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ABSTRACT

The future of robotics, clutches and suspensions lies in discovering novel fluids whose
flow can be controlled rapidly and without the use of mechanical valves. This report deals
with the discovery of a smart fluid with unusual properties. More work is needed to
determine whether these properties can serve as the basis for useful smart actuators.

Most smart fluids under study today are colloidal suspensions of highly polarizable

- particles (electrorheological fluids). Unfortunately these ER fluids have problems

associated with maintaining the colloids in suspension, with the long time scale of the
response, with excessive power consumption and with reproducibility of effect over
thousands of cycles.

Many of the problems associated with ER fluids might be entirely avoided by using a single
phase liquid whose viscosity changes with applied field strength. Effects of this type
(electroviscous fluids) have been observed in the past. However, known changes in
viscosity are typically less than 2% at large field strength. Thus the electroviscous effect is
generally believed to be of no practical use.

The results described herein may change this view. A new class of electroviscous (EV)
fluids was synthesized and found experimentally to display a 2000% increase in viscosity
when placed under electric field strengths on the order of 2 kV/mm. The effect is very fast
with a response time of less than 30 milliseconds. The novel fluid has good high
temperature stability, is a very good insulator and may have lubricating properties.

The measured viscosity change is directly proportional to applied field strength. Thus the
EV mechanism may be different from that observed in other known EV fluids.

A striking difference between this discovery and previously known EV fluids is the size of
the observed effect. The results are preliminary. The observed effect has not been

optimized and its origin is not completely understood. Accession For
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1.0 INTRODUCTION

This report describes the results of a six month feasibility study, "High Temperature Smart
Sensors and Actuators” funded under DAALQ3-92-C-0007. This program investigated the
feasibility of a novel approach to smart lubricants for reducing shock and vibration in Army
ground and aircraft vehicles. A fundamentally different approach for creating smart fluids
was experimentally explored. Feasibility of the concept was demonstrated for fluids formed .
by grafting liquid crystal groups onto the terminal ends of short linear polysiloxane chains.
The results are low viscosity fluids with novel electroviscous (EV) behavior.

Research going back to the 1940s has demonstrated that slurries can have large changes in
measured viscosity when exposed to strong electric fields. Modern electrorheological (ER)
fluids are all colloidal suspensions of highly polarizable particles in a non-polarizable
solvent. A wide variety of oils has been successfully employed as ER vehicles and the
particles can consist of either polar organic matenials such as starch, cellulose, polymers or
inorganics, such as silica or metal oxides. In a strong electric field, the behavior of the ER
fluid is dominated by the dipolar interactions between colloidal particles. When a large
electric field is applied to the fluid, dielectric columns orient parallel to the field lines. While

these columns form rapidly, relaxation of these columns is a much slower process.

There are a number of unsolved problems with ER fluids. Discrete particles, no matter
how closely matched in density to the dielectric fluid matrix, tend to separate out over time.
The polar particle phase, especially when water is absorbed on the surfaces of the colloids,
renders conventional ER fluids somewhat electrically conductive. At high electric field
strengths, the fluids can pass appreciable amounts of current. This in turn leads to heat
generation which can be detrimental to the fluid's stability and ER performance. The
presence of water tends to limit ER performance to below 100°C.

Electroviscous fluids differ from electrorheological fluids in that they contain no solids.
Thus they may be able to circumvent some of the problems of ER fluids. The ideal EV
fluid for reducing shock and damping vibration would have a low viscosity. On application
of an electric field, it would immediately become very viscous. The effect should be fast
and completely reversible for millions of cycles. To keep power requirements low, the
ideal EV fluid should have low electrical conductivity and large changes in viscosity. No
known EV fluid has all of these properties.




2.0 APPROACH

The overall approach was to synthesize six silicone polymers, each endcapped with liquid
crystal groups. The rationale for this approach follows.

2.1 Technical Approach

The search for the ideal EV fluid begins with a liquid which has the desired combination of
lubricating properties over a broad temperature range. Silicone fluids are well known for
their wide useful thermal range (-40°C to 285°C) and their excellent lubricity under extreme
pressure conditions. Their chemical and solvent resistance are unique. Silicones also tend
to be liquids even at molecular weights which would yield waxy solids in hydrocarbon
structures. This is almost entirely due to the extraordinary flexibility of the silicone chain
and represents a unique feature of silicone compounds.

