.7) It should be easy to retrieve and view prior exams, and indicate which
ones should be used for comparison measures and/or trend tracking; again standard
defaults should be available and easy to indicate.

3.3.8) Multiple exam trends should be plotted in a self-explanatory, easy to read
fashion, with links to multiple records available for display of interactively selected
comparisons.

3.3.9) Linked records, e.g. comparison measures across multiple exams, should
be indicated so that they can be quickly recalled for viewing.

3.3.10) Sufficient local storage should be provided to buffer exams. Sizes of this
buffer are not yet known, but will easily be in the hundreds of megabytes and is
likely to be in the thousands of megabytes.

3.4) Imagery Feature Database

3.4.1) Dynamically created feature databases as the output of image processing
operators should be supported.

3.4.2) Feature databases should be indexed by the imagery the features were
extracted from.

3.4.3) The databases should be spatially hierarchically represented to support
optimization of search for feature groupings.

3.4.4) Features should be linkable as instances of anatomical models that are
linked, when this makes sense (e.g. spatial relationships between extracted bone
surfaces).

3.4.5) Feature databases need only persist until imagery analysis is completed.

4) Image Processing Functions

4.1) A large library of standard image processing functions must be provided,
including arbitrary kernel sized convolutions, where the convolution window allows
arbitrary arithmetic and logical operations on the neighborhood.

4.2) Arbitrary sub-window and blotch (i.e. mask dependent) processing should
be provided for all IP operations.

4.3) It should be selectable on all operators whether the output takes the form
of images, lists, or a feature database, where these outputs make sense.

4.4) Operators should be able to accept the output of feature database queries as
inputs.

5) Inference for Anatomical Segmentation

5.1) Full Bayesian inference over either continuous or discrete values must be
supported.

5.2) Bayes nets must be dynamically instantiatable to correspond to instances
of hypotheses of instantiated models.

5.3) It must be possible to query the state of any subset of the Bayes net;
reasonable subsets (e.g. subtrees) should be efficiently searched.

5.4) The Bayes net must be a savable structure, but need not, in general, be
persistent.

5.5) It should be possible to efficiently search the model space and feature
space to perform matching, and to efficiently instantiate Bayes nodes based on the
result of the matches.

5.6) Metrics used for matching should be programmable; in particular,
sophisticated match metrics such as the Mahalanobus distance should be supported

6) System Control
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6.1) A full utility theory over the Bayes nets should be provided.
6.2) It should be easy to select and change value functions over the anatomy of

interest. The value functions should be linked to the anatomical model database, and
should apply to arbitrary levels of hierarchy there (e.g. curves and surfaces as well
as volumes).

6.3) Control should account for listening to the user while still maintaining
good efficiency in computationally intense processing.

6.4) The system should understand when "batch" type processing is required
and when realtime interaction is required. If it cannot provide the latter, it should
inform the user and give appropriate options.

6.5) System control should exhibit a certain level of fault tolerance; in
particular, self-diagnostics should be periodically run, and appropriate message
displayed if servicing is needed.

8.3 IU Application Development Task Analysis

The objective of IU application development task analysis is to present the generic
steps an application developer often repeats, and also to present the dependencies
between steps such that the underlying requirements for tool capabilities are
naturally exposed, making more obvious the design solutions to building tools and a
tool using environment that achieves this capability. Our approach to this is to step
through the tasks a "generic" IU application developer performs in scripts of
progressively finer detail, essentially scripting (or verbally storyboarding) the
functionality of the user-interface. Section 8.3.1 is a summary of tasks the developer
embraces in building an image understanding (IU) application. In section 8.3.2 the
application developer's script is presented.

8.3.1 Summary of Application Developer Tasks

It is problematic to present a script of the actions an application developer performs,
as developers may permute the order and dependencies among operations in many
ways as they incrementally interleave development steps such as image processing,
model building and matching, for example. So the workstation designer needs to be
especially wary of depending too directly on the folowing script as a specification for
doing tool development. We can be sure that the functionality listed in this script is a
strict subset of what is actually required. Nonetheless, the intention of this script is
to cover the main steps and the obvious dependencies between steps in sufficient
breadth and depth so that the workstation designer produces a useful environment
even if s/he takes a narrow interpretation of the ripted capabilities.

