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FRACTURE MECHANICS OF DISSIMILAR MATERIALS
BONDED THROUGH AN ORTHOTROPIC INTERFACIAL ZONE

Fazil Erdogan® and Binghua Wu
Lehigh University. Bethlehem, PA 18015
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ABSTRACT

In this paper the fracture mechanics of orthotropic materials containing collinear
interface cracks is considered. The primary objective is to study the influence of the
thickness and the structure of the interfacial regions on the crack driving force. The
interfacial region is assumed to be a relatively thin orthotropic elastic layer. The stress
intensity factors or the strain energy release rates are assumed to be the main measure
of the crack driving force. A relatively simple and efficient method is presented to solve
the related elasticity problem. The results are obtained for a wide range of actual
material combinations. In order to study the influence of the structure of the interfacial
zone. the problem is also solved for isotropic and orthotropic materials bonded through
a layver with hypothetically selected material properties. The results show that the effect
- Corresponding Author: Department of Mechanical Engineering and Mechanics. Lehigh
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of the thickness. the mechanical properties and the material orientation of the
interfacial zone on the strain energy release rate could be very significant. An
interesting and a rather useful result obtained from the collinear crack solutions is that
the strain energy release rates for multiple cracks in bonded orthotropic materials with
or without an interfacial layer may predicted by using the results obtained for an

isotropic homogeneous plane provided the normalization factors are selected properly.

1. Introduction

In recent past concerns with the mechanical failures initiating largely at the
interfacial regions i such multiphase materials as modern composites. thermal barrier
coatings and a vartety of other bonded materials have led to rather extensive studies for
the purpose of understanding the interaction between the flaws that may exist in these
regions and the applied loads and other environmental factors [1]. {2] and [3]. From the
viewpoint of applications generallvy the optimal design of interfacial regions involves
tradeotfs between strength and toughness. For example. it is known that the untreated
carbon has very poor adhesion to epoxy and good adhesion can be accomplished by
treating its surface and by using proper coupling agents (e.g.. variety of silanes) [4].
However. joints of such high interfacial strength have usually rather poor toughness.
Also considerations regarding load transfer and fiber integrity require a relatively weak
or compliant interface. Thus, in studying the failure process of the interfacial regions
the mechanical and strength parameters are expected to play a major role. In
particular. in fracture related failures the crack driving force would heavily depend on
rhe constitutive properties and the thickness of the interfacial zone. the size. location
and the orientation of the crack and on the properties of the adherents as well as on the
maguitude and the nature of the applied loads and the geometry of the medium [1]-[3].
31-7%1 Sinee it i< not likely to develop a process that would produce an interfacial zone
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which would have all such desirable properties as high strength. high toughness. high
fatigue and impact resistance and high resistance to moisture penetration. and since al’
these properties are quantitatively expressed in terms of continuum concepts, the
fundamental studies relating to the chemistrv of adhesion and material processing must.
therefore. be guided by the corresponding mechanics considerations. It is through
studving the appropriate mechanics particularly the fracture mechanics of the
interfacial zones that the relative importance of certain material properties and

dimensional parameters can be determined.

In most studies relating to the fracture mechanics of bonded materials it is
generally assumed that the composite medium is piecewise homogeneous. On the other

haud a close examination ol these materials seems to indicate that in nearly all cases

the interfacial region has a structure which is different than that of the adherents. In
some cases this region may simply consist of the reaction zone and may have a
thickness of only a few lattice parameters. In other bonded materials the interfacial
regions having their own structure and thickness may develop as a result of surface
preparations and coupling agents used in processing. For example, in many of the
polvmer matrix composites very near the interface crystallization of the polvmer or
copolvmerization of the matrix and the coupling agent seems to produce a highly
oriented recion with a columnar or lamellar structure which may generally be modeled
as a thin orthotropic layer (e.g.. PEEK-Carbon composites) [4]. [9]. Among other
examples for such interfacial regions i bonded materials one may mention the grain
boundaries and. at a larger length scale. certain geological materials such as shale -

sandstone interfaces.

The main objective of this paper is to study the influence of the structure and

the thickness of the interfacial regions on the fracture behavior of bonded orthotropic




marerials. Specificallv. the effecr of rwo factors. namely. the material orthorropy and
the multiple site cracking on the strain enereyv release rate will be invesnigared. Thns.
the rechnique developed is snitable ro stidy the eeneral problem of collinear mrerfactal
cracks i bouded orthorropie lavers. Iu this paper. however. it will be assumed rhar rhe
thickness of rhe adberenrs i comparison with rhe crack sizes and rthe wrerfacial zone
thickness are sufficiently laree <o rhar the perturbation problem considered mayv be
approximared by o dissimilar orthorropie half spaces bonded throngh an orthorropic
laver. The iurerface crack problem for bonded semi-infinire orthorropie planes was
previonslv considered in. for example. 107-712" Among some of the significant recent
<tndies dealine wirh rhe inrerface erack problems in bonded ani<orropic half planes one
mav wention 13213 The problem of eracks perpendicular ro and inrersecting the

inrerfaces i boded orthorropie lavers mayv be fonnd in (167

The plane ~train collinear interface crack problem for two orthotropic half planes
L and 3 honded thronel an orthorropie inferfacial laver 2 of thickness h is described in
Fie. 1. To ~implife the formmlation of the problem the engineering elastic constants E, .
v awl G, oic =10 2) for an orthotropic plane will be replaced by the “averaged”
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for the case of plane strain. Thus, by using the contraction

Vi =X /NC, ¥y, =X,NC .

and defining

- 1 v
Ve ¥o) = on(X Xp)o mlVi ¥2) = apa(Xg Xy).

Vi(F1 Y2 SN WX Xp) V(v V) =

the stress displacement relations may be expressed as

E, | ov ov,
TU”:T”_I-uoz ( v, + v, o )
E, ov, vy
(0 =Ty = 1- ”02 ( 3y, + v v, J.
EO 8\'1 6\'2

TT = 2( kg + vg) ( 0y, ovy )

Here x,. 7, .