Silicones, however, are "stupid" fluids. They show no EV response whatsoever. Thus
they must be chemically modified.

LC monomers can be dissolved in organic solvents and these solutions show small but
measurable EV effects. To be useful, these subtle EV effects must be magnified hundreds
of times. The hypothesis which formed the basis of this research was that EV effects
depend on the statistical distance between charged groups. For monomers, this is small.

The technical approach is to attach LC groups to silicone chains. The simplest case,
terminal end attachment, was chosen arbitrarily. Attaching LC groups to the terminal ends
of short silicone polymers may greatly increase the atomic distance between the charges of
the dipoles formed in an electric field. Structurally these liquids consist of LC microphases
Joined by very flexible silicone chains. The LC groups can be polarized; the silicone chain
cannot. Apparently these silicone chains do not prevent the orientation of the LC
microphases. A photomicrograph of one of the better EV fluids produced by this research
illustrates this point on the next page.
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Figure 1. Photomicrograph of Electroviscous Fluid




Figure 1 illustrates the high degree of order despite the presence of silicone chains. Under
hydrodynamic shear, this order is altered and the fluid behaves much like a low viscosity

silicone oil.

However, on application of an electric field, there exists the possibility of dipole formation
between LC groups. The result may be a network of silicone chains whose ends are
tethered to LC microphases. This should result in a large increase in viscosity. This

unproven hypothesis is illustrated below.
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2.2 Pendant Groups

The following six pendant groups were chosen for this study. Compounds A and B were
chosen as charge transfer groups because of their electron rich and electron deficient nature.
Compounds C throngh F are LC of nematic cholesteric nature and their switching times are
very fast. They are structurally similar in the sense that they all contain multiple rings with
different substituents in the terminal benzene ring and they all form R--CH=CH); allowing
for a single step hydrosilation reaction to graft the R--CH,- onto the ends of hydrogen

terminated dimethyl siloxane chains.

F F
A- F CH=CH,
F F
CH=CH2
- LI
0 0
i 1l
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E- CHyCHy= CH-CH,- 0 C—O—Q—c—o—<CH2+nCH=CH2
CHs —
0 0
I Il /
F- CHgCHz—(I:H-CHz—O C—D-QC_O_CFBQ'%:CHZ
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Figure 3. Six Test Pendant Groups




2.3 iqui 1 k

Liquid crystal is a state of matter which exists between a crystalline solid and a liquid.
Compounds which exhibit LC properties change from a solid to a liquid or from a liquid to
a solid through intermediate states called mesophases, or mesomorphic states. LCs whose
order may be affected by solvents are referred to as lyotropic liquid crystals, while those
which are affected by thermal means are called thermotropic liquid crystals.  As heat is
applied to a thermotropic LC, the transitions usually follow the order: Solid -- Smectic
phase -- Nematic phase or Cholesteric phase -- Isotropic Liquid. The smectic phase has a
two dimensional arrangement in which the molecules not only line up in one direction but
they also stack sideways to form parallel planes. The nematic phase has a one dimensional
arrangement in which the molecules line up in one direction. The cholesteric phase, also
called the chiral nematic phase, is formed by LCs containing chiral centers and has a
twisted sheet structure. This concept is illustrated below.
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Figure 4. The Liquid Crystalline Phases
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Each successive layer of a cholesteric mesophase has its principal axis rotated from the
previous one so that the entire array forms an ordered helical or twisted series of layers.
The repeat distance between successive layers with the same orientation is called the pitch
and it is very sensitive to temperature, pressure, electric and magnetic fields, or solvents.
The structural unit which is responsible for imparting LC properties to a substance is often
called the mesogenic unit or mesogen. It usually consists of a linear array of two or more
aromatic rings or cyclohexane rings connected in the 1,4 positions by short links of one or
two bond lengths. In this manner, a rigid rod segment is formed which has an overall
length that is substantially greater than the width. This molecular shape is important for
forming mesophases.

Low molecular weight cholesteric LC monomers can be ordered unidirectionally in
electrical fields. Display devices such as those found in wrist watches and pocket

calculators use this property.

