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ABSTRACT

In this paper the fracture mechanics of orthotropic materials containing collinear

interface cracks is considered. The primary objective is to study the influence of the

thickness and the structure of the interfacial regions on the crack driving force. The

interfacial region is assumed to be a relatively thin orthotropic elastic layer. The stress

intensity factors or the strain energy release rates are assumed to be the main measure

of the crack driving force. A relatively simple and efficient method is presented to solve

the relatedI elasticity problem. The results are obtained for a wide range of actual

material combinations. In order to study the influence of the structure of the interfacial

zone, the problem is also solved for isotropic and orthotropic materials bonded through

a layer with hypothetically selected material properties. The results show that the effect
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of the thickness, the mechanical properties and the material orientation of the

interfacial zone on the strain energy release rate could be very significant. An

interesting and a rather useful result obtained from the collinear crack solutions is that

the strain energy release rates for multiple cracks in bonded orthotropic materials with

or without an interfacial layer may predicted by using the results obtained for an

isotropic homogeneous plane provided the normalization factors are selected properly.

1. Introduction

In recent past concerns with the mechanical failures initiating largely at the

interfacial regions in such multiphase materials as modern composites, thermal barrier

coatings and a variety of other bonded materials have led to rather extensive studies for

the purpose of understanding the interaction between the flaws that may exist in these

regions and the applied loads and other environmental factors [1]. [2] and [3]. From the

viewpoint of applications generally the optimal design of interfacial regions involves

tradeoffs between strength and toughness. For example, it is known that the untreated

carbon has very poor adhesion to epoxy and good adhesion can be accomplished by

treating its surface and by using proper coupling agents (e.g., variety of silanes) [4].

However. joints of such high interfacial strength have usually rather poor toughness.

Also consilerations regarding load transfer and fiber integrity require a relatively weak

or compliant interface. Thus. in studying the failure process of the interfacial regions

the mechanical and strength parameters are expected to play a major role. In

particular. in fracture related failures the crack driving force would heavily depend on

the cunstitutive properties and the thickness of the interfacial zone. the size, location

and the urientation of the crack and on the properties of the adherents as well as on the

inagnitude and the nature of the applied loads and the geometry of the medium [l]-[3].

5- S. Since it i not likely to dev-lop a process that would produce an interfacial zone
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which would have all such desirable properties as high strength, high toughness. high

fatigue and impact resistance and high resistance to moisture penetration. andt since a'

these properties are quantitatively expressed in terms of continuumi concepts. the

fundamental studies relating to the chemistry of adhesion and material processing must.

therefore. be guided by the corresponding mechanics considerations. It is through

studying the appropriate mechanics particularly the fracture inechanics of the

interfacial zones that the relative importance of certain material properties and

dimensional parameters can be determined.

In most studies relating to the fracture mechanics of bonded miaterials it is

generally assumed that the composite medium is piecewise homogeneous. On the other

hand a close examination J. these materials seems to indicate that in nearly all cases

the int'erfacial region has a structure which is different than that of the adherents. In

some cases this region may simply consist of the reaction zone and may have a

thickness of only a few lattice parameters. In other bonded materials the interfacial

regions having their own structure and thickness may develop as a result of surface

preparations and coupling agents used in processing. For example, in many of the

polymer matrix composites very near the interface crystallization of the polymer or

copolymerization of the matrix and the coupling agent seems to produce a highly

oriented region with a columnar or lamellar structure which may generally be modeled

as a thin orthotropic layer (e.g.. PEEK-Carbon composites) [4]. [9]. Among other

examples for such interfacial regions in bonded materials one may mention the grain

boundaries and. at a larger length scale, certain geological materials such as shale -

sandstone interfaces.

The main objective of this paper is to study the influence of the structure and

the thickness of the interfacial regions on the fracture behavior of bonded orthotropic
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for the case of plane strain. Thus, by using the contraction

YI 7= xi/N c, Y2 -'- X24Cd • 3)

and defining

"r,(y1 . Y2) = -LC % 1 (x1 . x2 ), 1'2(3. Y2) = L1 2 (x1 , x 2 ). 722(31. y>)=cO 22 (x, x2 ). (4)

V,(YP Y2) = • '4? uOxI. x 2 ). V2(Yl- Y2) = 1 u 2 (x1 , x2 ). (2)

the stress displacement relations may be expressed as

1 E0  O av Ov2.)
i- 11-i= i -1 1  2 ty 0 .2V+

C O'22 = 7 22 > = O 1 0 " - + " o -8 -i .
2 ( 0v_____ - V 2  a____

""1 ='= 1 -2 (o ) y.2  + 0--Y+"2 (6)

Here x, . . and u,. (i. j = 1, 2), are, respectively the physical coordinates, stresses and

displacements. By substituting from (6) into the equilibrium conditions

dl C2=0 921+ Oq22 - 0 (7)r1 d 1 02rOxox, +o-• ° 5,-T • ° OX2

it may be shown that

3AI • + 7-±-1 3 2 0.;
y--v 0.21a y2 -

,ra2 1 .m 2mmm m m m m lm mm lm m mm m m m



02V.2  82 V2 , - (v)
Oy• 2 + 3y--+ 0. (8)

ay2 1y2 aOVa9, 2

where

32(•°+v°) 2 v(K+ v+) 1 . 9).
iv -o2 " 1 - vo"

By using the standard Fourier Transforms the solution of (8) may be obtained as

follows:
f n Ce-S I 1o[1Y2+c-S2 I OlY2

vI(y 1 -Y., ) +C 2

+ C 3 eS Y' Y C 4 eV 2 S I Y2] eiaYl do.

