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Abstract

In this paper the axisymmetric crack problem for a nonrhomogeneous

medium is considered. It is assumed that the shear modulus is a function of z

approximated by y = ioe". This is a simple simulation of materials and

interfacial zones with intentionally or naturally graded properties. The problem is

a mixed mode problem and is formulated in terms of a pair of singular integral

equations. With fracture mechanics applications in mind, the main results given

are the stress intensity factors as a functions of the nonhomogeneity parameter a

for various loading conditions. Also given are some sample results showing the

crack opening displacements.
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Introduction

In solid mechanics many of the engineering materials such as composites

and large variety of bonded materials and structural components are generally

modeled as nonhomogeneous continua. The thermomechanical parameters of these

materials are usually assumed to be discontinuous functions, very often piece-wise

constants, in space variables. However, there are some important applications in

which the spatial variation in material properties is continuous. As examples for

such materials we may mention the following: (a) Geophysical materials with

naturally graded compositions such as shale-sandstone. In studying, for example,

hydraulic fracturing of such a medium it would be necessary to take into account

the mechanical property gradient of the material. (b) Interfacial regions with

graded properties in diffusion bonded materials, in plasma spray coating, and in

ion plating (Batakis and Vogan, 1985, Houck, 1987). (c) Material nonhomogeneity

resulting from temperature gradients in the solid in which thermomechanical

constants of the medium are significantly dependent on temperature. And finally

(d) the tailored materials with predetermined continuously varying volume

fractions.

Some of the important applications in the last category of materials may

be found in ceramic coating of metal substrates and in metal-ceramic composites

with graded properties. It is known that certain strength related properties of

ceramic coatings can be improved by layering the interfacial zone going from

metal-rich to ceramic-rich compositions. For example, in joining tungsten to

zirconia by introducing four intermediate layers that contain 80/20, 60/40, 40/60,
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and 20/80 percent W/ZrO2 , respectively, it has been shown that the peak value of

the residual stress is reduced by approximately six folds compared to that

resulting from direct tungsten/zirconia bonding (Hirano, et al, 1988, Hirano and

Yamada, 1988).

The Fatigue and fracture characterization of materials and the related

analysis require the solution of certain standard crack problems. With the

exception of the problem of "torsion" of an infinite medium containing a penny-

shaped crack (Kassir,1972), the existing solutions of the crack problems in

nonhomogeneous materials with continuously varying properties have been

obtained under the assumption of plane strain, generalized plane stress, or anti-

plane shear loading (see, for example, Dhalival and Sing, 1978; Gerasoulis and

Srivastav, 1980; Delale and Erdogan, 1983, 1988a, 1988b; Erdogan, 1985; Konda

and Erdogan, 1989). One of the practical problems in this area is that of an

internal circular crack in a nonhomogeneous solid subjected to "tension." The

problem is always a mixed mode problem. In this paper we consider the simplest

of these problems, namely that of an axisymmetric crack in an infinite solid with

elastic properties varying in the axial direction only (Fig.1). The corresponding

plane strain mixed mode problem was recently considered by Konda and Erdogan

(1992).

Formulation of the Problem

In the crack problem shQwn in Fig.1 for a large el.stic solid it is assumed

that the external loads as well as the geometry are axisymmetric. Therefore, one

may easily separate the torsion component of tle problem in which u6=v(r,z),

adr, and a-', are the only nonzero displacement and stress components. Similarly,
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by solving the remaining problem under the given external loads in the absence of

a crack and by using superposition, the problem may be reduced to that of a

nonhomogeneous solid containing a penny-shaped crack in which

a•:(r,0) = pl(r), or,(r,O) = p2(r), 0 < r < a (la,b)

are the only external loads. Furthermore, if the crack radius a is small in

comparison with the nearest distance from the crack to the boundary of the solid,

then in the perturbation problem the medium can be assumed to be infinite.

