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Abstract

In a recently developed material forming method called Functionally Gradient

Materials as well as applications of material deposition processes such as ion plating,

composite materials are being created where the interface possesses a gradually

varying material composition and properties. This study was directed at the

mechanics of such materials when there is a crack on the interface, and sought to find

parameters that govern the crack growth such as the crack tip stress intensity factors,

strain energy release rate and probable direction of crack extension. The mixed

boundary value problem involved two bonded materials having finite thicknesses with

an interface crack under plane strain or generalized plane stress conditions. One

material is homogeneous and the other nonhomogeneous with an exponential property

variation in the y-direction.

Fourier transforms was applied to Navier's equations to derive a system of

singular integral equations with a simple Cauchy kernel and Fredholm kernels. The

x-derivatives of the two crack opening displacements are assumed to be the unknowns.

Extensive asymptotic expansions of the kernels, which were the algebraic sum of

rational functions of 7 by 7 and 8 by 8 determinants as the numerator and

denominator were carried out in order to separate the Cauchy kernel and to facilitate

the integral equations numerical computation. The problem was solved numerically

by converting to a system of linear algebraic equations and by using a collocation

technique. The stress field near the crack tip is mixed mode and is shown to have a

standard square root singularity.

Cases for a wide rar.ge of degrees of nonhomogeneity and combinations of
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material thickness to crack length ratios were computed with loadings of uniform

normal stress and uniform shear. The results of a special case where both materials

have very large thicknesses compare very well with the previous results for two

bonded half planes.

The technique developed in this study is useful for fracture mechanics studies

of composite materials that have a nonhomogeneous interfacial zone. The results

compiled are especially well suited for studying the delamination problem in

nonhomogeneous thin films bonded to elastic substrates.
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Chapter 1

Introduction

1.1 Introduction

Materials of composite nature have found their applications perhaps as early

as the recorded history. One of the earliest applications may have been in protection

against corrosion by using a variety of coatings. The majority of the more recent

applications of composite materials seek to utilize the strengths or mechanical

properties of component materials in order to optimize the properties of the combined

system. For example, blades in gas turbine engines are subject to high stresses and

highly corrosive environment of oxygen, sulfur and chlorine gases. A monolithic

material such as a high temperature alloy is incapable of providing both functions.

The solution is to design the bulk for the mechanical properties and use a coating of

another alloy to provide the corrosion resistance. Another example of composite

materials is dry film lubricant coatings, as in the case of, for example, using thin gold

films bearing and sliding parts. Such dry film lubricants are important for critical

parts where conventional organic fluid lubricants are susceptible to degradation.

In the quest of finding an optimal composite for a particular need, the problem

of thermal mismatch at the bimaterial interface has always been one of t1 ,e major

reasons that cause the material to fail to perform its intended function. Thermal

mismatch and residual stresses occur because the temperature under which the

composites are processed does not fall in the temperature range where it is supposed

to perform, and usually far from it.

With the help of novel material forming processes and innovative apparatuses,
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material scientists have found ways to produce new materials with maximum

efficiency as never before. In laboratories and manufacturing facilities, physical vapor

deposition (PVD), chemical vapor deposition (CVD)(1] and their derivatives have

been used to create materials from the very elemental building blocks, i.e. atoms and

molecules for applications ranging from semiconductors to machine tools. A notable

derivative of the physical vapor deposition process is one called ion plating[2]. In

the ion plating process, the coating material, in atomic or molecular form, is to be

charged and accelerated in an electric field so that the charged particles impinge on

the substrate with a very high kinetic energy. The impact of the charges particles

causes sputtering of the substrate and a great deal of physical mixing of the coating

and substrate materials. Usually what results is a coating of gradual change in

material composition from the substrate to the coating material. These processes have

demonstrated that composite materials with distinctive material properties but a

gradually varying interfacial zone composition and, as a result, varying interface

properties can be achieved; see for example [3]. The immediate benefit of this

achievement is perhaps the relief of residual stresses in the composite. Because the

material characteristics at the interface is no longer an abrupt change of properties

but rather a smooth transition from one material to another, thermal mismatch and

residual stresses are reduced substantially.

In another area of the development of composite materials, a concept that seeks

to design engineering composites to optimize material properties for particular

applications is producing more new material forming processes. Prompted by the

"Space Plane Project" that requires high temperature materials to protect the space

vehicle from thermal damage during reentry, one such "Functionally Gradient
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Materials" describes a successful laboratory testing of a TiB2-Cu system to be used on

the exterior of the spacecraft. The TiB2:Cu ratio decreases from exterior of the surface

to the interior[41.

In high temperature engine combustion chambers and gas turbine air foils,

where good heat resistant property near the surface, heat dissipation in the bulk,

minimal residual stresses and overall mechanical toughness are required, this new

way of materials design can succeed where traditional design methods fail. There are

several methods to produce such "gradient" effect in composite materials, such as

Chemical Vapor Deposition[5l, Centrifugal Casting[6], and Combustion Sintering

[7]. Composite materials so produced possess mechanical and thermal properties,

instead of changing abruptly from one to the other as traditional composites do, that

vary continuously through the thickness of the composite[8]. The resulting

continuously varying material composition leads to reduced residual stresses.

This study is directed toward the fracture mechanics of an interface at a two

material junction where both materials are of finite thickness. The material is

isotropic, but near the interface it is nonhomogeneous. This nonhomogeneity results

either from intentional material mixing or through the particular process used. To

study the fracture mechanics of the interface we assume the existence of initial defects

in the form of a crack, and then try to find certain fracture parameters that govern

the tendency of the crack to grow. In brittle fracture and fatigue crack growth, the

most important parameter we seek is the stress intensity factor, which combines the

effects of applied loads, crack geometry and material properties. To be more specific,

we shall phrase the problem as follows: To study the fracture mechanics problem of

a crack at the interface of a two bonded finite thickness materials. Both materials
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will be isotropic one being homogeneous and the other nonhomogeneous in the

thickness direction. The problem will be formulated as a plane strain or generalized

plane stress problem.

The analysis of this interface crack problem will be performed within the

confines of the linear theory of elasticity, which we solve as a plane strain or

generalized plane stress problem in a straightforward manner, under self equilibrating

surface tractions. The crack problem is of the mixed boundary value type and is

reduced to a system of singular integral equatiGns. Except under very special

circumstances where a closed form solution can be found, most often the system of

SIE's are solved by a numerical method to obtain the crack tip stress intensity factors,

the strain energy release rate and the direction of probable crack extension. Once the

integral equations are solved, the stress field can be readily computed if one so

desires.

1.2 Literature survey

In studying the fracture mechanics of bonded materials, in recent past

considerable attention has been directed toward studying the mechanical behavior of

the interfacial regions where defects usually in the form of voids or cracks often exist.

Numerous publications have addressed the mechanics of interfacial regions in bonded

materials (see for example [9] through [131). It has been shown that for interface

cracks the material properties, in particular the ratio of Young's moduli, plays an

"mportant role in their fracture mechanics behavior. In the simplest case of two

bonded materials where both are homogeneous and isotropic, the Young's moduli are

constant, and therefore a jump discontinuity exists at the interface. With such a
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discontinuity it is well known that the stress state around the crack tip exhibits an

oscillation[9][10][11]. This is physically inadmissible, as it implies wrinkling

and overlapping of the crack surfaces near the crack tips[121. It could be argued

that this affects a very small region near the crack tip and consequently is not

important.

The crack-contact model tries to resolve this inconsistency by assuming that

the crack surfaces close near the crack tips and form a cusp and the shear strers in

the contact region is zero[131. However, the general belief is that the resolution

to this physical anomaly has to come from a more realistic modeling of the interfacial

region of the bonded materials. Research has shown that this stress oscillation

disappears as long as the material property is continuous around the crack tip

[9][14][15][161. For the interface cracks there is a model that treats the

interfacial region as a third nonhomogeneous material with steep property gradients

thus eliminating the jump discontinuity in the material properties[161. This model

eliminates the stress oscillations since the material properties are continuous

throughout the domain.

In light of the discussions in the previous section on composites that possess

varying material properties near the interface, material nonhomogeneity is something

that has to be taken into account in the study of interface crack problems in a wide

variety of applications. Reference [161 exemplifies such a case by assuming one

material to be nonhomogeneous with the material parameters varying through the

thickness in a certain exponential manner and provides the interface crack solution

for two bonded half planes. In many practical applications where the crack size is

small as compared to the thickness dimension, often the bonding of two materials can
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be modeled by two half planes. In some other applications, however, this may be

realistic. Thus, in cases such as the dry-film lubricant coatings discussed earlier, thin

layer of refractory coatings on cutting tools and variety of components involving thin

films in microelectronics where the film thickness is sometimes less than 1.0pro (10'

meter) [3], it may be necessary to investigate the interfacial crack problem for finite

domains.

1.3 Overview

The main objectives of this study are to study the interface crack problem in

a two-layered solid with finite thickness. The medium is nonhomogeneous, and

particular attention is focused on thin film cases where numerical computation is

difficult. The study admits any general loading configurations, covers a very wide

range of material nonhomogeneity, and does not place limits on the material thickness

to crack length ratio. However, if the material is strongly nonhomogeneous and at the

same time the thickness to crack length ratio very small, the effort in numerical

computation would increase in a dis-proportionate manner.

In Chapter 2 the problem is formulated under considerations of plane elasticity

by using the two displacement components as the primary unknowns. Through

integral transform the problem is transformed to solving a pair of coupled second

order ODE's. With the introduction of yet another new set of unknowns, i.e. the

derivative of the crack opening displacements, and applying the mixed boundary

conditions, for the plane problem the original formulation is reduced to a system of

singular integral equations with the derivative of the crack opening displacements as

the unknown functions. The pair of singular integral equations are of the first kind
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and both have a simple Cauchy kernel. As a result the stress field around the crack

tips exhibits the well-known square-root singularity.

Chapter 3 describes the method to solve the pair of SIE's, namely the step by

step procedure of transforming the SIE's to a system of linear algebraic equations, the

solutions of which are the finite part of the density functions. Of particular interest

is the numerical computation scheme to compute the infinite oscillating integrals for

the evaluation of the related Fredholm kernels. Special attention is paid to the case

where the material is strongly nonhomogeneous, and the material thickness to crack

length ratio is small, and as a consequence the convergence of the solution is slow.

An important point that is addressed in Chapter 3 involves the integration of a sign

(step) function and a logarithm function. Failure to pay special attention to these

integrals deters convergence of the numerical scheme.

In Chapter 4, a particular case of very large thickness to crack length ratio is

computed so as to compare with known results. This serves as a benchmark of

verification, even though the two problems are not exactly the same. General cases

considered to be of practical use is computed under the opening mode and shear mode.

Also, the results are discussed and interpretation of the trends of the crack tip

characteristics as a function of the nonhomogeneity parameter and geometry changes

is examined. Chapter 5 gives the conclusions and points to direction of future

research.

Hidden in the straightforwardness of the derivation in Chapter 2 is the

analytical formulation of the interface crack problem. The complexity of the

expressions of the Fredholm kernels in terms of the basic variables such as

thicknesses, Poisson's ratio and the nonhomogeneity parameter can be seen in
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Appendix A. In it, all the elements of the determinants that form the numerators and

denominators of the expressions in Fredholm kernels are listed. These expressions

were first derived using the symbolic manipulation program MACSYMA[17] on a

VAX-8300 and later verified by similar program MAPLE[I18] on a VAX-8530.

Appendix B describes the asymptotic expansion of the rational polynomials

where the numerators and denominators are determinants the elements of which are

depicted in Appendix A. In theory, only the leading terms need to be extracted in

order to derive the pair of SIE's with the proper Cauchy kernel, which is to be

expected for the problem defined. For the sake of numerically solving the SIE's in a

more efficient manner, the asymptotic expansion is carried out to as many terms using

the symbolic manipulator MAPLE, as the limit of computer resources would allow.

To tackle potential practical cases applicable to this work, which usually involves thin

films deposited on substrates with film thicknesses in the micron range, the successful

asymptotic analysis to as many terms as possible proved to be absolutely essential.

Appendix C gives some useful formulas to evaluate those infinite integrals,

whose integrands have been known in closed form through asymptotic expansions

carried out in Appendix B. Appendix D illustrates, by way of simple examples, several

schemes to numerically integrate a step function and logarithm function both of which

have a discontinuity within the interval of integration. It explains the technique used

in Chapter 3 to separate the integrals involving step function and the logarithm

function from other infinite integrals. Failing to do so would very nearly guarantee

the breakdown of convergence in the numerical scheme.

Appendix E addresses two aspects that are very important in the numerical

computation in this work. One is the limit of floating point calculations that can be
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carried out for the Fredholin kernels, which depends on the range of a real number

defined in FORTRAN language resided in the computer and used to perform the

computation. The other is how such cases involving thin films on thick substrates are

to be successfully tackled within the numerical scheme.

Appendix F shows the derivation of the Cauchy integral which is necessary to

study the singular behavior of the solution around the crack-tips and to compute the

stress intensity factors.
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Chapter 2

Formulation Of The Problem

2.1 Introduction

The crack problem under consideration is shown in Figure 1. Two plates are

bonded together and it is assumed that there is a crack at the interface. It is a plane

strain, isotropic, but nonhomogeneous, elasticity problem. However, the derivation

in what follows is also good for a generalized plane stress problem should any physical

interpretation warrant. Material 1 (occupying y < 0) is homogeneous, whereas

material 2 (occupying y > 0) is nonhomogeneous in the y-direction. The elastic

properties of material 2 may vary very steeply near the interface but continuity of the

material parameters is maintained across the interface. The nonhomogeneity of

material 2 is assumed to be such that its shear modulus varies across the thickness

as an exponential function. This assumption is broad enough to accommodate most

practical applications. The real advantage made possible by this assumption,

however, is that it leads to a system of differential equations with constant

coefficients. Given the complexity of the nonhomogeneous problem, this feat is vital

in the formulation of our problem. As for the Poisson's ratio v , we shall consider it

constant.

To solve the linear elasticity problem under general loading conditions defined

above, we use the method of superposition as shown in Figure 2. First the elasticity

problem of the configuration as defined in the absence of any cracks under a

prescribed loading is formulated, Figure 2(b). The crack problem as shown in

Figure 2(c), the solution of which is of the main interest in this study, is solved by
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applying loadings at the two crack surfaces that is equal in magnitude, but opposite

in sign, to the tractions at the same locations of the elasticity problem in Figure 2(b).

Since only the crack problem (Figure 2(c)) carries the characteristic stress

singularities that we seek, the solution of it alone will tell us the fracture mechanics

characteristics of the problem. Only when we seek to know the stress field need we

superpose the solutions of the two elasticity problems.

2.2 Formulation of the crack problem

Referring to Figure 1, let the shear modulus of material 1 be p,, which is a

constant, and that of material 2 be pa = p 1 eyy. The thicknesses of the two materials

are h1 and h 2, respectively. We use the two components of displacement u and v as

the primary unknowns. Let K = 3 - 4v for plane strain and x - 3-v for
1+V

generalized plane stress, where v is the Poisson's ratio. Hooke's Law may then be

expressed as

ay = I;-1[0C(+ 1)au +. (3.-)d0--1,

ax,,- -~[(3-K)-u +( 1-]
K-1 ax Y(1)

aYYM R - )c) au + (C+1 1

D + a

aix 0,Y

i - 1, 2.

In the absence of body forces, the equations of equilibrium are expressed as
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+ a -0

ax )y
(2)

a by + G - 0.

ajx Y

Substituting Eqn. (1) into Eqn. (2) for 0 < y < h2 we find the Navier's equations as

0 + 1)f+(0K- 1)~+ 2 -+ YO( - 1) 2  + Y(K- 1) a" - 0,ax2  y2  axoy - ax
(3)

V~ 0.V
0 -l1).t- +(Oc+ 1)-- +2 0-- +'(3-I:)L••u+'ft+I) 1 - 0.

ax 2  
- 2 ax xa

Equation (3) and similar equations obtained for material 2 must be solved under the

following boundary and continuity conditions (Figure 3):

oj(xh 2) - 0, a.y(x,h 2) - 0, -- o<x<oo, (4)

o,(x,-h,) -O, a,(x,-h1 ) - 0, -*0<x<<, (5)

o.(x,O+) - cY,.(x,O-), o.,(x,O+) - a1 ,(x,O-), -oe<x<oo, (6)

CY(XO+) .- •(Yx,O-) - -p1 (x), %(x,O+) - o,•,(x,O-) - -p 2(x), -a<x<a,
(7)

u(x,O+) - u(x,O-), v(x,0+) - v(x,0-), x<5-a, xaa,

where p,(x) and p2Wx) are the normal and shear stresses, respectively, at the location

of the crack in the elasticity solution of the corresponding uncracked problem

(Figure 2(a)). The notations 0+ and 0- are necessary since there is a discontinuity of

displacement field at the crack surface.

To solve Eqn. (3), define the Fourier transforms of the two displacement

components, u and v, respectively, as follows:
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U(ay) - fu(xy) e-"' dx,

(8)

V(cz,y) - fv(xvy) e- dx.

By definition, u and v become

u(x'y) - f- U(ay)e-~ dca,

(9)

v(xY) -+1 f V(acy)e'- da.

From Eqns. (3) and (8) it can be shown that

(K - 1) d 2U +y(i - 1)-U( - + 1)a2U+2iadV +y(c- 1)icaV - 0,
dy 2  dy dy

(10)

+1c+l) d +Y(K+1) dV +(K_ l)a2V+2 �2 dU y(3 -K)iaU - 0.
dy 2  dy dy

Solving Eqn. (10) we find

U(acy) - C,(a)e "' +C 2(a)e"", +C3(a)e." +C,(a)e"'Y,

V(a,y) , D,(ot)e^l-" +D2(a)e",y +D3(a)e" +D4(a)e^,Y, (11)

0 <y <h 2 ,

where, n,, n2, n. and n4 are solutions of the following characteristic equation:

n4 +2yn3_(2a2_-2)n2 -2a2 yn+ 3!-i a2-?+& _ 0. (12)1+K

Eqn. (12), a polynomial equation of the fourth degree, has the following roots:
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n, - l(RcosO-y.iRsinO),2

SU 1 - 2l(RcosO-y-iRsinO),

(13)

2

n4 -F (Rcos8 +y +iRsine).

Note that n2 and n4 are the respective complex conjugates of n1 and n3. In addition,

R and 0 may be expressed as

R 0 +4 ('+4a2 + 16a22 3-C,

(14)

0 -!tan-'( 4 ayT 3-i

2 -? +4 a FiC+_1

In Eqn. (11), the functions Cj(a) and Djcz), (j = 1 .... 4) are not independent. Their

relationship can be established by substituting Eqn. (11) into either one of Eqn. (10)

and noting that the identity is true for all y, therefore the coefficients of the y

dependent terms must be identically zero, giving

Di(ot) - -ia[2n,+Y(3-i0) C,(cz) , j - 1 ... 4. (15)
(C + 1)nJ2 +(K + 1)n, -(c - 1)a2

The above derivation is for the nonhomogeneous material. For material 1, which is

homogeneous (y = 0) or for -h2 < y < O, Eqn. (10) becomes
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(0C-1) d2U -(x + Dl)a2U +2adV -0,dy2  dy
(16)

(K+1) d -(_Oc-1)ac2V+2iadU - O.
dy 2  dy

The corresponding characteristic equation, which can be obtained by letting y = 0 in

Eqn. (12), becomes

(n2 -a2)2 _ 0. (17)

From Eqns. (17) the solution of Eqn. (16) may be obtained as

U(aty) = [A1 (a) +A2(a)y)e 'a ly + [A,(a) +A4(a)yle -I- ly,

V(a,y) = [B((a) +B 2(a)y]e ",ly + [As(a) +B.(a)y]e -Ia,, (18)

-hi < y <0.

Similar to the nonhomogeneous case, the functions Ac0 and Bfc,(j= 1 .... 4) are

inter-dependent. Their relationships, obtained by substituting Eqn. (18) into either

one of Eqn. (16), are found as follows:

B(t) - A- K---A2(a)],

B2(ca) - -i-A,(c),

(19)

B.,(a) - i [ A3 s(CC)+ 'CA, (a)]1,

B4(a) - cal a

B4(ct) - i...-2 4(a).

20)



The original problem has only two unknowns, i.e. the two displacement

components. After Fourier transform, we have instead eight unknown coefficients in

the solution to the two ODE's. Now we need to utilize the homogeneous boundary

conditions, Eqns. (4) through (7), to determine the unknown functions A4's and Cj's.

Before we apply Fourier transforms to the boundary conditions, define density

functions as follows:

fi(x) - aV2(x,0÷)-vl(x,0-)],

(20)

f 2(x) -•a [u2(x'0+)-ul(x,0-)].

It follows that f1(x) = f(x) = 0, -oo < x < -a, a< x < cc, which is a direct result of the fact

that v(xO+) = v/x,O-) and u,(xO+) = u/x,O-) outside of the crack. Let the Fourier

transforms of f1 and f2 be F1 and F2, respectively, that is, let

F1(c) - fff(x) e"•" dx,

(21)

F2(a) - ff 2(x) e dx.

The Fourier transforms of Eqns. (4) - (7) may then be expressed as follows:

(,(x,h2) - 0, -c<x<<, --+ dU (a02)+iV(a,h2) - O, (22)

dy

a (x,h2) 0, -cc<x<cc, -4 (3-K)iaU(a,h2)+(c+1)gd(a,h2) - 0, (23)dy
ayyx-h 1 in 0, -- <X < -, d4( i)iaU~o~d+( )d )=

o,,(x,-h) - 0, -dU (a,-h1 )+iaV(a,-h1 ) - 0, (24)
jdy
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oy(x,-h 1 ) = 0, -- <x<oo, --> (3-ic)iaU(a,-h1)+(K+1) dV (a,-h1 ) M 0, (25)"dy

a (xO+) " a (X,0-), -- <X<0o, -4

(26)
dV(3-x)iaU(a,O+)+0(c+1) dV(a,0+) - (3-x)iaU(a,O-) +(K + 1) dV (a,O
dy dy

o• (x,0+) - ao,,(x,0-), -- <x<oo, -,

(27)
-- (a,O+)+iaV(a,O+) - dU (a,O-)+iaV(a,O-).

dy- dy

Note that the Fourier transforms of the density functions are identically zero outside

of the crack and are the new unknowns inside of the crack. We can now express the

transforms of the mixed and final boundary condition as

ic[V(i,O+)-V(c±,0-)] F(cO),
(28)

ia[U(a,O+)-U(a,O-)] = F 2(a).

We now substitute the appropriate expressions for Urs and V's from Eqns. (11) and

(18) into Eqns. (22) to (27). By taking advantage of the inter-dependence between A4's

and B,'s, j = 1 .... 4, and Cj's and Dj's, j = 1 .... 4, we obtain a system of eight linear

equations for the unknown functions Aj's and Cj's, (j = 1 .... 4) in terms of the Fourier

transforms of the density functions as follows
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o 0 0 0 a 15  a 16  a 1 7  a 18  Al(°) 0

0 o 0 0 a 25  a 26  a 27  a 28  A 2(cx) 0

a31  a 32  a.3  a3 4  0 0 0 0 A3 (C) 0

a41  a4 2  a., a4 0 0 0 0 A4(a) 0
(29)

a. 1  a 5 2  a. 3  a.4 a., a. 6  a. 7  a58  C 1 (0) 0

a61  a 6 2  a.3 a.4 a65  a. a.7 a6. C 2 (CC) 0

a,71 a7 2  a7 3  a7 4  a75  a7 6  a 77  a7, C 3 (0z) F 1 (0)

a.1  0 a,3  0 a.5  a86  a87  a. C4(a) F 2(a)

where aij, i, j = 1 8, the exact expressions of which are given in Appendix A, are

functions of a, K, K, h,, and h 2. We can solve Eqn. (29) for A&, C,, (i = 1 .... 4) iL terms

of the unknowns F,, F2 as

A DI Fj, i- 1""4, (30)- D

2•. D '_--Fj, i= 5'"..8, (31)

where D is the determinant of the 8 by 8 coefficient matrix, and Dj are the

appropriate cofactors of D. DV is defined as the 7 by 7 determinant computed from

deleting the i-th column and the j+6-th row of the 8 by 8 matrix, then multiplied by

the factor (.i÷''•.