(3)

Ta(¥1s ¥2)=0oy(Xp xy). (4)

(W}
~—

(6)

and u,. (i. j = 1, 2). are, respectively the physical coordinates, stresses and

displacements. By substituting from (6) into the equilibrium conditions

00y, 09y3 _ doq | 09y
('7)(1 6){2 ' UXI (‘:)X-l

=0.

it mav be shown that

oty +‘72V1 . »02\'2 B
Uy)z 20y, 0V,
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v, 9% 9%
b3 —2 4 Jyd ‘
6}'12 1gv,? * 20y 0¥, 0 (3)
where
‘31 :“(A0+VO) j.)ZZVO(NO*-)UO) _+_1 . (g)
1- v, “ 1- vy”

By using the standard Fourier Transforms the solution of (8) may be obtained as

follows:

) = j (CreSilalv, cesalaly,

-x
= ! . R .
+C3€bl ‘(”‘\"2-*-(‘4852 | n]}.:] 'Y da.
T Il |
. . . |1 -5 alv, s, lalv
\2(«‘1‘.\"2):% J’ X [.33C19 1 I”~+J4C}e 2' I..Z
- x

"chgeslIal}'2_34c4es2|°“}’2] eiayl da,
—x <y <, 0<}'2<h, (10)

where the functions C,(«). (i=1....4) are unknown.

sy, S,
LA gy = (11)

PN L T
Pt -1 0 T st -1

and s, and s, are the roots of the characteristic equation

54—2x032+ 1=0.

Equation (12) has four roots s;.... s, given by

Sy = o—sg =y x()+\x',l -1 . Re(s;)>0.




5.2:—54 =\lKkg— KO'Z—]. . RE(S.2)>O. (13)

Note that the roots s;... s; depend on x, only and they are all real for »,>1 and
complex for —1<x;< 1. For ;< -1 the roots are pure imaginary for which equations

(10) imply that the boundary value problem has no feasible solution. This restriction on

Ko may also be arrived at by requiring that the elasticity matrix C,; (in ¢, = C,)e,) be
positive definite [19]. From (1) and (2) it may easily be shown that for isotropic
materials x, =1 and equations (8) and (12) reduce to the known results. Formally,
equations (101 give the solution for an orthotropic laver where the constants C,....C, are
determined from the stress and/or displacement boundary conditions prescribed at

X, = constant planes.

3. Integral Equations for Collinear Cracks

Consider now the plane strain or plane stress collinear crack problem for two
orthotrovic halt spaces bonded through an orthotropic laver described in Fig. 1. It 1s
assnumed that the elasticity problem for the composite medium has been solved under
given applied loads by ignoring the cracks and the stresses ¢,,°(x;. 0) and o,,°(x;, 0)
along the interface x, =0 have veen calculated. Thus. by using a superposition the
original crack problem can be reduced to a perturbation problem in which the crack
smface tractions —a,,°(x;. 0) and -0,,°(x,. 0) are the only external loads. Note that
this process is rather straightforward if the stress state at infinity is zero and the applied
loads consist of body forces and moments having finite resultants and acting within a
bonnded region of the medium. Otherwise. the stresses acting on the medium at infinity

mnst be such that the strains ¢,; along the interfaces x, =0 and x, = —h in the three




materials remain compatible. For example. if the applied loads at iufinity are nniform

rension «,,™ = o, and nniform shear #,™~ = 7. 1o maintain comparibility in rhe <srrains

¢y or prevent any mismatch i the displacement componenrs vy on x, =0 and x, = - 4.

)

it would be necessary ro apply ro marerials 1 oand 2 the tollowing additional exterual

ll)illl.\:
» [ ; (1)
(1 ) Ty
T LENCXGN = E;”" - - N |
1 - i ! E B E L3 -
11 11
; V2 . 13
(2 02 12 ‘12
s = B o o—hex, < 0. (14
] - i E o E A -
11 il

where rhie snperseriprs Lo 20 aud 230 reter ro materials 1.2 aud 3. respectively (Fio

i

The formmlation given in rhie previons section is valid for each of the three
marerials shown m Fieo 10 An mdex k=1, 2. 3 will be added to each quantity to
destgnate the marerials 102 and 3. respectively. That is. the quantities which appear in
Section 2 will be replaced by xp. v Erge v O Wi Vigs Thte T Sk Jiys Coge th =1
203 =102 0=1.2 j=1.2. 3. 4. Referring now ro (107, since the displacements in

rhe mediun vantsh ar X, = =~ or v, = =~ we mnst have

The remainineg eight functions are rthen derermined by nsing the continity  and

bonndary condittons at x, =0 and x, = - L. These conditions may be expressed as (Fig.

)

1y
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o(Xy, ~h) =o5,(x;. =h). oyu(X. —h)=0g,0%x,. —h). —x <X <x. (1T)
(X —=h) =ug(x;. —h). uy(x;0 —h) =ugix,. —h). —x<x < x. (1%)
7122(%1. 0) = —0,,°(x1. 0) = py(xy). oyqa(x,. 0) = —02 (%, 0) = pylx, 1. x, e L. (19)
(X 0) =y (x. 0) =00 upy(xg. 0) ~uyy(x,. 0)=0.  x,eL’. {20)
szilL" L,=(a,<x;<b,). j=1...n. (21)

where p, and p, are known furctions. L, represents the jth crack (Fig. 1). and L’ is the

complement of L in { - x. x).

By wusing (15) and substituting from (10) into the homogeneous equations
(161 - (13). six of the unknown functions C,, may be eliminated. the two remaining
unknowns are rhen determined by using the mixed boundary conditions (19) and (20).