A second complication is the need for the IU application developer to deal (more or
less) directly with many of the objects that are created during development sessions.
It is tricky to discuss the required functionality without suggested design solutions
(e.g. object structures) to simplify the language. However, the attempt is made here to
state the functionality without designing solutions to achieve it. As a consequence
the script sometimes reads a bit more like a set of tool requirements than a script of
actions.

The generic task the script is focused around is that of doing the development to
automate an IU application. Basically, the developer (we interchange the terms
developer and user from now on) wants to bring up some imagery, interactively play
with it to make measurements and begin guessing what sort of imagery operators can
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work on the data. Then s/he wants to string together a bunch of existing image
processing (IP) operators, playing with parameters interactively to see what
evidence is extracted from the imagery.

Then begins the task of model development. The models are geometric, material,
constraints, and IP (or other) actions for evidence gathering. This requires
interactive geometric modeling, integrating population statistics, setting up and
experimenting with constraint equations, displaying lots of 2D and 3D geometric
objects, and interactively editing to create model objects out of these pieces.

Development of matching operators typically descends into a full programming
environment, writing matching routines dealing with the model and IP objects that
have been defined. Some basic math packages for solving cubic spline equations are
helpful here, and probably similar tools for various other parametrizations.
Grouping is a type of hierarchical and/or adaptive combination of searching and
matching features into more complex structures. Groupers can be looked at as
complicated matching routines, for the sake of how they fit into a development
environment. However, they tend to be different in that they can make extensive use
of Powervision style image feature filtering over a database of imagery features to do
their job. The need to have computationally intense numerical matching operations
in a tight loop with database calls that invoke spatial searches for the data to be
matched against is unique to computer vision grouping operations (to the best of my
knowledge). The idea of implementing this as database filtering is actually a design
approach rather than a required capability.

Now the IP operators, models and matching and grouping routines are integrated
together in an inference framework of some sort. Three of the most common such
frameworks in IU applications are Bayesian inference networks, blackboard-
executed frame-based systems, and logical rulebases. In any of these paradigms, the
developer defines model representations of (Bayes) nodes/frames/rules that point at
the set of model-components that can be confused in recognition. Conditional and a
priori probability distributions/confidences or weights of evidence must be defined
by either LUT or parametrizations and put into the network model/frames/rules.
Models for the IP operations should include expected time of execution as a function
of sw/hw environment and relevant input data parameters such as imagery size. The
Bayes net/blackboard/infererfie engine gets cranked manually until inference
starts looking reasonable.

When the net seems to operate well with human control, the next step is to
experiment with automated control regimes. For Bayes nets, values get assigned to the
top level nodes of the Bayes net, and utility functions can be generated from the
bayes net. The utility function assigns a number to each action that can be executed
as a self-contained process that comes from the bayes net. These numbers can be used
to rank the processes for operating system style control like FIFO and best-first.
Alternatively, a full, decision theoretic control can be used, or even rules giving an
exact specification of steps to be executed in the Bayes net. In blackboard systems and
rulebased systems, meta-rules must be developed that guide search routines and
prioritize rule execution.

Finally the whole thing's gotta be tested, a lot, by components and by system.
Statistics from runs should be automagically accumulated. Timing and other standard
software metrics should be provided at a tool level. Tables and graphs should be easy
to generate. Then the whole schmeer has to be software engineered for maintenance,
documentation and versioning.
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8.3.2 Hierarchical Application Developer Task Script

The "script" detailing the above development task summary is presented in levels,
each subsequent level expanding the detail of the previous. Assumptions about the
mode the system is in and the availability or display of data are indicated for each
step in the script where appropriate. Two types of or-ing for interaction options are
used. One is versioning indicated by "a", "b", etc. after the step number. Thus "4a"
means the "a" version of step 4, and "4b" means the "b" version of step 4. The other
type of or-ing is just to put "or" between options within the same script step as in
selecting a feature type or measure to perform.

1) Access the appropriate data sources from the development environment.
2) Display, manipulate and examine data.
3) Develop image processing operators that extract evidence from imagery.
4) Extract features and measures from imagery regions.
5) Create models of objects to be recognized and measured from imagery.
6) Develop matching operators that compare regions, features and measures with
segments of models.
7) Develop inference structures such as Bayesian networks or rule bases.
8) Experiment with reasoning control strategies on the inference structures.
9) Craft the user interface to yield a natural vertical application solution.
10) Test the (semi-) automated solution for robustness and reliability.

1) Access the appropriate data sources from the development environment.
1.1a) Type-commands to access images from known locations.