Up to this point, we have used all of the boundary conditions except the

traction boundary conditions on the crack surfaces (Eqn. (7)), namely,
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a,, (x,O-) - -p0(x), o.(x,O-) - -p 2(x), -a<x<a, (32)

or

,,y(XO+) - -p1 (x), ay(XO+) --p 2(x), -a<x<a. (33)

Either of (32) or (33) can be used; we chose, however, (32) for its simpler expressions

because material 1 is homogeneous.

We now have two equations (32) in which we substitute stresses expressed in

terms of Fourier transforms of the displacement components by using the Hooke's

Law. These transformed displacement components are given by (11) and (18) in terms

of eight undetermined coefficients or, indirectly in terms of Fourier transforms of the

two density functions introduced by (21). Therefore, the two equations (32) are

sufficient to determine the unknowns F, and F2.

2.3 Derivation of the system of singular integral equations

Expressing Eqn. (32) in terms of Fourier transforms of the displacement

components, we obtain

-p1 (x) - [(3- -)0-U(a,O-)iaei'a d a +(K + 1)f dV(a,O-)e''• dal,27r(K - 1) 7Y.- d

(34)

-p2(x) - dU (a,O-)e'ax da +(K + d ]a,O-)e dal.
2n fJ- dy fV(

By substituting from Eqn. (18) into Eqn. (34) it may be shown that
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-p2 (x) W- rn j-ia(12A1+[2y-i(K+1)I-T]A 2) eiaX.-y+
P21 y-4, 0- -la

(2A3 + [2y + i (i + 1)-1 IA 4) eiaxIaily) da,
(35)

• 2rP2(x) - irn J{[21a1A 1 +(2Icaxy-ic+1)A 2] ei'laly+

Pi y-40- -

[-2 1 a JA3 -(2 1 a ly + K - 1)A 4] e" la ly~da.

Now substituting (30) into (35), expressingF,, and F2 in their int-gral 1brra (Eqn. (21))

and then changing the order of integration, we may write th= integral equations with

the density functions as unknowns as follows:

r(p+)-- fa 2 Kij(x,t)f.(t)dt. i - 1, 2, -a<x<a,p(x) - (36)2p,1 j-1"

where

K~,(x ,t) li +r - -i a( (2L- + (2y -(ic + 1) 1 IDii.5 eia(z-) aly +
4.'-- D lal D

(37)

(2Di+[y,0+1)1 1~ie"(z--)iay) dc, j -1, 2,D jai D

K2.(xt) - u l f:([2 a Thj. +(2 Jaly-i + e
y-4 0- 4 D D

(38)

[2 1 a .D3. +(2 1 aY +x-1)]L] eiaRGt)'IaJY) da, j - 1,2.
D D

It should be pointed out that the integrands in Eqns. (37) and (38) are complex

expressions involving determinants of several 7 by 7 and 8 by 8 matrices the elements

of which are also long expressions of complex variables, as detailed in Appendix A.
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But the boundedness of these integrands at a = 0, can be seen by noting that the

integrands vanish at a = 0. We also note that the integrands in Eqns. (37) and (38)

are continuous functions of a. It then becomes clear that any singularities the kernels

Kij must come from the asymptotic behavior of the integrands as Ia I approaches

infinity.

The details of asymptotic expansions of the kernels are given in Appendix B.

In Eqns. (37) and (38), the behavior of Dij as a goes to and respectively are
D

as follows,

D-1(a) +0- (

D 2a(K + 1)

(a) - 0- (1-),
D 1 2 0 2

D a a2
(39)

S(a) - +o()

D 5c+1 a

22  + (1),

D K-1 -a

D 1 ) K-i +0()'

IT 213(P÷+I) p2

D 12(P) 1 + 0(1),

Y 213
(40)

D21 -() -1 + 0(1),
5- K +1- 1

D2,2(1 )-- -• + 0 + (-),
DY K+1 P3

9 3 1

where P = -a in Eqn (40). We note that, as shown in Appendix B, terms like
2D
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Ds2  D41 D2D32 D-' and D are analytic at I f = o and they are of much lower order

D1l D12  D21  D22
as compared to -T-- -D-5- -,-- and - and therefore no asymptotic expansion

needs to be done.

Let us now try to separate the leading terms from Eqns. (37) and (38).

Substituting the first terms in Eqns. (39) and (40) for L.Di , i, j = 1, 2, separating
D

the infinite integral from .oo to oo into two parts at 0 and making a change of variable

for the part from -o to 0 by letting • = -a, after some simplifications we obtain the

leading term of K11(xt) as follows:

lim ý (I +ay) eaYsina(t -x)da. (41)
y-4 0- /00

It is easily shown that

lim f e*Y sina(t-x)d - t -x
Y-4- .y 2 +(t -x) 2

(42)
~1

t-X

From Ref. [19], we obtain

lir n ay e*-sina(t-x)da - 0. (43)

Thus, in (37) the Cauchy kernel has been separated. The remainder of the integrand

after the leading term of Dl1 and LDA' has been separated is headed by a term no
D D

higher than . It is analytic everywhere and we can eliminate the limiting
a

process by substituting y = 0 directly under the integral. This gives the Fredholm

kernel k,(x,t) as follows
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k'j(x't) - c+ 1 ia(2( Dj&. K-1 )_(K1+I) 1.(D2j A 1 e,•(.t)
SD 2a(K+1) ja; D c+I

(44)

D2_• +(i + 1)_D e&e'"-() da.

Likewise, the leading term of K22(x,t) is found to exhibit the same singular

characteristics as Eqn. (42). The other Fredholm kernel k22(xt) is obtained from Eqn.

(38) in the same manner.

By a similar process, the leading term for K,,Jzt) and K2,(xt) has the following

form: (see [19])

ln fay eaYcosa(x-t)da - 0. (45)

Therefore, we do not need to separate the leading term from K,2(xt) and K 2,(xt) and

the Fredholm kernels k,2(xt) and k2 /(Xt) are formulated in an analogous manner as

k,,(x,t) done previously.

From the discussions above, we find that the singular behavior of the kernels

come solely from K,, and K22 and we can write Eqn. (36) as a system of singular

integral equation as follows

p (K+1) (x) a f. fi2. dt + f kj 1(x,t0f 1()dt + fk1 2(X~t)f 2(t) dt,

- n(c + 1) 2() ( f2(t) dt + f:k(x,t)f1(t)dt + f dt,
2 () - 2 t -x

-a<x~a.

kj, k12, h2, k22 are derived from the kernels in Eqns. (37) and (38), as described
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previously. They may be expressed in the following form

k11(x,t) foDi,(a) sina(t -x) da, (47)

k12(Xt) - f D;2(a) cosa(t -x) da, (48)

k 21(x,t) - fýD;(a) cosa(t -x) da, (49)

k22(x,t) -=D 2(a) sina(t -x) df, (50)0(0

where,

[- +I 2 ,D(L( D-1  Ic-I D21 D41 1
D_(___-____ + - +•+ ) 41 -(],C1)

2 D D 2a(Kc+l) D D Ic+1

D; 2(a) - +1 i[2a(D12 Ds2 D.2
2 D D D D ' (52)

D;1(a) - [2)-(-l)( D21  (53)
2 D D D D

D22(a) - -ic+1 i [ D2 a(D2 - D32 - (K - 1 (L22 +_4 - (54)
2 D D 2a D D K1+

We now have derived the system of singular integral equations (Eqn. (46)) with

a Cauchy kernel. The SIE's will be solved for the density functions f, and f2 which are

the unknowns. There are two additional conditions, namely,

f : fi(t) dt -0, i- 1, 2, (55)

which are the so called single-valuedness conditions. Physically, they mean that the
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crack opens at one end and closes at the other. We will show that with Eqns. (46) and

(55), we can solve the SIE's numerically by transforming them to a system of linear

algebraic equations.
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Chapter 3

Solution Of Singular Integral Equations

And Numerical Computations

3.1 Introduction

In Chapter 2, we have derived the system of singular integral equations for the

interface crack perturbation problem for finite thickness materials. These SIE's each

has a Cauchy kernel and two Fredholm kernels. The two unknowns to be solved are

the density functions which are the derivatives of the difference of the two

displacement components. The solutions of SIE's are generally obtained either

through function theoretical technique as given by Muskhelishvili in [201, or

through numerical methods [21], [22]. For the problem at hand the SIE's

which have a simple Cauchy kernel and lengthy Fredholm kernels, it is most

convenient to use a numerical method to obtain the solution. In this work the method

of collocation with the unknown functions represented by Chebyshev polynomials

described in [21] is used.

3.2 Solution of the integral equations

To facilitate solving the integral equations, let us make a change of variables

as follows:

t - sa, x - ra, * dt - ads, dx - adr (56)

The singular integral equations (Eqn. (46)) then become
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-Trc(+1),Jr).•-f18)ds + kj(r,s)f1(s)a ds.+ k 2(r,s)f2(s) a ds,
s-1

- 7r+ 1),2(r)"- f2<s)c +., k , k' (, ,, , (57)
2  r 2 (rs)f(s)a ds+ 2 2

-1<r< 1.

p,(r) and p2(r) are the normal and shear stresses that need to be applied across the

crack surface to close the gap in the elasticity problem and fl(s), f2(s) are the unknown

density functions for which we wish to solve. After the change of variable Eqns. (47)

through (50) now become

k,(r,s) - fDl(o)sincwa(s -r) da, (58)

k, 2(rs) - foD;,(a) cosca (s - r) da, (59)

k2,(r,s) - frD1 ,(a) cosaa (s - r) da, (60)

k 22(r,s) - frD22(a) sinaa(s - r) dt, (61)

D1,", Dl', D2 ', and D21" have been defined in Chapter 2.

3.2.1 The infinite integrals

To evaluate the Fredholm kernels which contain integrals with infinite upper

limit (Eqns. (58) through (61)), we shall treat the integrands with sine and cosine

terms separately. The integrals that contain sine functions as in Eqn. (58) may be

expressed as
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k,,(r,s) - C(D11(a)o- -- ')sinaa(s-r) da +
4a

(62)

f(D;1(a) - ' )sinaa (s - r) da + sina (s -r)do
4a a

where the integrand of the first integral is bounded everywhere and is integrated

numerically. The third integral has a closed form expression given by

f sinaa(s-r) da - sign[a(s-r)]n, (63)

where the sign function is defined as a function that gives only the sign of its

argument with the numerical value 1.0. The second integral can be written as

f-(D,,(a)- '--')sinaa(s -r) da - fk(d;i(a) - --L)sinaa(s -r) da +
(64)

f-[D;,(c)-d j~0sinaa(s-r) dax.

Let O(aW) denote polynomials of degree n in a. Note that d11"(a) is a polynomial of

finite degree in a shown in Appendix B. It represents the leading asymptotic terms

of D1 '(a) and the last term in the polynomial is a term like (1)11 0(0) (see Eqn.a

(B.59)). Therefore the leading term in the integrand in [D,,(ca) - d1 '(1Y)] is a term like

(1)"2 0(0) Since y is the parameter that determines the degree of

nonhomogeneity in material 2 and is a constant, we can choose the value "A", which

separates the infinite integral into two integrals, such that (_1)12 is small to any
A

order we desire so that

f [D 1a() - d1 ,(a)] sinaa (s - r) da (65)

33



is negligible.

A few words must be said here regarding the selection of the value 'A" such

that Eqn. (65) can be neglected. While it is true that we can choose 'A" so that

(L)11 is small to any degree we want, for a particular nonhomogeneity constant,
A

there is a point where any further increase in "A" will only serve to tax the numerical

effort, whereas the final solution has become stabilized. The increased numerical

effort that comes as a result of the increase in 'A" can be seen from the first integral

in Eqn. (62). Since that integral is to be evaluated by Gauss' formula, a larger upper

limit of integration means more computing effort.

When a proper 'A" has been chosen in Eqn. (62), Eqn. (64) can be evaluated in

closed form since (d 1,(a) - T-L) is a polynomial of finite degree in a. The closed
4a

form expressions for the integral are derived in Appendix C. Note that

11 ci -,
d'* -a c;, 2., (66)

4a j.2

where c,,.f, j = 2 .... 11 are shown in Eqn. (B.59) in Appendix B. Eqn. (62) may now

be written as follows

kl 1(r,s) - JA (D1 c(a) - . )sinaa(s-r) da +4a

(67)

sinaa(s-r) da + -1 signa(s-r) .A 42

Similarly, k22(rs) may be expressed in the following manner:
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k22(rS) A (D;2(a) - --L)sinaa(s-r) da +
f0 4a

(68)

Sc;2 j f sinaa(s-r) da + -signa(s-r) n
j. 2  g -4 a 2

We see that k1 (r,s) and k22(r,s) are both bounded functions, even if (s - r) goes

to zero. In Eqns. (67) and (68), only the first term is to be integrated numerically; the

second term, which is expressed in summation of integrals, can be expressed in closed

form. The closed form expressions for these integrals are shown in Appendix C. The

last term, however, is a step function. As (s - r) goes from positive to negative, the

value of the step function changes from M--. to -17-1y While the reason for
8 8

separation of this term from the Fredholm kernels k,/r,s) and k 2(r,s) may not be

immediately apparent, the fact remains that there is this term hidden in the kernel.

We shall illustrate by way of examples in Appendix D that failure to take special

precautions when dealing with functions that contain a step function in numerical

evaluation of integrals will lead to erroneous results, thereby inhibiting convergence

of the final solution. Furthermore, the definite integral (see Eqn. (57))

M_' 2 signa(s-r) f1(s) ds, i - 1, 2. (69)

of the step function has a trivial closed form expression as will be shown later in the

chapter. Had the step function not been separated, we will find that numerical

convergence would be greatly hindered simply because of the inability of numerical

quadrature to properly approximate the step function.

Having described the way to evaluate k11(r,s) and k2 (r,s), we now do the same

for k2(r,s) and k2 (r,s). The kernel k12(rs) may be expressed as
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k12(r,s) - JA-D12(a)cosaa(s-r) da +

(70)f-( _2(a + 7•cosaa(s-r)d

j(D(ci)-. 4)coscia(s-r) di + 1-4a ' "- .

Again, the integrand of the first integral in Eqn. (70) is bounded everywhere within

the limits of integration. The third integral has a closed form expression as follows

(see also Appendix C)

fA cosaa(s-r) d , - -Ci(Aa(s-r))

(71)

" -y. - log lAa(s-r)I - f•4(a'r) I cosa -1 da,

where y0 = 0.57721566490, is the Euler's constant. By following the same argument

as used in evaluating the second integral in Eqn. (62), we can choose a sufficiently

large "A" so that (D 2 ('(a) - d12"(c)) is small to any order we desire, which reduces the

second integral in Eqn. (70) to

f (D(i(a)-_-_)cosiaa(s - r) da f (d,2(i) - J-')cosa a(s - r) da
4cx 4Aa

(72)

12Cj f1 A cosaa(s-r) da.

Each term of the summation in Eqn. (72) is evaluated in closed form, similar to Eqn.

(64). Therefore, the Fredholm kernel k2(r,s) may be written as
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k12(r,s) - fA D 2(a)cosaa(s -r) da +

(73)

11Ec;2,i f; cosaa(s-r) da- T Ci(Aa(s-r)),
~Ci2j a !CAa(s-r)

j .2 f 4

where Ci is defined in Appendix C. The reason that Eqn. (71) is separated from

k,2r,s) is similar to why the step function is separated from the kernel k,/r,s). It is

because Ci(A a (s-r)), which contains a iogarithmic term, could not be properly

approximated by numerical quadrature when integrated. This fact will be illustrated

in Appendix D by way of examples to show the significant error encountered when

using Gauss' formula to numerically integrate a legarithmic function. Therefore the

logarithm term is separated to be integrated in closed form as will be seen in section

3.2.3.

Similarly, k2/r,s) may be written as

k2l(rs) - f D;1 (a)cosaa(s-r) da -

(74)
11. cosaa(s-r), da + ^f Ci(Aa(s-r)).

j.2 JA e4

It is worth noting that k12(r,s) and k2 (r,s) differ only by a sign, as is the case for

problems that possesses symmetry with respect to the y-axis.

3.2.2 Nature of the stress singularity

It is well known in fracture mechanics that the stress field near the crack tip

possesses a characteristics that is proportional to rP", where r is a small distance

measured from the crack tip where we evaluate the stresses. p is called the power of

singularity, a measure of the unboundedness of the stress field, whose value should
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lie between 0 and 1. If p is larger than 1, the displacement field and the energy are

both unbounded at the crack tip, which is unacceptable. On the other hand, if p is

smaller than 0, rp maintains a positive power and the stresses vanish as r approaches

0 and there is no stress singularity. In crack problems, we accept bounded

displacements. The stresses, which are of the order of one less than the

displacements, may be unbounded, but must be integrable.

From the derivation of the singular integral equation in Chapter 2 and the

discussion earlier in this chapter, we know that the terms in Eqn. (57) that involve

Fredholm kernels are bounded and analytic everywhere. It is only the terms with

Cauchy kernel that have singular behavior. Furthermore, from the discussions in

Appendix F concerning the characteristics of the density functions f1(s), fj(s), we note

that they are of the form:

fi(s) = F(s) - Fi(s)w(s) , i - 1, 2. (75)

(s + 1)12(1 -s)'12

where F/(s), i = 1, 2 satisfy the Holder condition on the closed interval of [-1, 1] and

F,(-1) * 0, F,(i) * 0, i = 1, 2.

3.2.3 Converting to linear system

Having described the way these Fredholm kernels are evaluated, and the

nature of the unknown functions, we are now ready to solve the singular integral

equations by converting them into a linear system of algebraic equations to obtain the

unknown functions at discrete collocation points.

Let us express our unknown functions in the singular integral equation in

terms of Chebyshev polynomial. Tfs) and U.s) are the Chebyshev polynomial of the

first kind and second kind respectively, and they are defined as follows
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T (s) - cos j0,

Uj(s) - sin(j+1)O (76)
sine

S - cose.

p

F,(s) - E Bj Tj(s), i - 1, 2. (77)
j-0

B~j are now the new unknowns to be solved in the linear system. Substitute Eqn. (77)

into Eqn. (57), keeping in mind the following identity,

1 Tj(t) dt -0, j - 0,
(); -1(t -X) r -t2 (78)

mUjfi(x), j > 0,

Eqn. (57) becomes

-'I-P 1 (r) - . B1P Ufl(r) +..1 - k1 1 (rs) fl(s) a ds
211, .(79)

+_- k12 (r,s) f2(s) a ds], -1<rrl. <

+IC + I P f

- , B2j Uj..-(r)+ 1 [J-k21(rs) fl(s) a ds
2p, j-t J'• P(80)

+ f'k 22(r,s) f2(s) a ds], -1<r<l.

Let us evaluate the integrals in Eqns. (79) and (80) separately. Substituting Eqn. (67)
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into the first integral in Eqn. (79), we obtain

- k1 1(rs) f1(s) a ds - By a .- kl(rs) ds +
j-0 4(81)

nyf' sign a(s-r) fl(s) ds.8

k1,(r,s) - fA (D•7(a) - L..) sinaa(s-r) da +f'O 4a
(82)

c1 *1• ,f• sinoca(s-r) 
d(8.

i-2 fAiC

Recall in Chapter 2 the definition of the density functions (See Eqn. (20)) and the

change of variable we have made at the beginning of the chapter

fl(S) - -' [v 2(x,O+) - v,(x,O-)] a. (83)

The integral of the second term in Eqn. (81) thus becomes

Ssign a(s-,-)f1 (s) ds f sign(t-,x) f(t) dt

S f t) dt + fa f1 ) dt

(84)

- -[v 2(tO+)-v 1(t,O-)] + [v2(tO+)-vI(tO-)]1

- -2 [v2(x,O+) - v l(x,O-)].

Because the crack opening displacement is zero at the crack tips, Eqn. (84) turns out

to be exactly twice the negative vertical crack opening displacement at point 'x". This

crack opening displacement may be expressed as follows, after appropriate change of

variables x = r a
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v2(XO+) - V,(XO-) - fr fA(s) ds

- EBf TJs) dsj.0 V1 :S

Again, make a simple change of variable in the integral in Eqn. (85) by letting s = cos

0, then ds - -sin 0 dO, and we can easily show that it becomes

Sf Tis) ds - cosjO dO

- sinj(cos'r) (86)

j
Uj1 U_(r) FT.•

Consider the Gauss-Chebyshev integration formula [23]

1 g(s) ds 1 P-,

' = Z.,sE g(td), Tl(tk) O,
l n k.1 (87)

tk "Cos n(2 k -1), k -1-...n.

2n

Note that to use this formula, we need to know the function values of g(s) at points

t. k = 1 .... n, all zeroes of Chebyshev polynomial of the first kind of degree n.

Applying this formula to the first integral in Eqn. (81), we obtain

'k,(r,s) "ds - - E hkA1(r,tk) TQ(tk). (88)kxlr') /•s2 n k.1 (88) T

At any point "r", and a particular choice of zero of the Chebyshev polynomial of the

first kind, the first integral of kll*(rtk ) (see Eqn. (82)) is evaluated by straight-

forward Gauss' formula of arbitrary interval as follows
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f~ A ""( - -1 sintaa(tk-r) da -

•_ a a-al a, w [D 1 1()- ]sinyia(tQ-r)),

1.1 2 i- (89)

Y"(al -a 1 -)xi + (a, +a 1-,

2 2

a 0 -0, a,. -A,a, -a 0 +Id, l - 1 -...N,

where x, is the i-th zero of Legendre polynomial Pq(x), and w, are the Gauss weights

w- 2 • [Pq(xi)]2 . (90)
l -x:

In Eqn. (89), N is the number of sub-intervals and it is equal to the integer part of

Aid, q is the number of Gauss points and d is the sub-interval size for Gauss' formula

evaluation. As discussed earlier in Section 3.2.1, the choice of 'A" is dependent on the

parameter y, the degree of nonhomogeneity in material 2, and how small we wish the

term (__1)12 to be. This limit of integration is therefore not a constant. The purpose
A

of separating the integral in Eqn. (89) into several sub-intervals is to accommodate the

changing "A" value so that a more uniform evaluation using the Gauss' formula is

achieved. Choosing the number of Gauss points is somewhat arbitrary. When the

Gauss points are too few, we might not have a good representation of the integrand

hence an inaccurate evaluation of the integral results. On the other hand, it takes

only a few trials to find that, above a certain number, increasing the Gauss points will

only increase the computation effort with no discernible increase in the result of the

integral. For the numerical computation in this work, a sub-interval size d = 20 and

the number
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of Gauss points q = 20 are used.

To complete the evaluation of Eqn. (81), we need to calculate the term that

involves integrals with an infinite upper limit, which we have said in 3.2.1 to have

closed form expressions. As mentioned earlier, the expressions for the integrals are

derived in Appendix C, and the coefficients cn,, are obtained and listed in Appendix

B. We write the integrals with infinite upper limit in two parts

11 iaa tk r)

Sc~ J01 - ' k da -
n-2 A a

(91)
Sa"6 -r) sin a a (t k- r) d c.

M-1 A C n-2 JA

Each part may in turn be written as

S-f sina(tk-r)d -

C11. f A dc

c~i.2, cosA~t -r) (-Wl)uk t-r)J'l-(2n - 2j- l)!

n-i j.1 (2n-1)!A2 -2 #
(92)

sinA(tkr- (-1Y"(t. -r)2- 1)(2n - 2j)! +

j.1 (2n - lA

(-1)n (tk -r) 2n-ICi(A (tk -r)
(2n -1)!
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11,2. sina(tk-r) dn- f•L"1A az-
n.2

.2t ' (-1)'Y(tk -r) 2Q'-)(2n -21-2)!