To reduce (19) and (20) to a system of integral equations we define

%{n“(xl.O)—u“(xl.O)]sz(x,). - x <X, < x.
ﬁ[uu(xl.O)—un(xl.0)]:f2(xl). - <X < X (22)

From (20) and (22) it follows that

feix;) =00 (k=1.2). x,el’. (23)




[ fo(x,) dx, =0. (k=12 i=1..n) 124)
L.

[t is seen that by substituting from (10) into (16). (17). (13) and {22} all eight unknown
functions C,, may be expressed in terms of f, and f,. Equations (19) would then give a
pair of integral equations to determine f; and f,. This process is somewhat lengthy but

straightforward. Thus. referring to [20] for analytical details we obtain

| At) LR
b (X )+ 152 %J fgl—dt+%J' Z K (x,.0)f (t)dt =py(x,). x, €L,
L L_]:l
1 [ fh(t) 1 2 5z
nF f X, dt +4,,0,(x)) +% J Zl K,,(x).0f,(t)dt = py(xy). x; €L, (29)
L L/)=

where K, . (1. j = 1. 2) are known bounded functions and the bimaterial constants +;,. (1.

j =1.2) are given by (see [20])

n,, o ,
- — _1 9 9
V‘J_E . (I.J—].- _). t"’6)
_ _l-vy l-vy _ﬂlﬂ‘m) \12(1*"20)
np = -l =g - W= = + 3 ,
20 10 1y B0

4201 +xy0) o 2(1 + Kyp) B 5 57y

n, = o + E. . Dy =D0y,ly — 0y (27

The elastic constants which appear in (27) are defined by (1) or (2). Note that y,, and

-, are always positive.
The integral equations (25) may further be simplified by defining

10




1 2Ty :
= = == (2%
N2t FENTL
frxy v = Ty = fsy). pixgi = paix = g pyixyl. x, € L. (29

Thns beonsing 1280 and 1291 and combinine 1231 1t mav easilv be shown rhar

(A . o . ; - .
_% T_xl—dr—ﬂ t<xl~+L.‘ Kyxpo ot = Rox et de
i L ]
= opixp. x, L. P30
where
NTESRRSIE S R NP 1 (P S
IV LA
Koy 1= g K, =Ky = ith Ky = oKyl (31
-\ 120

For rhe case of u colliuear cracks Ly.... L,. rheoretically the index of the singular
wreeral eqnarion (300 is uoand. conseqrently. it solnrion coutains n arbitrary {complex)

coustent~. These constanrs mav be obrained from rhe single-valnedness conditions (24

\‘-'hi"h Iav tow L (’f\'})l'(‘.\'.\'t*ll as

4. The Merhod t_)_f_ Solition

Treiue ro ~olve the tureeral equation 1300 which s defined on rhe nnion of v ares

Liehlv impractical. It 150 however. rather easy ro reduce (301 to a

L. L, dircerle i

L]
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system of n simpler integral equations each of which is defined on a <ingle arc L. Thus.

by defining

b.—-a; b +a
- J J J J -
=5 s+ 5 .al<t<bj. -l<s<l,

_bk—ak bk+ak
= ) T+ 5

Xy

cap<Xy<b -l<cr<l,

tr) = (s) a, <t <b; p(x) = q(r). ap <x; <b.

Kix;. th =Ry (ros). Ky(x. ) =S,,(ros). ap<x;<bg a,<t<b,

b ~a
By (1. s) =- — =s=z,
1, (1. 5) (by~a,)s—(bg—a)r+b,+a,-bi-a, 57%k

from (30) it may easily be seen that

1 ' i n
e L LA DY

(33)

(36)

(37)

where the prime in the third term indicates that the summation excludes the term

corresponding to j=+k. Not. that the kernels h; (r. s) as well as Ry, and S, are

bonnded in the closed interval —1<(r. s) <1. The unknown functions v, and known

functions ¢, respectively represent the crack opening displacements and the crack

12




surface tractions for the kth crack L,.

We now observe that the weight function of v (s) in (37) is [20]. (21!

wir)=(l-r)™1+1)7. -l<r<l. (38
where
ﬂ:—.—]‘z-—i..;. J:—%-‘-i.;. ..':,Z%log(%j:). (39)

The orthogonal polvnomials associated with w(r) are the Jacobi polvnomials P (@-F)py

n

and therefore the solution of {37) may be expressed as

C
Ll D) =gl niwinl gl = > AP I —l<r<l. k=1..n (40)
j:l)
where Ay, are unknown complex constants. From (34) it may be seen that the

conditions (32) become

1
J vlridr=0. k=1...n (41)
N

Thus. by usine the orthogonality conditions for the Jacobi polynomials. from (40) and

141 we find
Ap=0. k=1..n. (42)

The singular integral equations (37) may be regularized by using the following

property of the Jacobi polyvnomials:

1

. ) » [1_ 2 - .

L] wP et i P P = P .
-1

-l<crcl. (431

13




Thus. by substituting from (43) into (37) the singular terms in the integral equations
may be removed and (37) may be reduced to a system of functional equations with Ay
(k=1...m j=1.2.3..) as the unknown coefficients. These equations may be solved by
truncating the series defined in (40) at j = N} and by using a method of collocation. For

improved accuracy in each equation the collocation points r,, are selected as

m=c0sd .0 =53-(2m-1). m=1.. N k=1...n 44
n m Zl\k

The integral equations 37} may then be reduced to a system N,;+..+XN, linear
algebraic equations in A, . (k=1...n.j=1... N,). It should be noted that in addition
to the first two terms. the third term involving the kernels h,, in (37) can also be
evaluated in closed form [20]. Furthermore. the integrals in the fourth term are all

Gaussian type and may be calculated rather accurately without any difficulty.