Needles to say, from the viewpoint of fracture mechanics the perturbation

problem would contain all the relevant information such as the stress intensity

factors and the crack opening displacements. If we now assume that locally the

elastic properties of the medium may be approximated by

/s(y) = oe'Z, v = constant, (2)

for the axisymmetric problem under consideration by using the kinematic

relations

Err- = 'a,- 6 , = ..--= ' 2 =r --Ou + 'w (3)
arr~,. L9-T ~ Zz L9~ O r'

and the Hooke's law

0ij = 2te3ij + AEkk6i, (i, j = r, O,z), (4)

the equilibrium equations

O_ +0' ++ (arr- _ 00) = 0,

19 r

+ •- 9''. +ar7 = 0, (5a,b)

may be expressed as follows:

12U+ lau _ 1L + rO OzW Or/ -1aqu+( IOr2  rar r2  && (9z w)

+ (K-1) {2U _9rOz} =0,
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0r ?z + j~q (KW 02 }

+ I)ar~ Ia 9zI I I ILa Ir 2

r L9z O~r) arh~ r Tz+

(6a,b)

where u and w are, respectively the r and z components of the displacement

vector, ys is the shear modulus, v the Poisson's ratio, A/ji = 2v/(1 - 2v), and

K = 3 - 4v. In addition to the boundary conditions given by (1) and the regularity

conditions at infinity (requiring that u and w must vanish as r 2 + z 2-_0), the

crack problem must be solved under the following conditions:

o,,(r, +0) = ,..(r,-0), a0r(r, +0) = arz(r, -0), 0 K< r < oo, (7a,b)

u(r,+0) = u(r,-0), w(r, +0) = w(r, -0), a < r < o. (Sa,b)

We now assume the solution of (6) in the form

u(r,z) = n F(z,p)pJ,(rp)dp,

w(r,z) = JoG(zp)PJo(rp)dp' (9a,b)

where J 0 and J1 are the Bessel functions of the first kind. Substituting from (9)

into (6), defining D = d/dz, and inverting the related Hankel transforms we find

{(K -1)D 2 + a(K- 1)D - (r+1)pI}F - {2pD + a(c- 1)}G =0,

{2pD + ce(3 - K)p}F + {(K + I)D' + a(K + 1)D - (ic - 1)p}G =0,

(10a,b)

where the following relationships have been used:

d + 1 d - 1 )j(rp) - p 2Jl(rp),

d + -J,(rp) pJ0 (rp),
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-42 J 0 (rp) = EJl(rp) - p2Jo(rp). (ha-c)

The solution of the system of the differential equations(10) is found to be

4
F(z,p) = L Ak(p)emkz,

k=1

4
G(z,p) = L ak(p)4k(p)emkZ, (12a,b)

k=1

where the functions Ak, (k = 1,..,4) are arbitrary unknowns, ml,..,m 4 are the roots

of the following characteristic equation

m4 + 2am3 + (a2-2p2) 2 - 2p 2cm + 3- Ka2p2 + p4 =0, (13)

and the coefficients al,..,a4 are given by

2prMk + pa(3-K) (k 1,..,4). (14)

(te + 1)m + + (K+ 1)mk - (.- 1)p

The characteristic equation (13) may easily be expressed as

(m2+am -p2) 2 + 3-t^ cc2 p2 =0

from which it follows that 1

=- - a+ 1{a 2 + P + i4L jck P}2,m1 =M3 = 2 21 Kr T=1

- a- IP + p2 + i ciIaP}2.(1abmr2 = f4 -- 2 0 pt, 2 (16a,b)

After solving for mi,..,m 4 , the expressions for coefficients ak given by (14) may be

simplified as follows:
2 inkac(3 - Kc)

ak- = (3-, (k = 1,2)at=-2p + iaý(3 - t)(1 + r)

a3 =W1 , a4 =-d-2. (17a-c)