, - [cosA(t .-(r) 2) 21 +

(93)

R-1 (_l)Y.l(tk _r)2j- 1)(2n - 2j - 1)!
sinA(tk -r)2 +

j.1 (2n - 2)!A2 -2 j

( )"1(tk - 02." -2 si(A (tk - r))].

(2n -2)!

In summary, the numerical evaluation of Eqn. (81) requires terms from Eqn.

(86), Eqn. (89) and Eqns. (91) through (93), we may write it as follows

f- kl(r's) fl(s)a ds - na , B1 j I1 E IF
j-0 n k.1 1-1

(a,-a,'l 9 w5 (D•(yj)- T )sinyja(tk-r)) + (94)
2 j., 4

.11 sinaa(t,-r dc ] TJ(tk) + 'y Uj->(r) yr,

where the only integral in the Eqn. (94) is expressed in terms of summations in Eqns.

(91) through (93) and all appropriate variables are defined earlier in this section.

Following the same procedure, the integral involving k2 (r,s) in Eqn. (80) may

be expressed in terms of summations similar to that involving k,,(rs) as follows:
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fik22(r,s) f2(s)a ds - na B2, I-
jo0 n k.1 1.1

a,'-a,-, wj (Dw, 2(yi -- -)sinya(tk-r)) + (95)
2 i-1 4

11 j" sincta(tk-r) dc I Tj(tk) + Y U>1(r)F, c22,dt jt) v =}

i-2 fA4 j

The treatment of the integrals in Eqns. (79) and (80) with kernels k,2(r,s) and

k2 /r,s) in converting them to summations is very similar to those with kernels k 1 (r,s)

and k 2 (r,s) obtained earlier. The difference is that instead of having to deal with a

step function in the integrand as shown in Eqn. (67), there is now a logarithmic term

(see Eqn. (71)). Utilizing the following identity [241.

Tj(s) log Is-r1 ds - -- ,r) r<1, (96)

The second integral in Eqn. (79) may be expressed as follows

f. k ,2(r,s) f2(s)a ds - ,t,, B F' [ ( - 2 E

11 - c o s c ca (t k -r ) a -( 7
wi Dj*(yi)cosyia(tk- r)) + o, J-r)

i=2 fA c

-A+ logAa f.a(t.-r)I osa-I Tj(r)
a k 4 j

Again, all relevant variables are defined earlier in this section except for y0 =

0.57721566490, the Euler's constant, which is mentioned in section 3.2.1. The integral
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cos da., (98)
f a

is evaluated using subroutine available in the IMSL software library. The subroutine

is based on auxiliary functions described in [23). As for the other integral in Eqn.

(97), expressions derived in Appendix C gives

11 ,, cosaa(tk-r)

n..2 C1, A a31

(99)

5 f;coscta(tk-r) d fA cosaa(th-r)E C;,2nda + •,c1,. dot,
. A n.2 ' A a 2

n
1

where

-p cosa(tk-r) i

5 n (• I(t. ) 2 (-I) (2n -20!
E C12, [cosA(tk-r) E -)2" -2j)

n-i #-1 (2n - 1)! A 2 '- 2)'
(100)

(-VQ, (_-(kr)2J-1 (2n_-2j_ -)U
sinA (tQ -r) F +j.1 (2n - U) A~nz

(_1).., (th-r)2 n'- si(A(tk -r))],

(2n - 1)!
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6 -; cosaQ(t - r)
C22 1fA .2n -1 dci

n -2

n -I (-lV'lQt -r)2(j-'l)(2n - 2j - V)
Sc12,2 .- [cosA(th-r) E +

n.2 j.1 (2n -2)! A (101
f-1

sinA(tk-r) (-1(tk-r)2J-'(2n-2j-2)! +

(2n -2)!

Using the same procedure, the integral with kernel k21(r,s) in Eqn. (80) may be

expressed as

k2l(r~s) f1(s)a ds - na E n 1 [ E (a-a "
j0 n k.- 1.- 2

-1 • cosaa(tk-r)(12

wi D;1(yi)cosyia(tk-r)) + C21i . dc- (102)
iia-2 fA W

JA + At. P)) cosa-1 + Tj(r) }.

(.+log JAa IOSV+- dc) I Titk) T __foa j 4 j

But as mentioned earlier, k1,2r, s) = k21(rs), Eqn. (102) therefore need not be

computed, but can be obtained by simply changing the sign of k,2(r,t,) which has

already been calculated.

We have shown that the sine integral si(A(tk.-r)), which contains a step function,

is to be separated from the kernel and integrated in closed form. A similar procedure

is applied to the cosine integral Ci(A(t,-r)), which has a logarithm term (see Eqns. (84)

and (96)). These steps are taken because the numerical procedure's inability to

integrate properly either the step function or the log function. Recognizing the

presence of additional sine integrals in Eqns. (93) and (100), as well as cosine

integrals in Eqns. (92) and (101), one might suspect whether it is also necessary to
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separate these terms which contain the discontinuous functions mentioned above. A

closer look at Eqns. (92), (93) and (100), (101), however, reveals that the sine and

cosine integrals have accompanying power functions. The presence of these power

functions cause the discontinuity in the step function and the weak singularity in the

logarithm function to be both continuous. Thus we can proceed with the Gaussian

integration and get a good approximation without having to separate these sine and

cosine integrals. In Appendix D, we shall illustrate this fact by way of examples to

show the dampening effect of the power function on the step function as well as the

logarithm function and the usage of Gauss' formula to evaluate integrals involving

these functions.

We normalize the single-valuedness condition of Eqn. (55) so that the limits of

integration become from -1 to 1

f1 fi(s) ds - 0, i-1, 2, (103)

Substitute the representation of the density functions in terms of summation of

Chebyshev polynomials and the unknown coefficients

S Tj/s)
fi(s)- F, Bj , i - 1, 2, (104)

j0-

into Eqn. (103), and noting that To (s) = 1, we obtain

SBiJ - To() ds - 0, i - 1, 2. (105)
ji-0 _ 2

Since the Chebyshev polynomial of the first kind are orthogonal with respect to the

weight function 1 , we conclude that
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B1 o - 0, i - 1, 2. (106)

The unknowns in the linear system thus become, Bj and B 2 j 1... p, a total of

"2p" unknowns. To solve this linear system, we need to know "2p" distinct values in

the forcing functions as the right hand side of the linear system. Let

r. - Cos( 2 m-l)7, m p. (107)2p

r, m = 1 .... p are the points where the forcing functions p, (r) and P2 (r) are to be

evaluated, thus forming the right hand side vector. Based on the foregoing discussion,

we can write the system of singular integral equations as a system of linear equations

as follows

x +1 P an
'-Pier.n) E_ Bj { 1 Ul(r.) + -a1..,

-_ - IB (Urinm) - kl'1(tk,rm) Tj(tk)+j in ,.

_a Uj-1(rn) (2 10n

{a +B2 j , a k•2 (tk,rm) Tj(tk)+ (108)
4 j k.1

ya Tj(r_ ) }, m p,
4 J7

B+I k+2(tk,r.) Tj(tk)+"ý-p&,rn) ". B2j I Uj -I(rn) + an ,. k2

P1 j-1 k-I

ya Uj i(r.) 1- Ba (109)
rm n+BII- E'm(k~. Tjtk

4 nk.1

ya Tj(rm) } m 1...p,

4 j

where
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N q

k,(tkr.) . F [aL-a_, • w, (D11(y,)-.1) sinya(th-r.)] +
1.l 2 i 4

(110)

"sinaa(tk-r.)

N aq-a q

k't. = [ a- L - w, Dj*y,) cosya(t,-r.)] +1=1 2 
,-1

(111)

" C~• f. cosaa(th-r.) do.
i-2 (Xif C

2 L Wi D;1(y8) cosyia(tk-r,)] +
1.1 2 i-I

(112)

"C - cosaa(t,-r.) dor,

N q

22 E r a-a. j w, (DL(y,)--2) siny, a(t,-rr.) +
1.1 2 i 4

(113)
11 - sinaa(t, -r.)

C;V -do..i-2 fA Oe

Eqns. (108) and (109) form a "2p" by "2p" linear system.

It should be pointed out that the choice of collocation points r, m = 1 .... p in

Eqns. (108) and (109) is arbitrary. The only restriction is that r. * t,, which is

imposed out of numerical convenience. Because r, = tk would make any closed form

evaluation of integrals that involves oscillatory sine and cosine functions invalid. On

the other hand, the choice of collocation points affects convergence of the final

solution. According to [25], it is best to choose them so that they are zeroes of
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Chebyshev polynomials. Since t,, k = 1 .... n are also zeroes of Chebyshev polynomials

by definition, we find that rm = tk can simply be avoided by letting n be even and p

odd, or vice versa.
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3.3 Stress intensity factors

The stress intensity factors for our problem are defined as follows

k,(-a) - lim,!r2(-a-x) ay(x,O), (114)
x- -a

k,(a) - lirn 2(x-a) as,(x,O), (115)
x-4 a

k 2(-a) - lirn v/2(-a-x) o.y(x,0), (116)
s-. -a

k2(a) - l !r 12(x-a) acy(x,O), (117)
xz- a

In order to investigate the stress singularity near the crack tip, we need to

obtain stress expressions for our problem. We recognize that while the stresses inside

the crack give us the system of singular integral equations, these equations also

provide us the stress expressions outside of the crack at y = 0, provided the density

functions are known. Thus from Eqns. (46) we can write

_(X + 1) (Y-(x,O) fl(-) dt + faki(xt)fi(t) dt +fak,2 (x,t)f 2(t) dt,
2p, YY t -x-

"(•:+ 1 ,(,O) dt + f_:k 2 (x,t)f,(t) dt + f k 2 2(x,t)f 2 (t) dt, (118)

x<-a, x>a.

We expect the stresses to be singular at the crack tips. Furthermore from Eqns. (114)

through (117), we know that any singular terms in the stresses weaker thaL the

square root singularity, as well as regular terms, will vanish because of the

expressions in the radical and the limiting process. Also recall that the terms
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involving Fredholm kernels are bounded everywhere; hence the limiting process will

serve to eliminate them and we need only concern ourselves with the singular terms.

We may express the leading terms of normal stress at the beginning of the crack tip

as

lm a0"(x,O) - lim 2pi1 ) (119)

Recall that

f1(t) _ i - 1, 2. (120)(t +a)"2(a -t)"2'

As will be discussed in Appendix F regarding the behavior of Cauchy integral, we can

express it as follows (see Eqn. (F.18))

dt - n (x.x+a) "T - O;. e (x -a) + Px,t -x sin 7 sin_7C
n sn (121)

S7r i [0 (-a) (x+a) 0 ; 4•(a) (x-a) '7] + P(x).

Also from Appendix F, we can show that

1 1 1 1
F1 (t) - *0(t) (a -t)7 + i O;(t) (t +a)" + s(t) (t +a)" (a -t)7, (122)

In Eqns. (121) and (122), P(x) is bounded everywhere except possibly at the end points

-a, a, where it has singularities no higher than the square-root singularity and ",

and 0* are all bounded functions. Thus, we obtain

F,(-a) - 0 *(-a) V2/a. (123)

We can easily see that a, is singular at x = -a from Eqns. (119) and (121). At the
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crack tips, the stresses will be dominated by the singular term. We may write Eqn.

(119), with the help of Eqn. (123), as follows:

liur a(xO) = lim 2i 1  *(-a)
14 - z-a K+1 ý-a-x

(124)
- ia2p..2- F,(-a)

X-4 -a - *+1 /2a(-a-x)

Substituting Eqn. (124) into Eqn. (114), we obtain the Mode I stress intensity factor

at the crack tip x = -a as

ki(-a) - 2Oi1 Fa(-a). (125)(K-.I) V•

Similar to Eqn. (123), from Eqn. (122) we obtain F1 (a) - i 0;(a) v2 The

dominant term of ay; at the other end of the crack tip may then be written as

2p,1 i 0;(a)

(126)

- i- 2•21  F,(a)
1.-,o K+1 /2a(x-a)

Substituting Eqn. (126) into Eqn. (115), we obtain

k,(a) - - (I+1 Fa (a). (127)(K+I) V'•

The mode II stress intensity factors at either end of the crack tip are obtained by the

same process. They are
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k 2(-a) - 2(__ (-a). (128)
(K+l) Va_

k2(a) - - 2___ F2(a). (129)(K÷I) VW

These stress intensity factors may be conveniently evaluated from

p

F5(s) - Bj Ti(s), i - 1, 2, (130)
j. 1

where BEj, i = 1, 2, j = 1 .... p, come directly out of the solution of the linear system

from Eqns. (108) and (109).

3.4 Crack opening displacements

As a result of discussions carried out in section 3.2.3, the crack opening

displacements may readily be computed. Combining Eqns. (85) and (86), we obtain

the y component of the COD as

P -B _ ( .) (131)
v2(x,0+) - v1(x,O-) - E -B1  - G 1-(x (1

It is not difficult to show that the x component of the crack opening displacement

would be

u2(x,0+) - u1(x,0-) - F -B 2i a () (132)
j.1 j F a

Since the stresses have a square-root singularity, the crack opening displacements are
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bounded at the crack tips and they vanish as the square-root of the distance measured

from the crack tip, as shown in Eqns. (131) and (132).

3.5 Strain energy release rates

The strain energy release rate, is defined as one half the rate of change of

strain energy per distance of crack propagation

G = I- aw(133)
2 aa

The strain energy release rate may be seen as the force tending to open the crack

surface. Its evaluation requires only a knowledge of the stresses and displacements

near the crack tip. From reference [261, we may express the strain energy release

rate solely in terms of the stress intensity factor and some material constants. The

opening mode and sliding mode strain energy release rate are found to be

1r(X + 1) 2

(134)

G2  1 =(K+ 1) k2

respectively. The total strain energy release rate becomes

G - r(1+1) (k 2 + k2). (135)8pl1

Let G. be the strain energy release rate of a crack of length 2a in an infinite

elastic homogeneous medium with the same material properties as those of material

1 under uniform normal stress (Y_ = co at infinity. We then obtain
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Go  + 1)k 1') (136)8)11

k,,. is the Mode I stress intensity factor under the configuration mentioned, and from [27]

we know that k1 ,. , -0VF. Therefore

o (137)

3.6 Convergence

Near the end of section 3.2.3, we have successfully converted the system of

singular integral equations to a linear system of the size "2p" by "2 p" (Eqns. (108) and

(109)), where "p", is the number of terms in the summation that make up the density

functions which are the unknowns in the SIE's. 'ýp" is also the number of collocation

points which we evaluate the forcing function to form the right-hand-side vector of the

linear system. A look into the previously mentioned equations reveals that the

number of terms in the Gauss-Chebyshev integration formula "n" is something we

should also determine when solving the linear system. Furthermore, we shall decide

the "A" value which is the integration cut-off point for the semi-infinite integral in

Eqn. (65). Therefore, there are still these three parameters that need to be fixed for

the linear system. We say the solution to the system of the singular integral

equations has converged when changing any of the three parameters does not affect

the numerical value of the solution of the linear system.

Of the three parameters that we mentioned earlier, the Gauss terms "n" and

the collocation points "p" are both integers, the integration cut-off point 'A", however,

is a real number. While the relative magnitude of the two integer parameter are

easier to measure in attempting to achieve convergence of the solution, since one could
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start with an arbitrary small integer, we need to establish the magnitude of the third

parameter. Recall in Eqns. (64) and (70) that 'A" is the value which makes the

integral

sina(t -x)
f [Dj;(a)-d <(a)] or dca, i,j - 1, 2, (138)

cosa(t -x)

negligible. A look at Eqns. (B.59) through (B.62) shows that the last term of diJ(c,),

i, j = 1, 2 is in the form of 0(0) Therefore, even though we do not know
4096a"

the exact expressions of D5 ;(a), since di,;(c) is the first 11 terms of Df(cc) when it is

expanded asymptotically, the leading term of Di j(Yc) - d, f(X) must be a term like
722 0(0) . This gives us a basis of determining the value "A". Assume that

8192a12
when

?12 M E, (139)

8192 A' 2

where £ is a very small number, we can ignore Eqn. (138). We can easily deduce that

A 17I (140)
'ýI8192

Granted that the initial assumption of E might not render an "A" such that Eqn. (138)

is close to zero, just as the initial guess of the other two parameters "p" and "n" might

not render the solution anywhere near convergence, however, it provides something

that we can improve on.

From the stand point of solving the singular integral equation, we say that the

solution has converged when changing the 'A" value produces the same numerical

value, provided the other two parameters have been determined. With the perspective

of numerically computing the integral in Eqn. (65), however, the stabilization of

solution takes on a different meaning. As will be described in detail in Appendix E,
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when "A" reaches to a point where it makes the value of some component terms in

D,,"(a) to reach the limit of floating point overflow for a real number, the ter r, ) ,*(a)

- d11"(a) is identically zero from the numerical computation stand point. Any turther

increase in 'A" will only serve the same purpose. As a matter of fact, it is even

possible to have "A" so large, that in evaluating the kernel k 1 (r,s) the second integral

in Eqn. (62) can be completely ignored. But to do so is to defeat the whole purpose

of going through the exercise of asymptotic expansions detailed in Appendix B. But

as we will show in Appendix E, for the majority of the cases considered in this study,

it does not take a large "A" to make the terms in D11 (c) to reach the machine

constant. From the above discussion we conclude that as £ gets smaller, Eqn. (138)

will diminish and the solution of the SIE's must converge.

We start a pilot case by taking for the value of the material constants,

Poisson's ratio, v = 0.3, the non-homogeneity parameter of material 2, y = - 3.0,

geometry constants such as the thickness of material 1, h, = 10 a, that of material 2,

h2 = a (a is half the crack length). A uniform unit normal stress over the entire crack

length acts as the forcing function. To save computer time a liberal value of £ = 1.0

x 10 " is used. To our pleasant surprise, we find that the solution, even though far

from being converged for the "p" and "n" parameters we have selected, does not

depend on "n", the number of terms in Gauss-Chebyshev integration formula.

Figure 4 shows one of the parameters obtained as part of the solution, the Mode I

stress intensity factor, changes as the number of collocation points "p" increases, but

remains virtually constant with respect to the changes in the number of Gauss terms

n"

Having fixed one parameter, namely the gauss terms, in the quest of a

converged solution of our linear system, the next logical step would be to see how the

solution changes with respect to variations in the number of collocation points.
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Figure 5 shows that as the number of collocation points increases, the solution

converges quickly. A number of no more than 24 collocation points is sufficient to

make the solution to reach the asymptote as shown in Figure 5. The final

convergence of the problem is reached when the solution remains accurate to a certain

digit with respect to the variance of the last parameter s.

To ensure convergence of the solution for all the cases computed in this study,

every number is computed at least six times; each time varying one parameter. The

parameters used for each computation is listed in Table I. An accuracy of four

significant figures is maintained for each of the six computations in every case

calculated in this work.

As we have mentioned earlier and as will be explained in Appendix E in detail,

for most cases it does not take a very large "A" for Eqn. (138) to become negligible.

From the vantage point of numerical computation we want to keep 'A" as small as

possible, provided we can still obtain a converged solution. The reason for this is that

a smaller 'A" means less effort in integrating Eqn. (89). From Eqn. (140) we can

easily see that 'A" is indeed rather small. For y = 1.0 and c = 1.0 x 1011 we need only

to integrate Eqn. (89) from 0 toA = 3.90. When y = 0.1, A becomes 0.39 according to

Eqn. (140). But there is a limit below which the 'A" value will make Eqn. (138) no

longer negligible. Figure 6 illustrates this by showing a plot of the normalized strain

energy release rate vs. the nonhomogeneity constant (y) for the case h I/a = 100, h2 /a

= 0.5, v = 0.3. We see a pronounced dip in the computed parameter when IyI < 1.0,

where it should have been a very smooth transition as y varies.

Let us keep in mind that this deviation occurs because we want to keep 'A"

small to reduce numerical computing effort. If we have kept the same "A" (the

largest) for the worst case, namely IyI = 3.0, and use it for computing any other case

which has a smaller y, the deviation would not have happened. We would at most
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wind up with a less efficient use of computing time. But to put the anomaly just

described in a different perspective, let us explain it as follows.

As IJI gets smaller, the magnitude of every term in the Fredholn kernel is

getting smaller at the same time. But the basis we use to determine 'A", is built on

dropping certain terms when the leading term is less than an absolute number E, as

shown in Eqn. (139). Therefore the relative importance of these terms that are being

dropped increases as fJy gets smaller and smaller, hence the deviations as shown in

Figure 6. These deviations are something on which changing the parameters as

shown in Table I has no affect; meaning we will still have convergence on the surface.

Only when we examine any of the parameters that we seek, such as SIF or strain

energy release rate, with respect to the changes in the nonhomogeneity constant, do

we notice the aberrations.

The remedy for this situation is of course trivial; we could simply use a larger

"A". For those cases of nonhomogeneity constant that fall into this range, we merely

substitute a y value in Eqn. (140) that is outside of the range, fyf = 1.5, to be

conservative in this particular example, instead of using the actual y value.
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Table I. Different parameters used for each computation in order to obtain a

converged solution.

No. e p n

1 1.0 x 10"11 22 51

2 1.0 x 10"11 22 61

3 1.0 x 10.11 24 51

4 1.0 x 10"11 24 61

5 1.0 x 10-13 (1) 24 51

6 1.0 x 1013 (1) 24 61

Note: (1) Except for the two cases (a). h, = 100a, h 2 = 0.Sa (b) h, = lOOa, h. =

0.25a, where c = 1.0 x 10".1.

(2) These parameters are used for all the cases compiled in Chapter 4

except as noted in (1).

(3) A uniform accuracy of four significant figures convergence is obtained

for each computation with the parameters used as Jisi I.
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Figure 4. Mode I SIF vs. number of Gauss terms with collocation points 2, 4, 6, 8

for E = 1.0 x 10 ". Material constants: v = 0.3, y = -3.0. Geometry constants: h, =

10 a, h2 = a.
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Figure 5. Mode I SIF vs. collocation points for F - 1.0 x 10 .i, n = 31. Material

constants: v = 0.3, y = -3.0. Geometry constants: h, = lOa, h 2 = a.
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Figure 6. Example to show that too small a value of "A" could result in Eqn. (138)

not negligible.
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3.7 Direction of crack growth

We observe that, due to lack of symmetry in our problem since material 2 is

non-homogeneous in the y-direction, and mixed-mode condition exists regardless of

whether the loading is of one mode or mixed. That is why we'll see in Chapter 4 that

both k1 and k2 are non-zero for all the loading conditions computed. With this

mixed-mode conditions, it is apparent that the crack will not advance along the

interface. In order to predict the direction in which the crack grows, one needs to

examine the stress state in the near field of crack tip. The stress state, in polar

coordinates (see Figure 7), in the neighborhood of the crack tip can be written as

follows [28):

a,,. -- cscos oR.(1+Sin2 0) +3 k2sinO-2k)tan I +O(r2
2 2 22

sý4kjco2 2 7,k sin8]+O(r (141

-T' 1 cos ( [klsinO-k 2(3cosO-1)]+O(r7).

Following [291, [301, the direction of the probable crack propagation may be

determined by the plane of the maximum cleavage stress c•(r,8) around the crack tip.