5. Stress Intensity Factors and the Strain Energy Release Rate

It may be seen that once the coefficients A, are determined. (40) essentially
provides a closed form solution. From a view point of fracture mechanics generally the
guantities of interest are the crack opening displacement. the stress intensity factors and
the strain energyv release rate. From (22). (29). (33) and (34) the crack opening

displacement may be expressed as

1
vilxy) :% (=, ) +ilu Y-y, ) = J' f(t)dt
ak
} r
:——)";ak j velsids. k=1..n (43)

-1

Substituting now from (40) and evaluating the integral [20] we find

14




b, - e »
J:
_ 2 { _bk+ak —
P gt 5—=) . k=l..n. (46)

In the mixed boundary value problems such as that under consideration 1t may
be shown that the fundamental solution or the weight function w(r) defined by (38)
represents the asymptotic behavior of stresses and displacements near the crack tips. In
this problem w(r) has complex singularities. Thus. one may define a complex stress

intensity factor as follows:

k(bg) =nk, + ik, =tim N2 (x; =b) T noyu(xy, 0) + i 5(x;. 0)].
g
k(ag) = nk, + ik, =}i’_7_1_ak N2 (ag —x) ~ J[ n (X, 0) + iopy(xy. 0)],
1

k:l..., n. (47)
Observing that left hand side of (30) represents the stresses on L' as well as on L.
referring to [20] for details the stress intensity factors defined by (47) may expressed as

follows:

kibe) = —2541 =77 (b —ag)“ge(1){(by - a,)/2 .
k(ag) = '/zl‘ll ~ 7% (b —ax) gl - I)J(bk-ak)/z . (48)

where g,(r) is given by (40). Similarly in [20] it was shown that from the “crack closure

energy” the strain energy release rate may be evaluated as

G(l)k):;——,————-. (j(ak)z' ' -—. (49)




where the elastic constant +,, is given by (26) and (27) and the bars refer to complex

conjugates.

6. The Special Cases

In this section we give the results for some simple special cases for which the

solution may be obtained in closed form.

(a) A single interface crack ( —-a. a) in two bonded dissimilar half planes (n =1.

h = . Flgl)

In this case the Fredholm kernels K, and K, in (31) are zero and the solution
may be expressed in closed form [20]. In particular for a uniform stress state o,. 7, at

infinity. or for

0'.22(:(1. O) = —00. 612()(]. O) = —TO. (50)
we obtain
_ 2 79 Toy _ s -
A= I _72‘\ NETTET +z721). Ar=0.k=23. ... (31)
giving
e ) — 2 %9 Tov a2 w2 atXiw s
V(kl) —\Jl—‘yzt\ \1—712721*"721) a’ —Xy (a—xl) (52)
k(a) = (2a)(1 = 2iw)(nog + ity
k( —a) = (2a) 7 (1 + 2iw)(nog + ity NG (53)
2 , -
G=1 e L AT (54)

where the elastic constants are defined by (26)-(28) and (39). and 2a is the crack length.

16




(b) Homogeneous orthotropic medium with a single crack ( —a. a)

In this case we have

E 1 Eqc
v =00 w=0. gp= sk 0 SR . L (53]
T oyl + 4 UNT Tk,

the crack tip stress fields become uncoupled and from (49) mode I and mode II

components of the strain energy release rate may be obtained as follows:

ok, k,’ ;
g\ = :‘v‘:w . g‘z = 1_':1 . (06)

It the applied loads are given by (30). we find

klzﬂu\m. kzzro\‘ﬁ. (57)
L 2
,T(Y() TT'O a -
g. = 08
gl 4-1) 2 4_'21 ( )

It the medium is homogeneous and isotropic with the elastic constants 4 and «

we have

2u 1+x_4. 2 ST =
:-/121:1+K, GJ: 3;1 ,TI\J . (J—lZ) (09)

where p 1s the shear modulus and x =3 - 4v for plane strain and «=(3-v)/(1 +v) for
plane stress conditions and for uniform loading k, and k, are given by (57).

(¢) Bonded isotropic half planes with a single crack ( —a. a)

If the two half planes are isotropic having the elastic constants y,. x, and u,. ,.

we have

. . :“11‘2[“1("}“1""'112(’\'1‘*1‘]

12 21

Ly + pepn Mgty + gy ey
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o= _”1*‘2[1‘2('\'1 - 1) = pylx, - 1)]
1 (I‘1+“2Nl)(/“l+l‘1'\'))

1 :Nl('\'g—l)_l‘g(ﬂ'l_l) (601
NIRRT e+ 1) (e, + 1) ‘

and from (49) we obtain [6]

Ky +1 s 1
1y, = J0)

6 =2Kk(1 52

) . (61)

In the case of nniform applied loads (30) the stress intensity factors are again given by
(33) with n=1.

(d) Homogeneous isotropic plane with two collinear cracks of equal length

To provide a benchmark for the collinear interface crack results we give the
solution for an isotropic plane having two collinear cracks of equal length. Referring to
Fig. 1. let a;= -B. b;= -A. a,=A and b,=B. For uniform tension ¢, =0, at

X, = 7 x the mode I stress intensity factors may be expressed as [22]

kl(.'\) = T
\IB/A%) -1

[(B%/A?) E(k)/Kik)-1] .

ooV B

ki(B)z —2%——
B = aE

where Kik) and E(k) are complete elliptic integrals of the first and the second kind.

