
AD-A257 022
1111 !!f~l I 11111111 ~TASK: UA48CDRL: 04107A

25 August 1992

Technical Concept
Command Center Library

DTIC
ELECTE

Informal Technical Data OCT 2 8 1992 D

I wo

STARS-AC-04107A/001/00
25 August 1992

REPRODUCED BY
U.S. DEPARTMENT OF COMMERCE

NATIONAL TECHNICAL
INFORMATION SERVICE
SPRINGFIELD, VA 22161

TASK: UA48
CDRL: 04107A
25 August 1992

INFORMAL TECHNICAL REPORT

For The

SOFTWARE TECHNOLOGY FOR ADAPTABLE, RELIABLE SYSTEMS
(STARS)

Technical Concept
Command Center Library

Central Archive for Reusable Defense Software (CARDS)

STARS-AC-04107A/001/00
25 August 1992

Data Type: A005, Informal Technical Data

CONTRACT NO. F19628-88-D-0031
Delivery Order 0009

Prepared for:

Electronic Systems Center
Air Force Systems Command, USAF

Hanscom AFB, MA 01731-5000

Prepared by:

DSD Laboratories , .. .7
under contract to

Paramax Systems Corporation
12010 Sunrise Valley Drive -

Reston, VA 22091 . ° ,.______

...................... ~tvy Codos

TASK: UA48
CDRL: 04107A
25 August 1992

Data ID: STARS-AC-04107A/001/00

Distribution Statement "A"
per DoD Directive 5230.24

Authorized for public release; Distribution is unlimited.

Copyright 1992, Paramax Systems Corporation, Reston, Virginia
and DSD Laboratories

Copyright is assigned to the U.S. Government, upon delivery thereto, in accordance with
the DFAR Special Works Clause.

Developed by: DSD Laboratories under contract to
Paramax Systems Corporation

This document, developed under the Software Technology for Adaptable, Reliable Systems
(STARS) program, is approved for release under Distribution "A" of the Scientific and Tech-
nical Information Program Classification Scheme (DoD Directive 5230.24) unless otherwise
indicated. Sponsored by the U.S. Defense Advanced Research Projects Agency (DARPA)
under contract F19628-88-D-0031, the STAi%.S program is supported by the military services,
SEI, and MITRE, with the U.S. Air Force as the executive contracting agent.

Permission to use, copy, modify, and comment on this document for purposes stated un-
der Distribution "A" and without fee is hereby granted, provided that this notice appears
in each whole or partial copy. This document retains Contractor indemnification to The
Government regarding copyrights pursuant to the above referenced STARS contract. The
Government disclaims all responsibility against liability, including costs and expenses for vi-
olation of proprietary rights, or copyrights arising out of the creation or use of this document.

In addition, the Government, Paramax, and its subcontractors disclaim all warranties with
regard to this document, including all implied warranties of merchantability and fitness, and
in no event shall the Government, Paramax, or its subcontractor(s) be liable for any special,
indirect or consequential damages or any damages whatsoever resulting from the loss of use,
data, or profits, whether in action of contract, negligence or other tortious action, arising in
connection with the use or performance of this document.

TASK: UA48
CDRL: 04107A

25 August 1992
INFORMAL TECHNICAL REPORT
Technical Concept Document
Central Archive for Reusable Defense Software
(CARDS)

Principal Author(s):

Rose Marie Armstrong Date

W Gregory Stine Date

Kurt Wallnau Date

Approvals:

Program Manager Lorraine Martin Date

(Signatures on File)

Form Approved

REPORT DOCUMENTATION PAGE OMB No 0704-0188

P oi, 1C 'eoo"Inq o'4de., to r !,i 'C ect ion cf in *cf i-,. s -?51 -at oo :ý &. ,i e ' % u e iz e t. -h tcr :nst'4 ,r~cz - sea ws" : a'~ f !a T t--
g rat- z ati ' ntalmrrg thre oata le-dea. &no c, o-e(,noa no otýr 'e e n ~n ,' c r r s-n O - 7a'! rea o '- or e'ew nde ' :thet ýoecIt of iicolle-'lon C, 9 n,*',"tM O,. ,rc ing suggs tieons t7, eor.aa'u • ot roer ,. : oitsnqlni -eaoaid,!-e,% $ e, rate ko" -,a"- e : Cr -•'acr ino ,- 'I 2 05 fesor

1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE 3. REPORT TYPE AND DATES COVERED

25 August 1992 Informal Technical Report

4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

Technical Concept Command Center Library F-19628-88-D-0
0 3 1

6. AUTHOR(S)

DSD Laboratories

7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES) 8. PERFORMING ORGANIZATION
REPORT NUMBER

Paramax Corporation

12010 Sunrise Valley Drive

Reston, VA 22091 STARS-AC-04107A/001/
0 0

9. SPONSORING MONITORING AGENCY NAME(S) AND ADDRESS(ES) 10. SPONSORING MONITORING
AGENCY REPORT NUMBER

Department of the Air Force

Headquarters Electronic Systems Center 04107A

Hanscom AFB, MA 0173i-5000

S11. SUPPLEMENTARY NOTES

,12a. DISTRiBUTION AVAILABILITY STATEMENT 12t D'<TRIBUTION CODE

Distribution "All

•3. ABSTRACT iMaxmum2?0wordS)

The purpose of this document is to describe the technical concepts of the command center (CC)

library, including library modelling, the library software infrastructure, security, and interoperability.

This document will baseline the technical foundation for the CC library and for other domain-

specific libraries to be implemented by the Central Archive for Reusable Defense Software
(CARDS) program.

This document supersedes the Technical Concept Document dated 15 July 1991, and reflects the

most current concepts being employed by CARDS. The next periodic update to this document

should occur in February 1993.

14 SUBJECT TERMS 15 NUMBER Or PAGES

42

16 PRICE CODE

1 17, SECURITY CLASSIFICATION 118. SECURITY CLASSIFICATION 19 SECURITY CLASSIFICATION 20 LIMITATION OF ABSTRACT

,I OF REPORT I OF THIS PAGE OF ABSTRACT

unclassified i uncldssified unclassified SAR

25 August 1992 STARS-AC-04107A/001/00

Table of Contents

Introduction .. 1
1.1 Purpose .. 1
1.2 Background ... 1
1.3 Scope .. 1
1.4 M ission of CARDS ... 2
1.5 Docum ent structure .. 3

2 Reuse Library Modeling Infrastructure ... 4

2.1 Library design and construction ... 5
2.1.1 Library integration of supply and demand processes 6
2.1.2 Domain vs. library modeling .. 9
2.1.3 Domain modeling .. 11

2.1.3.1 Domain architectures .. 11
2.1.3.2 Domain architectures: genericity versus abstraction 12
2.1.3.3 Capturing commonality and variation .. 12

2.1.4 Library modeling .. 13
2.2 CC library design and construction .. 14

2.2.1 PRISM program and approach .. 14
2.2.2 CC library overview: the model and its applications 15
2.2.3 CC library modeling approach ... 15
2.2.4 System composition application ... 17

2.2.4.1 Target System Constraints ... 18
2.2.4.2 System Composition Model and Heuristics 18
2.2.4.3 System Demonstration .. 18
2.2.4.4 Composed System .. 18
2.2.4.5 Current status of the system composition tool 19

2.2.5 Component qualification ... 19

3 CC Library Support Infrastructure .. 21
3.1 The CARDS library infrastructure ... 21

3.2 Distribution ... 21
3.2.1 Complete distribution via AFS ... 23
3.2.2 Partial distribution via AFS .. 24
3.2.3 Distribution via the X window system ... 24

3.3 Telecom m unications ... 25
3.3.1 W ide-area networks .. 26
3.3.2 Direct connection .. 26

3.4 Security ... 27
3.4.1 Security Concept of Operations .. 27
3.4.2 Security policy .. 28
3.4.3 Scope of CARDS security .. 28
3.4.4 Risk analysis .. 29

3.4.4.1 Threat identification ... 29
3.4.4.2 Threat evaluation .. 30

3.4.5 Countermeasures ... 30

25 August 1992 STARS-AC-04107A/001/00

4 LU brary Interoperablilty ... 31
4.1 A reference m odel for interoperability .. 32

4.2 Scenarios ... 33
4.2.1 Direct retrieval ... 33
4.2.2 Indirect retrieval ... 34
4.2.3 Surrogate retrieval .. 34

4.3 CARDS/ASSET Interoperability Plan .. 34

Appendix A G lossary ... 36

Appendix B References .. 41

Hi

25 August 1992 STARS-AC-04107A 1/000

List of Figures

Figure 2-1. Domain and System Engineering Processes .. 6
Figure 2-2. Integrating Domain and System Engineering .. 7
Figure 2-3. Relationships between Library and Domain Models 10
Figure 2-4. Command Center Library Sub-Models .. 16
Figure 2-5. System Composition - Top-Level Architecture 17
Figure 3-1. Infrastructure for CARDS Reuse Libraries .. 21
Figure 3-2. CC Library Wide-Area-Network Architecture 22
Figure 3-3. CC Library ... 22
Figure 3-4. CC Library Fully Distributed Via AFS .. 23
Figure 3-5. CC Library Partially Distributed Via AFS ... 24
Figure 3-6. CC Library Distributed Via X .. 25
Figure 4-1. Interoperation Reference Model .. 32
Figure 4-2. Direct Retrieval .. 33
Figure 4-3. Indirect Retrieval ... 34
Figure 4-4. Surrogate Retrieval .. 35

iii

25 August 1992 STARS-AC-04107A/O01 /00

1 Introduction

1.1 Purpose

The purpose of this document is to describe the technical concepts of the command center (CC)
library, including library modelling, the library software infrastructure, security, and interoperability.
This document will baseline the technical foundation for the CC library and for other domain-
specific libraries to be implemented by the Central Archive for Reusable Defense Software
(CARDS) program.