"%'2(Y 2) f 1 f h [ 33 Cle-S' Y2 + 34 C 2e-S2 to

.33 C 3eSl I a IY2 _3 4C 4eS2 a I Y2] eiOYl da,

x<y< c, O<y 2 <h, (10)

where the fumctions CQ(). (i= 1....4) are unknown.

' __ 1___-_" "_ , (11)

. -31S2 -1

and s, and S2 are the roots of the characteristic equation

s4 - 2Ks2 + 1 = 0. (12)

Equation (12) has four roots s, .... S 4 given by

= -s1= N)+ +NI l Re(s1 ) > 0.
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S=-S4 = - Ko'-1 Re(s. )>0. (13

Note that the roots si.... s4 depend on KO only and they are all real for K, > 1 and

complex for - 1< < 1. For KO < -1 the roots are pure imaginary for which equations

(10) imply that the boundary value problem has no feasible solution. This restriction on

KO mav also be arrived at by requiring that the elasticity matrix C,, (in 0 = C.1 a) be

positive definite [19]. From (1) and (2) it may easily be shown that for isotropic

materials K = 1 and equations (8) and (12) reduce to the known results. Formallv.

equations (10) give the solution for an orthotropic laver where the constants C1.... C4 are

,letermined from the stress and/or displacement boundary conditions prescribed at

x, = constant planes.

3. Initegral Equations for Collinear Cracks

Consider now the plane strain or plane stress collinear crack problem for two

orthotropic half spaces bonded through an orthotropic laver described in Fig. 1. It is

assumed that the elasticity problem for the composite medium has been solved under
given applied loads by ignoring the cracks and the stresses "22(xI. 0) and o1 °(x 1, 0)

along the interface x2 = 0 have oeen calculated. Thus. by using a superposition the

original crack problem can be reduced to a perturbation problem in which the crack

snface tractions -,7 22(x,. 0) and -(r 1 2
0 (x1 , 0) are the only external loads. Note that

this process is rather straightforward if the stress state at infinity is zero and the applied

load s consist of body forces and moments having finite resultants and acting within a
1.,ieldedl region of the medium. Otherwise. the stresses acting on the medium at infinity

must be such that the strains ,, alon.g the interfaces x2 =0 and x, = -11 in the three
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0"22'2(x,- h) = u3 22 (xI. -lh). or2 1,2(x, -h)=o 2 x1. - li). - x <x,< ,. (17)

u,I(x 1 . -h) = u 3 1(x. - h). u, 2(x,. -h) = u 32 1XI. - 11). -(<x<. IS)

t712 2 (X 1. 0) = -0O'2 2
0 (x 1 , 0) = PI(X1 ) O'1 1 2 (XI- 0)= -- 7 1 ,20 (X 1. 0) = P2(XI . x L. 191

uII(x 1 - 0) -1u1(xI, 0) = 0' u12 (x1 , 0) -u 22(x1 . 0) = 0' x, • L'E 20

L=Z Lj. LJ=(a.<xl<bJ). j= .... n. 21)
J=l

where t) and p,, are known fiurctions. L. represents the jth crack (Fig. 1), and L' is the

complement of L in ( - ,. -,c).

By using (15) and substituting from (10) into the homogeneous equations

(16)- (iS). six of the unknown functions Ck. may be eliminated, the two remaining

unknowns are then determined by using the mixed boundary conditions (19) and (20).

To reduce (19) and (20) to a system of integral equations we define

.' II l(XI" 0) -O u 2 1 (X 1  0)] =f 1 (Xl). - - < x < .-c.

"i [ u12(x1. 0)- u22 (x1 , 0)] = f2(x I) - x < x. (22)

From (20) and (22) it follows that

fk(•x I=. k= 1.2). x, E L'. (23)



f fk(xl) dx 1 =0. (k=1. 2: i=1L... n). 24)
Li

It is seen that by substituting from (10) into (16). (17). (18) and (22) all eight unkn,,wni

functions Ckj may be expressed in terms of f, and f,. Equations (19) would then gie a

pair of integral equations to determine f, and f2. This process is somewhat lengthy but

straightforward. Thus. referring to [20] for analytical details we obtain

"I IfI(x 1 )+ -112 - --r dt- +l I L K ,(xl.t)f,(t)dt = p1 (x1 ). x EL.

L L

1 f fXt) 1 L2

,2) t - dt t + f(x )+x.t)f t)dt= p2(xl).x2
LL j -- I

where K,,. (i. j = 1. 2) are known bounded functions and the bimaterial constants , (i.

1. 2) are given by (see [20])

(I.j• =1. 2). (26)

"" - t 20  - 10 1 2( I + 72(1 + c%0)

_ E2 E° nC2

c1 2(l+t1Io) C2 2(1+K0o) 2
121 - + n0 = n,2n 21 - ni (27)

The elastic constants which appear in (27) are defined by (1) or (2). Note that 712 and

"- are always positive.

The integral equations (25) may further be simplified by defining

10
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system of n simpler integral equations each of which is defined on a single arc L.. Thus.

by defining

b - aj b3 ±+a3
t 2- s+ a <t<b3 . -l<s< I

22

x 1lb--a--r-b;a ak<xl~bk. -1<r~l . (33)

C) = L)= (s). a. < t <bi; p(x) =qk(r)- ak <xI < bk. (34)

KI(xI. t) =Rk(r. s). K,(xl. t) = Sk,(r. s). ak <x, < bk, a. < t <bj. (35)

hlk 3(r. s)= b3 3 a -g-a- 1 k 36)S(-aj,) s-(bk- ak) r+ b + aj - bk- ak= Z "

from M.30) it may easily be seen that

1 1J' Qds-. 2,.,k(r) +T ' •(. bsd

1-

4- b 3-a [Rk3 (r. s)L(s)+ Sk,(r. s4T,(s)]ds =-qk(s).