(1-E(k)/K(k)]. k*=1-(A%/B?). (62)

respectively. From (62) it may be shown that the limiting values of k,(A) and k,(B) are

ky(A)—ro [ B-A)/2 . k(B)—r{(B-A1/2. (63)

I~




fOl’ (B-Al = CollsTallt~, B’.\'—\. and

kl(B'—U”\"—[}- kli"\’ — N . ‘64!

f“l‘ B:!'Hli\htl“. .‘\—“4 Ill Y}u' ldrh*r case lofrine Th(‘\r B:u»mmm ;111(1 k‘wB» i\ a

funl‘riun uf \ iT lay ,1‘;\“ ‘!w \‘m;\\,'u rhdy

- o -
}”“”"l.\ l\“B‘: -~ Ho

rhat s for smadl vabies ot AU Ly B s nor well defined, The corresponding strain eneres

1‘('1"(1~~' Fates gt "lu‘ Clat 1\‘ Yil)\ A dll'l B are glvel; by

-k A 3 k" By

g, = — ot =7 66
Y - YR =g Loy
! AYTRRI R k Sl -
Sunilarly for 1B~ Av—~ we Lave the reference valne
B =AY -
G\:gh-_—g = {67)

v Nnmerical Resnles and Disenssion

For rlic honded dissimilar materials wirh mrertace cracks from (37)-(39) 1t 1s seen
that rhe ntegral cqnations are of the second kinwd ithat is - # 010 and., consequently. the
busdamenral solntion w which controls asvmptoric nature of stresses and displacements
near the crack tips has complex sinenlarities resulting in the well-known oscillatory
stress and displacement beliavior. For example. for a single interface crack in two
bowuded orthorropie half planes nnder nniform stresses ar anfinity. from (320 the crack

openine displacemenrs mav he obramed as
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Equarion (631 shows that as x;—Fa the displacements wonld oscillate leading ro an
apparent crack surtace nterference. The bimarerial constant . which controls these
oseillarions 15 defined by 139) 1 rerms of - which in rarn is given by (26)-(28) or (60).
Ir is perhaps worrhwhile ro emphasize rhar i crack problems rhere are really two kinds
of crack snrface inrerference. One is the mathemarical consequence of the assumed jump
discontinnities in marerial constants across the interface. giving oscillations even under
prre mode [ loading conditions. However. for practical material pairs the size of this
wrerference  reeion having the f()_rms Au~ ja=x; -sin(«logla-x;}) or Au~@a-x;
ccosiLlogta—x 1) 1% nsnally of the order or smaller than the microstructural length
parameters and it effect on the fracture analvsis is rather negligible. Furthermore. this
helivior mav be removed by assuming a more realistic material model in which the
punp discontinniries are replaced by “thin™ interfacial regions with steeply varving

material properries 23]

The second kind of crack surface interference 1s macroscopic and geometric. and
1s invariably the consequence of mode I loading in crack problems that lack symmetry
with respect to the plane of the crack (e.g.. an embedded crack parallel to the interface
or the free snrfacej. In the case of an interface crack in bonded dissimilar materials.
siuce the plane of the erack s nor a plane of svmmerry. nnder pure mode II loading the

normial comipouent of the crack surface opening wonld be an odd funetion resulting 1
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surface interference. As an example. Figure 2 shows the normal component
Av=u,, ¥ —uy,~ of the crack opening displacement given (68a) for two bonded
dissimilar orthotropic half planes for various relative values of tensile and shear loadings
o, and =y The calculations neglect the interference. Hence along a substantial portion of

the crack  Av seems to be negative. For various o4/r, ratios the values x, for which

Av(x,) =0 are g.ven as follows:
T/ Ty 0 0.1 0.2 0.5 1.0
Xo/a: 0 -0.60336 -0.88271 -0.99693 -0.99996

These results indicate that for small values of #,/r, the interference is macroscopic, the
solution given in this paper is not valid and to obtain the correct solution the problem
must be formulated as a crack/contact problem (e. g.. [24]). However, these results also
show that if the mode I component of the externai load is sufficiently high, the possible

crack surface interference may safely be neglected.

From (26)-(28) and (39) it may be seen that the crack tip stress and

displacement oscillations disappear if v =0 or if

R B 1-vy

Ezo B EIO

(69)

where the “averaged” material constants E, and v,y (i=1. 2) are defined by (1) for
plane stress and (2) for plane strain conditions. From (69) it also follows that in
isotropic incompressible materials v, = 1/2 for plane stress and v, =1 for plane strain

and. therefore. oscillations disappear only under plane strain conditions.

In this study two types of examples are given. In the first some specific materials




are considered in various combinations. The elastic properties of these materials are
listed in Table 1. Materials a-c are fiber reinforced structural composites {graphite-
epoxy). Except for a 90 degree rotation about the z axis. materials a and b are identical.
Material k is a crystalline solid (Topaz) and again material { is the same as k except for
a 90 degree rotation. Materials d-j are isotropic. The material combinations used in the
examples are shown in Table 2. In this table materials m,..., m, are assumed to
represent the grain boundary region in bonded Topaz crystals. They are assumed to be

isotropic having hypothetically selected elastic constants.

Table 3 shows the material combinations used in the second group of examples in
which two dissimilar isotropic materials, carbon and epoxy, are assun.r to be bonded
through an orthotropic interfacial layer of hypothetically selected properties. Depending
on the processing and coupling agents used. the interfacial zone may exhibit either a
columnar (E,;, > E,;;) or a lamellar (E,;; <E,,) structure (E,,;, and E,;; being the
Young's moduli in x, and x, directions. respectively). In each example only one
material parameter (E,,,. E,;, or G,;;) is varied. Since three of the Poisson’s ratios are
fixed. the remaining three must be varied along with the Young's moduli to maintain
the svmmetry of the elasticity matrix. The table also shows the oscillation parameter w
defined by (39) and the strain energy release rates ¢, and g corresponding to two half
plane solutions obtained from (34) for a single pressurized crack and for h =0 and

h = x. respectively. (Fig. 1).

The results given in this section are obtained under mode I loading ¢, and plane
strain conditions. and consist of largely the strain energy release rate § which. in the
case of the interface cracks. is accepted to be the main crack driving force. Figures 3

and 4 show some sample results for the material combinations given in Table 2.