This document supersedes the Technical Concept Document dated 15 July 1991, and reflects the
most current concepts being employed by CARDS. The next periodic update to this document
should occur in February 1993.

Terms which appear in the glossary are italicized at their first occurrence in this document.

1.2 Background

There is a firm consensus that in order to increase productivity, quality and reliability, the software
development community must reuse products from prior projects, as well as the associated
human problem-solving expertise.

One of the tools used to encourage reuse is the reuse library. A variety of efforts, reflected in
existing reuse libraries, have concentrated on the reuse of software code. This type of reuse has
limited impact. The reuser ofter, has to struggle to insert components into a system that is in the
coding stage of the software development life-cycle.

Today, when components (i.e., a set of reusable resources) are inserted into current operational
libraries, they are typically classified in broad, generalized categories, and information describing
their specific role in a particular problem-domain architecture is not formally encoded. As a result,
the domain knowledge is no longer attached to the component and therefore lost to the reuser.

To achieve broad spectrum reuse, CARDS advocates library-centered domain-specific reuse. A
domain-specific library is built around a domain that has been carefully scoped and modeled. A
domain-specific library for command centers (CC) was created under Phase I of the program. As
the library matures, it will build towards having a full set of life-cycle artifacts, including both
domain engineering and system/software engineering artifacts.

1.3 Scope

This document addresses the technical tasks specific to the continued development and
maintenance of the CC library required during Phase II of the CARDS program as described in the
UA48 Statement of Work dated 13 February 92, issued by HQ ESC/AVS. References made to
future efforts beyond the scope of Phase II are included for informational purposes only.

25 August 1992 STARS-AC-04107A1001/00

1.4 Mission of CARDS

The CARDS program is a concerted DoD effort to transition advances in the techniques and
technologies of domain-specific software reuse into mainstream DoD software procurements.
There are three key elements to the CARDS approach:

1. Develop and transition, through a Franchise Plan, a "knowledge blueprint' for
domain-specific reuse to the DoD and DoD software development industry, using
the library as a tool.

2. Develop and transition a training plan, training courses, and adoption handbooks
as vehicles for enhancing the penetration of the Franchise Plan and general
reuse practices.

3. Apply domain-specific reuse techniques and technologies to produce an
operational library for command centers.

The knowledge blueprint will be conveyed by a Franchise Plan consisting of library
documentation, reuse process handbooks, cost, schedules, education and training
documentation, and procedures for implementing domain-specific reuse. The Franchise Plan will
support the transition of the blueprint to DoD organizations and contractors as an overall plan for
developing and supporting other domain-specific infrastructures. The handbooks will be targeted
to audiences (including direction-level and acquisition personnel, engineers, and tool and
component vendors) crucial to the adoption and institutionalization of library-centered domain-
specific reuse techniques. The handbooks will address the issues and responsibilities of the
intended audience as it pertains to the implementation of domain-specific reuse.

A training plan and system/software engineers' course will be developed to support the integration
of domain-specific reuse into the software development life-cycle and educate and reeducate
software professionals and support the elimination of cultural barriers.

The establishment of a domain-specific library for the command center domain will continue in
support of the CARDS mission for evaluating and validating the knowledge blueprint. The CC
library will be maintained at a central site and will consist in part of: facilities, personnel, domain
and library modeling, software components, qualification procedures, maintenance procedures,
retrievalprocedures, browsing capabilities, and various user services that support domain-specific
reuse in this library. User interaction with the library will occur from multiple, remote sites.

CARDS is working closely with PRISM (Portable Reusable Integrated Software Modules) to
develop the command center reuse library. PRISM will develop generic architectures and
pro'.1type implementations of command centers which CARDS will use as a basis for the domain-
specific library.

Ultimately, CARDS will support the full software development life-cycle by providing mechanisms
and methods that support domain-specific reuse integration, component acquisition policy, rapid
prototyping, clarification of requirements, system composition and component generation.

2

25 August 1992 STARS-AC-04107A/001/00

1.5 Document structure

The four chapters of this document cover: (1) Introduction, (2) Reuse Library Infrastructure, (3) CC
Library Support Infrastructure and (4) Library Interoperability. Chapter 2 (on the reuse library
infrastructure) covers domain engineering and its relationship with system engineering, modeling
concepts, operational concepts and tools, and the CARDS/PRISM (Portable Reusable Integrated
Software Modules) relationship. The third chapter covers the technical aspects necessary to make
the CC library operational. Chapter 4 (on library interoperability) covers key technical concepts of
library component exchange.

3

25 August 1992 STARS-AC-04107AV0/00

2 Reuse Library Modeling Infrastructure

The CARDS approach to constructing and using reuse libraries differs from other approaches in
a significant way; rather than viewing a library as merely a "repository' - a storage area for
software components - CARDS views a library as a library model and a set of library applicaticons.
Thus, CARDS distinguishes the concept of a reuse repository (the underlying storage) from the
reuse library (the storage and related applications).

On the surface this is a subtle distinction, since even repositories such as Asset Source for
Software Engineering Technology (ASSET) and Defense Software Repository System (DSRS)
require some underlying model (commonly referred to as "the data model'). At a deeper level.
however, this distinction is important in understanding the CARDS approach to library-centered
domain-specific reuse. Some immediate implications of this distinction are:

" While conventional repositories are focused exclusively on reusable
components, CARDS extends this focus to include the relationships that exist
between components.

" The definition of component in conventional repositories tends to follow easily
described, well-partitioned functional lines, e.g., documents, subroutines,
modules, and applications. In CARDS, components are not always as discrete,
and include concepts such as requirements, generic architectures and other
conceptual models. Thus, CARDS functional components can be related to
clusters of requirements or to domain-specific application architectures.

" Conventional repositories place a heavy emphasis on component search and
retrieval, i.e., they are usually characterized by a single application supporting
interactive search. The CARDS approach envisions a collection of library
applications tailored to the domain of interest and a selected clientele. Sample
applications include: graphical browsers, system composers and component
qualifiers.

To achieve this technical vision of a reuse library, CARDS relies upon the use of modeling
formalisms that are significantly richer than lower-level data modeling formalisms such as the
entity-relationship-attribute (ERA) models ard relational models which characterize conventional
repository approaches. Instead, CARDS draws upon technology derived from the field of
knowledge representation.

The use of knowledge representation techniques is justified as, and is crucial to, the means of
describing, managing and using the complex sets of relationships (also referred to as constraints)
that characterize an application domain and its software architectures and components. (A
detailed description of CC library constraints is included later in this document.)

It is not enough, however, to have the tools available to create library models and library
applications - there are critical design decisions which must be made in the design and
construction of domain-specific libraries that depend upon:

* The nature of the underlying application domain

4

25 August 1992 STARS-AC-04107A/001 /00

"* The manner in which the underlying application domain is analyzed and
modeled, i.e., domain analysis techniques

"• The anticipated end-user requirements on the library, i.e., usage scenarios

"* The capabilities of the modeling system used to create the library model

In addition to the above, there are technical issues related to the support and management of an
operational library that transcend the engineering mechanics of library design and construction.
The mechanics of library design and construction and the technical concepts of library operations
must be considered as part of the same engineering process for creating and fielding an
operational domain-specific reuse library.

The following sections describe the interplay of these (and other) dimensions of the library design
and construction processes. Section 2.1 describes how the underlying application domain,
domain analysis, and library end-user scenarios affect the design of a domain-specific reuse
library and how the CARDS library infrastructure can be applied to design and implement domain-
specific reuse libraries. Section 2.2 discusses how the issues described in Section 2.1 apply to the
construction of the CC library. Chapter 3 discusses the technology issues of operational libraries,
with emphasis on the CC library.

2.1 Library design and construction

Utilization of reuse in narrow application domains and the construction of domain-specific libraries
is not new, e.g., statistical and mathematical libraries. However, the attempt to make the practice
of library-centered domain-specific reuse more systematic and repeatable across different
application domains is a recent phenomena, and has received heightened attention in recent
years.

One result of recent efforts is the differentiation of two distinct engineering life-cycles: domain
engineering and system engineering (4]. Domain engineering refers to the techniques (i.e.,
methodologies) used to analyze and model an application domain, and construct reusable,
components based upon these analyses and models. System engineering refers to the more
familiar world of software and system development processes.

This differentiation conveys a number of important principles:

"• Although the representation techniques of domain engineering are frequently
used in system engineering (e.g., structured analysis and design technique
(SADT) diagrams), their intent and meaning are different.

"* To be successful, domain engineering activities must be considered
independent of any single application.

"• Domain engineering implies an investment approach to the software life-
cycle, where the costs of instantiating a domain-engineering process will be
amortized over several system-engineering instantiations.

5

25 August 1992 STARS-AC-04107A/001 /00

-The above-noted economic factors can be viewed in this way: domain
engineering can be considered a "supply-side" process, while system
engineering is a "demand-side" process. To be successful, a library-centered
domain-specific reuse strategy must balance the needs of the demand side
with products produced by the supply side.

Elaborating on this last point, one element of a risk reduction strategy for amortizing the costs of
domain engineering includes the techniques and technology of ensuring the availability and use
of domain engineering by-products for system development processes. CARDS views this
"availability and use" requirement in terms of integrating the domain and system engineering life-
cycle processes and the domain-specific library as the underlying technology which supports this
integration.

2.1.1 Library Integration of supply and demand processes

Integration should be thought of in terms of relationships between two or more integrated entities
[19]. In the context of this report, these two entities are life-cycle processes. Figure 2-1

Domain Application
Requirements Requirements

Domain Application
Architecture Architecture

Domain Application
Implementation Implementation

Domain Engineering System Engineering

Figure 2-1. Domain and System Engineering Processes

characterizes the domain and system engineering processes, and draws parallels between these
processes [4]. While this characterization has obvious limitations (not the least of which is the lack
of industry consensus on the precise meaning of the terms used to describe domain engineering
in Figure 2-1), it does illustrate a number of important parallels which are important in
understanding the integration of these processes:

* Domain requirements result from a requirements analysis for an entire family
(i.e., domain) of applications; conversely, application requirements are targeted
to a specific application.