We obtain this direction either by solving the following equation

a [2Tr ia.(r,0)] - 0. (142)

which is to find the direction where a,(r, 0) remains stationary, or, if we recognize

that it is equivalent to finding the directions of the principal stress, simply solving

ae(r,O) = 0. Whichever case is used, we obtain
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cos20[ksinO +k2(3sin0-1)] - 0. (143)

cos... = 0 gives 0 - ±tx, which corresponds to the surface of the crack. The second
2

term in Eqn. (143) prc Aides the non-trivial solution and it may be expressed in the

following quadratic form so that it is more easily solved

tan 0--tan- 0, (144)
2 2k 2  2 2

Note that the direction of probable crack growth is dependent only on the stress state
1

around the crack tip. Therefore rY and subsequent terms need not be included in

the foregoing analysis because they vanish around the crack tip.
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Chapter 4

Results And Discussions

4.1 Introduction

In applying the solution of our problem to actual cases, we consider two

material combinations. One that has a non-homogeneous material which is "softer"

than the homogeneous material, as can be represented by y < 0. For example, a thin

film of gold, silver or lead to be deposited on Nickel or steel bearing and sliding parts

as dry film lubricant[ll2] has this kind of characteristics. Gold has a modulus of

elasticity of 10.8 x 106 psi., Nickel and steel have moduli of elasticity of 32 x 106 psi.

and 29 x 106 psi. respectively. On the other hand, refractory heat-shield materials on

metal substrates may or may not have a surface Young's moduli higher than those of

the substrate. Refractory materials have Young's moduli anywhere from 10 to 70 x

10W psi. The range of Young's modulus for the metal substrate could be even more

diverse. Thus we may have a homogeneous material either stiffer or softer than the

nonhomogeneous layer, depending on the particular application.

The material and geometry constants used in the computation of the cases in

this chapter are designed to cover a broad range of possible material and geometry

combinations. The non-homogeneity constant used in the computation, ranges from

-3 to 3. As for Poisson's ratio, a value of 0.3 was used in the computation. A separate

investigation, however, on the effect of the changes in Poisson's ratio is done on one

of the geometry combinations. The different cases of geometry and material constant

combinations computed is shown in Table IL Only two loadings cases were

investigated, namely the uniform normal stress and uniform shear applying at the
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Table II. Material and geometry constants combinations computed in the present

work.

Case No. hl/a h 2/a Poisson's ratio v

1 100

2 10

3 2
100

4 1

5 0.5

6 0.25

7 10 0.3

8 4

1
9 2

10 1

11 100 1 0.01, 0.1, 0.2, 0.3, 0.4,

0.499
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top and bottom surfaces of the crack (Figure 9). Due to the myriad of loading

combinations conceivable, these two loadings computed illustrate perhaps the most

general cases. In addition, the result of these two loading cases for when the two

materials are very thick provided verification and comparison of results of a similar

problem with two half planes.

4.2 Results and discussions

The first thing to do after obtaining the solution of the system of integral

equations is to compute a case with parameters very close to one whose solution has

been known and to compare the results. Reference [16] solved an interface crack

problem of a similar nature to what is done in the present work. The only differences

are that in [16] the two materials are both half-spaces rather than of finite

thicknesses and the Poisson's ratio exhibits the same nonhomogeneous properties as

that of the Young's modulus for material 2, whereas in this study the Poisson's ratio

is treated as a constant. To make a proper comparison, we can make the thickness

of both materials to be very large, e.g., h, = h2 = 100a. As for Poisson's ratio, a value

of 0.3 is used. We will show later in this chapter that the effect of the changes in

Poisson's ratio is not significant.

Figure 10 and Figure 11 show the Mode I and II stress intensity factors under

the loading of normalized uniform normal stresses of the above mentioned two cases.

Figure 12 and Figure 13 show the same stresses intensity factors under normalized

shear stresses. Comparison of the these results shows that they can be very closely

71



... .. .. .
....... .... ............

* Ma

Ma a
x

*(2)

Fiur9.Laigusdithprsnwok(1.uiomnraste,

(2) unfrser

* 72



OQ I

LO0 0
00

I-

LO)

Cý)

C~Cl

Figure 10. Comparison of Mode I SIF for interface crack between (1). two infinite half

planes, and (2). hl=h2=100a under loading of uniform normal stress.
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Figure 11. Comparison of Mode II SIF for interface crack between (1). two infini

half planes, and (2). hl=h 2=lOOa under loading of uniform normal stress.
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Figure 12. Comparison of Mode I SIF for interface crack between (1). two infinite half

planes, and (2). h1=h2=100a under loading of uniform shear.
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Figure 13. Comparison of Mode II SIF for interface crack between (1). two infinite

half planes, and (2). hj=h 2=lOOa under loading of uniform shear.

76



correlated with differences perhaps attributed to the difference in Poisson's ratio.

We next examine the various cases computed in this work. Figure 14 through

Figure 25 show the normalized strain energy release rate and Mode I and Mode II

stress intensity factors for the cases where h, = 100a remains unchanged, only h 2

varies, under the two loadings described in Figure 9.
First of all, all the parameters computed for cases (1), hj = 100a, h, = 100a, and

(2). h, = 100a, h2 = 10a, are identical to the third digit on the right hand side of the

decimal point. This is why results of case (1) are not shown in Figure 14 through

Figure 19. And it tells something about the nature of the cases when both materials

are thick; as the nonhomogeneous material gets thicker, beyond h2 > 10 (may be even

less than 10), any further increase in h2 has no effect on the outcome of the solution.

When y < 0, it is as if any material beyond h 2 > 10 does not exit, because large h2 and

the negative sign in the exponential have made p2 close to zero. On the other hand,

the positive y, together with large h2 has made materials beyond h2 > 10 to be like a

rigid body. It explains why we see in Figure 14 through Figure 19 that the all

parameters tend to converge at the two extremes of the nonhomogeneity constant

where they are essentially the same as the half planes case. Only when Y is small do

we see the deviation from the half planes case.

The Mode I stress intensity factor under both loadings exhibits a downward

trend as the nonhomogeneity constant y increases from negative to positive. This can

be explained partly with the help of the discussions on the relative stiffness of the

nonhomogeneous material as its thickness increases. The changes in the

nonhomogeneity constant is showing a similar effect. Large Y on the negative side

means the crack is closer to the free surface; smaller ligament thickness indicates
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easier tear along the interface, therefore a larger mode I stress intensity factor as

shown in Figure 15 and Figure 18. This argument explains clearly the upward trend

of k, in the same figures as the nonhomogeneous layer gets thinner. Since case (21

hi = 100a, h2 = 10a, is identical to the half planes case as far as the number of digits

in the parameters we obtain, it is only appropriate that the stress intensity factors

exhibit the same traits as the half planes case. That is why for y = 0 we see for case

(2). the Mode I SIF, k/a) = 1.0 and Mode II SIF, k/a) = 0 under uniform normal

stress, as shown in Figure 15 and Figure 16. Similarly for the same case (2)., Mode

I SIF, k1(a) = 0 and Mode II SIF, k/(a) = 1.0 when the loading is uniform shear, as

shown in Figure 18 and Figure 19.

Due to the nonhomogeneity of the medium, the stress intensity factors exhibit

mixed mode condition even though the loadings are of one mode. But in general,

Mode II SIF is of secondary importance as compared to Mode I under uniform normal

stress, just as Mode I SIF is secondary as compared to Mode II when the loading is

uniform shear. These facts can be verified by the relative magnitude of k, and k2

under respective loading as shown in Figure 15 through Figure 19. Furthermore,

because the geometry of the problem is symmetric with respect to the y-axis, the shear

stresses are anti-symmetric under uniform normal stress loading. Therefore the Mode

II SIF under uniform normal stress has different signs at each end of the crack tip.

This can also help to explain why k/a) goes through a sign change as - changes from

negative to positive in Figure 16. We know that when y < 0, the homogeneous

material is stiffer than the nonhomogeneous material. Whereas the reverse is true

when y > 0. We can envision the change of sign in shear stress as y goes from

negative to positive as if the geometry of the problem has been rotated 180 degrees.
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Because what used to be stiffer (material 1) when y < 0 is "softer" when y > 0, the sign

of the shear stresses at x = -a when y < 0, which is positive, is exactly what it should

be at x = a when y > 0. But as h2 gets thinner and thinner, the tendency of this Mode

II SIF under normal stress to change sign as y goes from negative to positive because

of the relative material stiffness explained earlier as shown in Figure 16 is being

offset by the less and less ligament between the crack and the free surface. As a

result the tendency to change sign is less as h 2 becomes thinner. This is reflected

clearly in Figure 22 where we see for h2 = a, k2 changes its sign at y = 2, whereas for

h2 = 0.5a and h2 = 0.25a, k2 remains negative.

It should be pointed out that for uniform shea- loading, ay is symmetric with

respect to the y-axis and a(Y becomes anti-symmetric. As a result k2 is positive at

either tip of the crack whereas k, undergoes a sign change from one crack tip to

another. But examination of the vertical crack opening dispiacement under this

loading (see Figure 41) reveals that (v÷ - v) is negative on the left half of the crack.

This means the upper crack surface has penetrated into the lower crack surface,

which is not permissible. What actually would have happened is that the crack would

have opened for only a portion of the crack length, and would remain closed for the

remainder. The problem needs to be reformulated if we want to solve it under this

loading.

The normalized strain energy release rate would reflect the combined effect of

both k2 and k2 in each loading for it is a function of (k, 2 + k2
2 ) as discussed in Chapter

3.
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Figure 14. Normalized strain energy release rate of interface crack for (1). h1=100a,

h 2=lOa, (2). h1=lOOa, h 2=2a, under loading of uniform normal stress.
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Figure 15. Normalized Mode I SIF of interface crack for (1). h,=100a, 12=10a, (2).

h,=100a, h2;2a, under load~ing of uniform normal stress.
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Figure 16. Normalized Mode II SIF of interface crack for (1). h1=100a, h2=10a, (2).

h1-1O0a, h2=2a, under loading of uniform normal stress.
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Figure 17. Normalized strain energy release rate of interface crack for (1). h,=lOOa,

h2=lOa, and (2). h1=lO0a, h2=2a, under loading of uniform shear.
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Figuare 18. Normalied Mode I SIF of interface crack for (1). h,=100a, h2=10a, (2).

h,=lO0a, h,=2a, under loading of uniform shear.
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Figure 19. Normalized Mode II SIF of interface crack for (1). h1=100a, h2=10a, (2).

hq=1=la, hq=2a, under loading of uniform shear.
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Figure 20. Normalized strain energy release rate of interface crack for (1). h 1=100a,

h 2=a, (2). h1=lOOa, h 2=O.5a, (3). h1 =lOOa, h 2=O.25a, under loading of uniform normal

stress.
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Figure 21. Normalized Mode I SIF of interface crack for (1). h,=100a, h2=a, (2).

h,=100a, h2=O.5a, (3). h1=100a, h,=O.25a, under loading of uniform normal stress.
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Figure 22. Normalized Mode II SIF of interface crack for (1). h 1=100a, h 2=a, (2).

h1=lOOa, h 2=O.5a, (3). h 1=lOOa, h 2=O.25a, under loading of uniform normal stress.
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Figure 23. Normalized strain energy release rate of interface crack for (1). h=l100a,

h 2=a, (2). h1=lOOa, h 2=O.5a, (3). h1=lOOa, h2=O.25a, under loading of uniform shear.

89



C56 6

UM,

aC")

aC)

- 04

900

0 N

* Ci

N C LI c• • N •.- 0 t-

Figure 24. Normalized Mode I SIF of interface crack for (1). h,=100a, h2=a, (2).

h,=lOOa, h2 -O.5a, (3). h,~lO0a, h2--O.25a, under loading of uniform shear.
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Figure 25. Normalized Mode II SIF of interface crack for (1). h1=100a, h2=a, (2).

h1=lOOa, h2=O.5a, (3). h1=lOOa, h2=O.25a, under loading of uniform shear.
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Figure 26 through Figure 31 show the normalized strain energy release rate

and Mode I and Mode II stress intensity factors when h2 = a and h1 varies under the

two loading conditions. Again, the Mode I stress intensity factor under uniform

normal stress decreases as y goes from negative to positive. It also increases with

decreasing ligament size in material 1, as can be seen in Figure 27. The Mode II SIF

under uniform normal stress shows the same tendency to change sign as y goes from

negative to positive. For the same reason in the cases where h1 = 100a and h2 varies,

Figure 28 shows that the tendency for the sign change is discouraged as h, becomes

thinner. It is worth noting that only when h 1 = h2 = a and y = 0 do we see one mode

as signified by k2 = 0 under uniform normal stress in Figure 28 and k1 = 0 under

uniform shear as seen in Figure 30. The rest of the cases, either because

nonsymmetric geometry or nonsymmetric material constant (nonhomogeneity), are of

mixed mode.

The effect of the changes in Poisson's ratio on the strain energy release rate

and stress intensity factors for the case h, = 100a, h 2 = a under the two loadings are

shown in Figure 32 through Figure 37. We note that for plane strain K = 3 - 4v,

therefore K is equal to 1 and 3 respectively for Poisson's ratio of 0.5 and 0. Either of

these two values of K causes some term in the denominator to become zero during the

course of numerical computation (see Eqn. (1) in Chapter 2). To avoid dividing by

zero, Poisson's ratios of 0.01 and 0.499 are used instead. From Figure 32 through

Figure 37, we see that changes in Poisson's ratio does not b ave a pronounced effect

on the parameters calculated, except for very large values of y, as evidenced by the

closeness of the curves. These comparisons also show that when the materials are

homogeneous, the stress intensity factors are independent of the Poisson's ratio. It
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Figure 26. Normaliz~ed strain energy release rate of interface crack for (1). h1=10a,

h2=a, (2). h,"-4a, h2=a, (3). hl=2a, h2=a, (4). hl=h2=a, under loading of uniform normal

stress.
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Figure 27. Normalized Mode I SIF of interface crack for (1). h1=10a, h2=a, (2). h,=4a,

h2=a, (3). hl=2a, h2=a, (4). hl=h2=a, under loading of uniform normal stress.
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Figure 28. Normalized Mode II SIF of interface crack for (1). h1=10a, h 2=a, (2). hl=4a,

h 2=a, (3). h,=2a, h 2=a, (4). hl=h 2=a, under loading of uniform normal stress.
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Figure 29. Normalized strain energy release rate of interface crack for (1). h1=10a,

h2=a, (2). h,=4a, h2=a, (3). h,-2a, h2=a, (4). hl=h2=a, under loading of uniform shear.
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Figure 30. Normalized Mode I SIF of interface crack for (1). h1=10a, h2=a, (2). h,=4a,

h2=a, (3). h,=2a, h2=a, (4). hl=h2=a, under loading of uniform shear.
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is evidenced by the SIF's for all values of Poisson's ratio converging at Y = 0. Before

we attempt to justify the behavior of the parameters shown in Figure 32 th. nugh

Figure 37, we recognize that v = 0 signifies no lateral strain and v = 0.5 represents

no volume change, which is also the maximum lateral strain allowed. Poisson's ratio

of value larger than 0.5 is unlikely because in the case of tensile loading it means

there is a volume decrease. Based on the above discussions, when y < 0, we can

interpret v = 0 to be stiffer than v = 0.5, therefore a smaller SIF as seen in Figure 33

and Figure 37. But the same can not be said for cases when y > 0. Actually we see

just the reverse. The above argument can also be applied to explain the small

difference between the parameters computed in [16] and case (1). in this work. As

mentioned earlier, the Poisson's ratio is treated as a constant in this work and varies

the same way as does the shear modulus for material 2 in reference [16]. As a result,

everything else being equal, for y < 0 the nonhomogeneous material in [16] is actually

stiffer than when v remains constant as y increases. Therefore Figure 10 and

Figure 13 show the result in this work to have a larger stress intensity factor.

Figure 38 through Figure 41 show crack opening displacements for the case h,

= 100a, h2 = a and y = -3.0 whereas Figure 42 through Figure 45 show COD's for the

same geometry except y = 3.0. Figure 38 and Figure 39 are typical of the crack

opening displacements one would expect under uniform normal stress. The horizontal

component displays a movement toward the center of the crack at which point the

horizontal displacement is zero. The vertical component of the COD, on the other

hand, has an elliptical shape. The crack opening displacements under uniform shear,

however, is a reverse of what have just been described. The horizontal component has

an elliptical distribution whereas the vertical component shows a change in direction
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Figure 32. Normalized strain energy release rate of interface crack for h1=100a, h2=a

at v=0.01, 0.1, 0.2, 0.3, 0.4, 0.499 under loading of uniform normal stress.
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Figure 33. Normalized Mode I SIF of interface crack for h, 1 0Oa, 11=a at v=0.01, 0.1,

0.2, 0.3, 0.4, 0.499 under loading of uniform normal stress.
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Figure 34. Normalized Mode II SIF of interface crack for h1=lO0a, h2=a at v=0.01, 0.1,

0.2, 0.3, 0.4, 0.499 under loading of uniform normal stress.
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Figure 35. Normalized strain energy release rate of interface crack for h1=100a, h2=a

at v-0.01, 0.1, 0.2, 0.3, 0.4, 0.499 under loading of uniform shear.
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Figure 36. Normalized Mode I SIF of interface crack for h1=100a, l2=a at v=0.01, 0.1,

0.2, 0.3, 0.4, 0.499 under loading of uniform shear.
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Figure 37. Normalized Mode II SIF of interface crack for h,=100a, h,=a at v=0.01, 0.1,

0.2, 0.3, 0.4, 0.499 under- loading of uniform shear.
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of the relative crack surface movements on either half of the crack, as seen in

Figure 40 and Figure 41. The implication of this behavior is quite different from the

horizontal COD under uniform normal stress. Negative vertical COD is not

permissible for an originally closed crack because it means the crack surfaces have

penetrated each other. And as have been indicated earlier, in this case the crack

would remain closed for some portion and the problem would have to be reformulated.

Figure 42 through Figure 45 show crack opening displacements for the case

otherwise the same as those shown in Figure 38 through Figure 41 except y = 3.0.

One easily sees the difference in scale between corresponding displacement component

in these two groups. The former represents when material 2 is very soft (y = -3.0)

therefore crack opening displacements are much larger than when it is very stiff (y =

3.0). There is a peculiar behavior in the horizontal component of COD under normal

stress as well as the vertical component od COD under uniform shear; that is in

addition to the zero movement at the center of the crack, there are two additional

zeroes.

The angle of probable crack extension at crack tip x = a as measured from the

x axis as a function of the nonhomogeneity constant is shown in Figure 46 and

Figure 47. Because the uniform shear loading case shows negative Mode I SIF which

requires problem reformulation due to portion of the crack not being open as discussed

earlier, only the uniform normal stress loading is investigated. Generally, the two

figures display the same trend; (1). For the same geometry, a shear modulus of the

nonhomogeneous material going from weak to stiff will see the angle of crack

extension change from large to small, and in the case where the two materials of the
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Figure 38. Crack opening displacements (u÷ - u') of interface crack for h 1=lO0a, h2=a,

y= -3.0 under loading of uniform normal stress.
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Figure 39. Crack opening displacements Wv - V) of interface crack for h, 1 00Oa, h,=a,

y=- -3.0 under loading of uniform normal stress.
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Figure 40. Crack opening displacements (u÷ - u) of interface crack for h1=100a, h2=a,

y= -3.0 under loading of uniform shear.
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Figure 41. Crack opening '"splacements (vW - v) of interface crack for h1=100a, h2=a,

yy= -3.0 under loading of uniform shear.
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Figure 42. Crack opening displacements (u÷ - u-) of interface crack for hl=100a, h2=a,

"y-3.0 under loading of uniform normal stress.
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Figure 43. Crack opening displacements Wv - 0' of interface crack for hl--100a, h2=a,

r-3.0 under loading of uniform normal stress.
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Figure 44. Crack opening displacements (u÷ - u) of interface crack for h 1=100a, h2=a,

y=3.0 under loading of uniform shear.
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Figure 45. Crack opening displacements (vW - v) of interface crack for h1=100a, h 2=a,

y=3.0 under loading of uniform shear.
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same thicknesses from positive to negative. (2). A decrease in the relative ligament

size will tend to discourage the trend describe in (1). Both explain the fact that crack

tend to grow in the direction where the combination of material properties and

geometry are favorable for such growth, namely a less stiff material property or a

thinner ligament size. Again, the case h, = 100a, h2 = 100a and h1 = 100a, h2 = 10a

have the same angle of extension throughout the whole range of nonhomogeneity

constant as can be seen in Figure 46. Similarly, the case h, = 100a, h2 = a and h, =

10a, h 2 = a show exactly the same behavior as seen in Figure 47.

Table III through Table XX list the Mode I and Mode II stress intensity factors

under the two loadings for relative dimensions No. 1 through No. 10 given in Table II.
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Figure 46. The angle of crack extension at x=a for h1=100a, h2=100a, 10a, 2a, a, 0.5a,

0.25a, respectively.
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Figure 47. The angle of crack extension at x=a for l2=a, h,=10a, 4a, 2a, a,

respectively.
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Table MI. Normalized stress intensity factors and strain energy release rates for

h 1=100a, h 2=10a, v = 0.3, when y < 0.

uniform normal stress uniform shear

Y GIGo kl(a)/ k2(a)/ GIGo kl(a)/ k2(a)/

poaa poa1/ qoa 1l2  qoa

-0.01 1.008 1.011 -0.002 1.008 0.002 1.004

-0.1 1.087 1.043 -0.013 1.033 0.013 1.016

-0.25 1.209 1.099 -0.034 1.074 0.032 1.036

-0.5 1.437 1.197 -0.073 1.138 0.065 1.065

-0.75 1.694 1.296 -0.116 1.198 0.097 1.090

-1.0 1.978 1.397 -0.161 1.255 0.129 1.113

-1.25 2.291 1.499 -0.210 1.309 0.159 1.133

-1.5 2.635 1.602 -0.261 1.360 0.188 1.151

-2.0 3.422 1.812 -0.371 1.460 0.243 1.184

-2.5 4.350 2.027 -0.489 1.555 0.293 1.212

-3.0 5.432 2.248 -0.615 1.648 0.339 1.238
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Table IV. Normalized stress intensity factors and strain energy release rates for

h 1=100a, h 2=10a, v = 0.3, when y > 0.

uniform normal stress uniform shear

y G/Go(I) kl(a)/ k 2(a)/ G/Go(2) kl(a)/ l2(a)/

p0a' poa"2  qoa f qoaln

0.1 0.950 0.975 0.012 0.978 -0.012 0.989

0.25 0.870 0.932 0.028 0.938 -0.029 0.968

0.5 0.775 0.879 0.050 0.880 -0.053 0.937

0.75 0.715 0.843 0.067 0.835 -0.073 0.911

1.0 0.674 0.817 0.081 0.801 -0.089 0.891

1.5 0.624 0.784 0.103 0.751 -0.113 0.859

2.0 0.596 0.763 0.120 0.715 -0.131 0.836

2.5 0.577 0.748 0.132 0.688 -0.144 0.817

3.0 0.564 0.737 0.142 0.667 -0.155 0.802
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Table V. Normalized stress intensity factors and strain energy release rates for

h1=100a, h2=2a, v = 0.3, when y < 0.

uniform normal stress uniform shear

Y G/Go k,(a)/ k 2(a)/ G/Go kl(a)/ l2(a)/

poa1 poal qaqa

-0.01 1.361 1.166 -0.038 1.091 0.034 1.044

-0.1 1.415 1.189 -0.049 1.107 0.043 1.051

-0.25 1.513 1.228 -0.068 1.134 0.059 1.063

-0.5 1.699 1.299 -0.102 1.180 0.085 1.083

-0.75 1.913 1.376 -0.140 1.227 0.112 1.102

-1.0 2.159 1.458 -0.182 1.275 0.140 1.120

-1.25 2.439 1.545 -0.226 1.322 0.167 1.138

-1.5 2.754 1.637 -0.274 1.370 0.193 1.154

-2.0 3.495 1.831 -0.379 1.464 0.245 1.185

-2.5 4.393 2.037 -0.493 1.557 0.294 1.213

-3.0 5.457 2.253 -0.617 1.649 0.340 1.238
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Table VI. Normalized stress intensity factors and strain energy release rates for

h1=100a, h2=2a, v = 0.3, when y > 0.