Examples F through H; and J correspond to structural applications involving metals

22




and fiber reinforced composites bonded through an epoxy layer. In [ the adherents are
silicon carbide and alumina and the interfacial region is amorphous carbon. In examples
H,. H, and H; the crack is between aluminum (med. 1) and epoxy laver (med. 2j and
the third material (med. 3) is a fiber reinforced composite. In all cases the variable is
h/2a. Note that for each case the normalizing stress intensity factor G, 1s given in Table
2 and is calculated from (34) (for the corresponding material pairs 1 and 3). The figures
show that G/G, approaches 1 for (h/2a)—0 and ¢ /G, for (h/2a)—x (the latter limit is
also given in Table 2). Also. since the stiffness of the interfacial layver is less than that of

the medium 3. § is in all cases a monotonically increasing function of h/2a.

Figures 5 and 6 show the strain energyv release rate for material combinations
K,.... K, defined in Table 2. Again ¢, corresponds to h =0. Note that in case K, since

the stiffness of medium 2 is greater than that of medium 3 we have G, > §,.

The results for the second group of examples A through E described in Table 3
are shown in Figures 7-13. The parameter ¢ shown in the figures corresponds to the
ratios E,;,/E;. E,0/E5 or G,,,/G; and represents the structure of the interfacial zone.
Here again G, is the strain energy release rate corresponding to h =0. that is. to the
material pair 1 and 3. Note that the crack is between materials 1 and 2 and
consequently. as seen from the figures. § > G, if the stiffness of the interfacial region is
less than that of medium 3. i.e.. for e < 1 and § < G, for e > 1. Also. in all cases except in
case B ¢ is bounded by G, and ¢,.. Figure 13 shows the influence of the modulus ratio e
on the strain energy release rate for h/2a = 0.4. For ¢ = 1 materials 2 and 3 are identical
and ¢ = G,. The figure shows that as expected G/, is a monotonically decreasing function
of . The exception is again Case B in which the modulus E,|; parallel to the interface

seems to have very little influence on §. This result may also be observed in Figure 8.

The results for the collinear cracks obtained under plane strain conditions and




uniform tension o, are shown in Figures 14-20. In all these Figures the normalizing
strain energy release rate G* is obtained for a single crack of length 2a and for the
particular material or material combination with the given h/2a ratios. Figures 14 and
15 show the results for an isotropic homogeneous plane {full lines) and two dissimilar
isotropic half planes (dashed lines) containing two interface cracks of lengths 2a and 2.
The properties of the dissimilar half planes (E, =1 GPA. E, =15 GPA. v, =v, =0.1) are
selected to give an unusually large oscillation parameter (» = -0.1306). In both cases

the limiting values of the normalized strain energy release rates are

6,/6°=65/G"=1.G./6"=Gp/G"=c/a. ford/a —x .

Gy—~ .Gp—x . Gg/G¢"=G-/G"=(c+a)/a.ford/a=0. (70)

where d is the distance between the inner crack tips D and A and the subscripts C. D.
A and B refer to the crack tips shown in the figures. ¢ = a in the example shown in Fig.
14 and ¢ =0.2a in Fig. 15. For the dissimilar materials considered we have §* =1.50363
7, 1GPA)!. A rather interesting and very useful result shown by Figures 14 and 15 1s
that rhe normalized strain energy release rates for the collinear cracks in bonded
materials mav he approximated by that obtained from a homogeneous isotropic medium
having the same crack geometry. For the latter very often it is possible to obtain a
closed form solution (see. for example. equations (62) and (66) which were used to plot

the solid curves in Fig. 14).

Figures 16-20 show the normalized strain energy release rates in bonded
orthotropic materials (material combination G. Table 2) containing two collinear

interface cracks with c/a=1. 0.3. 0.2, 0.1 and 0.03. respectively. In these figures solid
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lines again correspond to the homogeneous isotropic plane with the same crack
geometry as the bonded planes. The round dots give the results for two half planes
(h = >, materials a and d) and the square dots for two half planes (materials a and c)
bonded through a layver (material d) with h/2a = 1. It may be seen that §/G* ratios for
the two dissimilar half planes are nearly identical to the isotropic plane values. There is.
however. some discrepancy between the isotropic plane and the interfacial layer r sults.
Table 4 shows the limiting values of /¢~ given in Figures 16-20 for d/a —0 and d/a
—>. Note that for h/2a=x the limits for homogeneous isotropic and bonded
orthotropic materials are identical. whereas for h/2a =1 both limits differ from the
homogeneous plane results. Despite this considering the addi‘ionai difficulties involved
in solving the multiparameter problem of collinear cra ks in bonded materials. the
discrepancies may be tolerable. For the material combination G and for various h/2a
ratios the value of §* are given in T-ble 3. Some additional results for the collinear

cracks for a fixed d (d/a =0.1) and v :ving values of h/24 .aay be found in Table 6.

Some sample .esults fo: the stress intensity factors along with the corresponding
strain energy re - > -ates a . ¢ in Tables 7 and 8. Equations (48) show that aside
from the material constants .d the length parameters. the stress intensity factors
depend on the .ur-ensionless quantities gi(F1) defined in (40). In the examples
considered the external load is uniform tension =, =0, at infinity. Thus. the
dimensionless quantities F/c, given in Tables 7 and S to represent the stress intensity

factors at the crack tips a,. by, a;. b, (Fig. 1) or C, D. A. B (Fig. 17) are defined by

F(C)=-1-47 gi(-1). F(D)= -l -+" gi(l).

1 ~+

F(A)=+,{ v g,(-1). F(B)= -721\1—72 g,(1). (71)

o
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Note that 5 is dimensionless and +,; has the dimension of stress. The material
combination G is again used in the examples (see Tables 1 and 2) for which we have
v = 1.8098 GPA. 5, =1.7684 GPA, v =0.071765. From (48) and (71) one may also
note that the stress intensity factors are proportional to (b, —a,)/2 as well as F. Thus
for c/a = 0.2 despite the seemingly high values of F(D) given in Table 7. from a fracture
propagation view point by far the worst location is the crack tip A. This may be seen
from the values of the strain energy release rates for which the same normalization
constants, o%a is used in all crack tips. In the case of collinear cracks. as may be seen
from Figures 15 and 17-20, this conclusion appears to be quite general meaning thai, for
example, under cyclic loading fastest subcritical crack growth would take place at the
crack tip A. Also it appears that for small values of d/a G~ < Gg < Gp < G,. whereas for
greater d/a one would have G~ <G, <Gg<§G, This may have bearing on the crack
nucleation, growth and coalescence ahead of a main crack in creep. corrosion as well as

fatigue crack growth studies.
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Table 1. The elastic constants of materials used in the examples (moduli in units of

GPA))
Mat. = Mat. b Mat. ¢ Mat. k Mat. !