6

25 August 1992 STARS-AC-04107A1001/00

"* One result of domain analysis may be the specification of a domain architecture
which is used to convey high-level implementation paradigms and constraints
characterizing commonality and variances of domain applications; conversely,
application architectures are focused on satisfying a particular set of application
requirements.

"* Another result of domain analysis may be domain implementations, i.e.,
systems, subsystems and components which implement, or support the
implementation of, the domain architecture; conversely, application
implementations are targeted to a specific application architecture.

Given these parallels, there are many ways of making use of the products of domain engineering
during system engineering, i.e., integrating these activities. Three possibilities are illustrated in
Figures 2-2a through 2-2c.

Domain Requirements / Application Requirements

Domain Architecture understa Application Architecture

Domain Implementation use 4 •pplication Implementstior

Figure 2-2a. Implementation-Level Integration

SDomain Requirements understa • Application Requirements

Domain Architecture Application Architecture

Domain Implementation 4 pplication Implementstior

Figure 2-2b. Architecture-Level Integration

Domain Architecture 4-- Application ArchitectureI

Domain Implementation-' It•ppliction Implarmetstior

Figure 2-2c. Domain-Level Integration

Figure 2-2. Integrating Domain and System Engineering

7

25 August 1992 STARS-AC-04107A/001/00

Figure 2-2a illustrates two ways the domain implementation-level components can be used during
the system engineering process:

"* During "bottom-up" design of an application architecture, the system designer
can integrate, and understand, the domain implementations;

"* As part of the application implementation, the software engineer can locate, and
use, the domain implementations.

Figure 2-2b illustrates a similar understand/use dichotomy, but at a higher level of abstraction in
the system engineering process. In this case:

"* An understanding of a domain architecture can aid a requirements analyst in
analyzing and allocating requirements;

"* A system designer can make direct use of the domain architecture in developing
an appropriate application architecture.

Finally, Figure 2-2c illustrates th, scenario where a more complete set of products from domain
analysis are used throunh a aroader spectrum of system engineering activities, and where the
results of successive instantiatians of system engineering life-cycles feed back to the domain
products to incorporate application-specific variations. Figure 2-2c can be considered a model of
the ideal integration of domain and system engineering.

While Figure 2-2c may be an ideal scenario, a number of technical and economic factors may
constrain the nature of the endpoints of the integration relationships. Examples of such factors
include:

" The underlying domain may not be structured in a way that is meaningfully
conveyed as a domain architecture, e.g., domains of missile guidance
algorithms, mathematical routines, digital sound samplings, etc. This illustrates
scenarios where domain-products of horizontal domains or non-architectural
vertical domains are integrated with applications.

" The application domain may not be sufficiently stable (in terms of requirements,
architectures or implementation technology) to warrant the investment of
developing, or to expect the existence of, domain implementations. This
illustrates scenarios where domain analysis and architecture specification is
occurring simultaneously with application development, perhaps as a means of
prototyping domain implementations, as is the case with Portable Reusable
Integrated Software Modules (PRISM)/Generic Command Center (GCC)
developments. (See section 2.2.1.)

"* The analysis techniques used to produce domain products may not have
generated all of the products depicted in Figures 2-1 and 2-2, or may not have
generated products useful to a particular system engineering process. This
illustrates scenarios where the domain engineering life-cycle may have been
constrained by economic factors to generate only a partial set of products (e.g.,
requirements but no architecture), and scenarios where different organizations
with incompatible notions of supply and demand-side processes produce or
require different domain products.

8

25 August 1992 STARS-AC-04107A/001 /00

"The system engineering processes may not be able to make use of domain
products for reasons of process maturity. For example, an organization
struggling to codify and institute repeatable analysis and design processes may
find it more practical to attempt a modest level of supply-side/demand-side
integration, such as implementation-level integration as illustrated in Figure 2-2a.

"o The underlying means of integrating domain engineering with system
engineering - the reuse library - may not adequately model, or provide access
to, domain requirements or architectures. This illustrates scenarios derived from
the use of conventional component-oriented reuse repositories.

The above factors are by no means exhaustive, but are intended to illustrate the following point:

The manner in which supply-side and demand-side reuse processes are integrated
depends upon many factors, including the nature of the domain, the kinds of
domain-oriented components that are available, the nature of the supply-side
processes, and the capabilities of the reuse technology used to convey the results
of domain engineering to system engineering processes.

All of these points are of particular importance to the CARDS program because CARDS must
attempt to convey in its reuse blueprint the techniques and technology necessary to develop
domain-specific reuse libraries in a way that is independent of:

"* application domain

"* domain analysis methods

"* system engineering methods

Thus, CARDS is attempting to describe the means of integrating demand and supply-side
processes without constraining the nature of either of these processes. For this reason, CARDS
finds it necessary, and convenient, to view the creation of a domain-specific library as an activity
which is independent of domain and system engineering life-cycles.

2.1.2 Domain vs. library modeling

Part of distinguishing domain engineering from library engineering is differentiating domain
analysis and modeling from library analysis and modeling. Domain analysis refers to the analytical
processes for scoping domains, identifying the key concepts, common and variant features, etc.
Domain modeling refers to the formal characterization of the results of analysis in some
representational form (ERA models, feature models, taxonomies, SADT diagrams, glossaries,
etc.).

Library analysis, on the other hand, refers to the analytical processes for constructing the library
system used to integrate the results of domain engineering into system engineering processes.
As already mentioned, this design activity needs to take into consideration many factors affecting
this integration relationship. Library modeling refers to the formal characterization of the library
system. In some domain analysis techniques, some (but not all) aspects of the library modeling
are produced as domain analysis by-products, e.g., facets from Prieto-Diaz's methods [17].

9

25 August 1992 STARS-AC-04107A/O01 /00

One way to view the separation of domain modeling from library modeling is depicted in Figure 2-
3. The domain model encompasses things such as glossaries, context models and economic
models, while the library model encompasses search heuristics and prototyping support services,
in addition to meta-level information about various components in the library (with COTS license
data being the illustration of this in Figure 2-3). Both models overlap in their use of domain
requirements and architecture models. Note that this figure is an illustration drawn from the CC
library; different library instantiations may choose different partitions.

Domain Requirements

Glossaries Search Heuristics

COTS License Data

Context Models
Composition Rules andPrototyping Support

Economic Models Domain Architecture

Figure 2-3. Relationships between Library and Domain Models

The central issue raised by the separation of library analysis and modeling from domain analysis
and modeling is harmonizing the content of the library model with that of the various models
produced during domain analysis. Various questions need to be answered, including:

"* Which models produced by domain analysis should be used to produce a library
model?

"* Should domain models be "mapped" into a library modeling formalism, or should
the domain models remain in their original formalism? (And if so, how should this
formalism be integrated into the library model?)

"* How should the library model be kept consistent with the domain model, in cases
where the underlying domain and/or domain analysis continues to evolve?

Answers to questions such as these depend upon the nature of the domain and domain analysis
processes, the nature of the library modeling system and formalism used, and the kinds of
applications to be developed for the library. Before describing how these questions are being
answered for the CC library, a discussion of domain and library modeling, and the CARDS reuse
library infrastructure, is in order.

10

25 August 1992 STARS-AC-04107A/001/00

2.1.3 Domain modeling

The techniques used to model domains are as numerous as proposed domain analysis methods.
Domain modeling formalisms include:

"* feature lattices [61

"* SADT diagrams [16]

"• ERA diagrams [6]

"* domain-specific languages [15]

"* module-interconnection languages [12]

"* semantic networks [9]

to name just a few. One of the justifications for separating library modeling from domain modeling
is precisely this diversity in domain modeling formalisms - and no industry consensus on domain
modeling formalisms appears to be emerging.

Despite this diversity, however, some key concepts about domain analysis and modeling have
emerged, specifically as these analysis and modeling techniques relate to both domain-specific
reuse and model-based engineering [10]. These key concepts include:

* Specification of a domain architecture, i.e., a model conveying a high-level
specification of implementation paradigms for applications within a particular
domain

"* Separation of the domain architecture from specific realizations of the
architecture, and from the requirements of applications within the domain (as
implied in Figures 2-1 and 2-2)

"• Capture of both commonality and variation within the domain.

CARDS considers these to be the key concepts of domain analysis because they have direct
bearing on library modeling. The meaning and use of domain architectures is discussed below to
provide a foundation for understanding the CARDS library modeling approach taken for the CC
library.

2.1.3.1 Domain architectures

Applications in a particular problem domain tend to exhibit similarities in components and in the
architecture in terms of the arrangement and use of components. Experts in a particular domain
usually have an informal, often unwritten, model in mind when constructing a system. An
architecture provides a formalized version of such a conceptual model.

While a precise and universally accepted definition of the term "software architecture" remains a
topic of philosophical debate, CARDS use of the term is based upon the understanding that the
domain architecture:

11

25 August 1992 STARS-AC-04107A/0O1/00

* defines the functionality of, and interfaces between, major subsystems of
applications within the domain

"* provides the basis for constructing and relating domain implementation
components

"* provides the basis for mapping (or allocating) domain requirements to domain
components, and to specific implementations of the domain architecture created
by system engineering processes.

There are, of course, other uses for domain architectures. For example, a domain architecture can
serve as the basis for creating industry-wide standards for applications within a particular domain.
However, this report is focused on the application of domain architectures to library modeling.