By observing that R(ml,m 3) > 0 and R(m 2,m 4) < 0, to satisfy the
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regularity conditions at z = o in the solution given by (12) we must delete the

terms involving A1 and A3 for z > 0 and A2 and A4 for z < 0. Thus, the problem

may be considered as that of two half spaces involving two unknowns, A2 and A4,

for the upper half space and two , A1 and A3 , for the lower half. Of these four

unknowns two may be eliminated by using the stress continuity conditions (7)

Thus, by eliminating A, and A3 from (12) and (7) it can be shown that

i A 2em2z + A 4eM4Ze z>0,
F(r,p) = j(A1A2 + A2A4)emlz + (A3A2 + A4A4)em3z, z <0 (18)

Sa2 A2em 2z + a4A4e M4z, z > 0,
G(r,p) = a l (AIA 2 + A2A4)emlz + a3(A3A2 + A4A4)em3z, z <0 (19)

where the expressions for the coefficients Al,..,A4 are given in Appendix A. The

unknowns A2 and A4 may now be determined from the mixed boundary

conditions (1) and (8).

The Integral Equations

To reduce the mixed boundary conditions (1) and (8) to a system of

integral equations we first define the following new unknown functions

g1(r) = L{w(r, +0) - w(r, -0)},

g2(r) = Aru(r, +0) - ru(r,-O)}. (20a,b)

From (9), (18), (19) and (20) it then follows that

gl(r) = 0(- p(a2 + G2 )- 2 - p(a4 + G4)A4)pJ 1(rp)dp,

g2(r) = (p(1 - E 2)A2 + p(1 - E4)A4)pJo(rp)dp, (21ab)where the functions E•UE4, G2 and G4 are defined in Appendix A. Equations (21)
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determine A2 and A4 in terms of g, and g2.

By substituting now from (18) and (19) into (9) and by using (3) and (4),

the boundary conditions (1) may be expressed as

0 Fl(p)pJo(rp)dp -- pl(r), 0 < r < a,

00 F2(p)pJ,(rp)dp P2(r1 0 <ýr < a, (22a,b)

Fj(p) = n2 A2 + n 4A4,

F 2(p) = v2A 2 + v4A4, (23a,b)

where the functions n2, n 4 , v2, and v4 are again defined in Appendix A. Inverting

the transforms given by (21) and from (8) and (20) observing that gk(r) = 0 for

r > a, (k = 1,2), the functions F1 and F 2 are found to be

Fj(p) = fa ( - dj 1Jj(ps)gj(s) + d 12JO(ps)9 2(s))sds ,

F 2(p) = fa ( - d21Jl(ps)g1 (s) + d2 2J°(ps)g2(s))sds , (24a,b)

where the functions dij(p), (i,j = 1,2) are also defined in Appendix A.

In order to avoid working with divergent kernels and to simplify the

analysis regarding the asymptotic behavior of the kernels, first both sides of (22)

are integrated in r. By using (24) it may then be shown that

J0 JI(rp)dpJ~ a dj 1Jj(ps)g1 (s) + d12J0 (PS)g 2())d~s = '- 1 r Jspl(s)ds + C1)

- f0 J0 (rp)dp f1(0 d2lJl(PS)g1 (S) + d22J0(ps)g 2(S)).ds = To f r(s)ds + C)
(25a,b)

where C1 and C2 are arbitrary constants. Equations (25) are essentially the
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integral equations that determine g, and .92 For p -+ oo it can be shown that the

functions dj 3(p) have the following asymptotic behavior:

d,1 (p) = ~2 ' 1 + 0O(p-'), d12(p) =cl +'~ 3

d~~l pP 1ý 0 (p-), d22(P) = (p-). (26a-d)