E, 153.09 40.403 30.6 282,486  225.734

E, 40.405 153.09 39.0 225.734  282.486

E. 22.754 22.754 6.4 261.097  261.097

Gy 29.304 29.304 19.7 131.06 131.06

Gy 1.551 4.082 4.5 132.98 108.11

G, 4.082 1.551 4.5 108.11 132.98

Yy 1.834 0.484 0.351 0.312 0.312

Vs 0.195 0.261 0.275 0.244 0.149

Vy- 0.261 0.195 0.275 0.149 0.244

Material E v Material E v
d (epoxy) 3.1 0.35 j (high modulus carbon) 380 0.32
e (aluminum) 69 0.3 m, 2.5 0.3
f (steel) 200 0.3 m, 25 0.3
g (amorphous carbon) 8.3  0.32 11, 250 0.3
b (silicon carbide) 207 0.2 m, 1000 0.3
1 (alumina) 325 0.3




Table 2. Material Combinations F-K, used in the examples. ¢ is the uniform crack

surface pressure and 2a is the crack length. (see Fig. 1 for geometry and Table 1 for the

properties of materials a-/)

Mat. Med.

Med.

Med.

(jx/aza

(GPA)™!

gx‘/gO

10.62
14.14

8.027

0.0671
0.0671
0.0671

0.0843
0.0671

Comb. 1
a

G a
a

1 e

5 e

5 e

I h
J e
) k
K, k
K, k

m,

0.0109
0.0109

0.5501
0.0605
0.0165
0.007

0.0471
0.0741
-0.0105
-0.0749




Table 3. Material combinations A-E used in the examples. Referring to Fig. 1 and Table
1, medium 3 is epoxy (d) in all cases; medium 1 is amorphous carbon (g) in A-E and
high modulus carbon (j) in case D,. The moduli of medium 2 are selected as shown: the
Poisson’s ratios are given by v,); = vy3, = vy, = 0.353 = v,. The external load is uniform

crack surface pressure ¢ and the crack length is 2a.

Case % %ﬁ G,1, Go/o%a G _/o%a  G_/G, " Fig.
3 3
(GPA)!' (GPA)!
A 1 1/4 3 0.6139 0.8622 1.404 0.0333 7.13
1 4 G, 0.6139 0.3822 0.623 0.0196
B 1/4 1 3 0.6139 0.6036 0.986 0.0128 8.13
4 1 3 0.6139 0.53791 0.943 0.0129
C 1/4 1 —E’“— 0.6139 0.9745 1.387 0.0017 9. 13
2(1 + vy)
4 1 0.6139 0.3995 0.651 -0.0115
p E2'22 9 9
D 1 1/4 2(1+V3) 0.6139 1.4111 2.299 0.0208 10. 13
1 4 0.6139 0.2849 0.464 -0.0276
E 1 1 1/4 G; 0.6139 0.9792 1.594 0.0173 12.13
1 1 4G, 0.6139 0.4576 0.745 0.0370
D 1 1/4 —EB—Z— 0.4344 1.2349 2.842 0.0396 11.13
! 2(1 + vy)
1 4 0.4344 0.1167 0.269 0.0383
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Table 4. The limiting valnes of the strain cnerey release rates shown in Fieures 16-20.
G,,rs. corresponds to material combination G eiven in Table 2. Loading 1~ nniform
tension T (6", = (1 +w)e,a/Sp. (G* 1,0 = 0.433200,"a (GPA) ! and
(6", = UA1108 o+ %4 (GPA)™' are the single crack values. for a homogeneons
medinm. for two dissimilar halt planes (materials @ and dio and for rwo halt planes

bonded thronel a laver (matr. comb. G, h/2a = 1), respectively.

('/21
d/a hi/2a G/G" 1 0.5 0.2 0.1 .05
~ - (G/G" ). 1 0.5 0.2 0.1 0.05
~ 1 (G /G ). 1 0.335 0.219 0.110 0.055
0 - (G /G, 2 13 1.2 1.1 1.05
0 1 (Gy. /G ) 1604 1372 1166  1.083  1.041
~ ~ (G, /6" Ve, 1 0.5 0.2 0.1 0.05
() ~ (G /G en. 2 1.5 1.2 1.1 1.05
Tabie 3. Values of ¢* for the material combination G. ( Table 3)
hi/2a ~ 10 4 2 1 0.5 0

G /mfa IGPAYY 0453 0453 0430 0440 0411 0348 0.057
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Table 6. Strain energy release rates for two orthotropic half planes bonded throngh a
layer of thickness h (material combination G) and containing two collinear cracks of
lengths 2a and 2c. d/a =0.1. d being the distance between the inner crack tips D and A.

