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Summary

The functional requirements for the HDL/CIP tracking system have been identified. The
design and development of the tracking software have been performed.

Based on the tests on the MMAS simulation data file, the following are observed.

The tests show that the performance of the SRIF with the IMM is in an acceptable range.
That is, even though the targets are highly maneuvering, the averaged filtered state from
selected models follows closely the true trajectory without measurement noise. However, the
disadvantage of this approach is in the computational load due to the use of multiple filters.

It has been observed that the choices of design parameters affect the tracking perfor-
mance. For example, a change in the parameter DATA_ACCUMULATION PERIOD leads
to different sets of measurements being received by tracker module, and hence, different
tracking results are sometimes expected.

An approach such as the maximum likelihood method should be considered to estimate
reasonable values of parameters. The parameter estimation procedure and the tracking pro-
cedure should be performed concurrently.

The predicted state estimate is dependent on the models utilized in filtering. Also, the
movement of some vehicles, especially ground vehicles, is dependent on terrain. This makes
the reliability of the Pred.icted state of ground vehicles low. An expert system which can
combine kinematic information from filtering and other information, such as terrain informa-
tion, should be considered.

Vehicle type information is utilized in the tracking process. The procedure employed to
determine the vehicle is very simple, and utilizes kinematic information only. The
misclassification of vehicle type also leads to unexpected tracking results. The development
of a system which can integrate numerical and nonnumerical information to get a more reli-
able vehicle type is required.

For measurements such as the MMAS data, the MHT method is more suitable than any
method employing a soft decision scheme. In the implementation of the MHT, hypotheses
generated must be pruned. The development of the criteria to prune the hypotheses should be
considered. A hybrid system , which can integrate kinematic information and the results from
the data association method employed in tracker software, and some nonnumeric information
together will give more reliable data association results.




1. Introduction

With the advent of the surveillance sensor systems, more information about the
battlefield is available in various forms. This information is to be put together to form an
accurate and unified picture to be presented to the tactical commander. Since there is an
abundant amount of information to be processed, development of a high power computing

machine and supporting software is required to handle it.

Harry Diamond Laboratories (HDL) is in the process of developing a High Power
Workstation (HPWS) as part of the Multi Mission Area Sensor (MMAS) program. The
HPWS shall be designed to perform multisensor multitarget tracking of entities on the
battlefield in near real time. The HPWS will be netted with various sensors on the battlefield.
Sensors netted with the HPWS will send their information to the system via hard-wired or

radio links. The HPWS will acquire, correlate, and process the sensor information.

The functional area analyst will access the HPWS via a tethered workstation. The user will
be provided with a graphical representation of the current battlefield situation which he can
query using commands entered via a mouse activated menuing system or keyboard. The sys-
tem will support the analyst with knowledge-based expert systems, object-oriented order of
battle and task organization databases, and a spatial database for terrain reasoning which can
be accessed via an advanced man-machine interfaces. These databases will be linked via vari-
ous functional area application/decision aid processes which will enable the analyst to perform
his tasks more efficiently. This contract is primarily concerned with the support provided to

the analyst in the areas of multisensor multitarget tracking of entities on battlefield.

This final report consists of the following. In chapter 1, the Combat Information Proces-
sor (CIP) system, the software which will support the HPWS is reviewed briefly, especially
focusing the parts which are relevant to MTI’s task. Chapter 2 describes some problems and

the corresponding algorithms. Test results based on the MMAS simulation data and conclu-




sions are provided in chapters 3 and 4, respectively. This final report ends with the recom-

mendations for future enhancements.
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Review of the CIP Software Architecture

For system integration purpose, the architecture study about the CIP software system has

been performed. The following are the descriptions of processes which are relevant to track-

ing task. The corresponding block diagram is provided in figure 1.1-1.

1)

2

Message Fact Process: The sources of messages provided to the message fact process are
the Communication Interface Module (CIM), the Unmanned Aerial Vehicle (UAV)
Ground Data Processor, the Multi Mission Area Sensors (MMAS) Sensor Network, and
the Autonomous Target Acquisition (ATA) Systems. The main purpose of this process
is to collect the CIP messages and to transmit the messages to the tracker process, while
archiving. The main routine starts with calling the netSTART function and continues to
initialize the client interface, terrain database, and message database. Once the initialiia-
tion is complete, the message fact process waits until it has received a message from the
VMIM, UAV, MMAS, and ATA. When message comes in, the service command is pro-
cessed. Service_cmd reads command header from command packet, and executes

appropriate procedures.

Tracker Process: The main purpose of this routine is keeping a local copy of the
acquired units list. The units list will be updated when unitcntrl sends an update com-
mand in the form of cmd packets to the tracker. The tracker compares an incoming mes-
sage from the message fact process with the acquired unit list, then sends the appropriate

command unitcntrl process.




3)

4)

3)

Unit Control Process: The main purpose of this process is maintaining a master copy of
database for units. The unitcntrl process sends command packets to the tracker and
receive messages from the tracker, as well as maintaining unit positions and updating all

attached workstations as necessary.

Units: Units is a task that runs on a workstation using a local copy of the master data-
base which is maintained by the unitcntrl process. Units continuously updates the

battlefield unit information and displays the result on the workstation monitor.

Menu Server: Menu server is an interactive program which synchronizes user actions
with program responses. The Open Systems Foundation’s MOTIF is used as a graphical
user interface. Normally, the user is given a prompt for input of the next parameter to
be supplied as part of a command sequence initiated by depressing a specific command
key. When a command is acknowledged, the action informs unitcntrl to modify the data

structure and update the display.

In addition to the above processes, Multiple Hypothesis Tracker (MHT) module is

included for the purpose of data association. This module consists of the following three

processes.

6)

TRKMAN Process: The main purpose of this process is the management of tracks, which
includes merging similar tracks, initiating new tracks, and deleting unnecessary tracks.
Also, this process supports the processes HYP and CORR by providing new
TRACKVAL and track history.




7

8)

HYP Process: The main purpose of this process is to compute correlations and choose

the best hypothesis.

CORR Process: The main purpose of this process is to compute likelihoods of new
reports and currently existing tracks.
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2. Problem Formulation and Algorithm Development

The goal of the tracking software for the HDL/CIP is to generate trajectories of different
types of airborne and ground vehicles based on the measurements from the multi-sensor sys-
tem. The multi-sensor system provides measurements with different contexts and different

dimensions.

Design of a tracking system is problem dependent. In particular, it depends on the sen-
sors utilized and the types of targets to be tracked. The MMAS simulation data provided by
HDL has been reviewed to get information about the sensors and the targets. A summary of

the review is included in section 2.1.

As a result of the review, an approach to the design of the tracking system which con-
sists of two basic modules has been employed. The first module handles the preprocessing of
measurements from different types of sensors, and the other module handles the main tracking

task. See figure 2-1.

As described in section 2.3, the measurement preprocessing module fuses measurements
from different sensors, and provides measurement data to the tracker module in a standard
format. Then, the tracker module starts the tracking task based on the fused, standard format
data. By taking this approach, the design of the tracker is simplified, since it is not necessary
to consider a different tracker for each different sensor type. The advantage of this design is
that the tracker module is totally independent of the sensor configuration. That is, it is
independent of what kind of sensors are used, and also independent of how many sensors are
used. The tracker module interfaces with the multi-sensor system through the measurement
preprocessing module, in that it receives the standard format measurement data that the meas-

urement preprocessing module provides.




When more sensors are added for the enhancement of the CIP system, it may be neces-
sary to modify the measurement preprocessing module to generate the a new standard format
for the measurement data which reflects the inclusion of a new set of sensors. For the tracker
module, only the interface part, i.e., the part that copies the measurements stored in the buffer
to the measurement data structure for tracking, is subject to change. More details are pro-
vided in Volume 2, Part A.

The tracker module performs tasks associated with tracking different types of vehicles.
The main tracking tasks, i.e., filtering and data association are discussed in section 2.2.2. Sec-
tion 2.2.2.1 is devoted to the descriptions of the mechanism of the Square Root Information
Filter (SRIF). The SRIF is employed sincc a tracking system based on the architecture of
central processing and a central track file is suitable for the physical configuration of the CIP
system. Discussions regarding this aspect of design of the CIP tracker are provided in section
2.2.1. The data association method for the CIP is described in section 2.2.2.2. The likelihood

function and Munkres’ algorithm are chosen as the main tools for this purpose.

A multiple model approach, specifically the Interacting Multiple Model (IMM) algorithm
has been implemented for tracking maneuvering targets. One of the important things for the
implementation of the IMM is the modeling of the movement or dynamics of the vehicles.
Models based on constant velocity motion and constant acceleration motion are assumed in
tracker software. If other models are added to improve tracking performance, modification of
tracker module will be necessary. On the other hand, the modeling of vehicles does not affect

the measurement preprocessing module. A detailed discussion is included in section 2.4.

The MMAS simulation data contains data with low sampling rates. The quality of track-
ing, especially the quality of filtering, is dependent on the sampling rates. An algorithm
which allows tracking tasks to proceed even though measurements are not available is con-

sidered in section 2.5.




Other issues such as modeling, initialization of the filter, interrupt handling, menu sys-

tem, and track file management are included in sections 2.6 and 2.7.
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2.1. Review of the MMAS Simulation Data

The MMAS simulation data has been provided by HDL for developing the CIP tracker
software. Descriptions of the simulation data are provided in this section. The important
observations made for tracking, which are relevant to asynchronous operation of multi-sensor

system, are discussed in detail in section 2.3.

The simulation data consists of two categories, Intelligence and Electronic Warfare
(IEW) and Acoustic (AC) data. There are 24 files of the IEW data, and 20 files of the AC
data. Each file of the IEW data represents one event. For example, the file iew_dlel
represents the simulated event 1 on the day 1. According to the MMAS file descriptions, AC
data was obtained through the post processing of the IEW data.

Six different types of sensors are listed in the MMAS data file. However, as shown in
table 2.1-1 through 2.1-4. there are 4 different types of data formats, i.e., radar data format,
thermal imager data format, acoustic sensor data format, and daysight data format. All radars,

whether they are air defense radars, fire support radars, or radars follow the radar data format.

Even though the simulation data file contains all the necessary information, only a part of
information is actually available in real situations. In table 2.1-5, information which is avail-
able through real sensors is listed. The following assumptions are made with the help from
HDL. The air defense radar provides the x -position, y-position, and z -position. The ground
radar provides the x -position, y-position, x -velocity, and y-velocity. Measurements from the
thermal imager are x -position, y -position, and vehicle type. Even though the acoustic sensor

provides the target’s bearing, it has not been considered in design of tracking system.

In the design of the tracking system, both of the measurement preprocessing module and

the tracker module are based on the assumptions made above.
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The fusion problem, i.e., how to fuse these different types of measurements mentioned

above to generate a standard format of data for tracking, is considered in detail in section 2.3.