uniform normal stress uniform shear

Y G/Go k 1(a)/ k2(a)/ G/Go k,(a)/ k2(a)/

poaL2  poa'2 qoaý qoa'm

IF-
0.1 1.298 1.139 -0.025 -.072 0.023 1.035

0.25 1.220 1.105 -C.009 1.046 0.008 1.023

0.5 1.1C7 '.052 0.016 1.004 -0.015 1.002

0.7F 1.013 1.001 0.037 0.965 -0.036 0.981

"0 . 0.965 0.056 0.927 -0.056 0.961

.5 0.815 0.898 0.087 0.860 -0.087 0.923

2.0 0.732 0.849 0.110 0.803 -0.115 0.888

2.5 0.674 0.811 0.128 0.754 -0.135 0.958

3.0 0.633 0.783 0.141 0.714 -0.150 0.832
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Table VIT. Normalized stress intensity factors and strain energy release rates for

h 1=100a, h2=a, v = 0.3, when y < 0.

uniform normal stress uniform shear

y GIGo k1(a)/ k2(a)/ GIGo k1(a)/ k,(a)l

p0a" poa"2 qoa'2 qoa2

-0.01 2.324 1.513 1 -0.186 1.201 0.134 1.088

-0.1 2.389 1.533 -0.197 1.214 0.140 1.093

-0.25 2.502 1.567 -0.216 1.235 0.152 1.101

-0.5 2.706 1.626 -0.249 1.271 0.170 1.114

-0.75 2.932 1.689 -0.284 1.307 0.189 1.128

-1.0 3.180 1.754 -0.321 1.345 0.209 1.141

-1.25 3.454 1.823 -0.360 1.383 0.228 1.154

-1.5 3.755 1.896 -0.401 1.422 0.247 1.167

-2.0 4.448 2.051 -0.491 1.502 0.286 1.192

-2.5 5.273 2.219 -0.590 1.584 0.324 1.216

-3.0 6.250 2.400 -0.698 1.668 0.361 1.240
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Table VIIl. Normalized stress intensity factors and strain energy release rates for

h 1=100a, h2=a, v = 0.3, when y > 0.

uniform normal stress uniform shear

G/Go k1(a)/ k2(a)/ G/Go k 1(a)/ k2(a)/

poa2 poa"2  q 0an qoaL

0.1 2.249 1.490 -0.173 1.186 0.126 1.082

0.25 2.151 1.458 -0.156 1.166 0.115 1.074

0.5 2.001 1.409 -0.129 1.134 0.097 1.060

0.75 1.865 1.362 -0.103 1.103 0.079 1.047

1.0 1.743 1.318 -0.079 1.073 0.062 1.034

1.5 1.534 1.238 -0.036 1.016 0.029 1.008

2.0 1.365 1.168 0.001 0.965 -0.001 0.982

2.5 1.226 1.107 0.034 0.918 -0.029 0.958

3.0 1.113 1.053 0.063 0.876 -0.055 0.934
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Table IX. Normalized stress intensity factors and strain energy release rates for

h1=l100a, h 2=0.5a, v = 0.3, when y < 0.

uniform normal stress uniform shear

"Y G/Go kl(a)/ k2(a)/ G/Go k,(a)/ ]2(a)/

poal_ _ __ 12 poal qaO L2

-0.01 6.223 2.400 -0.682 1.359 0.319 1.121

-0.1 6.333 2.419 -0.694 1.369 0.323 1.125

-0.25 6.522 2.452 -0.715 1.387 0.330 1.131

-0.5 6.852 2.507 -0.751 1.417 0.342 1.140

-0.75 7.201 2.565 -0.788 1.448 0.354 1.150

-1.0 7.572 2.625 -0.826 1.480 0.365 1.160

-1.25 7.965 2.686 -0.866 1.512 0.377 1.170

-1.5 8.381 2.749 -0.906 1.545 0.389 1.180

-2.0 9.288 2.882 -0.991 1.612 0.413 1.201

-2.5 10.304 3.022 -1.082 1.682 0.437 1.221

-3.0 11.441 3.171 -1.178 1.753 0.462 1.241
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Table X. Normalized stress intensity factors and strain energy release rates for

h 1=100a, h2=0.5a, v = 0.3, when y > 0.

uniform normal stress uniform shear

y G/Go k1(a)/ k2(a)/ G/Go k 1(a)/ k2(a)/

poa1  poan qoa•- qoa"

0.1 6.091 2.376 -0.667 1.346 0.314 1.117

0.25 5.917 2.345 -0.647 1.329 0.307 1.111

0.5 5.640 2.294 -0.614 1.301 0.295 1.102

0.75 5.380 2.245 -0.583 1.273 0.283 1.092

1.0 5.133 2.197 -0.552 1.247 0.272 1.083

1.5 4.682 2.107 -0.494 1.196 0.249 1.065

2.0 4.281 2.022 -0.439 1.148 0.227 1.047

2.5 3.924 1.943 -0.387 1.103 0.205 1.030

3.0 3.605 1.868 -0.339 1.062 0.184 1.014
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Table XI. Normalized stress intensity factors and strain energy release rates for

hl=100a, h2=0.25a, v = 0.3, when y < 0.

uniform normal stress uniform shear

GIGo k1(a)/ k 2(a)/ GIGo k,(a)/ k2(a)l

p oalj p0aj qoaL qoam

-0.01 26.103 4.642 -2.134 1.673 0.540 1.175

-0.1 26.369 4.664 -2.149 1.683 0.543 1.178

-0.25 26.818 4.699 -2.176 1.699 0.548 1.183

-0.5 27.586 4.760 -2.220 1.725 0.555 1.190

-0.75 28.379 4.822 -2.264 1.752 0.563 1.198

-1.0 29.297 4.885 -2.310 1.779 0.570 1.206

-1.25 30.041 4.949 -2.356 1.807 0.578 1.214

-1.5 30.913 5.014 -2.403 1.835 0.586 1.222

-2.0 32.740 5.148 -2.498 1.893 0.601 1.238

-2.5 34.687 5.286 -2.597 1.951 0.616 1.254

-3.0 36.760 5.429 -2.700 2.012 0.632 1.270
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Table XII. Normalized stress intensity factors and strain energy release rates for

hl=100a, h2=0.25a, v = 0.3, when y > 0.

uniform normal stress uniform shear

y GIGo k,(a)/ k2(a)/ GIGo k1(a)/ k 2(a)/

poalM poaL* 1 qoa qoa'

0.1 25.783 4.616 -2.115 1.662 0.537 1.172

0.25 25.353 4.581 -2.090 1.647 0.532 1.167

0.5 24.654 4.523 -2.048 1.621 0.525 1.160

0.75 23.977 4.467 -2.006 1.596 0.518 1.152

1.0 23.321 4.411 -1.966 1.571 0.510 1.145

1.5 22.070 4.303 -1.886 1.523 0.495 1.130

2.0 20.894 4.198 -1.809 1.477 0.481 1.116

2.5 19.790 4.097 -1.734 1.432 0.466 1.102

3.0 18.753 3.999 -1.662 1.389 0.452 1.088
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Table XIII. Normalized stress intensity factors and strain energy release rates for

h1=10a, h2=a, v = 0.3, when y < 0.

uniform normal stress uniform shear

Y GIGo kl(a)/ k2(a)/ GIGo k1(a)/ k2(a)/

p0a' p0a' qoa" qoa"n

-0.01 2.325 1.513 -0.186 1.205 0.134 1.090

-0.1 2.389 1.533 -0.197 1.217 0.141 1.094

-0.25 2.502 1.567 -0.216 1.238 0.152 1.102

-0.5 2.706 1.626 -0.249 1.273 0.171 1.115

-0.75 2.932 1.689 -0.284 1.310 0.190 1.129

-1.0 3.180 1.754 -0.321 1.347 0.209 1.142

-1.25 3.454 1.823 -0.360 1.385 0.228 1.155

-1.5 3.756 1.896 -0.401 1.424 0.247 1.168

-2.0 4.448 2.051 -0.491 1.504 0.286 1.193

-2.5 5.273 2.219 -0.590 1.586 0.324 1.217

-3.0 6.250 2.401 -0.698 1.669 0.361 1.240
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Table XIV. Normalized stress intensity factors and strain energy release rates for

h1=10a, h 2=a, v = 0.3, when y > 0.

uniform normal stress uniform shear

y G/Go kl(a)/ k2(a)/ G/Go k,(a)/ k2(a)/

poa2 p0a"2  q0a'n q0a W

0.1 2.249 1.490 -0.173 1.190 0.126 1.084

0.25 2.151 1.458 -0.156 1.170 0.115 1.076

0.5 2.001 1.409 -0.129 1.138 0.097 1.063

0.75 1.865 1.362 -0.103 1.108 0.079 1.049

1.0 1.742 1.318 -0.079 1.078 0.062 1.036

1.5 1.535 1.238 -0.036 1.023 0.030 1.011

2.0 1.365 1.168 -0.001 0.973 -0.001 0.987

2.5 1.227 1.107 0.034 0.928 -0.030 0.963

3.0 1.114 1.053 0.063 0.886 -0.056 0.940
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Table XV. Normalized stress intensity factors and strain energy release rates for

h1=4a, h 2=a, v = 0.3, when y < 0.

uniform normal stress uniform shear

G/Go k1(a)/ k,(a)/ G/Go kl(a)I k2(a)/

p0a1 n poa1' qoam q0aln

-0.01 2.337 1.518 -0.184 1.256 0.135 1.113

-0.1 2.401 1.537 -0.195 1.267 0.141 1.117

-0.25 2.514 1.571 -0.214 1.286 0.153 1.124

-0.5 2.717 1.630 -0.247 1.319 0.172 1.136

-0.75 2.942 1.692 -0.282 1.353 0.191 1.147

-1.0 3.191 1.758 -0.319 1.388 0.210 1.159

-1.25 3.464 1.826 -0.358 1.423 0.230 1.171

-1.5 3.765 1.899 -0.400 1.460 0.249 1.182

-2.0 4.456 2.053 -0.490 1.536 0.288 1.205

-2.5 5.281 2.221 -0.589 1.614 0.326 1.228

-3.0 6.257 2.402 -0.697 1.694 0.363 1.250
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Table XVI. Normalized stress intensity factors and strain energy release rates for

h1=4a, h2=a, v = 0.3, when y > 0.

uniform normal stress uniform shear

y G/Go k,(a)/ k2(a)/ G/Go k 1(a)/ k2(a)/

p0a'a poaa qoala qoala

0.1 2.262 1.494 -0.171 1.242 0.126 1.107

0.25 2.164 1.463 -0.153 1.224 0.115 1.100

0.5 2.014 1.414 -0.126 1.195 0.097 1.089

0.'.5 1.880 1.367 -0.100 1.167 0.079 1.077

1.0 1.758 1.342 -0.076 1.140 0.061 1.066

1.5 1.550 1.245 -0.032 1.089 0.027 1.043

2.0 1.382 1.175 0.006 1.042 -0.005 1.021

2.5 1.244 1.115 0.039 0.999 -0.035 0.999

3.0 1.132 1.062 0.068 0.957 -0.062 0.977
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Table XVII. Normalized stress intensity factors and strain energy release rates for

hl=2a, h 2=a, v = 0.3, when y < 0.

uniform normal stress uniform shear

Y G/Go kl(a)/ k2(a)/ G/Go kl(a)/ k2(a)/

poaL2 poa qoaM q0a11

-0.01 2.478 1.566 -0.156 1.455 0.120 1.200

-0.1 2.542 1.585 -0.168 1.466 0.127 1.204

-0.25 2.653 1.618 -0.187 1.483 0.140 1.210

-0.5 2.854 1.675 -0.221 1.513 0.161 1.220

-0.75 3.077 1.735 -0.258 1.544 0.183 1.229

-1.0 3.323 1.799 -0.296 1.575 0.204 1.238

-1.25 3.594 1.866 -0.336 1.607 0.225 1.247

-1.5 3.892 1.936 -0.379 1.639 0.246 1.256

-2.0 4.577 2.087 -0.471 1.706 0.287 1.274

-2.5 5.397 2.252 -0.571 1.775 0.328 1.291

-3.0 6.367 2.430 -0.681 1.846 0.367 1.308
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Table XVIII. Normalized stress intensity factors and strain energy release rates for

hl=2a, h2=a, v = 0.3, when y > 0.

uniform normal stress uniform shear

y G/Go kj(a)/ k 2(a)/ G/Go k1(a)/ k2(a)/

Npam p~a' q0 a j2 qa_ _

0.1 2.403 1.544 -0.143 1.442 0.111 1.196

0.25 2.307 1.514 -0.125 1.425 0.098 1.190

0.5 2.159 1.466 -0.096 1.396 0.077 1.179

0.75 2.026 1.422 -0.069 1.368 0.057 1.168

1.0 1.905 1.380 -0.044 1.340 0.037 1.157

1.5 1.700 1.304 0.002 1.284 -0.002 1.133

2.0 1.532 1.237 0.042 1.229 -0.038 1.108

2.5 1.396 1.179 0.077 1.174 -0.071 1.081

3.0 1.284 1.128 0.108 1.120 -0.101 1.053
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Table XIX. Normalized stress intensity factors and strain energy release rates for

hl=a, hb=a, v = 0.3, when y < 0.

uniform normal stress uniform shear

G/Go k 1(a)/ k2(a)/ G/Go k1(a)/ kI(a)/

poal/ p0a" qoam q0a"2

-0.01 3.303 1.817 -0.001 1.864 0.001 1.365

-0.1 3.367 1.835 -0.014 1.881 0.010 1.371

-0.25 3.480 1.865 -0.035 1.908 0.026 1.381

-0.5 3.682 1.918 -0.072 1.953 0.052 1.397

-0.75 3.906 1.973 -0.111 1.997 0.079 1.411

-1.0 4.152 2.032 -0.152 2.040 0.107 1.424

-1.25 4.422 2.094 -0.195 2.082 0.134 1.437

-1.5 4.719 2.159 -0.241 2.123 0.161 1.448

-2.0 5.401 2.299 -0.338 2.202 0.216 1.468

-2.5 6.215 2.453 -0.444 2.277 0.269 1.485

-3.0 7.178 2.620 -0.559 2.349 0.320 1.499
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Table XX. Normalized stress intensity factors and strain energy release rates for

h,=a, h2=a, v = 0.3, when y > 0.

uniform normal stress uniform shear

G/Go k1(a)/ k2( a)/ G/Go k1(a)/ k2(a)!

p0a12 poaL qoam qoam

0.1 3.228 1.797 0.013 1.844 -0.010 1.358

0.25 3.130 1.769 0.033 1.816 -0.025 1.347

0.5 2.979 1.725 0.064 1.769 -0.050 1.329

0.75 2.843 1.684 0.094 1.721 -0.073 1.310

1.0 2.720 1.645 0.122 1.673 -0.095 1.290

1.5 2.508 1.574 0.172 1.577 -0.137 1.248

2.0 2.334 1.512 0.217 1.482 -0.173 1.205

2.5 2.191 1.458 0.256 1.389 -0.204 1.161

3.0 2.073 1.410 0.291 1.300 -0.230 1.117
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Chapter 5

Conclusions And Future Work

5.1 Conclusions

For general fracture mechanics problems, a half crack-le-th to thickness ratio

of approximately unity may be the practical limit for applications. If we consider an

interface crack problem that involves thin films coatings, a defect in a solid lubricant

coating as described in [3] for example, where the material thickness is in the pum (1.0

x 106 meter) range, an aspect ratio of one is still only a small defect. The importance

of interface cracks in thin films, therefore, can not be overstated.

From the cases of different geometry and material constant combinations

computed in this work, we may summarize the following conclusions,

(1). Under uniform normal stress, the dominant Mode I stress intensity factor

decreases as property of the nonhomogeneous material changes from "soft" to "stiff';

the nonhomogeneity constant changes from negative to positive. Similarly, the Mode

II stress intensity factor under uniform shear shows the same trend.

(2). Again speaking of only the dominant Mode stress intensity factors under

respective loading, considering everything else to be equal, a decrease in material

thickness, whether it is the homogeneous material or nonhomogeneous material,

causes a corresponding increase in stress intensity factor. we see from (1) and (2) two

competing factors that would affect stress intensity factors, namely the degree of

nonhomogeneity and the material thickness.

(3). Even though the crack tip characteristics are of mixed mode because either

material constants and geometry is not symmetric, the nature of the loadings is such
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that the primary mode is dominant under respective loading, Mode I is dominant

under uniform normal stress and Mode II is dominant under uniform shear. The

strain energy release rate under respective loadings therefore follows the trend of only

the dominant mode stress intensity factor.

(4). Similar to their effect on the stress intensity factors, the material thickness

and the nonhomogeneity constant are the two competing parameters influencing the

probable angle of extension of the interface crack. The crack extension angle tends

to turn toward the material is "soft" or where the ligament is slim.

(5). Effect of the changes in Poisson's ratio on the stress intensity factors is

small, except for very large nonhomogeneity constant (y < -2.0). A Poisson's ratio of

0.3 is good for practical purposes.

(6). The most important information that can be obtained from the crack

opening displacements, if nothing else, is to see whether any compatibility condition

is violated. Because the crack surfaces are surfaces where traction boundary

conditions are applied, their displacements must be kept in check to make sure no

inter-penetration occurs. When it does, the problem requires reformulation as a crack-

contact problem.

5.2 Remarks on future research

Computer software in algebraic manipulation such as REDUCE, MACSYMA,

MAPLE and the recently introduced Mathematica which, in contrast to other software

and programming languages that deal with numerical operations, excels in doing

symbolic computations and has broken new grounds for research in a number of

problems previously considered being not feasible because of their inherent analytical
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complexities. Coupled with advances in computer hardware in terms of computing

speed and available memory as well as software development in user interface, more

problems are being attempted with much efficiency. Specific tasks facilitated by these

symbolic manipulators in helping to solve research problems similar to this study is

the derivation, simplification, and bookkeeping of very large number of terms and

expressions in the Fredholm kernels. Without such computer algebra software, it is

not possible to solve the 8 by 8 system of linear algebraic equations and to undertake

the extensive asymptotic analysis described in this study. Yet what was utilized in

this undertaking barely scratch the surface of the many faceted features these

symbolic manipulators have to offer. The vast potential of these software is yet to be

tapped with the ever expanding progress in computing power that is reaching new

horizons everyday.

On the other hand, it is also dangerous to assume these software to be all

powerful to solve any kind of problem that is fed into it without the user's careful

planning and thinking ahead. Brute force is sure to fail miserably as problems

attempted get larger and more complicated, for sometimes the complexity of the task

grows exponentially as the problem size increases. It is especially true when one

deals with matrix inversion which requires expanding determinants that contain

symbolic elements. Case in point is the asymptotic expansion of the 8 by 8 and 7 by

7 determinants described in this work. Without proper analytical ground work, or

without correct understanding of the nature of the problem, one has no choice but to

rely on raw computing power which resulted in the analysis quickly grinds to a halt.

Only after careful planning and comprehension of the available computing resources,

as well as devising ways to work around the limitations could one secure a
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satisfactory completion of the task. It proves once again that there is still no

substitute for sound analytical reasoning. Unlike numerical software, which always

returns numbers good or otherwise, symbolic software usually refuses to work when

told to accomplish something that is beyond its limitations.

In light of the capabilities symbolic manipulation software afforded us, a

number of problems similar in nature to what has been done in this dissertation

could, without much difficulty, be solved. Considering the fact that the nature of

materials described in this work does not possess a distinct interface, but rather the

material composition and properties go though a transition from one to the other.

Also consider that as long as the properties of the two materials and in the interfacial

zone are continuous, the formulation does not change much. An immediate extension

of the present problem would be that a crack parallel to the free surface could exist

any where in the interfacial zone.

Cracks of orientations parallel to the y-axis, with the crack spanning the

interface, or the crack tip terminating at the interface or approaching the free surface,

or an edge crack are also prospective problems of interest. These problems have the

same Navier's equations with constant coefficients as in this study. The boundary

conditions will be somewhat different and there will only be one unknown density

function to be solved. Furthermore, cracks terminating at the interface and crack tip

approaching the free surface will have different characteristics from that in this study.

But the solution of these problems are all attainable because of the available computer

algebra software described earlier.

As has been pointed out in the beginning of this dissertation, one of the

common causes that composite materials fail is the existence of residual stresses.
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These stresses come about because the temperature which the composite is processed

differs considerably from that under which it usually operates. This is also one of the

incentives to have a graded interfacial zone. It is therefore very desirable to study the

fracture mechanics behavior of this and similar problems under residual stresses

caused by thermal mismatch. But until appropriate material property

characterizations such as the coefficients of thermal expansion of the graded material

are known, proper assumptions will have to be made in order to try problems of this

nature.
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Appendix A

Boundary Conditions

In deriving the system of singular integral equations in Chapter 2, we applied

Fourier transforms to Navier's equations to convert the coupled PDE's to ODE's (Eqn.

(10)). The solution to the ODE's contain eight undetermined coefficients, where four

are dependent. These procedures are applied to both the homogeneous and the

nonhomogeneous materials of the problem at hand, which resulted in a total of eight

unknown coefficients in place of the two displacement components that we defined as

the original unknowns (Eqns. (11) and (18)). A set of new unknowns called density

functions are then defined as the x derivative of the crack opening displacements

(Eqn. (20)). Let the Fourier transforms of the density functions be the new unknown

variables (Eqn. (21)). By taking the Fourier transforms of the six homogeneous

boundary conditions and the two displacement boundary conditions of the mixed

condition, we can create a new set of eight boundary conditions. This new set of

boundary conditions, including six homogeneous condition and two where the right-

hand-side are the new unknown variable (see Eqns. (22) through (28)), is what ties the

eight unknown coefficient functions and the two new unknown variables together.