Assumptions: The developer knows the image s/he wants and it is accessible by
the system. The system need only have routines to use a pathname to retrieve an
image. The system may need to be able to access external databases, such as a digital
terrain database, and know foreign imagery formats, such as for medical images.

1.1b) Display an imagery database browser and make selections to retrieve desired
imagery.

Assumptions: All display and retrieval interaction is idiot-proofed. For large
retrievals, the developer is warned of the amount of data and asked to confirm the
retrieval. Interface has full database capability (keys on imagery names, dates,
sensor-types, general image content, etc.).

1.1c) Something in-between L.la (the user is smart and the system is dumb) and
1.lb (the system is smart and the user is dumb).

2) Display, manipulate and examine data
2.1) Display the selected imagery.

Assumptions: Display function is smart about window sizes versus image sizes.
Display does not change aspect ratio of imagery. Clipping is optional.

2.2) Do display manipulations of imagery, at a minimum including scrolling,
zooming by pixel replication, anti-aliasing rotation (e.g. the Fant warp routine), fast
transpositions and re-scaling.

2.3) Text describing imagery objects or ephemeris data should be able to be moved
into windows so it can be side-by-side with imagery or other signals. It should be able
to be zoomed up or down or font substituted to be bigger or smaller.
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2.4) Imagery should be interactively examinable for gray-level distributions and
pixel values in arbitrary sub-regions of the image. In particular we should be able to
look at an ascii (numerical) view of sub-regions of pixels, or get the histogram, mean
and variance of pixel values in an arbitrary region. It is nice to be able to graph the
profile of the pixel values under an interactively defined geo-object-line or for any
arbitrary sequence of pixels. It is convenient to be able to drag a small window
interactively over the image and see display of pixel values or other statistics
dynamically computed and displayed.

Assumptions: These operations can be interleaved with the display and
processing of any image. It should be possible to represent sub-regions for display
and examination by multiple methods. At a minimum it should be possible to
represent sub-regions as either regions output by connected component, or defined
interactively as a polygon or other geo-object.

3) Develop image processing operators that extract evidence from imagery.
3.1) Define and move about image display windows easily and have names for

them that are usable in interactive operations.
Assumptions: Image operators are smart enough to know about their need for

scratchpad memory (or scratchpad windows), and whether operations can be done in
place (like LUT filtering) or requires an output window (like FFT). The user is
prompted or shutout from illegal operations automagically.

3.2) Do standard look-up-table (LUT) filtering. The developer should be able to
easily set a LUT for gray level and/or color either by putting values in a file or an
interactive data structure, or by parametrically defining a function to generate
values for the LUT. Histogram equalization, parametrized gamma correction, absolute
and multi-value thresholding should be available as standard LUT generating
routines.

3.3) A generic method should be available to do an algorithmically parallel
neighborhood operation at every pixel. The most general capability allows the
developer to write any function that reads the values of the pixels in a runtime
defined neighborhood (n by m, circular or hexagonal) and replaces with center pixel
with a new value returned by the function. The most specific capability convolves a
square fixed size neighborhood (2n+l by 2n+l, typically with n=1,2 or 3) of each pixel
with a kernel supplied by the user. Obviously, tools closer to the former are more
desirable. Border processing options should be available, including constant-fill,
reflection, and wrap-around (i.e. tiling). It should be optional to save results as
individual images, or "pipe" them into other operators, as defined by an appropriate
IP command language (oops, another solution method creeping in there...).

3.4) The method of 3.3 can be productively generalized to run along any defined
geo-object. Performing neighborhood computations along the boundary of a region
is a particularly useful operation for looking for gradient evidence in building
models and model-matching routines.

3.5) Imagery algebra and arithmetic function operations are often performed
between images; it should be easy to AND, OR or DIFF two images, and to do the
operations +,-,* and / between them. Again, results should be savable as images.

3.6) A very efficient connected component capability should be available, as this
routine is used often. It should be optionally 4 or 8 connected (hexagonal
connectivity and "sided" connectivity options are nice too, but not as frequently
used). Basic features should be computed for each component for efficiency (as they
can be easy tracked during component construction, and are likely to be needed for
further processing) including pixel-count, area in centimeters (if conversion
constant is supplied with the imagery), number of pixels in the interior and exterior
perimeters, average and variance of the gray-levels or for each of rgb, and genus
(number of holes).
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Assumptions: The data structures output by connected component are
understood by virtually all other system components, including databases, display
and browsing methods, and routines that process imagery features; see the level 2
description of step 4.