Also, the sinalation data file contains information about the vehicles utilized in events.
These include two types of airbomne targets, A-7 and helicopter, and three types of ground
vehicles, tanks, M2s, and HMMYVs.

All simulations were performed as follows. The origin of the coordinate system is 32°
18" N, 105° 54° W. All coordinates are in meters. The sensor identifications, locations, and
pointing are also included in the data file. By utilizing sensor location information with
respect to the origin, a coordinate transformation of data obtained at the sensor site to the ori-
gin might be possible. However, since the data shown in the file are already coordinate

transformed measurements, this aspect has not been considered in the design.

All sensors were operated in "sensor ground-truth" mode, which means that all targets
within range are reported, whether or not they are detected. Detected targets have a positive

detection status, while undetected targets have a zero or negative detection status.

Ground targets moved at 7.15 m/sec (except at the rough terrain location where they
slowed to 0.89 m/sec) and were spaced at 50 meters apart. Helicopters flew at 50.8 m/sec at
30 m altitude, and were 10 seconds apart. A-7s flew at 250 m/sec at 30 m altitude, and were

also 10 seconds apart.




sensor # sensor number

unit # unit number of sensor

veh # vehicle number

veh type vehicle type

X reported reported x position value

error in x error between true value of x and x reported
y reported reported y position value

erroriny error between true value of y and y reported
z reported reported z position value

errorin z error between true value of z and z reported
veh speed vehicle speed

veh direction vehicle direction

det status detection status

sigma x standard deviation of error in x

sigma y standard deviation of error in y

sigma 2z standard deviation of error in z

time detected time detected

time reported time reported to the CIP

Table 2.1-1 Radar IEW Data Format
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sensor # sensor number

unit # unit number of sensor

veh # vehicle number

veh type vehicle type

x reported reported x position value

error in x error between true value of x and x reported
y reported reported y position value

erroriny error between true value of y and y reported
z reported reported z position value

errorin z error between true value of z and z reported
veh speed vehicle speed

speed error error in speed

veh direction vehicle direction

direction error error in direction

det status detection status

error radius error in radius

time detected time detected

time reported

time reported to the CIP

Table 2.1-2 Thermal Imager IEW Data Format

13




sensor #

sensor number

unit # unit number of sensor

veh # vehicle number

veh type vehicle type

det status detection status

bearing reported bearing measurement

bearing error

error in bearing

error diameter

error in diameter

signal to noise

signal to noise ratio

X position x position estimated from bearing
y position y position estimated from bearing
Z position z position estimated from bearing
veh speed vehicle speed
veh direction vehicle speed
time detected time detected

time reported

time reported to the CIP

Table 2.1-3 Acoustic Sensor IEW Data Format

14




unit unit number

unit-x X position of unit

unit-y y position of unit

speed speed of unit

direction direction of unit

# of detections number of detections

veh spcg

fire status fire status
Obsid Unitid observer id and unit id
veh id vehicle id
veh x x position of vehicle
vehy y position of vehicle
speed speed of vehicle
direction direction of vehicle
det detection status

Table 2.1-4 Daysight IEW Data Format

15
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2.2. General Issues

The information processing architecture and the track file system are the first problems
raised in multi-sensor multi-target tracking system design. The standard approach is to pro-
cess the information at one place and keep the track file at the same place, i.e., a central pro-
cessing and central track file system. In section 2.2.1, the discussion about this point is pro-

vided.

Another general problem in the design of tracking system is to decide the method of data
association and the algorithm to integrate data association with the filter. Section 2.2.2 con-
tains the descriptions about the mechanism of the SRIF and the method of data association.

Also, procedures to combine these two main components are provided.

2.2.1. Central Processing and Central Track File

The information processing of a tracking system can be performed by either a central

processing scheme or a distributed sensor-level processing scheme.

In a central processing scheme, all the information gathered through the sensors is
transmitted to the central unit for processing. In this case, the central information processing
unit should be equipped with high computational powers to process the data in the required
time period. In most cases, the raw data observed by the sensors are sent directly to the cen-
tral processing unit. This makes the communication loads between the sensors and the central
unit heavy. However, the advantage of this approach is in the simplicity of the tracking algo-

rithm.




18

To avoid the heavy computational load on the central processing unit and to reduce com-
munication costs, a distributed sensor-level processing scheme is suggested. In this approach,
raw measurement data are preprocessed up to certain level at the sensor site before they are
sent to the central processing unit. The main disadvantage of this scheme is that the tracking

algorithm becomes complicated.

In reviewing the MMAS simulation data, it has been observed that all measurements
obtained by sensors are sent directly to the CIP for further processing. This suggests that the
central processing scheme is a more natural approach for this application than the sensor-level

distributed processing.

On the other hand, since the MMAS simulation data file shows that no sensor has any
capability other than sending information to the CIP, it is not necessary to keep track files at

all the sensor sites. Hence, the central track file system is adopted for the CIP system.

According to the information provided by HDL, the CIP system will be mounted on a
small truck. If several trucks with CIP systems are connected to allow inter-communications
through local or wide area networks, then a distributed network of tracking system is formed.
In this case, the software developed herein can be used as it is. However, the track files at all
the CIP sites form a networked file system, and the track management algorithm should be

modified to incorporate any track information sent by other CIP systems.

222, Filtering and Data Association

The filtering process is a key component of the tracking process. It may be possible to
track a target simply by observing consecutive measurement data, but if measurements are
missed because of a faulty sensor, a track might be lost. Additionally, since measurement

data can be corrupted by noise, including electronic noise inherent to the sensor, tracking
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based only on measurement data may not perform well enough when an accurate position of
the target is required. The case where the tactical commanders must make decisions based on
the current battlefield situation is illustrative of the level of accuracy that measurement data

alone cannot provide.

The SRIF is utilized for the filtering process. The reason why the SRIF was chosen,
instead of the Decentralized Square Root Information Filter (DSRIF), is that the SRIF is more
suitable to central processing than the DSRIF. In the following section, 2.2.2.1, the mechan-
ism of the SRIF is described.

Two issues are involved in data association. The first one is measurement-to-
measurement association, and the second is measurement-to-track association. The first one
will be discussed in detail in section 2.3, associated with measurement fusion, and only the

second is considered here.

When the CIP receives data about several targets from several sensors, it is necessary to
decide which data are associated with which currently existing tracks. This is the

measurement-to-track association problem.

There are several approaches to this problem, and these approaches are usually categor-
ized as hard decision schemes or soft decision schemes. In a hard decision scheme, the final
decision of association is made at the time when the measurements are received and the
currently existing tracks are updated. The assignment matrix, the nearest neighborhood
method, the branching algorithm, and the likelihood function are the well known conventional

approaches or tools categorized as hard decision schemes.

In a soft decision scheme, the final decision is delayed to allow collection of more infor-

mation. The multiple hypothesis tracking method is the well known approach belonging to
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this category. The multiple hypothesis tracking method has been chosen as a data association
method for the CIP by HDL. However, to provide more flexibility to the CIP system, our
approach is a hard decision scheme based on a likelihood function and Munkres’ algorithm.
These are discussed in section 2.2.2.2 in detail.

2.2.2.1. Mechanism of the SRIF

The derivation of the SRIF is not considered in this section, since it can be found in
several references, including [1]. Instead, a description of the mechanism of one cycle of a

track update based on the SRIF is given below.

First, assume that a dynamic model for a target is given by the linear form

Xp+1 = Fkxk + Gka. (2.2.2.1-1)

Here, x, represents a state vector at the time k, which consists of kinematic information such

as position, velocity, and acceleration.

To initialize the SRIF, initial state x and its associated statistics are required a priori. It
is assumed that xo ~ N(xq, @Q¢). Here, x; and Q| represent the corresponding mean vector

and covariance, respectively.

Next, w, represents process noise vector at the time k, and it is also assumed that
wy ~N(wg, P,). w, and P, are the process noise mean vector and its covariance, respec-

tively.

F, and G, are determined by the model of target dynamics. Section 2.7.1 contains a

more detailed discussion about the form of F, and G,.




21

Second, assume a linear measurement model given by

Y = Hyxp + v, (2.2.2.1-2)

Here, y, is the k-th measurement vector associated with a certain type of sensor. v,
represents measurement noise vector. Like process noise, it is assumed that

vi ~ N, Q,(k)). Here Q, represents measurement noise error covariance.

H, is the observation matrix, and depends on what kind of measurements are available

through a specific sensor.

To implement the SRIF, a factorization of the covariance matrices into a product of
information matrices must be done a priori, and the corresponding information vectors should

be obtained. From process noise covariance, we get

P, =R,'0)R,T(k) and z,(k)=R,Kk)Ww.

Similarly,
Qo=Ro®) RyHT and zg+) =Ro(+Hxg

Q,k)=R,(k)'R,(k)T and z,(k)=R,(k)0=0 ,

from initial state statistics and measurement noise statistics, respectively. Here, R, and z,,
are called the process noise information matrix and the process noise information vector,
respectively. Rg(+) and zy(+) are called the O-th filtered state information matrix and infor-
mation vector, respectively. Also, R, and z, are called the measurement noise information
matrix and information vector, respectively. The superscript T represents the transpose of the

matrix.
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Then one cycle of the SRIF mechanism from step k to k+1 starts with time update

which is given by

R, (k) 0z,

T
- RyMFIG, RyBF! Zy(+)

Ro(k+1) Ry (k+1) z.(k+1)

(2.2.2.1-3)
0 Ri(®) gy

Here, R, (k+1), R, (k+1), and z, (k+1) are called the smoothing coefficients, which are not
used in filtering. R;,;(-) and z;,,(-) are k+1 step of predicted state information matrix and
information vector, respectively. T is an orthogonal transformation from Householder’s

method used to make the matrix on the right side of the equation (2.2.2.1-3) upper triangular.

The results from the time update step, in particular the predicted state information matrix
Ri,1(-) and information vector z;,;(—) are utilized in measurement update step. During
measurement updating, new measurements are incorporated to generate the filtered state infor-

mation matrix and information vector as follows.

(2.2.2.1-4)

Rin(=) zpn(-) Ri(+) 2 (+)
R\Hy, Rv)’kn] - [ 0 €41 }
Here, ¢,,; is called the measurement error, and its norm square represents the normalized
form of the norm of the innovation vector. This is a very important result and this has been
utilized for the evaluation of likelihood function in terms of the SRIF variables only. See sec-

tion 2.2.2.2 for more details.

Since measurement noise has a covariance which is not in general an identity matrix, a
whitening process, i.e., multiplication of measurement information matrix by H,,; and y;,,

has been performed.
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The filtered state information matrix, R, ,;(+), and information vector 2z, ,,(+) are fed into

equation (2.2.2.1-3) to repeat the cycle.

Note that the information matrix and vector obtained from the statistics of the initial state
are used as the initial filtered state information matrix and information vector to initiate the
time update step. However, they can also be used as the initial predicted state information
matrix and information vector. In this case, the filtering cycle should start with the measure-

ment update step. Both approaches give the same filtering result.