The study of LCs is a relatively new field and has aroused considerable current interest
among scientists. LCs appear to be a fertile field for searching for smarter fluids.

3.0 EXPERIMENTAL RESULTS

3.1 LC Thermal Properties

The thermal properties of the LC mesogens were determined by Differential Scanning
Calorimetry. Some of the LC-endcapped four-siloxane-chain compounds were also
evaluated by DSC; however, because of their pasty characteristics, some of them could not

be tested.

Table 1: LC Mesogens DSC Thermal Analysis

Sample Tk-SA/C  SA/C-1  Tk-1I  1-SpA/C  Sp/C-Tk
(°C) (°C) (°0) (°C) (°C)
perillyl4cyano-benzocarbonyloxy-benzoate 58 62 ---- ---- --e-
perillyl-4-phenyl-benzocarbonyloxy-benzoate - ---- 116 56 48
Q hexene-4-t-butox y-benzocarbonyloxy -benzoate - ---- 77 38 32
perillyl-4-1-butoxy-benzocarbonyloxy-benzoate 60 69 - 2 2

11




TK-S a= crystalline solid to smectic A transition.
TK-C= crystalline solid to Cholesteric transition.
Sa-I = smectic A to isotropic liquid transition.
C-I = Cholesteric to isotropic liquid transition.

All mesogens showed liquid crystal behavior, and although they are thermotropic liquid
crystals, none of them are enantiotropic LC (LC behavior on both heating and cooling
curves). The perillyl-4-cyano-benzocarbonyloxy-benzoate and perillyl-4-t-butoxy-
benzocarbonyloxy-benzoate show monotropic LC behavior on the heating curves while
perillyl-4-phenyl-benzocarbonyloxy-benzoate and 2 hexene-4-t-butoxy-bernzocarbonyloxy-
benzoate show monotropic LC behavior on the cooling curves.

The perillyl-4-cyano-benzocarbonyloxy-benzoate and perillyl-4-phenyl-benzocarbonyloxy-
benzoate compounds show Smectic A texture, while £ hexene-4-t-butoxy-
benzocarbonyloxy-benzoate and perillyl-4-t-butoxy-benzocarbonyloxy-benzoate show
cholesteric texture. The analysis of the textures was performed by polarizing microscopy
since they cannot be determined by DSC.

Table 2: DSC Thermal Analysis of grafted LC Mesogens onto siloxanes

Sample Tk-SA/C  SA/C-1  Tk1 1-SA/C  SA/C-Tk
(°C) (°C) (°0) (°C) (°0)
perillyl-4-cyano-benzocarbonyloxy-benzoate -—-- -——-- 60 ———- -—--
Q hexene-4-t-butoxy-benzocarbonyloxy-benzoate  ---- ---- 81 -—-- ----

Upon chemical bonbing of the LC mesogens to the siloxane chains, LC behavior is no
longer recorded by DSC. However; studies carried out by polarizing microscope show the
existence of the LC mesophases ( Section 3.2 ). A possible explanation is that siloxane
chains tend to decrease the order of the LC compounds to the point that their thermal
behavior becomes so slow that DSC can no longer record it.

3.2 Optical Characterization of LC Compounds

The experimental LC mesogens and LC-endcapped four-siloxane-chain compounds were
optically analyzed by polarizing microscopy. Photographs of the compounds follow.

12




Figure 5.

Figure 6.

Photomicrograph of perillyl-4-cyano-benzocarbonyloxy-benzoate

Photomicrograph of perillyl-4-phenyl-henzocarbonyloxy-bensoate




Figure 7.

Photomicrograph of Q hexene-4-t-hutoxy-benzocarbonyloxy-henzoate

Figure 8.

Photomicrograph of perillyl-4-t-butovy-benzocarbonylony-henzoate




The tollowing photographs correspond to the 1O gratted onto the stlosanes
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Figure 11.
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Photomicrograph of Grafted Q hexene-4-t-hutovy-henzocarbonylony-bensoate

Figure 12,

Phatomicrograph of Grafted  perilly I-4-t-butoxy-henzocarbonylovy-henzoate




3.3 EY Fluid Test Results

In order to determine the effectiveness of the modified Brookfield viscometer apparatus for
evaluating ER and EV behavior, a conventional ER fluid was prepared and tested in this
apparatus. This fluid was prepared according to details given in reference 1 and consisted
primarily of 40w/o -400 mesh silica gel and fumed silica in a conventional silicon oil

[poly(dimethylsiloxane)]. The results of these tests are shown in the Figure 13 below:

2000

G % Change 63.6°C
- % Change 79 6°

% Viscosity Change

Field Strength, kV/mm

Figure 13.  Electrorheological Behavior of Control Fluid
As can be seen, the viscosity of this ER fluid increased dramatically at all temperatures
under the influence of the electric field. In addition, this viscosity change was quite rapid

and reversible.