J= -1

k=1 .... n. -1<r<1. (37)

where the prime in the third term indicates that the summation excludes the term

corresponding to j = k. Not, that the kernels hkj(r. s) as well as Rk, and Sk. are

bounded in the closed interval - 1 < (r. s) < 1. The unknown functions 4-k and known

finiictions qIk respectively represent the crack opening displacu'Tents and the crack

12



surface tractions for the kth crack Lk.

We now observe that the weight function of vI. s) in (37) is [201. [21!

wr) =(1-r)(1 +r) -Ir<l. r3<

where

1 3 = i__. 1, 1 .39

The orthogonal polynomials associated with w(r) are the Jacobi polynomials P,,t"3)(r)

and therefore the solution of f37) may be expressed as

0..r) =04r) rL gklr). = .-~ Ak•P,' ri. -1< r< 1. k=l .... n. (40)
j Io

where Ak. are unknown complex constants. From (34) it may be seen that the

Cuniditions 1 32) become

J , rIdr =0 k =1.... 1. (41)

This. bIy usinug the orthogonality conditions for the Jacobi polynomials. from (40) and

141) we fin,

AkO=0. k= L... n. (42)

The singular integral equations (37) may be regularized by using the following

property of the .Jacobi polynomials:

1 ()"(ýY(s)L 'I w(r)r'P ,-,'p_

-< 1r < (43)

13



Thus. bv substituting from (43) into (37) the singular terms in the integral equations

may be removed and (37) may be reduced to a system of functional equations with Ak,.

(k = 1.... n: j = 1. 2. 3...) as the unknown coefficients. These equations may be solved yv

truncating the series defined in (40) at j N. and by ising a method of collocation. For

improved accuracy in each equation the collocation points rr are selected as

TN.-(r,) =0. rn= cos 0,,. O,,=' (2m-1) . m=1 .... Nk. k =l .... n. (44t

The integral equations 137) may then be reduced to a system N1 -.. +N, linear

algebraic eq1jations in Ak,. (k 1.... n. j = 1.... Nk). It should be noted that in addition

to the first two terms, the third term involving the kernels hIk, in (37) can also be

evaluated in closed form [20]. Furthermore. the integrals in the fourth term are all

Gaussian type and may be calculated rather accurately without any difficulty.

.5. Stress Intensity Factors and the Strain Energy Release Rate

It may be seen that once the coefficients Akj are determined. (40) essentially

provides a closed form solution. From a view point of fracture mechanics generally the

quantities of interest are the crack opening displacement. the stress intensitv factors and

the strain energy release rate. From (22). (29). (33) and (34) the crack opening

displacement may be expressed as

vk~l)l~12_,L -+iul+_.-) f f(t)dt
Vk(Xl) (111(2 + - U2 2 - ) ±iu 1 +- 1

ak

|)k - ak r
f ak k(s)ds. k = 1.... n. (45)

- J
-1

Sublstituting now from (40) and evaluating the integral [20] we find

1-.



2 bka iAkJJ1•7r2 (l+r)- i~op ((1+.3,r) -lr .

Sbk +a - 1 -

r 2 (X bk+ak) k=1.... n. (46)

In the mixed boundary value problems such as that under consideration it may

be shown that the fundamental solution or the weight function w(r) defined by (3S)

represents the asymptotic behavior of stresses and displacements near the crack tips. In

this problem w(r) has complex singularities. Thus. one may define a complex stress

intensity factor as follows:

k(bk)= rk, + ik 2 = lirm ý (x, - bk) - '[ 22 (x 1, 0) + r1'2 (x 1. 0)],
XI-bk

k(ak) = ilk, + ik 2 = him )- (ak - xI) - 3[ rO½AXi- 0) + i0 1 2 (XI 0)],
LI-ak

k = L ,.. n. (47)

Observing that left hand side of (30) represents the stresses on L' as well as on L.

referring to [20 for details the stress intensity factors defined by (47) may expressed as

follows:

k(bk) = - 21 1- -2 (bk - ak) gk( 1 ).(bk - ak)i 2

k(ak) = -t214-1-7 (bk -ak) - gk( -) (bk-)ak)! 2  (48)

where gk(r) is given by (40). Similarly in [20] it was shown that from the "crack closure

eneroy"" the strain energy release rate may be evaluated as

"rk(bk)k(bk) rk(ak)k (ak) (49)

0)k)= 4",21 9(ak) r 4-21

15



where the elastic constant f21 is given by (26) and (27) and the bars refer to complex

conjugates.

6. The Special Cases

In this section we give the results for some simple special cases for which the

solution may be obtained in closed form.

(a) A single interface crack (-a. a) in two bonded dissimilar half planes (n = 1.

h x, Fig.1)

In this case the Fredholm kernels K, and K2 in (31) are zero and the solution

may be expressed in closed form [20]. In particular for a uniform stress state 0, ro at

infinicy, or for

0, 2 (xl. 0) = - 61 -0 q 2 (Xl. 0) = 70. (50)

we obtain

A 1,- 2_ + o 7•+ ) Ak=0. k=2, 3 (51)
4712 2I212t Y21

giving

= ___o 2 ai'o ) a)x (52)

k(a) (2a)i;(1 - 2iw)(rio + iro)-a.

k( - a) = (2a) - i"(1 + 2iLý)(Ya + iro)-, (53)

1±24 = . 21 (T701'o + ro )a. (54)

where the elastic constants are defined by (26)-128) and (39). and 2a is the crack length.