As mentioned before, the implementation of the SRIF is also based on the observations
made about the MMAS simulation data file. This enables us to use the SRIF, not the
extended form of the SRIF. In the general situation, the dynamic model or measurement
model or both do not take linear forms. To achieve a better filtering performance, more accu-
rate modeling is required. This usually results in more complicated nonlinear models. In this

case, the extended form of the SRIF should be utilized as follows.

For a given nonlinear system,

Xk +1 =f () + Gwy , and

Ye = h(x) + vy

the extended form of the SRIF requires linearization procedures to get

Ve =Hpxy + v + 24

where

oh
Gy = h(x)|x =x (=) —Hk‘xk(-) ' Hk = ag) Ix =x()
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and

Xps1 = Frxp + Bywy + g8,

where

gk:f(x)lx=x.(+)—pkxk(+) ’ Fk=—a&|

ax X =X 3

Then the time update and measurement update are given as follows.

Time Update:
R, (k) 0 z,, (k) RL(k+1) R, (k+1) z,(k+1)
T| - RWFIG RyFT 2 + RFg | 0 R 26

Measurement Update:

Ren() 21 () J [Rk+l(+) Zk+1(+)]
T =

R, (k+1)Hp,y R, (k+1)(gs1 = Zg41) 0 €i+1

22.2.2. Likelihood Function and Munkres’ Algorithm

In the parameter estimation theory, the likelihood function is one of the several methods

which have been used frequently. For a given sequence of measurements

y(1),y@), ...,y k) (2.22.2-1)

up to k, the likelihood function of the filter is defined by the joint probability density function
Ply(l), --- ,y(k)] [2]. Then, by simple calculation utilizing the Bayesian formula, we get
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k :
Ply(), -+ ,y®N =TIPy @Y (2.2.2.22)

i=1

where Y¢-! ={y(j), j=1,. ..,i-l}.

Under the assumption that all conditional probability density functions in (2.2.2.2-2) are

Gaussian, we have

Ply@) Y = N(v(E); 0; SG)) (2.2.2.2-3)

where v(i), and S(i) are the innovation vector and its covariance, respectively. Using

(2.2.2.2-3) in (2.2.2.2-2), the likelihood function of the filter takes the form

[ﬁdet(ZnS @i ))'”2] exp[—l/z f:v(i Y sTi)va )] (2.2.2.2-4)
i=1 i=1

However, it is equation (2.2.2.2-3), not (2.2.2.2-4), that is useful in data association,
especially measurement-to-track association. Measurement-to-track association is the process
which correlates the existing tracks with new measurements. Suppose that a certain track has
been formed up to time i, and that a set of measurements, y(1), - - - ,y(i—1), has been utilized
to update the track. Suppose that the i -th measurement data has become available. To update
tracks based on the new measurement, a criterion for measurement-to-track association is
required, and equation (2.2.2.2-3) represents the conditional probability of the i-th measure-
ment given measurements up to i—1. Then, it is plausible to choose the measurement which

gives the highest conditional probability.

Sometimes it is useful to use a modified form of (2.2.2.2-3), especially the log-likelinood
form. Let’s take -2 log on both sides of (2.2.2.2-3). Then we have, after disregarding the

constant term (7)1,
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det S(i) + v(i ) S~1G)v(i) (2.2.2.2-5)
Since -2 log ( - ) is a monotonically decreasing function, the association of the highest

conditional probability corresponds to the one which gives the smallest value in (2.2.2.2-5)

As can be seen in (2.2.2.2-3) and (2.2.2.2-5), by evaluating the two terms

det SG) and VG STIG)VGE) (2.2.2.2-6)

the values of likelihood function and log-likelihood function can be obtained. There are two
ways to compute these two terms. The first approach is based on the direct computations, i.e.,

to compute innovation vector V(i ) and its covariance S (i) using the equations

v(i)=y; —HZ@li-1), and

SG)=HP@li-DH' +Q, (), (2.2.2.2-7)

respectively. Then, by direct substitution of (2.2.2.2-7) into (2.2.2.2-6), the values of
(2.2.2.2-3) and (2.2.2.2-5) are obtained. Another approach is based on the output from the
SRIF. In the paper [3], it has been shown that the two terms in (2.2.2.2-6) can be evaluated

in terms of the SRIF variables only. That is,

der sy = | B | d
S0 = | SR ke, | >
V(i)' STUivG) = 1l e 12, (2.2.2.2-8)

The advantage of the first approach is that only the time update step is required to get
innovation vector and its covariance. However, as shown in (2.2.2.2-6), it requires computing
the determinant and inverse of the covariance matrix, which is computationally expensive.
The advantage of the second method is that it is relatively simple, as described in (2.2.2.2-8).

The disadvantage of this approach is that measurement update step of the SRIF should be
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completed a priori.

Measurement-to-track association can be viewed as an assignment problem. That is, the
assignment of existing tracks to newly obtained measurements. For an assignment problem,

there are several well known algorithms including Munkres’ algorithm [4].

Munkres’ algorithm accepts as input a matrix of variable size, called an assignment
matrix, where one dimension is indexed by the set of tracks and the other is indexed by the
set of measurements. The entries of the matrix must be non-negative, and must have the pro-
perty that higher values denote a worse match between the measurement and the track. In
other words, (i, j) entry of an assignment matrix represents the cost which should be paid by
associating i -th track with j-th measurement. The statistical distance v(i ¥ S~1( (i) has the

required properties, as does the log-likelihood value in (2.2.2.2-5).

Once the assignment matrix has been set up, Munkres’ algorithm goes through an itera-
tive procedure to find a pairing of tracks and measurements, such that the smaller set is
exhausted and the total cost is minimized. Here, the total cost is defined as the sum of the
corresponding individual costs for one possible set of assignments. In other words, Munkres’
algorithm chooses the set of assignments whose total cost is minimum. To illustrate the idea,

let’s consider the following assignment matrix.

measurement 1 measurement 2
track 1 0.6 0.2
track 2 0.7 02

Both track 1 and track 2 are competing for measurement 2, since the association costs

are smaller then the association costs with measurement 1. In this case, there are two possi-
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ble sets of assignments. That is, (track 1 - measurement 1, track 2 - measurement 2), and
(track 1 - measurement 2, track 2 - measurement 1). The corresponding total costs are 0.8

and 0.9, respectively. Hence, the first set of assignments is decided as an optimal one.

In some cases, the assignment matrix is not the square matrix. Sometimes the number of
tracks is larger than the number of measurements. Then, there are some tracks which are not
associated with any measurements, and track update without measurements follows. In the
converse case, i.e., when the number of measurements is larger than the number of currently
existing tracks, the measurements which are not associated with any tracks are regarded as
new measurements, and the new track initiation process will proceed. Even when the number
of tracks and measurements are equal (the square matrix case), an individual association
whose cost is too high will then be disassociated and treated as a track without a measurement

and a measurement without a previous track.

A slight variation of this that is also implemented is to apply a gating test to the each
possible association before Munkres’ algorithm is applied. An association that failed the gat-
ing test would have a large value assigned instead of its original cost. Processing would then

be as before.

For a set of new measurements y (i), - - * .y, (i) at the time i/ and m currently existing

targets, the following steps summarize the data association procedure.

step 1:
Choose a target and compute Hi (i |i—1). Here £(ili—1) is the predicted state of the tar-
get at the i-th time instant and H is the observation matrix. Hence, H£(ili-1)

represents the predicted measurement of the target at the time i.
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step 2:
Compute the innovation v, (i) =y,(i) — HE(ili—1). Here y,(i) represents the k-th

measurer..cnt at the time i.

step 3:
Compute the corresponding innovation covariance S, (i) using
k() = HQ(ili-DH' + 0%G).
Here Q(ili-1) is the predicted state error covariance and Q‘f‘(i) is the measurement

noise covariance associated with y; (i).

step 4.

Compute the log-likelihood value [, (i) using

L) =det Sp() + v (i) S v ) .

step 5:
Repeat step 1 through step 4 for each pair of target and measurement to form an mxn
matrix L whose (p, q) entry is the log-likelihood value between the p -th target and ¢ -th

measurement.

step 6:

Search for the maximum value of all entries of L.

step 7:
Perform gating test and adjust the matrix. For each pair of (p, q), if it passes gating
test, then keep the original log-likelihood value. Otherwise, switch the corresponding

log-likelihood value to the maximum value obtained in step 6.
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step 8:

Apply Munkres’ algorithm. The Munkres’ algorithm provides an optimal assignments

between target group and measurement group.

step 9:
Perform disassociation process. For each associated pair obtained from the Munkres’
algorithm, check gating result. If it has already passed gating test, the association sur-

vives. Otherwise, disassociate the pair since it has failed gating test.

From step 9, the final measurement-to-track association is obtained. Note that one target
is associated with exactly one measurement. For the target which is not associated with any
measurement, the process of measurement update without measurement is performed, and the
number which counts this process is decreased by 1. See section 2.6.2 for more details. For
the measurement which is not associated with any currently existing tracks is regarded as a

new track initiator and track initiation process is invoked. See section 2.6.1 for more details.

Threshold value was usually decided by referring to the Chi-square distribution table and
the value v, (i)' S, 1(i)v,(i). Since the value v, (i) S, (i), (i) depends on dynamic models
employed for filtering and the movements of some vehicles, especially ground vehicles, are
constrained by terrain, the above conventional approach to decide gating threshold may not

suitable for the HDL./CIP.

The approach adopted here is as follows. For each track, a gate circle centered at the
£(@—~1li=1), the (i—1)-th filtered state estimate, is formed. The radius of the gate circle is
determined by




31

dax = MAX_VEH SPEED -AT (i)
Here AT (i) is the time interval between (i —1)-th step and i-th step, and MAX_VEH_SPEED

is the maximum speed of the vehicle. H:ince dp,, represents the maximum distance the vehi-
cle can move for the time period AT (i). However, MAX VEH_SPEED depends on the vehi-
cle type. In section 2.7.3, a method to decide vehicle type is discussed.

Finally, integration of the log-likelihood function evaluation and Munkres’ algorithm

with the SRIF in the multiple model environment is discussed in section 2.4.
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2.3. Asynchronous Sensor Operation and Measurement Preprocessing

Sensors scan their scanning volumes periodically with fixed scanning time intervals. The
scanning time intervals of sensors are different from each other. Each sensor detects targets
in its scanning volume and transmits measurement data and detection times of all detected tar-
gets. There are transmission delays, which are regarded as random. The delay is usually
dependent on several physical factors such as the distance between the sensor and the CIP
system, the data transmission rate of each sensor, data size, and etc. Hence, the data which
the CIP receives from all sensors usually do not represent the measurement detected at the
same time instant. This is why we think that sensors are operated asynchronously. The fol-

lowing observations from the IEW data files are due to asynchronousity.