2.1.3.2 Domain architectures: genericity versus abstraction

The above definition of domain architecture is based upon an interpretation of the purpose of a
domain-specific software architecture which is, unfortunately, not widely understood or universally
appreciated. That is, CARDS believes the purpose of a domain architecture is to act as an
abstraction which can be used to describe many different implementations, and can satisfy
different requirements.

This may seem like a reasonable interpretation of the purpose of a domain architecture. There is,
however, an alternative view, one which CARDS believes is less flexible: that a domain
architecture describes only the commonality among different applications in the underlying
domain. This view of domain architecture is often conveyed by terms such as "generic
architecture" (although not every use of the term generic architecture necessarily conveys this
meaning).

To distinguish CARDS use of the concept of domain-specific software architecture from this less
flexible view, the term domain architecture will be used in preference to generic architecture.

2.1.3.3 Capturing commonality and variation

An argument for commonality

On the commonality side, an architecture which defines stable interfaces among subystems and
components provides the basis for standardization. When well-defined standard interfaces are
present, one is free to select a component based upon its ability to meet mission requirements,
without having to be concerned with low-level interface issues. Standard interfaces enable
construction of components with newer, high-quality algorithms, resulting in increased accuracy,
performance, and other improvements without the need for major restructuring of previously
developed components or full-scale applications. This enables an orderly evolution to increased
capabilities, performance, and quality.

In the long run, commonality can also form a basis for wide-scale industry and Government
agreement on the specifications for reusable components for a particular domain. This would

12

25 August 1992 STARS-AC-O4107A/001/00

provide the kind of specification stability required to support the birth of a software component
industry.

An argument for variation

Requirements for individual command centers vary in subtle ways, such as variations in capacity,
performance, use of real-time data, cost and so on. It is unrealistic to expect that for all domains
any specific implementation of a domain-specific software architecture can satisfy a sufficiently
broad set of domain requirements to allow amortization of the domain engineering investments
over sufficiently many system engineering life-cycles. More flexibility is required to allow selection
of some subsystem implementations and the flexible composition of variations of other
subsystems from lower-level domain components.

An argument for commonality and variation

Architectures capturing both commonality and variation are important for the construction of
domain-specific reuse libraries. With a domain architecture describing commonality and variation,
and a rich supply of ready-to-use parts which (alone or in combination) can satisfy the architecture,
prototypes for new applications can be quickly and easily constructed from unique combinations
of preexisting components. Once a prototype closely matches the desired objective, requirements
and implementations for the operational system can then be extracted, providing the basis for
construction of an operational system.

This ability to quickly develop prototypes to satisfy, and help specify, requirements for a new
system is fundamental to the CARDS approach and is critical to the success of the CARDS
mission.

2.1.4 Library modeling

As noted earlier in this document, CARDS views a library as a library model and a set of
applications, and the construction of a library model as a design activity which balances various
requirements. What "goes into" and what "comes out of" the model is dependent upon many
factors, including: the library modeling formalism used, characteristics of the domain engineering
life-cycle (e.g., the kind of domain analysis that was conducted) and characteristics of the system
engineering life-cycle (e.g., the kind of library applications that need to be constructed to support
the anticipated system-engineering processes). Section 2.2 provides details on how some of
these issues are addressed for the construction of the CC library.

The main point to note about library modeling is that the library model includes information in
addition to 'hat derived from, or pertinent to, domain analysis. This point is illustrated in Figure 2-
3. Information supporting the supply-side (i.e., user demands) can include:

o meta-level attributes describing elements that are derived from the domain
model, such as commentary or other documentation on domain requirements,
architectures and components

13

25 August 1992 STARS-AC-04107A/O01/00

" information used specifically to support one or more library applications, such as
graphical browsers, system composers and component qualifiers

" inter-library information, such as indexes to other library models (from other
domains, i.e., model intraoperation) and indexes into other library systems (i.e.,
interoperation)

" integration of other representation schemes, possibly through the invocation of
CASE design tools.

2.2 CC library design and construction

The initial CARDS CC library is using the results of the Portable Reusable Integrated Software
Modules (PRISM) program. The CARDS and PRISM programs have evolved into a cooperative
working arrangement whereby PRISM acts as the source of and provides expertise in command
center technology, while CARDS acts as the source of and provides expertise in library
technology. This cooperative working arrangement evolved in part from the PRISM selection of
CARDS as the PRISM repository. (The term repository is used intentionally, as this was the term
used by PRISM). This selection and the process leading to it, are described in the PRISM
repository selection report [18].

2.2.1 PRISM program and approach

The PRISM program is engaged in simultaneous domain engineering and system engineering life-
cycles. The PRISM domain engineering work is performing a domain analysis, and is engaged in
an effort to define a generic command center (GCC) architecture. This definition is proceeding in
parallel efforts that incorporate both top-down and bottom-up design.

The top-down analysis is driven by in-house expertise in command center requirements and past
implementations; and by examination of existing command center systems and documentation,
such as the Defense Information Systems Agency (DISA) Command Center Design Handbook
[11]. Simultaneously, a command center prototyping effort is refining and expanding the generic
architecture to accommodate increasing functionality and "lessons-learned" from prototyping
efforts. An additional aspect of the PRISM approach is a heavy emphasis on the reuse of existing
government off-the-shelf (GOTS) and COTS components to implement the GCC. The dual action
of analysis and prototyping, and the focus on COTS and GOTS components, is a reasonable
approach to grounding theoretical domain analysis in a practical setting.

One goal of the PRISM program is to establish "the command and control (C2) store" - a
repository of command center components - which can be used in conjunction with the GCC and
prototypes to reduce the time required to field an operational command center. The PRISM stated
goal is to support prototyping of approximately eighty percent (800%) of a functional command
center with the PRISM architecture and C2 store.

The PRISM approach and objective has a number of consequences on CARDS library modeling:

14

25 August 1992 STARS-AC-04107A1001/00

"* the PRISM GCC is evolving at a rapid pace, as is the functional capability of the
GCC prototype

"* the by-products of the PRISM domain analysis are tightly coupled with the GCC
prototypes

"* the CARDS CC library needs to support prototyping activities.

Each of these objectives has an impact on the design and construction of the library model and
applications comprising the CC library. The following sections expand upon these concepts.

2.2.2 CC library overview: the model and Its applications

The CC library consists of a library model derived from documentation and prototypes produced
by the PRISM program, and from existing and planned applications for CC library users. These
applications consist of:

"* graphical browser (already developed as part of the reuse library infrastructure)

"* system composition tool (in prototype development)

"* component qualification tool (planned for development)

The PRISM program provides the core of the CC library model in the form of documents
describing command center requirements, a generic command center architecture (the GCC
architecture) and prototype command center implementations. These documents and prototypes
are then analyzed and encoded into a library model using the STARS (Software Technology for
Adaptable, Reliable Systems) Reuse Library Framework (RLF).

The library modeling services provided by the RLF [1, 2] include a structured inheritance network
formalism similar to KL-ONE [5] and a specialized rule-based inferencing system. Library
application development is supported by an open systems specification to the structured
inheritance and rule-base systems. Section 2.2.3 describes, in more detail, the approach taken to
using the RLF modeling formalism to model the command center domain, while section 2.2.4
describes, in some detail, the architecture and computational model of the system composition
application.

2.2.3 CC library modeling approach

The approach to modeling the CC library is evolving to support the system composition application
(in addition to the browsing application). It is not surprising that this new application results in a
refined view of how the CC library model should be structured, and what kind of information is
needed in the model to support automatic system composition (section 2.2.4). Figure 2-4
illustrates this new approach.

The revised modeling approach attempts to partition the library model (Figure 2-4) into three major
groupings of constraints: domain constraints, architectural constraints and implementation
constraints. These groupings correspond to the products of domain engineering described in

15

25 August 1992 STARS-AC-04107A/001/00

Allocation Constraints Composition Constraints

Domain Architecture Implementation
Constraints Constraints Constraints

Problem Domain Solution Domain

\Constraints
Inferencers

0 Concepts

Figure 2-4. Command Center Ubrary Sub-Models

section 2.1.1, and produced by the PRISM program. At a high level, the purpose of this partitioning
scheme is to allow a differentiation in the modeling of the problem space, traditionally the purview
of domain engineering, from the solution space, the purview of system engineering. CARDS
believes that this partitioning will:

" help library modelers focus on capturing the right kinds of information to support
system composition (and future applications)

" isolate portions of the model which are likely to undergo evolution (particularly
the implementation and architecture constraints)

" better support library users by allowing users to work at several levels of
abstraction:

• mission-level abstraction, such as "the system must support global
monitoring of these events"

* architectural-level abstraction, such as "I am interested in the message
processing subsystem of a command center"

* implementation-level abstraction, such as "I want to use Ingres, not Sybase,
for my command center'.

The domain constraints attempt to capture the key requirements supported by command centers
that can be composed via the CARDS CC library. The architecture constraints attempt to capture

the high-level model of subsystem relationships and their key functionality (as expressed in
PRISM documentation). Finally, the implementation constraints capture the lower-level
constraints that describe the relationships of particular COTS and GOTS components with each

other and with the underlying computing platform.

16

25 August 1992 STARS-AC-04107A/001/00

Between these groupings there are other constraints that need to be mapped between the various
sub-models. Between the domain and architecture constraints there are allocation constraints.
These constraints model the allocation of requirements to the architecture; this mapping is, for the
most part, described in PRISM documentation, and supports the traceability of key requirements
to parts of composed systems. Between the architecture and implementation constraints there are
composition constraints. These constraints show which components, and any related
components, are used to implement some part of the architecture and support the system
composition tool in composing systems that are consistent with the domain architecture.

2.2.4 System composition application

The objective of system composition is to provide the CC library users with tools to automate the
composition of new command centers, or portions of command centers, from components within
the CC library. The approach is to apply user-provided constraints to the CC library model to
produce prototype demonstrations of systems, assist users in the decision making process of
building new systems, and provide users with the actual software to build them (when possible).