16



(b) Homogeneous orthotropic medium with a single crack ( -a. a)

In this case we have

0. 0. -i2= I Eo _ 1 E0c55
"2 cý I K '2{0 T7

the crack tip stress fields become uncoupled and from (49) mode I and mode II

components of tile strain energy release rate may be obtained as follows:

T kl" 7,'k._,'91 • 2 = " (56)

If the applied loads are given by (50). we find

k r . k= a - ,r4a ()

If the medium is homogeneous and isotropic with the elastic constants p and K

we have
-, ~. ~0 ~1221= l+,rk~

o o 221+ -4-rs, ' * (j=1.2). (59)

where p is the shear modulus and K = 3 - 4v for plane strain and K = (3 - v)/(1 + ,) for

plane stress conditions and for uniform loading k, and k2 are given by (57).

(c) Bonded isotropic half planes with a single crack ( -a. a)

If the two half planes are isotropic having the elastic constants a1,, KI and U2 . K 2 *

we have

P 2 ,111 ( - * 1D 2( K + 1 ]"12 
ji I"K1 1t p1  l /t2 Kt )(0i2 -4- /Lt^-2 )

17



S1 i ll2[ .2(,K1 - 1) - - 1 )]

j1221 I( K2 + +1) + 2 ( K + 1) (60

and from (49) we obtain [6]

kk = - A(--2-+ 1 )+1 (61)
4 4TA 2  

4 p1

In the case of uniform applied loads (50) the stress intensity factors are again given by

1.53) with ' 1.

((I) Homogeneous isotropic plane with two collinear cracks of equal length

To provide a benchmark for the collinear interface crack results we give the

solutioni for an isotropic plane having two collinear cracks of equal length. Referring to

Fig. 1. let a =-B. 1  - A. a2 = A and b2 = B. For uniform tension .722 =0-0 at

x, = • xthe mode I stress intensity factors may be expressed as [22]

kl(A) = 0-°•-'1 [(B2/A 2) E(k)/Ktk)- 1]
\(B-/A 2) -1

1-°('/ [2 - E(k)/K(k)] . k2 = I -(A 2 /B 2 ) . (62)

where Kik) and E(k) are complete elliptic integrals of the first and the second kind.

repectively. From (62) it may be shown that the limiting values of k,(A) and kl(B) are

k,(A)-,,o(B-A )/2 . k,(B)-- 1 ) (B-A)/2. (63)
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For th i(t IinI~ittI t11,:o.'ilmilar iiiateria1 with In iterfatce crat'ks from (37 - 39 ) it is seenl

that The kt' -wl't~iat ionls are of the set't l tlit hinI t hat i1 , 0 ). anti. consequent ly. tile

flint lanineital Stohiitit lt w whitch cotro~il's a,ývjnptot it flatli~re of stresses and l isplaceiiierit s

nlear the track tips Ihas tttinpiex Iiallilarities resulting, Inl the well-known oscillatory

-tl' rt ant I t li'itlacit Iientit h'ha vit r. For example. for a sindle interface crack inl two

it it t tthtI.t I 1 tIc Iilf pl1,11t', tint hcr militorln "4i ~ at infiiiit v. from 52 ) the t'ratck
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E, jataui 6_Si -hvo%- that as x,---; a the lisplaceinents wouMl oscillate leading to anl

plParent crack u'irfac'v interferenice. The Iuimaterial constant which controls these

,,>,llitions is lefinell ,v 1 :39) in terms f -.. which in tulrn is iven by i26)-)28) or t60).

It I., perhaps wortrhwhile to Pezli)haize that in crack pro)blems there are really two kinds

of crack surface interference. One i- the niathematical consequience of the assumed junnp

oli>continuiitie- in material constants acros> the interface, giving oscillations even under

pure imio(,Ie I lhaulini' conditions. However. for practical material pairs the size of this

interference region having the forms Alu a-xYW .sin(.log(a-x,)) or Au -4. a-x-

•os(ilueAa - xi is usually of the order or smaller than the microstructural length

parailleters anul it, effect on the fracture analysis is rather negligible. Furthermore, this

I,,ehavior may i.nh remnoved by assuinng a more realistic material model in which the

1u1niI ,Pi'contIrilbtiie( are replaced by *'thii" interfacial regions with steeply varying

inaterial roperriti [231.

The seco,'d kindt of crack surface interference is macroscopic and geometric. and

iS invariably the consequence of mode II loadling in crack problems that lack symmetry

with respect to the plane of the crack (e.g.. an emlbedded crack parallel to the interface

',r the free iirface,). In the case of an interface crack in bonded lissimilar materials.

-inc'e the plane of the crack is not a plane of syvninetrv. under pure mode II loading the

norniadl ,•iUponent (,f the crack surface p•einog would be aii odd function resultinl in
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surface interference. As an example. Figure 2 shows the normal component

= 112 + - u 22 - of the crack opening displacement given (6Sa) for two bonded

dissimilar orthotropic half planes for various relative values of tensile and shear loadings

01, and r., The calculations neglect the interference. Hence along a substantial portion of

the crack Av seems to be negative. For various 'rCi() ratios the values xo for which

,v( xo) = 0 are -,ven as follows:

'%/7: 0 0.1 0.2 0.5 1.0

x0/a: 0 -0.60536 -0.88271 -0.99693 -0.99996

These results indicate that for small values of co/r 0 the interference is macroscopic, the

solution given in this paper is not valid and to obtain the correct solution the problem

must be formulated as a crack/contact problem (e. g., [24]). However, these results also

show that if the mode I component of the external load is sufficiently high, the possible

crack surface interference may safely be neglected.