Thus, from (25) and (26) we find

f { (H 1 (r, s) + hjj(r,s))gj(s) +ý h12(r, s)g2\'s)}Isds + r~ sp~s + C

f h2j(r,s)gj(s) + (H22(r,s) + h22(r,S))g2 (S)}sds = K+1 (r rP2(s)ds +C2)
(27a,b)

where~ ~ ~~~~ ~ ~ ~ H1(,s [0J(pJjs~p= 1K(s/r) - E(s/r)], s < r, (8
H11r~J 0 [KjOs -1 r) 1(pd E=rs) Is > r,(8

j0 ( s~) s < r,
H 22(r, s) = J0 c(rp)JO(sp)dp = 2j -f> (29)

hll(r,s) = J 0 Djj(p)Jj (rp)Jl(sp)dp,

h12 (r, s) = - f 0D,2 (p)J,(rp)JI (sp)dp,

h22 (r, s) = f 0 D22 (p)JO(rp)J0 (sp)dp, (30a-d)

D11(p) = (dii(p) )

D12(P) = d2P

D21(p) =d 2 (Px)'
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D22(p) = d2(P) '

d11(oo) = -2•- d22 C) 2 (3 -f)

where K and E are the complete elliptic integrals of the first and second kind,

respectively. By differentiating, (27) can further be reduced to the following

standard form:

1f(, ' (--+ i)gl(s)ds + -10 k1 3(r's)gjs)ds f' P2(r)

T s-r s+r7r 0 kljr, s)gj(s)ds =-ý- p,+
.7=1~f'(s s'-)g,2(s)ds + Zk(rs)gj~s)ds ~±p(r, (32a,b)

where the Fredholm kernels ki are given by
k,,(r, s) .M(r, s) 1 Al1 (r,s) - 1 fJ

-(rs - r + s + r + 7rsJ 0 Dii(P)PJ°rp)Jisp)dp

k12(r,s) = - lrs D12(p)pJo(rp)Jo(sp)dp,

00
k2.(r, s) = rrs 0 D21(p)pJ 1(rp)Jj(sp)dp,

MA2(r, s) - 1 '112(r, s) -1 00' J

k22(r,s) = r--- s + r Os f0 D22(P)PJj(rp)Jo(sp)dp, (33a-d)

1 E E() K(s), s < r,
M,(r,s) = ( r I (34)

T -EZ() s <r,
M2 (r, s) = •- $()2 S_2 r2 (35)S r

E(r)i s r,

Note that the dominant kernels of the system of integral equations (32) are

of the generalized Cauchy type (Erdogan, 1973). Thus, expressing the solution by

gk(s) = hk(s) k = 1,2, (36)
(a - s)';-s'
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and using the function-theoretic method described, for example, by Erdogan

(1978), the characteristic equations giving 7Yk and /3 k may be obtained as follows:

cotrlk = O, k = 1,2, (37)

cosIt3 1 = -1, cos/32 = 1. (38a,b)

In (36) h1 and h2 are unknown bounded functions which are nonzero at the end

points s = a and s = 0. Equation (37) gives the expected results -ý = 1/2,

y2 = 1/2. On the other hand, considering the physical constraints gj(0) = 0 and

u(0, + 0) = u(O, -0) = 0, it may be seen that the admissible roots of (38) are

31= - 1, 32 =0 giving

gl(s) = S1/2 h I(s), 9 2 (S) (a 1/2h2(s) (39)-(a - (a (3 )

From (20) and (39) it can be shown that for small values of r/a the crack surface

displacements would have the following asymptotic form:

hj(0) 2 + h2(0)
w + - W w0 + --- r , u -u - :---- r,<r <a. (40)

Also, from the physical conditions ru + - ru- = 0 for r = 0 and r = a, it is clear

that the unknown function g2 must satisfy

0 rg2(r)dr = 0. (41)

In solving equations such as (32), the accuracy is very highly dependent on

the correct evaluation of the kernels kij, (i,j = 1,2). For this it is necessary that

the asymptotic behavior of kii for s -* r be examined and the weak singularities, if

any, be separated . From (26b,c), (31e,f), and

K(A) -+ log(4/J1- A2) for A-, 1, (42)

it can indeed be shown that for s -. r the kernels k3, have logarithmic singularities
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that may be extracted as