Having established that the test apparatus measures ER behavior, a variety of fluids
including the proposed family of liquid crystal polysiloxanes was tested for the EV effect.

17




Nl R EE &N &N B BE B BN BN BT B BN D B B ae

% Viscosity Change

Generally, all of the new class of EV fluids gave some degree of electroviscous behavior,
whereas the unsubstituted fluorosiloxane fluids, the pentafiuoro styrene, the vinyl
anthracene and Q-hexene-4-t-butoxy-benzocarbonyloxy-benzoate fluids did not exhibit
electroviscous effects; therefore, no other data are given for them in this section.

The most promising EV fluid discovered to date contains perillyl-4-t-butoxy-
benzocarbonyloxy-benzoate and yielded an increase in viscosity of over 5000% in an
electric field of 4.5 kV/mm when tested at 62.4°C. The EV testing results for this

particular novel fluid are shown below in Figure 14.

6000

5000 -

4000 -

<+ % Change 50.6°
- % Change 62.4°
o 9% Change 71.5°

3000 -

2000 A

1000

Field Stregth, kV/mm

Figure 14. Electroviscous Behavior of perillyl-4-t-butoxy-benzocarbonyloxy-

benzoate product
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Although not as dramatic as the perillyl-4-t-butoxy-benzocarbonyloxy-benzoate product;
the remaining fluids, those containing perillyl-4-phenyl-benzocarbonyloxy-benzoate and
perillyl-4-cyano-benzocarbonyloxy-benzoate, yielded increases in viscosities of 900% and
500 % respectively. The EV testing results for the latter novel fluid, are shown below in
Figure 15 and Figure 16 respectively.

There is a dramatic linear increase in the viscosity of the fluid as the strength of the electric
field is increased. This effect appears to be temperature sensitive.

1000

% Viscosity Change
¢t o

Field Strength, kV/mm

% Visc.
% Visc.
% Visc.
% Visc.

Figure 15. Electroviscous Behavior of perillyl-4-phenyl-benzocarbonyloxy-benzoate

product
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Figure 16.

4.0 CONCLUSJONS AND RECOMMENDATIONS
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Electroviscous Behavior of perillyl-4-cyano-benzocarbonyloxy-benzoate

product

The main conclusions from the Phase I research are:

%

The new class of lubricants shows pronounced electroviscous (EV) response which is
temperature dependent. Over 5000 % increase in viscosity was measured for some samples.
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* The EV response is completely reversible and may be very fast. The response time for optical
. changes was measured as faster than thirty milliseconds.

* No EV response was observed for poly(methyltrifluoropropylsiloxane), the control fluid.

* No EV response was observed for fluids containing pentafluoro styrene and vinyl anthracene .

* LC polysiloxane fluids show typical optical effects for materials with liquid crystalline phases
as measured by polarizing microscopy.

* Magnitude of EV response depends on mesogenic group substitution and mesogenic group
spacer length. '

*  Electrorheological behavior was observed for a slurry of silica ge: «1d fumed silica.

The EV approach avoids the need for solid particle suspensions and water-based materials to
achieve electrically induced changes in viscosity. The preliminary results of the Phase I clearly and
for the first time demonstrate the feasibility of electrically achieving large changes in viscosity in a
single phase fluid.

The technical feasibility of making very substantial advances in smart fluids now appears very
achievable. The rich variety of possible structures, active groups, and blending liquids is, as yet,
unexplored. Recommendations for future research in this area include a comprehensive Phase II
investigation of the structure-property relationships which govern the EV effect in this class of
compounds; refinements in the measurement of the EV effect, expanded viscosity range capability,
and monitoring other rheological properties under applied electric fields; and evaluating these
advanced materials in typical EV applications. Some of the structural parameters which should be
further examined are the type and degree of substitution, the spacer group linkage, the composition
and microstructure of the lubricant.