From (26)-(28) and (39) it may be seen that the crack tip stress and

(displacement oscillations disappear if " = 0 or if

- E- io (69)E2o = E1o

where the "averaged" material constants Eo and v,0 (i = 1. 2) are defined by (1) for

plane stress and (2) for plane strain conditions. From (69) it also follows that in

isotropic incompressible materials v0 = 1/2 for plane stress and v0 = 1 for plane strain

and. therefore. oscillations disappear only under plane strain conditions.

In this study two types of examples are given. In the first some specific materials
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are considered in various combinations. The elastic properties of these materials are

listed in Table 1. Materials a-c are fiber reinforced structural composites graphite-

epoxy). Except for a 90 degree rotation about the z axis. materials a and b are identical.

Material k is a crystalline solid (Topaz) and again material I is the same as k except for

a 90 degree rotation. Materials d-j are isotropic. The material combinations used in the

examples are shown in Table 2. In this table materials iln..., mi 4 are assumed to

represent the grain boundary region in bonded Topaz crystals. They are assumed to be

isotropic having hypothetically selected elastic constants.

Table 3 shows the material combinations used in the second group of examples in

which two lissimilar isotropic materials, carbon and epoxy, are assuný,-L to be bonded

through an orthotropic interfacial laver of hypothetically selected properties. Depending

on the processing and coupling agents used. the interfacial zone may exhibit either a

columnar (E2 ,2 > E211) or a lamellar (E 222 < E 211) structure (E 222 and E211 being the

Young's moduli in x 2 and x, directions, respectively). In each example only one

material parameter (E,211. E22 .2 or G212) is varied. Since three of the Poisson's ratios are

fixed. the remaining three must be varied along with the Young's moduli to maintain

the symmetry of the elasticity matrix. The table also shows the oscillation parameter

defined by (39) and the strain energy release rates go and 9, corresponding to two half

plane solutions obtained from (54) for a single pressurized crack and for h = 0 and

h = x. respectively. (Fig. 1).

The results given in this section are obtained under mode I loading .0 and plane

strain conditions, and consist of largely the strain energy release rate g which, in the

case of the interface cracks, is accepted to be the main crack driving force. Figures 3

tnld 4 show some sample results for the material combinations given in Table 2.

Examples F through H3 and ,J correspond to structural applications involving metals
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and fiber reinforced composites bonded through an epoxy layer. In I the adherents are

silicon carbide and alumina and the interfacial region is amorphous carbon. In examples

H. H12 and H3 the crack is between aluminum (reed. 1) and epoxy laver imed. 2) and

the third material (meed. 3) is a fiber reinforced composite. In all cases the variable is

h/2a. Note that for each case the normalizing stress intensity factor 0 is given in Table

2 and is calculated from (54) (for the corresponding material pairs 1 and 3). The figures

show that g/g0 approaches 1 for (h/2a)-O and 9_/go for (h/2a)--x (,the latter limit is

also given in Table 2). Also. since the stiffness of the interfacial laver is less than that of

the medium 3, g is in all cases a monotonically increasing function of h/2a.

Figures .5 and 6 show the strain energy release rate for material comblinations

K, .... K4 defined in Table 2. Again go corresponds to h = 0. Note that in case K4 since

the stiffness of medium 2 is greater than that of medium 3 we have go > g,-'

The results for the second group of examples A through E described in Table 3

are shown in Figures T-13. The parameter , shown in the figures corresponds to the

ratios E a11/E:3. E 2, 2/E 3 or G212/G 3 and represents the structure of the interfacial zone.

Here again g0 is the strain energy release rate corresponding to h = 0. that is. to the

material pair 1 and 3. Note that the crack is between materials 1 and 2 and

Consequently. as seen from the figures. g > g0 if the stiffness of the interfacial region is

less than that of medium 3. i.e.. for e < 1 and 9 < g0 for e > 1. Also. in all cases except in

case B g is bounded by g. and g,. Figure 13 shows the influence of the modulus ratio e

on the strain energy release rate for h/2a = 0.4. For = 1 materials 2 and 3 are identical

and g = g0. The figure shows that as expected g/g0 is a monotonically decreasing function

of e. The exception is again Case B in which the modulus E2 •1 parallel to the interface

seems to have very little influenc'- on g. This result ma'y also be observed in Figure S.

The resmilts for the collinear cracks obtained under plane strain conditions and
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uniform tension o are shown in Figures 14-20. In all these Figures the normalizing

strain energy release rate g* is obtained for a single crack of length 2a and for the

particular material or material combination with the given h/2a ratios. Figures 14 and

15 show the results for an isotropic homogeneous plane (full lines) and two dissimilar

isotropic half planes (dashed lines) containing two interface cracks of lengths 2a and 2c.

The properties of the dissimilar half planes (E1 = 1 GPA. E2 = 13 GPA. V1 0.1) are

selected to give an unusually large oscillation parameter (..;= -0.1306). In both cases

the limiting values of the normalized strain energy release rates are

9A//9= 9/9'= . 9(.!'/ = D/1 = c/a . for d/a--

9D--' . = gc/9* = (c +a)/a . for d/a= 0 (70)

where d is the distance between the inner crack tips D and A and the subscripts C. D.