Ms(r, s)2-

M 2(r, s) - 1.s-rj + I(2-log48+±M 2 2

k12(r, s) = -lasH 2 2 (r, s) - •s J (D 12(p)p + ')YO(rp)Jo(sp)dp,

k2(r, s) - EcesHj I(r, s) + irs 0J -(2 1 pp IJ(rp)Jj(sp)dp,

(43a-d)

where Hil and H 22 are given by (23) and (29) and , by virtue of (42), are also

seen to have logarithmic singularities and mlj and m 2 2 are known functions which

are bounded in the closed interval 0 < (r,s) < a.

The Solution

The integral equations may be solved by extending the interval and the

definition of the unknown functions and the kernels into (- a,0) and by using the

properties of the Chebyshev polynomials T, and U, (Erdogan,1978). These

equations may also be solved by observing from (39) that the orthogonal

polynomials corresponding to the weight functions wl(y) = (1 + y)/41- y and

w2(y)-=-1/,1- Y, y=2s/a-1, are p(- l)(y) and p$- 2,)(y), respectively, and

by expressing the unknown functions g1 and 92 as follows:

gi~~~s)2 =0()= EA.n (Y)

The integral equations may then be regularized by using the properties of Jacobi

polynomials and may be solved by truncating the series in (44) and using an
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appropriate collocation technique (Mahajan,1992). However, a somewhat more

efficient technique may also be developed by defining

I

, s' s f2(') ,' = s/a, (45a,b)

and by requiring that fl(O) = 0, f 2(0) = 0. The orthogonal polynomials related to

the weight functions in (45) are

(4 D r(n + ) cos(n + 1)6 = (n +)
n~ • cosO hf

P 2'2)(t)= Fn±1) cosn =- n..fT- Tn(t), (46a,b)

t =2s' -l1= coOS, (I!+ tnt(t) = T(t) +T,,+ I(t), 1< t<1. (47)

We then express g, and g2 in terms of the following infinite series:

g + (as) = ts' Bl,,t(2s'- 1)
0

g2(as') = / E B 2.Tn(2s' - 1). (48a,b)

By substituting from (48) into (32) and by observing that

J1 5 t,(2s' - 1) ds' Tn(t) + Tn+ IN

0 s s'- r "(t_ 1x)--t2 dt

of-•7 t,,(2s'-i) ds' Un_ (x) + Un(X) XI <1, (49)

ON 1:, s' s -r' G,(x) + G+,(, + x)x> 1,

r'=ra, z 2rS1, U(z)sin(n± 1)9
r/ r/a, x 27-I U,(x) sin ,9 I <1, cosO=z, n=0,1,..,(50)

(x(x) = on (X > 1), n 0,1.... (51)

the integral equations (32) may be reduced to the following system of equations:
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[ (+ U(x) + K1 1 (x)] + B 2 Kl 2 -(X)) =
0

00

E{B1 K2, 1 .(x) + B2 ,12U._ I(x) + K22.(X)]} = P2 (X),
0

(-1 <z<1) (52a,b)

where

Pj(x) = p(r), 1~,2, x = L2r - 1 = 2rý - 1,

1 00
Kil.(x) =F 10 kil(ar',as) ',t,,(2s' - 1)ds' , (I = 1,2),

K (x) =1f00 ki2 (a-1,ast) T,(2s- ') d s' , (i = 1,2), (53a-c)

t' JOr1 SI(l -s') 5ac

Also, by substituting from (48b) into (41) and by using the orthogonality

conditions
1, i=j=O,Tj r(t)Tj(t)

ti T,(t)T,(t= 1/2, i= j >o, (54)

{0, i $ j,

it may easily be shown that

B 20 + !B 21 = 0. (55)

Equations (52) and (55) are solved by truncating the series and by using a simple

collocation technique. Very fast converging results are obtained if the collocation

points xj are selected as follows:

TN(Xj) = 0, Xj = Cos9j, ,j -- (2 - 1). (56)

From the derivation of the integral equations (32) we observe that the

right hand side of (32) represents a,,(r,O) and a,.,(r,0) for a < r < oo as well as for

0 < r < a. Thus, defining the modes I and II stress intensity factors by
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k, = og2 ý(r -_a O)..zr, 0),

k2 = limT(r-a) r..(r, 0), (57a,b)

and by using (51), from (47), (48) and (32) it can be shown that

k, 2= 4Z Bin, k2 = W2_ EB 2n. (5$)
0 0

For a homogeneous medium (i.e., for c = 0 in (2)) modes I and II crack problems

are uncoupled and the stress intensity factors are given by

2 a rp,(r) dr k 2- a 7 2p(r) dr(
7r -J , a. 3/(54a9)---

The Results

The main results of this study are the.stress intensity factors calculated for

various loading conditions as functions of the nonhomogeneity constant a by

defining the shear modulus in M(z) = yoezp(az). Table 1 shows the six different

loading conditions used in the calculations. The table also shows the corresponding

modes I and II stress intensity factors in a homogeneous medium containing a

penny-shaped crack of radius a obtained from (59). For the nonhomogeneous

medium the normalized stress intensity factors calculated for v = 0.3 are shown in

Table 2. As in the plane strain problem, for all loading conditions both k1 and k2

increase with increasing aa, the dimensionless nonhomogeneity constant.

Comparing the results given in Table2 with the corresponding plane strain results

obtained by Konda and Erdogan (1992) , it may be seen that , aside from the

factor 2/7r characterizing the difference between penny-shaped and plane strain

cracks, the increase in the stress intensity factors k1 and k2 with increasing aa in

the axisymmetric case is not as severe as in the plane strain crack. For the case of
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pressurized cracks (i.e., for or,,(r,O)=- P0, arz(r,O) = 0 and r,(x,0)= -PO,

o'•z(x,O) = 0) the comparison of the two sets of results is shown in Table 3.

Note that the results given in Table 2 may be used to obtain the stress

intensity factors for arbitrary crack surface tractions by superposition to the

extent that the tractions may be approximated by the second degree polynomials

in r.

After determining g, and g2 or the coefficients B, and B2, shown in (48),

the crack opening displacements may be obtained form (20) as follows:

w(r, +0) - w(r, -0) = - 1(s)ds

a(40 + 1)f Bl°(' +½'sir2o')
= -2 • 2

where

(4) n asofom(1)an 45 yo 4sn 8h Eodto (4(2snoos

+1) 2n

+ 4n+ 4 4n-4='- J
where

It should be observed that u + - u - vanishes for r 0* 0 This may be seen from

(40) and also from (61) and (45) by using the condition (41) as follows:

tim 0 1u(r, + 0) - u(r, -0)1 = lim i j' Sg2 (s)ds

=-liroa-d sg2 (s)ds

= i' • 2(r) =0. (62)
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Figures 2 and 3 show some sample results for the crack opening

displacements. In Fig.2 the external loads are o,,(r,O) = - Po, o7r(r,O) = 0 and the

dimensionless displacement shown is defined by

W(,)=w(r, + 0) - w(r,- 0 ) (1±+t)
W ' W- 2 Po Poa. (63)

In Fig.3 it is assumed that a,,.(r,O) = 0, orz(+,0) = -qo and the displacement is

normalized as follows:

U(r) = u(r,+0) - u(r,-0) + +K)

Uo ,u 2po q0a. (64)

From figures 2 and 3 it may be seen that the influence of the nonhomogeneity

constant a is much more significant on the axial displacement than on the radial

displacement. For reference we note that for a = 0 in pressurized plan,; strain and

penny-shaped cracks the crack opening displacements are respectively given by

U(x, + 0) - u•,(x, - 0)] = w0,1 - x2/a',

2 (1±+K)

w(r, + 0) - w(r, - 0)] -=Lw0 - -r/a' , w0 = +,o p0a. (65a-c)