Writing each of the new set of boundary conditions out explicitly, we obtain an 8 by

8 linear system to solve for the eight unknown coefficient functions in terms of the two

new unknown variables. The linear system is written as follows:

a1 5 C1 +a1 6 C 2 +a1 7 C3 +alC 4 - 0, (A.1)
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a 25 C 1 +a 26 C 2 +a 2.C 3 +a 2.C 4 - 0, (A.2)

a31A1 +a 32 A2 +a33A 3 +a34 A4 - 0, (A.3)

a41A 1 +a 42A2 +a4A 3 +aA 4 = 0, (A.4)

a5A + a52A 2 + a 3A 3 + a 54A4 + a55 C1 + a56C 2 + a57 C3 + a58C4 - 0, (A.5)

asi 1A+a 62A2 +a6A 3 +a4A4 +a65C1 +a66C 2 +a6 7 C3 +asC4 - 0, (A.6)

a 71A 1 +a 72A 2 +a 73A 3 +a74A 4 +a 75 C 1 +a7 6 C 2 +a 77 C 3 +a 78 C 4 - F 1, (A.7)

as 1A +a3AA3 +zC 1 C*a,,C 2 +a8 7 C3 +a8C 4 - F2, (A.8)

where F1 and F2 are the Fourier transforms of the density functions that have been

defined in Chapter 2. The coefficients a i i, j = 1 .... 8, are all expressed in terms of

a, K, y, h, and h 2, which are material and geometry constants also defined in Chapter

2. The actual combining of terms and simplifying of expressions with respect to their

fundamental variable and material as well as geometry constants were carried out on

a VAX-8300 using the symbolic software MACSYMA. We list the expressions for each

element as follows

a31 ' 2 lot Ie-h~'al, (A.9)

a32 - - [2hi Ca + K - 1]ehaI, (A.10)

I- a I(II, (A.11)
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a.,, - [2hija;ý1c+1]e hI aI, (A.12)

a 41  - 2iat(K-1)e)~~ (A.13)

laj

a43m 2ia~(K-1)ehXa, (A.15)

- -i~cl(l~l-2,lha (A.16)
lal

a. 1 w a. 3  -2icdic-1), (A..17)

a. 2 0 i(X2 1) a (A.18)

a. 4 - -a. 2, (A. 19)

a 5 5 _ -{(ic+1)R 3e 3 i9 -iyKic- 1)R 2e 2A- [4(x + 5)a 2 + i?(K + 1)]

(A.20)

a,, - ((YK+l)R~e 'i7(K 1)R~e 2 i6 - [4(K + 5) 2 +iW9(x +1A

(A.21)

8cz[Re -1 "-2- - K)]
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a. 7 - -10c + 1)R~e '+ iy(K -1)R~e 2 W4K + 5)a' +iy2 (K+ 1)]

(A.22)

a,,, - -I(c+ 1)R 3e 3 ig +iy-ýiC -1R~e" -[40c +5)c 2 +iy2(ic+ 1A

(A.23)

a.1 0 2 1zJa (A.24)

a.2 '1 -K, (A.25)

a. -a,,, (A.26)

a. a,.-, (A.27)

a. (3~ -K)R 2 e 2i + 2y(3 -ic)Re&B-4lc+ J- )a2 -y2(3 -Ki) (A.28)
a 6 5 -4[ReiO-y(2 -K)]

a. (3 - K)R 2 e 2 i' + 2y(3 -K)Re " -4 (K+ 1) a --?(3 -Kc) (A.29)
4[Re 'o-Y(2 -K)]I

a7w(3 -ic)R 2 e -2 + 2y(3 -Kc)Re-" +4(K +1)& +-2(3 -ic) (A.30)
4[Re-i8 +Y(2 -Kc)]

a., -(3 -Kc)R 2e 2 i +2y(3 - K)Re" +4(ic + 1)a2 +-(3 - K) (A.31)
4[Re-"+7(2 -K)]
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ho.' T (A .32)
a15 , -a6e

As-.) (A.33)
a16 -- a.,e

ah-a s,---7) (A.34)a,7 = -a.e r

a a -, , (A.35)ar , = -a,,e 'T

h,- (A.36)
a2, = -a., e"

A,"-7) (A.37)
a 26 = -a,6*e

hl•, ()A.38)
a 27 ' -a. 7  

(Ar

= -a,"- (A.39)a2, wf -a. t

a7, = - IaI, (A.40)

a 72 = a 74 = 1K, (A.41)

a73 - -a71 , (A.42)
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a7, = -(K- 1)Rle 2ie +4(0 + 1) a2 + 2 (K- 1) (&43)
4[Re o-7y(2 -K•)]

a7 , - -(K - 1)Rle-2ie +4(K + 1)a 2 +÷2 (,C - 1) (A.44)
4[Ree`6-7(2 -K)]

a7 7 (K - 1)R 2e-` -4(K+ 1)a2 -? (K - 1) (A.45)
4[Ree +Y(2-iK)]

(K: - )R 2 e2il -40c:+ 1)al -- ?2(K: - 1) (.G
a7, ~4[Re`+ ÷(2-K)] A.6

a 81 - a.3 - -i a, (A.47)

a8 5 - a86  a.7 - a., - ia, (A.48)

where R and 0, both defined in Chapter 2, are shown again as follows,

4

R - (Y2+4a2)2+16a2y2 3-L'K

(A.49)

0- 1tan'( 4ay 3-K2 y+4a 1L+-K
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Appendix B

Asymptotic Expansions

B.1 Introduction

In the derivation of the system of singular integral equations, an important

step is finding the asymptotic values of the integrands of some infinite integrals

(Eqns. (47) to (50)). The asymptotic analysis is necessary for the following two

reasons,

1. The leading term of the integrands in asymptotic expansion gives the

Cauchy kernel in the singular integral equations.

2. Subsequent terms in the expansion facilitate computational efficiency

when we numerically solve the SIE's. The more terms that can be

asymptotically extracted, the less effort is required for the numerical

computation.

The major task of the analysis is the asymptotic expansion of the 8 by 8

determinant and eight 7 by 7 cofactors which form the integrands in the infinite

integrals. These cofactors and the determinant constitute the solution of the 8 by 8
D..

linear system as depicted by Eqn. (29). The leading terms of Di, i = 1 .... 4,J = 1,

2 in Eqn. (30) are desired.

B.2 Algebraic vs. numeric operations

One may wonder why in solving the linear system (29), the inefficient Cramer's

rule was used in lieu of more efficient methods (see Eqn. (30) and (31)). The answer

to this has to do with the inherently different nature of algebraic manipulations and
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numeric operations. Consider the problem of inverting an n by n matrix. What we

learned from numerical analysis tells us that the problem requires operations on the

order of n3 [31]. But this kind of analysis does not apply when we are dealing

with algebraic entities. Consider now the number of terms in the determinant of a

fully occupied n by n matrix whose elements are the symbols aij. The determinant,

when fully expanded, which is necessary in computing the inverse, has n! terms. For

an 8 by 8 matrix with each element being a single symbol, the fully expanded

determinant has 40,320 terms, and this is vastly different from the number of

operations (8s = 512) needed to invert the matrix numerically. For the problem at

hand where each element in the 8 by 8 matrix is a complex expression rather than a

single symbol, the number of terms in the expanded determinant is even more. The

complexity of determinant expansion will quickly make the asymptotic analysis come

to a halt if brute force determinant expansion was used.

A straight forward approach would be to asymptotically expand each element

in the matrix to compute the determinant and cofactors by direct expansion. One soon

f•inds that such a procedure breaks down quickly as matrix size and number of terms

expanded in each element increases. The reason for the break-down is obvious. As

the matrix size increases, even if there is only one term in each element, the number

of terms in the expanded determinant increases exponentially as explained earlier.

When there are more terms in each element, and each term is in turn complex

expressions, it soon becomes more than even a mainframe computer can handle. On

a VAX-8530 in which 20,000 pages of dynamic memory was allocated, the computation

breaks down with a two term expansion in each element of an 8 by 8 matrix to

analytically expand its determinant.
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The successful asymptotic expansion of the 8 by 8 determinant and its cofactors

to as many terms as the aforementioned restraint would allow, lies in recognizing that

out of the nominally required astronomical number of multiplications, only a relevant

few need to be carried out to produce the leading terms in the determinant. Those

expansions not carried out contribute only to low order terms which can be ignored.

In what follows each relevant element of the 8 by 8 matrix undergoes a 12-term

asymptotic expansion. These expansions in turn produce a 12-term asymptotic
D.j

polynomial out of -D_, (see Eqns. (51) through (54)) which gives a 11-term
D

asymptotic analysis in the integrands of infinite integrals (Eqns. (47) through (50)).

The memory constraint is the only factor that controls the number of terms that can

be asymptotically expanded in each element, therefore it also determines the number

of terms that can be expanded in the integrands of Fredholm kernels.

B.3 Asymptotic expansion

To asymptotically expand the 8 by 8 determinant and eight 7 by 7 cofactors,

we first examine the asymptotic behavior of the elements that make up these

determinants. Referring to expressions of each element in Appendix A, we note that,

R - (y2+4a2)2+16a2-? 3-Kc . 2a + 0(0),'4 1+ic

(B.1)
o W 1tan'( 4a.y 3-ic 3-K 1 + 0(1)

2 T2 +47 2  1+c 2 1 +i a -a

therefore,
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Re" - 2a + 0(0),
(B.2)

Re` - 2a + 0(0), as a -- oc.

As have been defined in Chapter 2, 0(i) indicates polynomials with leading term

of degree -2 in a, and so on. With these observations, we found that a1,,, a,6, and a2,,

a26 contain a term like e•' in their asymptotic behavior. Similarly, elements aa3 ,

a34, and a43 , a,, have a term like e`h1. We bear in mind that in expanding a

determinant, no two elements that belong to the same column or row may appear in

the form of product in any expansion. It is apparent that the dominant term in both

the numerator and denominator must carry a term like e 2a(h, . h so that the leading

terms are derived from their quotient. Since the denominator, the determinant of the

8 by 8 matrix, will always carry the term e 2 •,. h2 , any term in the numerator

without e 2
,'(h *-') will only contribute to lower order terms in the rational

expression. Our objective then, becomes to identify all relevant elements that

contribute to this dominant term in each 8 by 8 or 7 by 7 determinant expansions and

ignore the rest as they are insignificant to the analysis.

The foregoing analysis is the key to the successful asymptotic analysis of the

problem. It reduces what appeared to be an insurmountably complicated task to a

manageable job that can be better explained by rewriting the 8 by 8 matrix in a

different way as shown in Eqn. (B.3). Following the rule in expanding a determinant

as stated earlier, we observe that the dominant term in the determinant must include

two elements from columns 3,4 and two from columns 5, 6 with the exponential term.

Another way of getting the dominant terms is through row-wise expansion, in which

case the leading terms of the determinant must include two elements from rows 1, 2

153



0 0 0 0 -a 6 5e -a~e• 1 1

0 0 0 0 -a56 e ah -aedh, 1 1

1 I O(a)eah, O(z)eah• 0 0 0 0

1 I O(a)ehx O(a)e*' 0 0 0 0
(B.3)

a., a. 2  1 1 1 I a.7 a.,

a.. a62  1 1 1 a., a.,

al a72  I I I I a7 a,8

a81  0 I 0 I a.7 a..

and two from rows 3, 4 that have the exponential term. With these elements in the

product, the rest will have to come from those elements explicitly written in Eqn.

(B.3), observing the rule that only one element in a column or row may participate in

forming the product. The remaining elements are either zero occupied or do not

contribute to the leading terms of our analysis and are marked as 'T'.

Having established the ground rule of obtaining the leading terms of

asymptotic analysis in the determinants, we can now explicitly write the exact

expressions to get the leading terms of the 8 by 8 determinant and 7 by 7 cofactors.

Note that they are written in terms of truncated asymptotically expanded expressions

of only those elements associated with products that give the dominant terms. Let us

denote the truncated asymptotic expressions of elements as a', j, and those of the

determinant and cofactors as d and d,, respectively. We have
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d- (a."ar -ae5'a5 6)'(a' a' -a' "a)[a 2

(B.4)
(a'as/8 - aS'7 ar) - a 2 a a - aa)],

d12 -(a 5,.a/ -a"'-a5 .ta•.a' -a 3
1

3a•) .a4 2 .(a *a7
1 -a 7 .a~s) -

(B.5)

asT'(a62 "a7
1 

- a 1
2"a2) + a6 8 (a62 a 77 - a 72 "a67 )],

d2, -(as5.a6 -a/.asd .(a•.a 3 -ab3.a ,) .[a,•a6a.as8 -a8 7 .arA) -

(B.6)
a "(a 1 "a8' 8 - a81 "a) + a68  "a~ 1 a8

1 - a8
1 "a77 )],

d 22 /(a,5 a a a/ ) .(a3a3 - a/a/4) -[a5 ( / a.7i / *a a,,

(B.7)
i /, / / /\ I I. / / /•-

a57"(a 6 1ja 78 -aT1 a-8 ) +a5S "(a6 1"a77 -a 7g*a67)I,

d--(a',a' -a' a36),(a34a43a3a,1 a -a*a&,) +

SI I • I I I I •. r • II I

a72'(a 7Tags -as 7Tag8)] -a5 2 "as'(as7 'a 78 - a77 'a") + a42 (as2" aa-

a7
1"a8) +a/'*(alla*7 - a~l") +a~7*[-a 2 "(a8•'1 Ta -a4.as) -*(

/ // a
a7

1
2 (a1  -a 1 a)]-al 8 -~(a 1 -a4 1 8 7 -a.71(afia 7 -

It is amazing that there are only 54 terms required to obtain the leading terms of the

8 by 8 determinant, out of the possible 40320 (8!), as shown in Eqn. (B.8). Of course

the number of terms will be something less if full determinant expansion was carried

out because there are 18 zero occupied elements in our 8 by 8 determinant (see Eqn.

(B.3)). But the reduction in the number of terms needed to compute the leading terms
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of the determinant paves the way for a promising prospect that perhaps more terms

can be expanded from our asymptotic analysis. It is also worth noting that

expressions for d 31, d3 , d 4,, and d42 need not be written. The reason for this is

apparent when we notice that the corresponding cofactors D3), D3 , D41, and D42 were

obtained from the 8 by 8 matrix by deleting column 3 or 4. In any case one of the

dominant terms e~h, was lost thus making these cofactors of much lower order than

that of determinant D. Therefore the resulting rational polynomials are analytic at

a = o- when such lower order cofactors appear in the numerators. In other words,

D31  D32  D41  D42
and L-D do not contribute to Cauchy kernel or any of the

leading terms in the asymptotic analysis that aids numerical efficiency, but become

part of the massive Fredholm kernels.

Due to the constraint in memory allocated on the VAX-8530, there are only so

many leading terms we can expand out of the asymptotic analysis. We shall now try

to establish the relationship between the number of leading terms in the overall

asymptotic analysis with that of each element in the matrix. Let -n be . lowest

power that can be asymptotically expanded in a particular element. We denote the

range of terms that can be expanded within the constraint for an element as

O(a,m,-n), where m is the power of the leading term and a is the variable of the

asymptotic expansion. We can write number of terms expanded for each significant

element and exact asymptotic expression for some elements in Eqn. (B.3) as follows,

a'.3- O(al) - -2a, (B.9)

a/34- O(a,l,O) - 2hxa-K+1, (B.1O)
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a43 O(-a,1) - -2ia(i-1), (B.11)

a'44 O(-,l,O) - i(i- lX2hca-ic+ l), (B.12)

a'/. - O(a,1) - -2ia~(K-1), (B.13)

a', 2 - O(a,O) - i(i 2-1), (B.14)

a' /= O(a,1) - 2a, (B.15)

a /6 2 - O(a,O) - 1 - ic, (B.16)

a'/ 1 - O(a,1) - -a, (B.17)

-a/81  a','7 - a'. - O(a,1) - ia, (ILs)

a 1  + C 5 -1 + C5 5+ 2 + C5 8".3 C5 5 4  C5 5 " (B.19)
a ( 2  (3  a4  a"

+C56,'1 + C5 6 ,- 2 + C5 6 "3 + CH6"4 CS,a' - O(a,l,-n) - c56 la+c5• ... (,B.20)
a & aa aw

C ,-1 C 57 - 2 + C5 7,- 3  C 57 ,-4 C57,-a
a.7,= O(a,1,-n) - c 57,1a+c 57 ,0 + ....+.. +... + ., (B.21)

a a a3  ac a"

a O(a,1,-n) - c .. L1+ cs8,2 + + + cŽ2,.4 + + (]B.22)
a a -'' a4  a"

-)+ ,-1 + C65 ,-2 + C6 8,-3 + C , -4+ CU, -n

a 05 - O(a,1,-n) - c65, 1 asc 8 , + .o. ( 2  (B.23)a a

7a'2 = O(a,O) - ic, (B.24)
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a 6  -(a,1,-n) C c6 6,1 c O + C 6I-1 + C6 6 -2 .! - C 6 -3 C6 6-4 C6 r-n, (B.25)
at a 2 a3 a 4 a

a 67 - O(a,l,-n) - c6 7 1a+ C6 7,0o ... ... .. + .. . , (B.26)
at a 2  a.3  a. 4  

OCa

a - C67 1 + C6 8 -2 C68 -3 + C6 8,- 4  C6 .. (B.27)
a a 2  a t3  4  e"C77.,-1 + f8,-2 C-1, -3 +C77,-4 + +C77, --

a O,77 - O(,1,-n) - c7.71 X + C7 7,0 + .. + 2L ÷ 23 + _ +..+ (B.28)
a a 2  a a4 e

a' 78 - O(a,1,-n) - C78,10fX+C 7 87 0 +f8.0 " + ,7,-3 + C78 (B.28)
70+ cWs" + __:,:, - +,'+ +t cWW s' (B8.29)

a a 2  a3  a 4  a"

where cij, represents the coefficient of the a' term of the truncated polynomial aj.

Note that elements a'l, a'3s a'C and a'. were written without the term e ' . Also

a',, and a',, differ from a'.., and a' by the factor -e"- , as can be seen from Eqns.

(A.32), (A.33) and (B.2), the latter is written instead. For the same reason a'55 , and

a'56 are written instead of a'25 , and a'... The reason that both e"I and e"' are

excluded from the analysis is that they factor out since they appear in both the

numerator and the denominator when L.Di is divided. Eqns. (B.9) through (B.18)
D

are those elements whose exact representations are simple polynomials. Therefore,

no asymptotic expansions are needed. They arL Uirectly constructed from Appendix

A. Eqns. (B.19) through (B.29), however, are those elements that have complex

rational polynomial expressions. We shall apply asymptotic expansion to these

elements, and their exact expressions up to the lowest power expandable will be

shown later in the appendix.
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If one tries to substitute Eqns. (B.9) through (B.29) into Eqns (B.4) through

(B.8) now, considering that the necessary asymptotic analysis has been done on the

elements shown in Eqns. (B.19) through (B.29) and all the coefficients c,, , are known,

one still can not expect to extract the most leading terms out of the determinant and

cofactors. The reason is as follows. Remember that a',, are truncated polynomials,

therefore any operation on them, especially multiplications and divisions, will produce

nonsignificant terms. If steps are not taken to keep only the significant terms and to

throw away the excess baggage, before very long these nonsignificant terms will

accumulate to a monstrous proportion and defeat the economizing that we have

accomplished earlier. Therefore, we now establish the following rules as regard to

operations on these truncated polynomials

O(oL,.nl, -n 2) +O(ct.n. 1-n4) - O(amax[nns],max11-n 2, -n 4]),

O(a. n1, -n 2) - O(a, n3, -n4 ) - O(amax[n1 ,n,], max[ -n 2. -n 4 ]),

(B.30)
O(a, n,, -n 2 ) O(a, n3, -n 4) - O(a, nj + n3,max[n. - n 2, n, - n 4]),

O(a, n, -" d O(a,nj - n3, - n2 - n).

We can now substitute all the expressions in Eqns. (B.18) through (B.29) into

Eqns. (B.4) through (B.8) to obtain the significant expanded terms in the cofactors and

determinant. The resulting range of significant terms are
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d. - O(a,6,4-n),

d12 - O(a,6,4-n),

d2" O((a,7,5-n), (B.31)

d22 - O(a, 7,5-n),

d - O(a, 7,5-n),

The actual asymptotic expansion was done on VAX-8530 using the symbolic

software MAPLE. It gives n = 12, which is the limit to which the asymptotic

expansion of those elements in Eqns. (B.19) through (B.29) can be carried out.

During the asymptotic expansion process for those elements in Eqns. (B.19) through

(B.29), it was found that

a W c,- _ a55,c2 + c55,- _ .,- ... +(_ 1 )Q.. 1)f5* (+5.32)or 57 =C55,1(1 -C•5,° + S _ (1B.32)1 (

a a 2 a3  a' a

C56.-1 _ C56:-2  c56,-3 -C565, 4  + 1 )(n - 1) C56 ,a c58 .1 cc + a.3 (. ...+( (B.33)- 6 5,1 (2 (3 41 a"

C65 -1 + c65,-2 c65,-3 + C65,-4 ... +(-1).c•."-, (B.34)
a'67  --c 6 5 C1 66 -2cC6- -3 CGS - C4 5.3 -+-n6- -n

a 6  ,, - , +a + c-660 C++ (B.35)

As a result, we need to show only the expanded terms of elements a,, a, a. a. a7

a7,. They are as follows,
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Ra.1-f.!(Kc+l) - )'..LK(K+1) , if-(x-31c-2) - (ic4O-K'-Rea5 ] 2 4a 8a2  16a3

5K'-Kc+4) + ____(Kc-2)e-6K3 +4x2+13K4-6) - ____

32a' 64 a" (K+ 1)

(K7-2K'-91c 6+6c 4+33K'+18K'-21K-32) + (k7- 4e
128 cx6

5K'+22ic 4+23K'-32x'-5lic-18) (K'0 3Ke9
2 56 a7(c + 1)

12K' +22K 7 +78K'- 18K - 222K - 198'~+ 63K' +225K + 252) +

'? (K'-6K8+44K6 -6K'-144K'-56K'+180KL'+189Kc+54) -

)4i (K'3 - 4K'2 - 14K." + 46K' + 1251e'- 170ie - 660K'7 -

1024a cz(K + 1)3

(B.36)

120K + 1425K' +1820K 4 +262K - 1380K - 1709K -2192) +

______(K'1 -8K'0+9K'+62K'-94K7 -264K'+250K+724ic'-3K'-
2048a'0

864K' -675K-162) - 71 (e" -5K1c"-15K"' +77K'3 +
4096 cl(K+ 1+

161K' 2 -483K"I - 1253K'0 1015k9 + 5355K8 + 2975K7 -8323K6 -

15015K' -7175K + 6347k-3+ 13341K' +11437c+ 21052) +

713 (K'3 -10K12 + 22K" + 68K'0 - 245K' -262K' + 1060K7 +

8192a 12

1016K'-2201K'-30301c4+1062K'+3780K'+2349Kc+486))3-

1+K
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Im[la'5 s] - 2a - "-(K+1) + I'_()e--K-2) - Ts (x3 -2lc-3K+2)
2 4a 8a 2

-(-30 -3K 2 +7ic+6) + Y___ k6 -( U5-3 -6ce+
16cx3  32a4 (c+1)

12e+210-3ic-20) + --_• (-5K+22i+c-33'c-
64a5

18) - 77 -(i- 40 - -8k7 + 30e + 48 5 - 661e -
128 a6(K + 1)2

156-e -421,c+103K+154) + 18 (•-8 -7ic'7ic+37K5 -
256a'

431•--101' +45ie+135K +54) - _ _ (K12 - 5K" -
512 a8 (K + 1)?