A and B refer to the crack tips shown in the figures. c = a in the example shown in Fig.

14 and c = 0.2a in Fig. 15. For the dissimilar materials considered we have " = 1.50363

,,- 2 ýi GPA -1. A rather interesting and very useful result shown by Figures 14 and 15 is

that the normalized strain energy release rates for the collinear cracks in bonded

materials may be approximated by that obtained from a homogeneous isotropic medium

having the same crack geometry. For the latter very often it is possible to obtain a

closed form solution (see. for example. equations (62) and (66) which were used to plot

the solid curves in Fig. 14).

Figures 16-20 show the normalized strain energy release rates in bonded

orthotropic materials (material combination G. Table 2) containing two collinear

interface cracks with c/a = 1. 0.5. 0.2. 0.1 and 0.05. respectively. In these figures solid
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lines again correspond to the homogeneous isotropic plane with the same crack

geometry as the bonded planes. The round dots give the results for two half planes

(h = _-c, materials a and d) and the square dots for two half planes (materials a and c)

bonaed through a layer (material d) with h/2a = 1. It may be seen that g/g" ratios for

the two dissimilar half planes are nearly identical to the isotropic plane values. There is.

however, some discrepancy between the isotropic plane and the interfacial laver r ;ults.

Table 4 shows the limiting values of 9/9* given in Figures 16-20 for d/a -0 and d/a

-- •. Note that for h/2a= the limits for homogeneous isotropic and bonded

orthotropic materials are identical. whereas for h/2a = 1 both limit, differ from the

homogeneous plane results. Despite this considering the addi'ionai difficulties involved

in solving the multiparameter problem of collinear craks in bonded materials, the

discrepancies may be tolerable. For the material .-ombination G and for various h/2a

ratios the value of g' are given in T-ble 5. Some additional results for the coUinear

cracks for a fixed d (d/a = 0.1) and r .-ving values of h/2a .aay be found in Table 6.

Some sample . 3ults fe- the stress intensity factors along with the corresponding

strain energy rc . -ates a t in Tables 7 and S. Equations (48) show that aside

from the material constants _,d the length parameters. the stress intensity factors

depend on tte unrensionless quantities gk( : 1) defined in (40). In the examples

considered the external load is uniform tension ,,22 =I, at infinity. Thus, the

dimensionless quantities F/l0 given in Tables 7 and 8 to represent the stress intensity

factors at the crack tips a,. bl. a2, b 2 (Fig. 1) or C, D. A. B (Fig. 17) are defined by

F(C) =21 ý1, ,*2 g(1-1). F(D) = - -rjl-t2 gl(1).

F(A) = 1,j--t' g2( -1). F(B) = - 2,.•- g2(l). (71)
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Note that -I is dimensionless and -,21 has the dimension of stress. The material

combination G is again used in the examples (see Tables 1 and 2) for which we have

"r21 = 1.8098 GPA. -,12 =1.7684 GPA, u=0.071765. From (48) and (71) one may also

note that the stress intensity factors are proportional to ,(bk--ak )/2 as well as F. Thus

for c/a 0.2 despite the seemingly high values of F(D) given in Table 7. from a fracture

propagation view point by far the worst location is the crack tip A. This may be seen

from the values of the strain energy release rates for which the same normalization

constants, u2a is used in all crack tips. In the case of collinear cracks, as may be seen

from Figures 15 and 17-20. this conclusion appears to be quite general meaning that, for

example, under cyclic loading fastest subcritical crack growth would take place at the

crack tip A. Also it appears that for small values of d/a 9C < 9B < <.4. whereas for

greater d/a one would have 9C < 9D < 9B < 9A. This may have bearing on the crack

nucleation, growth and coalescence ahead of a main crack in creep, corrosion as well as

fatigue crack growth studies.
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Table 1. The elastic constants of materials used in the examples (moduli in units of

GPA.)

Mat. a Mat. b Mat. c Mat. k Mat. I

Ex 153.09 40.403 30.6 282.486 225.734

Ey 40.405 153.09 39.0 225.734 282.486

E - 22.754 22.754 6.4 261.097 261.097

Gxy 29.304 29.304 19.7 131.06 131.06

Gy: 1.551 4.082 4.5 132.98 108.11

Gx: 4.082 1.551 4.5 108.11 132.98

vxy 1.834 0.484 0.351 0.312 0.312

vxz 0.195 0.261 0.275 0.244 0.149

vyz 0.261 0.195 0.275 0.149 0.244

Material E v Material E

d (epoxy) 3.1 0.35 j (high modulus carbon) 380 0.32

e (aluminum) 69 0.3 mi 2.5 0.3

f (steel) 200 0.3 m 2  25 0.3

g (amorphous carbon) 8.3 0.32 1113 250 0.3

11 (silicon carbide) 207 0.2 m4  1000 0.3

i (alumina) 325 0.3
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Table 2. Material Combinations F-K 4 used in the examples. 'T is the uniform crack

surface pressure and 2a is the crack length. (see Fig. 1 for geometry and Table 1 for the

properties of materials a-i)

Mat. Med. Med. Med. 90/a 2 a g:,/(T a g./9 0  Fi.

Comb. 1 2 3 (GPA)-' (GPA)-'

F a d b 0.0343 0.4532 13.2 0.0718 3

G a d c 0.0569 0.4332 7.966 0.0718 3

H a d e 0.0427 0.4532 10.62 0.0718 3

--------------------------------------------------------------------------------------

H1  e d a 0.0427 0.4531 10.62 0.0671 4

H2  e d b 0.0320 0.4531 14.14 0.0671 4

H3  e d c 0.0565 0.4531 8.027 0.0671 4

S......................................................................................................................