Figure 2-5 provides a top level view of the system composition application. There are three inputs

Target System System
Constraits Dmonstration

System
Composer

Composed
System

Command Center
Library Model

System Compositin
Model and Heuristics

Figure 2-5. System Composition - Top-Level Architecture

to the system composition application (called "System Composer' in Figure 2-5): a model of the
command center library, target system constraints elicited from the user through the user
interface, and a model of system composition and heuristics for building the system. The outputs
of the system composition tool are system demonstrations and composed systems (or portions of
a system).

17

25 August 1992 STARS-AC-04107A/001/00

2.2.4.1 Target System Constraints

The target system constraints are acquired from the user through a structured dialogue. This
dialogue is controlled, and defined, by both the structure of the command center library modei,
and by the system composition model. These constraints convey:

"* requirements on system functionality, such as the kinds of functions, tasks and
activities the command center will support [11];

"* aspects of the domain architecture of interest to the user, such as message
processing and geographic information systems;

" implementation constraints, such as platform constraints (e.g., Sun vs. HP),
system software constraints (e.g, X11/Motif vs. OpenWindows), COTS
constraints (Ingres vs. Oracle), or performance constraints (1500 message per
second), etc.

2.2.4.2 System Composition Model and Heuristics

The system composition model is "consulted" by the system composer to determine when and
how to query the user for the necessary user-defined requirements. The system composer
transverses the CC library model and at various concepts in the model, the system composer may
have alternative strategies for composing a system. If the concept has several specializations, the
composer may need to elicit information from the user to help determine which of the
specializations is most appropriate; conversely, the composer may have default rules to consult,
either built-in to the system composition model, or encoded as part of the CC library model.

2.2.4.3 System Demonstration

Part of the process of determining which variants of a domain architecture, or which
implementation of this architecture, are of interest to the user is the demonstration of composed
system functionality. Although in practice there will be some restrictions on which variants of the
system can be demonstrated (for reasons of license restrictions, the degree to which the
components are integrated with the CC library model and with each other, etc.), the goal of the
composition tool is to support iterative, real-time demonstration of system variants.

2.2.4.4 Composed System

At some point, the CC library user will want to "extract" from the system the results of the
composition. The "Composed System" box in Figure 2-5 represents the types of information the
user may be provided with, in a form suitable for extraction and conveyance to the user. Examples
of such information include:

"* the software 'Wrappers" that provide integration among two or more
COTS/GOTS components

"• vendor and licensing information about COTS components used in the
composition

18

25 August 1992 STARS-AC-04107A/001/00

"* implementation information about the composed system, including
performance information, hosting constraints and dependencies, module
interconnection information, etc.

"* documentation about the composition, such as the rationale used by the
system composer in addition to a log of the user interaction with the
composition tool.

2.2.4.5 Current status of the system composition tool

The system composition model is designed to be domain and application independent; however,
the degree to which this independence can be achieved has not yet been demonstratrd. If
independence is possible, the system composition model can be replaced, e.g., by a qualification
model to produce an application which automatically generates component qualification plans.
This goal is important since it supports reuse of library application models in different library
domains.

Currently, the system composition tool exists in a prototype implementation completely utilizing
the GOTS rule-base inferencing system, C Language Integrated Production System (CLIPS). This
prototype is being transitioned to a more complete implement,,,ion making use of the RLF
modeling formalism for the semantic net structure (as described in Section 2.2.3) and CLIPS for
the rule-based inferencing.

The existing prototype focuses primarily on th- message processing systems of the Phase III
PRISM prototype. The following componer's are .:-esently integrated into the system composition
process:

"* message generator (te. - graphical)
"* system me ..,.r (with, -1thoL MTV)
"* Message Translation and .*,;idation (MTV) providing vanilla SQL, Sybase

and Ingres DBMS)
"* databases (Ingres/Sybase)

Several flavors of the message processing subsystem can be automatically composed and
executed, based on the above components.

2.2.5 Component qualification

Components for use in command center applications may be obtained from many sources.
Identification of new components for inclusion in the CC library will be accomplished in conjunction
with input from domain experts. In the near-term, the principal source of information regarding
candidates for inclusion into the CC library will be the PRISM program. In the longer-term,
components from other libraries, DoD software programs, other Government agency programs,
and COTS will be added as they are identified and acquired. Selection of these additional
components for incorporation into CARDS will be based on their compatibility with the CC library
model, as well as other acceptance criteria common across multiple domain/library models.

19

25 August 1992 STARS-AC-04107A/001/00

Component qualification involves a detailed assessment of a component with respect to a specific
set of requirements. These requirements include a set of criteria common to each component and
criteria resulting from the specific requirements determined by the domain, architecture, and
implementation constraints. The common criteria are derived from the PRISM Qualification
Methodology[1 4] and are intended to measure the degree of reusability for the component using
factors such as portability, reliability, cost effectiveness, performance, etc. The domain criteria
measure the component's 'lit, form, and function" against the constraints imposed by the
requirements, architecture, and implementation. Additionally, the results of the domain criteria
may also serve to interpret the analysis of the component against the common criteria. Developing
and applying metrics measurement of a component's conformance to domain criteria would most
likely be an iterative process resulting from an initial lack of formality and completeness of
specifications. Each cycle within the evaluation process involves further refinement of the domain
criteria with consultation of the domain expert.

Both CARDS and PRISM will share a common qualification methodology that provides the
detailed assessment of a product with respect to a specific set of component requirements along
with a general set of selection criteria common to each component in the CC architecture. CARDS
will attempt to utilize, whenever possible, the selection criteria when developing a library for other
domains. It is possible that criteria exist that are domain-specific and therefore, for each domain,
some criteria will need to be developed.

20

25 August 1992 STARS-AC-04107A/001 /00

3 CC Library Support Infrastructure

In addition to the modeling formalisms presented in chapter 2, there are other technical
considerations for building and maintaining a domain-specific library. The support hardware,
software, network and telecommunications installed in the CC library facility provide the base
upon which the library system is built. The supporting base consists of Sun workstations, the Sun
operating system (SunOS), Intemet and Ethemet, various compilers, configuration management
tools, RLF, AFS, and the X Window System and associated window managers. The underlying
system software, specifically the X Window System and AFS software, supports access to the
central library from the remote and central sites. The various portions of the library infrastructure
are detailed below.

3.1 The CARDS library infrastructure

Figure 3-1 illustrates the software infrastructure used for creating domain-specific libraries during
Phases I and II of the CARDS program. The Base RLF Services are described in the AdaKNET
and AdaTAU user's manuals [1, 2]. AFS is described in the AFS System Administrator's Guide [3],
while the use of AFS and X in support of a distributed CARDS architecture is discussed in Section
3.2. The component qualification methodology was discussed in section 2.2.5 and section 2.2
described the key concepts of the CC library model and its applications.

Library Model

Library
Maintenance / User Access Tools Lbrary

Software

Base RLF Services

AFS X Window System

SunOS Software

Library Components

Figure 3-1. Infrastructure for CARDS Reuse Libraries

3.2 Distribution

The library software architecture supports three different forms of system distribution (complete
via AFS, partial via AFS, or via the X Window System) as well as undistributed use at the central
site. The CC library WAN architecture is shown in Figure 3-2.

21

25 August 1992 STARS-AC-04107A/001/00

SRI•=°ote

Central its

Figure 3-2. CC Library Wide-Area-Network Architecture

Figure 3-3 shows how the X Window System, AFS and RLF all reside on the central system.
Through use of this architecture, and with the addition of a wide-area network, remote access sites
can be configured to interconnect with the central site. These options and their advantages and
disadvantages are described below.

Central Site

RLF

AFS IX Windows
SunOS

CC Ubrary
Model/ Stwr

Components

Figure 3-3. CC Library

22

25 August 1992 STARS-AC-04107A/001/00

3.2.1 Complete distribution via AFS

The primary method of distribution for the CC library is via AFS (Figure 3-4). AFS provides direct
access to the central site's file system from the remote sites, user authentication options and
protection for the library files which will either allow or prevent unauthorized access to the system.
AFS provides a caching facility that allows software and files to reside on a remote system and
operate on a local workstation across a wide-area network. The software and files accessed by a
user are cached to the user's workstation on the initial access only. Additional accesses of the
same file or software will be from the cached space on the local workstation.

Central Site Remote SiteAU RI

Figure 3-4. CC Library Fully Distributed Via AFS

The disadvantage to having all software distributed via AFS is the potential for reduced
performance. On execution of the library software, the software must be cached into the remote
access site's file cache. This initial caching operation is noticeably slow. However, after the
software is cached, future access will typically not induce the same degradation in performance
until the software is updated. Each time the library software is updated on the central site, the next
access will again cause the AFS cache to be reloaded.

In using the model of full distribution via AFS, responsiveness of the initial connection depends on
the throughput of the network. Once the AFS cache contains a copy of the library software, the
throughput is much less of a factor because nearly all references are to the local software and
model and not to the actual components stored at the central site. On the first retrieval of an
component, throughput is agaln a factor. Successive accesses to the same component do not
incur additional network traffic. Throughput consistency becomes a factor if the AFS cache is so
small that the library software is frequently purged. This is resolved simply by creating a larger
AFS cache. Throughput consistency is also a factor when retrieving components.

23

25 August 1992 STARS-AC-04107A001 /00

3.2.2 Partial distribution via AFS

It is expected that the library software will reside on selected remote site workstations when:

"* a very slow link between the central and remote sites exists, or
"* the AFS cache tends to be purged, forcing the library software to be loaded

into the cache too frequently.