9K1cl + 551e + 70ie - 240x:' - 4200 + 3001e + 1125Ke + 695x -

435K2 - 885K - 1270) + 7 (K'0 - 91 + 180 + 44kc'- (B.37)
1024a 9

138WK - 126K' + 376K4 + 348x' - 35lK -513K -162) -

yl (K' 5 - 6K"14 - 9c1s +861"2 + 75K"-558K'O -

2048 a'O6 + 1)4

695K0 + 171008 + 3645K' -670)e - 7653x' - 7362Ke +

185x' + 6258K + 5823K + 11638) + yi (K1 2 _ -11K" +

40961a"

331° + 35Me - 280K' + 18Me + 1042-e -26x' - 2175x' -

855x' +19172 + 1863K +486) - ( _3 (KC -

8192 a1"(K + 1)5

7K" - 8K•6 + 122x' 5 + 52K4 - 1036)' 3 - 770KC2 + 4970f" +

7084K'° - 10780W - 30338) - 7294Ke 47824K6 + 65744x' +

220520' - 32186ie - 56905K2 - 29345K - 116376),
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Re[a'6 ,] - -Refa'5 5],
(B.38)

Im[a'5 ,] - Im[a'..],

Re[a'6 .] - -2a + (-1c-1) -____(K'-2K'-3Kc+4) + -ILK'-4K'+
2 4acL( + 1) 8o2

Kc+6) - -0____(K-3x5-6K'"+12K'+2lK2 -Kc- 28)+
16a 3(ic + 1)2  32 a4

(K'- 60 +6K3 + Me -15Kc- 18) - #6 (K-4ie-8k'+
64a5 (K +V

30K'+48K'-66K4 -156K'-40K'1+79Kc+212) + _____('8k'+
128a 6

15K'+22ie-G5ie-36ie+8bK+54) - 78 _ _(K1 - 0
256 a'(K + 1)"

91c" + 55K9 + 700' -240)e - 42006 + 300K' + 11251e + 697"' -483K' -

591K -1784) + '___(K-10K'+28k'+ Me -154K5 +28K4+
512 a8ý

348K - 351K -162) - -? -(K'5 - 6K"1 -9K' 3 + 86c'2 +
1024o9 (K +1)

75K" - 558K'0 - 695K' + 1710K' + 3645K - 670K - 7653K'- 7360K' + (B.39)

1050'+ 7150'+ 2135Kc) + " (K" - 12K'0 +45K - 10K'-

2048 a' 0

2 70K' + 288K' + 754x' - 780x4- -13951e + 540K' +1377K +486) -

.y12 (K' 81 - 7K"1 - 8K"' + 122Kx6 + 52K' 4 -1036K1 3 -

4096 al(K + 1)6

770K12 + 4970K" + 7084K'0 - 10780K' -30338K' - 7294k7 +

47824K' +65746K' +21932K' -30086K' -71965K' +17725K -

169596) + k i' 14K' +66K"- 64iK' 0 -385K'e+858K' +
8192 a'2

988k7- -3156K' -209 7K' + 5670K' + 4482K' - 3888K' -5 103K -

1458),
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Im [a',,] (-![(K -1) - __(K 2 -K -2) +(1K 4-K'-5ic 2 -Kc46) -
2 4ac 8a 2(,C+ 1)

Yd 0-3K'3-3K2+7K+6) + I'______K- 2K6 -9X5 +T6ca3  32otz4(K+1)2

6K 4+33K3+18K'-19Kc-44) - (K'0-5K'+22K'l+K 2 -
64cc5

331c -18) + -____(xK'- 30K- 120 + 22K + 781c'
128ac6(K +1)

181c5-222K 4 -198K'+65K 2 +193-c+350) - 7' e-7)e +
256 a

7Ke+37icl-43KI-101e~+451c 2 +l35K+54) - -? ____

512 e (K +1)

(K'3 - 4Ke2 - 14K" + 46K'" + 1251e - 170K' - 660kc7 - 120ie +

1425K' +1820K + 264ic3 -1440K' -1263K -3114) - 1____
1024cc9

(K'0 9K' +18K' +44K7 -138K - 126K' +376K4 +348K' -351K' -

513K -162) + Yl" (K' 6 -5K" _151C4+ 77K'3 + (B.40)
2048ac' 0 (K +T)

161K' 2 - 483K" - 1253K'0 + 1015)e + 5355x' + 2975K7 
-

8323k 6 - 15015K5s - 7173K0 + 6251K3 14601K' + 5413Kc +

30466) - y12 (K'2 - 11Kc" + 33K'0 + 351e - 280K'+ 18K7 +
4096cc"

10421e-26K'-2175Ke-855K3+1917K2+1863Kc+486)+

I? -(K' 9 - 61' 8 -150' + 114K'8 + 1741'" - 984k'4 -

8192a cc'K+ 1)6

1806K'3 + 4200K'2 + 12054K"1 -3696K'0 -41118Ke - 37632K' +

40530KC7 + 113568K+ +87800K' - 10414x' -83451K' -

132210x2'-15619Kc- 319176)) -
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Re[a' ,,] - Re[a'. 5], (B.41)

Im [a%',] - -Im [a•6 5],

Re[a'7 7] - -a - !.(K-2) - ___ .(x-20-3K +2) - _ 3 (Oe-4K2 +
2 4a(ic + 1) 8a 2

K+6) - _ _ (K6 -3K-6K+12Kb+21b-3Kc-20) - TI
16 a(Kc + 1)2 32a 4

(K5-6K4+6K +16e- 15K- 18) - T6  (Kb - 4Ke - 8K77 +
64a 5 (K + 1)+

30 6 + 48K' - 66 - 156Ke - 42k + 103K +154) - ___(i 7 +8K6+
128a 6

150 + 22x- 65e - 36e + 81K+54) - _ __ (K 12- 5K1 '

256a7 (K + 1)"

9K'° + 55K9 + 70KI- 240K7 - 420i ÷ 30OKb +1125ic + 695K' - 435 2 -

885K-1270) + ^? 0(e-10)e+2817 +16ie-154Kb +28ie+
512a'

348Kb -351K-162) - -•I1( -6K14 -6 K9 +86I2 +
1024a 9(K + 1)5

75K11 - 558K"1 - 695)e + 1710xb + 3645K7 - 6700 - 7653K5 -
(B.42)

73621e + 185xb + 6258 2 + 5823x) - " (KI - 12K'0 + 45Kb-
2048a'0

10KI -270,K + 2881e + 7540 - 780K4 - 1395Kb + 540K2 + 1377K +

486) - Y .(KW8 
- 7Xb7 - 8K'6 + 122KIc 5 + 52K14 

-

40961a"(K + 1)6

1036K•' - 770K1'2 + 4970K" + 7084K1° - 10780K - 303380 -

7294• 7 + 478241e + 65744x' + 22052k4 - 32186K - 56905Kb-

29345K) - yI (Kb3 
- 14K 1'2 + 66K" - 64K" - 385Kb + 8580 +

8192a"

988k7 -3156Kb -2097Kb +5670Kb +4482Kb -3888K - 51031 -

1458),
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Im [a'] 1-(-fiK - Y(120eK-2) - ____(c'i351-c4
2 4az 8a(K+ 1)

Yd Oe-3lc-3lc2+7Kc+6) - _ e__ 6e(K- 21cf'-9K5 +
16cc3  3 2 o4 (Yi+ 1)2
6e + 331c3 +18xc2 -2 K- 32) - -ILA(K-5e5+ 221e3+ x2

64a5

331c -18) - _____(c' 0 -30 -1208 + 22x 7 +78K6 -
128 oL6(K +1

18ie-222ic'-198ie+63ic2 +225ic+252) - Oe _ic- 7kc7 +
256cc7

7K6'+371cS-431ce-101K'+45lc 2+135ic+54) - -?____
512cr8(K +l

(kc' 3 -4KI' 2 - 14xc" + 46K0 0 1250c - 170ic8 - 660K7 - 120)e +

1425K + 1820ie'+262K1 - 1380K1 -1709K -2192) - ^fl0
1024occ

(K' 0 -91e9 +18c 8 +44e7 - 138ie6 -126K + 376ie~+348)e-351)c 2

513K - 162) - 711 (jC' 6 -5K1e5 - 15K"I + 77KIc3 + (B.43)
2048 a'0 0c +1)

16lic12 - 4-83K" - 1253ic'0 + 1015)e + 5355Kc8 + 29751e -

8323KIc - 150 15K'5 - 7 175K4 + 6347k' + 13341K1 + 11437Kc +

21052) - T2 (Kc'2 - 11K" +33K1 + 350 -280e + 18k7 +
4096cc"

1042ic6-26K1-21751c 4-855K1+1917K2+1863K+486) -

TiY3  -(K'9 - 6ic'8 - l5KIc7 + 114K'6 174KIc' - 984KIc4 -
8192 a 12(K + 1)6S

1806ic'3 + 4200iK12 + 120540c - 3696ic'0 - 41118ic9 - 3 7632KIc +

40530K 7 +113568K + 87798K - 10274K4 -86271ic 3 -

109230K2 - 65051Kc -217776)1 3-K
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Re[a'87] - Re[a 77],
(B.44)

im [a'871 - -Irm [7a ,

While substituting Eqns. (B.9) through (B.29) into Eqns. (B.4) through (B.8),

some of the coefficients in the leading terms of expansion become zero when the actual

computation was done. As a result, instead of seeing the power of leading terms as

shown in the second parameters in Eqn. (B.31), we obtain the following

dil - 0(a,3,-8),

d 12 - 0(a,3,-8),

d2l - O(a,4,-7), (B.45)

d22 -(a,4,-7),

d - O(a,4,-7).

Using the rules set forth in Eqn. (B.30), the final asymptotic expansions are as

follows,

dl " -0(a,-1,-12),
d

d12 - O(a,,-1,-12),

d

(B.46)

d - O(ccO,-11),
d

d22- 0(X,O,-11).
d

Written explicitly, they are
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d 1 (-1c-)+ y~ ic - 3) - (30 c -K-6) +
d a(-K+ 1) 4cx2(K+ ,1) 2  8cz3(K +1)3

- e (0c- W +17x + 10) - (31e -2 1K +171c 2++51c-
16(K +1)V 32c15(Kc+ 1)5

.4)+ Y' Oe -17e + 76)e - 720 2- 173Kc- 71) -
64a6 (ic + 1)" 128a 7(,C +17

(3K6 - 50KIc+ 159Kc4 -4)e - 1271c2 -10K +29) + ) O7 ( 7 -
256 cx8 (K + 1)"

300K+ 241c 5 - 629)e - 225x+ 1836Kc+ 2039)c +623) -
512 a9 (Kc+ V)

(3K - 91K 7 +635K - 946K - 1308K + 921K 3 +1183K2 -140K -257) + (B.47)

(K? i-47K + 608K7 -29001c6 +3328ic 5 +10552ic4 -
1024 a'0 (K+711

10316K3 -340 16K - 25109K -6101) - f" <31c 0̀ - 144ie +
2048 a"~c +i1)

174903 - 6484K7 + 744)e + 20824K' + 6536k' - 18804ie - 10539K2 +

3 584K +253 1) + Yl (K" -68ic' + 13050'- 98600 +
4096a 1c2(,C + 1)12

27560k 7 + 13328ie - 149276K6 -73340ie 370775K3 + 5692921e +

3195 + 63912),
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±-2 -1 + + ?____(K -1) + (2-K-6
d a 4a 2 (K+1) 8a 3(K:+l) 2  16 a(1c÷I)3

(K3 -8 W++3Kc+4) + 6 (Oe +61c-14 +54K +45) +
32a 5 (i+ 1) 4  64a6 ( + 1) 5

1 e (25 - 190 +60K3 +32X 2 -45K -29) +2c( .(128 a'(K + V)s 256a(Ks• + 1)"

15K' +8ie + 271 i -256K2 -844K-40 5 ) + ,Y .(C -340c +251K' -

512 (oN( + )8

309)e - 8033 + 22K2 + 615K + 257) + - .(w8 - 28i 7 + 1240. + (B.48)
1024a'o(K +T)

576w. - 3008we - 1816K2 +9196w. + 11860K + 4023) + y_0

2048a"(ic 1)1°

( 9 _53e + 688K7 - 2540w. - 836we + 9844K4 + 85960 - 4976ie - 8193w. -

2531) f y (i'o - 451c9 + 430-e + 150w. 7 -12270e + 19534K5 +
4096 a' 2(w. + 1)11

6507C"ie - 44178K2 - 198071K2 - 161797K -42528)],
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d2l - 1 + _ f _(K - 1) ÷+ (K2 -41c-1)-

d K+- a(K+1) 2 2a 2 (+l1) 3  4a 3 (K +1)"

S(K 3-7K 2+31+3)+ ' (x-12 3 + 20MO +24K+7)-
8a"(K + 1) 16a'(O + VI)

S•(K517cM + 50O3+ 22e - 35c- 21) + -(K6 "-241e +
32a 6 (K + 1)7 64ac(ic- V

119e - 36K3 - 301i - 244K - 59) - - .( - 3lie + 213K5 -
128 ac(K +I)

2510 4 + 605K + 35K + 455K + 183) + (?c-(-40c7 + 384k6 - (B.49)
256a 9 (-K + 1)0

904K - 1184x"4+2320iKc+4636 2 + 2768c + 563) - "(e -
512 a' 0( + 1)71

49c + 596K7 - 2084)e - 658KI + 7458x + 6244K3 - 3796Ke - 5927K - 1785)

+ (KIc - 60ie + 935x' - 4720, 7 + 2840K3 + 23272K3 - 316ic
1024 a"(Ic + 1)"

- 58720Ke - 70049ic - 331801c - 5795),
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d22 = i[..1+ ? _ _ - ___(i-1)÷ + (k2 -4K-3)-
d -+I 4ca3 (K + 1) 3 8a 4 (K + 1) 4  8a 5 (K . )5

O(1--6K 2+K+4)+ Y7 (3)e-321e+41x2+ 1101c + 50)-
16a (az + V) 64a 7 (K + IV

S• (3K5 -41K4 + 99x 3+99- -861c - 74) + (0 -20)e
128 a8 (i + 1)8 64a(cK1 +(1)0 (B850)

+ 86)e + 300 - 3060 - 364K - 119) - .(2K7 -48ic +276c -
256a'0 (K + 1)"o

187)e - 10061e - 170x + 760K +373) + *(50 - 160K7 +
1024a 11 (x + 1)"

1330ie - 2340W - 6786K1 + 7168Kx +24634 2 + 19156K•+4897)].

B.4 Leading terms of the integrands in Fredholm kernels

It is shown in Chapter 2 that the Fredholm kernels in the singular integral

equations are in the form of infinite integrals with their integrands composed of two

multiplicative parts (Eqns.' (51) through (54)). The first is made up of sums of

analytical rational functions whose numerators and denominators are determinants

as described in Chapter 2. These expressions are multiplied by either a sine or cosine

function that makes the integrands oscillating.

In Chapter 3, we choose to evaluate each infinite integral by two parts. The

first part is an integral with limits of integration from 0 to a finite value "A" (see

Chapter 3), and the integral is evaluated numerically by straightforward Gauss'

formula. The second is an integral with limits of integration from "A" to infinity. We

have chosen to evaluate only the leading terms of the integrand from the asymptotic
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expansion, together with the oscillating part, in closed form. The remaining part is

ignored, provided a sufficiently large A" is chosen so that contributions to the integral

from terms of order higher than what could be extracted asymptotically were

insignificant. Convergence of the evaluation of each infinite integral is achieved by

varying the value 'A" and by noting the numerical results are identical to a certain

digit.

In what follows, we shall give the leading terms of asymptotic expansion of the

integrands in the Fredholm kernels as described above. They are derived simply from

combining terms and expressions already established in Eqns. (B.47) through (B.50).

Let us rewrite Eqns. (47) through (54) as follows,

k11(x,t) - fýD;(a) sina(t -x) da, (B.51)

k12(x,t) - foD;2 (a) cosa(t -x) da, (B.52)

k 21(x,t) - f oD;i(a) cosa(t -x) dcx, (B.53)

k 22(x,t) - fýD 2(cx) sina(t -x) da, (B.54)

D•*(a) - - +l[2ax( D 31Ds -i )+(K+1xD21 D41 1 )], (B.55)
2 D D 2ox(Kc+1) D D K+1

K + 1 D12 D3 2  D22 D42D12(oa) - -- i [2 a (- ý)-(-2 X 1 (B.56)

2 D D D D
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D;I(a) X [2 a( Dll D31 )-.(-X--D21 +D 4 )]D (B.57)

D '~ [ a D 2 -Ds32 - !_•_ ) 22_ +D 42 (B 58D;2(a) = -_ i[a.- K -_ -1)](B582 D D 2a D D •+

Let d11', d12 *. d21" and d22 represent the leading asymptotic terms of D,,* D 2",
dll d12 _dz ad _d2fo qs

D21 " and D2 " respectively. Substituting .2- 11 _ d a d

(B.47) through (B.50), which are the first eleven leading asymptotic terms of the

respective rational expression resulting from the 7 by 7 determinant in the numerator

and the 8 by 8 determinant in the denominator, for D1  D12  D2 and D 22
- -Y' D D

in Eqns. (B.55) through (B.58), we obtain a set of truncated polynomials in cc'. Again,

any term that involves D13 D1 or D is ignored for the same--5--' --D-- -T- or D isgnrdfrteae

reason given earlier, that they are of much lower order terms and do not participate

in the asymptotic analysis or contribute to the leading terms. The expressions for

dC11(a), d*22(a), d-,1(a) and d*22(a) are shown in the following few pages.
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aK(a) + )(K-3) +S4a 8a 2 (K+ 1)2  16a 3 (K + 1)3

(K +2k-27x - 12)+ (K - 1)(k -8x + 17K + 10) +
32 o(c + 1)V

(e - 51e - 60c + 160c + 235Kc +85) +
64a cc' + 1)V 128a 6 (K + 1)6

(x - 17e + 76 - 72 - 173K - 71) + _.(K - Me -
256a7(K + 1)1

51 5 + 7951e - 449)e - 29261e - 2645K - 741) +
512 a8( + 1)8

(K - 1)(k 7 - 30)e + 241KI - 629Ke - 2251e + 1836K2 + 2039K + 623) +

'e .(- - 31ie + 80k 7 + 1860c - 7504x - 8280ic + (B.9)

1024cat(K + 1)?

242281e + 48824• + 31771K + 7227) + 0 (K- 1)
2048 a1°(K + 1

( - 47K + 608K7 - 2900K3 + 3328K + 10552c - 10316ie -

3401613 - 25109K - 6101) + yTi (K 1 - 50K'° +
4096 ac"(K +1)11

445K0 + 22901e - 31320K7 + 38896ie + 195188K - 44732)e -

628313)e - 775750Ke - 394945K - 75502)
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d *2(a) -L.J- + (x-1. 3 -e-K-8
4a 8a 2 (c+I) 16a3(K+I)2

1 (K - 1X 2-5K-2) + ' "(0K4 -10-2K2 +
32o(t4(+l) 64asc(K + )4

821+57)+ *x (K- 14Kx +26K2 +38K + 13) +
128ac6(K + V

.(Ki -21K•+ 664 + 253K -558i -1164K - 505)+
256 a(K + 1)6

'? •(K - 1)(e - 27c + 1481c - 45)e -452e - 404K -
512 a'(K +1)

109) + -_ "(_ - 36Ke + 276K1 + 48Ke - 3936K0 + (B.60)
1024cc9(K + 1)8

392K' + 14556K + 15724K + 4975) + .(K -1)
2048 a1"(K + T?

(K6 -44Kc7 + 46006 - 116806 - 1648)e + 3424K6 + 7 3 16K2 + 4700K +

1039) + _ __o - 551e + 740ie - 2190x7 - 10250K6 +
4096 ac"(K + 1)1o

37786K' + 64314K6 - 107782K2 - 285651K2 - 209903K - 52322)

11 *

j-l aý

d;1(a) - -d :((a), (B.61)
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d;2(c) -. ______(c-l)+
4at 8cz2(ic+1) 16 a'ic + 1)

1c -1)( - 6) + YV5 .K3-J +32a 4 (,C+ 1)2  64cx5(c+ 1) 3

IN + -33) + -' -Oc -1)(xe3 - 15i 2 +33ic+45)+
128 a" (K +1)

Oc-K5-22Kc4 +10Oc 3 + 2509- 419K -305) +
256 a7 (K + 1)l

8 (x -1)(O - 28x4'+1641c 3- 57x2-639K -
512 a8 (K + 1)"

405)+ ? _ (K 7 -371e 6+329xc-60lx4+ (.
1024a&(K + 1)7 B.2

19591e +283lie + 6829K + 3071) + (K0-1)
2048 a10 (i +T1)

(K7+45c6 -489KIc- 12891e -2199ie + 52790 + 974liK+

4023)+ fil (K9-560c+816c- 3646ie -
4096 a"l(i +17

1284Kc3 +2971OX4 +746Oice -86570)e2 -100545K-32734)
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Appendix C

Formula Derived From Sine And Cosine Integrals

We start with the definitions of sine and cosine integrals [23],

Si(x) - f sint dt, (C.1)

Ci(x)- - cost dt - y + logjxI + cost-1 dt, (C.2)

si(x) J. - sin_.t clt, (C.3)
t

where yo=0.57 721566490, is the Euler's constant. To change Eqns. (C.1) (C.2), and

(C.3) to a form that is suitable to be used in our problem, we can show that it can be

expressed, by a simp' e change of variable, as follows

0 sina(t-x) da - Si(A(t-x)), (C.4)

- cosa(t-x) da -- Ci(A(t-x))

(C.5)

- -y - log JA(t -x) I -fA 0 -X) I cosa - 1 da,
ci

- sina (t -x) da - si(A(t -x)). (C.6)
fA cc

We also note that
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f sina(t-x) da - sign(t-x) 1. (C.7)
0- ~ oa2

Therefore

si(A(t -x)) - Si(A(t -x)) - sign(t -x).--. (C.8)
2

Now we are ready to derive the necessary closed form expressions for integrals

to be used in Chapter 3. Integrating Eqn. (C.6) by parts as

f sina(t -x) da4 " cosa(t-x) da -cosa(t-x) cosA(t-x) (C.9)
a Jc a 2 (t-x) a(t-x) A A(t-x)

and after simplifying, we obtain

f- cosa(t-x) da - cosA(t-x) + (t -x)si(A(t -x)). (C.10)
A a2 A

Again integrating Eqn. (C.10) by parts and simplifying, we obtain

r- sina(t-x)da - t-XcosA(t-x) + 1 sinA(t-x) + (t-X)2 si(A(t-x))" (C.11)
f A 2A- 2A2 2

By repeatix-w - '-hove process several times, we can deduce the following identities,

C-cosa(t -X) da- coA(t_) (-1Y 1(t -X)2 V-')(2n -2j)! +
__________Xda .,cosA(t-x)•

f a2n j-1 (2n - 1M 2 -v-1

(C.12)
n-1sinA (t -1 -( (t-x)2J-1(2n- 2j- 1)! + 1). -x)si(A(t -x)).

j1 (2n - V)A - (2n - 1
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f- sina(t-x) da - cosA(t-x)E (-lY' (t-x)2•-I(2n-2j-2)! +
fAcc2n'I j.1 (2n - 2)!A2n'-2j- I

(C.13)

sinA(t -x)E (-l1)l(t -x)2• -2j- 1)! + (-l)n .- (t -.x-)2'.si(A Q -x)).j. 1 (2n - 2)!A"2- 2i (2n - 2)!

where it is any positive integer. Here we have derived expressions for infinite

integrals with a definite lower limit of integration whose integrand involves cosine

functions with even algebraic decaying power functions as well as for similar integrals

with integrands that have sine functions and odd algebraic decaying power functions.

Applying the above procedure to the cosine integral as we do to the sine

integral, integrating Eqn. (C.5) by parts and simplifying, we obtain

f sina(t-x) a W -sina(t-x) - (t-x)Ci(A(t-x)). (C.14)
Sa2 A

Once again repeating the integration by parts several times, we deduce the following

identities,

f;Cosa (t -X) doa - cosA(t-_X)" (-1)i"(t-x)2(j-1)(2n-2j-1)!+

A 2
n 1  j-1 (2n - 2)t"A2 2-'

(C.15)

sinA(t -x)E (-1Y(t -x) 2 --2 -2)! ()n(tXCi(A(t)).
j-1 (2n - 2)!A 2- 2i-'1 (2n -2)!

si(A da - cosA(tE-x) (-lY'(t-x)2 -'(2n -2j-1)! +

a a j-1 (2n - MA2n-2

(C.16)

sinA(t -x) (-1Y(t -x) 2 i-1)(2n - 2j)! + (1)" (tx) 2 -Ci(A(t-x)).
j1 (2n - )UA 2, -2. *I (2n - 1)!
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again, n is any positive integer. Eqn. (C.15) and (C.16) show expressions for infinite

integrals with their integrands having cosine or sine functions and corresponding odd

and even algebraic decaying power functions.
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Appendix D

Approximation Of Step Function and Logarithm Function

D.1 Gauss' formula and its approximation of a step function

The famous Gauss' formula for the evaluation of integrals of bounded functions

is as follows [23]

J t) dt - Ewj ft) + (D.1)
i.1

where t5 is the i-th zero of the Legendre polynomial P,(t). The weight function wi(t)

and remainder R, are as follows,

2 2wi 2 1P 1P/(ti)]2,

(1-_t2i
(D.2)

R,, 22nl(n !)4  f 2n)( ), - 1<4< 1.
(2n + 1)[(2n)!]3

For smooth bounded functions, the Gauss' formula provides an accurate evaluation of

definite integrals. To evaluate certain functions that have discontinuities, however,

Gauss' formula, or any numerical scheme for that matter, will fail if proper care is not

taken to address the discontinuities. In the case of a step function, we will find that

straight away Gauss' formula fails miserably. The reason is that general numerical

schemes which use polynomials, and in the case of Gauss' formula which uses

orthogonal Legendre polynomials, are simply unable to properly approximate a step

function. Compared to evaluating integrals with a step function, those with a

logarithm function fare much better when using the Gauss' formula. But the error
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is still significant. We shall illustrate this by using the Gauss' formula to evaluate

integrals with a simple step function and functions involving step function and simple

power functions to compare them with the values computed from exact analytical

expression. Integrals involving a logarithm function and a power function will be

demonstrated likewise.