Improvements in the measurement of the EV effect include using more sample vessel-spindle
combinations to expand the range of viscosity measurement, and a computer interfaced to the
voltage source and viscometer to remotely monitor and control field strength, and monitor viscosity
as well as the time element of the process. Promising EV materials could be evaluated by the Army
during Phase II for Phase III applications such as robotic actuators, vibration damping, lubrication,
flow control and torque transfer.

21




The proposed research has the potential to revolutionize robotics and provide next generation
devices having importance for both military and commercial applications. The integration of
actuators with computational/control capabilities enables electroviscous fluids to provide
"intelligent” responses including adapting, self diagnosis, and microcontrol of moving surfaces.
The devices of the next century will contain smart active damping and other mechanical controls
controlled locally by voltage differences across electroviscous fluids. Examples include clutches,
linear actuators and hydraulic dampers. This seminal research leads directly to commercial devices

for vehicle control.

5.0 EXPERIMENTAL PROCEDURES

Figure 5 illustrates the synthetic procedures adopted in order to prepare the six desired EV
fluids. The synthesis involves first blocking the carboxy group of 4-hydroxy benzoic acid
with benzyl chloride followed by the reaction of the phenolic hydroxyl (I) with the desired
4-R-benzoyl chloride (IIT) and then deblocking the acid to yield the desired LC mesogen
precursor (IV). This precursor is then transformed into an acid chloride via thiony! chloride
and then reacted with (S)-(-)-perillyl alcohol to form the LC mesogen (V).

The LC mesogen is then grafted onto 1,1,3,3,5,5,7,7-octamethyltetrasiloxane via a
platinum-complex-catalyzed hydrosilation reaction to yield product (VI). All of the EV
fluids are prepared by the acid-catalyzed, ring-opening polymerization of
hexamethyldilsiloxane with (VI). Details of the syntheses follow.
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Figure 17. EV Liquid Synthesis Routes
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5.1 Preparation of EV Liquid Crystal Materials

5.1.1 Synthesis of benzyl-4-hydroxy-benzoate (J)  4-Hydroxybenzoicacid
(276 g, 2 mol) and potassium hydroxide (132 g, 2 mol) were dissolved in 1400 mL and

600 mL of ethanol respectively. The two solutions were mixed and stirred fc. 0.5 h. Tne
solvent was evaporated by rotovap. The white solid product was then dissolved into 1400
mL of DMF ina 2 L 3-neck round bottom flask. A solution of 40 g of
tetrabutylammonium iodide in benzyl chloride (230 mL, 2 mol) was added thiough a
dropping funnel. The mixture was stirred under mechanical stirring for 24 h at 50° C. After
cooling, the product was poured into 7 L of ice water. The r.ixture was stirred for 1 h,
filtered, and dried by vacuum oven. The dried solic was dissolved in carbon tetrachloride
and treated with decolorizing charcoal; filtered hot and recrystallized from the same solvent.
The reaction scheme is given below.

] I - NaQH : I
Ho = c @C—O CH3 \'>
= e

5.1.2 hesis of 4-benzyvlbenz -4'-R-benz 111 The required 4-R-
benzoic acid (0.360 mol) was placed in a dry 500 mL round bottom flask fitted with a
condenser, N, gas inlet, drying tube, dropping funnel. A slurry of 4-R-benzoic acid was
made with 40 mL of anhydrous 1,2-dichloroethane, 31.41 mL of thionyl chloride and 10
drops of DMF. The mixture was allowed to reflux for 1.5 h, then diluted with another 100
mL. of 1,2-dichloroethane and allowed to reflux for 1 h. Then, a mixture of benzyl-4-
hydroxy b=nzoate (90.49 g, 0.3965 mol) and 70 mL of pyridine was added through a
dropping funnel over a period of 1 h. The reaction was carried out for 24 h and then
allowed to cool. Upon cooling, most of the pyridinium hydrochloride salt had precipitated:
therefore, the solution was filtered before evaporating the solvent. The solvent was




removed by rotary evaporation and the solid residue was washed with water and then with

methanol. The reaction scheme is given below.