I h g 1 0.0116 0.1722 14.88 0.0843 3

.1 e d f 0.0273 0.4331 16.61 0.0671 3

K, k m, 1 0.0109 0.5301 50.54 0.0471 5

K.2  k m 2  1 0.0109 0.0605 5.60 0.0741 5

K3  k m 3  1 0.0109 0.0165 1.06 -0.0105 6

K4  k m 4  1 0.0109 0.007 0.645 -0.0749 6
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Table 3. Material combinations A-E used in the examples. Referring to Fig. 1 and Table,

1, medium 3 is epoxy (d) in all cases: medium 1 is amorphous carbon (g) in A-E and

high modulus carbon (j) in case D,. The moduli of medium 2 are selected as shown: the

Poisson's ratios are given by v2 12 = .231 = V232 =-0.35 = 3. The external load is uniform

crack surface pressure a* and the crack length is 2a.

Case E 211  E 222 G2 12  g9/&2a g,/o2a g, Fio
E3  E3

(GPA)-' (GPA)-'

A 1 1/4 G3 0.6139 0.8622 1.404 0.0333 7. 13

1 4 G3  0.6139 0.3822 0.623 -0.0196

B 1/4 1 G3 0.6139 0.6056 0.986 0.0128 8. 13

4 1 G3 0.6139 0.5791 0.943 -0.0129

S......................................................................................................................

C 1/4 1 E21, 0.6139 0.9745 1.587 0.0017 9. 13
2(1 + v3)

4 1 0.6139 0.3995 0.651 -0.0115

S......................................................................................................................

D 1 1/4 0.6139 1.4111 2.299 0.0208 10. 13
2(1+V3)

1 4 0.6139 0.2849 0.464 -0.0276

E 1 1 1/4 G3  0.6139 0.9792 1.594 0.0173 12. 13

1 1 4G3  0.6139 0.4576 0.745 0.0370

1 1/4 0.4344 1.2349 2.842 0.0396 11, 13
2(1+V3)

1 4 0.4344 0.1167 0.269 0.0383
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Tal te 4. The hlitiir jug valliit tif tihe ~tral,, energ,_y rcet a.c ra tt, li,,wtx in Fi~iirtý 1 6-21(1.

g cth orresponi(s to mat erial comuihina tion G 'ienin Ta I te 2. Loat Iii( iý uiiiitriii

te'1lSon KT~ )'T 2 1 a/s/1. 0 .45320eT a GPA ) - liiil

=ah 0 (.4 lit. 2 ita ( GPA) - Iare the single crack values,. foi ) r llg it 11 1(' t '()I I

MC(Ile l lIn I. ft )I. t o w tiis1si, 11lnitar haltl pL)lI1' m laterials a ani' 1 I ). ant(i f( )r t IN-( half plauit',

1 toni let t hrouil- it a lYer milat. ci uldi . G. h/2a =1). respttt ivelV.y

'i/a 11/2a 10(.5 .2 01 0.05

- ./~j~ 10.3 (0.2 01 0.03

1 iQ, Q 0.5 1335 0.219 01it 0.053

0 /~K t 21.35 1.2 1.1 1.0)5

01 ( 1 / ) 1.694 1.37-2 1.166 1.083 1.041

N.N ( ~ ,ti. 1 0.3 0.2 0.1 0.015

0 N. g./' r 2 1.35 1.2 1.1 1.03

Tlthit .5. Valult's of g* for theit' aterial coitthlination G. Table :3)

li/2a -I_ 1() 4 2 1 0.35

g k/,,a (GPA)- (0.433 0.4.5:3 0.4350 0(.4401 0.411 0.348 0. 03T



Table 6. Strain energy release rates for two orthlotropic half planes bonded through a

layer of thickness h (material combination G) and containing two collinear cracks of

lengths 2a and 2c. d/a = 0.1. d being the distance between the inner crack tips D and A.

(Fig. 17)

11/2a

c/a x 10 4 2 1 0.5 0

1 GA/o72a(GPA)-l 1.489 1.483 1.457 1.374 1.142 0.939 0.187

1 GB/0 2a(GPA)-1  0.605 0.603 0.592 0.561 0.484 0.399 0.076

0.1 G 4 /,, 2a(GPA)-1  0.533 0.531 0.528 0.512 0.456 0.379 0.067

0.1 GB/,72a(GPA)-1  0.459 0.458 0.455 0.444 0.414 0.349 0.058

0.1 GD/0a2a(GPA)-l 0.209 0.208 0.206 0.206 0.191 0.168 0.026

0.1 G(./0,2 a(GPA)-f 0.135 0.135 0.134 0.134 0.126 0.110 0.017
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Table 7. Stress intensitv factors and the strain energy release rates in orthotropic half

planes bonded through an isotropic layer and containing two collinear interface cracks of

length 2a and 2c. c/a = 0.2, h/2a = 1, material combination G. The values of g/" 2 a

given are in units of (GPA)- 1.