Partial distribution (Figure 3-5) has the clear advantage that start-up times are consistently fast.
The disadvantage is that each of the remote sites' software will be managed separately from that
at the central site. Update of the software could be automated, reducing the problems typically
encountered in this situation (i.e., version control). This approach also requires a large amount of
storage space to be allocated independently of the AFS cache for the storage of the software.

Central Site Remote Site

A S L RL
SunS IWA•N• "aF .. X WVKJwS

Iuo I s:o

Figure 3-5. CC Library Partially Distributed Via AFS

Even with the software stored at the remote sites, it is anticipated that the model and the CC
components will be accessed via AFS and will be maintained at the central site. While the model
will need to be accessed each time the library is started, the model files themselves are rather
small, so network access to them is quick. The library model and frequently accessed files will
remain active in the local workstation's cache thus further reducing access time across the WAN.

When only partial AFS distribution is used, then network responsiveness is far less of an issue,
since only retrieval of the model and library components is affected. The library software is always
available at the remote site. In this case, low throughput has a mild impact on start-up
performance. Component retrieval performance is the same as with full distribution.

3.2.3 Distribution via the X window system

Human-machine interface to the library is via the X Window System (or simply X). X is also a
naturally distributed system, with the ability to operate graphical displays that are remote from the
central site (see Figure 3-6).

24

25 August 1992 STAPS-AC-04107A/001/00

Central Site Remote Sits

SunO

Figure 3-6. CC Library Distributed Via X

In this scenario, the user works from a remote X-capable interface (either a workstation or an X
terminal) running X, and runs the library software on the central site while displaying the user
interface on the user's workstation. Access to the library software and model is very fast as there
is no transfer of files across the network. However, each interaction with the system involves
network access. Therefore, one could encounter network access disruption or slow response time
due to heavy network traffic.

The advantage to this mechanism is that it does not require a workstation for remote access, only
a lower-cost X terminal. This solution also adopts the principal advantage of using AFS for
complete distribution services, in that the central site still manages the complete software
configuration, with no burdens adopted by the remote site.

Disadvantages include the instability of responsiveness and the need for the user to have access
to the central site beyond access to the file system.

3.3 Telecommunications

CARDS utilizes network technologies and protocols that are compatible with DoD and
government-wide telecommunications policies. CARDS network connections will continue to be
established incrementally. Initial nodes are located at organizations serving as beta sites for
library demonstration and testing. The CC library will continue this initial network of active reuse
organizations to assess and evaluate network effectiveness and design aitematives.

All workstations at the CC library site and at each remote site should be interconnected via local-
area networks (LAN), thus using a single connection to a wide-area network (WAN). For the WAN
connecting the remote sites with the local site, there are many considerations. The three most
critical items are:

1. throughput/consistency

25

25 August 1992 STARS-AC-04107A1001/00

2. direct connection

3. connection through a WAN (e.g., Internet).

Since effective distribution of information and components is critical to the success of the library,
the CC library provides a fast and efficient means of transferring electronic information between
the central and remote sites.

Individual site connection requirements are dependent upon the amount of data to be transmitted.
Software required for network connection is dependent upon each site's preexisting computer and
network resources. For example, the combination of data rate, local hardware and local software
at a given site may call for either leasing a dedicated line or upgrading the network connection.

Development strategies that reduce the level of network traffic required for user interaction with
the CC library will continue to be examined. Such strategies may include: development of library
interface modules which reside on individual users' platforms (hence removing network traffic
pertaining to screen display and refresh transmission); or distribution of library-encoded domain
model/components to reside on individual users systems.

3.3.1 Wide-area networks

Wide-area networks, such as Internet, provide an effective access mechanism to allow users to
review and extract components in a timely manner, without direct support by the library personnel.
As such, the WAN implementation strategy addressed in detail in the CARDS Library Operations
Policies and Procedures (LOPP) [13] consists of:

"* equipment required to connect a site to the network

"* how quickly a site can be connected to the network

"* network restrictions and limitations

"* cost of connecting a site to the network

"* local communication requirements

"* communication software for the network.

Access to the CC library via Internet adds significant advantages to its usefulness. Remote access
sites that already have Internet access will only need to install the X Window System and AFS to
access the library. This allows new sites to be connected for experimental use with minimal
overhead and delay. Because AFS enables security to be established in very flexible ways,
access can be sufficiently free to allow any AFS-capable site to use the library, or restrictive
enough to prevent access to everyone except those with specific authorization.

3.3.2 Direct connection

If a direct connection is chosen, allowing other Internet traffic to be passed across the link
becomes an issue. If other-site Internet traffic is allowed, large, sporadic transfers across the link

26

25 August 1992 STARS-AC-04107A/001/00

could significantly reduce the consistency with which the network responds. With the software
architecture chosen, this effect on responsiveness is limited to specific, predictable points during
user access to the archive, which minimizes its seriousness. The direct links from the CC library
are restricted so that other Internet traffic is eliminated.

3.4 Security

With the popularity and, in some cases, the necessity of open systems and wide area networks
and the corresponding increase in security breaches in such systems, computer security is an
issue that must be addressed. Security incidents range from manual attacks (by both "hackers"
and insiders) to automated attacks (such as worms). Any incident which has the capacity to inhibit
the operation of the library or system can be identified as a security problem, without regard to the
source (authorized or unauthorized personnel) or mechanism (accident or deliberate).

Computer security is often associated with hackers breaking into systems and viruses disrupting
service, but it encompasses much more than this. Threats may also be categorized as natural
(e.g., earthquake), structural (e.g., flaws in the physical environment), and unintentional human
errors. Any event that has the potential of resulting in disclosure of information, modification or loss
of data, denial of service, or fraud, waste, and abuse should be considered a potential security
threat.

Development of a secure system is an iterative process involving four steps:

1. Development of a security policy

2. Determination of the scope of the security policy

3. Preparation of a risk analysis

4. Implementation of countermeasures

Iterations are required due to the ever-changing world of computer hardware and software, and
the corresponding changes that are required of systems that are based on the hardware and
software. As a system (such as CARDS) matures, its scope or policies may change, requiring that
the security policy be reviewed and updated correspondingly.

3.4.1 Security Concept of Operations

The Security Concept of Operations, as referenced in the LOPP [13], addresses the four steps
presented above and their relationship to CARDS. Potential threats to the CARDS system's
application software, operating system software, and library components are presented. The risk
associated with each threat is analyzed and countermeasures suitable to reducing or eliminating
the potential for threat are presented. The following sections present an overview of the concepts
involved in security. The information presented here is a small subset of the security issues
pertaining to the CARDS library infrastructure structure.

27

25 August 1992 STARS-AC-04107A1001/00

3.4.2 Security policy

The first step in developing a secure system is preparation of a security policy, derived from the
library concept of operations. Its purpose is to state what must be protected and from whom it is
being protected. CARDS current security policy is being included in the LOPP with the next update
due in November 1992. The CARDS security policy is outlined below:

"* Limit library access to authorized users

"* Limit use of the library to that of its intended purpose

"* Ensure continued service of the reuse library

"* Ensure the integrity of new library components

"* Protect the integrity of existing library components

"* Protect the licensing and distribution of COTS

"* Protect the distribution of COTS

3.4.3 Scope of CARDS security

Initial analysis and implementation of CARDS security encompasses only a portion of the overall
security picture. Those areas of concern are:

"* Administrative security

"* Computer security

"* File security

"• Communications security

Only electronic threats (viruses, unauthorized users, etc.) will be considered. Physical threats,
such as fire, will be considered at a later time.

The Security Concept of Operations covers only those components to be stored in the library as
of Phase Ih:

"* Nonclassified

"* COTS

"* GOTS

"* Public domain

Due to legal and financial repercussions, licensing of COTS must be addressed. The library must
be concerned with, and protect against, proprietary components being taken without the proper
authorization. Additionally, distribution levels of government materials must also be considered.

To keep the analysis manageable, the scope is initially limited by making a number of
assumptions, including:

28

25 August 1992 STARS-AC-04107A/001/00

"* The focus of the analysis is the CARDS CC library.

"* There is a closed security environment (developers and configuration
management controls are trusted, i.e., malicious actions from these sources are
not considered).

"* Users are either govemment or government contractors.

"* Personal contents of accounts and work areas are not covered.

3.4.4 Risk analysis

Risk analysis is a process that addresses risks to a computer system and its components over the
entire life-cycle for that system. Risk is a combination of threats to the system and the system
vulnerabilities. Identification of those threats and vulnerabilities (collectively referred to as threats)
is only the first step in the multi-phased process of risk analysis [8]:

"* Threat identification

"* Threat evaluation

"* Countermeasure identification

"* Threat re-evaluation

The approach taken in the CARDS risk analysis is a derivation of the methodologies presented in
the Department of the Air Force's policies on computer security [7] and risk analysis [8].

3.4.4.1 Threat Identification

A truly secure system has countermeasures in place for all possible threats, asserting the
importance,- identifying those threats. The process of identifying and documenting those threats
can be tedious and time consuming.

Encompassing a wide range of technologies, each with its own abundance of potential security
threats, CARDS poses special security problems. Attempting to identify the risks to the CARDS
library is, understandably, an formidable task. Viewing CARDS not as a system itself, but a
collection of smaller subsystems (each with its own security problems), provides a means of
making the task more manageable while keeping the integrity of the analysis. The following
CARDS security areas were identified:

"* Hardware

"* System administration

"* Run-time software (includes the operating system and other software)

"* RLF

"* Library components

"* AFS

"* Accounts (both user and developer)

29

25 August 1992 STARS-AC-04107A/O01/00

3.4.4.2 Threat evaluation

Determining threats and countermeasures is not sufficient to insure that security is properly
handled. Factors such as the likelihood, impact, or outcome of a potential security threat and the
cost of appropriate countermeasures all contribute to the decision of whether or not to counter a
potential security threat. Additionally, the security policy is checked for impact and updated locally
as required every time a potential security threat is identified.