4) Extract features and measures from imagery regions.
4.1) Most features are calculated as functions using as input the numerical values

and spatial relationships of a set of pixels in a connected region output by connected
component. So the object-manipulating environment should make this data easy to
obtain in arrays or other data structures for use in feature-computing functions.

4.2) The developer wants to create two basic classes of features. One is spatial
structures, such as boundary shape descriptors and surface fits to a region, and the
other is numerical (real-valued) measures of regions and their derived spatial
representations, such as area, curvature, lengths, etc. Multi-resolution versions of
most descriptors should be available. At any single level, the data structures
representing the features at that level of resolution should be accessible by IP and
feature creating routines the same way as single-resolution feature representations.

4.3) Whenever spatial representations are created, the developer wants to look at
distributions of the associated measures, and to experiment with thresholding the
distributions to look at various subsets of the feature space. The developer can specify
the thresholding interactively as values, or can use one derived automatically from
functions that look at distributions of feature values and execute criteria such as
"threshold at top 5% of histogram of pixel values", of "threshold at the top 20% of
high curvature points".

4.4) Search tools are used to define and process feature groupings. Feature search
tools come in two basic varieties, attribute matching tools, and relational search. In
attribute matching, set of regions or features are defined, typically as the output of
some operator, and the developer wants to see which ones fulfill certain constraints
on attributes, such as size, color, compactness, etc., stored with the feature or region.
Relational search requires looking not just at each feature, but also at spatial
relationships (and often other subsequent attribute comparisons) between multiple
features or regions. These again come in two varieties, unordered relations, and
sequential relations. Nearness is an unordered relation, but branching is an ordered,
or sequential, relation. Boundary following is also a common sequential search
operation.

Assumptions: All search tools understand any tools used for rapid (multi-
resolution) spatial indexing of features and/or imagery.

4.5) Database storage of features is an implicit solution approach here, however if
this approach is used, care must be taken to tightly integrate database access with IP
and feature searching/generating routines. It may, for example, be far more
efficient to pipe results from one operator to another without intermediate database
storage. This could require some smarts, or option switches, to know when storage is
desired. In any case, the user must understand what results are saved, which are not
saved, and those that are not saved but whose process-to-create is recoverable.

5) Create models of objects to be recognized and measured from imagery.
5.1) The basic need is interactive modeling packages that can be used to create

parametrized geometric object models from ID and 2D splines, prisms, and
generalized cylinders. In one scenario, a developer draws a contour on an image,
extracts it and fits alD spline to it. Another contour is extracted and spline fit; but
now the ratio of of spline coefficients needs to be computed and stored, rather than
forcing the absolute numerical parameters in. Relational model parametrization is of
key importance; it is the ratios between parameters that get specified during the
interactive sessions. Statistics governing distributions of parameters can be
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interactively input, but may come from other routines (e.g. a database access of a
ground truth file of imagery or feature objects).

5.2) 3D models can be represented as an ordered, linked stack of 2D models, or
directly as a 3D volume, as with generalized cylinders, or, with loss of information, as
a surface map of polygons in 3-space with attachments. (Of course there are other
representations, but these are the three we are initially using in medical
applications.) In each representation the developer wants to view (projected)
instantiated models against data interactively, and to view displays of models as
parameters are interactively varied.

5.3) Geometric "iodeling proceeds by defining the primitive model components
and their spatial relationships, such as adjacency, affixments, joints, and parametric
relationships between axes and surfaces. It is convenient to have e modeling
language that allows specification of spatial operations as an algebra (another design
note).

5.4) Constraints are now modeled between geometric parts. Displays of tables of
numerical outputs and also of projected models are used to check constraint
propagation between model components are parameters are varied. For example, a
developer models the bones of the finger and their relationships and constraints, and
then checks the relative joint flexions by varying the angle of one joint and viewing
displays of the range of the other.

5.5) Population statistics may be presented as normal distributions and/or by
intervals. Constraints also can exist between these, so that when one distribution is
pegged at a fixed value (or small interval) based on observations, dependent
distributions are modified to ranges compatible with the observation and the
relationship with the first distribution. Statistics may need to be computed from a
training set, typically intended to be a random sample of the population being
modeled.

Assumptions: The environmental tools either are sufficient to access the
training set data, or the developer has some capability to access that data.