0 0
D\ C] I
S N S S B

SaseTasaey

5.1.3 nthesis of 4-R-benzocarbonyvloxy-benzoi id (IV)  4-
benzylbenzoate)- 4-R-benzoate ( 0.140 mol) was dissolved in 300 mL of trifluoroacetic
acid and allowed to stir for 0.5 h as 28 mL of 30% HBr in acetic acid was added dropwise.
A white precipitate began to form within the first 30 min after addition and the reaction was
allowed to stir at room temperature for 5 h. The reaction was stopped by adding 30 mL of
acetone and then filtering. The white solid was washed with excess methanol and dried

under vacuum. The reaction scheme is given below.
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5.1.4 Synthesis of perillyl-4-R-benzocarbonyloxy-benzoate (V) 4-R-

benzocarbonyloxy-benzoic acid ( 0.0374 mol) was placed in a dry 100 mL round bottom
flask with 20 mL of anhydrous 1,2-dichloroethane, 4.1 mL of thionyl chloride and 5 drops
of DMF. The mixture was allowed to reflux for 1.5 h, then diluted with another 50 mL of
1,2-dichloroethane and allowed to reflux for 1 h. A mixture of perillyl alcohol (5.70 g) and
pyridine (3.26g ) in 50 mL of 1,2-dichloroethane was then added drop-by-drop and the
reaction was allowed to continue under reflux for 24 h. After allowing to cool and placing
the reaction vessel in an ice bath for 1 h, the mixture was filtered. The solvent was removed
by rotoevaporation and the solid was purified by recrystallization or column
chromatography; depending on the product. The reaction scheme is given below.

sacl, u
TS ST SRV, S5 S
HO - CH \—c CH,
0 CH,
n
R@c OQC o- CHZ—DQ-CH,
|

5.1.5 Grafting of L roups onto Siloxanes (VI The perillyl-4-R-
benzocarbonyl-oxy-benzoate (0.02588 mol) is reacted in a 2:1 ratio with 1,1,3,3,5,5,7,7-
octamethyltetrasiloxane via a platinum complex-catalyzed hydrosilation reaction. The

general reaction scheme is given below.
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The LC mesogen was placed in a three-necked round bottom flask fitted with dropping
funnel, nitrogen gas inlet, Dean-Stark trap, and condenser. The compound was dissolved
in 60 mL of toluene and heated to reflux until 20 mL of toluene were collected. This
process ensures dryness of the solution to avoid hindrance of the hydrosilation. Then 5
drops of platinum-divinyl-tetramethyldisiloxane were added. The siloxane was then added
dropwise over a period of 0.5 h. The reaction was carried out at 80-90°C for 22 h. Then,
activated charcoal was added and the solution vacuum filtered. Finally, the toluene was
removed under reduced pressure.

5.1.6 Preparation of L.C Contaipning Fluid (VII) The desired EV fluids were

prepared by the acid-catalyzed, ring-opening polymerization of hexamethyldilsiloxane with
the perillyl-4-R-benzocarbonyl-oxy-benzoate terminated 1,1,3,3,5,5,7,7-
octamethyltetrasiloxane. The reaction was carried out in a 1:30 ratio of cyclic siloxane to
LC functionalized siloxane. A 100 mL one-necked round bottom flask was fitted with
(0.001895 mol) of perillyl-4-R-benzocarbonyl-oxy-benzoate, 12.64 g (0.05685 mol) of
hexamethyldilsiloxane and 0.3 g of Nafion powder. The reaction was heated to 80°-90°C
and kept at that temperature for 24 h. After cooling, the reaction was diluted with CH,Clo
and MgO and MgSO4 were added to remove any acid and to dry the system. The solution
was then filtered and the solvent removed by rotary evaporation. The reaction scheme is
given below.
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5.2 Materjal Analysis
5.2.1 Chemical Characterization of LC Compounds

The liquid crystal compounds were chemically characterized by proton nuclear magnetic
resonance spectrometry (IHNMR) and Fourier Transform Infrared (FTIR) spectroscopy.
The NMR analysis was carried out by dissolving the copolymers in deuterated chloroform
and using tetramethylsilane as a reference. A Varian Model EM-360 60 MHz spectrometer
was used. FTIR analyses were performed by Diffused Reflectance or Transmittance. A
Perkin-Elmer FTIR 1600 spectrometer was used for these analyses.