First, let us consider the set of data which arrive at the CIP at the same time (i.e., with
the same time_received tags). Then, they usually contain information about a target detected
at different times. In this case, after sorting the data sequentially according to the time
detected, it is possible to process one measuremeznt at a time. The interesting case is as fol-

lows.

1) Measurements with the same arrival and detection time: In table 2.3-1 obtained from the
IEW data file iew_dle3, it is observed that measurements for a specific target 21 from

sensors 4001 and 4002 are made at the same time.

sensor id veh type time det time rep

4002 21 23450 23425
4001 21 2345.0 23425

Table 2.3-1 Measurements with the Same Arrival Time and Detection Time
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Another interesting case is when out of sequence measurements are observed. Let us
consider two consecutive sets of measurement data which arrive at the CIP in sequential

order.

2) Out of sequence measurements: In table 2.3-2 obtained from the IEW data file iew_d2e2,
sensor 2001 detected vehicle #22 prior to sensor 4001’s detection of vehicle #22, but

sensor 4001 reported its detection earlier.

sensor id veh type time det time rep

2001 22 43.0 43.0

sensor id veh type time det time rep

4002 22 45.0 425
4001 22 45.0 42.5

Table 2.3-2 Example of Out of Sequence Measurements

To resolve the above problems, a measurement preprocessing which consists of three
stages is implemented. The first stage is to receive, sort, and store measurement data. The
second stage is measurement-to-measurement asscciation procedure, and the third stage is

measurement fusion procedure.

As described in section 2.1, three types of sensors, airbome radar, ground radar, and
thermal imager are considered as sources of measurement data. Also, available measurements

from each sensor are listed in table 2.1-5. The measurement preprocessing module will
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receive measurements through the msg_fact module of the HDL/CIP. However, at this
moment, the measurement preprocessing module is designed to work independently. That is,
it receives one measurement from one sensor at a time without any communication with

msg_fact.

RECEIVE /SORT ISTORE: Once one measurement arrives at measurement preprocessing
module, the time when measurement was obtained (i.e., time_det in data structure) is com-
pared with the time_limit. The time_limit is determined by subtracting DELAY (user defined
parameter) from the current time. If measurement is old enough, i.e., time_det is less than the
time_limit, it is discarded since old data degrades the real-time performance of the CIP. In
figure 2.3-1, any measurements falling in the shaded region, which represents the time region

before the time_limit, is discarded.

For those measurements which pass the discarding procedure, sensor identification (sen-

sor ID) is verified. That is, measurement is sorted according to its source, sensor ID.

The concept of linked list is employed to store the data. Here, linked list consists of a
sequence of measurements from a single specific sensor and listed in the order of detected
time from the top of the list. Storing process starts with searching for the corresponding list.
If corresponding list is found, time det of the new measurement is compared with the detec-
tion times of the measurements on the list, and the new measurement is stored at the right
position of the list according to its time_det. Otherwise, it creates its own list representing

its own sensor ID, and is stored at the top of the list.
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As seen in table 2.1-5, each sensor provides different contexts of measurements. To
implement fusion process readily later, 5-dimensional vector consisting of x, y, z, x, and y

are considered as a standard form of measurement vector.

When the measurement stored, sensor id is checked first. According to the sensor id,
available data from the sensor are copied into the appropriate positions of the 5-dimensional
standard form of measurement vector. Also, the corresponding components of covariance are
copied. After that the remaining components of the standard measurement vector are set to
zero with big number of covariance. The table 2.3-3 illustrates what measurements are copied
directly into the standard measurement vector and what components are sct t0 zero according

th the sensor types.
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MEASUREMENT -TO -MEASUREMENT ASSOCIATION: Data are collected for a certain
period of time, defined as the DATA_ACCUMULATION_INTERVAL. Then, measurement
preprocessing module pauses in receiving data and processes a transmission, which starts with
measurement-to-measurement association. The measurement-to-measurement association pro-
cess determines whether the measurement reports from different local sensors to the CIP have

common sources of measurements.

To start measurement-to-measurement association, all measurements are represented in
terms of one fixed coordinate system (e.g., a coordinate system residing at the CIP) through
appropriate coordinate transformations. In the MMAS simulation data, it is assumed that
necessary coordinate transformations have already been performed. This process is called

spatial alignment.

Once spatial alignment is finished, time alignment should be performed. Figure 2.3-2
illustrates time alignment process. All the measurements inside the shaded area, i.e., measure-
ments lying between the previous time limit and the current time_limit are considered

detected at the same time.
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After the spatial and time alignments, measurement-to-measurement association starts.
The association process begins with two data sets from any two sensors. The first measure-
ment from the first sensor is compared successively with the measurement from the second
sensor until either they are exhausted or a match is found. A match is declared when a sta-
tistical distance measure of distance falls below a threshold value. As in table 2.1-5, the
measurements provided by the sensors under consideration take different forms. When types
of sensors located at local sites are different, measurement characteristics might be also
different. In this case the spatial association must be made in the common dimensions of
measurements. The common measurements from all three sensors are x-position and y-

position. Distance measure which is utilized is statistical distance which is defined as follows.

For a given pair of measurements y,, y,, define

d?=(,-y)'S Wy, - y2) (2.3-1)

where S is the covariance matrix for y, — y,. Let y,, and y,, be true values of y; and y,,

respectively. Define

Yier Y1~ Yiar »
Yaer =Y2=Y2ur -

Then

01-y2 -(yl,:r -yz,rr)=y1,er ~Y2er -

Under the assumption that the measurements have the same measurement source, we

have y,, =Y,,,and theny, -y, =Yy,, — ¥2.- Then the covariance becomes
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E[01~ Y01 - YD1 =ElO10r = Y20 )V 1er = Y2.r)']
= Eb’l,eryl.erT] + E[yZ.er)’Z.erT]
= Rl + R2 (2.3'2)

where R and R, are measurement error covariances associated with y, and y,, respectively.

Substituting (2.3-2) into (2.3-1) yields

d2=(;-y)TR+R)y; - y)) (2.3-3)

Next, a threshold value should be determined according to the characteristics of the given
problem. For example, by assuming the error difference term y,,, — y,., forms a Gaussian
distribution, we can see easily that the metric d2 defined in (2.3-1) follows a Chi-square (x2)
distribution. Then Chi-square (x?) test can be applied by utilizing a threshold from the Chi-
square (x2) table.

MEASUREMENT FUSION: Measurement fusion can be achieved as follows. Measurement
data yy, ¥, ..., ¥, are assumed to be from one measurement source. Assume also that they
are independent measurements. Let R; be a covariance matrix associated with y;. Then a

composite measurement covariance is defined by

n
R1'= YR (2.3-4)
i=l

Then the fused measurement vector is given by

y=R[ iR.-"y.-] (2.3-5)

i=1
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As an example, let A((z), A,(t) be the scalar measurements from sensor 1 and sensor 2

at the time instant ¢, respectively.

Under the assumption that each measurement has mean zero and covariances o2 and

82, respectively, then, from (2.3-4) and (2.3-5), the fused covariance R is given by

252
R=_05 o
o? + &?
and the fused measurement A is given by
_ %A+ 0%,
o’ + &

Note that the fusion procedure described in (2.3-4) and (2.3-5) can be implemented in
two ways. As depicted in figure 2.3-3, fusion is achieved at one time utilizing all measure-
ments, following the equations in (2.3-4) and (2.3-5) directly. Another method is, as depicted
in figure 2.3-4, fusion is started with measurements from two sensors. Then, fused result and
new measurement from the third sensor are fused again. This procedure is repeated until all
measurements are exhausted. The second approach has been adopted for the CIP tracker

software.

For the measurement update of filtering process, measurement types are identified

according to the sensors involved in fusion step. See table 2.3-4.




43

@e1] uoisng ey} jo eidwex3 g-g'g 84nbig

NOISN4




SENSOR 1 @ SENSOR 3 SENSOR 4

P

FUSION

A 4

FUSION

»| FUSION

v

'

FUSED MEASUREMENT

Figure 2.3-4 Fusion Tree for the HDL/CIP Measurement Preprocessing




45

UOISN4 Ul PBA|OAU| SI0SUBS 8y} AQ paulwisieq adA| Jusweinsesy p-£°2 8|qe.

HIOVINI TVINHIHL ANV

|8A-A ‘|aA-x

Hvavd ANNOYD ANV HvAVH HIV e ‘o ‘e ¥ 3dAL LINIWIHNSYIN
HO HVAYH ANNOHD ANV HVaVH HIV s0d-z ‘sod-A *sod-x
HIOVNI TYNHTHL
ANV HvAvHd GNNOHD loA-A “|oA-x € 3dAL LNIW3IHNSVY3IW
HO ATNO HvAvHd AGNNOYD ‘sod-A ‘sod-x
Hvavy Hi V HOVNI TYINH3HL
v anv H9 43 sod-z ‘sod-A ‘sod-x ¢ 3dAL INIWNIHNSVYIN

HO ATNO HvAavd HlIv

HIOVAI TVINHIHL

sod-A ‘sod-x

I 3dAL INIWIHNSY3IN

NOISN4 NI AIATOANI SHOSN3S

SLINIWIHNSVIW F1aVIIVAY




2.4. Maneuvering Targets and Multiple Model Approach

A great deal of attention has been focused on the prcblem of tracking maneuvering tar-
gets, and several approaches have been proposed. These vary from a simple method like
adjusting process noise covariance to a complex method such as the Interacting Multiple

Model (IMM) approach. More details can be found in {Fortman, Bar-Shalom)].

Since the MMAS simulation data shows an example of a highly maneuvering target, see
figure 2.4-1 obtained from the file iew_d3el, implementation of a suitable maneuvering target
tracking algorithm for the HDL/CIP is necessary. Among the well known algorithms, the
IMM method may provide rather good performance with efficient computation for the

HDL/CIP. During the implementation of the IMM, the following questions are considered.

1) How can we integrate the IMM with the SRIF? And how can we implement data asso-

ciation, especially, measurement-to-track association, in this environment?

2) What kind of target models are suitable for the HDL/CIP ?