3.4.5 Countermeasures

After identifying threats, suitable countermeasures should be determined to reduce the likelihood
and impact of an attack. Countermeasures will be implemented for each threat whose potential
risk warrants the cost of implementation. The decision to implement a countermeasure depends
on two factors: implementation vs. restoration costs and the effectiveness of the countermeasure.

An important part of identifying and evaluating countermeasures is the implementation cost. Many
factors such as manpower, money, and system downtime must be considered to derive a true cost
evaluation.

Whether a countermeasure can be justified for implementation largely depends on the cost of
restoring the system to its state before the attack, if possible. If the cost of countering a potential
risk outweighs the restoration cost, then it may not be viable to implement the countermeasure.
This mentality, though, is only partially justifiable and could cause problems in the future if the
frequency of a threat is not also taken into consideration. A threat which occurs, or has the
potential to occur, frequently may warrant implementing a countermeasure, without regard to the
cost.

30

25 August 1992 STARS-AC-04107A/001/00

4 Library Interoperability

STARS envisions that:

"reuse in the future will occur in the context of a distributed network of
heterogeneous domain-specific libraries. Each library will likely focus narrowly on
one or a small set of vertical or horizontal domains, since libraries emphasizing
relatively narrow domains are more likely to yield high impact reuse through greater
depth of focus and better control of variability. However, this proliferation of
domain-specific libraries will promote library heterogeneity, since the libraries will
utilize distinct data models designed specifically to capture the characteristics of
the their respective domains." [20]

In this distributed, heterogeneous library context, one of the key challenges is the establishment
of mechanisms to allow users at a given host to klcate, inspect, and reuse components within the
entire library network, thus maintaining the uniqueness and enhancing the effectiveness of each
library.

A long-term goal of CARDS is to provide a consistent method of access to and from other relevant
libraries, enabling reusable components from these other libraries to become integral parts of the
overall CC library and other yet to be developed libraries. CARDS will be part of an organizational
framework that will allow for component utilization across physical library boundaries. It will strive
to adhere to emerging industry standards for library interoperability (e.g., Asset Library Open
Architecture Framework (ALOAF) or Reuse library Interoperability Group (RIG)).

To facilitate initial CC library interoperability, CARDS is investigating point solutions for
interoperating with ASSET incorporating the existing and evolving standards being developed by
ALOAF and the RIG. The CARDS/ASSET plans for interoperability call for implementation of the
two scenarios during FY92. The lessons learned that CARDS and ASSET derive from this initial
implementation of component exchange will be used to begin a similar process with the Defense
Information Systems Agency's (DISA) Defense Software Repository System (DSRS).

In the process of formulating the plans and technical infrastructure for interoperability, business
issues and technical issues must be addressed. Figure 4-1 depicts a general model for
interoperability incorporating material produced by the RIG and ALOAF interoperability efforts.
This model is generic in nature and can be utilized for formulating detailed plans for interoperability
between various libraries.

31

25 August 1992 STARS-AC-04107A/001/O0

4.1 A reference model for interoperability

STEPPINGSTONES TO INTEROPERATION

INTER-OPERATION
* automated

cooperation
INTER-ACTION * perception of

e service-oriented homogeneity
standards 9 robust distribution

INTER-CHANGE * remote and 9 seamlessness
* data-oriented programmatic

standards execution
INTER-CONNECTION * data, meta-data, o e.g., import/export,

* implementation meta-meta-data notify
basis * e.g., ALOAF query

CO-OPERATION e "carrier" level - AlL
"* shared business integration - data model

needs * e.g., AFS/TCP/FTP - meta-model
"* common heritage
"* common objectives

Figure 4-1. Interoperatlon Reference Model

" Co-operation: The impact of interoperability on the unique business needs
and policies must be measured against the positive gains of interoperating.
Memorandums of understanding between libraries stating the common
objectives, goals and agreements builds the foundation for interoperability.

" Inter-connection: In order to achieve interoperability, an agreement must
include the underlying mechanisms for connecting libraries that form the
basic technical infrastructure. Common protocols for data exchange build this
technical foundation. These common protocols can differ for each library
connection.

"* Inter-change: The irterconnecting libraries incrementally estaJlish data-
oriented standards supporting data, data models and meta-models. An
understanding of the other libraries unique models can help facilitate
interoperability. The creation of agreed upon data models will facilitate inter-
change.

"• Inter-action: As library interoperability progresses incrementally through the
reference, model service-oriented standards, remote and programmatic
execution, can be described and implemented. The import/export,
notification, query services and other specialization services that enhance
library interoperability and begin to eliminate the user intervention or librarian
to librarian notification are developed.

"• Inter-operation: The firial and optimal level of interoperations occurs with
automation of the previous services, especially the librarian manual and user
intervention processes, so that libraries are perceived to be homogeneous.
(seamless Interoperability)

32

25 August 1992 STARS-AC-04107A/001/00

4.2 Scenarios

Scenarios for interoperation are a vehicle that can be utilized to understand the impact on internal
library policies and the technical issues confronting each library for each step in the reference
model. Several features that constitute a scenario for interoperability include:

"* Automation (interactive vs. non-interactive) This describes whether the
implementation is completely automated, or whether manual intervention on
the part of a librarian is required to render the service.

"* Actor (surrogate retrieval vs. user-retrieval) All asset interchange operations
are services provided to a library user. Actor defines who performs the
operation.

"* Asset Protection (public vs. private) This describes whether the retrieved
asset has been restricted in some way.

"* Retrieval (direct vs. indirect) This describes whether an asset is retrieved
directly from the library by either the interconnecting library or the user.

"* Transparency (transparent vs. non-transparent) This refers to whether the
end-user was made aware that an asset was retrieved from a cooperating
library system.

Combinations of tha above features can produce varied and multiple scenarios. For example, the
following general retrieval scenarios can be used to define the user-to-library and library-to-library
interaction. Illustrated below are three retrieval scenarios (direct retrieval, indirect retrieval and
surrogate retrievals) that show different combinations of the above features.

4.2.1 Direct retrieval

With direct retrieval the user is interacting directly with the library in which the component resides.
As figure 4-2 depicts, the interaction is user-to-library-to-user. Only one library is involved in this
scenario and does not include interconnection with another library. This scenario illustrates the

tront end

* components

Figure 4-2. Direct Retrieval

automated (interactive), user-retrieval, transparent retrieval features.

33

25 August 1992 STARS-AC-04107A1001/00

4.2.2 Indirect retrieval

With indirect retrieval the user is able to retrieve components from another library. Depicted in
Figure 4-3 are two methods for this type of user interaction:

-------...--- -----.............

lI ibraiy : : lblibrary

Interactive Extraction Interactive Extraction

Figure 4-3. Indirect Retrieval

"• The transparent, interactive extraction depicted in figure 4-4 depicts the libraries
creating a mechanism by which the user's library can retrieve an asset for the
user. The mechanisms in this instance can be automated or non-automated. The
features illustrated are interactive, transparent, indirect retrieval.

"• The Non-transparent, interactive extraction depicted in figure 4-3 requires that
the user identify (authenticate) themselves to the remote library as is the case in
private asset protection. The features illustrated are non-transparent, interactive,
indirect retrieval.

4.2.3 Surrogate retrieval

The user's library retrieves a component from the remote library for the user. Between the two
libraries there will exists an agreement that each library can be a surrogate user of the other
library. Depending on the implementation the retrieval can occur interactvely or not (See Figure
4-4). The scenarios depicted in figure 4-4 illustrate two combinations of features 1) surrogate,
interactive, transparent, indirect retrieval; 2) surrogate, non-interactive, non-transparent, indirect

retrieval.

4.3 CARDS/ASSET Interoperability Plan

The CARDS/ASSET interoperability plan enumerates the conditions and technical
implementation of interconnecting the two libraries. Three scenarios have been developed for
CARDS/ASSET interoperability to be demonstrated by 8 October 1992. The basic underlying
technical framework for this demonstration includes an internet connection, SMTP (Simple Mail
Transfer Protocol), AFS and the development of an ASSET index and a CARDS index.SMTP will

34

25 August 1992 STARS-AC-04107A/001 /00

l ocal remote loa reot

----- ----- ----- ----- -----

Interactive Extraction Non-lnterective Extraction

Figure 4-4. Surrogate Retrieval

provide the E-mail facility used in the notification process. AFS, a distributed file system, will be
utilized as the asset exchange facility. Indexes for each libraries assets were developed to
facilitate asset exchange. The indexes contain essential information each library needs inorder to

understand and incorporate the asset information into their library. The CARDS/ASSET
interoperability Plan contains the detailed information on the three scenarios being implemented,
the ASSET/CARDS index, the approach, the schedule and milestones for ASSET/CARDS
interoperability.

35

25 August 1992 STARS-AC-04107A=001/00

Appendix A Glossary
AdaKNET - A semantic network modeling subsystem written in Ada. It provides the heart of the

Reuse Library Framework's library model.

AdaTAU - A rule-based inferencing subsystem written in Ada. It supports the AdaKNET semantic
network in the Reuse Library Framework's library model.

AFS - A distributed, wide-area network file system.

ALOAF - Asset Library Open Architecture Framework. The conceptual structure that supports
seamless interchange and interoperability among networked, distributed heterogeneous
component libraries by defining a service model; protocols supporting that model; Ada
package specifications for the protocols; and a component exchalge common data model,
semantics, and formats.

ASSET - Asset Source for Software Engineering Technology. A reuse library containing a broad
spectrum of components.

application domain - The knowledge and concepts which pertain to a particular computer
application.

architecture-level integration - Combining architecture level components to create a system
architecture or domain architecture.

architecture model - A model that represents the interrelationships between system elements and
sets a foundation for later requirements analysis and design steps.

attribute - A characteristic of an object or relationship. Each attribute has a name and a value.

authentication - The process of establishing that someone or something is who they say they are.

browse - Surveying the reusable component descriptions in a library to determine whether the
component is applicable to the current application.