5.6) Now that the primitive model structures are understood, full part-of and is-a
hierarchical (inheritance) taxonomies are defined, and the complete structure is
created.

5.7) Operators are attached to the appropriate model nodes indicating parametric
relationships between the operator inputs and the model so that the operator can be
machine-instantiated at runtime to gather evidence supporting or denying the
presence of an instance of the model.

6) Develop matching operators that compare regions, features and measures with
segments of models.

6.1) The developer experiments with interactive parameter adjustment of models,
projection of 3D models into 2D predictions, and matching the predicted model against
extracted features and/or regions. There are two main matching approaches. The
first is identical to model instantiation: an extracted feature is fit to a model
component, e.g. a set of boundary pixels are fit to a ID spline. In the second, a sensor
image acquisition model is applied to an (partly) instantiated 3D model from a
hypothesized perspective, and a geo-object is created that can be matched against the
geo-object implied by the region occupied by the imagery feature. This fitting
procedure can be supported by an appropriately applied least-squares-fit.

Assumptions: For each model primitive, there exists (a) method(s) to match it
against some type(s) of features and/or regions.

6.2) A key advantage of model-based reasoning is that constraints in instantiated
parts of models can be propagated to as yet uninstantiated values of model parameters
to focus predictions for further processing. Based on partial matches, the developer
now exercises the prediction mechanism to see the object localization implied by the
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partial match. This can be used to place values on operators, and as a guide to
refining models and model matching.

Assumptions: Computation and display of predictions is easy and relatively
rapid, and/or the development environment is multi-processing so that development
does not have to stop and wait long for prediction results.

7) Develop inference structures such as Bayesian networks or rule bases.

7.1a) Building of the Bayes net begins by choosing the set of models that
encompass the recognizable world (closed world assumption, with "other" category),
and constructing a model bayes net that associates model nodes together as the
competing hypotheses in Bayes nodes. (In the most general environment, there are
cleverly indexed databases that allow automatic Bayes net building by building
databases of conflicting models based on domain task applications.)

7.2a) Develop the conditional probability matrices between Bayes nodes based on
the discriminatory evidence about the IP and other evidence gathering operators as
described in step (5.7).

7.3a) Establish an initialization process that instantiates a (partial) Bayes net
based on a fixed set of operations that have high probability of success (e.g. the
medical hand-finder).

7.1b) Create a rulebase that captures model instantiations, evidence gathering,
and decision making (about termination, for example), based on relationships
between models and evidential matching results. The basic rule is of the form "If you
see X, then do Y.".

Assumptions: Rule syntax and inference engines accept as inputs the results
generated from evidence gathering operators, from statistical routines, and from
accessing the model objects.

7.2b) Iteratively experiment with ch.bining in the rulebase based on alternate
initialization sequences to determine both the initialization processing, and
completeness of the rulebase.

8) Experiment with reasoning control strategies on the inference structures.
8.1) The developer iteratively changes the state of the Bayes net and/or rulebase

or other inference structure, then manually indicates the next processing step and
views the results.

Assumptions: Persistent data that the developer wants to save and reload to
experiment with reasoning control includes all models, results of IP, pattern
recognition, and grouping operators, matching methods, and Bayes nets and/or
rulebases. It is preferable to be able to save an intermediate state in Bayes net and/or
rulebase inference.

8.2) The developer runs automated processing routines such as a decision theory
evaluation routine, a metarule selection strategy for multiple rule firings, or an
influence diagr.:m algorithm (that incorporates the Bayes net.)

Assumptions: Reasoning control programs accept as inputs models, inference
structures and associated parameters.

8.3) The developer examines explanations of automated processing runs, and then
interactively alters models, inference and/or reasoning control.

Assumptions: Explanation facilities are available for each control strategy and
inference structure.

9) Craft the user interface and documentation to yield a natural vertical application
solution.
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9.1) Do task analysis, work studies and interface storyboards to determine the full
sequence of steps, relations between domain task operations, environmental and
operational constraints, resource constraints, required integration with other
products and/or data, domain user technology familiarities, typical enduser
occupational background and computer use capabilities (or phobias), and the uses
that output information is put to.

Assumptions: The developer has access to view and analyze operational
environments in the domain application area.

9.2) Rapidly prototype alternate user interfaces, and let potential end users
experiment with the interface to uncover problems, design shortfalls, unexpected
data dependencies, etc.