Discussions about the second question are deferred until section 2.7.1. In this section,

only the first question is considered.
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INTEGRATION OF THE IMM WITH THE SRIF: The following steps describe the one
cycle of the IMM algorithm for a system which consists of r SRIFs.

step O:
Set initial parameters. The initial parameters include model switching transition matrix
®;). i.j =1,...,r, initial model probabilities p;(0), initial state and corresponding

covariance, £/ (010) and Q7 (0l 0) for each filter j = 1,...,r.

step 1:

Mixing of state estimates and covariances. First, compute

Cj = XpijHi(k-1) and (2.4-1)

i=1

1
Mo k=11k=1) = ;_"Pij“i (k-1) (2.4-2)
J

Then mixed state and covariance of the filter j is obtained by

2% k=11k-1) = $2* (k-11k=1)p;;(k-11k=1) , and 2.4-3)

i=1
. r . . .
QY k-11k-1) = Q' k-11k=1) + &' k-11k~1) — 2% k=11 k-1))
i=1

& (ke=11k=1) = 2% (e =11k =1)) ;) ; Gk =11k~1) (2.4-4)
Sometimes, dimensions of state variables of filters are different, for example, dimensions
of state variables of 3-dimensional constant velocity and constant acceleration models are
6 and 9, respectively. Then, to have the same dimensional vectors and matrices in (2.4-
3) and (2.4-4), it is necessary to extend 6 dimensional vector to 9 dimensional vector and
6x6 matrix to 9x9 matrix. This can be achieved by augmenting the components of vec-

tor and entries of matrices comresponding to x-acceleration, y-acceleration, and z-
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acceleration components, which are set to zeros.

step 2:
Get input information matrix R/_; (+) and information vector z/_;(+) for the filter j.
First, the original size of state estimate vector and covariance matrix should be obtained
from the mixed state estimate and the mixed covariance. Then, by applying the Chole-
sky decomposition algorithm, get the information matrix as described in section 2.2.2.1.
The information vector also can be obtained in the same manner as described in that sec-

tion.

step 3:
Perform the time update step for each filter to get R[(—) and z[ ).

step 4:
Perform the measurement update step for each filter to get Rj(+) and zj(+). From Rj(+)
and zj(+), recover the filtered state estimate £/ (k1 k) and its covariance Q/(k|k) for
each filter j. The recovery process is the inverse of the factorization process used to get

the information matrix and the information vector.

step 5:
Get the likelihood values A; from each filter j. Since the measurement update has been
completed for each filter, an evaluation method utilizing the SRIF variables is more suit-

able here.

step 6:
Update model probabilities. First, compute
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cC = ZA,(k)L?‘ .
i=1

Here C; is given by (2.4-1). Then the probability for the model or filter j is given by

By ) = <A RS

step 7:
Get the combination of the model-conditioned estimates and covariances as follows. As
in step 1, some filtered state estimates should be augmented. Then, the following equa-

tions give the fused filtered state estimate and its corresponding covariance.

£k k) = z';f"(klk)u,-(k),

i=1

Qklk)= Qi k1) + G k1K) - 29k 1k))

i=1

Gk Nk = 2% (kL)) s k)

step 8:
Using the augmented filtered state and covariance obtained in step 7, go back to step 1 to

resume filtering process.

To test the above algorithm, a target moving in the X-Y plane has been considered.
The initial position of the target is (0, 0) and it moves along the Y -axis with constant speed
10 m/sec. For the time period [40, 60], it accelerates with a, = 0.075 m/sec? and a, = -
0.075 m/sec2. The it resumes constant motion. It accelerates at the time period [120, 140]
again with a, = 0.075 m/sec? and ay =-0.075 mysec?. Figure 2.4-2 shows this simulated tar-

get trajectory.
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Two models of the target were used, a 2-dimensional constant velocity model and a 2-
dimensional constant acceleration model. The associated Markovian model transition proba-

bilities and model initial probabilities are given in tables 2.4-1 and 2.4-2.

cvz2 | ca2
cvZ2 ] 0957 0.05
caz | 0.O5S | 0.95

Table 2.4-1 Model Transition Probabilities

cv2 | cal
0.5 0.5

Table 2.4-2 Model Initial Probabilities

In figures 2.4-3 and 2.4-4, the changes of model probabilities of constant acceleration
model (ca 2) and constant velocity model (cv 2) are given respectively. As can be seen in
figure 2.4-3, when a target is in acceleration mode, the model probability is a very high value
(close to 1), and when a target resumes its constant motion, the model probability is a very
low value (close to 0). The reverse explanation can be applied to figure 2.4-4. Figure 2.4-5

shows the rms position error of filtered state trajectory from the trajectory in figure 2.4-2.
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REVIST TO DATA ASSOCIATION: As described in step 2 in section 2.2.2.2, to associate a
target with a measurement, a predicted state estimate is required. Since multiple filters are
utilized and each of filter provides its own predicted state estimate, it it necessary to fuse
predicted state estimates to get one representative predicted state estimate. That is, by utiliz-

ing the following equations

£V k=1) = $£ (kL= (k=1) (2.4-5)

i=l

QK1 k=1) = 3(QF k1 k=1) + (& (k1 k=1) — 2% (k | k-1))

i=1

@ (kT e=1) = 2% (e k=1))" t; (k-1) (2.4-6)
fused predicted state estimate and its covariance are obtained. Note that the model probabili-

ties are the one step previous one, which is not updated yet.

Once the fused predicted state estimate for one target is obtained, the data association

procedure resumes as described in section 2.2.2.2.

In summary, we have

step O:
By utilizing equations (2.4-5) and (2.4-6), get the fused predicted state estimate, and then

apply the data association steps described in section 2.2.2.2.
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2.5. Low Sampling Rates and Track Update Without Measurements

Usually it is believed that the quality of filtering is dependent on the sampling rate of
measurement. If the measurement data are collected periodically with short time interval,
track can be formed even without filtering. Sometimes, however, the sensors cannot report
the detection of certain targets because the targets are outside of their scanning volumes or for
other reasons. Even in these cases, sometimes it is necessary to maintain the tracks of certain

targets. See table 2.5-1, which is obtained from the MMAS data file iew_d2el.

In this section, an approach which updates tracks even without measurements is con-
sidered in the SRIF environment. The basic principle behind this is already well known in
the estimation area. By performing a time update, a predicted state estimate is obtained. If a
new measurement is not available, it is plausible to use the predicted state estimate as a

filtered state estimate, and to resume filtering process by starting a time update.

The idea described above can be easily implemented in the SRIF. In the measurement

update, substituting a zero matrix and a zero vector where R, ,H and R,y were, then we get

) [RM(—) Zk+1(—)} ) [ R ) ZM‘*’] (2.5-1)

0 0 0 €r+l
and Ry 1(+) = Ry, 1(-) and z; 1(+) = 24,1(-), since Ry, ;(+) is an upper triangular matrix and

T is a Householder transformation.

To achieve continuous filtering, the nonblocking network receiving function,
netGETANY _NBLK, has been developed. This function checks the message buffer and
resume track updating process whether there are any messages in the buffer or not. If there is
any message, then the process measurement_update_with_measurement is invoked. Other-

wise, the process measurement_update_without_measurement is utilized.




sensor id time reported time detected
5003 40.1 40.1
5003 40.3 40.3
2001 43.0 43.0
1001 43.0 43.0
4001 45.0 45.0
4002 45.0 45.0
1001 46.0 46.0
4001 47.5 475
4002 47.5 475

Table 2.5-1 Example of Low Sampling Rate
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2.6. Track Management

In this section, track initiation and track deletion are considered as a part of the track
management process. Whenever a measurement is regarded as a new one, a corresponding
track file is created and tracking process starts. In section 2.6.1, a detailed description about
creating a new track file is provided. When a target remains out of sight of the sensors for a
sufficient time, the track file for this target is eliminated. A simple but reasonable method is

described in section 2.6.2.

2.6.1. Track Initiation

Track initiation is the process which creates a track file and stores relevant data, such as
kinematic data, into the track file. This process is invoked at two places in tracking process.
When the first set of measurement data arrives at the CIP, each of them is regarded as a
potential track initiator. The other case is when data association is finished. While scanning
the measurement data set, if measurements which are not associated with any currently exist-
ing tracks are found, these are regarded as measurements of new targets, and track initiation is

invoked.

Initiation starts by creating a track file for each of the new measurements, and then

determining the initial state and the corresponding initial state error covariance.

The simplest method to determine these kinematic data is based on the finite difference
method. For each target, three consecutive position measurements should be accumulated.
Time periods between the first and the second, and between the second and the third are
necessary. To get a velocity estimate, the second position measurement is subtracted from the
third, and the difference is divided by the time period between the second and the third. In a

similar way, one step previous velocity estimate can be obtained by utilizing the first and the
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second position measurements. To get an acceleration estimate, one step previous velocity
estimate is subtracted from the velocity estimate obtained, and the difference is divided by the
time period between the first and the second. In this simple manner, we might be able to esti-

mate velocity and acceleration of each target.

However, it is easy to see that the above approach cannot be applied to the HDL/CIP
case directly. The reason is that arrival time of measurements is random so that we cannot
predict the time interval between one measurement and the next measurement. Instead of

using the finite difference method, the following approach is implemented.

Table 2.3-4 shows a general measurement data format which is sent by the measurement
preprocessing module to the tracker module. Note also that, table 2.3-4 shows different possi-
ble types which a general measurement data format can take, according to what kind of sen-

sors are utilized in measurement fusion step.

Once a measurement is received by the tracker module, it is stored in a buffer tem-
porally, and then copied into the measurement data structure for the tracking process. At that
time, each measurement is labeled as a new measurement. See table 2.6.1-1 for the measure-

ment data structure. More details can be found in Volume 2, Part A, section 2.3.2.

Kinematic information stored in the measurement data structure is to be used to initialize
track. However, as mentioned in section 2.4, there are 4 different models implemented for the
CIP tracker. These are 2-dimensional constant velocity and acceleration models, and 3-
dimensional constant velocity and acceleration models. Initialization for each model consists

of the following three steps.

step 1:
According to the model type and the measurement type, copy appropriate kinematic data
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into the track file from the measurement data structure. Information not available from
the measurement data structure, i.e., z-velocity, x-acceleration, y-acceleration, and z-
acceleration are set to zero if they are required in the model. Table 2.6.1-2 shows details

according to the different cases.

step 2:
According to the model type and measurement type, determine an appropriate initial state
error covariance matrix, which takes the form of a diagonal matrix under the assumption
that components are independent each other. If any component is actually available from
the measurement data structure (which can be determined by measurement type), the
corresponding variance is set to a reasonably small number. Otherwise, i.c., a com-
ponent of the state variable which is required but not available in the measurement, then
the corresponding variance is set to a reasonably big number. Table 2.6.1-3 shows

details.

step 3:
Initialize each model by following the procedures described in section 2.2.2.1 to start

filtering.
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2.6.2. Track Deletion

Track deletion is achieved by eliminating corresponding track file from the list of
currently existing track files. The problem is to decide when a track file should be deleted.
The first case is when a target is outside of the scanning volumes of the sensors for a while.

The second case is when the operator of the CIP decides to delete certain tracks.

The current CIP tracker software accepts only the first case. To achieve this, a simple,
efficient method is implemented. Whenever a set of measurements are received, tracks are
updated based on those measurements. After the data association procedure, it may happen
that some tracks are not associated with any received measurements. That means that the
corresponding targets might be out of sight of the sensors, and they become candidates for

deletion.

However, measurements may be absent because of faulty sensors. To minimize the risk
of deletion of targets which are still inside of the scanning volumes of some sensors, the
number of track updates without measurement is accumulated whenever it happens. If the
accumulation number exceeds the threshold, then the corresponding track is deleted. A track
survives if it is associated with a measurement again and the accumulated number is less than

the threshold. In this case, the accumulated number should be reset to zero.