CLIPS - C Language Integrated Production System.

COTS - Commercial Off-The-Shelf. Commercially available software.

classification - A mapping of a collection of objects to a taxonomy; the process of determining such
a mapping.

command center (CC) - A facility from which a commander and his/her representatives direct
operations and control forces. It is organized to gather, process, analyze, display and
disseminate planning and operational data and to perform other related tasks.

component - A set of reusable resources that are related by virtue of being the inputs to various
stages of the software life cycle, including requirements, design, code, test cases,

36

25 August 1992 STARS-AC-04107A1001/00

documentation, etc. Components are the fundamental elements in a reusable software
library.

component acquisition - The process of obtaining components appropriate for reuse to be
included in a library.

component qualification - The process of determining that a potential component is appropriate to
the library and meets all quality requirements. Evaluation takes places against domain
criteria.

concept - An atomic part of the AdaKNET knowledge representation scheme, representing an

idea or thing.

context - The circumstances, situation, or environment in which a particular system exists.

context model - To model the scope of the domain as it exists within a larger domain denoting
inputs and outputs.

DISA - Defense Information Systems Agency.

DSRS - Defense Software Repository System.

data model - A logical representation of a collection of data elements and the association among
those data elements.

domain - An area of activity or knowledge containing applications which share a set of common
capabilities and data.

domain analysis - The process of identifying, collecting, organizing, analyzing, and representing
the relevant information in a domain based on the study of existing systems and their
development histories, knowledge captured from domain experts, underlying theory, and
emerging technology within the domain.

domain architecture - High-level paradigms and constraints characterizing the commonality and
variances of the interactions and relationships between applications within a domain.

domain criteria - Specifications a component must adhere to in order to obtain acceptability in the
domain. See component qualification.

domain engineering - An encompassing process which includes domain analysis and the
subsequent construction of components, methods, tools, and supporting documentation
that address the problems of system/subsystem development through the application of
the knowledge in the domain model and software architecture.

domain expert - An individual who is knowledgeable in a domain.

domain-level integration - The process of using and evolving domain and application components
in the creation of requirements, architectures and implementations (domain and

37

25 August 1992 STARS-AC-04107A/001 /00

application).

domain model - A definition of the functions, objects, data, and relationships in a domain,
consisting of a concise representation of the commonalities and differences of the
problems of the domain and their solutions.

domain modeling - The process of encoding knowledge about a domain into a formalism.

domain-specific library - A library whose components are bound by a specific domain.

domain-specific reuse - Reusing components in a specific domain (through the use of a domain-
specific library) to build an instance of an application in that domain.

ERA model - Entity-Relationship-Attribute model. Models data objects and their relationships
using a graphical notation.

encode - To convert a domain model into a library model.

GOTS - Govemment Off-The-Shelf. Software developed for and owned by the government.

generic architecture - High-level paradigms and constraints that characterizing the commonality
and variances of the interactions and relationships between the various components in a
system.

generic command center architecture - The fundamental generic architecture that underlies
command center applications.

graphical browser - A graphical presentation of the domain model and interrelations between
components. Through the graphical browser, components may be browsed, viewed, and
extracted. It also provides an inferencing mechanism to aid in prototyping and selecting
the correct components.

horizontal domain - The knowledge and concepts that pertain to a particular functionality of a set
of software components that can be utilized across more than one application domain.

implementation-level integration - Combining components in order to implement a system.

infrastructure - The basic underlying framework or features.

interoperability - The ability of two or more systems to exchange information and to mutually use
the information that has been exchanged.

knowledge blueprint - A flexible plan to transition knowledge to the community.

knowledge representation - Codification of domain knowledge.

library - A collection of components that are cataloged according to a common classification
scheme and a set of applications that provide a mechanism to browse and retrieve
components.

38

25 August 1992 STARS-AC-04107A/O01 /00

library applications - Services provided to the library user.

library-centered domain-specific reuse - Reusing components in a specific domain to build an
instance of an application in that domain utilizing a domain specific reuse library.

library model - A model that represents the domain components and the relationships between
them.

life-cycle - All the activities (e.g., design, code, and test) a component is subjected to from its
inception until it is no longer useful. A life cycle may be modeled in terms of phases, which
are often characterizations of activities by their purpose or function such as design, code,
or test.

life-cycle artifact - A product of the software engineering process (i.e., a component).

memorandum of understanding - An agreement stating terms of cooperation between two entities.

model - A representation of a real-world process, device, or concept.

modeling - The process of creating a model.

PRISM - Portable Reusable Integrated Software Modules.

prototyping - The practice of building a first or original model (sometime scaled down, but
accurate) of a system to verify the operational process prior to building a final system.

RLF - Reuse Library Framework. Provides a framework for building domain-specific libraries.

RIG - Reuse library Interoperability Group. An industry/govemment group working to form a
consensus of basic services for interoperability.

rapid prototyping - The process of using a library mechanism to quickly prototype a system.

relationships - The connections between entities, objects, or components.

repository - The mechanism for defining, storing, and managing all information concerning an
enterprise and its software systems - logical data and process models, physical definitions
and code, and organization models and business rules.

retrieval - The process of obtaining a component from a library such that it may be used in the
development process.

reusable component - A component (including requirements, designs, code, test data,
specifications, documentation, expertise, etc.) designed and implemented for the specific
purpose of being reused.

reuse - The application of existing solutions to the problems of system development. Reuse
involves transfer of expertise encoded in software-related work products. The simplest
form of reuse from software work products is the use of subroutine/subprogram libraries

39

25 August 1992 STARS-AC-04107A/001/00

for string manipulations or mathematical calculations.

reuse library - A library specifically designed, built, and maintained to house reusable

components.

reuser - One who implements a system through the process of reuse.

SADT - Structured Analysis and Design Techniques. A system analysis and design technique
used for system definition, software requirements analysis, and system software design.

STARS - Software Technology for Adaptable, Reliable Software.

semantic network - A graphical knowledge representation method composed of nodes linked to
each other.

software architecture - High-level paradigms and constraints characterizing the structure of
operations and objects, their interfaces, and control to support the implementation of
applications in a domain. Includes the description of each software component's
functionality, name, parameters and their types, and a description of the component's
interrelationships.

specialization - The act of declaring that one concept represents a narrowing of the idea
represented by another concept.

surrogate retrieval - A user's library retrieves a component from a remote library for the user.

system architecture - A model that represents the interrelationship between system elements and
sets a foundation for later requirements analysis and design steps.

system composition - The automatic configuration of a prototype system based on hardware and
software requirements.

system engineering - A process encompassing requirements gathering at the system level with a
small amount of top-level design and analysis.

taxonomy - The theory, principles, and process of categorizing entities in established categories.

vertical domain - The knowledge and concepts that pertain to a particular application domain.

40

25 August 1992 STARS-AC-04107A/001/00

Appendix B References
1. AdaKNET User's Manual, 1991 ,Informal Technical Report, STARS, Paramax

2. AdaTAU User's Manual, 1991, Informal Technical Report, STARS, Paramax

3. AFS System Administrator's Guide, 1991 ,Transarc Corp. Pittsburgh, PA

4. Arango, Guillermo F., 1988, Domain Engineering for Software Reuse, Ph.D. Thesis, Univer-
sity of California at Irvine.

5. Brachman R., 1978, A structural Paradigm For Representing Knowledge, Bolt Beranek and
Newman, Inc.

6. Cohen, Sholum, 1992, Software Reuse Technology: Feature-Oriented Domain Analysis, SEI
Tutorial Slides.

7. Department of the Air Force, AFR 205-16, Computer Security Policy, April 1989.

8. Department of the Air Force, AFSSM 5018, Risk Analysis Guide, November 1991.

9. Devonbu P., R.J. Brachman, P.G. Selfridge, and B.W. Ballaard, 1990, LaSSIE: A Knowledge-
Based Software Information System, Proceedings of the 12th Intemational Conference
on Software Engineering, pages 249-261.

10. D'lppolito, Richard S., 1989, Using Models in Software Engineering, Proceedings of TRI-
Ada'89, pages 256-265 ACM, New York, NY.

11. DISA Command Center Design Handbook, 1991.

12. Goguen, Joseph A., 1986, Reusing and Interconnecting Software Components, IEEE Com-
puter, Volume 19, Number 2, pages 16-28.

13. Library Operations Policies and Procedures for the Central Archive for Reusable Defense
Software, Informal Technical Report, STARS, Paramax, 1992.

14. Lonardo, G.G., J.D. Wallin, 1992, PRISM Qualification Methodology Report, ESC, Hanscom
AFB, MA

15. Neighbors, James M., 1989, DRACO: A method for Engineering Reusable Software Sys-
tems, Software Reusability, Volume 1, ACM Press, pages 295-320

16. Pietro-Diaz, Reuben, 1991, Reuse Library Process Model, STARS, IBM.

17. Pietro-Diaz, Reuben and Peter Freeman "Classifying Software for Reusability," IEEE Soft-
ware, January 1987, 6-16.

18. Software Repository Report for the PRISM Program, 1992, ESD, Hanscom AFB, MA.

19. Wallnau, Kurt C., James J. Solderitsch, Mark A. Simos, Raymond C. McDowell, Keith A. Cas-
sell, and David J. Campbell Construction of Knowledge-Based Components and Applica-
tions in Ada. Unisys - Paoli Research Center.

41

* d

25 August 1992 STARS-AC-04107A/001/00

20. STARS Reuse Concept Volume 1 - Conceptual Framework for Reuse Process Version 1.0,
1992, STARS-TC-04040/001/00, IBM, Paramax, Boeing.

42