In this study, largely to simplify the analysis, the Poison's ratio v is

assumed to be constant. In an actual nonhomogeneous medium this, of course, is

not possible. The assumption can only be justified if the fracture mechanics

parameters of interest, in this case the stress intensity factors, prove to be

relatively insensitive to variations in the Poisson's ratio. To give some idea about

the influence of the variations in v on the stress intensity factors, some additional

results are given in Table 4. The table shows the normalized stress intensity

factors for various values of v and for a small and a large value of the

dimensionless nonhomogeneity constant aa. In these examples the external loads
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are assumed to be oa•(r,0)=pl(r)= po, - - P2(r/a)2) , O < r < a,

a,0,(r,O) = p2(r) = 0. Particularly considering the fact that the Poisson's ratio of

the constituent materials and consequently that of the composite nonhomogeneous

medium is likely to vary within a much narrower range than shown in the table,

the influence of v on the stress intensity factors does not seem to be very

significant.
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Table 1. Loading conditions used and the corresponding

stress intensity factors for a=O.

pl(r) - Po - P2(h) o o 0

p (r) 0 0 0 - q(O) - q.(-v)

k, 2 p o a- 64-a pao
2 121a 0 0 0

k2  0 0 0 iq 0 W - f 2&4a-
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Table 2. The variation of stress intensity factors with a for

various loading conditions shown in Table 1, v = 0.3

S= pl(r), Orý(rO) = 0

ac k k2 k, k2  k, k2__

poa p P1 7a T1 7a T-d p2ýa

0.0 0.6366 0.0 0.5 0.0 0.4244 0.0
0.1 0.6378 0.0106 0.5008 0.0063 0.4249 0.0042
0.2 0.6413 0.0212 0.5028 0.0125 0.4263 0.0085
0.3 0.6465 0.0319 0.5058 0.0188 0.4284 0.0128
0.4 0.6580 0.0425 0.5097 0.0250 0.4309 0.0169
0.5 0.6608 0.0532 0.5143 0.0313 0.4341 0.0213
0.6 0.6695 0.0639 0.5193 0.0376 0.4376 0.0255
0.75 0.6841 0.0801 0.5279 0.0471 0.4434 0.0319
1.0 0.7115 0.1073 0.5441 0.0631 0.4544 0.0428
1.5 0.7741 0.1628 0.5811 0.0955 0.4795 0.0647
2.0 0.8435 0.2202 0.6219 0.1289 0.5073 0.0872
3.0 0.9943 0.3413 0.7108 0.1988 0.5676 0.1339
4.0 1.1558 0.4714 0.8057 0.2732 0.6319 0.1833
5.0 1.3256 0.6105 0.9053 0.3521 0.6994 0.2355

oT 2(r0) = 0, o>.(r,0) = p2(r)

___ k, k2 k_ k2  k, k2
q4a qOIfd qrd q1--r q-27a f-

0.0 0.0 0.5 0.0 0.4244 0.0 0.3750
0.1 0.000 0.5001 0.000 0.4244 0.000 0.3750
0.2 0.000 0.5003 0.000 0.4246 0.000 0.3751
0.3 0.000 0.5006 0.000 0.4248 0.000 0.3753
0.4 0.000 0.5012 0.000 0.4252 0.000 0.3756
0.5 0.000 0.5018 0.000 0.4256 0.000 0.3759
0.6 0.000 0.5026 0.000 0.4262 0.000 0.3763
0.75 0.000 0.5039 0.000 0.4271 0.000 0.3770
1.0 0.000 0.5068 0.000 0.4290 0.000 0.3784
1.5 0.000 0.5142 0.000 0.4341 0.000 0.3821
2.0 0.000 0.5233 0.000 0.4403 0.000 0.3867
3.0 0.000 0.5447 0.000 0.4550 0.000 0.3976
4.0 -0.0001 0.5682 0.000 0.4713 0.000 0.4097
5.0 -0.0004 0.5926 0.0002 0.4882 -0.0001 0.4224
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Table3. Comparison of the stress intensity factors

for pressurized plane strain and penny-shaped

cracks in a nonhomogeneous medium (v = 0.3).