As discussed in section 2.5, track updating is based on the nonblocking network receiv-
ing function to continue updating, even though there are no measurcments. In this case,
tracks of all airborne targets are updated without measurements and the numbers are not

counted.




2.7. Other Issues

In this section, topics such as the selection of kinematic models relevant to the vehicles
to be tracked, the robustness of the SRIF with respect to initial parameters, a vehicle type

adjustment based on filtered state estimate, and the menuing system are described.

2.7.1. Different Types of Targets and Modeling

As described in section 2.1, the MMAS simulation data contains information about air-
borne targets and ground targets. This means that the HDL/CIP should be equipped with the
capability of tracking both types of targets. In addition to the measurement sampling rates,
another important factor which determines the filtering quality is the models selected for each

target. In this section, models selected for the HDL/CIP are detailed.

According to the information in the MMAS data, ground targets moved at constant speed
except in rough terrain, where they slowed down. Airbome targets also flew at a constant
speed. This information suggests to use 2-dimensional constant velocity kinematc model for

ground targets and 3-dimensional constant velocity model for airborne targets.

However, as seen in section 2.4, the maneuvering characteristics of targets become an
important issue in tracking tasks. To adjust the direction of movement, each target should
have the capability of acceleration and deceleration. This also leads to the use of 2-

dimensional and 3-dimensional constant acceleration kinematic models.

Each of the following models is a typical form which represents one of the above cases,

and takes the form of

x(k+1)=Fx(k)+ Gw(k) .
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For notational convenience, let’s define the following matrices.

AT22

D=1 ar

Here AT is the time difference between one step and the next step of filtering.

1)

2)

3-dimensional constant velocity kinematic model: The state variables
consist of x, X, y, ¥, z, and z, and the noise terms are w,, w,, and w,. The F and G

matrices are given by

B 0O D 0O
F={0BO0 and G=|0D O
00B 00D

3-dimensional constant acceleration kinematic model: The state variables consist of x, x,
X,Y,¥,¥,2,2,and z. The noise terms are w,, w,, and w,, F and G are given as fol-

lows.

and G =

“

il
(= I T
o >» O
> O O
o o 0
o0 o
O oo
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3) 2-dimensional constant velocity kinematic model: The state variables consist of x, x, y,

and y. The noise terms are w, and wy, and F and G are as follows.

B 0 D 0
F=lgp| ad G=]¢9p
4) 2-dimensional constant acceleration kinematic model: The state variables are x, x, x, y,

y,and y. The noise terms are w, and w,. F and G are given by

DO
0D

Sometimes, the movement of targets is limited by terrain. This limitation becomes more

A0
F=OA and G =

severe when ground targets are considered. To avoid this limitation, instead of developing
more complicated models for ground targets, developing a system which can combine the ter-
rain information with filtering results to generate more reliable track information might be a

plausible approach.
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2.7.2. Multiple Filter Initialization

Even though it has been proved that the SRIF is numerically more stable than the con-
ventional Kalman filter, the robustness of the SRIF with respect to some parameters still raises

some interesting questions whenever the implementation is considered.

To implement the SRIF, the parameters required are, as mentioned in section 2.2.2.1, the
initial state and its error covariance, the process noise mean vector and process noise error
covariance, and the measurement noise error covariance. Measurement noise mean vector is

usually assumed to be zero.

As described in section 2.6.1 (see table 2.6.1-3), some entries of initial state error covari-
ance matrix are assigned a reasonably big number when the corresponding components of the
initial state are not available. Since information matrix is defined as an inverse of the square
root of the covariance, the entries of covariance with big numbers give an information matrix
with entries of small numbers. These small numbers sometimes lead to numerical underflow

or overflow. Similar effects are also expected from the process noise covariance.

The above arguments imply that a robust implementation of the SRIF requires the esti-
mation of the levels of initial, process and possibly measurement noise for an individual tar-
get. That is, it is necessary to determine boundaries for the numbers to be used to initialize

filter,

For the HDL/CIP tracking system, since most of the design is based on the MMAS
simulation data, these numbers are determined by testing only. However, to be implemented
in real situation, a more systematic and sophisticated method should be incorporated into the
procedure to determine these parameters. For example, a maximum likelihood approach to

parameter estimation is a very general method which has been applied to the problem of




determining the parameters of a linear dynamical models described in the previous section.
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2.73. Adjustment of Vehicle Type

Even without measurement data, the HDL/CIP tracking system is designed to proceed to
update tracks. If all tracks, whether they are for ground targets or airborne targets, are updated
without measurements, it may impose a heavy computational load on the system. Since the
speeds of ground targets are slow compared to those of airborne targets, it is plausible to

update only airborne targets. Hence, it is necessary to distinguish vehicle types.

The method currently implemented to distinguish vehicle types is very simple. It utilizes
the x-velocity and y-velocity of filtered state estimate of each target. Every time a track is
updated with a measurement, speed of the vehicle is computed and compared with two thres-
hold values, such as 40 m/sec and 20 m/sec, which can be decided by the operators. If the
speed of the vehicle exceeds the high speed threshold, then vehicle type is adjusted as an air-
borne target. If the speed is below the lower threstold, the vehicle is regarded as a ground

target. Otherwise, it is a vehicle with unknown type.

The procedure described abo.e contains some risks because it is based on the kinematic
information only. To make a more reliable decision about vehicle type, more information,
which is not necessarily kinematic or numerical, from the sensors is required. Also, an algo-
rithm is needed to fuse the information, which may contain hoth the numerical and non-

numerical types, to get more reliable decisions.
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2,74. Interrupt Handling

The handling of interruptions plays «> important part in the design of the HDL/CIP

tracker software.

In the middle of the tracking process, an interruption might be necessary to improve
tracking performance by changing the tracker parameters listed in section 2.3.3, Volume 2,

Part A.

The steps to interrupt the tracker and to resume tracking process are described in section

9, Volume 3.

Once an interruption signal is received by the tracker, the previously processed informa-
tion will be lost, but the communication network continues to function. Hence, the messages
are continuously received. The trucker process restarts with the track initiation process based

on the first measurements queued in message buffer.

This design approach is plausible since tracker itself does not need to keep track histories
for all targets. As tracks are updated, the updated results are sent to database and then are

lost as the next update is processed.
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3. Performance Evaluation Test

This section includes test results of the HDL/CIP tracker software on the MMAS simula-
tion data. Section 3.1 contains descriptions how the tests are performed. In section 3.2, test
results from the important individual modules are described. In the last section, 3.3, test

results for some of the IEW data files are provided.

3.1. Description of Testing Environment

A SunSPARC 330 has been used as the main development and test machine. As
described in Volume 2, Part A, the design of the HDL/CIP tracker software is based on the
CIP network software. It is required that the network software run as a background on the
system. Once the network software is running on the machine, the four tracking tasks should
be run by utilizing the multi-task capability of the SUN operating system. These four tasks
consist of send meas, ppm_dri* - .n, and tracker2. Detailed explanations about each of
these tasks are included in Volume 2, Part A. Also, Volume 3 provides about how to set up

the system.
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3.2. Test Results

In this section, the test results of the HDL/CIP tracker are described. The test file is
iew_d2e2, which contains simulated trajectories of two A-7’s. The measurement noise covari-

ances for airborne radar, ground radar, and thermal imager are given below.

100.0 0.0 0.0 0.0 0.0
100.0 0.0 0.0 0.0
100.0 0.0 0.0
1000000.0 0.0
1000000.0
100.0 0.0 0.0 0.0 0.0
100.0 0.0 0.0 0.0
1000000.0 0.0 0.0
100.0 0.0
100.0
100.0 0.0 0.0 0.0 0.0
100.0 0.0 0.0 0.0
1000000.0 0.0 0.0
1000000.0 0.0
1000000.0

Two models cv3 and ca3 are selected. The initial model probabilities are given by 0.5

and 0.5 and the model transition matrix is given by




0.95
0.05

0.05
0.95
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The following are the process noise mean vectors and the process noise covariances for

cv3 and ca3, respectively.

0.0 0.0 0.0
1000.0 0.0 0.0
1000.0 0.0

000.0

0.0 0.0 0.0
1000.0 0.0 0.0
1000.0 0.0

000.0

Other parameters utilized are defined as follows. A description for each parameter is

included in section 2.3.3, Volume 2, Part A.

MaxNumModel: 5

MAX_COUNT: 50

TRACK_DEL_THRESHOLD: -5

MAX_ AIRVEH_SPEED: 300

MAX GRVEH_SPEED: 20
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POS_COV: 1.0e+5
VEL_COV: 1.0e+4
ACC_COV: 1.0e+3
SM_COV: 1.0e+2
DELAY: 2.0
CHI_VAL: 20000.0
MAX_ MEAS: 50
DATA_ACCUMULATION_INTERVAL: 0.5
MAX_MEAS: 50

DIM: 5

First, table 3.2-1 shows part of the output from the read_iew program, which is used as
an input to the ppm module. Table 3.2-2 contains three message buffers from the module

ppm. Table 3.2-3 and 3.2-4 are tracking outputs from tracker module.

The first measurement from the sensor 5003 (ground radar) arrived at time 20.1 with a
detection time 20.1. Since there is only one measurement, no fusion of measurements hap-
pens in ppm module. x-pos, y-pos, x-vel, and y-vel are copied into the message buffer and
z-pos is set to zero since it is not available from ground radar. The corresponding covariance
is also obtained. Only the entry which corresponds to z-pos component has a big number

compared to other entries. veh_type is set to -1 since it is not available.
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In table 3, the first three rows show that initial track has been formed based on the mes-
sage received from the ppm module. The received measurements are directly used as an ini-

tial state.

At the time 23.0, a measurement arrived from sensor 2001, and two measurements were
received from sensors 4002 and 4001 at the time 25.0, 2 seconds later. Note that these are
from the same target 21. However, the detection time of the measurements from sensors 4001
and 4002 were 0.5 sec earlier than the detection time of 2001. That is, these measurements

are out of sequence.

The second message buffer in table 3.2-2 contains just 1 measurement with detection

time 22.30. As the header pointed out the fusion process has been performed.

Two interesting things are observed here. First, measurements from 4001 and 4002
were processed before the measurement from 2001 in the ppm module. Second, after cluster-
ing, it was decided that these two measurements were from the same source and fusion pro-

cess was invoked.

The fused x-pos, y-pos, x-vel, and y-vel were stored into message buffer and sent to
tracker module. Note the changes in covariance matrix, which shows that entries correspond-

ing to available measurements became less than the original values.

In table 3.2-3, observe the tracking result after the second measurement was received.
The number of measurements is 1, which is exactly same as the second message buffer in

table 3.2-2.

The next 6 rows contain the predicted positions from models cv3 and ca3. The next 9

rows contain the averaged predicted state of the predicted states from the cv3 and ca3 models.
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The next line shows that currently there is only one target in track file list and only one
measurement has been received. The value 9.870757e+01 is corresponding log-likelihood

value.