In Chapter 3, we evaluated infinite integrals with a definite lower limit having

integrands with power functions in the denominator and oscillatory sine or cosine

terms of the form

f sina (t-x) da, f cosa (t-x) da, n - 1 .... 11. (D.3)

From the closed form expressions of Eqn. (D.3) (see Eqns. (C.12) ,(C.13), (C.15) and

(C.16) in Appendix C), we know that these integrals contain terms like (t-x) ' si(A(t-x)),

and (t-x) ' Ci(A(t-x)). From Eqn. (C.5) in Appendix C, we see that Ci(A(t-x)) contains

a logarithm term like log It-x 1. Furthermore, from Eqn. (D.4), we know that si(A(t-x))

contains a step function sign(t-x). This implies that the Fredholm kernels may be

expressed as follows

kii(x,t) - f (t -xr [cj, . sign(t -x) + dj,, log It-x] + F~j(tx), i, j - 1, 2. (D.4)
n-O

where c, j,, and d, j, are constants and F ft,x) are smooth bounded functions. The

terms involving the sign function in the summation is a step function as shown in

Figure 48. The n=1 term, which gives (t-x) sign(t-x), is continuous, but its derivative

is not. This can be seen from the presence of a kink in Figure 49. When n is 2 or

larger, each term becomes increasingly smoother, even though there is a step function,

and it becomes easier to approximate it with a polynomial. Figure 50 portrays this
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fact by the plot of the function (t-x)f sign(t-x) and shows that even with the presence

of a step function, the function is sufficiently smooth so that the function itself and

its first derivative is continuous, only its second derivative is discontinuous.

Table XXI further illustrates the fact stated above by the tabulated result of

numerical integration from -1 to 1 of functions plotted in Figure 48 to Figure 50 by

three different schemes.

(a). Use a 20-point Gauss' formulas over the limits of integration from

-1 to 1 disregarding the presence of step function.

(b). The same 20-point Gauss rule, but splitting it into two integrals at

the point of sign change.

(c). Exact analytical evaluation.

We make several observations based on the results of the three cases

computed, see Table XX2.

(1). Completely disregarding the presence of step function while

integrating numerically could make the integral very inaccurate,

with error reaching as much as 25% in the cases illustrated.

(2). The increasing exponent of the power functions serves to dampen

the effect of the step function in making the integrand discontinuous.

This can be seen in the increasing digits of accuracy for the integral

as the power goes up.

(3). Splitting the integral in two when there is a step function in the

integrand at the point of sign change is perhaps the best way to

evaluate these integrals. This can be seen in Table XXI that the

results are virtually the same for splitting the integral and the exact
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analytical evaluation. This also shows the superb accuracy Gauss'

formula possesses when dealing with bounded smooth functions in

definite integrals.
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Figure 48 sign(t-x), x=0.2, a step function.
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Figure 49 f(t)=(t-x) sign(t-x), x=0.2, f(t) is discontinuous.
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Figure 50 f(t)=(t-x)/ sign(t-x), x=-0.2, both f(t) and f(t) are continuous.
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Table XXI Evaluation of f.1' f(t,x) dt, with different schemes for selected x values.

f(t,x) contains a step function.

f(t,'x) Gauss Gauss/split int. Exact

(a) (b) (c)

sign(t-x) -0.305506 -0.400000 -0.400000

x=0.2 (t-x) sign(t-x) 1.039683 1.040000 1.040000

(t-x)9 sign(t-x) -0.405442 -0.405333 -0.405333

sign(t-x) -0.888045 -0.800000 -0.800000

x=0.4 (t-x) sign(t-x) 1.159637 1.160000 1.160000

(t-x)2 sign(t-x) -0.842581 -0.842667 -0.842667

sign(t-x) -1.151422 -1.200000 -1.200000

x=0.6 (t-x) sign(t-x) 1.360721 1.360000 1.360000

(t-x)2 sign(t-x) -1.344049 -1.344000 -1.344000

Note:

(a). Gauss' formula with 20 Gauss points.

(b). Split the integral in two at the point of sign change in the step function,

then use Gauss' formula for each integral.

(c). Exact.
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D.2 Approximation of a logarithm function

The terms in Eqn. (D.4) that contain a logarithm function do not behave as

badly as those that contain a step function, as far as numerical integration is

concerned. As a matter of fact, for terms like (t-x)t log It-x I, n _> 1, the function is

continuous and so are its derivatives. It is due to the stronger term (t-x)P suppressing

a weak singularity at (t-x) = 0 of a logarithm function. This can be seen by the

behavior of the functions in Figure 52 and Figure 53. Only when there is a logarithm

function without the presence of power function do we see a singularity, as shown in

Figure 51.

From the behavior of those functions that contain a logarithm term as shown

in Figure 51 through Figure 53, and the discussions in the previous section regarding

numerical approximation of integrals, we could very well anticipate that only the

logarithm function alone would need particular attention in numerical computation.

Those integrals that have terms like (t-x)" log It-x I, n _> 1 pose no special problem.

Similar to what has been done in the previously section, a table is compiled to list the

result of numerical integration from -1 to 1 of functions plotted in Figure 51 to

Figure 53, again using three different schemes for comparison. Indeed we find such

is the case that only integration of the log term itself by direct application of Gauss'

formula present a significant error.

Once again, we make the following observations based on the three schemes

used for these functions with a logarithm term, see Table XXII.

(1). The inability, or difficulty of Gauss' formula to appropriately approximate

functions with discontinuities is revealed once again by the discrepancy in

the result of direct applying the formula to integrate a logarithm function
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and the exact value. Although the relative error in evaluating a log

function, 6%, is much smaller than in evaluating a step function.

(2). As expected, only the log function alone causes significant error in the

numerical integration. So long as there is a power function like (t-x)",

n > 1 to suppress the logarithm term, Gauss' formula can be applied directly

without significant error.

(3). Once again, splitting the integral in two at the point of discontinuity proves

to be a superior way of handling these integrals.

Unlike the case of a step function, splitting the integral when integrating a

logarithm function from -1 to I does not produce as good an accuracy. This is because

the logarithm function is unbounded at where the integral is being separated.

Artificially separating the integral at point of singularity forces Gauss' formula to take

the value 0 for the logarithm instead of infinity. But the error introduced is still small

compared to if Gauss' formula is applied over the whole range without separation.

190



(30

C;J

0M

Itc

191



66

0

-~-c0

1M0 C\1 cn 4
0= 0; 0;6C 6 6

Figure 52 f(t)=(t-x) log It-x 1, x=0.3.
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Table XXII Evaluation of f.1
1 fAt,x) dt, with different schemes for selected x values.

f(tx) contains a logarithm function.

f(t,x) Gauss Gauss/split int. Exact

(a) (b) (c)

log(t-x) -1.807367 -1.905593 -1.908599

x=0.3 (t-x) log(t-x) -0.008847 -0.009081 -0.009083

(t-x)2 log(t-x) -0.131007 -0.130864 -0.130864

log(t-x) -1.825950 -1.735370 -1.738376

x=0.5 (t-x) log(t-x) -0.045311 -0.042789 -0.042792

(t-x)2 log(t-x) 0.038481 0.038378 0.038378

log(t-x) -1.384621 -1.456118 -1.459124

x=0.7 (t-x) log(t-x) -1.121327 -1.120933 -1.120937

(t-x) 2 log(t-x) 0.309208 0.309268 0.309268

Note:

(a). Gauss' formula with 20 Gauss points.

(b). Split the integral in two at the point (t-x) - 0, then use

Gauss' formula for each integral.

(c). Exact.
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Appendix E

Numerical Evaluation Of Determinant

E.1 Introduction

In Chapter 3, we solved the SIE numerically by discretizing it at the collocation

points. At each collocation point we evaluated the Fredholm kernels which are in the

form of infinite integrals. Those integrals are each separated into two parts. The first

part is obtained by using closed form expressions. The second part is a definite

integral with limits of integration being 0 and a finite number "A", which we

evaluated by using Gauss' formula.

We recall in Chapter 2 that the integrand of each Fredholm kernel is the

algebraic sum of four terms each being the quotient of a 7 by 7 and an 8 by 8

determinant (see Eqns. (51) through (54)). From the discussions in Chapter 3 and

Appendix B, we realized that in the actual numerical computation these determinants

are to be evaluated by a full expansion. Since full determinant expansion requires a

very large number of operations, we can expect this is where the major computing

effort will be in the numerical analysis.

E.2 Floating point overflow

In order to learn how to be more efficient in computing the 8 by 8 and 7 by 7

determinants, let us write again the 8 by 8 determinant shown in Eqn. (B.3), but in

a slightly different format as shown in Eqn. (E.1). Following discussions in Appendix

B, we know that the leading terms of the 8 by 8 determinant and the eight 7 by 7

cofactors appear in the integrands of Fredholm kernels must carry a term like
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0 0 0 0 -ar6 e• -ae ' -a67 e -awe

0 0 0 0 -a,,e S, -a,,eO -a.7e-J -a 5 e -"U

O(a)e"' O(a)e"•' O(a)eh, O(oa)em 0 0 0 0

O(a)eh1 O a')e-' O(a")e• O(a)e•' 0 0 0 0 (E.1)

a 5 , a5 2  aa. 5  a 6  a.87 a.

a. 1  a. 2  a.3 a.4 a. a. a 6 7  a.,

a 71  a 7 2  a 73  a 74  a 7. a 7, a 77  a 78

a 8 1  0 a.3 0 a8 5  a. a.8 7  a.

e 2(hh2) Depending on the relative value of a, h, and h 2, this e2 o' h term can

get very large very easily. Floating point overflow in numerical computations is

consequently something we should watch out for in this determinant expansion.

Let's take the maximum floating point number prescribed in a particular

computer to be R, a machine constant. This number is hardware dependent as weii

as programming language dependent. Let's further restrict the programming

language used to be FORTRAN, which is the programming language numerical

procedures in this study is written. R is therefore the maximum real number, single

or double precision, that can appear anywhere in a FORTRAN program before

overflow occurs. In the 8 by 8 determinant that we are dealing with, however, all

numerical operations are in complex arithmetic. The maximum floating point number

that can appear in our numerical procedure in either the real part or the imaginary

part, therefore, becomes R7 . The numerical computation for this work is carried
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out on a Cyber 180 Model 850 where the R value allowed in FORTRAN is defined to

be 5 .2x 0lis2 [32]. From this we can deduce that the following condition must exist

or a floating point overflow would occur.

11

2a(h. * h.1) (E.2)e R7 R, => a(hl+h 2) :5- logR - 709.614

Based on the analysis above, we now know that in evaluating the Fredholm

kernels, as the integration variable gets larger, there is increasing danger of floating

point overflow. One way to avoid the floating point overflow is to have checkpoints

in the numerical procedure so that whenever a particular element with the

exponential term gets too large, the entire row is divided by a constant to keep it in

check. This division on rows has to be done on both the numerator and the

denominator so that the quotient is unchanged. But as this division is carried out,

there are elements on the same rows that will run the risk of floating point underflow.

These elements are those that carry the negative exponential as shown in Eqn. (E.1).

To remedy the situation another checkpoint will have to be installed to set those

elements under risk of floating point underflow to zero.

While this method works, there is another way of computing these

determinants more efficiently. We shall describe it as follows. The value 1 log R

in Eqn. (E.2) serve as a guide below which full expansion should be used to
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numerically compute the determinants. When a (hi + h2) > log R , the term

e2a(h, -h, is so overwhelmingly large that, as a result, the product of the rest of

the terms of the fully expanded determinant are lost in the trailing digits of this huge

number so that we are in effect computing the leading terms of the determinants. If

we recognize this fact, the complicated procedure of computing all the terms of the

determinant shrunk to just computing the leading term only, that is the term with the

common factor e 2a0ý*h1 ) . When this happens, we don't compute the term

e 2, , 1) in the numerator nor in the denominator because they factor out. What

follows is a much simplified computation of the determinants exactly as described in

Appendix B. This reflects a much reduced effort in our numerical computation.

1 log R in Eqn. (E.2) therefore becomes a parameter to flag between full
4

expansion and leading terms expansion.

To avoid any possibility of floating point overflow in numerical computation,

we purposely keep the value of a (h, + h2) smaller than 1 log R by some margin.

Since in full determinant expansion, we have eight elements to contend with in each

product, and e 2a1(h, -h constitutes only the exponential term of two elements. A

limit of 500.0 was used for the computation in this work instead of 709.61 as given by

Eqn. (E.2).

There is yet another interesting point one may make as a result of this floating

point overflow discussion made above. Take the integral in Fredholm kernels that we

have chosen to ignore in Chapter 3, namely
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f [D;1 i(a) -d1 1(a)]sina(t -x) da,

f [D;2(() -dd; 2(a)]sina(t -x) da,

(E.3)

f[D;c2(i)-d;12(o)]cosc(t-x) dc,

f - [D•j(a)-d ~cosa(t -x) a

D
From Chapter 2 we know that D, i's are the algebraic sum of -'j, which are

D
quotients of full expanded determinants. Likewise d, * are the algebraic sum of

d..--2-, which are quotients of the leading terms of determinants. From the
d

discussions stated earlier, we conclude that if the integration variable a gets too large,

floating point overflow can occur. Here we must point out that the term "large"

depends also on the sum (h1 + h,). For large (h1 + h.), a can be quite small when

floating point overflow happens. When it happens, D~J's are evaluated the same way

as d~j" as pointed out earlier, that is by leading terms expansion. As a result we have

no way to reliably evaluate the integrals in Eqn. (E.3) since at large ai, we can not

evaluate D~j" exactly due to limitation of the machine constant. Putting it in another

way, for sufficiently large "A", DIj is equal to dj" as far as numerical computation is

concerned, therefore the integral is zero. This proves once more that these integrals

can be ignored as we have done in Chapter 3.

E.3 Case of thin film on thick substrate

The discussions above applies to all cases of material thicknesses except that

which we are going to address in this section. While it is generally true that when
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the order of magnitude of the determinant reaches the limit of machine constant (the

value R in the previous section, R7 for complex arithmetic), it is as though we are

computing the leading terms of the determinant and it is more efficient that way. But

as the ratio of the thickness of the two materials L.h gets smaller, it reaches a pointh,

where the numerical scheme of computing the determinants based on the leading

terms expansion no longer suffice. Therefore for the case of very thin film on thick

substrate, we need to re-examine the numerical procedure because the usual leading

term expansion applicable to the general case would lead to difficulties in the

convergence of solution and an unsatisfactory result. We shall now investigate this

situation as follows. Consider the case of a very thin nonhomogeneous film as

material 2

h2 = Sh1 (E.4)

Eqn. (E.2) becomes

ahi(1+8) < 1 logR,4

(E.5)

- ah 1  _ 1 logR,4

since 8 is very small. We now consider the next higher order term in the determinant

that is ignored by the leading term expansion but a term that becomes increasingly
h2

important as L2 becomes smaller, they are terms with a factor like e 2aA, (see Eqn.hi

(E.1)). We actually do not know under what circumstance the dropping of the term e 2,"

will affect the result. Let us illustrate by assuming conservatively that when the

second highest order term is larger than 1% of the highest order term, computing the

determinant based on only the leading terms will give a distorted result. In other
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words, when

e 2ah > 1% e 2 ' , (E .6)

the solution will be disturbed if terms including e 2"h' and lower are dropped.

Taking logarithm on both sides of the inequality and simplifying, we obtain

8 < logloo (E.7)
2ah1

As mentioned earlier, as e 2GOL.1 ) reaches the machine constant, we resort to

leading term expansion in computing the determinants. When that happens, a h, is

at least equal to log R , see Eqn. (E.5). Substituting this into (E.7), we obtain4

the limiting value of 8 under which, based on the assumption we have made in

keeping only the highest order term when the second highest order term is larger than

1% of the highest order term, using the leading terms expansion to compute the

determinants is no longer valid. For Cyber 850, we get 8 < 0.00324, which means that

at approximately h, > 300 , dropping lower order terms as have been done inh2

leading terms expansion will affect the accuracy of our solution.

The fix for these borderline cases when --h gets large is to simply go backh2

to the less efficient full determinant expansion and employ row-wise division to avoid

floating point overflow as well as setting small numbers to zero to avoid floating point

underflow. To be on the safe side, in the cases that we have computed in Chapter 4,

two worst cases where -h equals 200 and 400 respectively (h, = 100 a, h2 =0.5 a,h2

and h, = 100 a, h2 =0.25 a) are computed using full determinant expansion. The rest

of the cases were computed by employing the leading terms expansion. We found the

results to be quite satisfactory as have been shown in Chapter 4.
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Appendix F

Behavior of Cauchy Integral

Let there be a function of position (t) defined on an arc [a1, a2]. 0(t) is said

to satisfy the Holder condition on [a,, a 2], if for any two points ti, t 2 on the arc

I (t2) - (tj)[ 1 < A 4I2-tl 1P, 0<P:5l, (F.1)

where A is a positive constant. A is called the Holder constant and p the Holder

index. The implication that the function 0(t) satisfies the Holder condition is that 0(t)

is bounded and do(t)/dt is integrable within the closed interval [a, a2].

Consider the Cauchy integral

1 (z) W) dt, (F.2)

where 0(t) has at most an integrable singularity and may be expressed as

0(t *(t) ý;(t) . IF3
4(t) - _ + + 0;(t), O<Re[y1], ReIy2]<l. (F.3)

(t - aj)Y, (t -a2 )Y2

*'(t), k = 1, 2 satisfy the Holder condition on the closed interval of [a,, a2] and ý1"(ad

*0, 0;(a) * 0. Substituting Eqn. (F.3) into Eqn. (F.2), O(z) may be expressed as
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z)- [0'(al) m dt + 0(a2) dt dTx,- (t -adl•(t -z) , (t -a2)y2(t -Z)

(Ii) ((2)
(F.4)

(0 •(t) -¢•(aI) dt + fa 02(t)-' (a 2 ) dt + J, - (t) dt
Ja, (t-ad)T,(t-z) , (t-a 2)y2(t-z) , t-z

(I3) (14) (/5)

Since, 0,*(t) satisfies the Holder condition, we have

I 01(t) -0'(a) I < A It -a I", A>0, 0<p<l. (F.5)

It follows that

1 3 <A1 I< K (F.6)' 2 i ,(t -ad),-P(t -z) (z -al)P-P

where A and K are both positive constants. From this we conclude that 1. is of higher

order than (z - a)"'-Y. By a similar argument, I. is of higher order than (z - a2)"-.

O3"(t) also satisfies the Holder condition, therefore I5 has at most a log singularity. As

for I, and 12, we shall show that they both have singularities at the end points that

is stronger than any of I, 14, or I5. Let t. be a point on (a,, a 2). From the Plemelj

formula (see [20]) we obtain the boundary value of I, as follows

II(to)" -Ij(to)- - ;(aj)(to-a,,

(F.7)

ll(to)" + 11(t)0Y -(a• dt
gi (t -aj)Y-(t -to)

Define the function
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fl(z) - - (a,) (F.8)(Q -e e'•) (z - adY

on any definite branch that is single valued and varies continuously on the interval

(a,, a2). We obtain its boundary values as

o)- *(a) (to-al)"Y',
1-e -2 i ,( .

(t -= (a ) e 2 ' (to - a )-(' ,

1 -e "2xy 0

ntto)" - Q(to)- - ,(aj)(t.-a,)"Y-.

From Eqn. (F.7) and Eqn. (F.9), we obtain

[1i(to) - 2(to)] - [11(to) -f(to)]" - 0. (F.10)

which means that [I,(z) - QW(z)] is holomorphic on the entire plane. We can write

I(z) - Q(z) - PI(),

/I(z) = _1(al) (z-ay)-v, + PI(Z),1 -e -2xy, (F.11)

* •(a 1 )exiYl(z-a,)"y. + P1 (z).

2 i sin n71

where P,(z) is holomorphic. To obtain the boundary value of 1i(z) on [a1, a.], use Eqn.

(F.9) and the Plemelj formula
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II(to) - 1 [I1(to) + II(to)-]

21-4(al) (toa_)- _ 1 _+e" (F.12)2 1- e -2xiy,

"- •/;(al) (to-a,)', cotnyr.

12 can be obtained in a similar manner in terms of its leading term and a 1-olomorphic

function. By Plemelj formula 12 has boundary values as follows

12(to)+- 12(to)- - 0;(a2)(to-a2)•f,

(F.13)
+ t o- (a 2) r dt

•irI I (t -a2) -,(t -to)

Again, define a function '(z) that is single valued and varies continuously on any

definite branch

'P(z) - 02(a 2) (F.14)
(1 -e 2xy3) (z - a2)'

The boundary values of "t(z) become

(to) 4(a) (to -a 2 )-",

1 -elXi•*

;(a2)e -2xy, (t-a'(F.15)'P(t,)" - (to-~a2 )"l',

1 -e
2 2 

0

I,(o %P~t- - 0;(a 2 )(to-a 2)-Y.

From Eqn. (F.13) and (F.15), we conclude that I 2(z) - 'I'(z) is holomorphic and write
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I 2(z) - Tf(z) - P2(z),

I 2(z) - 2(a2  (z -a 2) " + P 2(z), (F.16)1 -e 2 •'•'(.6

4;(ad)e -'T•
(z -a 2)-" + P 2(z).

2isin7ry2

Similar to Eqn. (F.11), P2(z) is a holomorphic function. The boundary values of I2(z)

on [a,, a2
1 car be obtained from Eqn. (F.15) by using Plemelj formula again as follows

12(tO) - [(t 0) +

- ( (a +e-Y (F.17)0; •(a2) (to°- ad)- 1-e Uiy,

"1 0-(a2 ) (to -a 2)"' 2 cot7rY2.
2i

We have now shown that I,(z) and I 2(z) have higher order leading terms than either

13(z) or I 4(z). As for I8(z) which has a log singularity, we shall assume temporarily that

it has a weaker singularity than either I/z) or I2(z). We can now write the Cauchy

integral and the boundary values in terms of its leading terms as follows

1 Cf- (t)dt
2(z i t-z-

(F.18)

- ý*(a,)e't (z -a)"' - _(ae" (z-a2)1 " + P(z).
2isin•y 1  2isinmry2

0 2(to) 1 _ ;(aj)cot-yl(to-aj)-,- _;(a 2)cot7rY2 (to-a)2 + P(to). (F.19)

P(z) is bounded everywhere except possibly at the end points a, b, where it has
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singularities no higher than those of the leading terms in Eqn. (F.18).

Multiplying Eqn. (F.19) by (z - a,)-Y' and let t. -- a,, we obtain the following

characteristic equation

0 l(a,)cotiry, - (F.20)
2i

Since 01 (a1 ) * 0, we have

÷onl-0 J-t1 1- 3, 4÷5 ±7, (F.21)
cot 7y -0,y,-1 " '"2

where y1 represent the stress singularity at end a1. We obtain y, - as the only

acceptable solution since 0 < Re [y] < 1. At the end a2 we can follow a similar

procedure giving yj ,1. This is the well-known square root singularity for most2

crack problems. It also justifies the assumption we made earlier that 15 has a weaker

singularity than that of I, and 12, since log singularity is weaker than square root

singularity. From the discussions we had so far, we conclude that for singular

integral equations with a simple Cauchy kernel. The density function 0(t) may be

written as

*(t) - ov(t)
(t -a,)" 2 (a2  (F.22)

#Vt) - 0*(t)(a 2 -t)"a + io;(t)(t -al)" + ;(t)(t -a,)L*(a 2 -t)"2.

where O(t) is bounded everywhere on [a1, a 2].
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