Assumptions: The developer has access to candid, knowledgable, representative
and hardworking end users who have the time to evaluate the proto-interfaces.

9.3) Documentation for system is developed and tested on typical users both with
and without assistance. Without assistance results are used to modify the written
documentation so that assistance is unnecessary to easily run the system. With
assistance results are used to test the successfulness of the actual system functioning
under control of an enduser.

10) Test the (semi-) automated solution for robustness and reliability.
10.1) Determine approximately how many cases are required to establish

reliability in the accuracy of the product's output measurements, then run the
system over that many cases selected randomly from the population. Statistics need to
be gathered.

10.2) Test that each system component has correctly implemented the required
algorithms.

10.3) Establish software metrics for system reliability in terms of continuous
functioning, and test the system accordingly. Again statistics are gathered, including
timing and memory usage.
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Appendix A Obpect Hierarchy

Container

Point
Point Id
Point2d
Point3d
PointNd

Curve
Curveld

Signal
Curve2d

S impleCurve2d
Point Curve2 d
EdgeCurve2d
PolynomialCurve2d
SplineCurve2d

BezierCurve2d
Curve3d

Simple Curve 3d
PointCurve3d
EdgeC urve3 d
Polyno~mialCurve3d
Spi in eCu rv e3d

B ezi erCu rye3d
CurveNd

Simple Cu rveNd
PointCurveNd
EdgeCurveNd
Polynomial Curve Nd
SplineCurveNd

BezierCurveNd

Surface
Surf ace2d

Simple Surface2 d
Constant Surface 2d

Box
Polygon

Parallelogram
RLE

Valued S urface2 d
Image
Polygonimage

Warped Image
TiltedImage

RLEImage
ConnectedSurface2 d

AggregateS urf ace2d
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S urf ace 3d
Simple Surface 3d

ConstantS urface3d
ValuedSurfac .3d

ConnectedSurface3d
AggregateSurface3d

S urf ace Nd
S impleSurfaceNd

Cons tantS urface Nd
Valued Surface Nd

Con nec ted Surface Nd
Ag greg ate eS u rfa c eNd

Solid
Solid3d

SimpleSolid3d
ConstantSolid3 d

General izedCylIinder
CSG's

ValuedSolid3d
Space
BoundedSpace

ConnectedSolid3d
AggregateSolid3d

S olidNd
SimpleSolidNd

ConstantSolidNd
ValuedSolidNd

ConnectedSolidNd
AggregateSolidNd

HyperSolid
HyperSolidNd

SimpleHyperSolidNd
ConstantHyperSolidNd
ValuedHyperSolidNd

HyperSpace
BoundedHyperS pace

ConnectedHyperSol idNd
AggregateHyperSolidNd

Coordinate
Global
Local

Base

Collection (ContainerParts)

Array
ByteArray
Array2d

ByteArray2d
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Array 3d
ByteArray 3d

Array Nd
ByteArrayNd

Stream
ByteStream
St ream2 d

ByteStream2d
St ream 3d

ByteStream3d
StreamNd

B yte Stream Nd

Graph
Tree

List

Rtcord
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Annendiv B Image Processing Source Libraries

ALV Toolkit

Contact: alv-users-request@uk.ac.bris.cs

Description:

Public domain image processing toolkit written by Phill Everson
(everson@uk.ac.bris.cs). Supports the following:

- image display
- histogram display
- histogram equalization
- thresholding
- image printing
- image inversion
- linear convolution
- 27 programs, mostly data manipulation

BUZZ

Contact: Tehnical: Licensing:
John Gilmore Patricia Altman
(404) 894-3560 (404) 894-3559

Artificial Intelligence Branch
Georgia Tech Research Institute
Georgia Institute of Technology
Atlanta, GA 30332

Description:

BUZZ is a comprehensive image processing system developed at Georgia Tech.
Written in VAX FORTRAN (semi-ported to SUN FORTRAN), BUZZ includes algorithms
for the following:

- image enhancement
- image segmentation
- feature extraction
- classification

HIPS

Contact: SharpImage Software
P.O. Box 373
Prince St. Station
NY, NY 10012
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Michael Landy (212) 998-7857

landy@nyu.nyu.edu

Description:

HIPS consists of general UNIX pipes that implement image processing
operators. They can be chained together to implement more complex
operators. Each image stores history of transformations applied.
HIPS is available, along with source code, for a $3000 one-time
license fee.