Since there is only one track and one measurement, the Munkres’ algorithm gives
automatic association, which is represented by assign[0]: O. Here, assign[0] represents the first

track and O represents the measurement with index 0.

Using the associated measurement, a measurement update is performed. Then the likeli-
hood values can be obtained by the method based on the SRIF. These likelihood values are

used to update the model probabilities.

Finally, from the filtered state estimates from both models, the fused state was obtained

and only the x, y, and z positions are listed.

Based on the velocity estimate, the vehicle adjustment process was invoked. Since speed
of the vehicle was above the airbome target threshold, the vehicle type was adjusted to 102,
which represents an airborne target. The fused positions are printed again in the last line.

Note that the z position is still 0.

Similar explanations can be given to the track information in table 3.2-4, where the

measurement from sensor 2001 was utilized.




sensor unit vehicle time_true time rep time_det

3 y z xem yemr zemr

v_type v_speed v_dir x_sig y sig z_sig

5003 1 21 20 201
6843.3 -98269 1117.2

20.1
07 -99.1 5473

102 2409 265. 1.0 53.3 1486.5

2000 1 21 20 230
6864.0 -9747.6 1631.1
102 2409 265. 16.1 128.7

4002 1 21 20 250
6855.1 -10024.3  1758.9

23.0
-200 -1784 334

57.8

22.5
-11.1 983 -944

102 2409 265. 295 1452 2272

4001 1 21 20 250
6829.4 -9776.3  1796.5

22.5
146 -149.7 -1320

102 2409 265. 19.0 149.7 2340

Table 3.2-1

Input to ppm Module
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number of meas: 1
time_dei: 20.20
time_limit 2041

Htype: 3 veh_type: -1 x_pos: 6843.30 y_pos: -9826.90 z_pos:

x_vel: -239.98 y_vel: -21.00

COVARIANCE

100.000000 0.000000 0.000000 0.000000 0.000000
0.000000 100.000000 0.000000 0.000000 0.000000
0.000000 0.000000 1000000.000000 0.000000 0.000000
0.000000 0.000000 0.000000 100.000000 0.000000
0.000000 0.000000 0.000000 0.000000 100.000000

BEFORE FUSE next->t_detected: 22.500000
number of meas: 1

time_det: 22.30
time_limit  22.56

Htype: 3 veh_type: -1 x_pos: 6842.25 y_pos: -9900.30 z_pos:

x_vel: -239.98 y_vel: -21.00

COVARIANCE

50.000000 0.000000 0.000000 0.000000 0.000000
0.000000 50.000000 0.000000 0.000000 0.000000
0.000000 0.000000 500000.000000 0.000000 0.000000
0.000000 0.000000 0.000000 50.000000 0.000000
0.000000 0.000000 0.000000 0.000000 50.000000

number of meas: 1
time_det  23.20
time_limit:  23.42

Htype: 3 veh_type: -1 x_pos: 6864.00 y pos: -9747.60 z_pos:

x_vel: -239.98 y vel: -21.00

COVARIANCE

100.000000 0.000000 0.000000 0.000000 0.000000
0.000000 100.000000 0.000000 0.000000 0.000000
0.000000 0.000000 1000000.000000 0.000000 0.000000
0.000000 0.000000 0.000000 100.000000 0.000000
0.000000 0.000000 0.000000 0.000000 100.000000

0.00

0.00

0.00

Table 3.2-2 Message Buffer from ppm Module
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meas.num_received: 1
Hmat: 3 x_pos: 6843.299805 y_pos: -9826.900391 z_pos: 0.000000
x_vel: -239.983215 y_vel: -20.996756 time_det: 20.200001 veh_type: -1

meas.num_received: 1

Hmat: 3 x_pos: 6842.250000 y_pos: -9900.299805 z_pos: 0.000000
x_vel: -239.983215 y_vel: -20.996756 time_det: 22.299999 veh_type: -1
CV3.pred_state[0] 6339.334961

CV3.pred_state[2] -9870.992188

CV3.pred_state[4] 0.000000

CA3.pred_state{0] 6339.335938

CA3.pred_state[3] -9870.994141

CA3.pred_state[6] 0.000000

IN AVG_PREDICTION: avg_pred_state[0] = 6339.335449
IN AVG_PREDICTION: avg_pred_state[1] = -239.983139
IN AVG_PREDICTION: avg_pred_state[2] = 0.000182

IN AVG_PREDICTION: avg_pred_state(3] = -9870.993164
IN AVG_PREDICTION: avg_pred_state[4] = -20.996841
IN AVG_PREDICTION: avg_pred_state(5] = -0.000266
IN AVG_PREDICTION: avg_pred_state[6] = 0.000000

IN AVG_PREDICTION: avg_pred_state[7] = 0.000000 -
IN AVG_PREDICTION: avg_pred_state[8] = 0.000000

num_target: 1 num_meas: 1
After LOG_LIKE
9.870757e+01

assign[0}: 0

MODEL_PROBABILITY: model_probability[0] = 0.000008
CV3.likeihood_val = 1.236640e-08
MODEL_PROBABILITY: model_probability[1] = 0.999992
CA3.likeihood_val = 1.627030¢-03

FUSION STATE(SEND to DISPLAY)
X = 6762.366211
Y = -9895.644531
Z = 0.000000

track_id: 1

veh_type: 102

associated_meas: 0

FUSION X= 6762.37 Y=-989564 Z= 0.00

Table 3.2-3 Track Information from Tracker Module
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meas.num_received: 1
Hmat: 3 x_pos: 6864.000000 y_pos: -9747.599609 z_pos: 0.000000
x_vel: -239.983215 y_vel: -20.996756 time_det: 23.200001 veh type -1
CV3.pred_state[0] 6641.997559
CV3.pred_state[2] -9920.115234
CV3.pred_state[4] 0.000000

CA3.pred_state[0] 6607.040527

CA3.pred_state[3] -9918.078125

CA3.pred_state[6]) 0.000000

IN AVG_PREDICTION: avg_pred_state{0] = 6607.041016
IN AVG_PREDICTION: avg _pred_state(1] = -189.969940
IN AVG_PREDICTION: avg_pred_state[2] = -38.640724
IN AVG_PREDICTION: avg_pred_state[3] = -9918.078125
IN AVG_PREDICTION: avg_pred_state[4] = -23.911510
IN AVG_PREDICTION: avg_pred_state[S] = 2.251318

IN AVG_PREDICTION: avg_pred_state[6] = 0.000000

IN AVG_PREDICTION: avg_pred_state[7] = 0.000000

IN AVG_PREDICTION: avg_pred_state[8] = 0.000000

num_target: 1 num_meas: 1
After LOG_LIKE
4.562517e+02

assign[0): O

MODEL_PROBABILITY: model_probability[0] = 0.000000
CV3.likeihood_val = 2.797018¢-06
MODEL_PROBABILITY: model_probability(1] = 1.000000
CA3 likeihood_val = 3.239890¢-01

FUSION STATE(SEND to DISPLAY)
X = 6707.987305
Y =-9842.945312
Z = 0.000000

track_id: 1

veh_type: 102

associated_meas: 0

FUSION X= 6707.99 Y=-984295 Z= 0.00

Table 3.2-4 Track Information from Tracker Module
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Table 3.2-5 shows a message buffer with two measurements detected at 80.20. Also, it

shows one measurement in message buffer, which is detected at 82.40.

Table 3.2-6 shows that tracker module has received two measurements. Until these two
measurements were received, there was only one track in tracker module. The data associa-
tion result shows that assign{0]: 0. It means that the currently existing track was associated
with the measurement with index 0. Then the measurement with index 1 was regarded as a
new measurement, and the track initiation process was invoked. In table 3.2-6, only the fused

filtered state of the first track was included.

In table 3.2-7, tracking results for two tracks are included. First, note that one measure-
ment was received. As data association results, we have assign[0]: O, and assign[1]: -1. It
means that the first track was associated with the measurement, and the second track which
was created in the last step was not associated with the measurement. Then measurement

update without measurement was invoked for the second track.




number of meas: 2
time_det:  80.20
time_limit  80.42

Htype: 3 veh_type: -1 x_pos: -2120.50 y_pos: -3391.40 z_pos:

x_vel: -76.06 y_vel: 15594
time_det: 80.20
time_limit:  80.42

Htype: 3 veh_type: -1 x_pos: -915.10 y_pos: -6781.20 z_pos:

x_vel: -60.30 y_vel: 10444

COVARIANCE

100.000000 0.000000 0.000000 0.000000 0.000000
0.000000 100.000000 0.000000 0.000000 0.000000
0.000000 0.000000 1000000.000000 0.000000 0.000000
0.000000 0.000000 0.000000 100.000002 0.000000
0.000000 0.000000 0.000000 0.000000 100.000000
COVARIANCE

100.000000 0.000000 0.000000 0.000000 0.000000
0.000000 100.000000 0.000000 0.000000 0.000000
0.000000 0.000000 1000000.000000 0.000000 0.000000
0.000000 0.000000 0.000000 100.000000 0.000000
0.000000 0.000000 0.000000 0.000000 100.000000

number of meas: 1
time_det: 82.40
time_limit:  82.62

Htype: 3 veh_type: -1 x_pos: -2097.00 y_pos: -3305.80 z_pos:

x_vel: -76.06 y_vel: 15594

COVARIANCE

100.000000 0.000000 0.000000 0.000000 0.000000
0.000000 100.000000 0.000000 0.000000 0.000000
0.000000 0.000000 1000000.000000 0.000000 0.000000
0.000000 0.000000 0.000000 100.000000 0.000000
0.000000 0.000000 0.000000 0.000000 100.000000

0.00

0.00

0.00

Table 3.2-5 Message Buffer from ppm Module




meas.num_received: 2
Hmat: 3 x_pos: -2120.500000 y_pos: -3391.3999G2 z_pos: 0.000000
x_vel: -76.058159 y_vel: 155.940399 time_det: 80.199997 veh_type: -1

meas.num_received: 2

Hmat: 3 x_pos: -915.099976 y_pos: -6781.200195 z_pos: 0.000000
x_vel: -60.300507 y_vel: 104.442368 time_det: 8(.199997 veh_type: -1
CV3.pred_state[0] -2076.038818

CV3.pred_statef2] -4522.953125

CV3.pred_state[4] 0.000000

CA3.pred_state[0] 9032.459961

CA3.pred_state3] -12493.008789

CA3.pred_state[6] 0.000000

IN AVG_PREDICTION: avg_pred_state[0] = -2076.038818
IN AVG_PREDICTION: avg_pred_state[1) = -78.707680
IN AVG_PREDICTION: avg_pred_state[2] = 73.328354
IN AVG_PREDICTION: avg_pred_state[3] = -4522.953125
IN AVG_PREDICTION: avg_pred_state[4] = 110.053093
IN AVG_PREDICTION: avg_pred_state[5) = -52.985432
IN AVG_PREDICTION: avg_pred_state[6] = G 000000