aa 0 0.1 0.25 0.5 1.0 2.5 5.0

Plane strain crack

1 1.008 1.036 1.101 1.258 1.808 2.869

S0.0 0.026 0.065 0.129 0.263 0.697 1.567

Penny-shaped crack

ki 0.637 0.638 0.644 0.661 0.712 0.918 1.321

S0.0 0.011 0.026 0.053 0.107 0.280 0.611

Table4. The influence of the Poisson's ratio on the stress

intensity factors, loading: arz(r,O) = 0, o,,(r,0) = (-P,

- pi(r/a), p2(r/a)2), 0 < r < a.

k, k_ k1  k2 kk, k2

Vpold pofa 71 7a p I j- P2fa
aa = 0.3

0.01 0.6428 0.0318 0.5037 0.0188 0.4269 0.0127
0.1 0.6437 0.0318 0.5042 0.0188 0.4273 0.0127
0.2 0.6449 0.0319 0.5049 0.0188 0.4277 0.0127
0.3 0.6465 0.0319 0.5058 0.0188 0.4284 0.0127
0.4 0.6484 0.0319 0.5069 0.0188 0.4291 0.0127
0.45 0.6496 0.0319 0.5077 0.0188 0.4296 0.0127

cia = 3.0

0 ni 0.9193 0.3370 0.6659 0.1967 0.5367 0.1327
G.. 0.9389 0.3381 0.6776 0.1973 0.5448 0.1330
0.2 0.9642 0.3395 0.6928 0.1979 0.5552 0.1334
0.3 0.9943 0.3413 0.7108 0.1988 0.5676 0.1339
0.4 1.031 0.3434 0.7328 0.1999 0.5827 0.1346
0.45 1.053 0.3447 0.7458 0.2006 0.5917 0.1349
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Fig. 1 Crack geometry and notationl
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Fig.2 z- component of the normalized crack opening

displacement, W - (w + - w -)/wo0, w0 = (1 + K)poa/2p0
for the external loading u.z(r,O) = - Po, Orrz(r,O) = 0.
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Fig.3. r- component of the normalized crack opening

displacement,U = (u + - u- )/Uo, uO = (1 + xc)qoa/2Mo for

the external loading o,,(r,O) = 0, o,,(r,O) - qo.
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Appendix

Expressions for various functions that appear in analysis.

Aj(p) = (n2•v3 - 3V2)/AI A2(p) = (n 4v3 - 3V4)/Al

A3(P) = (nlv2 - n2V-)/•l A4(P)= l,,4-n 4V1)/A 1  (Al-4)

n3 (p) =(3-,c)p-(l+,K)maj, v3(p) =m±+pa, 1,..,4,

AI(p)= njv3 - n 3V1r (A5-7)

Ej(p) =- - mI + p(a3 - a,)] + (1 + ,c)vj(a 3m 3 - alml)},

Gj(p) = A-{nj(aiM3 - a3 mI) + v2j1R3 - i)%- al)p

+ (1 + 1)(m 3 - m1)a1a3]}, (j = 2,4). (A8,9)

dii(p) = -L (1 - E4) - ( -L E2),
A2  A2

d12(P) = jL2 (a4 - G 4) - jL 2 2),
A2 A2

dE4))= - -ý(- E2),
A2  A2

d22(P) =-1- (a4 - G 4) - V4 (a. - G 2), (A10-13)

A2(P) = p((1 - E 2)(a 4 - G 4 ) - (1 - E 4 )(a 2 - G 2)). (A14)
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