HIPS supports the following:
- simple image transformations
- filtering
- convolution
- Fourier and other transforms
- edge detection and line drawing manipulation
- image compression and transmission
- noise generation
- image pyramids
- image statistics
- library of convolution masks
- 150 programs in all

LABO IMAGE

Contact: Thierry Pun Alain Jacot-Descombes
+(4122) 87 65 82 +(4122) 87 65 84
pun@cui.unige.ch jacot@cuisun.unige.ch

Computer Science Center
University of Geneva
12 rue du Lac
CH-1207
Geneva, Switzerland

Description:

Interactive window based software for image processing and analysis. Written in C.
Source code available. Unavailable for use in
for-profit endeavours. Supports the following:

- image I/O
- image display
- color table manipulations
- elementary interactive operations:

- region outlining
- statistics
- histogram computation
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- elementary operations:
- histogramming
- conversions
- arithmetic
- images and noise generation

- interpolation: rotation/scaling/translation
- preprocessing: background subtraction, filters, etc;
- convolution/correlation with masks, image; padding
- edge extractions
- region segmentation
- transforms: Fourier, Haar, etc.
- binary mathematical morphology, some grey-level

morphology
- expert-system for novice users
- macro definitions, save and replay

Support for storage to disk of the following:
- images
- vectors (histograms, luts)
- graphs
- strings

NASA IP Packages

VICAR
ELAS -- Earth Resources Laboratory Applications Software
LAS -- Land Analysis System

Contact: COSMIC (NASA Facility at Georgia Tech)
Computer Center
112 Barrow Hall
University of Georgia
Athens, GA 30601
(404) 542-3265

Description:

VICAR, ELAS, and LAS are all image processing packages available from COSMIC, a
NASA center associated with Georgia Tech. COSMIC makes reusable code available for
a nominal license fee (i.e. $3000 for a 10 year VICAR license).

VICAR is an image processing package written in FORTRAN with the
following capability:

- image generation
- point operations
- algebraic operations
- local operations
- image measurement
- annotation and display
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* geometric transformation
- rotation and magnification
- image combination
- map projection
- correlation and convolution
- fourier transforms
- stereometry programs

"ELAS was originally developed to process Landsat satellite data, ELAS has been
modified over the years to handle a broad range of digital images, and is now finding
widespread application in the medical imaging field ... available for the DEC VAX, the
CONCURRENT, and for the UNIX environment." -- from NASA Tech Briefs, Dec. 89

"... LAS provides a flexible framework for algorithm development and the processing
and analysis of image data. Over 500,000 lines of code enable image repair,
clustering, classification, film processing,
geometric registration, radiometric correction, and manipulation of
image statistics." -- from NASA Tech Briefs, Dec. 89

OBVIUS

Contact: for ftp --> whitechapel.media.mit.edu
otherwise --> heeger@media-lab.media.mit.edu

MIT Media Lab Vision Science Group
(617) 253-0611

Description:

OBVIUS is an object-oriented visual programming language with somesupport for
imaging operations. It is public domain CLOS/LISP
software. It supports a flexible user interface for working with
images. It provides a library of image processing routines:

- point operations
- image statistics
- convolutions
- fourier transforms

-----------------------------------------------------------

POPI (DIGITAL DARKROOM)

Contact: Rich Burridge
richb@sunaus.sun.oz.AU

-- or --
available for anonymous ftp from ads.corn

(pub/VISION-LIST-B ACKISSUES/SYSTEMS)

Description:

Popi was originally written by Gerard J. Holzmann - AT&T Bell Labs.
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This version is based on the code in his Prentice Hall book, "Beyond
Photography - the digital darkroom," ISBN 0-13-074410-7, which is
copyright (c) 1988 by Bell Telephone Laboratories, Inc.

VIEW (Lawrence Livermore National Laboratory)

Contact: Fran Karmatz
Lawrence Livermore National Laboratory
P.O. Box 5504
Livermore, CA 94550
(415) 422-6578

Description:

Window-based image-processing package with on-line help and user
manual. Multidimensional (2 and 3d) processing operations include:

- image display and enhancement
- pseudocolor
- point and neighborhood operations
- digital filtering
- fft
- simulation operations
- database management
- sequence and macro processing

Written in C and FORTRAN, source code included. Handles multiple
dimensions and data types. Available on Vax, Sun 3, and MaclI.
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