The thermal properties of the L.C mesogens were measured by Differential Scanning
Calorimetry (DSC). A Perkin-Elmer Delta Series DSC7 was used. However, this
instrument cannot handle liquid samples; therefore, thermal characteristics of the fluids
could not be determined. The heating or scanning rate used for each thermal scan was 10
OC/min and the temperature range typically was -20 to 130 °C.

5.2.2 Qptical Characterization of LC Compounds

The liquid crystal samples were analyzed by polarizing microscopy. The optical analyses
were carried out on a Zeiss Microscope (standard lab 16) fitted with polarizing filters.

5.2.3 Fluid Vi i haracterization
The viscosity characterization of the experimental fluids were performed with a Brookfield
viscometer (Model LVT), placed in a Faraday cage and outfitted with a Bertran high

voltage power supply (Model 205 B-20R). Viscosity measurements were performed at a
number of temperatures, field strengths and shear rates.

5.3 Electroviscous Testing

A diagram illustrating the viscosity test apparatus is shown on the next page.
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Figure 18. Electroviscosity Test Apparatus

A Brookfield viscometer (Model LVT) was modified for electroviscosity experiments.
Basically, the steel sample chamber was connected to the hot side of a Bertran high voltage
DC power supply (Model 205 B-20R) and the steel spindle was connected to ground so
that a large voltage gradient could be imposed across the fluid sample while the viscosity
was being measured. The sample chamber was also jacketed to allow control of sample
temperature by means of an external circulating bath. For further safety the apparatus was
placed within a 2 ft. cube Faraday cage. Measurements are taken by monitoring the
viscometer dial from outside the cage. This allows continuous measurement of the viscosity
of the fluid as temperatures and voltages are varied.

The testing procedure involves first preparing the sample by placing it in the sample holder
and placing the sample holder in the viscometer. The apparatus is then prepared by setting
the circulation bath temperature to the desired temperature and the viscometer to the desired
shear rate. Typically the samples were tested at temperatures ranging between 50-100°C
and field strengths from 0-5 kV/mm.
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5.4 Response Time Test Apparatus

To measure the response time for a change in the optical properties of the EV fluids, a test
apparatus and instrumentation package was designed and constructed. The test instrument
illustrated in Figure 19 uses a set of polarizing lenses, a light emitting diode (LED) light source,
and a silicon photodiode detector in combination with an electronic timing circuit. A schematic of

the timing circuit is shown in Figure 20.

The instrument uses the polarization properties of the liquid crystalline EV fluids to measure the
time for a change in rest orientation due to exposure to an electric field. The second polarizing lens
is adjusted such that it is crossed perpendicular to the first lens, blocking light from the high-
intensity GaAlAs LED from the CLD31 photodiode detector. The EV fluid is placed in the test cell
which consists of a number of glass slides fixed in place with epoxy. Wide pieccs of nickel foil
are attached to the top and bottom of the test cell with epoxy to connect to the high-voltage power
supply leads. An electric field is formed across the 3 mm gap between the two nickel foil strips.
Application of a large electric field to the EV fluid causes a change in the polarization angle of the
system, allowing light to strike the photodiode detector.

The heart of the electronic timing circuit is an ICM7226A IC. The ICM7226A is a fully integrated
universal counter combining a high frequency oscillator, an 8 decade data counter, a decade
timebase counter, and segment and digit drivers to drive large LED displays. When used with a 10
MHz timebase, the ICM7226A can time events with a 0.1 uS resolution. Other sections of the
timing circuit include switching circuitry for the high-intensity LED, amplifier level shifting
circuitry for the CLD31 photodiode detector, and buffering for driving the high-voltage power
supply control lines. The timing circuit is completed by a custom TIBPAL16R4-25CN
programmable array logic IC which is used as a state machine to sequence all of the control signals
for ICM7226A.

A Bertran 205B-20R power supply is used to apply an electric field to the test apparatus. The
precision regulated linear power supply can output a maximum of 20 kV @ 1 mA with only 300
mV ripple. The Bertran 205B-20R includes a remote programming connector which allows the
output of the power supply to be turned on/off and to be varied with an external voltage source.
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