(Fig. 17)

1 G,/0%a(GPA)' 1489 1483 1457 1.374 1142 0939 0.187
1 Gp/o®a(GPA)' 0.605 0.603 0.392 0.561 0.484 0.399 0.076
0.1 G,/e%a(GPA)' 05333 0331 0.528 0312 0456 0.379 0.067
0.1 Gp/ota(GPA)! 0459 0438 0455 0.444 0414 0349 0.038
0.1 Gp/eta(GPA)' 0209 0208 0206 0206 0.191 0.168 0.026
0.1 Gg/o?a(GPA)' 0135 0135 0134 0134 0126 0.110 0017




Table 7. Stress intensity factors and the strain energy release rates in orthotropic half
planes bonded through an isotropic layer and containing two collinear interface cracks of
length 2a and 2c. ¢/a=0.2, h/2a =1, material combination G. The values of G/n,’a

given are in units of (GPA) ™.

d/a F(B)/o, Gg/oya F(A)/e, (_’44/00261
~  0.958 - 0.172 i 0.411 0.958 — 0.172 i 0.411
4 0.960 — 0.172 i 0.412 0.961 - 0.172 0.414
2 0.961 — 0.172 0.413 0.961 - 0.172 i 0.414
1 0.961 — 0.173 i 0.414 0.962 — 0.173 ; 0.415
0.5 0.962 - 0.175 i 0.415 0.985 — 0.176 i 0.434
0.1 0.970 — 0.178 i 0.422 1.105 - 0.203 : 0.547
d/a F(D)/o, Gplog’a F(C)/a, G/oga
~  0.938 - 0.172 0.082 0.958 — 0.172 i 0.082
4 1.035 - 0.149 : 0.095 1.034 — 0.149 : 0.095
2 1.072 - 0.156 : 0.102 1.056 — 0.154 0.100
1 1.179 - 0.173 i 0.123 1.154 — 0.167 i 0.118
0.5 1.332 -~ 0.206 : 0.158 1.271 - 0.186 i 0.143

0.1 2.033 - 0.378: 0.379 1.560 — 0.245 ¢ 0.216




Table 8. Stress intensity factors and strain energy release rates in orthotropic half planes
bonded through an isotropic laver and containing two collinear cracks of equal length

2a, material combination G. The values of G/o,%a given are in units of (GPA) 1.

h/2a  F(B)/s, Gg/o’a F(A)/oy, G4/0p'a  F(B)/oy’a  Gploya
~ 1.170-0.153; 0.605 1.834-0.252;  1.489 1.012-0.145;  0.433
10 1.167-0.174; 0.603 1.813-0.357;  1.483 1.011-0.145;  0.433
4 1.154-0.178 0.592 1.796-0.363;  1.437 1.008 -0.147;  0.430
2 1.121-0.194; 0.561 1.737-0.383;  1.372 0.996 —0.151:  0.440
1 1.036 -0.203; 0.484 1.566 - 0.422i  1.142 0.958 -0.170;  0.411
0.5  1.018-0.207; 0.399 1.429-0.408;  0.959 0.873-0.202i  0.348
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Fig. 1 The geometry of bonded materials with collinear interface cracks.
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Fig. 2 Normal component of the crack opening displacement Av =u;, % —u,,” for an

Interface crack in two bonded orthotropic half spaces for various values of ¢,/ To- 0 and

7o are respectively the normal and shear components of crack surface tractions. Medium

.

1 is material ¢, medium 2 is material a (Table 1), ¢, = aro/ (1127 (1 = 12)]V/2

W= - 0.07505, n= .I‘/21/712 =1.057.
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Fig. 3 Strain energy release rate for a single pressurized interface crack in two half

planes bonded through a layer. In all cases G/G =1 for h =0.
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Fig. 4 Same as Fig. 3 for material combinations H,. H, and Hj.
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Fig. 5 Strain energy release rate in two orthotropic half planes bonded through an

1sotropic layer and containing a pressurized crack. Material combinations K, and K,

(Table 2). 6/G, = 1 for h/2a = 0.
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Fig. 6 Same as Fig. 3, material combinations K; and K, (Table 2).
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Fig. 7 Strain energy release rates in two isotropic half planes bonded through an

orthotropic laver and containing a pressurized interface crack. Material combination A

(Table 3), G,,, = G3, e = E,,,/E;.
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" Fig. 8 Same as Fig. 7, material combination B. e = E,1/Es. Gy =Gs.
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Fig. 9 Same as Fig. 7, material combination C. e = E;;;/E;. Gy, = Eyp,/2(1 < 0y).
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Fig. 10 Same as Fig. 7, material combination D, e =E,;;/E;, Gy1; = Egp0/2(1 +v3).
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Fig. 11 Same as Fig. 7 material combination E, e = G;,,/G3, E;;; = Egy, = Ej.
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Fig. 12 Same as Fig. 7 material combination D, e=E;;/E3, Gy12 = Eg0/2(1 +v;3),

medium 1 is high modulus carbon.
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Fig. 13 Dependence of G on the variable e for a single interface crack in bonded

materials described in Table 3. h/2a=0.4; e=E,,;/E;in B and C, e=E,;;/E; in A. D
a.nd e = G'I]'Z/GS in E.
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Fig. 14 Strain energy release rates for two equal collinear uniformly pressurized cracks
in a homogeneous isotropic medium (full lines) and in two bonded dissimilar isotropic
half spaces (dashed lines E,/E; =13, v, =v, =0.1. w= ~0.1306). In each case §" is the
corresponding single crack value (obtained from d/a = ). §,/§"—x. G5/§"—2 for d/a—0

and G,4/G"—1, §g/g"—1 for d/a—.
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Fig. 16 Strain energy release rates for two collinear cracks of equal length (¢ =a) in an
1sotropic homogeneons plane (full lhines, ¢ = (1 +«)oya/Su). in two bonded half planes
(meterials a and d. round dots, h/2a=~, ¢ =0.4337,’a (GPA)™") and in two half
planes (materials a and ¢) bonded throngh a layer (material d)(square dots, h/2a = 1.

§" =0.41loy%a (GPA) ~1). external load is uniform tension o, = o, at infinity.
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Fig. 17 Same materials and geometry as in Fig. 16, c/a = 0.5, D and A are the inner and

C and B are the outer crack tips.




Fig. 18 Same as Fig. 16, ¢c/a=0.2.




Fig. 19 Same as Fig. 16, c/a =0.1.




Fig. 20 Same as Fig. 16, ¢+ =0.05.