d/a F(B)/a 9B/O2a F(A) g.4 /u0a

N 0.958 - 0.172 i 0.411 0.958 - 0.172 i 0.411

4 0.960 - 0.172 i 0.412 0.961 - 0.172 i 0.414

2 0.961 - 0.172 i 0.413 0.961 - 0.172 i 0.414

1 0.961 - 0.173 i 0.414 0.962 - 0.173 i 0.415

0.5 0.962 - 0.175 i 0.415 0.985 - 0.176 i 0.434

0.1 0.970 - 0.178 i 0.422 1.105 - 0.203 i 0.547

d/a F(D)/oo 9D/,72a F(C)/lao gC/0,o2a

X 0.958 - 0.172 i 0.082 0.958 - 0.172 i 0.082

4 1.035 - 0.149 i 0.095 1.034 - 0.149 i 0.095

2 1.072 - 0.156 i 0.102 1.056 - 0.154 i 0.100

1 1.179 - 0.173 i 0.123 1.154 - 0.167 i 0.118

0.5 1.332 - 0.206 i 0.158 1.271 - 0.186 i 0.143

0.1 2.053 - 0.378 i 0.379 1.560 - 0.245 i 0.216
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Table S. Stress intensity factors and strain energy release rates in orthotropic half planes

bonded through an isotropic layer and containing two collinear cracks of equal length

2a, material combination G. The values of g/% 2a given are in units of (GPA)-'.

d/a = 0.1 d/a = x

-. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . - - - - - -- - - - -- - - - - -- - - - -- - - - - -

h/2a F(B)/lo gB/.3a F(A)/ 0  g4/r 2a F(B)/r0 3 gB/%,2 a

x 1.170-0.153i 0.605 1.834-0.252i 1.489 1.012-0.145i 0.453

10 1.167-0.174i 0.603 1.813-0.357i 1.483 1.011-0.145i 0.453

4 1.154-0.178i 0.592 1.796-0.363i 1.457 1.008-0.147i 0.450

2 1.121 -0.194i 0.561 1.737-0.383i 1.372 0.996-0.151i 0.440

1 1.036-0.203i 0.484 1.566-0.422i 1.142 0.958-0.170i 0.411

0.5 1.018 - 0.207i 0.399 1.429 - 0.408i 0.959 0.873 - 0.202i 0.348
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Fig. 1 The geometry of bonded materials with collinear interface cracks.
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Fig. 2 Normal component of the crack opening displacement Av = u12 + _ u22 - for aninterface crack in two bonded orthotropic half spaces for various values of co/ro. ao and
TO are respectively the normal and shear components of crack surface tractions. MediumI is material c, medium 2 is material a (Table 1), co = aro/[.i. 2 7 21(1 _ Y2))I/2.

= - 0.07505, '7 = / = 1.057.
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Fig. 3 Strain energy release rate for a single pressurized interface crack in two half

planes bonded through a layer. In all cases 1 for h = 0.
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Fig. $3 Strain energy release rate in two orthotropic half planes bonded through an

isotropic layer and containing a pressurized crack. Material combinations K1 and K,

(Table 2). 9/9, = I for h/2a = 0.
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Fig. 6 Same as Fig. 5, material combinations K3 and K4 (Table 2).



2.0
Ca~se A

1.6 * 0.25

1.0

4.

0.6

0.0 I

0 1 2 8 4 6

Fig. 7 Strain energy release rates in two isotropic half planes bonded through ani

orthotropic laver and containing a pressurized interface crack. 'Material combination A

(Table 3), G2 12 =GC3 , e = E-22 -2 /E 3.



2.0 CazseB

e =1

0.25

1.0

4.

0.6

0.0 L
0 2 4 6

h/12

Fig. 8 Same as -Fig. 7, material combination B. e = E211/E3 , G212 = G3.
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Fig. 9 Same as Fig. 7, material combination C, e = E211/E3 , G212 E21 1/2(1-v. 3)-
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Fig. 10 Same as Fig. 7, material combination D, e = E222 /E 3., G212 = E222/2(1 + V3).
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Fig. 11 Same as Fig. 7 material combination E, e = G 212/G 3, E211 = E22 . = E3.
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Fig. 12 Same as Fig. 7 material combination D1, e = E 222/E 3, G.2 12 =E 222/2(1+ v 3),

medium 1 is high modulus carbon.
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Fig. 13 Dependence of g on the variable e for a single interface crack in bonded

materials described in Table 3. h/2a = 0.4; e = E211/E 3 in B and C, e = E 222/E 3 in A. D

and e = G2 12/G 3 in E.
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Fig. 14 Strain energy release rates for two equal collinear uniformly pressurized cracks

in a homogeneous isotropic medium (full lines) and in two bonded dissimilar isotropic

half spaces (dashed lines E2/Ej = 15, uv = .2= 0.1. w = -0.1306). In each case g' is the
corresponding single crack value (obtained from d/a = sc). •4/'-X. gB/g- 2 for d/a.-0

and .4//-9, S/B-- for d/a--.
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Fig. 15 Same materials as in Fig. 14 for two collinear cracks of lengths 2a and 2c.

c/a 0.2.
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Fig. 16 Strain energy release rates for two collinear cracks of equal length (c =a) in an

isotrop~ic homogeneous p~lane (full lines, g- (1 + tc)~o-a/3p). in two bonded hialf planies

(nizterials a and d. round dlots, hi/2a = g = O.453,i 0
2 a (GPA) -') and ini two hialf

p~lanes (materials a and c) bonded through a laver (material d(l)squ.are dots. hi/2a =1.

O.411ti0 2 a (GPA) ),external load is uniform tensionl a,,) ( at infinilty.
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Fig. 17 Same materials and geometry as in Fig. 16, c/a = 0.5, D and A are the inner and

C and B are the outer crack tips.
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Fig. 18 Same as Fig. 16, c/a = 0.2.
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Fig. 19 Same as Fig. 16, c/a = 0.1.
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Fig. 20 Same as Fig. 16, c,'t := 0,05,