IN AVG_PREDICTION: avg_pred_state[7] = 0.000000

IN AVG_PREDICTION: avg_pred_state{8] = 0.000000

num_target: 1 num_meas: 2
After LOG_LIKE
3.019633e+01 5.220504e+01

assign(0]: 0

MODEL_PROBABILITY: model_probability[0] = 1.000000
CV3.likeihood_val = 1,000000¢+00
MODEL_PROBABILITY: model_probability[1) = 0.000000
CA3 likeihood_val = 0.000000¢+00

FUSION STATE(SEND to DISPLAY)
X = -2119.750488
Y =-3399.716309
Z = 0.000000

track_id: 1

veh_type: 102

associated_meas: 0

FUSION X=-2119.75 Y=-3399.72 Z= 0.00

Table 3.2-6 Track Information from Tracker Module
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meas.num_received: 1

Hmat: 3 x_pos: -2097.000000 y_pos: -3305.800049 z_pos: 0.000000
x_vel: -76.058159 y_vel: 155.940399 time_det: 82.400002 veh_type: -1
CV3.pred_state[0] -2301.229248

CV3.pred_state[2] -2904.831787

CV3.pred_state[4] 0.000000

CA3.pred_state[0] -2214.611084

CA3.pred_state[3] -2958.902832

CA3pred state{6] 0.000000

IN AVG_PREDICTION: avg_pred_state[0] = -2301.229248
IN AVG PREDICTION avg_pred_state(1] = -82.490204
IN AVG PREDICTION: avg_pred_state[2] = 0.000000

IN AVG | _PREDICTION: avg_pred_state[3] = -2904.831787
IN AVG PREDICTION avg_pred_state[4] = 224.946884
IN AVG_ _PREDICTION: avg _pred_state([5] = 0.000000

IN AVG | _PREDICTION: avg_pred_state[6] = 0.000000

IN AVG PREDIC‘I'ION avg_pred_state(7] = 0.000000

IN AVG_ ~PREDICTION: avg _pred_state[8] = 0.000000

CV3.pred_state[0) -1047.761353
CV3.pred_state[2] -6551.426758
CV3.pred_state[4] 0.000000

CA3.pred_state[0] -1047.761475

CA3.pred_state[3] -6551.426758

CA3.pred_state[6] 0.000000

IN AVG_PREDICTION: avg_pred_state[0] = -1047.761475
IN AVG_PREDICTION: avg_pred_state[1] = -60.300507
IN AVG_PREDICTION: avg_pred_state[2] = 0.000003

IN AVG_PREDICTION: avg_pred_state[3} = -6551.426758
IN AVG_PREDICTION: avg_pred_state[4] = 104.442284
IN AVG_PREDICTION: avg_pred_state[5] = -0.000005

IN AVG_PREDICTION: avg_pred_state[6] = 0.000000

IN AVG_PREDICTION: avg_pred_state(7] = 0.000000

IN AVG_PREDICTION: avg_pred_state[8] = 0.000000

Table 3.2-7 Track Information from Tracker Module




num_target: 2 num_meas: 1
After LOG_LIKE
5.464704e+02
3.186033¢+03

assign[0]: 0
assign{1]: -1

MODEL_PROBABILITY: model_probability[0] = 0.000000
CV3.likeihood _val = 6.250718¢-35
MODEL_PROBABILITY: model_probability{1] = 1.000000
CA3.likeihood_val = 9.657914¢-01

FUSION STATE(SEND to DISPLAY)
X = -2141.317627
Y = -3205.733398
Z = 0.000000

FUSION STATE(SEND w DISPLAY)
X = -1047.761475
Y = -6551.426758
Z = 0.000000

track_id: 1

veh_type: 102

associated_meas: 0

FUSION X=-2141.32 Y=-3205.73 Z= 0.00

------------ TRACK TRAVERSING------------
track_id: 2

veh_type: -1

associated_meas: -2

FUSION X= -1047.76 Y= -655143 Z= 0.00

Table 3.2-7(cont’d) Track Information from Tracker Module
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The same file iew_d2e2 has been used to generate figures 3.2-1 through 3.2-6. Simu-
lated trajectories of two A-7’s, vehicle numbers 21 and 22, are included in the file. The same

models cv3 and ca3 with the same parameters are utilized.

Figures 3.2-1 and 3.2-4 are simulated trajectories without measurement noises for vehicle
21 and vehicle 22, respectively. Since the MMAS file provides measurements without noise
when the comresponding target is not detected, these are obtained by extracting only
undetected measurements for each vehicle. It mean: that each of figures does not show the
whole trajectory since the positions of targets are missed in these figures. However, they pro-

vide the trends of movement of the targets in general.

From the MMAS file, the detected measurements for vehicle 21 were obtained, and util-
ized as an input to the CIP tracking system. In this test, gating was excluded in data associa-
tion and blocking netGETANY was used in tracker module instead of nonblocking
netGETANY_ NBLK.

Figure 3.2-2 shows tracking results. In this test, since only one measurement was used
at a time and gating was not included, the Munkres’s algorithm gives automatic association,
i.e., one measurement for one track. Hence, this result shows the performance of the SRIF

with the IMM.

Figure 3.2-5 also shows the trajectory for the vehicle 22 obtained under the same condi-
tions. As can be seen in these figures, the behaviors of the trajectories are almost same as the
trajectories in figures 3.2-1 and 3.2-1 except starting points and ending points. These
differences are due to the fact that tracking starts only when the first measurements are
received by the tracker and that figure 3.2-1 and 3.2-2 contain information about undetected

measurements as soon s the simulation event starts.
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Figure 3.2-3 and 3.2-6 show tracking results when multi-target measurements are util-
ized. In these cases, difficulty in data association has been observed. We believe that this is

due to mainly sampling rate. The file utilized here, iew_d2e2, has reporting step 20 seconds.
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4. Concluding Remarks and Recommendations

Based on the test of the HDL/CIP tracking system on the MMAS simulation data file, iew_d2e2, the conclusions

are summarized as follows.

The test shows that the performance of the SRIF with the IMM is in an acceptable range.
That is, even though the targets are highly maneuvering, the averaged filtered state from
selected models closely follows the true trajectory without measurement noise. However, the

disadvantage of this approach is in the computational load due to the use of multiple filters.

It has been observed that the choices of design parameters affect the tracking perfor-
mance. For example, if the parameter DATA_ACCUMULATION_PERIOD is decreased, the
chances of fusion are also decreased since the number of measurements inside of time align-
ment period becomes smaller. On the other hand, if the same parameter is increased, the
chances of fusion are also increased. This means that the set of measurements received by
tracker module will be different whenever different value is assigned. Hence, different track-

ing results are expected sometimes.

The smaller the DATA_ACCUMULATION_PERIOD is, the more measurements are
regarded as distinct. The smaller value also will stabilize the tracking performance. However,
the advantages of fusion will be lost. Determination of an optimal value, which distinguishes
enough of the measurements, but does not lose the advantage of fusion is a difficult task,

since it depends on the situation. More tests on real data might give some clue about this

point.

Also, other parameters, such as error covariance matrices, generate effects which are
difficult to estimate. In the SRIF formulation, information matrices are utilized which are
derived from covariances. If large numbers are assigned as entries of covariances, it will gen-

erate small numbers in the information matrix, and may result in numerical instability.
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Detailed study is required to get a reasonable bound for these numbers.

As seen in section 3.2, the true trajectories of targets included in the MMAS files show
very similar behaviors. Soft decision scheme was employed in the tracker software, which is
basically based only on kinematic information. These two points make data association hard.
To get more accurate data association results, not only kinematic data but other information,

possibly including nonnumeric attributes, should be integrated.

The following issues are recommended for the further enhancements of the HDL/CIP

tracking system.

The predicted state estimate is dependent on models utilized in filtering. Also, the move-
ment of some vehicles, especially ground vehicles, is dependent on terrain. This makes the
reliability of the predicted state of ground vehicles low. An expert system which can combine
the kinematic information from filtering and other information such as terrain information

should be considered.

Vehicle type information is utilized in the tracking process. The procedure employed to
determine vehicle type is very simple, and utilizes kinematic information only. The
misclassification of vehicle type also leads to unexpected tracking results. As in recommenda-
tion 1), development of a system which can integrate numerical and nonnumerical informa-

tion to get a more reliable vehicle type is required.

An approach such as the maximum likelihood method should be considered to estimate
reasonable values of parameters. The parameter estimation procedure and tracking procedure
should be performed concurrently. Parameters obtained should be implemented in the track-

ing system by user’s request.
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For the measurements such as the MMAS data, the MHT method is more suitable than
any method employing a soft decision scheme. In the implementation of the MHT,
hypotheses generated must be pruned. The development of the criteria to prune hypotheses
should be considered. A hybrid system , which can integrate kinematic information and the
results from the data association method employed in tracker software, and some nonnumeric

information together will give more reliable data association results.

Finally, a more user friendly interface should be developed.




References

{11 G. Bierman, "Factorization Methods for Discrete Sequential Estimation,” Academic Press,

1977.
[2] Y. Bar-Shalom, T. Fortman, "Tracking and Data Association,” Academic Press, 1988.

[3] M. Belzer, G. Bierman, "Maximum Likelihood Estimation Using the Square Root Infor-
mation Filters," pp. 1293-1298, IEEE Transaction on Automatic Control, vol 35, no 12, Dec.
1990.

[4] F. Burgeois, J-C Lassalle, "An Extension of the Munkres Algorithm for the Assignment
Problem to Rectangular Matrices," pp. 802-806, Communications of the ACM, vol 14, Dec.
1971.

[5]1 S. Blackman, "Multiple-Target Tracking with Radar Application,” Artech Kouse, 1986.

[6] C. Chang, L. Youens, "Measurement Correlation for Multiple Sensor Tracking in a Dense
Target Environment,” pp. 1250-1252, IEEE Transactions on Automatic Control, vol AC-27,

no 6, Dec. 1982.

[7]1 A. Houles, Y. Bar-Shalom, "Multisensor Tracking of a Maneuvering Target in Clutter,”
pp. 176-189, IEEE Transaction on Aerospace and Electronic Systems, vol AES-25, no 2,
March, 1989.




Distribution List

US Army LABCOM

Adelphi Laboratory Center

2800 Powder Mill Road

Adelphi, Maryland 20783-1197

ATTN: Shipping & Receiving, Building 102
M/F: Mr. Larry Tokarcik/SLCHD-TA-AS

US Army LABCOM

Adelphi Laboratory Center

2800 Powder Mill Road

Adelphi, Maryland 20783-1197

ATTN: Mrs. Pauline Baumgartner/SLCHD-TS-S

DTIC-FDAB

Defense Technical Information Center
Cameron Station

Alexandria, VA 22304-6145

100




